

DRAFT - GEOTECHNICAL DESIGN MEMORANDUM | November 19, 2021

76K02 - PS&E Package for B&O Bridge

Recommendations for Foundation Rehabilitation (Prefinal Submittal)

WJE PROJEC	CT NO. 2014.6410.U	
то	Phil Freimuth Senior Squad Leader IDOT District 8	
FROM	Stephen Garrett, PE - Wiss, Janney, Elstner Associates, Inc. (WJE) Richard Walther, PE, SE - WJE Peter Stauffer, PE (Geotechnical Engineer) – WJE Matthew LeBlanc, PhD, PE (Geotechnical Engineer) - WJE Chris Linneman, PE, SE - EFK Moen, LLC (EFK) Alex Benz, PE, SE - EFK	

This memorandum summarizes our recommendations related to the rehabilitation of Structure No. 082-0017 ("B&O Bridge"), specifically the rehabilitation of the above-grade foundation elements (pier caps, pier columns, and crash walls). The work is related to the development of the PS&E package for rehabilitation of this structure and is in accordance with the recommendations noted in our approved Bridge Condition Report (BCR) and Plan Development Outline. A Structure Geotechnical Report (SGR) was outside the scope of this PS&E effort.

Introduction

WJE performed a condition survey and associated analysis of the structure in 2020. "Serious" conditions consisting of multiple fractured column ties, as well as widespread corrosion related deterioration were present in the reinforced concrete foundation elements (piers and pier caps) supporting the steel superstructure. Recommendations for partial- and full-replacement were proposed and approved as part of the BCR process. Any replacement work will require temporary shoring to support the deck and steel structure to remain. Shoring systems will be supported through either shallow or deep foundations, such as piles, depending on the soil conditions.

Also during the BCR analysis, potentially liquefiable soils were identified at the structure site. The available soil investigation records from original construction and from the 1996 survey did not fully characterize the soil conditions to the extent necessary for a full liquefaction analysis. Therefore, to better characterize the risk for liquefaction, as well as to obtain the necessary soil bearing capacity information for shoring design, additional soil borings were recommended.

The following summarizes the structure, available information, rehabilitation design recommendations for substructure elements, and findings from the 2021 soils investigation.

Description of Structure

Structure No. 082-0017 was constructed in 1959. A major rehabilitation was carried out in 1988 that included replacement of the entire deck and the parapets. Seismic retrofits to elements of both the superstructure and the substructure were installed in 1998. In 2017, a limited repair scope was completed

Recommendations for Foundation Rehabilitation (Prefinal Submittal)

to re-seal the expansion joints as well as perform partial depth repairs of the bridge deck and approach pavements.

The substructure consists of reinforced concrete abutments and piers. The West Abutment and Piers 1 through 9 are skewed at varying degrees. Piers 1 through 7 are oriented at a 41 degree skew while Piers 8 and 9 are oriented at a 17 degree skew to accommodate the horizontal clearances required by the five railroad tracks in operation under the structure at Spans 5, 7, 8, and 9.

The piers consist of either five or six reinforced concrete columns at each of two aligned piers that support each direction of roadway deck. A concrete pier cap with concrete bearing pads supports the individual girders. The concrete pier cap is stepped at some locations, and the pier cap at Pier 6 changes elevation to accommodate the transition from rolled to built-up superstructure girders. Per the construction drawings, the piers and abutments are founded on concrete piles. Piers 4 through 9 have crash walls which vary in height by pier location and six rectangular columns while the remaining piers are constructed of five cylindrical columns and without a crash wall at their base. The rectangular columns are 3 foot by 3 foot 3 inches at Piers 4 through 9. Piers 1 through 3 and Piers 10 through 18 are comprised of five circular columns that are 3 foot in diameter. Substructure reinforcement consists of uncoated rebar with 2 inches of clear cover.

Foundation Rehabilitation

The deteriorated substructure elements were selected for either partial- and full-replacement (pier reconstruction). Full replacement includes removal of the pier caps and all pier columns, down to the footing/pile cap. Partial replacement includes replacement of the pier caps and only the outer pier columns, down to the footing/pile cap. No below grade work was planned, and the existing footings and deep piles are to remain in place. The concrete crash walls at Pier Nos. 6, 7, 8, and 9 are larger elements relative to the columns, and local repairs were deemed a more cost-effective rehabilitation alternative than full replacement; thus, the replacement at these locations terminates at the top of the crash wall with no additional below grade excavations or removals.

As outlined below, the replacement design was such that the loading on the existing deep foundations would be relatively unchanged and thus, load testing or other investigation of the deep foundations is not required.

Substructure Analysis - Structural

For the substructure evaluation, an Abbreviated Analysis was performed. The Abbreviated Analysis consisted of verifying several aspects of the existing structure and the planned modifications (e.g., seat width extension as noted in the Abbreviated Seismic Analysis). The analysis also included determination of load conditions at the foundations to remain to confirm that the proposed service dead load is not greater than 115% of the original design service dead load.

The superstructure bearing conditions will not be changed; however, the bearings and steel bolsters will be replaced as part of the broader rehabilitation program. Replacing these elements necessitates a change in the height of the pier caps to accommodate the shallower profile for the new bearings. The pier cap widths will also increase to accommodate seismic requirements. MDX was used to analyze the superstructure and record each beam load at all the substructures. Using those loads and the volume of

concrete of each pier, the existing and proposed dead loads on the foundations were compared. After performing this analysis, it was determined that an Abbreviated Analysis was appropriate, and the existing foundations were suitable for reuse.

Abbreviated Seismic Analysis

An Abbreviated Seismic Evaluation was performed, based on the conditions in IDOT's "BCR Procedures & Practices Manual". To satisfy this evaluation, three required items were reviewed: substructure seat widths; bearing capacity; and liquefaction potential. At the reconstructed pier caps, the substructure seat widths will be modified to meet the current policy outlined in the IDOT Bridge Manual. Note, the abutments were retrofit in 1998 with seat extensions, and these elements were found to be adequate and can remain inplace with only local concrete repairs. No other seismic restraint or retrofit is deemed necessary at this time. Existing bearings and bolsters under all joints will be replaced with elastomeric bearings or fixed bearings that can withstand 20 percent of the total dead load and allowable capacity as stated in the Bridge Manual T.3.7.3-1 & 2.

A cursory review of the available soil data indicated a risk for soils liquefaction. In order to perform a more detailed analysis, additional soils testing was warranted. The existing soil data and findings from the 2021 investigation are summarized below.

Summary of Existing Soil Logs

Two geotechnical investigations were previously conducted at the B&O Bridge. Neither WJE nor EFK were involved in these previous investigations. The first investigation was completed as part of the original 1959 design and construction of the bridge. The second investigation was completed as part of the 1998 seismic analysis and retrofit program. The relevant findings from each of these investigations are summarized below.

Original Soil Borings - 1957 Investigation

Boring logs for this investigation are provided on a drawing titled *Borings and Soil Analysis* (drawings dated 1957, see Attachment 1). Borings completed beneath the western portion of the bridge generally showed approximately 3 to 7 feet of fill consisting of coal cinders and sand and clay. A brown and gray silty clay was found beneath the fill extending to approximately 9 to 18 feet depth, except for one location where the clay extended to approximately 30 feet depth. Blow counts indicated the clay was generally medium stiff to stiff with some soft clays in the middle portion of the bridge near Pier 10. The clay was underlain by a predominantly fine sand that was gray to brown in color. The sand ranged from loose to dense and extended to the bottom of the borings at 40 to 75 feet depth. Groundwater was encountered in three of the borings at 22 to 30 feet depth.

The ground surface at the borings completed east of Pier 10 was generally about 12 to 17 feet lower than the ground surface at the west borings. The east boring logs generally showed a gray silty clay from the ground surface to about 20 to 33 feet depth; no fill materials are indicated on these boring logs. The clay was generally soft with many blow count values of 1. The clay was generally underlain by a gray sand that was fine to coarse grained, and that was generally medium dense to dense with some loose intervals. The sand extended to the bottom of the borings at 40 to 60 feet depth. Groundwater was encountered in the majority of the borings at 3 to 19 feet depth.

Additional Soil Borings (Seismic Analysis) - 1996 Investigation

The geotechnical investigation that was conducted in 1996 for the seismic retrofit included three borings beneath the west portion of the bridge, and three beneath the east portion of the bridge (drawings dated 1997, see Attachment 2). Logs for borings completed beneath the west portion of the bridge showed zero to 17 feet of fill consisting of silty clay with cinders and rubble. A brown and gray silty clay was logged beginning at the ground surface to 17 feet depth, extending down to 7 to 23 feet depth. Blow counts indicated the clay was generally soft to stiff. The clay was underlain by a predominantly fine sand that was gray to brown in color. The sand was generally medium dense to dense and extended to the bottom of the borings at 75 to 81 feet depth. Groundwater was encountered in each of the three borings at 12 to 35 feet depth.

Logs for borings completed beneath the east portion of the bridge in 1996 showed fill described as *"ROCK AND CONSTRUCTION RUBBLE"* over gray silty clay loam to silty clay. The thickness of the fill is not indicated on the logs. The silty clay loam to silty clay extended to 32 to 38 feet depth. The clay was generally soft with several blow count values of zero reported. The clay was underlain by a fine to coarse gray sand that was generally medium dense to very dense. The sand extended to the bottom of the borings at 80 to 95 feet depth. Groundwater was encountered in two of the three borings at depths of 3.5 and 7 feet.

Need for Additional Soils Investigation

Though the previous soils investigations were comprehensive and provided sufficient information to complete the associated design tasks, a more detailed soils investigation was deemed appropriate given the planned rehabilitation program. Based on review of the available information, the subsurface conditions are variable across the site. Furthermore, based on review of the soil borings and Standard Penetration Tests (SPTs), potentially liquefiable soils are present at the bridge site. The available laboratory test results, soils classifications, and groundwater information were lacking detail to adequately characterize the risk for liquefaction. Additionally, to determine appropriate soil bearing capacities and soil profiles for the shoring design, borings at a closer spacing and with closer sampling intervals in the shallow depths were required.

Data collected through the previous investigations was combined with data obtained from the additional borings. Together this data serves as the basis for a more detailed investigation, which is summarized in the following section.

Summary of 2021 Soils Investigation

The relevant findings from this investigation are provided in the sections below. Also provided at the end of this report are several attachments related to the investigation and analyses. Attachment 3 provides a detailed report prepared by TSi outlining the findings of the soils investigation, including boring logs, and results from laboratory analysis; a plan view and boring locations were excerpted from the report and provide in the figures below. Attachment 4 provides excerpts from the PSE rehabilitation drawings. Attachment 5 provides a liquefaction analysis performed by WJE, in accordance with IDOT procedures.

Soil Profiles

The soil profiles were generally consistent with previous investigations, consisting of 5 to 10 feet of shallow fill overlying 20 to 30 feet of cohesive silts and clays, all of which is underlain by medium to very dense sands. The fill material is highly variable, consisting of a mixture of clay, cinders, and other miscellaneous debris that does not appear to be uniformly placed or compacted. The cohesive material underlying the fills has varying proportions of clay, silt, and sand, which resulted in SPT blow counts ranging from weight of hammer (WH) to 30 blows per foot (bpf). In some locations, this cohesive layer contains as much as 30 feet of WH soil. At depths below about 30 to 40 feet, relatively clean sands (4 to 6% fines) were encountered with blow counts as high as 67 bpf, but generally greater than about 17 bpf at a minimum.

Additionally, the extent of the site variability was better documented during this investigation as compared to previous investigations. Within the generalized layers described above, there were soil seams of varying thickness, consistency, and composition which were not encountered in all boreholes. Further, the location of the groundwater table fluctuated during the course of this investigation. During drilling, groundwater was encountered in 11 boreholes (at depths ranging between 5 and 20 feet) and was not encountered in the remaining three boreholes. After a 14-day delay, groundwater was encountered at depths between the ground surface and about 7 feet at select boring locations; borings within the areas requiring permit access were not re-evaluated. Due to the highly localized variability in the soil profile encountered in each borehole, either SPT/split-spoon or Shelby Tube samples were collected every 5 feet to depths of about 70 feet, after which samples were collected every 10 feet.

Liquefaction Potential

A detailed liquefaction analysis was performed in accordance with the IDOT Liquefaction Analysis design guide (Nov 2018), the IDOT Geotechnical Manual (Dec 2020), and the excel spreadsheet developed by IDOT to perform the liquefaction calculations, and the supporting documentation is provided in Attachment 5. In brief, a liquefaction analysis was performed for every location and depth where an SPT test was performed in the field. This field data was supplemented by additional laboratory tests (percent fines, Atterberg limits, and water content) to complete the analysis.

Ultimately, only two locations, a low plasticity silt (15-foot depth) at Pier 7 and a very loose sand (10-foot depth) at Pier 10, had a factory of safety less than 1.0; these were 0.994 and 0.936, respectively. Given that the structure is founded on deep foundations terminating approximately 24 to 45 feet below these layers and given that the factory of safety was not "substantially" less than 1.0, the foundation systems appear to meet IDOT's requirements for seismic performance.

Temporary Support Systems

A bearing capacity and settlement analysis was performed by TSi as outlined in Attachment 3. The findings of their analysis indicate that a support foundation consisting of only a shallow footing would not be adequate to support the structure under live load due to both low bearing capacity and excessive settlement. Instead, a deep foundation (i.e., micro-piles or helical piles) will be required for the temporary support during pier reconstruction. A schematic design and estimated cost for these systems is provided

Recommendations for Foundation Rehabilitation (Prefinal Submittal)

in the PS&E package for the structure. These systems are proprietary and will need to be designed by the specialty firm retained by the Contractor performing the work.

The following are additional considerations related to the use of deep foundations for the temporary support systems:

- The ground water levels in this region are high relative to the depths of the foundations, and thus de-watering of the excavations may be required during the work.
- Slope stability around any excavation should also be considered; sheet piling or other controls may be required.
- The very soft clays and potentially liquefiable soils at the near surface of the structure will contribute to the unbraced length of the piles and pose a risk for buckling. This detail could likely be mitigated through pile casings in these marginal layers or by implementing deeper excavations for the foundation.
- Bearing of the temporary shoring on the existing pile caps and foundation piles could be implemented; however, the Engineer will need to consider the effects of eccentric loading. In-situ load testing or other foundation assessments would likely be required to utilize the existing foundations for the shoring system.

Recommendations

WJE's recommendations are to proceed with the pier reconstruction utilizing a temporary support system founded on a deep foundation system. The system, selected by the Contractor, will need to be designed and sealed by a licensed Structural Engineer.

No foundation retrofit or further analysis of the structure is warranted based on the liquefaction analysis performed. During the next major rehabilitation of this structure (i.e., re-decking and/or superstructure replacement), a seismic analysis should be performed for the entire structure.

76K02 - PS&E Package for B&O Bridge

Recommendations for Foundation Rehabilitation (Prefinal Submittal)

ATTACHMENT 1

"Borings and Soils Analysis" – Sheet 4 from 1955 Plans

<u>NO B 2-12</u>	NO 8 2-20	<u>NO.8 2-21</u>	NO. 8. 2-22	<u>NO B 2-23</u>	<u>NO.3 2-24</u>	<u>NO. B 2-25</u>	NO. B 2-26	<u>NO 8 2.27</u>	NO.3 2.28	<u>NO.8 2.29</u>	MO. 8 2.30	NO. <u>B 2•31</u>	<u>NO.8 2.32</u>	FAL 7 82.54	B ST. CLAIR 43
GROUND SUNFACE	ELEV. 414.0 0.0	7" JELEV. 4180 0.0	GROUND SUBFACE ELEY. 410 0 CINDER 6 CLAY FILL 3 BROWN	a a		ELEV. 416.5 CINDER	CINDERS 10 CINDERS 10 SAND FILL 4	e e						NO. B217 GR. ELEN 4/4.0 0'C CINDERS. 6 CLAY FILL 10 3'C	NO. 82-18 SR ELEV. 415.0 0 CINDER FILL 3 3
CALCINDERS BCIAY FILL 5 3-C BROWN 7 SILTY CLAY 6	CINSERS, 4 SAND & COAL FILL 2 NOTE A & A'S	CINDERS 3 6 SAND FILL 1	SILTY CLAY WIVERY FINE IS SAND 3	CINDER 3	CINDER 6	0 7/1LL 3 3	BROWN 4 SILTY CLAY & CINDER FILL 4	O" GROUND SURFAC	GROUND SURFA	CE D'O" GROUND SURFAC	SROUND SUR	TACE GROUND SURFA	CE OROUND SURFACE	BROWN 10 SILTY CLAY II TRACE VERY II FINE SAND 6 11-0	BROWNE GREY SILTY CLAY FILL 12 BROWN SILT 5 CLAY EVERY
SROWN FINE SAND 6 12-0 SROWN FINE SAND	0 BREWN 8 9 0REY-CLAY 9 15-1 9 #	BROWN B BROWN BROWN YARY FINE	SILTY CLAY 2 6 10	GREY 9 SILTY CLAY 10 9 BROWN	CLAY PILL 3 G. BROWN 4 SILTY CLAY WYLRY PINE 4 8. SAND. 35 8 51	O CART CLATER BILT W/PERT FINE SAND	ALTY CLAY	ELEV. 400.3 0'. GREY 31.51 SILTY 51. 51.57	O SROWN SUIT CLAR C. NOTEA DAOWN DAOWN C. PHONY C. PHONY	5 51.00. 400.0 5 500.000 5 500.0000 5 500.00000 5 500.00000 5 500.00000 5 500.00000 5 500.00000 5 500.00000 5 500.000000000000000000000000000000000	0 51 54 399 4 1 540 5 54 C. ATT Sut & VEAY 7 JUNE SAND 7 3	.0" ELEV 399.2 0.0 BLACK SILTY .0 STAY FINT 4 2.	0- ELEY. 399.9 0.0 - ELEY. 399.9 0.0 - SHAF FINE SAND 4 2.0 - BRO [GREY ML)• 5 + UROWN 16	BROWN VERY 16 FINE TO
TR. CLAY 11 No.	BROWN FINE SAND 24	57.277 SAND 3 17.	BROWN FINE SAND	FINE SAND 5 13 GREY YERY FINE 3 SILTY SAND	10 Find save 4 12 Star and 5 12 St	SILTY 2	ML CLAY WINAY FINE SAND 4 7	78.5440 00 00 00 00 00 00 00 00 00 00 00 00	The shirt of a shirt o	-0 SACE SR. 0 SALT ST. -0 SALTY CLAY 7.0 SALTY CLAY SALTY CLAY 7.1/8 SAND GREY PARE 0 SALT GREY PARE 0 SALTS	2 SILTY 2 CLAY 2 6 TRACE 1 6 WOOD 9 7 GREY 9/17/CLA 7 GREY 9/17/CLA 7 GREY 9/17/CLA 7 GREY 9/17/CLA 7 GREY 9/17/CLA 7 GREY 9/17/CLA 7 GREY 9/17/CLA	GREY SILTY 3 O' CLAY 2 TRACE 16	FILT CLAY E VERY FINE SAND 2 8-0 GREY VERY FINE SILTY SAND 1 TRACE CLAY 12-4	19 FINE 20	TR. SILT
TO COARSE SANO 63 274	DIAL SILTY 9 TIT	5 BADWIN 18 28	67.ET 21	BROWN 18 FINE SAND 22	GREY VERY HIME SAND TRACE SILS GREY PINE TO COMPSE 20 MK	VERY FINE 4	SZEY 4 SEO VERY FINE TO FINE II	CAY 2 2 3 CAY 2 3 SANO TI 17 SANO TI 17 SARY 37 CAY 50 CAY 50 CAY 50 TI 17 CAY 50 CAY 50 CA	C SARY R SAND	TO SUT CLAND SOLO	GREY	SHELL O A A YERY FINE TO 16 YERY FINE TO 16 YERY FINE TO 16 YERY MOOD O TO 14	6 GREY 6 100 14 6 SILIY 2 16 7 CLAY 6 10 7 CLAY 6 10 7 CLAY	5 SAND 32 MI	GREY 4 30 BROWN FINE 40
GREY FINE TO 33 COARSE	BROWN 28	FINE 25	SAND 21	TO COA256 SAND 41	VL SAND ET SREY BILTY SCLAT, TRACE S	TO MEDIUM TO MEDIUM SAND TRACE SILT	SILTY SAND TRACE CLAY	14 27 54ND 14 27 54EY 1 27	0 4078 8 2019 8 0 508 9 0 5017 Cur 409 9 0 5017 Cur 409 9 0 5017 50 7 0 5017 50 7 0 501 7 0 500		CLAYER 10	GRAY SILTY CLAY & VIAY FINE SAND 19 23 GREY I	GREY VERY 3 FINE TO FINE SAND 8 TRACE SILT 20	GREY FINE 22 TO MEDIUM SAND 335 NOTE A 22 40	SAND 45 Q. TRACE
SAND 33 40 BORING STOPPED BY CLIENT	0 SWD 32	SANO 28 28	EI 4 BORING STOPPE BY CLIENT	0 MNB 20 10 MNB 22	datr 8	10 8 CLAR 7	CLAY & VERT 4 CLAY & VERT 4 FINE SAND 4 GREY FINE 29	CLAY 20 21	ARAY FINE		0 0 0 0 0 0 0 0 0 0 0 0 0 0	CLAY 2 CLAY 2 RO REY FINE	GREY FINE 23 SAND 324 GREY FINE TO	BORING STOPPED BY CLIENT	SILT 53 BORING STOPPED BY CLIENT
	31 304 DORING STOPPED TY CLIENT	DORING STOPPED BY CLIENT	প্র	BY CLIMT	GREY FINE 18 TO MEDIUM 36	0.887 49 	TO MEDIUM SAND 28 TRACE SILT 55	TRACE SMALL 17 SRAVEL 35 NOTE A 35 40 BORING STOPPED RY CLIENT	-0- TO COMPSE 38 10- SAND 11 TRACE SMALL	COARSE SAND TRACE SMALL GRAVEL D 41	0 GREY 11	TO COARSE SAND TRACE 9 BO SMALL GVL 38 GREY FINE SAND 24 TRACE CLAY 24 41	COARSE SAND 9 TRACE SMALL 39 GRAVEL 39 NOTE A 22 40 GREY GREY	0	
					34NO 20 33	GREY FINE R	BORING STOPPED BY CLIENT	4 2 -	BORING STOPPED	BORING STOPPED BY CLIENT	O TO COARSE EI SAND	GRAF FINE TO COARSE SAND 7 43 GREY FINE 30 SAND 47	GREY 23 GREY 23 GREY 23 GREY 23 TO MEDIUM	6	
A SALAN AND A				n an	MIDUN TO 3 COMPSE SHEP TRACE SHEP ORTIEL 21 60 BORING STOPPED	TR. SMALL	<u>no</u>		NOTE A:		TRACE SILT 37 	GREY MEDIUM 13 TO COARSE SAND 6	SAND 24 TRACE SILT CLAY 26 57	2	
						TRACE SILT 44 BORING STOPPE BY CLIENT	D D WOTE A:	NOTE ST 8 (CONT'D)	BROWN SILTY CLAY TRACE SAND NOTE B:		BORING STOPPED BY CLIENT	DO SANG TRACE SANG TRACE SUIT CLAY 21 60 BORING STOPPED BY CLIENT	NOTE B 13 60-	Ø	
	NOTE A: BROWN (GREY SILTY DAY IR CINOLAS	NOTE A. CINDERS (SUMO FILL PAREE CLAY			HIT AND	0 	GATY FINE TO COMPSE SAND, TRACE SMALL GRAVEL	33-6 10741_ REC. 18 33-10 NOTE A:	GREY SILTY SANDY CLAY NOTE C: GREY SULTY SANDY		NOTE A: GREY FINE TO LOARSE SAND TRACE SMALL GRAVEL		NOTE A: BREY FINE SAND NOTÉ B:	NOTEA: GREY FINE TO COARSE SAND	
<u>, destroyers</u>					GATT FIRE TO MEDIUM			GRET FINE SAND TA. SMALL GRAVEL (SILT					SREY FINE TO COANSE SAND TRACE CLAY		
USED 39 OF The CASINO	¥510 24'0" 27: CASIMO	VSED 20'0"	USED HA'OF	ester 35' Mr. 22 CASUME	USED SO GA	USED TA'OF TT' CASING	VSEP 59 OF 15 CASING	USED 39'OF 212' CASING	USED 49' OF 2'2' CASING	USED 44 OF 2'2' CASING	USED 59'OF 2'5' CASING WATER LEVEL IS 33'	USED 39 OF 2'2' CASING WATER LEVEL IS S	USED 60'OF 215' CASING WATER LEVEL IS 6	USED SO OF	TA CASING
WIER LEVEL IS SI BLIOW GROWD SURFACE WAR. ATTR COMPLETION	DOMOS BALED TO 47 BORING CANDEDAT AT 47 ING ANTER COMPLETION	BORING CHEDI DAT AL MAS I LANES ATER COMPLETION		NATIR LEVEL IS 39 ALLOW AND/NO SAME ALLOW AND/NO MILLY CLARENCE AND ALLOW ALLOW AND AND	ALTON GROUND SURRACE SING ATTOR COMPLETING	WITH LEALTS 22 BELOW GROUND SUMMACE IZMASS WITH COMPLETING		BELOW GROUND SURFACE ISMRS. AFTER COMPLETION WL 6' ZOMRS. AFTER COMPLETION	BELOW GROUND SURIALE 3 MR. AFTER COMPLETION	BELOW GROUND SURTACE BAR AFTER COMPLETION	BELOW BROUND SURFACE & HR. NOTER COMPLETION	BELOW GROUND SURFACE 25 MRS AFTER COMPLETION	BLLOW BROWD SURFACE SHRS AFTER COMPLETION	SURFACE IE HAS	
1/19/56	A1156	ekots	5/4/56	5455	\$7/56	¥15158	5/1/56	4/12/56	1/4/56	cj18-19 1 56	a/20-21/56	c/29/58	5/28/56	4/4/55	¥2/5€
							NIT:- WL-WATER LE	VEL						TATE OF UI	INOIS
NOTES CLASSIFICATIONS	AN MADE BY VISUA	L INSPECTION.	· · · ·			<u>Briti</u>	₩ INDICATES	NATUR LOSS IN STRAIM SHELBY TUBE	່ ຜູ				DEPARTMEN DIV	T OF PUBLIC W ISION OF HIC 8	WORKS & BL
WATER LEVELS (NL) WATER LEVELS IND POROSITY OF THE S FIGURES IN RIGHT I PIPE ONE FOOT, US	S PROUBLE INDICATES TIM WATED ARE THOSE OB SOL STRAD, WATHTON'S OF MAND COLUMN INDICATE SING 140-LL, WEIGHT F	NE OF ALADING (MOURS). SERVED WHEN BORINGS RANNAL, SITE TOPOGRAF MUNIBER OF BLOWS A ALLING SC MCMES	NTTER COMPLETION OF WERE MADE OR AS N W, ETC, MAY DUSS DU LOUNRED TO DOWN 2'	I BORING. NOTED NOES IN THESE LIVELE O.D. SUMPLING		ss.som J	1-4-1-3	and low low			IIII]		CITY EAST S	OF EAST S	T. LOUIS XPRESSWA
SHELBY TUBE Recover Seco	<u>SAMPLES</u> y (inches) vidi	Number of Weight fall	Blows using 140 p ing 30 inchas. Penctration in Ja	ches for X Blows					EAST & LOUIS E				BORING	GS AND SOIL	ANALYSIS
ATIC PENETRATION	N OF SOIL CONTAIN	DYNAMIC NED IN SNELBY TU HE ENDS OF THE T	PENETRATION BES AS BASED ON UBES.	RECORD	epa n serie and the Constant of the series Constant of the series		_ <u>_</u>	OCATION OF	BORINGS					H. W. LOCHNER, Engineers Chicago, Illing	, ING DIS <u>Sheat</u> 4

76K02 - PS&E Package for B&O Bridge

Recommendations for Foundation Rehabilitation (Prefinal Submittal)

ATTACHMENT 2

"Boring Logs" – Sheets 19 to 27 from 1997 Plans

			ra SECTION COUNTY
		PT. Bridge Foundation	CPT. Bridge Foundation Yo 82-sviller-L ST CLAIR Boring Log Sheet 1 0 5T A. TO STA.
CPT. Bridge Foundation Boring Log Sheet <u>1</u> of <u>1</u>	Illinois Department	New 1 of 1 Objects a Structure O	arrying FAI 70 Over TRRA CPT Date: 11/15/98
Of Transportation Dearct 8 Dearct 8 Dearct 10/22/96 Dearct Internation	Diamitet 6 Structure Carrying FAI 70 Over TRRA C Project Implementation Structure Carrying FAI 70 Over TRRA C Materialis CSX and Conrail R.R. B Materialis CSX	pr Dele: <u>10/22/96</u> project ingenius sored By: <u>Ford</u> Materiale C1 Deck By: <u>M. Lemes</u> Project	(and Conrail R.R. Boreo by: <u>Condu</u> Check by: <u>M. Lame</u> Cone Used: <u>438TC</u>
Project International Contrait R.R. Boreboy, L. H. Lama Materialis CSX and Contrait R.R. Check By: M. Lama Cone Usod: <u>438TC</u>	ProjectC Route: FAI 70C Penting 07.0VBR-1	Come Used: 4391C Route: FAI 70 Section 82-5VBR-1 County's St. Clair Co.	· · · · · · · · · · · · · · · · · · ·
Route: FA 70 Section 52_SVBR-1 County 58_Ctair Co.	County S. Clair Co	Weight (Ave.): 15kN/m^3 CPT. Boring:	Total Unit Weight (Ave.): 1600/mr.3 Ground Surface: 12.8.4 M Water table: 2 Meters
CPT. Boring: Pler #1 Ground Surface. 128.31 Station: 5+133.8 Ground Surface. 208.31 Veter table: 2 Meters	Station: 5+128 Weater table OrS: 12.19 M LL: PREMH: Contamp) Fs (avg) SIGV* SOIL SENAVIOR TYPE Eq. Or	E: 2 Meters Comparison Comparison	SOIL BEHAVIOR TYPE Eq. Dr PHI SPT Su s, deg, N kg/cm*2 1 sayou still to clayve still UNDFN UNDFN 11 0.0
DEPTH Oc (awg) Fs (awg) Rf (awg) SIGV SOIL BEHAVIOR TYPE Eq. Dr PH SPT* Sa meters liset kg/cm*2 kg/cm*2 % kg/cm*2 deg. N kg/cm*2 / the same set of the same se	2 materia teet topom?2 % topom?2 % topom?2 % topom?2 0.022 0.022 0.022 0.0000 0.000 0.0000	UNDF 11 UNDEFINED 0.25 0.82 11.57 0.12 1.00 UNDF 11 UNDEFINED 0.50 1.64 10.75 0.22 2.67 0.12 UNDF 11 UNDEFINED 0.75 2.24 2.67 0.12 UNDF 11 UNDEFINED 0.75 2.42 3.81 0.02 UNDF 11 UNDEFINED 0.75 2.49 11.00 0.42 3.81 0.00 0.00 <td>adv clay to clay UNOFN 100 0.8 Clay UNOFN 100 0.8 Clay UNOFN 100 0.8 Clay UNOFN 100 10 Clay UNOFN 100 7 UNOFN 100 7 UNOFN</td>	adv clay to clay UNOFN 100 0.8 Clay UNOFN 100 0.8 Clay UNOFN 100 0.8 Clay UNOFN 100 10 Clay UNOFN 100 7 UNOFN 100 7 UNOFN
0.25 0.62 7.14 0.63 8.00 0.08 0.99 UNDFN UNDF 0.0762.1 0.50 1.54 7.86 0.63 8.00 0.08 0.99 UNDFN UNDF 8 0.75 2.46 8.20 0.61 7.41 0.10 0.99 UNDFN UNDF 10 1.00 3.28 0.24 0.55 6.37 0.14 0.99 UNDFN 1005 10	0.75 2.46 13.50 1.08 6.00 5.10 CH CHO 100 3.28 15.21 1.09 7.15 0.14 CHO CHO 100 <	UNOF 15 1.2 UNOF 15 1.2 UNOF 5 0.4 UNOF 5 0.4 1,50 4,52 8,70 0,69 7,39 0.0 1,50 4,52 8,70 0,69 7,39 0.0 1,50 4,52 8,70 0,69 7,39 0.0 1,57 8,88 0,77 8,00 0.0	I day UNOFN UNOF 8 UNDEFINED 6 day UNOFN UNOF 8 UNDEFINED 6 day UNOFN UNOF 9 UNDEFINED
1.25 4.10 11.74 0.70 5.83 0.18 CMP UNDFN UNDF 7 1.50 4.92 6.90 0.46 6.72 0.22 clay UNDFN UNDF 8 1.75 5.74 6.50 0.46 6.72 clay UNDFN 0.80 8 1.75 5.74 6.52 6.11 0.28 clay UNDFN 0.100F 7	1.30 4.82 0.21 1.27 0.28 sendy sit to darys sit (UNDFN 0.5 0.6 1.75 5.74 16.82 0.21 1.27 0.28 sendy sit to darys sit (UNDFN 0.5 0.5 2.00 6.56 18.96 0.19 0.96 0.33 sendy sit to darys sit (UNDFN 0.5 0.5 2.20 6.56 18.96 0.19 0.36 1.72 0.33 sendy sit to darys sit UNDFN 0.5	UNIOF 18 1.5 UNIOF 19 1.6 UNIOF 19 1.6 255 3.0 255 6.20 9.00 0.72 8.00 0. 250 6.20 9.00 0.72 8.00 0.	Carry UNDER UNDER NUNDER
2:00 6:56 7:62 0:00 1:10 0:30 Carger pair Chi(OFN MOP) 9 2:25 7:38 9:00 0:44 4:84 0:33 Carger pair 50:60 6:4:46 30 UNDEF 9 2:50 5:20 40:16 0:46 1:20 0:34 sity same to samdy sitt 50:60 6:4:46 43 UNDEF 2:50 5:20 42:16 0:43 1:20 0:36 sity same to samdy sitt 60:70 44:46 43 UNDEF	0.7 2.50 8.20 37 2.51 0.71 1.92 0.34 sandy sit to carry sit (0.100 yr) (0.100	48-48 -50 UNDEFINED 2.75 9.02 10.94 0.05 10.05 146-48 -50 UNDEFINED 3.00 9.64 11.43 0.71 6.18 0.02 146-48 -50 UNDEFINED 3.25 10.68 12.72 0.72 5.62 0.9 146-48 -50 UNDEFINED 3.25 11.48 6.43 0.38 5.97 0	7 clay UNDFN UNDF 11 0.8 9 clay UNDFN UNDF 12 0.6 11 clay UNDFN UNDF 8 0.4 11 clay UNDFN UNDF 8 0.4
2.75 9.022 31.30 0.39 10.101 0.37 isand to sally sand 70-80 746 50 01012 3.00 9.84 98.70 0.87 1.01 0.37 isand to sally sand 70-80 464.81 >50 010012 3.25 10.66 73.12 0.68 0.93 0.39 sand to sally sand 70-80 464.81 >50 010012 2.51 11.46 0.22 0.79 1.31 0.41 sally sand to sandy sat 90.70 44.46 >50 010012 3.25 11.46 0.22 0.79 1.31 0.41 sally sand to sandy sat 97.61 44.46 >50 010012 3.25 11.46 0.22 0.79 1.31 0.41 sally sand to sandy sat 97.61 44.46 >50 010012 3.25 11.46 0.22 0.79 1.31 0.41 sally sand to sandy sat 97.61 44.46 >50 010012 3.25 11.25 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	NED 3.25 (10.66) 67.32 (0.97) 1.33 (0.44) 6.47 same (0.47) 6.47 same	3-34 3-35 12.30 10.88 0.40 3.73 0 3-4-46 49 9.00 UNDEFINED 3.75 12.30 10.88 0.40 3.73 0 3-4-46 49.0 9.00 13.12 10.86 0.32 3.04 0 4-48 >50 UNDEFINED 4.00 13.12 10.86 0.32 3.04 0 4-48 >50 UNDEFINED 4.00 13.94 28.65 0.42 1.43 0	2 clay UNDER UNDER 1000 088 4 sity clay UNDER UNDER 10 23 45 sandy sit to clay or sit UNDER UNDER 28 15 sandy sit to clay or sit UNDER 1000 24 10 sand 24 dz UNDER INDER
3.751 12.30 81.16 0.80 0.74 0.42 sand to ally sand (0.400 10.16 10	4.0U1 1.0 28.00 2000 0.00 <th0.00< th=""> 0.00 0.00 <th< td=""><td>UI ≫60 730 UNDEFINED 0 34244 560 UNDEFINED 0 348 560 UNDEFINED 348 560 UNDEFINED 348 560 UNDEFINED 500 1640 34277 029 0.86 C 500 1640 34277 029 0.86 C</td><td>/ many service service in 50,500 42,441 441 UNDEFINED 50 sity sand to sandy set 50,500 40,42 32 UNDEFINED 51 daway sit to sandy set 40,500 HUNEF 11 0,50</td></th<></th0.00<>	UI ≫60 730 UNDEFINED 0 34244 560 UNDEFINED 0 348 560 UNDEFINED 348 560 UNDEFINED 348 560 UNDEFINED 500 1640 34277 029 0.86 C 500 1640 34277 029 0.86 C	/ many service service in 50,500 42,441 441 UNDEFINED 50 sity sand to sandy set 50,500 40,42 32 UNDEFINED 51 daway sit to sandy set 40,500 HUNEF 11 0,50
4.501 14.761 11.741 0.10 0.050 0.441 Santo and 0.0571 at 0.005FN UNDFF 241 4.751 15.50 25.441 0.333 1.331 0.461 santo and to any santo any santo any santo any santo any santo any santo 5.001 16.40 90.521 0.777 0.861 0.501 santo any sa	2.01 5.00 16.40 119.47 1.38 1.16 0.50 sand to say sand 70-36 TRED 5.25 17.22 66.30 1.15 1.94 0.51 sand to say sand 70-36 TRED 5.50 18.04 65.15 0.76 co.71 sand to say sand 70-36 Stell 0.50 18.04 65.15 0.76 co.72 sand to say sand 70-36	01 46-48 >501 UNDEFINED 5.251 17.22 11.343 0.17 1.442 5.01 01 44-48 >561 UNDEFINED 5.00 18.04 15.57 0.442 2.90 C 01 44-48 >561 UNDEFINED 5.76 18.86 98.07 0.88 0.92 C 01 46-48 >561 UNDEFINED 5.76 18.86 98.07 0.88 0.92 C	33 clasyrey sait to sairy clasy UNDOFN UNDOFN UNDOFN 151 1.4 54 saind to sairy saind 7.540 64.46 550 UNDOEFNED 56 saind to saindly saint 60.70 44.46 >50 UNDOEFNED 56 saind to saindly saint 60.70 44.46 >50 UNDOEFNED
5.25 17.22 147 cor	STSI 10.80 121.33 1.14 0.59 ann to the state 5.90 6.00 19.69 196.54 1.68 0.50 0.66 sand 5.90 FINED 6.255 20.51 288.75 3.24 1.12 0.58 sand 590 FINED 6.255 20.51 288.75 3.24 1.32 0.59 sand 590	00 x40 x50 UNDEFINED 6.22 20.51 80.87 0.77 0.95 0 01 x40 x50 UNDEFINED 6.22 20.51 80.87 0.77 0.95 0 0.95 0.	S8(send to sety sand) Out + O S5(send to sety sand) Out + O S5(send to set) S5(send to s
6.52 20.51 147.14 1.35 0.92 0.50 sand 90-22 0.42 50 UNOD 6.501 21.33 100.42 1.04 1.03 0.59 sand 80-20 >48 >50 UNIDE 6.501 21.33 100.42 1.04 1.03 0.59 sand 80-00 >48 >50 UNIDE 6.751 22.15 152.72 1.32 0.74 0.81 sand 80-00 >48 >50 UNIDE	District	201	64 sand to safy sand 60.901 48-481 >501 UNDEFINED 655 sand to safy sand 70-801 64-81 >501 UNDEFINED 671 safy sand 60-701 42-441 >50 UNDEFINED 671 safy sand 60-701 42-441 >50 UNDEFINED
7.00 22.97 186.78 1.00 0.30 0.00 0.00	7.50 24.61 337.69 3.03 0.90 0.56 savo 7.75 25.43 329.96 3.51 1.06 0.67 savd >4	80 >48 >50 UNDEFINED 1.0 26.3 50.3 2.25 8.00 26.25 2.355 0.53 2.25 8.251 27.07 14.40 0.53 3.71 8.50 27.89 7.70 9 0.63 0.81	88[sandy site to clayey site UNDFN UNDFN 222 10 10 satisty sites to clayer under 100 FM UNDFN 13 10 10 satisty send 00070 42-44 >50 UNDEFINED 11 send to satisty send 00070 42-44 >50 UNDEFINED
		<u>8.75</u> 28.71 <u>96.72</u> <u>2.56</u> 2.65	
	Blowcounts based on 63% hammer efficiency	Blowcounts based on 63% hammer efficiency	Robertson and Campanelle 1983 Su: Nk= 12
Blowcounts based on 63% hammer efficiency Down and example (Jennihilduratid et al. 1985) PHI - Robertson and Campanelle 1983 Su: Nice 12	Dr - All sands (Jamiolikowski et al. 1985) PHI - Robertson and Campanella 1983	3 Su: Nike 12 Dr - All sands (Jamiokowski v. a. 1905) Pra	
CPT. Bridge Foun Boring Log	saton	CPT. single-container Boring Log Sheet <u>1</u> of <u>1</u>	
of Transportation	Desirit 8 Desirit 8 96 Project implementation Crawing FAI 70 Over TRRA	CPT Date: 11/12/95 Bored By: LFord	
Project Implementation Structure Carrying FAI 70 Over 114KA CPT Date: Top tablectails CSX and Convail R.R. Bored By: LFCP Cone Used: 43507	d Helefiels Can an our and our	Check By: <u>M. Lame</u> Cone Used: <u>438TC</u>	
Project Project State St	resum: <u>rat /0</u> Section 82.5V9R-1 County: <u>\$2. Clair Co.</u>	I Unit Weight (Avs.): 16id/im*3	
County: <u>sr. Case Co.</u> County: <u>sr. Case Co.</u> Total Unit Weight (Ave.): 16kd CPT. Boing: <u>Pier #5</u> Ground Surface: 127.35 M Station: <u>5+212</u> Little: Little: <u>124</u>	Mm*3 CPT: Boring: <u>Pier #9 West</u> Grou Station: <u>5+204</u> Grou OS:17.65 M Rt	und Surface: 125.73 M er table: 2 Meters 	
0/8: 20.42 M LL DEPTH: Co (ewg) F1 (ewg) SIGV SOIL BEHAVIOR TYPE Eq. Dr PHI SPT* % deg. N kg	Su DEPTH Oc (avg) Fs (avg) R1 (avg) StGV SOB. BEHAVIOR TYPE Eq. meters feet kg/cm*2 % leg/cm*2 % 028 0.22 0.032 0.07 0.69 0.02 sandy site or dep with three		
0.560 1.62 10.14 0.38 3.71 0.02 day UNIOF 10 0.560 1.64 8.00 0.64 8.00 0.08 day UNIOF UNIOF 8 UNI 0.751 2.46 8.00 0.64 8.00 0.08 day UNIOF 8 UNI 0.751 2.46 8.00 0.64 8.00 0.10 day UNIOF 8 UNI	0.50 1.64 9.66 0.16 1.64 0.05 charger gains Carry of gains Carr	DEN UNDE 10 0.0 DEN UNDE 0 0.6 DEN UNDE 7 0.5	
Tio0 3.28 9.28 0.74 8.00 0.14 day UMDER 0.170 9 0.27 1.285 4.10 11.285 0.87 7.71 0.18 casy UMDER UMDER 11 1.285 4.10 11.285 0.82 7.22 day UMDER UMDER 10 1.301 4.02 10.28 0.82 9.20 day UMDER 10 11	0.5 1.25 4.10 7.32 0.20 3.09 0.10 0.10 0.00 DEFINED 150 4.52 11.64 0.20 11.74 0.22 canyory sit to sithy cary 0.00 DEFINED 175 5.74 0.41 0.28 sity cary to cary 0.00 1.75 0.21 1.74 0.22 sity cary to cary 0.00 <	DFN UNDF 101 0.9 DFN UNDF 51 0.4 DFN UNDF 81 0.8 DFN UNDF 81 0.7	
1755 5.74 11.22 0.81 /.20 0.20 0.00 0.00 0.00 100 100 100 200 0.00 0.	0.8 220 3.70 3.70 0.44 5.61 0.33 day U44 0.5 225 7.35 9.66 0.44 5.02 0.34 day U44 0.6 2.50 8.20 8.90 0.45 5.02 0.34 day U44 0.6 2.75 9.20 9.26 0.41 4.43 0.36 day U44	1075 UNIOF 8 0.6	
2.500 5.20 5.30 5.00 5.00 5.00 5.00 5.00 5.00 5.0	3.00 9.34 6.82 0.40 4.56 0.37 daw UN 0.6 3.25 10.66 9.82 0.56 5.60 0.39 daw UN 0.4 3.25 10.66 9.82 0.56 5.76 0.41 daw UN 1.2 3.50 11.48 10.68 0.53 5.76 0.41 daw UN	IDEN UNDE 10 0.7 IDEN UNDE 10 0.8 IDEN UNDE 6 0.5	
3.50 11.48 15.60 0.422 2.72 0.41 carryey will to ally carry (UMDVP 13 3.751 12.30 64.00 0.685 1.01 0.42 using same to samely same 60.70 44.46 550 UM 4.00 13.12 25.12 0.041 1.540 0.44 samely salt bo desyry salt UMDVF 24 4.00 13.12 25.12 0.041 1.540 0.44 samely salt bo desyry salt UMDVF 24	ODEFINED 3.75 12.30 6.94 0.40 6.461 0.42 cm/ 0.42 2.0 4.00 13.12 5.44 0.28 5.14 0.44 day UN 2.0 4.00 13.12 5.44 0.28 5.14 0.44 day UN 0.60 13.12 5.48 0.28 5.14 0.44 day UN 0.61 4.05 0.44 0.46 day UN UN 0.67 13.94 5.88 0.22 4.05 0.46 day UN	ACEN UNICE 5 0.3 ACEN UNICE 5 0.4 ACEN UNICE 7 0.5 ACEN UNICE 7 0.5	
4281 13.841 103.327 0.911 0.88 0.451 sand 0.887 s870 (2004) 7900 780 00 4.501 14.761 140.660 1222 0.871 0.471 sand 80.900 >461 >50 U 4.501 14.761 15.681 142.72 1.23 0.661 0.461 sand 80.900 >461 >50 U 4.751 15.561 142.72 1.23 0.661 0.461 sand 80.900 >461 >50 U	Appendence 4.50 14.76 7.34 0.10 2.07 0.48 and to ally send DEFINEED 4.75 15.56 91.86 0.72 0.78 0.48 and to ally send DEFINEED 5.00 16.40 77.12 0.32 1.19 0.60 sand to ally send DEFINEED 5.00 16.40 0.67 1.34 0.61 sand to ally send	70-80 45-49 >00 UNUCTINEL 60/71 64-46 >50 UNUCEINED ROFN UNDOF 31 27 ROFN UNDOF 31 27	
5.00 16.40 153.55 1.38 0.29 0.00 0.51 sand to sany send 70.461 46.46 560 UI 5.251 17.22 69.16 0.800 0.300 0.51 sand to sany set 50.601 42.44 66 00 5.50 16.04 49.16 0.52 1.06 0.531 sity sand to sany set 50.601 42.44 65 00 5.50 16.04 49.16 0.52 1.06 0.531 sity sand to sandy set 50.601 42.44 >50 UI	ODEFINED 5.50 16.04 47.50 0.67 1.40 0.531 189 sand 0 sandy salt 0.501 0.501 0.531 189 sand 0 sandy salt 0.501 0.51 189 sand 0 sandy salt 1.50 0.54 1.560 0.54 1.560 0.551 sandy salt 0.551 1.500 550 <td>ACTO 30 2.7 NDFN UNDF 25 2.2 NDFN UNDF 25 1.8 NDFN UNDF 21 1.8</td> <td></td>	ACTO 30 2.7 NDFN UNDF 25 2.2 NDFN UNDF 25 1.8 NDFN UNDF 21 1.8	
5.70 18.00 39.40 0.62 1.83 0.561 sandy site bidswy site (MHOFN UHOF 32 6.00 19.40 33.68 0.62 1.83 0.561 sandy site bidswy site bidswy 6.51 20.51 14.04 0.35 2.49 0.561 cityry site bids sandy site bids 6.50 21.33 83.94 0.361 1.13 0.361 sand bids sand 6.701 44.46 550 U 6.50 21.33 83.94 0.361 1.13 0.361 sand bids sand 6.701 44.46 550 U	6.25 20.51 23.28 0.44 1.66 0.56 samdy site Delayed at the clayed at the c	NDFN UNDF 20 1.7 40-50 40-42 34 UNDFFINED 40-50 40-42 39 UNDFFINED	
0.76 22.15 135.86 1.32 0.37 0.611 sami to sally samd curved v6-46 500 0 7.00 22.97 130.28 1.15 0.80 0.62 sami to sally samd 80-50 84-56 U 7.00 22.97 130.28 1.15 0.80 0.62 samd to sally samd 70-60 64-64 560 U 7.26 22.97 130.28 1.03 0.80 624 samd to sally samd 70-60 64-64-55 560 U 7.25 22.97 130.28 4.30 0.80 624 samd to sally samd 70-60 64-64-8 560 U 7.25 2.39 10.84 560 U 7.25 2.39 10.84 560 U 7.25 2.40 84-48 560 U 7.25 2.40 7.25 2.40 84-	NDEFINED 7.00 22.97 43.961 0.300 0.000 0.001	60-70 42-44 →50 UNDEFINED 75-80 66-46 → 55 UNDEFINED 86-80 →64 → 50 UNDEFINED 86-80 →64 → 50 UNDEFINED	ILLINOIS DEPARTMENT OF TRAI
441 0791 (100)	1.02 4.03 1.02 0.83 0.68 sand to ally sand 6.00 28.25 123.06 1.02 0.83 0.68 sand to ally sand 6.02 27.07 39.42 0.71 1.81 0.70 sand to ally sand	UNDERI UNDER 38 3.1 STO-60 42-44 >50 UNDEFINED	NAME DATE BORING LOGS
7.50 24.61 140.50 1.11 0.10 0.00	8.50 27.89 59.34 0.51 0.86 0.71 sand 0 sand	AD-GOI >48 >50 UNDEFINED	I.A.I. NOUL
7.50 24.61 140.50 1.11 0.10 0.00	8.50 27.763 59.34 0.51 0.065 0.71 sand 8.75 2.8.71 176.18 1.42 0.81 0.73 sand 9.00 28.53 132.54 1.44 1.00 0.75 sand	80-90 >41 >50 UNDEFINED 70-90 46-48 >50 UNDEFINED	SECTION 82-5VI

CPT. Bridge Foundation Boring Log Sheet <u>2</u> of <u>2</u> of Transportation CPT. Bridge Foundatio Boring Log Sheet <u>1</u> of <u>2</u> Ninois Department of Transportation District 8 Project In CPT Date: 10/23/98 Bored By: L Ford Check By: M. Lamie Cone Used: 438TC Structure Carrying FAI 70 Over TRRA CSX and Conrail R.R. District 8 CPT Date: <u>10/23/96</u> Bored By: <u>L Ford</u> Check By: <u>M. Lamie</u> Cone Used: <u>438TC</u> Structure Carrying FAI 70 Over TRRA CSX and Conrail R.R. Project: Route: FAI 70 Section 82-5VBR-1 County: St. Clair Co. Project: Route: FAI 70 Section 82-5VBR-1 County: St. Clair Co. Total Unit Weight (Ave.): 15kN/m^3 Ground Surface: 126.83 M Water table: 2 Meters CPT. Boring: <u>Pier #8 East</u> Station: <u>5+306.56</u> Q/S: <u>18.9 M Rt.</u> Total Unit Weight (Ave.): 16kN/m*3 Ground Surface: 126.83 M Weter table: 2 Meters
 Station:
 5+306.56
 Ground Surface:
 2 Meters

 OK:
 1.6.9 M RL
 Wear table:
 2 Meters

 DEPTH:
 Cbc (wg)) Fs (avg) Rf (avg)
 SiGV
 SOL BEHAV/OR TYPE
 Eq. Dr
 PH SPT
 Surface:

 0.75
 31.99
 33.69
 0.49
 1.43
 0.79 sandy sill to days at UNDFN UNDF
 32
 2.8

 10.00
 2.81
 52.69
 0.42
 0.80
 0.81 silly sand to sandy sill to days at UNDFN UNDF
 32
 2.8

 10.00
 32.61
 52.69
 0.42
 0.80
 0.81 silly sand to sandy sill
 50.60
 64.22
 500
 UNDEFINED

 10.025
 33.63
 31.43
 0.38
 1.15
 0.82 silly sand to sandy sill
 6.06
 6.07
 2.2
 2.6

 10.75
 35.27
 34.65
 0.32
 0.90
 0.85 silly sand to sandy sill
 4.40
 38.38
 33
 UNDEFINED

 11.05
 37.73
 6.80
 0.27
 4.43
 0.92
 1.6
 1.7
 3.45
 0.31
 1.6

 11.75

 CPT. Boring:
 Pier #8 East

 Station:
 5+306.56

 O/S:
 18.9 M Rt.

 CPT. Dorng:
 Pier #S LBM. DOS
 Construction:
 Construction: a based on 63% hammer efficiency Dr - All sands (Jamiolkowski et al. 1985) PHI - Robertson and Campanella 1983 Su: Nk= 12 s based on 63% hammer efficiency Dr - All sands (Jamiolkowski et al. 1985) PHI - Robertson and Campanella 1983 Su: Nk= 12 CPT. Bridge Fou District 8 Project Implementation Boring Log Sheet 2 of 2 District 8 Project Implementation Boring Log Sheet 1 of 2 Structure Carrying FAI 70 Over TRRA CPT Date: <u>11/12/96</u> Bored By: <u>L. Ford</u> Check By: <u>M. Lamie</u> Cone Used: <u>436TC</u> Structure Carrying FAI 70 Over TRRA CSX and Conrail R.R. CPT Date: <u>11/12/96</u> Bored By: <u>L. Ford</u> Check By: <u>M. Lamie</u> Cone Used: <u>438TC</u> CSX and Conrail R.R. Project: Route: FAI 70 Section 82-5VBR-1 County: <u>St. Clair</u> Co. Project: Route: FAI 70 Section 82-5VBR-1 County: St. Clair Co. Total Unit Weight (Ave.): 16kN/m^3 Ground Surface: 126.31 M Water table: 2 Meters CPT. Boring: <u>Pler #9</u> Station: <u>5+322</u> O/S: <u>19.2 M L1</u> Total Unit Weight (Ave.): 16kN/m^3 Ground Surface: 126.31 M Water table: 2 Meters CPT. Boring: Plar #9 Station: 5+322 O/S: 19.2 M Lt

 CP 1. DORTS
 - 192.01
 Static:
 - 36.20

 Static:
 - 192.01
 Static:
 - 36.20
 Static:
 - 36.20

 OR:
 - 192.01
 Static:
 - 36.20
 Static:
 - 36.20
 - 36.20

 OR:
 - 192.01
 F. (may)
 F. (may)
 F. (may)
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00
 - 56.00

 OS:
 19.2 M LL
 Viewer table:
 2 Mains

 DEPTH
 Cc (avg) Ps (avg) R (avg)
 Stdy
 SOL BEHAVIOR TYPE Eq. -D
 PHI
 SPT
 k

 means
 feet:
 kgcm*2
 k
 kgcm*2
 kgcm*2
 kgcm*2
 k
 kgcm*2
 kgcm*2
 kgcm*2
 k
 kgcm*2
 kgcm*2
 kgcm*2
 k
 kgcm*2
 kgcm*2
 k
 kgcm*2
 kgcm*2
 k
 k
 kgcm*2
 k
 k
 kgcm*2
 k
 k
 kgcm*2
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k
 k< kg/cm*2 2.0 ŝ 0.4 Ľ ußp nts based on 63% hammer efficiency Dr - All sands (Jamiolkowski et al. 1965) PHI - Robertson and Campanella 1983 Su: Nk= 12 01/29/97 Wed Jan 29 10:14:19 1997 /usr/projec†/md06796/blogs01

on and Campanella 1963

De . All sands (JB

				_
	re SECTION		14. 9007	
	70 82-5VBR-1 STA.	ST CLAIR 2 TO STA	7 20	
	788, 8040 6657, 1%, R	LINGES PED, AD PROLE		
		• •		
·				
		·····		
Г	ILLINOIS DEPARTME	NT OF TRANSPO	RTATION	$\left \right $
REVISIONS NAME DATE	BORI	NG LOGS		
	F.A.I. SECTION	ROUTE 70 82-5VBR-	I	
The second se				

						CPT. Bridge Foundation
	Illinois Department		CPT. Bridge Foundation Boring Log Sheet 1 of <u>2</u>	Illinois Depar	tment	Boring Log Sheet 2 of 2
	District 8 Project Implementation Materials	Structure Carrying FAI 70 Over TRRA CSX and Conrail R.R.	CPT Date: <u>10/28/95</u> Bored By: <u>L Ford</u> Check By: <u>M. Lamie</u>	District 8 Project Implementation Materials	Structure Carrying FAI 70 Over TRRA CSX and Conrail R.R.	CPT Dete: <u>10/28/96</u> Bored By: <u>L Ford</u> Check By: <u>M. Lamie</u> Cone Used: 438TC
	Project Route: FAI 70 Section 82-5/8R-1		Cone Used: <u>438TC</u>	Project Route: FAI 70 Section 82-5VBR-1 Country St. Clair Co.		
	County: <u>St. Clair Co.</u> CPT. Boring: <u>Pier#10</u> Station: <u>5+357.41</u>	-	Total Unit Weight (Ave.): 16kN/m^3 Ground Surface: 124.39 M Water table: 2 Meters	CPT. Boring: Pier #10 Station: 5+357.41 OVS: 23.77 M Rt.	Tot Gro Will	al Unit Weight (Ave.); 16kN/m*3 ound Surface: 124.39 M ter table: 2 Meters
	DEPTH OC: (any) Ff (any) mainsi feat top(cm*2) top(cm*2) 0.250 0.82 0.091 0.65 0. 0.500 1.54 14.57 0.55 0.55 1.003 2.82 0.091 0.65 0. 0.500 1.54 14.57 0.55 1. 0.75 2.46 4.91 0.30 6. 1.003 3.28 6.54 0.25 2 1.25 4.10 4.55 0.22 4 1.50 4.92 3.76 0.13 3 1.75 5.74 14.02 0.17 1 2.05 6.20 5.54 0.15 2 2.25 7.38 7.43 0.16 2 2.75 9.02 5.54 0.15 2 3.00 9.84 10.11 0.20 2	9) SIGV SOL BEHAVIOR TYPE by/cm*2 82 0.02 sensitive fine grained 03 0.06 sensitive fine grained 16 0.10 clay 97 0.14 sity clay to clay 18 0.18 clay 20 0.28 sandy all to clay users 20 0.28 sandy all to clay to clay 20 0.33 sity clay to clay 20 0.33 sity clay to clay 20 0.36 clay 20 0.37 clayer sit to sity clay 20 0.37 clayer sit to sity clay	Eq. Dr PHI SPT Su % deg. N kg/cm²2. UNDFN UNDF 6 0.4 UNDFN UNDF 14 1.1 UNDFN UNDF 5 0.3 UNDFN UNDF 6 0.64 UNDFN UNDF 4 0.3 UNDFN UNDF 4 0.2 UNDFN UNDF 7 0.5 UNDFN UNDF 7 0.5 UNDFN UNDF 5 0.4 UNDFN UNDF 5 0.4 UNDFN 1007 5 0.3 UNDFN 1007 0 0.7	DEPTH meters feet kg/cm²2 kg 9.75 31.99 110.14 10.00 32.81 224.82 10.55 33.63 207.98 10.55 34.45 145.84 10.75 35.27 45.09 11.00 38.06 184.40 11.25 36.91 207.28 11.30 37.73 231.80 11.75 38.55 305.34 12.00 38.37 222.48 12.25 40.19 137.24 15.25 41.01 161.22	(avg) Rf (avg) SIGV SOLL BEHAVIOR TYPE Ex (cm*2 % kg/cm*2	To: PH4 SPT* Su % deg. N kg/cm*2 70-801 44-46 560 UNDEFINED 580 3-68 560 UNDEFINED 580 3-68 560 UNDEFINED 580 3-68 560 UNDEFINED 580 3-68 2-68 UNDEFINED 580 3-68 2-60 2-68 580 X48 560 UNDEFINED 580 3-68 UNDEFINED 560 580 X48 560 UNDEFINED 580 X48 560 UNDEFINED 580 X48 500 U
	3.25 10.66 10.07 0.21 2 3.50 11.48 4.63 0.14 3 3.75 12.30 2.63 0.16 6 4.00 13.12 8.11 0.25 3 4.25 13.94 8.65 0.27 3 4.25 14.78 2.46 0.05 0.27	.05 0.39 clayey sit to sity clay 1.05 0.41 clay 1.07 0.42 organic material 3.04 0.44 sity clay to clay 3.34 0.45 clay 3.60 0.47 organic material	UNDFN UNDF 9 0.7 UNDFN UNDF 4 0.3 UNDFN UNDF 2 0.1 UNDFN UNDF 8 0.6 UNDFN UNDF 8 0.6 UNDFN UNDF 2 0.1	12.75 41.83 102.80 13.00 42.65 176.76 13.25 43.47 285.36 13.50 44.29 342.94 13.75 45.11 346.68	0.36 0.37 0.96 sand 0.57 0.32 0.99 sand 1.40 0.49 1.01 gravely sand to sand 1.39 0.40 1.02 gravely sand to sand 1.19 0.34 1.04 gravely sand to sand	80-90 46-48 >50 UNDEFINED >90 >48 >50 UNDEFINED >90 >48 >50 UNDEFINED >90 >48 >50 UNDEFINED >90 >48 >50 UNDEFINED
	4.30 14.75 2.46 0.19 0 4.75 15.56 7.07 0.27 33 5.00 16.40 3.02 0.19 6 5.25 17.22 2.04 0.15 7 5.50 18.04 3.33 0.20 5 5.75 18.66 3.72 0.19 5	0.86 0.48 clay 3.41 0.50 clay 7.28 0.51 organic material 5.90 0.53 clay 5.21 0.54 clay	UNDEN UNDE 7 0.5 UNDEN UNDE 3 0.1 UNDEN UNDE 2 9.8 UNDEN UNDE 3 0.2 UNDEN UNDE 3 0.2 UNDEN UNDE 4 0.2	Biowcounts based on 63% Dr - All sands (Jamiolikow	hammer efficiency ski et al. 1985) PHI - Robertson and Campanella	1963 Su: Nk= 12
	6:00 19:69 2:38 0.14 5 6:25 20:51 2:44 0.14 5 6:50 21:33 2:44 0.13 5 6:75 22:15 1.72 0.12 5 7:00 22:37 2:21 0.13 5 7:25 23:79 2:53 0.14 5	3.74 0.56 organic material 5.80 0.58 organic material 5.53 0.59 clay 7.14 0.61 organic material 5.81 0.62 organic material 5.54 0.64 ctay 5.54 0.64 ctay	UNDFN UNDF 2 0.1 UNDFN UNDF 2 0.1 UNDFN UNDF 2 0.1 UNDFN UNDF 2 0.1 UNDFN UNDF 2 5.2 UNDFN UNDF 2 8.9 UNDFN UNDF 2 0.1 UNDFN UNDF 2 0.1			
	7.501 24.51 2.53 0.15 7.75 25.43 2.74 0.15 8.001 28.25 3.82 0.17 8.25 77.07 3.29 0.15 8.50 27.69 2.96 0.15 8.75 28.71 3.48 0.17 9.001 29.53 3.82 0.16	3.03 0.03 0.04 5.32 0.67 clay 4.33 0.68 clay 5.06 0.70 clay 5.06 0.71 clay 4.88 0.73 clay 4.25 0.75 clay	UNDFN UNDF 3 0.1 UNDFN UNDF 4 0.2 UNDFN UNDF 3 0.1 UNDFN UNDF 4 0.1			
	9.25 30.35 4.46 0.17 9.50 31.17 22.68 0.28 Blowcounts based on 63% hammer effic	3.79 0.76 clary 1.22 0.78 sandy silt to claryey sill siency 0.78 sandy sill to claryey sill	UNDFN UNDF 4 0.2 I UNDFN UNDF 21 1.7			
	Dr - All sands (Jamiolkowski et al. 1985	5) PHI - Robertson and Campen	ella 1963 Su: Nic= 12	an an the <u>Au</u> ltin	анан сайтан алан алан алан алан алан алан алан а	•••••
	Illinois Department of Transportation		CPT. Bridge Foundation Boring Log Sheet <u>1</u> of <u>2</u>	Hinois Dep of Transpo	artment rtation	CPT. Bridge Foundation Boring Log Sheet <u>2</u> of <u>2</u>
	District 8 Project Implementation Motorials	Structure Carrying FAI 70 Over TRR CSX and Conreil R.R.	A CPT Date: <u>10/29/96</u> Bored By: <u>L. Ford</u> Check By: <u>M. Lamie</u> Cone Used: <u>438TC</u>	Project Implementation Meterials Project	Structure Carrying FAI 70 Over TRRA CSX and Conrail R.R.	CPT Date: 10/29/96 Bored By: L. Ford Check By: M. Lamie Cone Used: 438TC
	Project Route: FAI 70 Section 82-5VBR-1	·	· · · · · · · · · · · · · · · · · · ·	Route: FAI 70 Section 82-5VBR-1 County: St. Clair Co.		
	County: <u>St. Cleir Co.</u> CPT. Boring: <u>Pier #11</u> Station: <u>5+381.79</u> 40.9.04 Pt		Total Unit Weight (Ave.): 16kN/m^3 Ground Surface: 124.18 M Water table: 2 Meters	CPT. Boring: <u>Pier #11</u> Station: <u>5+381.79</u> O/S: <u>19.2 M Rt</u>		Fotal Unit Weight (Ave.); 16kN/m^3 Ground Surface: 124.18 M Neter table: 2 Meters
-i-63	Of5: 19.2 m rt. DEPTH Oc (awg) Fs (awg) RT (a motions: feet (ayg) Fs (awg) RT (a 0.251 0.82 2.13 0.18 0.501 1.64 5.22 0.37 7 0.751 2.46 3.70 0.26 7 1.001 3.22 4.80 0.30 6 1.504 4.82 5.16 0.331 6 1.504 5.16 0.31 6 5.16 0.31 2.006 6.56 4.10 1.16 2.25 7.33 1.43.36 0.18 2.257 7.33 14.366 0.18 2.27 2.73 2.02 2.02 2.757 9.02 6.06 0.221 2.75 2.02 6.02 2.02	Ng) SIGV SOIL BEHAVIOR TYPE 100 0.02 organic material 1.72 0.06 organic material 7.09 0.10 organic material 5.19 0.14 clay 6.33 0.18 clay 6.10 0.22 clay 4.81 0.26 clay 4.87 0.30 clay 3.62 0.34 clay 3.62 0.34 clay 3.63 0.36 clay	EqDr PHI SPT Su % deg. N kg/cm*2 UNOFN UNOFF UNOFF UNOFF UNOFN UNOFF UNOFF 0.4 UNOFN UNOFF 3 0.3 UNOFN UNOFF 5 0.4 UNOFN UNOFF 5 0.4 UNOFN UNOFF 5 0.4 UNOFN UNOFF 6 0.4 UNOFN UNOFF 6 0.4 UNOFN UNOFF 6 0.4 UNOFN UNOFF 6 0.4 UNOFN UNOFF 4 0.3 UNOFN UNOF 4 0.3 UNOFN UNOF 6 0.4 UNOFN UNOF 6 0.4 UNOFN 42.44 30 UNOFF	DEPTH Oc (awg) meters Feet Regram2 9,75 3199 318.12 10,00 32,81 315,90 10,25 33,63 310.10 10,350 34,45 213,00 10,75 352,71 199,50 11,00 35,09 202,14 11,25 36,91 219,82 11,50 37,73 319,14 11,75 38,55 227,18 12,20 39,37 144,64 12,25 40,19 182,06 12,250 41,01 183,38	Fs (avg) Rf (avg) SGV SOL BEHAVIOR TYPE kg/cm/2 % kg/cm/2 standard 1.39 0.44 0.79 gravely sand to sand 1.45 0.44 0.79 gravely sand to sand 0.96 0.32 0.82 gravely sand to sand 0.94 0.47 gravely sand to sand sand 1.03 0.52 0.85 sand 1.03 0.52 0.85 sand 1.03 0.52 0.87 sand 1.04 0.44 0.79 sand 1.03 0.52 0.85 sand 1.03 0.52 0.87 sand 1.04 0.52 0.87 sand 1.05 0.52 0.86 sand 1.06 0.52 0.87 sand 0.80 0.52 0.82 sand 1.80 0.56 0.90 gravely sand to sand 1.80 0.51 0.82 sand	Eq Dr PHI SPT* Su 4eg. hg/grm*2 kg/grm*2 >901 >48 >50 UNDEFINED >900 >48 >50 UNDEFINED >80 >44 >50 UNDEFINED \$80 >44 >50 UNDEFINED \$80 44 >50 UNDEFINED \$80 44 >50 UNDEFINED </th
gs01.dgn LV:	3.00 9.64 31.46 0.23 3.25 10.66 30.48 0.23 3.50 11.46 16.18 0.27 3.75 12.30 17.34 0.27 4.00 13.12 5.76 0.20 4.25 13.94 3.86 0.13 4.55 14.76 6.62 0.19 4.75 15.58 5.94 0.18 5.00 16.40 4.26 0.15	0.75 0.39 skily samd to samdy till 1.60 0.41 samdy silt to clary silt 1.55 0.42 samdy silt to clary silt 3.40 0.44 clary 3.55 0.45 clary 3.64 clary 3.64 2.94 0.47 clary 3.01 0.48 clary 3.04 clary samdy silt to clary silt to c	Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image	12.75 41.83 195.98 13.00 42.65 164.30 Blowcourts based on 63% Dr - All sands (Jamiolikov	0.60 0.30 0.88 send 0.45 0.28 0.99 send 5 hammer efficiency vski et al. 1985) PH - Robertson and Campanellic	80-90 46-48 - 50 UNDEFINED 80-90 46-48 - 50 UNDEFINED a 1963 Su: Nic= 12
7 /blo	100 010	3.56 0.51 clay	UNDEN UNDE 4 0.2			
4:19 199 d06796.	5.25 17.22 2.06 0.15 5.50 18.04 4.06 0.15 5.75 18.86 3.84 0.11 6.00 19.69 4.14 0.10 6.25 20.51 4.10 0.09 6.50 21.33 4.50 0.09 8.75 22 15 4.02 0.09	3.65 0.54 clary 2.74 0.54 clary 2.45 0.58 clary 2.18 0.58 clary 1.96 0.59 silly clary to clary 2.30 0.61 clary	UNDFN UNDF 4 0.2			
23/31 d Jan 29 10:14:19 199 sr/project/md06796	5.25 17.22 2.08 0.10 5.07 18.86 3.84 0.11 6.00 18.86 3.84 0.11 6.00 18.86 3.84 0.11 6.00 18.69 4.14 0.10 6.52 20.51 4.10 0.09 6.52 22.15 4.02 0.09 7.00 22.97 4.18 0.10 7.25 23.79 4.30 0.11 7.50 24.61 4.94 0.09 7.75 25.43 4.96 0.12 8.00 29.25 5.96 0.12 8.00 27.07 5.18 0.10 7.85 27.07 5.18 0.10 8.50 27.69 5.06 0.11 8.50 27.69 5.06 0.11 8.76 2.07 5.18 0.11	3.060 0.354 Casy 2.451 0.564 Casy 2.451 0.568 Casy 2.161 0.554 Casy 2.161 0.554 Casy 2.161 0.554 Casy 2.161 0.554 Casy 2.263 0.611 Casy 2.263 0.621 Casy 2.263 0.641 Casy 2.264 0.627 Casy 2.466 0.677 Casy to Casy 1.966 0.685 silky clay to Casy 1.966 0.701 silky clay to Casy 1.966 0.701 silky clay to Casy 1.964 0.731 silky clay to Casy 1.964 0.731 silky clay to Casy 1.967 0.754 Like Cask to Casy	UNDER UNDER 4 0.2 UNDER UNDER 5 0.3 UNDER UNDER 5 0.3 UNDER UNDER 6 0.3 UNDER UNDER 5 0.3 UNDER UNDER 6 0.3 UNDER UNDER 6 0.3 UNDER UNDER 6 0.3 UNDER UNDER 6 0.3 UNDER UNDER 5 0.3			

.

All conds (Isminikowski et al. 1985) PHI - Robertson and Campanella 1983 Su: Nk# 12

•

TAL NOWTE	SECTION		COUNTY	TOTAL SPEETS	34721
70	82-5VBR-	1	ST CLAIR	27	21
STA.		TO	STA.		
758. 604		BL MOIS	FEB. 48	733.684 6	

	ILLINOIS DEPARTMENT OF TRANSPORTATION
REVISIONS NAME DATE	BORING LOGS F.A.I. ROUTE 70 SECTION 82-5VBR-I ST. CLAIR COUNTY

	CPT Bridge Foundation Boring Log Sheet <u>1</u> of <u>2</u>	Ultinois Department Of Transportation	
	District 8 Project Implementation Structure Carrying FAI 70 Over TRRA CPT Date: <u>10/28/98</u> Project Implementation CSX and Conrail R.R. Borned By: <u>L.Ford</u> Metabries CSX and Conrail R.R. Check By: M. Lamie Project Cane Used: <u>438TC</u>	Project Implementation Structure Carrying FAI 70 Over TRRA CPT Date: 10/28/98 Meternais CSX and Connail R.R. Bored By: <u>IFord</u> Check By: <u>M. Lamie</u> Cone Uted: 438TC	
	Route: FAI 70 Section 62-3VBR-1 County: St. Clair Co. CPT: Boring:_Pier #12 CPT: Boring:	Section 82-5VBR-1 County: 51, Clair Co. CPT. Boring: Pier #12 Station:5-412.27 Weber take: Weber take: Weber	
	Station: 5+412.27 (3) Grown and an and an and and and and and and	Oris:	
	0.25 0.82 5.35 0.18 3.37 0.02 Carp 0.06 Carp 0.06 Carp 0.06 Carp 0.06 Carp 0.06 Carp 0.06 0.07 3 0.22 0.06 Carp 0.06 Carp 0.06 0.07 10 0.07 3 0.22 0.01 0.02 0.01 0.00 0.12 0.01 0.02 0.11 0.00 0.12 0.10 0.10 0.02 0.11 0.00 0.12 0.10 0.00 0.18 0.03 0.01 0.10 0.00 0.12 0.01 0.00 0.12 0.01 0.00 0.12 0.01 0.00 0.12 0.01 0.00 0.12 0.01 0.00 0.12 0.01 0.01 0.02 0.01 <th>10.00 32.81 4.38 0.20 4.38 0.20 4.38 0.20 4.38 0.20 10000 6 0.31 10.25 33.63 6.24 0.22 3.53 0.82 0.82 0.82 0.82 0.82 0.81 90000 10000 6 0.33 0.44 0.36 0.84 eand 70-30 450 W00EFINED 10.75 35.27 250.80 1.20 0.43 0.85 gravely sand to sand >400 >46 >50 UNDEFINED 11.00 38.09 317.10 0.30 0.28 0.85 gravely sand to sand >400 >46 >50 UNDEFINED 11.50 38.77 140.71 0.70 0.50 0.90 eand 70-60 44-46 >50 UNDEFINED 11.50 37.73 140.71 0.76 0.52 0.86 gravely sand to sand 70-60 44-46 >50 UNDEFINED 11.75 38.25 57.65 0.64 0.45 0.86 sand 70-60 44-46 >50 UNDEFINED 12.2</th> <th></th>	10.00 32.81 4.38 0.20 4.38 0.20 4.38 0.20 4.38 0.20 10000 6 0.31 10.25 33.63 6.24 0.22 3.53 0.82 0.82 0.82 0.82 0.82 0.81 90000 10000 6 0.33 0.44 0.36 0.84 eand 70-30 450 W00EFINED 10.75 35.27 250.80 1.20 0.43 0.85 gravely sand to sand >400 >46 >50 UNDEFINED 11.00 38.09 317.10 0.30 0.28 0.85 gravely sand to sand >400 >46 >50 UNDEFINED 11.50 38.77 140.71 0.70 0.50 0.90 eand 70-60 44-46 >50 UNDEFINED 11.50 37.73 140.71 0.76 0.52 0.86 gravely sand to sand 70-60 44-46 >50 UNDEFINED 11.75 38.25 57.65 0.64 0.45 0.86 sand 70-60 44-46 >50 UNDEFINED 12.2	
	4.25 13.44 11.23 0.10 5.51 0.47 day UNOFN UNOF 3 0.2 4.55 14.76 3.27 0.16 5.51 0.47 day UNOFN UNOF 2 0.1 4.75 15.58 2.46 0.10 4.07 0.48 day UNOFN UNOF 5 0.1 5.00 16.40 6.62 0.20 2.93 0.50 day UNOFN UNOF 6 0.4 5.25 17.22 9.28 0.34 3.66 0.51 day UNOFN UNOF 9 0.6 5.55 17.22 9.72 9.28 0.34 3.66 0.51 day UNOFN UNOF 9 0.6	14.00 45.93 101.75 0.33 0.23 1007 sand 60.70 42.44 >501 UNOEFINED 14.25 48.75 111.87 0.36 0.22 107 sand 90.70 42.44 >501 UNOEFINED 14.50 47.57 235.49 0.36 0.24 1.09 gravely sand to sand >90 44.48 >501 UNOEFINED 14.75 46.39 211.47 0.390 0.43 1.10 sand 80-60 48-48 >501 UNOEFINED 14.75 46.39 211.47 0.90 0.43 1.10 sand 80-60 48-48 >501 UNOEFINED	
	5.75 16.86 4.63 0.16 3.46 0.54 clay UNOFN UNOF 4 0.3 6.00 19.69 6.52 0.34 5.21 0.36 clawy UNOFN UNOF 4 0.3 6.21 0.36 clawy UNOFN UNOFN UNOF 22.1 1.7 6.22 20.51 2.2.81 0.33 1.67 0.58 sampt sill to clayey sill UNOFN UNOF 22 1.7 6.50 21.33 6.07 0.36 4.46 0.59 clayey sill bally claye UNOFN UNOF 8 0.5 6.50 21.15 1.7 1.68 0.67 clayery sill bally clay UNOFN UNOF 8 0.3	Dr - All sands (Jamiolkowski et al. 1985) PHI - Robertson and Campanelle 1983 Su: Nk= 12	
	7.00 22.97 4.84 0.22 4.55 0.62 carry UNDF 1.00F 3 0.1 7.25 22.79 2.69 0.14 4.84 0.84 carry UNDF 1.00F 3 0.1 7.55 22.61 3.91 0.16 4.99 0.85 clary UNDF UNDF 4 0.2 7.75 22.481 3.91 0.16 4.99 0.85 clary UNDF UNDF 4 0.2 7.75 22.43 3.55 0.12 3.38 0.67 clary UNDF UNDF 4 0.2 8.00 22.25 3.69 0.14 3.80 0.68 clary UNDF UNDF 3 0.1 8.00 22.25 3.59 0.16 4.58 0.70 clary UNDF 4 0.1 8.02 27.07 3.59 0.16 4.58 0.70 clary UNDF 0.00F 3 0.1		
	8.50 27.69 4.93 0.20 4.00 0.71 Carry UNDER UNDER Concerns 5 0.2 8.75 28.71 4.76 0.20 4.18 0.73 Carry UNDER UNDER 0.002 5 0.2 9.00 29.53 4.04 0.14 3.46 0.75 Carry UNDER UNDER 4 0.2 9.25 30.35 30.35 3.99 0.14 3.51 0.76 Carry UNDER UNDER 4 0.2 9.50 31.17 3.84 0.18 4.69 0.76 Carry UNDER UNDER 4 0.1		
	Blowcounts based on 63% hammer efficiency Dr All sands (Jamiolikowski et al. 1985) PHI- Robertson and Campanella 1983 Su: Nice 12	CPT, Bridge Foundation	
	CFT. Bridge Foundation Boring Log of Transportation	District 8	
	Define 3 Structure Carrying FAI 70 Over TRRA CPT Date: 1025998 Project CSX and Contrail R.R. Bord By: L Ford Rotat: FAI 70 Rotat: FAI 70	Project Implementation Structure Carrying FAI 10 Ore I (RKC Bond By: L. Ford. Materials CSX and Connail R.R. Bond By: L. Ford. Project Cone Used: 438TC Scalar P2 50680-1	
	Section 62-5VBR-1	County: St. Citair Co	
	CPT. Boring: Pier #13 Total Unit Weight (Ave.): 16(4/Wm ² 3 Station: 5+433.44 Ground Surface: 123.29 M OrS: 18.59 M Rt. Weight (Ave.): 16(4/Wm ² 3 OrS: 16.59 M Rt. Weight (Ave.): 16(4/Wm ² 3 OrS: 16.59 M Rt. SGV OrS: 16.59 M Rt. SGV	CPT: Borning:	
	Instantia Test	Instant Instant <thinstant< th=""> <thinstant< th=""> <thi< th=""><th></th></thi<></thinstant<></thinstant<>	
n	1.25 4.10 2.38 0.21 6.00 0.18 organic mesmal UNOPN UNOPN 20000 1.50 4.92 2.63 0.18 8.00 0.22 organic material UNOPN UNOPN 20000 1.75 5.74 3.50 0.30 8.00 0.28 organic material UNOPN UNOP 300EFINED 2.06 6.56 3.13 0.27 8.00 0.30 organic material UNOPN UNOP 300CFFINED 2.26 7.36 14.52 0.22 1.48 0.33 sandy sit to clayey att UNOPN UNOP 13 1.1 2.86 9.20 3.23 0.34 Claw UNOPN UNOPN 0.4	11:00 36:00 240:44 1.04 0.43 0.87 sand 500 240 240 500 DNDEFINED 11:25 36:51 96:16 0.75 0.77 0.86 sand to sity sand 60-76 424 550 DNDEFINED 11:25 36:51 96:16 0.75 0.77 0.86 sand to sity sand 60-76 424 550 UNDEFINED 11:50 37:72 65:52 0.44 0.87 0.390 sand to sity sand 70-60 44-4 560 UNDEFINED 11:50 37:23 105:16 0.580 0.531 0.92 sand 70-80 440 560 UNDEFINED 11:75 38:35 106:16 0.580 0.531 0.92 sand 70-80 440 560 UNDEFINED 11:75 38:35 106:16 0.580 0.531 0.92 sand >80 >40 >60 UNDEFINED 12:001 39:37 228:28 1.087 <td></td>	
۲۷=۱-6	2.30 0.10 0.30 0.36 Caty UNDER UNDER 0.17 3.00 9.84 2.39 0.19 7.83 0.37 organic material UNDER UNDE	12.25 40.19 246.78 1.25 0.49 500 >40 >40 >46 501 UNDEFINED 12.50 1101 254.98 1.25 0.46 6.96 sand >40 >46 >501 UNDEFINED 12.75 41.83 254.38 1.17 0.46 0.96 sand >40 >46 >501 UNDEFINED 13.00 42.65 273.46 1.35 0.46 0.96 sand >60.46 >501 UNDEFINED 13.25 43.47 223.92 0.95 0.42 1.01 sand 80-90 46-48 >501 UNDEFINED 13.50 44.29 151.33 0.75 0.51 1.02 sand 70.60 44-46 >501 UNDEFINED	
ogs01.dg	4.00 13 r2 100 101 100<	13,75 45,11 100,20 0.76 0.42 1.06 gravely sand to sand >80 >46 >50 UNDEFINED 14,00 453 278.46 0.79 0.22 1.06 gravely sand to sand >80 >46 >50 UNDEFINED 14,25 46,75 365.46 1.64 0.45 1.07 gravely sand to sand >60 >46 >50 UNDEFINED 14,25 46,75 385.46 1.64 0.45 1.07 gravely sand to sand 80-60 46-46 >50 UNDEFINED 14,75 43.93 202.14 0.33 0.46 1.10 sand 80-60 46-48 >50 UNDEFINED 15,00 40.21 280.74 1.16 0.39 1.12 gravely sand to sand >40 >46 >50 UNDEFINED 15,00 40.21 280.74 1.16 0.39 1.12 gravely sand to sand >40 >46 >50 UNDEFINED	
4/961 91:	0.00 1.00 2.22 0.17 6.36 0.54 organic material UNDFR UNDF 2 0.1 5.75 18.86 4.72 0.22 4.56 0.56 clay UNDFN UNDF 4 0.3 6.00 19.69 4.72 0.22 4.56 0.56 organic material UNDFN UNDF 2 0.1 6.23 20.61 2.32 0.18 7.72 0.59 organic material UNDFN UNDF 2 0.1 6.50 21.33 1.75 0.15 8.00 0.59 organic material UNDFN UNDF 2 UNDFN 6.50 21.33 1.75 0.15 8.00 0.59 organic material UNDFN UNDFN 2 UNDFN 6.75 21.33 1.75 0.15 5.13 0.61 clay UNDFN 10.05 1 1 0 1 1 1 1 1 1 1 1	15.29 50.03 417.39 3.10 0.77 1.13 grants were send to use a Blowcounts based on 63% harmore efficiency Dr - All sands (Jamiolikowski et al. 1985) PHI - Rebertson and Campanella 1983 Su: Nic= 12	
29 10:14 Ject/m	7.00 22.97 3.12 0.18 5.73 0.62 clay UNUFH 3 0.1 7.25 23.79 2.68 0.15 5.52 0.64 clay UNUFH UNUFH 3 0.1 7.50 24.61 2.38 0.14 5.97 0.65 organic material UNUFH 2 9.6 7.75 25.43 2.50 0.16 6.46 0.67 organic material UNUFH 2 0.1 7.75 25.43 2.50 0.16 6.46 0.67 organic material UNUFH 2 0.1		
E c ĭ	8.00 28.25 3.02 0.16 5.25 0.68 cially UNUTE 3 0.1		1
01/29/9 Wed Ja	6 001 28:25 3.02 0.16 5.25 0.68 CHW UNDER 3 0.1 8 25 27.07 3.62 0.17 4.62 0.70 catey UNDER 0.10 0.1 8 501 27.99 3.14 0.15 4.88 0.71 catey UNDER UNDER 3 0.1 8.76 28.71 3.64 0.16 4.40 0.73 catey UNDER UNDER 3 0.1 9.001 28.53 4.24 0.17 4.30 0.76 catey UNDER UNDER 4 0.2 9.001 28.53 3.88 0.17 4.30 0.76 catey UNDER UNDER 4 0.1 9.251 30.35 3.88 0.17 4.30 0.78 catey UNDER UNDER 4 0.1 9.531 31.7 4.50 0.78 catey UNDER UNDER 0.2		

.

Dr - All sands (Jamiołkowski et al. 1985) PHI - Robertson and Campanella 1983 Su: Nk= 12

-

-

•

, `

• • •

•

-

-

•

	Fall ROUTE	SECTION	COUNTY	107.0L 5402.75	-		
	70	82-5VBR-1	ST CLAIR	27	22		
	STA.	. 10. 11.10	10 STA. MS POL	NO PROJECT			
•							
		•					
						•	ŀ.
						1	Ĺ
						1	
•							
							ł
						-	
IL	LINOIS DEP	ARTMENT	OF TRAN	SPURTA	IION		
REVISIONS NAME DATE	_	BORIN	G LOGS	~			
	F	A.I. R	UUIE 7 82-5VR	∪ R-t			
	ST	CLAI	R COUN	ITY			
			,				

	<image/> <form><form><form><form><form></form></form></form></form></form>	<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>	
	Dr - All sands (Jamiotkowski et al. 1985) PHI - Robertson and Campanella 1983 Su: Nixe 12 Optimized in the project implementation Boring Log Sheet 1_ of _2 District 8 Project implementation Structure Camping FAI 70 Over TRRA CSX and Conrail R.R. CPT Date: 10/24/98 Bored By: Lord Project implementation Structure Camping FAI 70 Over TRRA CSX and Conrail R.R. CPT Date: 10/24/98 Bored By: Lord Project implementation Structure Camping FAI 70 Over TRRA CSX and Conrail R.R. CPT Date: 10/24/98 Bored By: Lord Project implementation Structure Camping FAI 70 Over TRRA CSX and Conrail R.R. CPT Date: 10/24/98 Bored By: Lord Project implementation Structure Camping FAI 70 Over TRRA Cone Used: 438TC Multimite	CPT. Bridge Foundation Boring Log Sheet 2 of 2 Project implementation Neterials Project implementation Project implementation Neterials Project implementation Neterials Project implementation Project implementation Project implementation Neterials Project implementation Neterials Project implementation Project implementa	
01/29/97 Wed Jan 29 10:14:19 1997 /usr/project/md06796/blocs01.dgn LV=1-63	Section 82-0487-1 Contry 32 Clair Co. Total Unit Weight (Ave.): 180/Mm*3 Station: Station: Station: <th c<="" th=""><th>Provide State State Provide State<</th></th>	<th>Provide State State Provide State<</th>	Provide State State Provide State<

•

-

•

, `

۰.

.

		SECTION	COUNTY	tara, peti Sagris ia	
	70 STA.	82-548R-1 Ti	ST CLAIR	27 23	
	r0. 104	9157. 40. R.L.MARS			
•					
DEVICIONS	ILLINOIS D	EPARTMENT	OF TRANSF	ORTATION	
NAME DATE		BORING F.A.I. RC	LOGS OUTE 70	r	
	S S	ECTION 8 ST. CLAIF	2-5VBR	-I Y	
	┨				

CPT Date: 10/24/96 Bored By: L. Ford Check By: M. Lamie Cone Used: 438TC
nit Weight (Ave.): 16kN/m^3
Surface: 123.50 M mble: 2 Meters
deg. N kg/cm ² 2
N UNDF 18 1.5 N UNDF 18 1.5
N UNDF 4 UNDEFINED
N UNDF 5 UNDEFINED
N UNDF 4 UNDEFINED
N UNDF 3 UNDEFINED
N UNOF 4 UNDEFINED
N UNDF 2 UNDEFINED
N UNDF 2 UNDEFINED
FN UNDF 2 7.7
FN UNDF 1 UNDEFINED
FN UNOF 1 UNDEFINED
FN UNDF 2 0.3
FN UNDF 1 UNDEFINED
FN UNDF 2 UNDEFINED
OFN UNDF 1 UNDEFINED
OFN UNDF 1 UNDEFINED
DEN UNDE 2 UNDEFINED
DEN UNDE 2 UNDEFINED DEN UNDE 2 2.5
CFN UNDF 2 UNDEFINED
Boring Log Sheet 1 of <u>2</u>
Boring Log Sheet <u>1</u> of <u>2</u> CPT Date: <u>10/23/98</u> Bored By: <u>L. Ford</u> Check By: <u>M. Lamie</u> Cone Used: <u>438TC</u>
Boring Log Sheet <u>1</u> of <u>2</u> CPT Date: <u>10/23/95</u> Bored By: <u>L Ford</u> Check By: <u>M. Lamie</u> Cone Used: <u>438TC</u>
Boring Log Sheet <u>1</u> of <u>2</u> CPT Date: <u>10/23/96</u> Bored By: <u>L Ford</u> Check By: <u>M. Lamine</u> Cone Used: <u>438TC</u> Diul Unit Weight (Ave.): 16kd/m ⁴³ but disurface: 123.23 M ter table: <u>2 Meters</u> <u>q. Dr PHI</u> (SPT ²) Su
Boring Log Boring Log Sheet 1 of 2 CPT Date: 10/23/96 Bored By: L. Ford Check By: M. Lamie Cons Used: 438TC Check By: M. Lamie Cons Used: 438TC Lunit Weight (Ave.): 16/kNm*3 0und Surface: 123.23 M Mer table: 2 Meters Su 5 - Or PHI SPT Su 1.5 Open UNOF 1.6 1.5
Boring Log Boring Log Sheet 1 of 2 CPT Date: 10/23/96 Bored By: L Ford Bored By: L Ford L Ford L Ford Check By: M. Lamie Cone Used: 438TC Ibil Unit Weight (Ave.): 15kN/m*3 15kN/m*3 ound Surface: 123.23 M Meter table: 2 Meters Q=D PHI SPT SU 15 QFN UNOF 18 1.5 15 15 QFN UNOF 18 1.5 15 2 QFN UNOF 13 1.5 2 2 QFN UNOF 13 1.5 2 2
Boring Log Boring Log Sheet 1 of 2 CPT Date: 10/23/96 Bored By: Leford Bored By: Leford Ford Bored By: Leford Check By: ML Lamie Cock 438TC Stress Line Used: 438TC 438TC Stress Stress Line Used: 2 Meters 2 Stress Stress QCFN UNOF 18 1.5 Stress Stress Store N kg/cm*2 Stress Stress Store N Stress 1.5 Stress Store N Stress 1.5 Stress Store Norph 13 1.1 0.9 Store Number 11 0.9 0.6 Store Number 11 0.9 0.6 Store 1.0057 1.4 1.2 0.6
Boring Log Boring Log Sheet 1 of _2 CPT Date: 10/23/96 Bored By: L. Ford Bored By: L. Ford
Boring Log Boring Log Sheet 1 of 2 CPT Date: 10/23/96 Bored By: L. Ford Bored By: L. Ford Check By: M. Lamie Check By: M. Lamie Core Used: 438TC Bul Unit Weight (Ave.): 16kVm*3 Sund Surface: 123.23 M Bord Surface: 123.23 M Metr table: 2 Meters q-Dr PHI SPT Su Su Molec Bull N 165 1.5 Su JOFN UNDF 13 1.1 0.6 Su Su JOFN UNDF 14 1.2 0.0 Su Su Su JOFN UNDF 12 1.0 Su Su Su Su JOFN UNDF 12 1.0 Su Su Su Su JOFN UNDF 13 0.2 Su Su Su Su JOFN UNDF 3 0.2 Su Su Su Su
Boring Log Sheet 1 of 2 CPT Date: 10/23/96 Bored By: L. Ford Check By: M. Lamie Cone Used: 438TC aut Unit Weight (Ave.): 16kVm*3 burd Surface: 123.23 M wet table: 2 Meters q-Dr PHI DOFN UNKOF 15 UNKVF 15 DOFN UNKOF 13 DOFN UNKOF 10.6 DOFN UNKOF 10.8 DOFN UNKOF 13.0 DOFN UNKOF 3.0.2 DOFN UNKOF 3.0.2 DOFN UNKOF 3.0.2 DOFN UNKOF 4.0.3 DOFN UNKOF 4.0.3 DOFN UNKOF 4.0.3 DOFN UNKOF 4.0.3 DOFN UNKOF 13.0.2 DOFN UNKOF 4.0.3 DOFN UNKOF 10.9 DOFN UNKOF 10.9 DOFN UNKOF 10.0.9
Boring Log Sheet 1 of 2 CPT Date: 10/23/26 Bored By: L Ford Check By: M_L Amie Concurrent Concurrent Concurrent 2 Meters Concurrent Concurrent % Seg N Kgrmt Seg % Seg N Kgrmt Seg % Seg N Kgrmt Seg % Seg Seg Seg Seg % Seg Seg Seg Seg % Seg Seg Seg Seg
Boring Log Sheet 1 of 2 CPT Date: 10/23/26 Bored By: L Ford Check By: M_L Amie Concol Set 438TC Check By: M_L Amie Concol Set 438TC Check By: M_L Amie Concol Set 438TC Dund Surface: 123.23 M Metros 405FN Norfn UNDF 12 15 15 VDFN UNDF 16 1.5 15 VDFN UNDF 16 1.5 1.5 VDFN UNDF 10 0.5 1.5 VDFN UNDF 10.3 0.22 1.0 VDFN UNDF 10.3 0.22 1.0 VDFN UNDF 3 0.22 1.0 VDFN UNDF 10.3 0.21 0.0 VDFN UNDF 10.3 0.21
Boring Log Sheet 1 of 2 CPT Date: 10/23/26 10/23/26 Bored By: L. Ford 6 Check By: M. Lamie Concurrent Check By: M. Lamie 6 Cone Used: 438TC 10/23/26 Bored By: M. Lamie 6 Check By: M. Lamie 10/23/26 Cone Used: 438TC 10/23/26 add Dr. PHI 5 10/25/27 add Dr. PHI 5 15 Agen N kg/cm² So Gen NDF 16 ADF 11 0.9 ADFN UNDF 1.0 ADFN UNDF 1.0 ADFN UNDF 1.0 ADFN UNDF 3.0.2 ADFN UNDF 3.0.2 ADFN UNDF 3.0.2 ADFN UNDF 1.0 ADFN UNDF 1.0 ADFN
Boring Log Sheet 1 of 2 CPT Date: 10/23/26 10/23/26 Bored By: L. Ford 6 Check By: M. Lamie Concurrent Cone Used: 38TC 10/23/26 Born Unit Concurrent 12.3 M 15 Met table: 2 Meters 15 Stopen Unit Concurrent 13 1.1 DFH UNDF 13 1.1 DFN UNDF 13 1.1 DFN UNDF 13 0.2 NOFN UNDF 13 0.2 NOFN UNDF 13 0.4 NOFN UNDF 13 1.4 NOFN UNDF 13 0.4 NOFN UNDF 12 0.9 NOFN UNDF
Boring Log Sheet 1 of 2 CPT Date: 10/23/26 10/23/26 Bored By: L. Ford 10/23/26 Check By: M. Lamie Conce Used: 438TC Check By: M. Lamie Conce Used: 438TC ad Unit Weight (Ave.): 16/04/11 11 11 ad Cr PHI SPT* Surface: 2 Meters ad Cr N kg/cm2 15 1.5 JOFH UNDF 13 1.1 1.6 1.6 JOFH UNDF 13 1.1 1.6 1.6 JOFH UNDF 13 1.1 1.1 1.6 JOFH UNDF 13 0.1 1.0 1.0 NOFN UNDF 13 0.2 1.0 1.0 NOFN UNDF 13 0.1 1.0 1.0 NOFN UNDF 13 1.1 1.0 1.0 NOFN UNDF 13 1.1 1.0 1.0 NOFN UNDF
Boring Log Sheet 1 of 2 CPT Date: 10/23/95 1 Ford Bornd By: L. Ford 1 Ford Check By: M. Lamie Concurs 1 Check By: M. Lamie 1 1 Check By: M. Lamie 1 1 Check By: 12.321 M M Matrix: 2 Meters 2 1.5 Conc Used: 13 1.1 1 CPT DHI SPT* Surface: 1.6 Met table: 2 Meters 2 1.5 SigeR UNOF 13 1.1 DFN UNOF 13 1.1 1.9 MOFN UNOF 10 0.3 0.2 NOFN UNOF 13 0.1 1.0 NOFN UNOF 13 1.1 0.9 NOFN UNOF 13 0.1 1.0 NOFN UNOF 13 0.1 0.1 NOFN UNOF
Boring Log Sheet 1 of 2 CPT Date: 1023/95 Bornd By: L.Ford Check By: M.Lamie Check By: M.Lamie Check By: M.Lamie Cone Used: 438TC au Unit Weight (Ave.): 181k/m*3 ound Surface: 123.23 M Met table: 2 Meters A deg. N Kolern 13 1.1 SpFN UNOF 13 1.1 SpFN UNOF 12 10 SpFN UNOF 13 0.2 MOFN UNOF 13 0.2 NOFN UNOF 3 0.2 NOFN UNOF 13 0.1 NOFN UNOF 10 0.2 NOFN UNOF 10 0.1 NOFN UNOF
Boring Log Sheet 1 of 2 CPT Date: 1023/95 Bornd By: L.Ford Check By: M.Lamie Check By: M.Lamie Check By: M.Lamie Cone Used: 438TC au Unit Weight (Ave.): 16kN/m*3 ound Surface: 123.23 M Met table: 2 Meters A deg. N Kgen UNOF 13 1.1 SpFN UNOF 13 1.1 SpFN UNOF 13 1.2 SpFN UNOF 14 12 SpFN UNOF 13 0.2 NOFN UNOF 3 0.2 NOFN UNOF 13 0.1 NOFN UNOF 13 0.1 NOFN UNOF 13 0.1 NOFN UNOF 13 0.1 NOFN UNOF 10 0.9 NOFN UNOF 10 0.1 NOFN UNOF 10 0.1 NOFN UNOF<
Boring Log Sheet 1 of 2 CPT Date: 1023/95 Eord Bornd By: L Ford Check By: ML Lamie Concursed Street Street Street Check By: ML Lamie Concursed Concursed Street Street Check By: ML Lamie Concursed Street Street Street Concursed: 123 Street 123 Street Street Street Street Street table: 2 Meters A Street Street Street Street table: 2 Meters Street Street Street Stree Street table: </td
Boring Log Sheet 1 of 2 CPT Date: 1023/95 Bornd By: L Ford Check By: M. Lamie Concurstion Check By: M. Lamie Check By: M. Lamie Concurstion Check By: M. Lamie Check By: M. Lamie Concurstion Check By: M. Lamie Cons Used: 438TC - Marrie aud Surface: 123.23 M Metration: - % deg. N kg/cm*2 Metration: % deg. N kg/cm*2 Metration: % deg. N kg/cm*2 Metration: % deg. N kg/cm*2 10 % deg. N - 3 2 % deg. N kg/cm*2 10 3 % deg. N - 3 3 2 % UNOF 13 - 11 3 </td
Boring Log Sheet 1 of 2 CPT Date: 1023/96 Bornd By: L. Ford Check By: M. Lamie Check By: M. Lamie Cons Used: 438TC all Unit Weight (Ave.): 16kMm*3 ound Surface: 123.23 M Met table: 2 MoFN UNOF 13 NoFN UNOF 13 NoFN UNOF 13 NOFN UNOF 14 NOFN UNOF 3 NOFN UNOF 3 NOFN UNOF 3 NOFN UNOF 3 NOFN UNOF 13 NOFN UNOF 10 NOFN UNOF 11 NOFN UNOF 11 NOFN UNOF 11 NOFN UNOF 13 NOFN UNOF 13 NOFN UNOF 13
Boring Log Sheet 1 of 2 CPT Date: 10/23/96 Bornd By: L Ford Check By: M. Lamie Cons Used: 438TC Check By: M. Lamie Cons Used: 438TC Stautisco: 123.23 M Meters 15 Check By: M. Lamie Cons Used: 438TC Check By: N. Lamie Cons Used: 13 Check By: N. Stautisco: 12.10 13 CPFN UNDF 12 10 12 10 CPFN UNDF 13 0.21 10 10 CPFN UNDF 13 0.21 17 10 CPFN UNDF 12 0.9 0.4 0.3 0.21 NDFN UNDF 13 0.11 17 17 10
Boring Log Sheet 1 of 2 CPT Date: 10/23/98 Bornd By: L Ford Check By: M. Lame Concurrent Check By: L Ford Check By: M. Lame Concurrent Check By: L Ford Check By: M. Lame Concurrent Check By: M. Lame Concurrent 123.23 M Meters Meters Meters T-D PHI SPT* Su Meters QFN UNDF 13 1.1 VpFN UNDF 13 1.2 QFN UNDF 10.2 0.0 QFN UNDF 10.2 0.0 QFN UNDF 10.2 0.0 QFN UNDF 10.2 0.0 QFN UNDF 13 0.1 NDFN UNDF 10.3 0.1 NDFN UNDF 10.1 1.7 NDFN UNDF 10.1 1.7

• •

, ¹ .

:

LV=1-63

01/29/97 Wed Jan 29 10:14:19 1997 /usr/project/md06796/blcgs01.dgn

Project Roule: FAI 70 Section 82-5VBR-1 County: St. Clair Co. Total Unit Weight (Ave.): 16kN/m^3 Ground Surface: 123.50 M Water table: 2 Meters CPT. Boring: <u>Pier #17</u> Station: <u>5+540.3</u> O/S: <u>18.9 M Rt.</u>
 DEPTH
 Cr. (avg)
 Fs (avg)
 Rf (avg)
 SIGV
 SOL BEHAVIOR TYPE
 Eq. Or
 PH
 SPT
 Supcome2

 matters
 feet
 kg/cmm2
 %
 kg/cmm2
 %

Structure Carrying FAI 70 Over TRRA CSX and Conrail R.R.

Blowcounts based on 63% hammer efficiency

District 8 Project implementation

Dr - All sands (Jamiolkowski et al. 1985) PHI - Robertson and Campanella 1983 Su: Nk= 12

District 8 Project Implementation Metericials Structure Carrying FAI 70 Over TRRA CSX and Conrail R.R.

Project: Route: FAI 70 Section 82-5VBR-1 County: St. Clair Co.

CPT. Boring: Pler #18 Station: 5+570.72 C/S: 20.42 M LL

-	20.42	<u>.</u>							
			Dd (aug)	CHOILE	SON DEMAVIOR TYPE	Ea - Dr	PHI	SPT	Su
H	Cac (avg)	PS (8V9)	rci (avg)	3131	SOLUCIO		dea	N	ka/cm^2
feet	kg/cm^2	kg/cm^2	*	Kg/Cm*2		70 00	40 49	>60	UNDEFINED
32.81	133,12	0.65	0.49	0.81	sand	70-00	40-40	- 50	LINDEFINED
33 63	150.54	1.09	0.72	0.82	sand	80-90	40-48	>50	UNDEFINED
34 45	213.80	0.54	0.25	0.84	send	>90	>48	>00	UNDEFINED
35 27	206 10	0.61	0.30	0.85	sand	80-90	>46	>50	UNDEPINED
36 00	156 78	0.55	0.35	0.87	send	80-90	46-48	1 >50	UNDEFINED
28 01	222 38	1.58	0.71	0.86	sand	>90	>48	>50	UNDEFINED
27 72	206 02	1 37	0.46	0.90	gravely sand to sand	>90	>48	>50	UNDEFINED
31.13	200.00	1 21	0.54	0.92	sand	>90	>48	>50	UNDEFINED
30.33	400.04	1.07	0.51	0.93	sand	80-90	46-48	>50	UNDEFINED
39.37	189.90	1.04	0.51	0.00	sand	>90	>48	>50	UNDEFINED
40.19	230.80	1.23	0.30	0.00	hose of hose wanted	>90	>48	>50	UNDEFINED
41.01	339.92	2.07	0.01	0.50	gravely said to said	>90	>48	>50	UNDEFINED
41.83	250.02	0.83	0.33	0.90	gravery send to send	90.00	48-48	>50	UNDEFINED
42.65	183.60	0.66	0.36	0.94	Sena	00-00	48 48	>50	UNDEFINED
43.47	174.18	0.65	0.37	1.01	sand	00-50	40-40	20	UNDEEINED
44 26	178.86	0.40	0.22	1.02	sand	86-90	40-40	250	UNDEFINED
45.11	220.08	1.11	0.51	1.0	l send	80-90	40-48	250	UNDEFINED
45.93	351.00	1.7	0.46	1.0	3 gravely sand to sand	>90	>40	>50	UNDEFINED
48 75	308.60	0.84	0.27	1.0	7 gravely sand to sand	>90	>40	>50	UNDEFINED
47.5	237.8	0.60	0.2	5 1.0	gravely sand to sand	>90	46-48	>50	UNDEFINED
41.01	251 5	0.9	0.36	3 1.10	aravely sand to sand	>90	46-48	>50	UNDEFINED

Blowcounts based on 63% hammer efficiency

Dr - All sands (Jamiolkowski et al. 1985) PHI - Robertson and Campanella 1983 Su: Nic= 12

CPT. Bridge Foundation Boring Log Sheet <u>2</u> of <u>2</u>

1 · ·

CPT. Bridge Foundation Boring Log Sheet <u>2</u> of <u>2</u>

CPT Date: <u>10/24/96</u> Bored By: <u>L. Ford</u> Check By: <u>M. Lamie</u> Cone Used: <u>438TC</u>

CPT Date: 10/23/96 Bored By: L. Ford Check By: M. Lamie Cone Used: 438TC

Total Unit Weight (Ave.): 16kWm^3 Ground Surface: 123.23 M Water table: 2 Meters

SOIL BEHAVIOR	SIGV	Rf (avg)	Fs (avg)	Qc (avg)	TH	DEP
	kg/cm^2	%	kg/cm^2	kg/cm^2	feet	meters I
sand	0.81	0.49	0.65	133.12	32.81	10.001
sand	0.82	0.72	1.09	150.54	33.63	10.25
send	0.84	0.25	0.54	213.80	34.45	10.50
sand	0.85	0.30	0.61	206.10	35.27	10.75
send	0.87	0.35	0.55	156.78	36.09	11.00
sand	0.86	0.71	1.58	222.38	36 91	11 25
gravely sand to	0.90	0.46	1.37	295.92	37.73	11 50
sand	0.92	0.54	1.21	223.96	38.55	41 75
sand	0.93	0.51	1.02	199.98	39.37	12.00
sand	0.95	0.56	1.29	230.80	40 19	12 25
gravely sand to	0.96	0.61	2.07	339.92	41 01	12 50
gravely sand to	0.96	0.33	0.83	250.02	41 83	12 75
sand	0.95	0.36	0.66	183.60	42.65	13.00
sand	1.01	0.37	0.65	174.18	43.47	13 25
sand	1.02	0.22	0.40	178.86	44 29	13.50
sand	1.04	0.51	1.11	220.08	45 11	13 76
gravely sand t	1.00	0.49	1.72	351.00	45.93	14.00
gravely sand t	1.07	0.27	0.84	308.60	48 75	14 25
gravely sand t	1.0	0.25	0.60	237.86	47 57	14 50
gravely sand t	1.10	0.36	0.92	251 54	10.20	14.50

Dr - All sands (Jamiolkowski et al. 1985) PHI - Robertson and Campanella 1983 Su: NK# 12

	AN SECTION COUNTY IN SECTION	
	YO 82-5VBR-1 ST CLAIR Z1 Z4 STA. TO STA.	
Г		
REVISIONS NAME DATE	BORING LOGS	
	F.A.I. ROUTE 70 SECTION 82-5VBR-1	
	ST. CLAIR COUNTY	J

TO STA.
· · · · · · · · · · · · · · · · · · ·
EPARTMENT OF TRANSPORTATION
BORING LOGS
FAI ROUTE 70
- 5

• *

· ·

.

			THE MELT
	70 82-54	BR-1 ST. CLAIF	27 28
	STA.	TO STA.	
	L		
			· .
		······································	
	•••••••••••••••••••••••••••••••••••••••		
			· · ·
	LLINOIS DEPART	MENT OF TRAN	SPORTATION
REVISIONS	'LLINOIS DEPART	MENT OF TRAN	SPORTATION
REVISIONS NAME DATE	LLINOIS DEPART	MENT OF TRAN	SPORTATION
REVISIONS MAME DATE	LLINOIS DEPARI BC	WENT OF TRAM DRING LOGS AI ROUTE 70	-1

Borling No. 4 Borling No. 5 5 5 7 8 7 <th7< th=""> 7 <th7< th=""></th7<></th7<>	$ \begin{array}{c} \mbox{ILLINOIS DEPARTMENT OF TRANSPORTATION} & \mbox{Bridge Foundation} \\ \mbox{District Elight Materials} & \mbox{Boring Logs} \\ \mbox{PROJECT} & \mbox{D-98-067-96} & \mbox{Bridge Foundation} \\ \mbox{Boring Logs} & \mbox{District Elight Materials} & \mbox{Boring Logs} \\ \mbox{ROUTE} & \mbox{FA1 70} & \mbox{COWRAIL RAIRGODS} & \mbox{Bored By LARRY FORD} \\ \mbox{ROUTE} & \mbox{FA1 70} & \mbox{COWRAIL SAIRGODS} & \mbox{Bored By LARRY FORD} \\ \mbox{Sec.} & \mbox{82-5VBR-1} & \mbox{STA 81+42.68 (ENGLISH)} & \mbox{Checked By MARY LAMIE} \\ \mbox{COUNTY SI_ CLAIR} & \mbox{State 1.3 CLAIR} & \mbox{Struct. No. 082-0017} \\ \mbox{Soil Boring No. 12 & \mbox{Boring No. 12 & \mbox{Struct. No. 082-0017} \\ \mbox{Struct. No. 082-0017} & \mbox{Siteve Z PASSINC} & Si$
ILLINOIS DEPARTMENT OF TRANSPORTATION Bridge Foundation District Eight Materials Boring Logs PROJECT D-98-067-95 BRIDGE FAI 70 OVER Date 11/20/95 ROUTE FAI 70 CONTALL RAIL ROADS Bored By LARRY FORD SEC. B2-5VBR-1 STA. 81+42.68 (ENGLISH) Checked By MARY LAMIE COUNTY SI. CLAIR Stat. 81+42.68 (ENGLISH) Checked By MARY LAMIE COUNTY SI. CLAIR Stat. 52489.7 Struct. No. 082-0017 Struct. No. 082-0017 Soris System Struct. No. 082-0017 Struct. No. 082-0017 Struct. No. 082-0017 Soris Soring No. Struct. No. 082-0017 Struct. No. 082-0017 Struct. No. 082-0017 Soris Struct. No. 082-0017 Struct. No. 082-0017 Struct. No. 082-0017 Struct. No. 082-0017 Soris Struct. No. 082-0017 Struct. No. 082-0017 Struct. No. 082-0017 Struct. No. 082-0017 Soris Struct. No. 082-0017 Struct. No. 082-0017 Struct. No. 082-0017 Struct. No. 082-0017 Soris Struct. No.	ILLINOIS DEPARTMENT OF TRANSPORTATION Bridge Foundation Boring Logs ILLINOIS DEPARTMENT OF TRANSPORTATION Bridge Foundation Boring Logs PROJECT D-98-067-96 BRIDGE FAI 70 OVER Date 11/20/95 ROJECT D-98-067-96 BRIDGE FAI 70 OVER Date 11/20/95 ROJECT D-98-067-96 BRIDGE FAI 70 OVER Date 11/20/95 CONTAIL RAILROADS Bored By LARRY FORD Soll BORING SAND GRADATIONS Soil BORING SAND GRADATIONS Boring No. 18 Soil BORING SAND GRADATIONS Silve X PASSING SIEVE X PASSING
• 100 <u></u>	• 200 <u>3, 9</u> • 200 <u>2. /</u> • 200

.

• *

· · ·

2.1

•

•

•

÷

. .

02/05/97 Wed Feb 5 11:45:38 1997 /usr/project/md06796/blog901.dgn LV=1-63 • ;

							<u>:661</u>	AY TO	M
						T		197.00	MET
		ŀ	70	SECTI 82-ŠVE	aw BR-1	ST. CL	AIR	sun 27	27
			STA.		- 1	TO STA.			
		l							
						•			
			•						
	~								
		ILLIN	ois i	EPAR	TMENT	OF TR	ANSF	PORTA	TION
REVIS	IONS			B	ORIN	IG LO	GS		
									
				F SEC	AI R TION	OUTE 82-5V	/0 'BR-`	t	
		1		ST	CLA	IR COL	JNTY		

76K02 - PS&E Package for B&O Bridge

Recommendations for Foundation Rehabilitation (Prefinal Submittal)

ATTACHMENT 3

TSi Report and Boring Logs – 2021 Evaluation

REPORT OF SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING EVALUATION

I-55/I-70 BRIDGE OVER RAILROAD YARD IN ST. CLAIR COUNTY ST. CLAIR COUNTY, ILLINOIS TSI PROJECT NO. 20211176.00

WISS, JANNEY, ELSTNER ASSOCIATES, INC. 300 Pfingsten Rd. Northbrook, Illinois 60062

1340 North Price Road St. Louis, MO 63132

November 18, 2021

November 18, 2021

Mr. Stephen Garrett, PE WISS, JANNEY, ELSTNER ASSOCIATES, INC. 330 Pfingsten Rd. Northbrook, Illinois 60062

Re: Subsurface Exploration and Geotechnical Engineering Evaluation I-55/I-70 Bridge over Railroad Yard in St. Clair County St. Clair County, Illinois TSi Project No. 20211176.00

Dear Mr. Garrett:

TSi Geotechnical, Inc. (TSi) has completed the authorized Subsurface Exploration and Geotechnical Engineering Evaluation for the referenced project and is pleased to submit our findings to Wiss, Janney, Elstner Associates, Inc. (WJE). The purpose of our work was to assess subsurface conditions at specific test boring location in order to prepare geotechnical recommendations for use in the design and construction of the foundations and retaining structures for improvements of I-55/I-70 Bridge over Railroad Yard in St. Clair County, Illinois. This report presents the field and laboratory data, and includes our evaluations and recommendations relative to the geotechnical engineering aspects of the project.

We appreciate the opportunity to assist you with this project. If you have any questions, or if we may be of further service to you, please call us.

Respectfully submitted, **TSI GEOTECHNICAL, INC.**

& all th

Fred H. Held III Project Manager

Nilesh R. Lal, PE Area Manager Illinois PE: 062.072255

Semial & Herv

Denise B. Hervey, PE Principal

1340 North Price Road St. Louis, MO 63132 314.373.4000 T 314.227.6622 F

www.tsigeotech.com

1.0	SCOPE OF WORK	.1
2.0	SITE AND PROJECT DESCRIPTIONS	2
3.0	FIELD EXPLORATION AND LABORATORY TESTING	3 3 4
4.0	 SUBSURFACE CONDITIONS	5 5 6
5.0	DESIGN RECOMMENDATIONS	8 9 10 12 12 13 14
6.0	SITE PREPARATION AND EXCAVATION CONSIDERATIONS	16 16 17 17 18
7.0	CONSTRUCTION OBSERVATION AND TESTING	19
8.0	REPORT LIMITATIONS	20
App	bendix A – Vicinity Map, Figure 1 Site and Boring Location Plan, Figures 2.1, 2.2, and 2.3	
App	bendix B – Logs of Boring Boring Log Notes	

CONTENTS

Appendix C – Laboratory Test Results

SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING EVALUATION I-55/I-70 BRIDGE OVER RAILROAD YARD IN ST. CLAIR COUNTY ST. CLAIR COUNTY, ILLINOIS

1.0 Scope of Work

This report summarizes the results of a geotechnical study performed for use in the design and construction of the foundations for improvements of I-55/I-70 Bridge over Railroad Yard in St. Clair County, Illinois. Based on TSi's understanding of the project, the following items have been identified for inclusion in this study report:

- subsurface conditions at the bridge locations, including material types at each boring location;
- laboratory test results for soil samples;
- recommended foundation support for the bridge temporary support structures, as appropriate for the anticipated design loads and site conditions, and specific project requirements;
- design capacities for generalized soil profiles;
- estimated settlement of the foundations, based on the general character of the supporting materials and anticipated structural loads;
- a general assessment of regional seismicity and seismic site class;
- LPILE parameters for the design of laterally loaded deep foundations; and
- the influence of groundwater on the project;

2.0 SITE AND PROJECT DESCRIPTIONS

The following project understanding is based on the information received and discussions with WJE, and a site reconnaissance by an engineer from TSi. The project will consist of restoration work on the existing bridge piers on I-55/I70 bridge in St. Clair County, Illinois. The existing bridge carries a large amount of traffic on I-55/I-70. Based on the discussion with WJE, we understand that the bridge deck is planned to be uplifted and supported over a temporary support system consisting of hydraulic jacks, steel truss, and columns. We understand the lifting and temporary support tolerances are approximately one eighth to one half inch for a duration of approximately 40 days. The support structure is planned to be placed on an approximate 2 foot thick concrete footing constructed at the existing grades. However, ground improvements or deep foundations will likely be required to support these footings. The preliminary dimensions of the footings are provided as approximately 10 feet wide and 50 feet long. We understand the contact pressure of the footings may vary based on the pier loads and in the extreme case scenarios, it could range from approximately 1,000 to 2,000 pounds per square feet (psf) over the 10 foot by 50 foot footing.

We understand the existing bridge foundation elements are concrete piles extending to depths of 30 to 60 feet, based on provided information. After the bridge deck is supported by temporary shoring, some of the bridge piers will be excavated to the tops of the footings or pier caps for inspection and restoration.

The project site is generally located in the extended flood plain of the Mississippi River approximately 2 miles east of the main river channel. The general location of the project interchanges are shown on the Vicinity Map, Figures 1 in Appendix A of this report. The approximate locations of the borings drilled by TSi are indicated on the Site and Boring Location Plans, Figures 2.1, 2.2, and 2.3, in Appendix A.

3.0 FIELD EXPLORATION AND LABORATORY TESTING

3.1 FIELD EXPLORATION

Through August 11 to September 29, 2021, TSi conducted a subsurface exploration at the project site consisting of fourteen (14) test borings. The borings were designated as Borings 1N, 1S, 2N, 2S, 2.5, 3N, 3S, 3.5, 4N, 4S, 5N, 5S, 6N, and 6S. The boring locations were selected by WJE, and were staked in the field by TSi at the time of drilling. Some of the borings were offset from their planned locations due to utility or railroad conflicts. The approximate locations of the borings are shown on Figures 2.1, 2.2, and 2.3 in Appendix A. The boring locations were surveyed and the elevations and coordinates were provided to TSi by WJE and are shown on the Logs of Boring in Appendix B.

The borings were drilled with a Diedrich D-50 all-terrain drill rig or Geoprobe 7822DT allterrain drill rig using hollow stem auger and mud rotary drilling methods. The borings were drilled to the predetermined depths ranging from 20 to 100 feet. The borings were backfilled with grout to the ground surface and topped with native soils. Split-spoon and Shelby tube samples were recovered from the borings. Split-spoon samples were recovered using a 2-inch outside-diameter, split-barrel sampler, driven by an automatic hammer, in accordance with ASTM D 1586. The split-spoon samples were placed in glass jars for later testing in the laboratory. Shelby tube samples were obtained in general accordance with ASTM D 1587. The Shelby tube samples were preserved by sealing the entire sample in the tube. The sampling sequences for each boring are summarized on the Logs of Boring in Appendix B.

The results of the geotechnical field tests and measurements were recorded on field logs and appropriate data sheets. Those data sheets and logs contain information concerning the exploration methods, samples attempted and recovered, indications of the presence of various subsurface materials, and the observation of groundwater. The field logs and data sheets contain the field engineer's interpretations of the conditions between samples, based on the performance of the exploration equipment and the cuttings brought to the surface by the drilling tools.

3.2 LABORATORY TESTING

A laboratory testing program was conducted by TSi to determine selected engineering properties of the obtained soil samples. The following laboratory tests were performed on the samples recovered from the borings in general accordance with the appropriate ASTM standards:

- visual descriptions by color and texture of each sample;
- hand penetrometer measurements on cohesive samples;
- natural moisture content of each cohesive sample;
- unit weights of selected samples;
- minus #200 washed sieves of selected samples;
- sieve particle size analysis of selected samples;
- hydrometer test;
- consolidation tests of selected Shelby tube samples;
- Atterberg limit tests on selected cohesive samples; and
- Unconsolidated undrained triaxial compressive strength of selected soil samples.

Data and observations from laboratory tests were recorded on laboratory data sheets during the course of the testing program. The results of the tests are summarized on the Logs of Boring in Appendix B and on the Laboratory Test Reports in Appendix C. The boring logs are an interpretation of the subsurface conditions based on the field and laboratory data. Only data pertinent to the objectives of this report have been included on the logs; therefore, these logs should not be used for other purposes.

4.0 SUBSURFACE CONDITIONS

Details of the subsurface conditions encountered at the boring locations are shown on the Logs of Boring. The general subsurface conditions encountered and their pertinent engineering characteristics are described in the following paragraphs. Conditions represented by the borings should be considered applicable only at the location drilled on the dates shown; the reported conditions may be different at other locations or at other times.

4.1 GENERAL GEOLOGY

The general area of the project site is underlain by Ste. Genevieve Limestone of Mississippian system, of the Chesterian Series at an estimated depth between 100 and 200 feet. This limestone formation may contain layers of dolomite, limestone breccia, shale and chert. The upper few feet of bedrock is typically weathered and highly weathered in some areas. The limestone is susceptible to solution activity, resulting in sinkholes that may be filled with more recent sediments, an irregular bedrock surface, and widened joints with variable degrees of weathering. Some calcareous sandstone layers and local cherts can be found. The Ste. Genevieve Limestone has been heavily eroded in this area during the Pennsylvanian by alluvial action. Expected thicknesses vary from 0 to 150 feet.

Based on the Illinois Geological Survey the native surface soil deposits consist of alluvial sediments from the Cahokia Formation extending to a depth of over 100 feet. The Cahokia Formation typically consist of bedded silts, clays, loams, and sand and gravel deposited in the floodplains and channels of modern rivers and streams. The project site is situated in the apparent oxbow remnant of the Mississippi River where sediments slowly filled the river meander until it was completely cut off from the main channel. Remnant lakes, ponds, creeks, and canals are present throughout the general area.

4.2 GENERALIZED SUBSURFACE PROFILE

The generalized subsurface profile of the borings consists of highly variable fills overlying cohesive soils consisting of silts and clays, all of which is underlain by native sands.

The surficial fill soils consist of approximately 5 to 10 feet of highly variable material with consistency ranging from very soft to hard. Fill materials consist of cinders, clay, silty loams, loams, sandy loams, sandy clays, and sands (as per IDOT IDH soil classification system) with variable amounts of secondary clays, silts, sands, gravel, brick, glass, and limestone fragments. SPT (Standard Penetration Test) N-values ranged from WH (weight of hammer) to >50 bpf (blows per foot). Moisture contents in the fill range from about 4 to 56%. Dry densities in the fill range from about 87 to 106 pcf (pounds per cubic foot). Atterberg limits in the fill range from 55 to 114 liquid limits and 36 to 86 plastic indices. Undrained shear strengths in the fill range from about 0.38 to 0.66 tsf (tons per square foot). Percent fines passing a #200 sieve range from about 15 to 98%.

The upper cohesive materials which underlie the fills appear to be relatively recently deposited sediments from the Mississippi River, previous oxbow remnants, creeks, or canals. These cohesive native soils varied from depths of about 5 to 40 feet and consist of clays, silts, silty clays, clay loams, silty clay loams, loams, sandy clays, and sandy clay loams with consistencies ranging from very soft to stiff. N-values range from WH to 30 bpf. N-values were generally lower on the northern half of the project area. Moisture contents in the cohesive soils ranged from about 22 to 75%. Dry densities in the cohesive soils range from about 75 to 101 pcf. Atterberg limits in the cohesive soils range from 22 to 99 liquid limits and 3 to 86 plastic indices. Undrained shear strengths in the tested cohesive soils range from about 0.45 to 0.71 tsf. Percent fines passing a #200 sieve range from about 50 to 99% in selected samples.

Some of the very soft clays present in the surface fill materials and upper cohesive sediment soils could not be recovered in Shelby tube or SPT samples to produce reliable testing specimens due to the very soft and wet characteristics. These include soils with weight of hammer SPT values and high moisture contents, some near their liquid limit values. These very soft soils are likely softer and weaker than the tested lab specimens.

Below depths of about 30 to 40 feet, native sands were encountered of generally medium dense to dense consistency. SPT N-values ranged from WH to 67 bpf, generally being above 8 bpf. Moisture contents in sands ranged from about 6 to 32%. Percentage of fines ranged from about 4 to 6% in selected samples.

4.3 GROUNDWATER

Groundwater was encountered during drilling at depths of 5 to 20 feet, except in Borings B-1N, B-4N, and B-6N. Selected borings were observed for groundwater after a 14 day delay. Groundwater was encountered on delayed readings between the ground surface and 6.8 feet. The depths of groundwater for each boring are presented on Table 1 below. The presence or absence of groundwater at a particular location does not necessarily mean that groundwater will be present or absent at that location at other times. Groundwater levels may vary significantly over time due to the effect of seasonal variations in precipitation or other factors not evident at the time of exploration.

TABLE 1.GROUNDWATER DEPTHS AND ELEVATIONS

	-	Durin	ng Drilling	14-Day Delay		
Boring	Ground Elevation (ft.)	Depth (ft.)	Elevation (ft.)	Depth (ft.)	Elevation (ft.)	
B-1N	416.0	NE	NE	0.0	416.0	
B-1S	413.6	18	395.6	-	-	
B-2N	418.6	20	398.6	-	-	
B-2S	422.6	18	404.6	-	-	
B-2.5	415.7	13	402.7	-	-	
B-3N	414.2	18	396.2	-	-	
B-3S	414.5	8	406.5	-	-	
B-3.5	410.3	18	392.3	-	-	
B-4N	407.9	NE	NE	-	-	
B-4S	406.8	18	388.8	4.5	402.3	
B-5N	407.6	5.5	402.1	6.8	400.9	
B-5S	404.5	13	391.5	-	-	
B-6N	409.0	NE	NE	-	-	
B-6S	407.3	5	402.3	4.3	403.0	
	NE = Not Encountered					

5.0 DESIGN RECOMMENDATIONS

5.1 EXISTING FILL MATERIALS

Existing fill materials were encountered at the boring locations extending to depths ranging from approximately 5 to 10 feet below the existing ground surface. The existing fill materials generally consisted on clay or cinders, a burnt coal byproduct, with varying percentages of miscellaneous debris such as brick, asphalt, glass, and concrete fragments. It does not appear that all of the fill was placed and compacted in a controlled manner. As a result, the engineering properties of the fill cannot be predicted with certainty, and there is a risk for excessive total or differential settlement or other performance problems if any structures are supported on the existing fill. Fill materials with greater variability and thickness could also be present between or away from the boring locations.

Several options are available for mitigating the risks associated with the old fill material, the most common of which are described below. It will ultimately be the decision of the owner to decide which course of action to take, based on a comparison of risks that result from the presence of the fill with the costs associated with reducing or eliminating the risks.

Complete Removal and Replacement – The risks associated with building upon the existing fill may not be acceptable to owner and designers. In order to eliminate the risk to the proposed shoring project, the existing fill could be removed entirely from the planned development areas and replaced with compacted, suitable fill. The excavation bases should be widened by a minimum of one half foot in each direction larger than the proposed footing for every foot of excavation below surface grade. Old fill that proves to be relatively uniform in composition and free of deleterious materials may be reused as new fill. See Section 6.4, *Fill and Backfill Materials*.

Additional Options – TSi understands that complete fill removal and replacement may not be practical or economically feasible due to the depths of fill and surrounding structures, utilities, and railroads to remain. Other options for mitigating the presence of the old fill include deep foundations and ground improvement. Deep foundations could include drilled shafts or driven piles.

Ground improvements, such as rammed aggregate piers, GeoPiers or vibro-replacement/vibrocompaction (stone columns), are possibilities to improve the ground for temporary shoring for the lighter loaded structures for the project. These technologies could be effective at mitigating the uncertainties associated with the existing fill and reduce the potential for differential settlements. The performance of the improvement columns is dependent on the proprietary system used for installation. The design of these systems is normally accomplished by the specialty subcontractor awarded the installation, based on a performance specification for

allowable bearing capacity and settlement of the foundations. However, as previously mentioned the vibrations induced by these ground improvement methods could cause settlement and damage to the existing foundations.

5.2 BEARING CAPACITY

Very soft clayey soils were encountered below the fill materials at this site. In addition, existing fill materials at some areas do not appear to have a proper compaction based on their relatively low Standard Penetration Resistance (N-value) and high moisture contents near the soils liquid limits. Based on the encountered soil materials, the most probable mode of failure for a footing at this site is expected to be the local or punching shear failures. In these modes of failure, the shear strength mostly generates from a limited wedge of failure and as a result a lower bearing capacity is associated with these types of failure. A conventional approach to address this issue is to reduce the shear strength parameters of the soil to two-third of their estimated values. The bearing capacity equation used in our evaluation are provided below:

 $q_{\text{net,allowable}} = (\pi + 2) \times 0.67 \times \text{Cu/SF}$

In the above equation "SF" is the Safety Factor. The safety factor for bearing capacity is typically 3 or more for permanent structures. For temporary structures the safety factor could be as low as 1.5 to 2.0 due to the short term duration of this project; however, excessive settlements would likely result. The "Cu" in the equation is the undrained cohesion or shear strength of the underlying clays.

The fill materials encountered to depths of 5 to 10 feet in the borings exhibited tested shear strengths as low as about 640 psf. The native cohesive soils encountered at depths of 5 to 40 feet exhibited tested shear strengths as low as about 900 psf of the tested samples. However, as previously indicated, very soft fill and native soils were encountered with in-situ SPT N-values of weight of hammer which indicate very soft soils. Laboratory tests also verify very high moisture contents near their liquid limit values in some of these very soft soils. Penetration tests of some of these samples indicate shear strengths as low as 250 psf. The drilling and laboratory tests results are consistent with anticipated sediments of the Cahokia Formation and indicate layers of these very soft soils are present in many areas of the project site where foundations are planned.

The lower range Cu of some of the soils within the bearing strata below the foundation bases are estimated to be about 250 psf. As a result, the net allowable bearing capacity of the underlying soft clays is about 435 to 580 psf using safety factors of 1.5 and 2.0, respectively. Since, in the clayey soils, the embedment depth of foundation does not have an influence on the bearing capacity, the above estimated capacity would be valid for both 5 and 10 feet removal and replacement of the materials with crushed limestone. The transferred stresses to the bottom of the

crushed limestone layer should be compared against the provided net allowable bearing capacity. The transferred load to the underlying layers could be estimated by the 2 to 1 method. In this approach the contact pressure at deeper depths is calculated over an enlarged area which is expanded by a 2 Vertical:1 Horizontal (2H:1V) line from the perimeter of the strip footings. It should be noted that the difference in unit weight of crushed limestone and the underlying clays (about 20 pcf) should also be added to the calculated values. Therefore, the estimated contact pressure at the bottom of the crushed limestone layer is estimated to be approximately 1,300 and 1,000 psf for 5 and 10 feet thick crushed limestone pads, respectively.

As it is evident, these estimated contact pressure magnitudes are much greater than the net allowable bearing capacity provided in the previous paragraphs and as a result the proposed footings at this site are subject to failure under the provided loading conditions. Local bearing failure may not occur in all portions of planned footings, but the potential for failure in some portions are high. This also applies to the lighter structures with an approximate surface contact pressure of 1,000 psf if these very soft clays are present in the upper cohesive layer from depths of 10 to 20 feet. However, if these soft soils are not present below any part of the 10 foot by 50 foot footing as encountered in some of the borings, the local bearing capacities may not be exceeding under the design loadings, but excessive total or differential settlement could result. The following section evaluates these potential total and differential settlements.

5.3 Settlement Analysis

A variable range of conditions including fill to depths of 5 to 10 feet with very soft to stiff consistencies underlain by very soft to medium stiff clays, silty clays, loams to depths of 15 to 20 feet. Present in some of the borings are a very soft clay with moisture contents from about 40 to 90%. Below depths of about 30 to 40 feet sands were encountered in all the borings to the termination depths of 60 to 100 feet. Due to the large range of variability in the soil profiles, a conservative soil profile was established for settlement analysis. The following analysis represents the potential maximum settlements under the highest loadings.

TSi performed settlement analysis using UniSettle 4.0 software developed by UniSoft Geotechnical Solutions for this site. The soil layers and properties utilized in our analyses were generalized based on the field and laboratory results of the borings drilled at this site. A discussion of the field and laboratory tested strength values are presented in the previous section, 5.2 Bearing Capacity. Other soil parameters used for the settlement analysis were derived from the consolidation tests, moisture contents, and Atterberg limit index properties. A composite soil profile of conservative soil conditions are presented below in Table 2.

TABLE 2.Settlement Analysis Layers

Material	General Depth Ranges Encountered in Borings (ft.)	Depth Ranges for Settlement Analysis (ft.)		
Fill	5 to 10	0 to 10		
Loam and Silty Clay	5 to 20	10 to 15		
Clay	15 to 40	15 to 40		
Sand	30 to 100	40 to 100		

The estimated immediate and consolidation settlements and total and differential settlements for a footing 10 feet wide, 50 feet long with a contact stress of 2,000 psf are provided in the below Table 3. Settlements of foundations with a lower contact stress of 1,000 psf are estimated to be over half of the settlements in Table 3. Immediate settlements of properly compacted crushed stone should be negligible in comparison to the settlement of the existing fills and underlying native soils.

TABLE 3.SETTLEMENT ANALYSIS RESULTS

Improvements	Potential Immediate Settlement (in.)	Potential Consolidation Settlement (in.)	Consolidation Settlement within 40 Days (20 to 40%) (in.)	Total Amount of Settlement within 40 Days (in.)	Differential Amount of Settlement within 40 Days (in.)
None (footing support over the subgrade)	3.5 to 6.5	12 to 15	2.5 to 6	6 to 13	7 to 9
5-ft thick crushed limestone pad	3 to 6	9 to 11	2 to 4.5	5 to 10.5	5.5 to 7
10-ft thick crushed limestone pad	2.5 to 5.5	7.5 to 9.5	1.5 to 4	4 to 9	5 to 5.5

If the local bearing capacities are not exceeded that produce a local shear failure and complete foundation failure the above ranges of total and differential settlement could result. The total settlement is measured at the center of the 10 ft. and 50 ft. pad and the differential compares this center with the ends of the pad. Some of these total and differential settlements could be actively managed with active jacking systems that could require constant adjustment over the construction period. However, the differential settlement could cause the pad to crack and potentially fail unless it is reinforced and designed to deflect. Potential continued settlement could also make it difficult to actively support the bridge decks with a jacking system within the tolerance of about 1/8 inch to 1/2 inch.

5.4 FOUNDATION RECOMMENDATIONS

Based on our engineering evaluations, the proposed foundations could undergo a catastrophic bearing capacity failure and the amount of differential settlement may not be able to be tolerated by a 2 foot thick concrete footing at the ground surface or underlain by 5 to 10 feet of newly compacted crushed limestone backfill. Therefore, we do not recommend the proposed structure at this site be supported over a shallow foundation system. TSi recommends a deep foundation system, such as micropiles or helical piles, be utilized for this project bearing in sands underlying the weak clays at depths below about 30 to 40 feet.

Since, very soft clay materials were encountered in most of our borings, we recommend a rigid foundation element be considered, since the very soft materials encountered in our borings do not provide a sufficient lateral resistance and may subject a slender deep foundation element to buckling or significant axial deflections.

Other deep foundation systems such as drilled shaft or driven piles could be used for foundation support; however, limited access under the bridges and very close proximity to the railroad tracks greatly limit or preclude the constructability of these foundation types. Other ground improvements such as rammed aggregate piers may be able to provide sufficient foundation support, but the vibrations required to install these elements could cause subsidence and potential damage to the existing pile support system.

5.5 MICROPILE / HELICAL PILE FOUNDATIONS

As previously discussed, micropiles and helical piles could be considered to support the temporary shoring for the bridge decks, considering the confined work space and close proximity to railroad tracks. The installation of micropiles and helical piles is proprietary, where a specialty contractor designs and installs the foundations and is the engineer-of-record for the foundation system. The specialty contractors should be contacted for the design details regarding micropiles and helical piles. We suggest the deep foundation systems be designed to a performance criteria applicable to the project requirements. We anticipate a grid of deep foundation elements would be installed into the existing ground and structural cast into the planned concrete foundation pad.

Assuming that the micropiles are pressure-grouted and based on the borings, we recommend a preliminary allowable axial side resistance (grout-to-ground bond resistance) average value of 50 to 100 psf for the upper cohesive soils and 600 to 800 psf for the underlying sands. Uplift resistance for individual piles may be taken as two thirds of the allowable axial side resistance. These values include a Factor of Safety of 2.5. The success of the micropile installation is dependent on the experience and skill of the contractor. As such, and because of the limited subsurface at the site, the specialty contractor should determine the appropriate skin friction value, spacing, diameter, configuration and length of pile to achieve the required capacity at each shoring location.

Helical piles are used for foundation support, they should be turned into the ground until they achieve the required design capacity for each element generally associated to the required installation torque. The high capacity elements required for this project will likely be pipe piles with multiple helices turned into the sands below depths of 30 to 40 feet and then possibly grouted for additional lateral load capacity.

The allowable group uplift capacity should be compared to the allowable uplift capacity of a single pile multiplied by the number of piles in the group and the design should be based on the lesser group capacity where applicable.

One potential issue with single-element micropiles or helical pile is that they can have limited lateral capacity, due to the threads in micropile or helical pile extension sections. If that is the case, then battered micropiles or helical piles can be utilized to accommodate the lateral capacity. A single section micropile or helical pile without threads between the sections could also provide lateral capacity. TSi recommends that at least two micropiles be performance-tested to verify the grout-to-ground bond strength. Only the design bond length of the bar should be grouted for testing of the micropile. At least two helical piles should also be tested to confirm the design capacities.

We recommend that the micropile testing and installation be performed in accordance with the Federal Highway Administration Micropile Design and Construction Manual, FHWA-SA-97-070. The piles should be installed to the required embedment depth using sufficient equipment to penetrate through the upper variable fill and cohesive soils. Spacing of the piles should be at least 3 diameters center to center to avoid stress overlap and to avoid impacting the adjacent pile. The 28-day compressive strength of the grout should be at least 4,000 psi. Actual grout volumes in excess of the predicted volumes should be anticipated due to the highly variable fill and very soft clays noted on the boring logs, as well as the potential for voids within the fill.

5.6 LATERAL LOAD

The lateral load capacity of the deep foundations will vary based on their width, depth, and variable material penetrated. For a lateral load analysis, we recommend using the LPILE program from

Ensoft, Inc. For the LPILE analyses, recommended geotechnical parameters for the soil are provided in the following table:

Depth (feet)	LPILE Material Type	Effective Unit Weight* γ', pcf	Undrained Cohesion psf	E50 Value	Static p-y Modulus, k (pci)
0 to 10	Soft Clay (Matlock)	120	250	0.020	30
10 to 15	Stiff Clay w/o free water	52.6	750	0.01	100
15 to 40	Soft Clay (Matlock)	57.6	250	0.020	30
60 to 100	Sand (Reese)	47.6	36 deg.**	NA	97

TABLE 4LPILE PARAMETERS

* Assumed groundwater at 10 ft., ** Internal friction angle.

pcf = pounds per cubic foot, psf = pounds per square foot, pci = pounds per cubic inch

5.7 REGIONAL SEISMICITY

Although several significant areas of seismic activity exist in the central United States, the St. Louis area is most directly affected by the New Madrid and the Wabash Valley Seismic Zones. The New Madrid zone has its northern limits located in the bootheel area of southeast Missouri and the southern tip of Illinois. The zone is essentially defined by the Mississippi Embayment, an area where deep sedimentary deposits have accumulated above basement rock. The zone continues to be active, with small tremors (micro-earthquakes) occurring regularly. The seismic history of the zone is dominated by a series of strong earthquakes that occurred from 1811 through 1812. Studies indicate the major shocks from these events resulted in an energy release equivalent to a body wave Magnitude 7.5 event. The Wabash Valley zone, located in the southern and central portions of eastern Illinois and western Indiana, is also considered to be capable of generating major seismic events.

Based on the general soil characteristics as determined by field and laboratory tests and the estimated depth to bedrock, the project area is designated as Site Class E, in accordance with the ASCE 7.0 if the soils are not subject to liquefaction. N-values suggest that some of the soils do not have adequate density and cohesion to resist liquefaction in consideration of the distance to known seismic sources. Thus, some of the site soils could be considered to be susceptible to liquefaction, or to substantial settlement or loss in strength when subject to the design earthquake loading. We understand that WJE is conducting a liquefaction analysis of the site soils in
accordance with IDOT design procedures. This analysis can be used to determine the potential liquefaction effects and design considerations.

6.0 SITE PREPARATION AND EXCAVATION CONSIDERATIONS

Earthwork tasks should be performed in accordance with the Illinois IDOT Specifications for Construction.

6.1 SUBGRADE PREPARATION

Construction areas should be stripped of existing pavement, organic soil, and any deleterious materials prior to site excavation and grading. Care should be taken during stripping to prevent excessive disturbance of the underlying soil. After the removal of these materials, and where further excavation is not required, the exposed subgrade should be proofrolled. Proofrolling is accomplished by passing over the subgrade with proper equipment such as a fully loaded tandem-axle dump truck or scraper and observing the subgrade for areas of excessively soft, wet, disturbed, or otherwise unsuitable soils. Any unacceptable materials encountered should be excavated and either recompacted or replaced with new structural fill. However, soft soils could be deeper than the planned excavations. A geotextile grid sized for the backfill and support requirements could be used to bridge soft soils to allow proper compaction of the backfill materials.

Some excavations to depths of 5 to 10 feet could encounter groundwater that would require dewatering prior to placement of materials. Depending on the local weather, precipitation and groundwater levels, removal of the water may be accomplished using sump and pump arrangements. The use of well points could be required to dewater the excavations if high groundwater flows are encountered during construction. Use of a thin mud mat consisting of 1 to 2 inches of concrete may be placed in the base of the excavations to provide a protective layer prior to placing fill and to reduce disturbance of the subgrades.

Prior to placing fill in any area not previously stabilized by a mud mat or geogrid, the subgrade should be scarified to a depth of about 6 inches, the moisture content adjusted to near its optimum moisture content, and the subgrade recompacted in accordance with recommendations made in subsequent sections of this report. The recommended proofrolling and/or scarification and recompaction may be waived if, in the opinion of TSi, this procedure would be detrimental or unnecessary. Following the satisfactory preparation of the subgrade, controlled fill material may be placed.

6.2 TEMPORARY EXCAVATION SUPPORT

Trenching and bracing for any temporary excavations should be performed in accordance with the Occupational Safety and Health Administration (OSHA) regulations, and other applicable regulatory agencies. In accordance with the OSHA excavation regulations, the soils that will be encountered in the excavations are classified as Type C, which requires a side slope for the

trench excavation no steeper than 1.5 horizontal to 1.0 vertical (1.5H:1V). However, worker safety and classification of the excavated soil is the responsibility of the contractor.

Excavation support such as timber sheeting and bracing, or sheet piling, may be utilized in lieu of sloping back the sides of the excavations. Also, according to OSHA requirements, any excavation extending to a depth of more than 20 feet must be designed by a registered professional engineer.

Where the excavations lie within the zone of influence of utilities, railroads, or other structures, the integrity of those elements should be maintained by a properly designed earth retention system, underpinning, or other suitable means. The existing structures located adjacent to the development area must not be undermined or otherwise compromised by the excavation activities.

6.3 SUBGRADE PROTECTION

Construction areas should be properly drained in order to reduce or prevent surface runoff from collecting on the exposed subgrade. Any ponded water on the exposed subgrade should be removed immediately.

To prevent unnecessary disturbance of the subgrade soils, heavy construction vehicles should be restricted from traveling through the finished subgrade. Temporary subgrade support such a surface layer of crushed stone up to 3 inches in maximum particle size could be required to provide access to heavy construction equipment during deep foundation installations. If areas of disturbed subgrade develop, they should be properly repaired in accordance with the recommendations in this report.

6.4 FILL AND BACKFILL MATERIALS

All fill materials and fill placement methods at the replacement bridge sites must be completed according to Illinois Department of Transportation standards and specifications. Some of the soils encountered at the borings would be acceptable fill materials according to these specifications. Soil with decayable material such as cinders, wood, trash, metal, or vegetation is not acceptable.

Some of the fill material may require the addition of moisture prior to compaction. This should be performed in a controlled manner using a tank truck with a spray bar, and the moistened soil should be thoroughly blended with a disk or pulverizer to produce a uniform moisture content. Repeated passages of the equipment may be required to achieve a uniform moisture content. If fill is placed during the winter season, fill materials should be carefully observed to see that no ice or frozen soils are placed as fill or remain in the base materials upon which fill is placed.

Some of the fill material may require moisture reduction prior to compaction. During warm weather, moisture reduction can generally be accomplished by disking, or otherwise aerating the soil. When air-drying is not possible, a moisture-reducing chemical additive, such as lime or Class C fly ash, may be used as a drying agent. These additions should be thoroughly mixed prior to compaction.

6.5 FILL AND BACKFILL PLACEMENT

Cohesive fill should be compacted to a dry density of at least 95% of the standard Proctor maximum dry density (ASTM D 698) of the soil. Cohesive fill placed in areas where fill depths are greater than 5 feet should be compacted to a dry density of at least 98% of the standard Proctor maximum dry density. Granular material, such as crushed limestone, placed for structure or pavement support, should be compacted to at least 100% of the standard Proctor maximum dry density. The moisture content of clay or granular fill at the time of compaction should be up to 3% above optimum moisture content as determined by the standard Proctor compaction test. Fill should be placed in loose lifts not in excess of 8 inches thick, and compacted to the aforementioned criterion. However, it may be necessary to place fill in thinner lifts to achieve the recommended compaction when using small hand-operated equipment. Heavy compaction equipment should be avoided and light equipment should be used for compacting the backfill materials close to the bridge structures.

7.0 CONSTRUCTION OBSERVATION AND TESTING

It is recommended that TSi be retained during construction to perform testing and observation services for the following items:

- proofrolling, recompaction, and preparation of the soil subgrade that will support new fill;
- evaluation of the suitability of fill and backfill materials;
- placement and compaction of fill and backfill;
- observation and documentation of the installation of ground improvement or deep foundations; and
- quality assurance testing for concrete materials.

These quality assurance services should help to verify the design assumptions and maintain construction procedures in accordance with the project plans, specifications, and good engineering practice.

8.0 REPORT LIMITATIONS

This report has been prepared for the exclusive use of **WISS, JANNEY, ELSTNER ASSOCIATES, INC.** for the specific application to the subject project. The recommendations contained in this report have been made in accordance with generally accepted soil and foundation engineering practices; no other warranties are implied or expressed.

The analyses and recommendations submitted in this report are based in part upon the data obtained from the test borings. The nature and extent of variations between the borings may not become evident until construction. If variations then appear evident, it may be necessary to re-evaluate the recommendations of this report.

We emphasize that this report was prepared for design purposes only and may not be sufficient to prepare an accurate construction bid. Contractors reviewing this report should acknowledge that the information and recommendations contained herein are for design purposes.

If conditions at the site have changed due to natural causes or construction operations, this report should be reviewed by TSi to determine the applicability of the analyses and recommendations considering the changed conditions. The report should also be reviewed by TSi if changes occur in the structure locations, sizes, and types, or in the planned loads, elevations, or project concepts.

TSi requests the opportunity to review the final plans and specifications for the project prior to construction to verify that the recommendations in this report are properly interpreted and incorporated in the design and construction documents. If TSi is not accorded the opportunity to make this recommended review, we can assume no responsibility for the misinterpretation of our recommendations.

APPENDIX A

APPENDIX B

Route: F.A.I 70(I-55/I-64/US40) Structu	ure N	o.:	082-00)17 (E	xist.)	Date: 8/18/2	<u>1</u> Pa	age:	1	of <u>1</u>	
Section: 82-5VB-R-2		De	scriptio	on: <u>I-</u> 5	55 I-70	over Railroad Yard in St. Clair Cour	nty				
County: St. Clair Drilling N	letho	d: <u>F</u>	ISA 3	1/4"		Hammer Type: Auto SI	PT				
Boring No.: <u>B-1N</u>	Log	ggeo	l by: <u>J</u>	. Urton							
Station: 74+50.95 Offset: -71.13 Latitude: <u>N38°38'11.64467"</u> Longitude: <u>W90°08'15.24356"</u> Grour St urface EL: <u>416.04</u> ft	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. ft First Encounter: NE ft Upon Completion: ft After 336 Hours 416.0	E L V.	D E P T H	B L O W S	U. C. S. Qu	M 0 1 S T.
Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)	Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)
SS-1: FILL: Brown, CLAY	-		3	1.75 P	33.9				-		
ST-2: FILL: Dark gray, CLAY, with gravel and cinders	-		-	3.0	16.7						
(410).54)	-5	-					-25	-		
SS-3: FILL: Brown and gray, LOAM, trace brick	-		WH WH	0.25 P	34.7				-		
(408	3.04)		VVH						-		
SS-4: FILL: Reddish brown and gray SANDY LOAM, with gravel	, _	-10	5 6 4	0.5 P	23.5			-30	-		
(404	- -								-		
(404	+.04) _								-		
SS-5: Brown, LOAM	-	-15	7 7 7	- -	14.1			-35	-		
(200	- -										
(399	7.04) -							. <u> </u>	-		
SS-6: Brown, very fine SAND	-		6	-	6.9						
Boring terminated at 20 ft. (396	5.04)	-20	10	-				-40	1		

Route: F.A.I 70(I-55/I-64/US40) Struct	ure No	b.: (082-00	017 (E	xist.)	Date: <u>8/17/21</u>	Page:	1	of <u>3</u>	
Section: 82-5VB-R-2		Des	scriptio	on: <u>I-</u> 5	55 I-70	over Railroad Yard in St. Clair County				
County: St. Clair Drilling M	/lethoo	1: <u>H</u>	ISA 3	1/4" and	l Mud l	Rotary Hammer Type: Auto SPT				
Boring No.: <u>B-1S</u>	Log	ged	l by: <u>J</u>	. Urton						
Station: 75+68.11 Offset: 66.91 Latitude: <u>N38°38'11.83629"</u> Longitude: <u>W90°08'12.97491"</u> Ground Surface El.: <u>413.59</u> ft	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. E First Encounter: 395.6 ft Upon Completion: ft After Hours ft	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
Soil Type, Description & Observations	(ft) ((ft)	/6 in.	(tsf)	(%)	Soil Type, Description & Observations (ft)	(ft)	/6 in.	(tsf)	(%)
SS-1: Fill: Dark gray, CLAY, trace grace cinders, brick fragments, and roots	avel, 		3 2 1	0.75 P	39.6	(391.59)) 			
SS-2: Dark gray, CLAY, trace gravel			WН 2	0.25 P	55.9	SS-7: Dark brown to brown, fine LOAM` SAND	Y	9 8	-	25.6
		-5	1				-25	6	-	
ST-3: Dark gray, CLAY			-	2.25 P	32.4	(386.59)			
SS-4: Gray, with brown and black. C			- - WH	1 25	31 /	SS-8: Brown fine to modium SAND		13	_	177
(8.5'-9.1') (404 Brown, fine SANDY CLAY (9.1'-10')	1.49) 	-10	2 4	P	51.4	trace coarse sand	-30	16 16	-	17.7
(401	1.59)									
SS-5: Brown, SANDY LOAM			9 6	0.25 P	27.5	SS-9: Brown and gray, fine to medium SAND, trace coarse sand		10 11	-	23.5
		-15	9				<u>-35</u>	14	-	
(396	6.59)					(376.59)) 			
SS-6: Brown, CLAY LOAM	_		4	0.25 P	31.9	SS-10: Gray, fine to medium SAND, trace gravel		14	-	22.4

 -20
 4
 -40
 12
 -40
 12

 The U.C.S. Qu column represents the Unconfined Compressive Strength using either the IDOT Rimac Test Procedure or AASHTO 208.

 The Qu failure mode is indicated by B for Bulge or S for Shear.
 P is shown when sample disturbance only allows Penetrometer testing.

 The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

Route: F.A.I 70 (I-55/I-64/US40 Structure	No.:	082-00	017 (E	xist.)	Date: <u>8/17/21</u>	Page:	2	of <u>3</u>	
Section: 82-5VB-R-2	De	scriptio	on: <u>I-5</u>	55 I-70	over Railroad Yard in St. Clair County				
County: St. Clair Drilling Meth	od: <u>I</u>	HSA 3	1/4" and	l Mud I	Rotary Hammer Type: Auto SPT				
Boring No.: <u>B-1S</u>	oggeo	d by: <u>J</u>	I. Urton						
Station: 75+68.11 E Offset: 66.91 Latitude: N38°38'11.83629" Longitude: W90°08'12.97491" Ground Surface EI.: 413.59 Soil Type Description & Observations	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. First Encounter: First Encounter: 395.6 Upon Completion: ft After Hours Soil Type Description & Observations	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
(ft)	(ft)	/6 in.	(tsf)	(%)	(ft) (ft)	/6 in.	(tsf)	(%)
(371.59 SS-11: Grav. fine SAND) 			25.0	(349 5	 			
		10	-	25.0	(040.0	3)			
	45 	15	-			65 			
SS-12: Gray, fine SAND, trace gravel	-50	10 11 10	- - -	22.0	SS-15: Gray, well-graded medium to coarse SAND	-70	12 17 15	- - -	19.8
SS-13: Gray, fine SAND (53.5'-54.3') Gray, fine to coarse SAND, trace gravel (54.3'-55') (359.29) (356.59)55)	12 10 16		15.7					
SS-14: Gray, fine SAND, trace gravel	-60	17 33 29		19.8	SS-16: Gray, LIMESTONE fragments, with sand	-80	31 18 13	- - -	15.1

Route: F.A.I 70(I-55/I-64/US40) Struct	ture I	No.:	<u>082-0</u> 0	017 <u>(</u> E	xist.)	Date: <u>8/</u> 17/2	<u>1</u> Pa	age:	3	of <u>3</u>	
Section: 82-5VB-R-2		De	scriptio	on: <u>I-5</u>	55 I-70	over Railroad Yard in St. Clair Cou	nty				
County: St. Clair Drilling	Meth	od: <u>I</u>	ISA 3	1/4" and	I Mud I	Rotary Hammer Type: Auto SI	PT				
Boring No.: <u>B-1S</u>	Lo	oggeo	d by: <u>J</u>	. Urton							
Station: 75+68.11 Offset: 66.91 Latitude: N38°38'11.83629" Longitude: W90°08'12.97491" Ground Surface El.: 413.59 ft	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev.	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)	Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)
(332	.59)		-						-		
SS-17: Brown, medium to coarse SA trace gravel SHALE fragments at 90.0 ft.	AND,		14 18 22		17.1						
SS-18: Brown, medium to coarse SA trace gravel Boring terminated at 100.0 ft (31)	AND, 3 59)		22 25 42	- -	18.1			-120	 		

Route: F.A.I 70 (I-55/I-64/US40) Structo	ure No	o.: (082-00)17 (E	xist.)	Date: <u>9/21/21</u> Pa	age:	1	of <u>2</u>	
Section: 82-5VB-R-2		De	scriptio	on: <u>I-</u> 5	55 I-70	Over Railyard in St. Clair County				
County: St. Clair Drilling M	1ethoo	d: <u>H</u>	ISA 3	1/4" and	Mud I	Rotary Hammer Type: Auto SPT				
Boring No.: <u>B-2N</u>	Log	ged	l by: <u>J</u>	. Urton						
Station: 76+73.61 Offset: -90.14 Latitude: <u>N38°38'13.57596''</u> Longitude: <u>W90°08'13.87480''</u> Ground Surface El.: <u>418.64</u> ft	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. E First Encounter: 398.6 ft Upon Completion: ft After Hours ft	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
Soil Type, Description & Observations	(ft) ((ft)	/6 in.	(tsf)	(%)	Soil Type, Description & Observations (ft)	(ft)	/6 in.	(tsf)	(%)
SS-1: FILL: Dark gray and brown, CL sand lenses and cinders from 1.75 ft. to 2.0 ft.	_AY,		3 2 2	1.75 P	27.2	. (396.64)	 			
SS-2: FILL: Dark gray, CLAY with cinders and sandy loam lenses		-5	1 2 2	- - -	27.9	SS-7: Dark gray, CLAY LOAM	-25	3 2 1	0.25 P	28.6
ST-3: FILL: Dark gray, CLAY	_			2.0 P	23.0	(391.64)				
(410).64)		-							
SS-4: Brown and gray, CLAY			2	2.0 P	34.7	SS-8: Brown, SANDY LOAM		8 8	-	24.2
		-10	5				-30	9	-	
ST 5: Brown CLAY	-				22.0					
ST-5. DIOWII, CLAT	-	-15	-		22.0	SS-9: Brown and gray, SANDY LOAM	-35	11 11 14	-	26.1
	_									
(401	.64)					(381.64)				
SS-6: Brown, SANDY CLAY LOAM	_		3	-	26.3	SS-10: Dark gray, SANDY LOAM, trace gravel		11 14	-	19.7

Route: F.A.I 70 (I-55/I-64/US40) Structu	ure I	No.:	082-00	017 (E	xist.)	Date: <u>9/21/2</u>	<u>21</u> Pa	age:	2	of <u>2</u>	
Section: 82-5VB-R-2		De	scriptio	on: I-5	55 1-70	Over Railyard in St. Clair County	·				
County: St. Clair Drilling M	/leth	od: <u>I</u>	ISA 3	1/4" and	I Mud I	Rotary Hammer Type: Auto S	РТ				
Boring No.: <u>B-2N</u>	Lo	oggeo	l by: <u>J</u>	. Urton							
Station: 76+73.61 Offset: -90.14 Latitude: N38°38'13.57596" Longitude: W90°08'13.87480" Ground Surface EI.: 418.64 ft Soil Type, Description & Observations	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.:ft Groundwater Elev. First Encounter: 398.6 ft Upon Completion:ft After Hoursft Soil Type, Description & Observations	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
	(ft)	(ft)	/6 in.	(tsf)	(%)		(ft)	(ft)	/6 in.	(tsf)	(%)
(376	<u>).64</u>)		10	_	21.8						
SS-11. Gray, fille grained SAND			12	-	21.0						
		45 	12	-				65 	-		
SS-12: Gray, fine grained SAND		-50	10 12 23	-	29.4			-70			
SS 13: Gray fine grained SAND			24		26.7						
55-15. Gray, line grained SAND		-55	24 27 29	-	20.7			-75	-		
1961	64									1	
SS-14: Brown, fine to medium graine	ed	 	29 27	-	30.4						
Boring Terminated at 60.0 ft (358	8 64)	-60	26	_				-80			

Route: F,A,I 70 (I-55/I-64/US40)	Structure	No.:	082-00	017 (E	xist.)	Date: 9/20/	21 P	age:	1	of 1	
Section: 82-5VB-R-2		De	scripti	on: <u>I-</u>	55 I-70	Over Railyard in St. Clair County					
County: St. Clair Dri	illing Meth	od: I	HSA 3	1/4"		Hammer Type: Auto S	PT				
Boring No.: <u>B-2S</u>	Lo	oggeo	d by: <u>J</u>	I. Urton							
Station: 77+56.51 Offset: 88.16 Latitude: <u>N38°38'13.25899</u> Longitude: <u>W90°08'11.4197(</u> Ground Surface El.: <u>422.55</u>	E 5" ft V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. ft First Encounter: 404.6 ft Upon Completion: ft After Hours ft	E L E V.	DEPTH	B L O W S	U. C. S. Qu	M 0 I S T.
Soil Type, Description & Observa	tions (ft)	(ft)	/6 in.	(tsf)	(%)	Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)
SS-1:FILL: Brown, CLAY			3 6 7	0.75 P -	32.5						
SS-2: Ell L: Grav. SAND	(419.55)	1	15	38.0			. <u> </u>	-		
00-2. TILL. GIAY, SAIND		F	1	P	30.0			25			
	(417.05)	0		-				-20	-		
SS-3: FILL: Brown and gray, S	ILTY CLA	Y	WH 1	1.75 P	23.5				-		
ST-4: FILL: Dark gray, CLAY	(414.55) 10	3	- 2.0 P - -	34.0			-30	-		
	(410.55)	-						-		
SS-5: Dark gray and brown, Cl sand lenses present at t of sampler	LAY, he bottom	-15	2 3 4	2.5 P -	40.5			-35	-		
	(405.55)	-						-		
SS-6: Brown, CLAY			1	0.25 P	36.7				-		
Boring terminated at 20.0 ft.	(402.55) -20	2	-	1			-40			

Route: F.A.I 70(I-55/I-64/US40) Struct	ture N	No.:	082-00	017 (E	xist.)	Date: 9/29/21	Page:	1	of 2	
Section: 82-5VB-R-2		De	scriptio	on: <u>I-</u> 8	55 I-70	Over Railroad Yard in St. Clair Count	y			
County: St. Clair Drilling	Metho	od: I	ISA 3	1/4" and	l Mud I	Rotary Hammer Type: Auto SPT				
Boring No.: <u>B-2.5</u>	Lo	gged	d by: <u>J</u>	. Urton						
Station: <u>78+71.77</u> Offset: <u>-0.87</u> Latitude: <u>N38°38'14.69592"</u> Longitude: <u>W90°08'11.53205"</u> Ground Surface El.: <u>415.65</u> ft	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. ft First Encounter: 402.7 ft Upon Completion: ft After Hours ft	E D L E P V. T H	B L O W S	U. C. S. Qu	M O I S T.
Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)	Soil Type, Description & Observations	ft) (ft)	/6 in.	(tsf)	(%)
SS-1: FILL: Black, CINDERS, trace	glass		5 5 4		15.6			- - -		
SS-2: FILL: Black, CINDERS, trace			1	-	28.1	(391. SS-7: Brown, fine SAND (23.5'-24.1') Brown, SANDY LOAM (24.1'-25	55)	10	-	30.6
glass, graver and sand		-5	1			BIOWII, OAND I LOAN (24.1-20	-25	8		
SS-3: FILL: Black, CINDERS, trace gravel and sand (6.0'-6.3') (40	glass 9.35)	3,	<u>₩Н</u> 2	1.25 P	27.8	(388.)	65)	-		
FILL: Brown, SILTY CLAY, tra gravel (6.3'-7.5') (407 ST-4: FILL: Brown, CLAY	ace 7.65)	-10	2	2.0 P	36.0	SS-8: Dark gray, fine SAND		5 6 8	-	26.4
(403	3.65)		•			(383.)	 65)			
(40 SS-5: Dark gray, CLAY (13.5'-13.8') Brown SILTX CLAX (13.8'-15	1.85)		WH	0.25 P	43.1	SS-9: Brown, LOAMY SAND		4	_	32.3
	, ,	-15	1	Г 		Dark-gray, fine SAND (33.8'-40	') <u>-35</u>	13		
(39	7.65)		-					-		
ST-6: Brown, fine SAND Note: Appeared cohesive material ir upper sample	1	-20		-	5.6	SS-10: Dark gray, fine SAND	-40	12 17 22	-	22.1

Route: F.A.I 70 (I-55/I-64/US40) Struct	ture	No.:	<u>082-0</u> 0	017 <u>(</u> E	xist.)	Date: 9/29/2	<u>1</u> Pa	age:	2	of 2	
Section: 82-5VB-R-2		De	scripti	on: <u>I-</u> {	55 I-70	Over Railroad Yard in St. Clair Cou	nty				
County: St. Clair Drilling I	Meth	od: I	HSA 3	1/4" and	d Mud	Rotary Hammer Type: Auto SI	PT				
Boring No.: <u>B-2.5</u>	Lo	oggeo	d by: <u>J</u>	J. Urton							
Station: 78+71.77 Offset: -0.87 Latitude: <u>N38°38'14.69592"</u> Longitude: <u>W90°08'11.53205"</u> Ground Surface El.: <u>415.65</u> ft	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. ft First Encounter: 402.7 ft Upon Completion: ft After Hours ft	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)	Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)
SS-11: Dark gray, fine SAND			15 17 17 15	-	25.9						
(36	<u>8.65</u>)	-								
SS-12: Dark gray, LOAMY SAND		-50	12 16 18		25.5	•					
(36 SS-13: Dark gray, fine SAND	<u>3.65</u>	 	14 10	-	27.7						
(35	8.65	55 	6	-							
SS-14: Dark gray, fine SAND, trace medium and coarse sand Boring terminated at 60.0 ft (35)	5 65) -60	22 32 29		18.8						

Route: F.A.I 70 (I-55/I-64/US40) Structure N	lo.:	082-00)17 (E	xist.)	Date: 9/29/2	1 Pa	age:	1	of 1	
Section: 82-5VB-R-2	De	scriptio	on: <u>I-</u> 5	55 I-70	Over Railroad Yard in St. Clair Cou	nty				
County: St. Clair Drilling Metho	od: <u>H</u>	ISA 3	l/4"		Hammer Type: Auto SI	PT				
Boring No.: <u>B-3N</u> Lo	ggeo	l by: <u>J</u>	. Urton							
Station: 79+59.16 E Offset: -75.38 Latitude: N38°38'15.82428" Latitude: N38°38'15.82428" L Longitude: W90°08'11.69032" E Ground Surface El.: 414.19 ft	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. ft First Encounter: 396.2 ft Upon Completion: ft After Hours ft	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
Soil Type, Description & Observations (ft)	(ft)	/6 in.	(tsf)	(%)	Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)
SS-1: FILL: Dark gray, CLAY, trace sand gravel and cinders	,	4 5 5	2.0 P	22.3						
(411.19)										
SS-2: FILL: Brown, SANDY CLAY, trace		1	1.75	20.5						
cinders and gravei	-5	2 4	Р				-25			
(408.69)						-				
SS-3: FILL: Dark gray, CLAY, trace sand and cinders		WH 5	1.75 P	36.2		-				
(406.19) ST-4: Brown, SILTY CLAY			2.0 P	23.1		-				
	-10	-					-30			
(402.19)										
SS-5: Dark gray with brown, CLAY		WH WH	1.0 P	35.8						
	-15	WH				,	-35			
SS-6: Dark gray, CLAY, silty sand lenses at bottom sampler		WH	1.0	46.5						
Boring terminated at 20.0 ft. (394-19)	-20	WH WH	Р				-40			

Route: F.A.I 70 (I-55/I-64/US40) Structure N	o.:	082-00)17 (E	xist.)	Date: <u>9/28/21</u>	Page:	1	of <u>3</u>	
Section: 82-5VB-R-2	De	scriptio	on: <u>I-5</u>	55 I-70	Over Railroad Yard in St. Clair Cour	nty			
County: St. Clair Drilling Metho	d: <u>H</u>	ISA 3	1/4" and	l Mud I	Rotary Hammer Type: Auto SP	Т			
Boring No.: B-3S Log	gged	l by: <u>J</u>	. Urton						
Station: 79+72.88 E Offset: 77.62 L Latitude: N38°38'15.08697" L Longitude: W90°08'09.99794" E Ground Surface El.: 414.52 ft	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. ft First Encounter: 406.5 ft Upon Completion: ft After Hours ft	E D L E E P V. T H	B L O W S	U. C. S. Qu	M O I S T.
Soil Type, Description & Observations (ft)	(ft)	/6 in.	(tsf)	(%)	Soil Type, Description & Observations	(ft) (ft)	/6 in.	(tsf)	(%)
			(101)						
SS-1: FILL: Black, CINDERS, trace grave and clay	l	4 2 1	0.75 P	12.3	(392	 2.50)	-		
- SS-2: FILL: Black, CINDERS, trace to with gravel, trace clay and brick	-5	2 2 4		17.3	SS-7: Dark gray, SILTY CLAY	-2	WH WH 5 WH	0.5 P	42.9
ST-3: FILL: Black, CINDERS, trace to with gravel, trace clay and brick	h	-	-	13.9			_		
		-	-	45.2				0.25	22.0
gravel and clay (8.5'-9.3') (405.20) Brown, SILT (9.3'-10')	-10	WH WH	-	45.2	(28.5'-29.4') (385 Dark-gray, fine SAND (29.4'-3	5.10) 0') -30	1) 9	P	33.0
(402.50)							-		
ST-5: Gray, CLAY, trace sand and gravel -			1.5 P	34.5	SS-9: Dark gray, fine SAND		9	-	25.9
-	-15 	-				3	5 <u>12</u>	-	
(397.50)					(377	7.50) 	-		
SS-6: Dark gray, CLAY, sand lenses throughout	-20	WH WH WH	1.25 P	42.8	SS-10: Dark gray, SANDY LOAM	-40	7 9) 8		27.1

Route: F.A.I 70(I-55/I-64/US4 Struct	ure N	No.:	082-00)17 (E	xist.)	Date: <u>9/28/21</u>	Page:	2	of <u>3</u>	
Section: 82-5VB-R-2		De	scriptio	on: <u>I-</u> 8	55 I-70	Over Railroad Yard in St. Clair County	1			
County: St. Clair Drilling N	Neth	od: H	ISA 3	1/4" and	l Mud	Rotary Hammer Type: Auto SPT				
Boring No.: <u>B-3S</u>	Lo	gged	l by: <u>J</u>	. Urton						
Station: 79+72.88 Offset: 77.62 Latitude: N38°38'15.08697" Longitude: W90°08'09.99794" Ground Surface El.: 414.52 Soil Type, Description & Observations	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. ft First Encounter: 406.5 ft Upon Completion: ft After Hours Soil Type, Description & Observations	E D E P 7. T H	B L O W S	U. C. S. Qu	M O I S T.
	(ft)	(ft)	/6 in.	(tsf)	(%)	(f	t) (ft)	/6 in.	(tsf)	(%)
SS-11: Gray, fine SANDY LOAM			9	_	29.3	(352.5 SS-15: Gray, fine SAND, trace mediun		21	_	20.6
		45	9	-		sand and gravel	~	17	-	
		-40	9			-	-00	5 13	-	
(367	7.50)					(347.5	50) 	-		
SS-12 Grav fine SAND			9	_	21.8	SS-16: Grav well-graded SAND trace	. –	12	_	18.2
		-50	22 20	-	21.0	gravel	-70	17 20	-	10.2
SS-13: Gray, fine SAND			15	-	22.1			-		
		-55	17 18	-			-75	5		
(357 SS-14: Gray, fine SANDY LOAM	7.50)		6	_	26.3	SS-17: Gray, well-graded SAND, trace		9	_	16.2
		-60	5 5	-		organics at bottom of sampler	-80	9) 12	-	

Route: F.A.I 70 (I-55/I-64/US40) Structu	re No.:	082-0	017 <u>(</u> E	ixist.)	Date: <u>9/28/2</u>	1 Pa	ge:	3	of <u>3</u>	
Section: 85-5VB-R-2	D	escripti	on: <u>I-</u> {	55 I-70	Over Railroad Yard in St. Clair Cou	nty				
County: St. Clair Drilling Me	ethod:	HSA 3	1/4" and	d Mud	Rotary Hammer Type: Auto SI	PT				
Boring No.: <u>B-3S</u>	Logge	d by: <u>.</u>	J. Urton	1						
Station: 79+72.88 Offset: 77.62 Latitude: N38°38'15.08697" Longitude: W90°08'09.99794" Ground Surface EI.: 414.52 Soil Type Description & Observations	E D L E P V. T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. First Encounter: First Encounter: 406.5 Upon Completion: ft After Hours Soil Type Description & Observations	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
Soli Type, Description & Observations	ft) (ft)	/6 in.	(tsf)	(%)	Son Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)
SS-18: Gray, well-graded SAND, trace gravel		13 17 17 17	-	17.2	Boring terminated at 100 ft. (31	4.50) - - - - - - - - - - - - - - - - - - -				
SS-19: Gray, well-graded SAND, trac gravel (98.5'-98.8') Brown, fine SAND (98.8'-100')	e	22 27 35		15.7		-				

Route: F.A.I 70(I-55/I-64/US40) Structure No.:	082-00	017 (E	xist.)	Date: 8/25/21 Pag	ge:	1	of <u>2</u>	
Section: 82-5VB-R-2 De	escription	on: <u>I-</u> 5	55 I-70	over Railroad Yard in St. Clair County				
County: <u>St. Clair</u> Drilling Method:	HSA 3	1/4" and	l Mud I	Rotary Hammer Type: Auto SPT				
Boring No.: <u>B-3.5</u> Logge	d by: <u>J</u>	I. Urton						
Station: 81+04.54 Offset: -6.07 Latitude: N38°38'16.62834" Longitude: W90°08'09.93853" Ground Surface El.: 410.34 H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. E First Encounter: 392.3 ft Upon Completion: ft After Hours	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
Soil Type, Description & Observations	/6 in	(tef)	(0/_)	Soil Type, Description & Observations	(ft)	/6 in	(tef)	(0/_)
SS-1: FILL: Dark gray and brown, CLAY, trace gravel(407.34)		2.75 P	23.0	(19.0'-19.2') Dark gray, LOAM (19.2'-20.0') (388.34)		<u>/o m. r</u>	((5))	(70)
SS-2: FILL: Gray, crushed LIMESTONE fragments, trace clay, silt, sand, and cinders (3.5'-4.6') (405.74) Brown, SAND (4.6'-5.0') (404.84)	45 20 5 12	- - -	6.3	- SS-7: Dark gray, CLAY _		WH 2 2	0.75 P	36.2
SS-3: FILL: Dark gray, SANDY LOAM	10 10 14	0.75 P	17.2	-				
ST-4: FILL: Dark gray, SANDY LOAM,		0.75 P	31.7	- SS-8: Dark gray, CLAY	-30	WH WH WH	0.75 P	68.1
	- - - -			-				
SS-5: FILL: Dark gray, SANDY LOAM, trace brick, gravel, and cinders	- 1 3 5 4		13.3	SS-9: Dark gray, CLAY	-35	WH WH WH	0.25 P	71.8
(393.34)	-			(373.34)				
SS-6: FILL: Dark gray, SILT LOAM, with cinders (18.5'-19.0') (391.34)	- - - - - WH - 2 - -	-	29.1	- SS-10: Dark gray, SANDY CLAY LOAM (38.5'-38.9') (371.44) Dark gray, CLAY (28.0' 40.0')		WH WH	0.5 P	60.2

 Dark gray, CLAY, trace gravel
 -20
 1
 Dark gray, CLAY (38.9'-40.0')
 -40
 WH
 WH

 The U.C.S. Qu column represents the Unconfined Compressive Strength using either the IDOT Rimac Test Procedure or AASHTO 208.

 The Qu failure mode is indicated by B for Bulge or S for Shear.
 P is shown when sample disturbance only allows Penetrometer testing.

 The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

Route: F.A.I 70 (I-55/I-64/US40) Struct	ture I	No.:	082-00	017 (E	xist.)	Date: <u>8/25/2</u>	<u>1</u> Pa	age:	2	of <u>2</u>	
Section: <u>82-5VB-R-2</u>		De	scripti	on: I-5	55 I-70	over Railroad Yard in St. Clair Cou	nty				
County: St. Clair Drilling	Meth	od: <u>I</u>	ISA 3	1/4" and	Mud I	Rotary Hammer Type: Auto SI	PT				
Boring No.: <u>B-3.5</u>	Lo	oggeo	l by: <u>J</u>	J. Urton							
Station: 81+04.54 Offset: -6.07 Latitude: N38°38'16.62834" Longitude: W90°08'09.93853" Ground Surface El.: 410.34 Soil Type Description & Observations	E L V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. First Encounter: 392.3 First Encounter: 392.3 ft Upon Completion: ft ft After Hours ft Soil Type Description & Observations	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
	(ft)	(ft)	/6 in.	(tsf)	(%)		(ft)	(ft)	/6 in.	(tsf)	(%)
									-		
SS-11: Dark gray, CLAY (43.5'-44.7	') - CA		WH	0.25	74.6						
Dark gray, fine SAND (44.7'-45.0')	5.04)	-45	3						-		
(36)	3.34))							-		
SS-12: Dark gray, fine to medium S/	AND	-50	6 11 16		19.5				-		
(35	<u>8.34</u>))									
SS-13: Dark gray, well-graded SANI trace gravel	D,	-55	11 16 18		12.2				-		
									-		
SS-14: Dark gray, well-graded SANI trace gravel Boring terminated at 60.0 ft. (350	D, 0.34)		9 6 6		17.5						

Route: F.A.I 70 (I-55/I-64/US40) Structu	ure No.:	082-0	017 (E	xist.)	Date: <u>8/16/2</u>	<u>1</u> Pa	age:	1	of <u>2</u>	
Section: 82-5VB-R-2	C	escripti	on: <u>I-</u> {	55 I-70	Over Railroad Yard in St. Clair Cou	nty				
County: St. Clair Drilling M	lethod:	HSA 3	1/4" and	Mud I	Rotary Hammer Type: Auto SI	PT				
Boring No.: <u>B-4N</u>	Logg	ed by: <u></u>	Shawn	Abraha	amsen					
Station: 81+40.08 Offset: -71.27 Latitude: N38°38'17.28093" Longitude: W90°08'10.36679" Ground Surface EI.: 407.90 ft	E D L E E P V. T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.:ft Groundwater Elev. First Encounter: NE ft Upon Completion:ft After Hoursft	E L E V.	D E P T H	BLO¥S	U. C. S. Qu	M O I S T.
Soli Type, Description & Observations	(ft) (ft) /6 in.	(tsf)	(%)	Soli Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)
SS-1: Brown and gray, CLAY, with gr	ravel	2 3 3	1.25 P	6.0						
SS-2: Brown and gray, CLAY LOAM, with gravel and crushed limest	one	1	1.0 P	23.4	SS-7: Gray, CLAY			WH WH	0.25 P	45.1
(402.	.40)	-5 2					-25	WH		
SS-3: Brown and gray, SAND, trace gravel		1 1 2		17.9						
SS-4: Brown, SAND	-1	WH WH		13.7	SS-8: Gray, CLAY		-30	WH WH WH	0.25 P	57.7
(395	5.90)									
SS-5: Brown and gray, SILTY CLAY	-1	4 4 54	2.0 P	24.6	SS-9: Gray, CLAY		-35	WH WH WH	0.25 P	87.9
(390).90)									
SS-6: Gray, CLAY		WH 2 20 2	1.0 P	59.1	SS-10: Gray, CLAY		-40	WH WH WH	0.25 P	59.8

Route: F.A.I 70 (I-55/I-64/US40) Structure	No.:		(E	xist.)	Date: <u>8/16/2</u>	<u>1</u> Pa	age:	2	of <u>2</u>	
Section: 82-5VB-R-2	De	scriptio	on: <u>I-5</u>	55 I-70	Over Railroad Yard in St. Clair Cou	inty				
County: St. Clair Drilling Meth	od: I	ISA 3	1/4" and	Mud	Rotary Hammer Type: Auto SI	РТ				
Boring No.: <u>B-4N</u> Lo	oggeo	l by: <u>S</u>	Shawn A	Abraha	amsen					
Station: 81+40.08 Offset: -71.27 Latitude: N38°38'17.28093" Longitude: W90°08'10.36679" Ground Surface El.: 407.90 ft Soil Type, Description & Observations	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.:ft Groundwater Elev. First Encounter: NE ft Upon Completion:ft After Hoursft Soil Type, Description & Observations	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
(ft)	(ft)	/6 in.	(tsf)	(%)		(ft)	(ft)	/6 in.	(tsf)	(%)
SS-11: Grav. CLAY (43.5-44.2)		8	0.25	65.1		-				
Gray, SAND, trace		12	P			-				
gravel (44.2-45.0) (363.70 (360.90) <u>-45</u>)	5				-	65 			
SS-12: Gray, medium to coarse SAND	-50	10 14 12		17.1		-	-70			
						-				
SS-13: Brown, SAND	-55	10 7 4	- - -	26.7		-	-75			
						-				
SS-14: Gray, medium to coarse SAND, trace gravel Boring terminated at 60.0 ft. (347.90)) -60	8 8 9	- - -	19.2		-	-80			

Route: F.A.I 70 (I-55/I-64/US40) Struct	ture N	o.: (082-00	<u>)17 (</u> Е	xist.)	Date: 8/12/2	1 Pa	ige:	1	of <u>1</u>	
Section: 82-5VB-R-2		De	scriptio	on: <u>I-</u> 8	55 I-70	over Railroad Yard in St. Clair Cou	nty				
County: St. Clair Drilling	Vetho	d : <u>H</u>	ISA 3	1/4"		Hammer Type: Auto SI	PT				
Boring No.: <u>B-4S</u>	Log	gged	l by: <u>J</u>	. Urton							
Station: 81+74.75 Offset: 72.84 Latitude: <u>N38°38'16.76434"</u> Longitude: <u>W90°08'08.61872"</u> Ground Surface El.: 406.82 ft	E L E V.	DEPTH	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.:ftGroundwater Elev	E L E V.	DEPTH	B L O W S	U. C. S. Qu	M 0 S T.
Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)	Soil Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)
SS-1: FILL: Dark brown, CLAY, with gravel			16 44 42	-	9.7		-				
	_		42	-			-				
SS-2: FILL: Brown, CLAY, with grav (3.5'-4.3') (402	el, 2.50)		33 50	1.25 P	10.4		-				
Gray, LIMESTONE fragments (4.3'-5') (40'	s, 1.30)	-5	7				-	-25			
SS-3: Dark gray, CLAY, trace organ and gravel	ics -		1 1 2	1.25 P	41.2		-				
ST-4: Dark gray and brown, CLAY, trace organics	-	-10	- - -	- - -	43.9		-	-30			
(20	-						-				
(394	<u>4.00)</u>										
SS-5: Dark gray and brown, CLAY, (13.5'-14.4') Dark gray, CLAY LOAM,	-	-15	WH 1 2	1.0 P	28.8		-	-35			
(14.4'-14.6') Dark gray and brown, CLAY, (14.6'-15')	-						-				
SS-6: Brown, CLAY, (18.5'-18.7')(38 Gray, SANDY LOAM, (18.7'-1 Dark gray, CLAY, (19.7'-20')(3 Boring terminated at 20.0 ft (286	38.10) 9.7') 387.10))	1 2	-	31.4						

Route: F.A.I 70 (I-55/I-64/US40) S	structure	No.:	<u>082</u> -00	017 (E	xist.)	Date: 8/11/2	1 Pa	age:	1	of 1	
Section: 82-5VB-R-2		_ De	scripti	on: I-8	55 1-70	over Railroad Yard in St. Clair Cour	nty				
County: St. Clair Drill	ling Meth	od: I	HSA 3	1/4"		Hammer Type: Auto SI	PT				
Boring No.: <u>B-5N</u>	Lo	oggeo	d by: <u>J</u>	I. Urton							
Station: 84+31.68 Offset: -77.51 Latitude: N38°38'19.70022" Longitude: W90°08'08.36751 Ground Surface El.: 407.61 Soil Type, Description & Observati	E L E ft V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.:ft Groundwater Elev. First Encounter: 402.1 ft Upon Completion:ft After336 Hours 400.9 ft Soil Type, Description & Observations	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
	(ft)	(ft)	/6 in.	(tsf)	(%)		(ft)	(ft)	/6 in.	(tsf)	(%)
SS-1: FILL: Dark brown, SILTY trace cinders, gravel, and	LOAM, organics		6 8 9	3.0 P	7.3		-				
	(404.60)	-						-		
SS-2: FILL: Dark brown, CLAY	LOAM,		2	2.25	9.9						
trace gravel		-5	4	Р				-25			
	(402.10)					-				
SS-3 ⁻ Brown CLAY			1	_	27.0				-		
			1	-	20						
			2	-							
SS-4: Dark gray, CLAY			1	1.25	30.8						
		-10	2	Р				-30			
						•	-				
			-				-				
	(395.60)									
			-						-		
				0.05	00.0		-				
SS-5: Dark gray, SIL I			1	0.25 P	33.8		-		-		
		-15	1					-35			
			-								
	(000.00	、 <u> </u>					-	. <u> </u>	-		
	(390.60)	-				-				
ST- 6: Gray, CLAY				0.5 P	46.0		-				
Boring terminated at 20.0 ft.	(387.60)) -20	-					-40			

Route: F.A.I 70 (I-55/I-64/US40) Struct	ure No.	: <u>082-0</u>	017 (E	xist.)	Date: <u>8/18/21</u>	Page:	1	of <u>3</u>	
Section: 82-5VB-R-2	[Descript	ion: <u>I-</u>	55 I-70	over Railroad Yard in St. Clair County				
County: St. Clair Drilling N	/lethod:	HSA 3	1/4" and	d Mud	Rotary Hammer Type: Auto SPT				
Boring No.: <u>B-5S</u>	Logg	ed by:	J. Urton	<u> </u>	Surface Water Elevent ft				
Station: 84+45.67 Offset: 73.93 Latitude: N38°38'18.97370" Longitude: W90°08'06.68945" Ground Surface El.: 404.45	E C L E E F V. T	D B E L D O T W H S	U. C. S. Qu	M O I S T.	Groundwater Elev. It Groundwater Elev. E First Encounter: 391.5 Upon Completion: ft After Hours	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
Soil Type, Description & Observations	(ft) (f	t) /6 in.	(tsf)	(%)	Soil Type, Description & Observations (ft)	(ft)	/6 in.	(tsf)	(%)
SS-1: FILL: Brown and gray, CLAY, trace brick, gravel, and organic	 cs	4 4 6	1.5 P	26.4	. (382.50))			
SS-2: FILL: Dark gray and brown, CI trace gravel and bricks		3 2 -5 3	1.5 P	29.3	SS-7: Dark gray, SILTY CLAY SANDY CLAY LOAM seam at 24	.0' 25	WH WH WH	0.25 P	23.8
ST-3: FILL: Dark gray, CLAY, with g	ravel		1.25 P	32.4	(377.50))			
SS-4: FILL: Dark gray and brown, CI trace brick	 LAY,	- WH WH 10 1	2.0 P	33.1	SS-8: Dark gray, CLAY	-30	WH WH WH	0.5 P	75.2
(392									
SS-5: Dark gray, SILTY CLAY LOAN	Л	WH WH 15 WH	0.5 P	32.0	SS-9: Dark gray, CLAY	-35	WH WH WH	0.5 P	66.2
(387	7.50)				(367.50))			
SS-6: Dark gray, CLAY		 WH WH	0.25 P	67.2	SS-10: Gray, well-graded SAND, trace gravel		WH 1 4		14.7

Route: F.A.I 70 (I-55/I-64/US40) Struc	ture I	No.:	082-00	D17 (E	ixist.)	Date: <u>8/19/21</u> Pa	age:	2	of <u>3</u>	
Section: 82-5VB-R-2		De	scriptio	on: <u>I-</u> 5	55 I-70	over Railroad Yard in St. Clair County				
County: St. Clair Drilling	Meth	od: <u>I</u>	ISA 3	1/4" and	d Mud	Rotary Hammer Type: Auto SPT				
Boring No.: <u>B-5S</u>	Lo	oggeo	d by: <u>J</u>	. Urton						
Station: 84+45.67 Offset: 73.93 Latitude: N38°38'18.97370" Longitude: W90°08'06.68945" Ground Surface El.: 404.45 ft Soil Type, Description & Observations	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. E First Encounter: 391.5 ft Upon Completion: ft E After Hours ft Soil Type, Description & Observations Ft	D E P T H	B L O Y S	U. C. S. Qu	M O I S T.
	(ft)	(ft)	/6 in.	(tsf)	(%)	(ft)	(ft)	/6 in.	(tsf)	(%)
(36 SS-11: Dark gray, fine to medium SAND, trace gravel Coal fragments parting at 44	<u>2.50)</u>	 	9 18 16		20.8	(342.50) SS-15: Dark gray, fine SAND		13 12 11	-	24.8
			-							
(35	7.50) —	-			(337.50)	_			
SS-12: Dark gray, well graded SAN trace gravel	D,		7 6 5	- - -	12.1	SS-16: Gray, fine to medium SAND, trace gravel		14 14 15	- - -	15.9
			-							
(35 SS-13: Dark gray, fine SAND	2.50))	15 19	-	23.2	(332.50) SS-17: Gray, well-graded SAND, trace gravel		15 17	-	16.4
		-55	17	-			-75	7	-	
(34	7.50))	- - -							
SS-14: Dark gray, fine to medium SAND, trace gravel		-60	9 10 12	-	17.1	SS-18: Gray, well-graded SAND, trace gravel		25 24 21	-	17.5

Route: F.A.I 70 (I-55/I-64/US40) Structure	No.:	082-0	017 <u>(</u> E	xist.)	Date: <u>8/</u> 20/2	<u>1</u> Pa	ige:	3	of <u>3</u>	
Section: 82-5VB-R-2	_ De	scriptio	on: I-5	55 1-70	over Railroad Yard in St. Clair Cour	nty				
County: St. Clair Drilling Meth	nod: <u>I</u>	HSA 3	1/4" and	l Mud I	Rotary Hammer Type: Auto SI	PT				
Boring No.: <u>B-5S</u> L	ogge	d by: <u>J</u>	I. Urton							
Station: 84+45.67 Offset: 73.93 Latitude: N38°38'18.97370" Longitude: W90°08'06.68945" Ground Surface El.: 404.45 ft Sail Type, Description & Observations	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. ft First Encounter: 391.5 ft Upon Completion: ft After Hours ft Soil Type Description & Observations	E L E V.	D E P T H	B L O V S	U. C. S. Qu	M O I S T.
(ft)	(ft)	/6 in.	(tsf)	(%)	Soli Type, Description & Observations	(ft)	(ft)	/6 in.	(tsf)	(%)
SS-19: Gray, well-graded SAND	 	16 18 18	-	17.4		-				
						-				
(317.50))	_				-				
SS-20: Gray, fine SAND, trace gravel	-90	18 23 25		20.4		-				
						-				
(312.50))	-				-				
SS-21: Gray, fine to medium SAND,		15	-	19.3		-				
trace coarse sand and grave	-95	23 5 17	-			-				
(307.50))					-				
SS-22: Gray, well-graded SAND, with gravel Boring terminated at 100.0 ft (304.50		23 16 12		11.3						

Route: F.A.I 70 (I-55/I-64/US40) Struc	ture N	lo.:	082-00)17 (E	xist.)	Date: 8/12/2	1 Pag	ge:	1	of 2	
Section: 82-5VB-R-2		De	scriptio	on: I-8	55 I-70	Over Railroad Yard in St. Clair Cou	inty				
County: St. Clair Drilling	Meth	- od: F	ISA 3	1/4" and	l Mud I	Rotary Hammer Type: Auto S	РТ				
Boring No.: B-6N	Lo	ggec	by: S	. Abral	hamse	en					
Station: 86+96.41 Offset: -70.21 Latitude: <u>N38°38'21.82453''</u> Longitude: <u>W90°08'06.41735''</u> Ground Surface EI.: 409.01 ft	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. First Encounter: First Encounter: NE ft Upon Completion: ft After Hours ft	E L E V.	D E P T H	B L O W S	U. C. S. Qu	M O I S T.
Soil Type, Description & Observations	(ft)	(ft)	/6 in	(tsf)	(%)	Soil Type, Description & Observations	(ft)	(ft)	/6 in	(tsf)	(%)
SS-1: FILL: Brown, CLAY, trace gra and glass	avel		2 3 3	2.5 P	24.4	. (38	<u>- (10 -</u> - 37.00)		<u>70 m.</u>		
(40 SS-2: FILL: Brown and gray, CLAY, trace glass and plastic (3.5'-4)5.00) , !')		3	4.5 P	17.3	SS-8: Gray, CLAY LOAM	-		WH WH	-	38.5
Gray, crushed LIMESTONE (4'-4.42') (40 Brown, SILTY LOAM (4.42'-5 (40	4.60) 5.8') (3.00)	5	<u>19</u> 9	4.5	18.7		-	-25	WH	-	
SS-3: FILL: Brown and gray, SILTY	· · ·		10	Р		(38	2.00)				
LOAM (6'-6.9') (40 FILL: Gray, crushed LIMEST (6.92'-7.50') (40	2.10) ONE <u>5.00)</u>		16 5 5	2.75 P	15.4	SS-9: Gray, CLAY	-		1 WH	-	65.8
SS-4: Gray, CLAY, trace gravel		-10	4				-	-30	1	-	
ST-5: Brown, CLAY LOAM	90.50)			1.25 P	21.2		-				
(39	<u>(6.00)</u>						_				
(39) SS-6: Gray, CLAY, trace gravel (13.5'-13.67') Gray, SILTY LOAM (13.67'-1)	<u>(5.30)</u> 5.0')	-15	1	0.25 P	29.2	SS-10: Gray, CLAY	-	-35	WH WH WH	0.25 P	66.4
(39	,)2.00)						-				
SS-7: Gray, CLAY LOAM (18.5'-19. Gray, SANDY LOAM (19.5'-2 (38	5) 0') 39,50)		WH WH WH	1.0 P	60.6	SS-11: Gray, CLAY	-	-40	WH WH WH	1.0 P	66.7

Route: F.A.I 70 (I-55/I-64/US40) Structur	e No.:	082-0	017 (E	xist.)	Date: <u>8/12/2</u>	<u>1</u> Pa	ge:	2	of <u>2</u>	
Section: 82-5VB-R-2	De	escriptio	on: <u>I-</u> 8	55 I-70	Over Railroad Yard in St. Clair Cou	nty				
County: St. Clair Drilling Me	thod:	HSA 3	1/4" and	l Mud I	Rotary Hammer Type: Auto SI	PT				
Boring No.: <u>B-6N</u>	Logge	d by: <u>S</u>	Shawn /	Abraha	amsen					
Station: 86+91.75 Offset: 74.80 Latitude: N38°38'21.82453" Longitude: W90°08'06.41735" Ground Surface El.: 409.01 Soil Type, Description & Observations	E D E P /. T H	B L O W S	U. C. S. Qu	M O I S T.	Surface Water Elev.: ft Groundwater Elev. ft First Encounter: NE ft Upon Completion: ft After Hours ft Soil Type, Description & Observations	E L E V.	D E P T H	BLOWS	U. C. S. Qu	MOIST.
	<u>t) (ft)</u>	<u>/6 in.</u>	(tst)	(%)		(11)	(π)	<u>/6 in.</u>	(tst)	(%)
(367.0 SS-12: Gray, SAND, trace gravel)0) 	WH WH	-	15.8		-	-65			
SS-13: Gray, SAND		9 10 16		20.9		-	-70			
SS-14: Gray, SAND, trace gravel		8 9 12	-	12.4		- - -				
(352.0 SS-15: Gray, SANDY LOAM, trace)0) 	14	-	18.0		-				
gravel Boring terminated at 60.0 ft. (349.0	0) -60	6) 5					-80			

Soil Boring Log

Route: F.A.I 70 (I-55/I-64/US40) Structure No.	: 082-0	017 (E	Exist.)	Date:	Page:	1	of 1	
Section: 82-5VB-R-2	Descript	ion: I-	55 I-70	Over Railroad Yard in St. Clair Cou	inty			
County: St. Clair Drilling Method:	HSA 3	1/4"		Hammer Type: Auto SI	PT			
Boring No.: <u>B-6S</u> Logg	ed by:	J. Urton	1					
Station: 86+96.41 E E Offset: -70.21 L E Latitude: N38°38'20.98122" L E Longitude: W90°08'04.93834" F V. Ground Surface El.: 407.26 ft F Soil Type, Description & Observations F F	D B E L O O W H S	U. C. S. Qu	M O I S T.	Surface Water Elev.:ft Groundwater Elev. First Encounter:402.3 ft Upon Completion:ft After336 Hours 403.0 ft Soil Type Description & Observations	E D L E E P V. T H	B L O W S	U. C. S. Qu	M O I S T.
(ft) (ft)	t) /6 in.	(tsf)	(%)		(ft) (ft)	/6 in.	(tsf)	(%)
SS-1: FILL: Brown, SILTY LOAM, with gravel	7 7 4	2.5 P	4.4			-		
SS-2: FILL: Dark gray, SILTY LOAM,	22	2.75	8.2					
with gravel	42	Р			2	5		
(401.80)	-5 17			-		, 		
SS-3: FILL: Dark brown, SANDY CLAY	<u>11</u> 12	2.75 P	15.4			-		
(399.30)	2			-	-	_		
SS-4: Gray, CLAY	WH	1.25	30.8			-		
	10 WH	Г			-30	5		
	_				_	-		
(395.30)						_		
ST-5: Gray, CLAY LOAM		0.75 P	30.8			-		
- -	-				-3	5		
				-				
						_		
(390.30)								
	_				-	-		
_								
SS-6: Gray, SILTY CLAY, trace gravel	WH	0.75	38.3			<u> </u>		
Boring terminated at 20.0 ft. (387.30) -2	20 WH				-4	0		

The U.C.S. Qu column represents the Unconfined Compressive Strength using either the IDOT Rimac Test Procedure or AASHTO 208. The Qu failure mode is indicated by B for Bulge or S for Shear. P is shown when sample disturbance only allows Penetrometer testing. The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

GENERAL NOTES

The number of borings is based on: topographic and geologic factors; the magnitude of structure loading; the size, shape, and value of the structure; consequences of failure; and other factors. The type and sequence of sampling are selected to reduce the possibility of undiscovered anomalies and maintain drilling efficiency. Attempts are made to detect and/or identify occurrences during drilling and sampling such as the presence of water, boulders, gas, zones of lost circulation, relative ease or resistance to drilling progress, unusual sample recovery, variation in resistance to driving split-spoon samplers, unusual odors, etc. However, lack of notation regarding these occurrences does not preclude their presence.

Although attempts are made to obtain stabilized groundwater levels, the levels shown on the Logs of Boring may not have stabilized, particularly in more impermeable cohesive soils. Consequently, the indicated groundwater levels may not represent present or future levels. Groundwater levels may vary significantly over time due to the effects of precipitation, infiltration, or other factors not evident at the time indicated.

Unless otherwise noted, soil classifications indicated on the Logs of Boring are based on visual observations and are not the result of classification tests. Although visual classifications are performed by experienced technicians or engineers, classifications so made may not be conclusive.

Generally, variations in texture less than one foot in thickness are described as layers within a stratum, while thicker zones are logged as individual strata. However, minor anomalies and changes of questionable lateral extent may appear only in the verbal description. The lines indicating changes in strata on the Logs of Boring are approximate boundaries only, as the actual material change may be between samples or may be a gradual transition.

Samples chosen for laboratory testing are selected in such a manner as to measure selected physical characteristics of each material encountered. However, as samples are recovered only intermittently and not all samples undergo a complete series of tests, the results of such tests may not conclusively represent the characteristics of all subsurface materials present.

NOTATION USED ON BORING LOGS

APPROXIM	ATE PROPORTIONS	PARTICLE SIZE				
TRACE	<15%	BOUL	DERS	>12 Inches		
WITH	15-30%	COBBI	LES	12 Inches – 3 Inches		
MODIFIER	>30%	GRAV	EL			
			Coarse	3 Inches $-\frac{3}{4}$ Inch		
			Fine	³ / ₄ Inch – No. 4 Sieve (4.750 mm)		
		SAND				
Clay or clayey n	nay be used as major		Coarse	No. 4 – No. 10 Sieve (2.000 mm)		
material or mod	ifier, regardless of		Medium	No. 10 – No. 40 Sieve (0.420 mm)		
relative proporti	ons, if the clay content is		Fine	No. 40 – No. 200 Sieve (0.074 mm)		
sufficient to don	ninate the soil properties.	SILT		No. 200 Sieve - 0.002 mm		
		CLAY		< 0.002 mm		

PENETRATION – BLOWS

n

Number of impacts of a 140-pound hammer falling a distance of 30 inches to cause a standard split-barrel sampler, 1 3/8 inches I.D., to penetrate a distance of 6 inches. The number of impacts for the first 6 inches of penetration is known as the seating drive. The sum of the impacts for the last 12 inches of penetration is the Standard Penetration Test Resistance or "N" value, blows per foot. For example, if blows = 6-8-9, "N" = 8+9 or 17.

OTHER NOTATIONS

Recovery % – length of recovered soil divided by length of sample attempted.

- 50/2" Impacts of hammer to cause sampler to penetrate the indicated number of inches
- Sampler penetrated under the static loading of the weight of the drill rods WR
- Sampler penetrated under the static loading the weight of the hammer and drill rods WH
- HSA Hollow stem auger drilling method
- Flight auger drilling method FA
- Rotary wash drilling methods with drilling mud RW
- Automatic hammer used for Standard Penetration Test sample AH
- SH Safety hammer with rope and cathead used for Standard Penetration Test sample

GRAPHIC SYMBOLS

- ∇ Depth at which groundwater was encountered during drilling
- T Depth at which groundwater was measured after drilling
- X Standard Penetration Test Sample, ASTM D1586
 - 3-inch diameter Shelby Tube Sample, ASTM D1587
- G Sample grabbed from auger
- NX Size rock core sample

APPENDIX C

		PROJECT NA	ME: I-55/I-70 over Railroad Yard	Prepared By: SLY						
		CLIENT: Wiss	s. Janney. Elstner Associates				Checked By: AD			
	5	PROJECT NU	MBER: 20211176.00				j,			
geot	echnical, inc.									
Boring Number	Sample Type and Number	Depth (feet)	Description and IDH Classification	Water Content (%)	Dry Density (pcf)	Undrained Shear Strength (tsf)	Atterberg Limits (LL/PI)	Passing #200 (%)	Additional Tests Performed / Comments	
1N	SS-1	1.0 - 2.5	Brown, clay [Fill]	33.9						
-	ST-2	3.0 - 5.0	Dark gray, clay [Fill]	16.7		Disturbed	55/36			
-	SS-3	6.0 - 7.5	Brown and gray, loam [Fill]	34.7						
-	SS-4	8.5 - 10.0	Reddish-brown and gray, sandy loam [Fill]	23.5						
-	SS-5	13.5 - 15.0	Brown, loam	14.1				45.4		
-	SS-6	18.5 - 20.0	Brown, sand	6.9						
1S	SS-1	1.0 - 2.5	Dark gray, clay [Fill]	39.6						
-	SS-2	3.5 - 5.0	Dark gray, clay	55.9			104/77			
-	ST-3	6.0 - 8.0	Dark gray, clay	32.4	88.87	0.66			UU-triaxial	
-	SS-4	8.5 - 10.0	Gray, clay	31.4			87/62			
-	SS-5	13.5 - 15.0	Brown, sandy loam	27.5			,	40.2		
-	SS-6	18.5 - 20.0	Brown, clay loam	31.9				59.8		
-	SS-7	23.5 - 25.0	Brown, loamy sand	25.6						
-	SS-8	28.5 - 30.0	Brown, sand	17.7						
-	SS-9	33.5 - 35.0	Brown and gray, sand	23.5				6.1		
-	SS-10	38.5 - 40.0	Grav. sand	22.4						
-	SS-11	43.5 - 45.0	Gray, sand	25.0						
-	SS-12	48.5 - 50.0	Gray, sand	22.0						
-	SS-12 SS-13	53 5-55 0	Gray, sand	15.7				59		
-	SS-14	58 5-60 0	Gray, sand	19.8				5.5		
-	SS-15	68 5-70 0	Gray, sand	19.8						
-	SS-16	78 5-80 0	Gray, limestone fragments	15.0						
_	SS-17	88 5-90 0	Brown sand	17.1						
_	SS-17	98.5-100.0	Brown, sand	18.1						
	55 10	50.5 100.0	brown, sund	10.1						
2N	SS-1	1 0-2 5	Brown clay (Fill)	27.2						
211	SS-1 SS-1	25-50	Dark gray clay (Fill)	27.2				62.8		
	55-2 ST_2	60-80	Dark gray, clay (Fill)	27.5	01.6	0.44	04/71	02.0	III I-triavial	
	SC-1	8.5-10.0	Brown and gray, clay	23.0	91.0	0.44	34/71	00.7	00-triaxiai	
-	55-4 CT E	12 0 15 0	Brown clay	22.0	00 /	0 52	95/62	00.2	LILI_triavial	
-	31-3	19 5 20 0	Brown, clay	22.0	00.4	0.55	83/03	99.5 20.1		
-	55-0	18.3-20.0	Dark gray, clay loam	20.5			27/7	50.1		
-	55-7 SS-8	23.3-23.0	Brown sandy loam	20.0			27/7	09.4		
-	55-0 SS-0	28.5-30.0	Brown and gray, sandy loam	24.2				6.2		
-	SS-10	38.5-35.0	Dark gray, sandy loam	10.7				0.2		
-	55-10 CC 11	38.3-40.0 43 5-45 0	Gray sand	21.0						
-	55-11 55-12	43.3-43.0	Gray, sand	21.0				E 0		
-	55-12 55-12	48.5-50.0	Gray, sand	29.4				5.9		
-	55-13	53.5-55.0	Brown cand	20.7						
-	33-14	58.5-00.0	Blown, salid	50.4						
າເ	CC 1	10.25	Brown clay (F:II)	22 5						
25	55-1	1.0 - 2.5	Grov cond (Fill)	32.5				17.2		
-	55-2 55-2	3.5 - 5.0	Brown and gray, silty slay (Fill)	38.0				1/.2		
-	55-3 CT 4	0.0 - 7.5		23.5		0.20	00/57	94./		
-	51-4	8.0-10.0	Dark gray, Clay (FIII)	43.0	/5./	0.38	83/5/	00.0	00-triaxiai	
-	<u> </u>	13.5 - 15.0		40.5			99///	98.8		
-	55-6	18.5 - 20.0	Brown ,Clay	36.7				76.9		

SUMMARY OF LABORATORY TESTING

		SUMMARY OF LABORATORY TESTING										
		PROJECT NA	ME: I-55/I-70 over Railroad Yard				Prepared By:	SLY				
1-		CLIENT: Wis	ss, Janney, Elstner Associates				Checked By:	AD				
7	-	PROJECT NU	JMBER: 20211176.00									
geot	echnical, inc.			U								
Boring Number	Sample Type and Number	Depth (feet)	Description and IDH Classification	Water Content (%)	Dry Density (pcf)	Undrained Shear Strength (tsf)	Atterberg Limits (LL/PI)	Passing #200 (%)	Additional Tests Performed / Comments			
2.5	SS-1	1.0-2.5	Black, cinders (Fill)	15.6								
	SS-2	3.5-5.0	Black, cinders (Fill)	28.1				98.2				
-	SS-3	6.0-7.5	Brown, silty clay (Fill)	27.8				75.3				
-	ST-4	8.0-10.0	Brown, clay (Fill)	36.0	87.39	0.65	114/86		UU- triaxial			
-	SS-5	13.5-15.0	Dark gray, clay	43.1		1	30/5	81.2				
-	ST-6	18.0-20.0	Brown, sand	5.6								
-	SS-7	23.5-25.0	Brown, sandy loam	30.6								
-	SS-8	28.5-30.0	Dark gray, sand	26.4	1							
-	SS-9	33.5-35.0	Brown, loamy sand	32.3	i	· · · · · · · · · · · · · · · · · · ·						
-	SS-10	38.5-40.0	Dark gray, sand	22.1	1	1	1					
-	SS-11	43.5-45.0	Dark gray, sand	25.9								
-	SS-12	48.5-50.0	Dark gray, loamy sand	25.5								
-	SS-13	53.5-55.0	Dark gray, sand	27.7								
-	SS-14	58.0-60.0	Dark gray, sand	18.8								
3N	SS-1	1.0 - 2.5	Dark gray, clay (Fill)	22.3								
-	SS-2	3.5 - 5.0	Brown, sandy clay (Fill)	20.5			11					
-	SS-3	6.0 - 7.5	Dark gray, clay (Fill)	36.2			1					
-	ST-4	8.0-10.0	Brown, silty clay	23.1	102.99	0.32	30/9	85.8	UU-triaxial			
	SS-5	13.5 - 15.0	Dark gray, clay	35.8				97.7				
-	SS-6	18.5 - 20.0	Dark gray, clay	46.5		1		96.3				
35	SS-1	1.0-2.5	Black, cinders	12.3			-					
-	SS-2	3.5-5.0	Black, cinders	17.3								
	ST-3	6.0-8.0	Black, cinders	13.9		Disturbed						
-	SS-4	8.5-10.0	Brown, silt	45.2				50.2				
1	ST-5	13.0-15.0	Gray, clay	34.5	88.3	0.71	91/70	95.8	UU-triaxial			
-	SS-6	18.5-20.0	Dark gray, clay	42.8				98.9				
-	SS-7	23.5-25.0	Dark gray, silty clay	42.9			45/25	91.8				
-	SS-8	28.5-30.0	Dark gray, silty clay	33.8								
-	SS-9	33.5-35.0	Dark gray, sand	25.9								
-	SS-10	38.5-40.0	Dark gray, sandy loam	27.1								
-	SS-11	43.5-45.0	Gray, sandy loam	29.3								
-	SS-12	48.5-50.0	Gray, sand	21.8			-					
	SS-13	53.5-55.0	Gray, sand	22.1								
	SS-14	58.5-60.0	Gray, sandy loam	26.3								
-	SS-15	63.5-65.0	Gray, sand	20.6								
-	SS-16	68.5-70.0	Gray, sand	18.2		1						
-	SS-17	78.5-80.0	Gray, sand	16.2			-					
-	SS-18	88.5-90.0	Gray, sand	17.2		-			5			
-	SS-19	98.5-100.0	Gray, sand	15.7				-				
				-			-					
				-		1		1				

TSI	i

Boring

Number

3.5

-

_

-

_

-

-

-

SUMMARY OF LABORATORY TESTING PROJECT NAME: I-55/I-70 over Railroad Yard Prepared By: SLY CLIENT: Wiss, Janney, Elstner Associates Checked By: AD PROJECT NUMBER: 20211176.00 Water Sample Dry Undrained Passing Atterberg **Additional Tests** Depth Type and **Description and IDH Classification** Content Density Shear Limits #200 Performed / (feet) Number (%) (pcf) Strength (tsf) (LL/PI) (%) Comments SS-1 1.0 - 2.5 Dark gray and brown, clay [Fill] 23.0 SS-2 3.5 - 5.0 Gray, crushed limestone [Fill] 6.3 14.7 SS-3 6.0 - 7.5 Dark gray, sandy loam [Fill] 17.2 ST-4 31.7 8.0-10.0 Dark gray, sandy loam [Fill] Disturbed 20.4 SS-5 13.5 - 15.0 Dark gray, sandy loam [Fill] 13.3 SS-6 18.5 - 20.0 Dark gray, loam [Fill] 29.1 50.5 SS-7 23.5-25.0 Dark gray, clay 36.2 SS-8 28.5-30.0 Dark gray, clay 68.1 64/46 Hydrometer

SS-10 SS-11 SS-12 SS-13 SS-14 SS-14 SS-1 SS-2	38.5-40.0 43.5-45.0 48.5-50.0 53.5-55.0 58.5-60.0	Dark gray, clay Dark gray, clay Dark gray, sand Dark gray, sand	60.2 74.6 19.5			87.5	
SS-11 SS-12 SS-13 SS-14 SS-1 SS-1 SS-2	43.5-45.0 48.5-50.0 53.5-55.0 58.5-60.0	Dark gray, clay Dark gray, sand Dark gray, sand	74.6 19.5				
SS-12 SS-13 SS-14 SS-1 SS-1 SS-2	48.5-50.0 53.5-55.0 58.5-60.0	Dark gray, sand Dark gray, sand	19.5				
SS-13 SS-14 SS-1 SS-2	53.5-55.0 58.5-60.0	Dark gray, sand					-
SS-14 SS-1 SS-2	58.5-60.0		12.2				
SS-1 SS-2		Dark gray, sand	17.5				
SS-2	1.0 - 2.5	Brown and gray, clay	6.0				
	3.5 - 5.0	Brown and gray, clay loam	23.4		29/13		
SS-3	6.0-7.5	Brown and gray, sand	17.9			19.1	
SS-4	8.5-10.0	Brown, sand	13.7			13.3	
SS-5	13.5-15.0	Brown and gray, silty clay	24.6	(
SS-6	18.5-20.0	Gray, clay	59.1				
SS-7	23.5-25.0	Gray, clay	45.1		49/30		
SS-8	28.5-30.0	Gray, clay	57.7				
SS-9	33.5-35.0	Gray, clay	87.9				
SS-10	38.5-40.0	Gray, clay	59.8		63/42		-
SS-11	43.5-45.0	Gray, clay	65.1				
SS-12	48.5-50.0	Gray, sand	17.1				
SS-13	53.5-55.0	Brown, sand	26.7			6.4	
SS-14	58.5-60.0	Gray, sand	19.2				
SS-1	1.0 - 2.5	Dark brown, clay (Fill)	9.7				
SS-2	3.5 - 5.0	Brown, clay [Fill]	10.4			1	
SS-3	6.0 - 7.5	Dark gray, clay	41.2			94.4	
ST-4	8.0-10.0	Dark gray and brown, clay	43.9	78.4	22/0		Consol
SS-5	13.5 - 15.0	Dark gray and brown, clay	28.8	1		98.1	
SS-6	18.5 - 20.0	Gray, sandy loam	31.4		-	32.8	
			-				
-							
-	-						
					-		
	SS-5 SS-6 SS-7 SS-8 SS-9 SS-10 SS-11 SS-12 SS-13 SS-14 SS-2 SS-3 ST-4 SS-5 SS-6	SS-5 13.5-15.0 SS-6 18.5-20.0 SS-7 23.5-25.0 SS-8 28.5-30.0 SS-9 33.5-35.0 SS-10 38.5-40.0 SS-11 43.5-45.0 SS-12 48.5-50.0 SS-13 53.5-55.0 SS-14 58.5-60.0 SS-2 3.5 - 5.0 SS-3 6.0 - 7.5 ST-4 8.0-10.0 SS-5 13.5 - 15.0 SS-6 18.5 - 20.0	SS-5 13.5-15.0 Brown and gray, silty clay SS-6 18.5-20.0 Gray, clay SS-7 23.5-25.0 Gray, clay SS-8 28.5-30.0 Gray, clay SS-9 33.5-35.0 Gray, clay SS-10 38.5-40.0 Gray, clay SS-11 43.5-45.0 Gray, clay SS-12 48.5-50.0 Gray, sand SS-13 53.5-55.0 Brown, sand SS-14 58.5-60.0 Gray, sand SS-14 58.5-60.0 Gray, sand SS-11 1.0 - 2.5 Dark brown, clay (Fill) SS-2 3.5 - 5.0 Brown, clay [Fill] SS-3 6.0 - 7.5 Dark gray, and brown, clay ST-4 8.0-10.0 Dark gray and brown, clay SS-5 13.5 - 15.0 Dark gray and brown, clay SS-6 18.5 - 20.0 Gray, sandy loam	SS-5 13.5-15.0 Brown and gray, silty clay 24.6 SS-6 18.5-20.0 Gray, clay 59.1 SS-7 23.5-25.0 Gray, clay 45.1 SS-8 28.5-30.0 Gray, clay 57.7 SS-9 33.5-35.0 Gray, clay 87.9 SS-10 38.5-40.0 Gray, clay 59.8 SS-11 43.5-45.0 Gray, clay 65.1 SS-12 48.5-50.0 Gray, sand 17.1 SS-13 53.5-55.0 Brown, sand 26.7 SS-14 58.5-60.0 Gray, sand 19.2 SS-1 1.0 - 2.5 Dark brown, clay (Fill) 9.7 SS-2 3.5 - 5.0 Brown, clay (Fill) 9.7 SS-3 6.0 - 7.5 Dark gray, clay 41.2 ST-4 8.0-10.0 Dark gray and brown, clay 43.9 SS-5 13.5 - 15.0 Dark gray and brown, clay 28.8 SS-6 18.5 - 20.0 Gray, sandy loam 31.4	SS-5 13.5-15.0 Brown and gray, silty clay 24.6 SS-6 18.5-20.0 Gray, clay 59.1 SS-7 23.5-25.0 Gray, clay 45.1 SS-8 28.5-30.0 Gray, clay 57.7 SS-9 33.5-35.0 Gray, clay 87.9 SS-10 38.5-40.0 Gray, clay 59.8 SS-11 43.5-45.0 Gray, clay 59.8 SS-12 48.5-50.0 Gray, sand 17.1 SS-13 53.5-55.0 Brown, sand 26.7 SS-14 58.5-60.0 Gray, sand 19.2	SS-5 13.5-15.0 Brown and gray, silty clay 24.6	SS-5 13.5-15.0 Brown and gray, silty clay 24.6 Image: Single Sing

R	111
	1
/	TSI
~	

SUMMARY OF LABORATORY TESTING PROJECT NAME: I-55/I-70 over Railroad Yard Prepared By: SLY CLIENT: Wiss, Janney, Elstner Associates Checked By: AD PROJECT NUMBER: 20211176.00 geotechnical, inc. Undrained Passing **Additional Tests** Sample Water Dry Atterberg Boring Shear **Description and IDH Classification** Content Density Performed / Type and Depth (feet) Limits #200 Number Strength Number (LL/PI) Comments (%) (pcf) (%) (tsf) 5N SS-1 1.0 - 2.5 Dark brown, silty loam (Fill) 7.3 Dark brown, clay loam (Fill) -SS-2 3.5 - 5.0 9.9 57.5 SS-3 6.0-7.5 Brown, clay 27.0 73.3 SS-4 8.5-10.0 Dark gray, clay 30.8 77.5 -SS-5 Dark gray, silt 88.4 • 13.5-15.0 33.8 25/2 -ST-6 18.0-20.0 Gray, clay 46.0 75.1 54/38 Consol **5**S SS-1 Brown and gray, clay (Fill) 1.0 - 2.5 26.4 Brown and dark gray, clay (Fill) 57/41 SS-2 3.5 - 5.0 29.3 -UU-triaxial ST-3 6.0-8.0 Dark gray, clay(Fill) 88.87 0.66 32.4 -8.5 - 10.0 Brown and dark gray, clay (Fill) SS-4 33.1 89.1 -Dark gray, silty clay loam SS-5 13.5 - 15.0 79.4 -32.0 SS-6 18.5 - 20.0 Dark gray, clay 67.2 -23.5 - 25.0 Dark gray, silty clay SS-7 23.8 ... 28.5 - 30.0 Dark gray, clay SS-8 75.2 -SS-9 33.5 - 35.0 Dark gray, clay 99.1 -66.2 SS-10 38.5-40.0 Gray, sand 14.7 SS-11 43.5 - 45.0 Dark gray, sand 20.8 -Dark gray, sand 48.5 - 50.0 -SS-12 12.1 _ SS-13 53.5 - 55.0 Dark gray, sand 23.2 5.5 58.5 - 60.0 Dark gray, sand SS-14 17.1 Dark gray, sand -SS-15 63.5 - 65.0 24.8 SS-16 68.5 - 70.0 Gray, sand 15.9 -SS-17 73.5 - 75.0 Gray, sand 16.4 ---SS-18 78.5 - 80.0 Gray, sand 3.9 17.5 -83.5 - 85.0 Gray, sand SS-19 17.4 -_ SS-20 88.5 - 90.0 Gray, sand 20.4 93.5 - 95.0 Gray, sand _ SS-21 19.3 SS-22 98.5 - 100.0 Gray, sand 11.3 -

6N

-

-

-

_

-

-

_

_

-

6S

-

-

-

_

_

SUMMARY OF LABORATORY TESTING PROJECT NAME: I-55/I-70 over Railroad Yard Prepared By: SLY CLIENT: Wiss, Janney, Elstner Associates Checked By: AD PROJECT NUMBER: 20211176.00 geotechnical, inc. Atterberg Passing **Additional Tests** Sample Water Dry Undrained Boring Depth **Description and IDH Classification** Limits #200 Performed / Type and Content Density Shear Number (feet) (LL/PI) Comments Number (pcf) Strength (tsf) (%) (%) Brown, clay (Fill) SS-1 1.0 - 2.5 24.4 Brown, silty loam (Fill) SS-2 3.5 - 5.0 17.3 Brown and gray, silty loam SS-3 6.0 - 7.5 18.7 24/3 62.4 Gray, clay SS-4 8.5-10.0 15.4 Brown, clay loam 100.97 UU-triaxial ST-5 8.0-10.1 21.2 0.45 13.5 - 15.0 Gray, silty loam 29.2 24/3 95.4 SS-6 SS-7 18.5 - 20.0 Gray, clay loam 60.6 66.1 23.5-25.0 Gray, clay loam SS-8 38.5 70.6 SS-9 28.5-30.0 Gray, clay 65.8 Gray, clay 62/42 SS-10 33.5-35.0 66.4 38.5-40.0 Gray, clay SS-11 66.7 Gray, sand SS-12 43.5-45.0 15.8 SS-13 48.5-50.0 Gray, sand 20.9 Gray, sand SS-14 53.5-55.0 12.4 6.1 58.5-60.0 Gray, sandy loam 18.0 SS-15 1.0 - 2.5 Brown, silty loam (Fill) 4.4 SS-1 Dark gray, silty loam (Fill) 3.5 - 5.0 8.2 SS-2 Dark brown, sandy clay (Fill) SS-3 6.0-7.5 15.4 SS-4 8.5-10.0 Gray, clay 30.8 40/24 13.0 - 15.0 Gray, clay loam UU-triaxial ST-5 30.8 87.31 0.45 SS-6 18.5-20.0 Gray, silty clay 38.3 88.4

GRAIN SIZE ANALYSIS

Project:	oject: I-55/70 Over Railroad Yard						20211176.00		
Boring:	B-	1N	_ Sample:SS		S-5	Depth:	13.5 -	15.0	
Visual:	Brown, LOA	M				Tested by: PCS- 9/21/2021			
_						Checked by:	AD 9/27/2021		
	Sieve and			Cumul-	%				
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	isture Conte	nt	
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.			
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	204.56		
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	192.89		
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	74.56		
3/4"	0.00	0.00	0.00	0.00	100.0	%	9.9		
3/8"	0.00	0.00	0.00	0.00	100.0				
4	0.00	0.00	0.00	0.00	100.0				
8	0.00	0.00	0.12	0.12	99.9	No. 200 \$	Sieve Washi	ng Data	
16	0.00	0.00	0.14	0.26	99.8		before-wet	after-dry	
30	0.00		0.15	0.41	99.7	Sample & Tare	204.56	150.43	
50	0.00	0.00	0.07	0.48	99.6	Tare	74.56	74.56	
100	0.00	0.00	0.90	1.38	98.8	Sample Wt.	130.00	75.87	
200	0.00	0.00	63.17	64.55	45.4	Minus 200 Wt		42.46	
PAN	0.00	0.00	11.06	75.61		Dry Weight	118.33		

BORING NO. SAMPLE NO. % Strain at q_u VISUAL CLASS. (USCS) SPECIFICATIONS VISUAL CLASS. (USCS) SAMPLE DEPTH (ft) STRENGTH **DENSITY & MOISTURE** CLASSIFICATION. (USCS) **Plastic Limit** ATTERBERG LIMITS **Unconfined Compression RECOVERY (%)** Checked by: AD Calculated by: SY Tested by: SY Undrained Shear Strength S_u (tsf) Dry unit weight (pcf) Moisture content (%) Wet unit weight (pcf) Plasticity Index Liquid Limit Atterberg Limits **ASTM D4318 ASTM D2488** ASTM D2166 9/10/2021 1/0/1900 7.0 - 7.5 CLAY ST-3-3 B-1S 5.9% 0.35 117.9 88.8 32.8 0 Stress, psf 1400 1600 1200 1000 400 800 200 600 0 **Unconfined Compression Test -**0.000 0.020 Strain 0.040 0.060 B-1S / ST-3-3 engineering, inc. U 0.080

PROJECT NAME: I-55/I-70 over railroad yard

PROJECT No.: 20211176.00

B-1S.d Unconfined

GRAIN SIZE ANALYSIS

Project:	Project: I-55/70 Over Railroad Yard						20211176.00		
Boring:	B-	1S	Sample:	S	S-5	Depth:	13.5-	-15	
Visual:	Visual: Brown, SANDY LOAM					Tested by:	PCS- 9/13/20	21	
						Checked by:			
Sieve	Sieve and Sample Weight, g	Sieve Weight, g	Sample Weight, g	Cumul- ative Weight, g	% Passing by Wt.	Mc Tare No.	isture Conte	nt	
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	282.74		
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	252.30		
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	87.15		
3/4"	0.00	0.00	0.00	0.00	100.0	%	18.4		
3/8"	0.00	0.00	0.00	0.00	100.0				
4	0.00	0.00	0.00	0.00	100.0				
8	0.00	0.00	0.00	0.00	100.0	No. 200 \$	Sieve Washi	ng Data	
16	0.00	0.00	0.00	0.00	100.0		before-wet	after-dry	
30	0.00	0.00	0.01	0.01	100.0	Sample & Tare	282.74	191.28	
50	0.00	0.00	0.11	0.12	99.9	Tare	87.15	87.15	
100	0.00	0.00	16.32	16.44	90.0	Sample Wt.	195.59	104.13	
200	0.00	0.00	82.24	98.68	40.2	Minus 200 Wt		61.02	
PAN	0.00	0.00	5.45	104.13		Dry Weight	165.15		

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring:	B-1S	Sample No.: SS-	-6

Depth: 18.5 - 20.0 Visual: Brown, clay loam

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
84.31	271.41	227.48	141.83	85.65	143.17	59.8%

GRAIN SIZE ANALYSIS

Project:	I-55/70 Ove	r Railroad Ya	Job No.:	20211176.00				
Boring:	B-	1S	Sample:	S	S-9	Depth:	33.5-	35
Visual [.]	Brown and	arav. SAND				Tested by:	PCS - 9/13/20	21
, iodaan		<u></u>				Checked by:		
	Sieve and			Cumul-	%			
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	isture Conte	nt
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.		
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	405.69	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	347.71	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	85.34	
3/4"	0.00	0.00	0.00	0.00	100.0	%	22.1	
3/8"	0.00	0.00	0.00	0.00	100.0			
4	0.00	0.00	2.44	2.44	99.1	-		
8	0.00	0.00	1.79	4.23	98.4	No. 200 \$	Sieve Washi	ing Data
16	0.00	0.00	6.98	11.21	95.7		before-wet	after-dry
30	0.00	0.00	24.13	35.34	86.5	Sample & Tare	405.69	333.09
50	0.00	0.00	37.22	72.56	72.3	Tare	85.34	85.34
100	0.00	0.00	140.38	212.94	18.8	Sample Wt.	320.35	247.75
200	0.00	0.00	33.44	246.38	6.1	Minus 200 Wt		14.62
PAN	0.00	0.00	0.96	247.34		Dry Weight	262.37	

GRAIN SIZE ANALYSIS

Project:	Project: I-55/70 Over Railroad Yard				Job No.:	202111	76.00	
Boring:	В-	1S	Sample:	S	5-13	Depth:	53.5	-55
Visual:	Gray, SANE)				Tested by:	PCS- 9/13/20	21
						Checked by:		
	Sieve and			Cumul-	%			
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	pisture Conte	nt
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.		
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	332.74	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	292.09	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	85.25	
3/4"	0.00	0.00	0.00	0.00	100.0	%	19.7	
3/8"	0.00	0.00	2.56	2.56	98.8			
4	0.00	0.00	5.88	8.44	95.9			
8	0.00	0.00	9.44	17.88	91.4	No. 200	Sieve Wash	ing Data
16	0.00	0.00	10.11	27.99	86.5		before-wet	after-dry
30	0.00	0.00	27.72	55.71	73.1	Sample & Tare	332.74	280.11
50	0.00	0.00	43.47	99.18	52.0	Tare	85.25	85.25
100	0.00	0.00	63.55	162.73	21.3	Sample Wt.	247.49	194.86
200	0.00	0.00	31.82	194.55	5.9	Minus 200 Wt		11.98
PAN	0.00	0.00	0.10	194.65		Dry Weight	206.84	

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-2N	Sample No.: SS-2	
Depth: 3.5 - 5.0		
Visual: Gray, clay		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
85.88	148.67	136.95	104.88	32.07	51.07	62.8%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-2N	Sample No.: SS-4
Depth: 8.5 - 10.0	
Visual: Brown, clay	

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
87.43	244.45	199.77	87.76	112.01	112.34	99.7%
	~			-		-

Project: <u>I55/70 over Railroad Yard</u> Project Number: <u>20211176</u> Tested by: <u>SLY</u> Checked by: AD

Boring: B2N	Sample No.: ST-5-2	
Depth: 13.5-14.0		
Visual: Brown&Gray		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare	Tare + Before Wet	Tare + Before	Tare + After	Weight	Total	% Passing
Weight (g)	Weight (g)	Dry Weight (g)	Dry Weight (g)	Loss (g)	Weight (g)	#200
86.27	267.95	216.35	87.21	129.14	130.08	99.3%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-2N	Sample No.: SS-6

Depth: 18.5 - 20.0 Visual: Brown, sandy clay loam

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight	Total Weight (g)	% Passing #200
85.48	273.52	241.62	182.17	59.45	156.14	38.1%
				*		

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring:	B-2N	Sample No.:	SS-7
Depth:	23.5 - 25.0		

Visual: Brown, clay loam

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare	Tare + Before Wet	Tare + Before	Tare + After	Weight	Total	% Passing
Weight (g)	Weight (g)	Dry Weight (g)	Dry Weight (g)	Loss (g)	Weight (g)	#200
82.9	290.22	234.59	129.39	105.20	151.69	69.4%

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B2N	Sample No.: SS-9	
Depth: 33.5 - 35.0		
Visual: Gray		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
85.5	325.33	277.95	266.09	11.86	192.45	6.2%
	-					

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B2N	Sample No.: SS-12	
Depth: 48.5 - 50.0		
Visual: Brown		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare	Tare + Before Wet	Tare + Before	Tare + After	Weight	Total	% Passing
Weight (g)	Weight (g)	Dry Weight (g)	Dry Weight (g)	Loss (g)	Weight (g)	#200
86	300.29	256.48	246.43	10.05	170.48	5.9%

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-2S	Sample No.: SS-2
0	

Depth: 3.5 - 5.0 Visual: Gray, loamy sand

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
85.19	173.33	154.77	142.79	11.98	69.58	17.2%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-2S

Sample No.: SS-3

Depth: 6.0 - 7.5 Visual: Brown and gray, clay

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
83.23	179.98	151.67	86.87	64.80	68.44	94.7%
			-			

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-2S	Sample No.: SS-5	
Depth: 13.5 - 15.0		
Visual: Brown, clay		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
85	136.17	122.48	85.45	37.03	37.48	98.8%

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-2S	Sample No.: SS-6	
Depth: 18.5 - 20.0		-
Visual: Brown, LOAM		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare	Tare + Before Wet	Tare + Before	Tare + After	Weight	Total	% Passing
Weight (g)	Weight (g)	Dry Weight (g)	Dry Weight (g)	Loss (g)	Weight (g)	#200
83.52	291.71	238	119.24	118.76	154.48	76.9%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-2.5	Sample No.: SS-2
Depth: 3.5 - 5.0	

Visual: Brown and gray, cinders

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
89.19	183.13	156.4	90.43	65.97	67.21	98.2%
	n					

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring:	B-2.5		
---------	-------	--	--

Sample No.: SS-3

Depth: 6.0 - 7.5

Visual: Brown and gray, silty clay with cinders

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
84.32	257.46	218.93	117.63	101.30	134.61	75.3%
		-				

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-2.5	Sample No.: SS-5		
Depth: 13.5 - 15.0			
Visual: Brown, clay			

ASTM D1140: Materials Finer than #200 sieve, by	v wash method.
form bill formaterials riner and files stere, b	y mash meenoar

Tare	Tare + Before Wet	Tare + Before	Tare + After	Weight	Total	% Passing
Weight (g)	Weight (g)	Dry Weight (g)	Dry Weight (g)	Loss (g)	Weight (g)	#200
85.04	311.89	251.12	116.23	134.89	166.08	81.2%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-3N	Sample No.: <u>ST-4-3</u>	
Depth: 9.0-9.5		
Visual: Brown, clay		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet	Tare + Before	Tare + After Dry Weight (g)	Weight	Total Weight (g)	% Passing #200
85.4	411.92	349.3	122.88	226.42	263.90	85.8%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-3N Sam

Sample No.: SS-5

Depth: 13.5 - 15.0

Visual: Brown and gray, silty clay

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
83.42	182.82	154.75	85.03	6 <u>9</u> .72	71.33	97.7%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-3N	Sample No.: SS-6	
Depth: 18.5 - 20.0		
Visual: Gray, clay		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
84.2	188.65	158.42	86.96	71.46	74.22	96.3%
					-	

-

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-3S	Sample No.: SS-4	
Depth: 8.5 - 10.0		
Visual: Black, cinders		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
82.95	183.12	154.46	118.57	35.89	71.51	50.2%
					_	

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Sample No.: ST-5-2

Depth: 13.5-14.0 Visual: Brown&Gray, clay

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
84.11	271.33 229.14 90.15		138.99	145.03	95.8%	

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-3S	Sample No.: SS-6
Depth: 18.5 - 20.0	
Visual: Gray, silty clay	

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
82.97	166.34	139.16	83.61	55.55	56.19	98.9%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring:	B-3S	

Sample No.: SS-7

Depth: 23.5 - 25.0 Visual: Gray, silty clay loam

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare	Tare + Before Wet Tare + Before		Tare + After	Weight	Total	% Passing
Weight (g)	Weight (g)	Dry Weight (g)	Dry Weight (g)	Loss (g)	Weight (g)	#200
85.31	174.31	145.72	90.24	55.48	60.41	91.8%

-

Project: I-55/70 Over Railroad Yard					Job No.:	202111	76.00	
Boring:	B-:	3.5	Sample:	SS-2		Depth:	3.5 -	5.0
Visual:	Brown, LOA	MY SAND				Tested by:	21	
							AD 9/27/2021	
Sieve	Sieve and Sample Weight, g	Sieve Weight, g	Sample Weight, g	Cumul- ative Weight, g	% Passing by Wt.	Mo Tare No.	isture Conte	nt
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	252.66	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	235.28	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	83.12	
3/4"	0.00	0.00	0.00	0.00	100.0	%	11.4	
3/8"	0.00	0.00	14.94	14.94	90.2			
4	0.00	0.00	14.95	29.89	80.4			
8	0.00	0.00	10.69	40.58	73.3	No. 200 \$	Sieve Washi	ing Data
16	0.00	0.00	8.77	49.35	67.6	11 I.	before-wet	after-dry
30	0.00		11.87	61.22	59.8	Sample & Tare	252.66	213.92
50	0.00	0.00	22.79	84.01	44.8	Tare	83.12	83.12
100	0.00	0.00	33.45	117.46	22.8	Sample Wt.	169.54	130.80
200	0.00	0.00	12.35	129.81	14.7	Minus 200 Wt	-	21.36
PAN	0.00	0.00	0.73	130.54		Dry Weight	152.16	

Project: 1-55/70 Over Railroad Yard				Job No.:	202111	76.00		
Boring:	B-	3.5	Sample:	ST	-4-1	Depth:	8.0-	8.5
Visual:	Black, SAN	ck, SANDY LOAM				Tested by:	PCS- 9/21/20	21
					Checked by:	AD 9/27/2021		
Sieve	Sieve and Sample Weight, g	Sieve Weight, g	Sample Weight, g	Cumul- ative Weight, g	% Passing by Wt.	Mc Tare No.	oisture Conte	nt
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	222.58	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	188.99	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	82.96	
3/4"	0.00	0.00	0.00	0.00	100.0	%	31.7	
3/8"	0.00	0.00	0.00	0.00	100.0			
4	0.00	0.00	7.07	7.07	93.3			
8	0.00	0.00	4.04	11.11	89.5	No. 200 \$	Sieve Washi	ing Data
16	0.00	0.00	3.41	14.52	86.3		before-wet	after-dry
30	0.00		4.32	18.84	82.2	Sample & Tare	222.58	137.61
50	0.00	0.00	25.99	44.83	57.7	Tare	82.96	82.96
100	0.00	0.00	28.80	73.63	30.6	Sample Wt.	139.62	54.65
200	0.00	0.00	10.75	84,38	20.4	Minus 200 Wt		51.38
PAN	0.00	0.00	0.34	84.72		Dry Weight	106.03	

Project: I-55/70 Over Railroad Yard					Job No.:	202111	76.00	
Boring:	B-	3.5	Sample: SS-6		Depth:	18.5 - 20.0		
Visual:	Gray, LOAN	Λ				Tested by:	PCS- 9/21/20	21
						Checked by:	AD 9/27/2021	
Sieve	Sieve and Sample Weight, g	Sieve Weight, g	Sample Weight, g	Cumul- ative Weight, g	% Passing by Wt.	Mc Tare No.	oisture Conte	nt
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	222.58	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	188.99	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	82.96	
3/4"	0.00	0.00	0.00	0.00	100.0	%	31.7	
3/8"	0.00	0.00	0.00	0.00	100.0			
4	0.00	0.00	0.00	0.00	100.0			
8	0.00	0.00	0.90	0.90	99.2	No. 200 \$	Sieve Washi	ing Data
16	0.00	0.00	0.46	1.36	98.7	0	before-wet	after-dry
30	0.00		0.73	2.09	98.0	Sample & Tare	222.58	137.61
50	0.00	0.00	4.41	6.50	93.9	Tare	82.96	82.96
100	0.00	0.00	13.33	19.83	81.3	Sample Wt.	139.62	54.65
200	0.00	0.00	32.62	52.45	50.5	Minus 200 Wt		51.38
PAN	0.00	0.00	1.90	54.35		Dry Weight	106.03	

TSi Geotechnical, Inc. HYDROMETER ANALYSIS (ASTM D422)

Project Name:	I-55/70 over Railroad Yard	Project Number:	20211176.00
Boring Number:	B-3.5	Tested by:	SLY 9/27/2021
Sample Number:	SS-8	Calculated by:	SLY 9/27/2021
Sample Depth:	28.5-30.0	Checked by:	AD 9/27/21
Visual Description:	Brown and gray, SILTY CLAY		

Sieve	Particle Size, mm	Percent Finer	
1"	25.40	100	
1/2"	12.70	100	
3/8"	9.53	100	
No.4	4.75	100	
No.10	2.00	100	
No.20	0.85	100	
No.40	0.425	100	
No.60	0.250	100	
No.100	0.150	100	
No.200	0.075	99	
	0.0241	88	
SiS	0.0163	79	
laly	0.0099	71	
An	0.0072	66	
ter	0.0053	59	
me	0.0039	54	
dro	0.0028	52	
Hy	0.0020	47	
	0.0012	40	

Particle Size Description IDH Soil Classification System

Particle	Size Range, mm	Percent of Specimen		
Gravel	4.75 to 76.4	0		
Fine Gravel	2.00 to 4.75	0		
Medium Sand	0.43 to 2.00	0		
Fine Sand	0.075 to 0.43	1		
Silt	0.002 to 0.075	52		
Clay	< 0.002	47		

TSi Geotechnical, Inc. HYDROMETER ANALYSIS (ASTM D422)

Project Name:	I-55/70 over Railroad Yard	Project Number:	20211176.00
Boring Number:	B-3.5	Tested by:	SLY 9/27/2021
Sample Number:	SS-8	Calculated by:	SLY 9/27/2021
Sample Depth:	28.5-30.0	Checked by:	AD 9/27/21
Visual Description:	Brown and gray, SILTY CLAY	_	

Project: I-55/70 Over Railroad Yard					Job No.:	202111	76.00	
Boring:	В-3	3.5	Sample:	SS	5-10	Depth:	38.5-	40
Visual:	Gray, CLAY	,				Tested by:	PCS- 9/21/202	21
Checked by: AD 9/27/2021								
Sieve	Sieve and Sample Weight, g	Sieve Weight, g	Sample Weight, g	Cumul- ative Weight, g	% Passing by Wt.	Mo Tare No.	isture Conte	nt
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	218.95	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	173.46	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	85.92	
3/4"	0.00	0.00	0.00	0.00	100.0	%	52.0	
3/8"	0.00	0.00	0.00	0.00	100.0			
4	0.00	0.00	0.00	0.00	100.0			
8	0.00	0.00	0.00	0.00	100.0	No. 200 \$	Sieve Washi	ng Data
16	0.00	0.00	0.01	0.01	100.0	1.2	before-wet	after-dry
30	0.00		0.02	0.03	100.0	Sample & Tare	218.95	97.13
50	0.00	0.00	0.10	0.13	99.9	Tare	85.92	85.92
100	0.00	0.00	1.20	1.33	98.5	Sample Wt.	133.03	11.21
200	0.00	0.00	9.60	10.93	87.5	Minus 200 Wt		76.33
PAN	0.00	0.00	0.04	10.97		Dry Weight	87.54	

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-4N

Sample No.: SS-3

Depth: 6.0 - 7.5 Visual: Brown, sandy loam

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet	Tare + Before	Tare + After Dry Weight (g)	Weight	Total Weight (g)	% Passing #200
84.99	243.95	217.78	192.38	25.40	132.79	19.1%

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-4N	Sample No.: SS-4
Boring: D In	Jumpic No.: JJ +

Depth: 8.5 - 10.0 Visual: Brown, loamy sand

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
83.48	3.48 106.11 102.64 100.1		2.54	19.16	13.3%	
		e e				

Project: 1-55/70 Over Railroad Yard					Job No.:	202111	76.00	
Boring:	B	4N	Sample:	S	S-13	Depth:	53.5-	55.0
Visual:	Brown, SAN	1D				Tested by:	PCS- 9/14/20	21
Che						Checked by:		
	Sieve and			Cumul-	%			
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	isture Conte	nt
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.		
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	200.58	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	182.79	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	84.14	
3/4"	0.00	0.00	0.00	0.00	100.0	%	18.0	
3/8"	0.00	0.00	8.32	8.32	91.6			
4	0.00	0.00	4.66	12.98	86.8			
8	0.00	0.00	6.46	19.44	80.3	No. 200 \$	Sieve Washi	ing Data
16	0.00	0.00	13.47	32.91	66.6		before-wet	after-dry
30	0.00	0.00	22.98	55.89	43.3	Sample & Tare	200.58	176.63
50	0.00	0.00	25.35	81.24	17.6	Tare	84.14	84.14
100	0.00	0.00	9.11	90.35	8.4	Sample Wt.	116.44	92.49
200	0.00	0.00	2.03	92.38	6.4	Minus 200 Wt		6.16
PAN	0.00	0.00	0.10	92.48	-	Dry Weight	98.65	

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-4S	Sample No.: SS-3	
Depth: 6.0 - 7.5		
Visual: Brown, clay		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
87.17	258.55	208.5	93.96	114.54	121.33	94.4%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-4S	Sample No.: SS-5
Depth: 13.5 - 15.0	
Visual: Brownish-Gray, clay	

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare	Tare + Before Wet	Tare + Before	Tare + After	Weight	Total	% Passing
Weight (g)	Weight (g)	Dry Weight (g)	Dry Weight (g)	Loss (g)	Weight (g)	#200
86.1	281.34	220.51	88.66	131.85	134.41	98.1%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring.	B-45	Sample No.
byring.	D-40	Sample NU.

ample No.: SS-6

Depth: <u>18.5 - 20.0</u> Visual: Brown & Gray, sandy loam

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare	Tare + Before Wet	Tare + Before	Tare + After	Weight	Total	% Passing
weight (g)	weight (g)	Dry Weight (g)	Dry Weight (g)	Loss (g)	Weight (g)	#200
84.64	251.81	214.63	172	42.63	129.99	32.8%

Project:	I-55/70 Ove	er Railroad Y	ard			Job No.:	20211	76.00
Boring:	В-	5N	Sample:	S	S-2	Depth:	3.5-	5.0
Visual:	Brown, CLA	Y LOAM				Tested by:	PCS- 9/13/20	21
		_				Checked by:		
	Sieve and			Cumul-	%			
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	oisture Conte	ent
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.		
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	170.83	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	159.95	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	84.14	
3/4"	0.00	0.00	0.00	0.00	100.0	%	14.4	
3/8"	0.00	0.00	9.45	9.45	87.5			
4	0.00	0.00	3.89	13.34	82.4	1		
8	0.00	0.00	2.80	16.14	78.7	No. 200 \$	Sieve Wash	ing Data
16	0.00	0.00	1.55	17.69	76.7		before-wet	after-dry
30	0.00	0.00	1.56	19.25	74.6	Sample & Tare	170.83	116.38
50	0.00	0.00	3.93	23.18	69.4	Tare	84.14	84.14
100	0.00	0.00	5.36	28.54	62.4	Sample Wt.	86.69	32.24
200	0.00	0.00	3.66	32.20	57.5	Minus 200 Wt		43.57
PAN	0.00	0.00	0.04	32.24		Dry Weight	75.81	

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-5N	Sample No.: SS-3
Depth: 6.0 - 7.5	
Visual: Brown, clay	

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
85.21	102.9	99.39	89	10.39	14.18	73.3%
-						

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-5N	Sample No.: SS-4
Depth: 8.5 - 10.0	

Visual: Brown, silty clay

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
85.89	183.32	159.7	102.52	57.18	73.81	77.5%
	5					

Project: I-55/70 Over Railroad Yard					Job No.:	20211	176.00	
Boring:	В-	5N	Sample:	S	S-5	Depth:	13.5-	.15.0
Visual:	Brown, SIL	Г				Tested by:	PCS- 9/14/20)21
						Checked by:		
	Sieve and			Cumul-	%]		
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	oisture Conte	ent
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.		
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	262.78	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	212.69	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	82.81	
3/4"	0.00	0.00	0.00	0.00	100.0	%	38.6	
3/8"	0.00	0.00	0.00	0.00	100.0			
4	0.00	0.00	0.00	0.00	100.0			
8	0.00	0.00	0.00	0.00	100.0	No. 200 \$	Sieve Wash	ing Data
16	0.00	0.00	0.00	0.00	100.0		before-wet	after-dry
30	0.00	0.00	0.04	0.04	100.0	Sample & Tare	262.78	111.67
50	0.00	0.00	0.03	0.07	99.9	Tare	82.81	82.81
100	0.00	0.00	0.25	0.32	99.8	Sample Wt.	179.97	28.86
200	0.00	0.00	14.74	15.06	88.4	Minus 200 Wt		101.02
PAN	0.00	0.00	13.80	28.86		Dry Weight	129.88	

Project Number: 20211176.00

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: <u>B-55</u> Sample No.: <u>SS-4</u> Depth: 8.5 - 10.0

Visual: Brown & Gray, clay

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare	Tare + Before Wet	Tare + Before	Tare + After	Weight	Total	% Passing
weight (g)	weight (g)	Dry weight (g)	Dry weight (g)	Loss (g)	Weight (g)	#200
82.89	288.21	229.17	98.82	130.35	146.28	89.1%
						-

Project: I55/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-5S	Sample No.: SS-5	
Depth: 13.5 - 15.0		 <u> </u>
Visual: Brown, clay		

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare	Tare + Before Wet	Tare + Before	Tare + After	Weight	Total	% Passing
Weight (g)	Weight (g)	Dry Weight (g)	Dry Weight (g)	Loss (g)	Weight (g)	#20Ō
83.47	231.31	197.43	106.89	90.54	113.96	79.4%
					-	

Project:	I-55/70 Ove	r Railroad Y		Job No.:	202111	76.00		
Boring:	B-	5S	Sample:	SS-9		Depth:	33.5 -	35.0
Visual:	Gray, CLAY	,				Tested by:	PCS- 9/21/202	21
					Checked by:	AD 9/27/2021		
Sieve	Sieve and Sample Weight, g	Sieve Weight, g	Sample Weight, g	Cumul- ative Weight, g	% Passing by Wt.	Mc Tare No.	isture Conte	nt
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	193.70	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	153.19	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	83.43	
3/4"	0.00	0.00	0.00	0.00	100.0	%	58.1	
3/8"	0.00	0.00	0.00	0.00	100.0			
4	0.00	0.00	0.00	0.00	100.0			
8	0.00	0.00	0.00	0.00	100.0	No. 200	Sieve Washi	ng Data
16	0.00	0.00	0.00	0.00	100.0		before-wet	after-dry
30	0.00	-	0.01	0.01	100.0	Sample & Tare	193.70	84.19
50	0.00	0.00	0.05	0.06	99.9	Tare	83.43	83.43
100	0.00	0.00	0.06	0.12	99.8	Sample Wt.	110.27	0.76
200	0.00	0.00	0.51	0.63	99.1	Minus 200 Wt		69.00
PAN	0.00	0.00	0.01	0.64		Dry Weight	69.76	

Project:	I-55/70 Ove	r Railroad Y		Job No.:	202111	76.00		
Boring:	B-	<u>5S</u>	Sample:	SS-13		Depth:	53.5 -	55.0
Visual:	Gray, SANE)				Tested by:	PCS- 9/21/20	21
						Checked by:	AD 9/27/2021	
	Sieve and			Cumul-	%			
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	isture Conte	nt
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.		
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	303.00	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	259.86	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	85.25	
3/4"	0.00	0.00	0.00	0.00	100.0	%	24.7	
3/8"	0.00	0.00	0.00	0.00	100.0			
4	0.00	0.00	0.43	0.43	99.8			
8	0.00	0.00	1.35	1.78	99.0	No. 200 \$	Sieve Washi	ing Data
16	0.00	0.00	1.37	3.15	98.2		before-wet	after-dry
30	0.00		1.30	4.45	97.5	Sample & Tare	303.00	250.55
50	0.00	0.00	1.27	5.72	96.7	Tare	85.25	85.25
100	0.00	0.00	145.60	151.32	13.3	Sample Wt.	217.75	165.30
200	0.00	0.00	13.68	165.00	5.5	Minus 200 Wt		9.31
PAN	0.00	0.00	0.25	165.25		Dry Weight	174.61	

Project:	I-55/70 Ove	er Railroad Y		Job No.:	20211 ⁻	176.00		
Boring:	B-	5S	Sample:	S	S-18	- Depth:	1: 78.5 - 80.0	
Visual:	Brown and	black, SANE)			Tested by:	PCS- 9/21/20	21
			Checked by:	AD 9/27/2021				
	Sieve and			Cumul-	%			
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	oisture Conte	ent
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.		
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	248.85	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	224.97	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	87.11	
3/4"	0.00	0.00	14.33	14.33	89.6	%	17.3	
3/8"	0.00	0.00	4.70	19.03	86.2			
4	0.00	0.00	3.68	22.71	83.5	1		
8	0.00	0.00	8.34	31.05	77.5	No. 200 \$	Sieve Wash	ing Data
16	0.00	0.00	11.70	42.75	69.0		before-wet	after-dry
30	0.00		27.82	70.57	48.8	Sample & Tare	248.85	220.13
50	0.00	0.00	49.40	119.97	13.0	Tare	87.11	87.11
100	0.00	0.00	9.82	129.79	5.9	Sample Wt.	161.74	133.02
200	0.00	0.00	2.75	132.54	3.9	Minus 200 Wt		4.84
PAN	0.00	0.00	0.10	132.64	-	Dry Weight	137.86	

Project:	I-55/70 Ove	r Railroad Y		Job No.:	202111	76.00		
Boring:	B-	6N	Sample:	Sample:SS-3		Depth:	6.0-7.5	
Visual:	Brown, SIL	LOAM with	Gravel	Gravel			PCS- 9/14/20	21
						Checked by:		
	Sieve and			Cumul-	%			
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	oisture Conte	nt
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.		
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	407.35	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	360.55	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	84.51	
3/4"	0.00	0.00	31.24	31.24	75.3	%	17.0	
3/8"	0.00	0.00	3.93	35.17	72.2			
4	0.00	0.00	1.87	37.04	70.7			
8	0.00	0.00	2.22	39.26	69.0	No. 200 \$	Sieve Wash	ing Data
16	0.00	0.00	1.38	40.64	67.9		before-wet	after-dry
30	0.00	0.00	2.05	42.69	66.3	Sample & Tare	211.10	132.11
50	0.00	0.00	1.65	44.34	65.0	Tare	84.51	84.51
100	0.00	0.00	1.36	45.70	63.9	Sample Wt.	126.59	47.60
200	0.00	0.00	1.88	47.58	62.4	Minus 200 Wt		78.99
PAN	0.00	0.00	0.02	47.60	-	Dry Weight	126.59	

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Boring: B-6N	Sample No.: SS-6

Depth: 13.5 - 15.0 Visual: Brown & Gray, clay

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare	Tare + Before Wet	Tare + Before	Tare + After Dry	Weight	Total	% Passing
Weight (g)	Weight (g)	Dry Weight (g)	Weight (g)	Loss (g)	Weight (g)	#200
84.16	217.99	173.33	88.23	85.10	89.17	95.4%

Project: 155/70 over Railroad Yard Project Number: 20211176 Tested by: SLY Checked by: AD

Doring	DEN	Sample No :	cc
DUTING.	D-OIN	Sample No	22

ample No.: SS-7

Depth: 18.5 - 20.0

Visual: Brown & Gray, clay loam

ASTM D1140: Materials Finer than #200 sieve, by wash method.

Tare Weight (g)	Tare + Before Wet Weight (g)	Tare + Before Dry Weight (g)	Tare + After Dry Weight (g)	Weight Loss (g)	Total Weight (g)	% Passing #200
84.18	86.39	85.89	84.76	1.13	1.71	66.1%

Project:	roject: I-55/70 Over Railroad Yard						20211 ⁻	176.00
Boring:	B-	6N	Sample:	S	SS-8		23.5-25	
Visual:	Brown, SIL	Г LOAM				Tested by:	PCS- 9/13/20	21
					Checked by:			
	Sieve and			Cumul-	%			
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	oisture Conte	ent
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.		
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	92.89	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	90.66	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	85.18	
3/4"	0.00	0.00	0.00	0.00	100.0	%	40.7	
3/8"	0.00	0.00	0.00	0.00	100.0	1		
4	0.00	0.00	0.00	0.00	100.0			
8	0.00	0.00	0.00	0.00	100.0	No. 200 \$	Sieve Wash	ing Data
16	0.00	0.00	0.00	0.00	100.0		before-wet	after-dry
30	0.00	0.00	0.00	0.00	100.0	Sample & Tare	92.89	86.93
50	0.00	0.00	0.01	0.01	99.8	Tare	85.18	85.18
100	0.00	0.00	0.61	0.62	88.7	Sample Wt.	7.71	1.75
200	0.00	0.00	0.99	1.61	70.6	Minus 200 Wt		3.73
PAN	0.00	0.00	0.13	1.74		Dry Weight	5.48	

Project:	roject: I-55/70 Over Railroad Yard						20211	176.00
Boring:	B-	6S	_ Sample: <u>SS-6</u>		Depth:	18.5-20		
Visual:	Brown, SIL	TY CLAY				Tested by:	PCS- 9/13/20)21
						Checked by:		
	Sieve and			Cumul-	%			
Sieve	Sample	Sieve	Sample	ative	Passing	Mo	oisture Conte	ent
	Weight, g	Weight, g	Weight, g	Weight, g	by Wt.	Tare No.		
4"	0.00	0.00	0.00	0.00	100.0	Wet Wt.	232.95	
3"	0.00	0.00	0.00	0.00	100.0	Dry Wt.	182.63	
1.5"	0.00	0.00	0.00	0.00	100.0	Tare Wt.	85.98	
3/4"	0.00	0.00	0.00	0.00	100.0	%	52.1	
3/8"	0.00	0.00	0.00	0.00	100.0	1		
4	0.00	0.00	0.00	0.00	100.0			
8	0.00	0.00	0.00	0.00	100.0	No. 200 \$	Sieve Wash	ing Data
16	0.00	0.00	0.00	0.00	100.0		before-wet	after-dry
30	0.00	0.00	0.01	0.01	100.0	Sample & Tare	232.95	97.22
50	0.00	0.00	0.02	0.03	100.0	Tare	85.98	85.98
100	0.00	0.00	0.30	0.33	99.7	Sample Wt.	146.97	11.24
200	0.00	0.00	10.88	11.21	88.4	Minus 200 Wt		85.41
PAN	0.00	0.00	0.03	11.24		Dry Weight	96.65	

76K02 - PS&E Package for B&O Bridge

Recommendations for Foundation Rehabilitation (Prefinal Submittal)

ATTACHMENT 4

Excerpts from PreFinal PS&E Package

1			
	11/11/2021	9:08:37 AM	

11/11/2021 9:08:46 AM

PLOT DATE = 11/11/2021

CHECKED

CDL

REVISED

AN AND ELEVATION AT RAILROADS		SECTION			COUNTY	TOTAL SHEETS	SHEET NO.	
		82-5VB-R-2			ST. CLAIR	186	94	
					CONT	RACT NO.	76K02	
SHEET 5 OF 95 SHEETS	ILLINOIS FED			FED. A	D PROJECT			

Service Reactions *																
Location	Pier 3		Pier 6		Pier 7		Pier 8		Pier 9		Pier 10		Pier 13		Pier 16	
	W. Brg.	E. Brg.	W.Brg.	E.Brg.	W.Brg.	E. Brg.	W. Brg.	E. Brg.	W.Brg.	E.Brg.	W.Brg.	E. Brg.	W. Brg.	E. Brg.	W. Brg.	E. Br
Dead Load (k)	25.9	35.1	20.7	98.5	103.0	89.8	93.3	70.3	70.3	68.5	68.5	36.9	36.9	36.9	36.9	36.9
Live Load (k)	46.2	45.3	43.6	51.5	51.2	51.4	47.2	46.5	47.5	47.7	46.3	42.9	42.9	42.9	42.9	42.9
Impact (k)	12.8	11.4	12.3	10.1	10.0	11.2	9.5	9.9	10.2	10.9	10.1	10.5	10.5	10.5	10.5	10.5
Total (k)	84.9	91.8	76.6	160.1	164.2	152.4	150.0	126.7	128.0	127.1	124.9	90.3	90.3	90.3	90.3	90.3

* Reactions shown represent the maximum reaction for a single beam.

EFK•Moen	USER NAME = ABenz	DESIGNED - ACB	REVISED -		SHORING SCHEMATICS	F.A.I. RTE	SECTION	COUNTY	TOTAL	SHEET NO.
		CHECKED - CDL	REVISED -	STATE OF ILLINOIS		55/70	82-5VB-R-2	ST. CLAIR	186	95
Civil Engineering Design	PLOT SCALE = 0.1667 ' / in.	DRAWN - ACB	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 062-0017			CON	TRACT NO	76K02
	PLOT DATE = 11/11/2021	CHECKED - CDL	REVISED -		SHEET 6 OF 95 SHEETS		ILLINOIS FED. A	AID PROJECT		

원님

76K02 - PS&E Package for B&O Bridge

Recommendations for Foundation Rehabilitation (Prefinal Submittal)

ATTACHMENT 5

WJE Soils Analysis – Liquefaction

MEMORANDUM | November 5, 2021 WO30 - Soils Investigation for B&O Bridge Liquefaction Analysis

WJE PROJEC	T NO. 2014.6410.T	
то	FILE	
FROM	Peter Stauffer, Matthew LeBlanc	

This memorandum summarizes the results of WJE's liquefaction analysis related to the rehabilitation of Structure No. 082-0017 ("B&O Bridge"), specifically the rehabilitation of the above-grade foundation elements. The liquefaction analysis followed the procedures outlined in the IDOT Liquefaction Analysis design guide (Nov 2018), the IDOT Geotechnical Manual (Dec 2020), and the excel spreadsheet developed by IDOT to perform the liquefaction calculations. These references can be downloaded from the IDOT website here: https://idot.illinois.gov/doing-business/procurements/engineering-architectural-professional-services/Consultants-Resources/index.

Since portions of Illinois are considered "multi-modal" in that there are multiple earthquake sources that have a significant contribution to the overall hazard, IDOT requires liquefaction potential at the site to be checked for multiple seismic sources to determine the source that results in the highest Peak Ground Acceleration (PGA) at the site. The information needed to determine the controlling source was obtained using the USGS earthquake database (https://earthquake.usgs.gov/hazards/interactive/) and a return period of 1000 years. Note that even though the site is likely Site Class E based on the thickness of the soft clay layer underlying the site (Table 6.12.2.1.1-1; IDOT Geotechnical Manual), the lowest site class that the USGS database will allow the user to select for this site's location based on latitude/longitude is "B/C Boundary (shear wave velocity = 760 m/s)." According to the USGS database, there are five actual earthquake sources of various magnitudes and source-to-site distances that have a contribution to the total hazard greater than 5% (IDOT criteria) at the location of the B&O bridge. The PGA for each earthquake was calculated using ground motion prediction equations in the IDOT liquefaction analysis spreadsheet to determine the worst-case (highest) PGA at the site (summarized below in Table 1).

Source-to-Site Distance (km)	Earthquake Moment Magnitude (M _w)	Ground Motion Prediction Equation ¹	PGA (g)
12.68	4.7	CEUS	0.148
12.68	4.9	CEUS	0.182
12.68	5.1	CEUS	0.222 (worst-case)
190	7.5	NMSZ	0.074
230	7.7	NMSZ	0.070

Table 1. Determination of Highest PGA at the B&O Bridge Site

¹ IDOT requires Central Eastern United States (CEUS) equations for near-site sources and the New Madrid Seismic Zone (NMSZ) equations for distant sources

The IDOT liquefaction analysis spreadsheet also requires the peak horizontal acceleration coefficient at the ground surface, A_s , to compute the factor of safety (FS) against liquefaction. This coefficient is calculated by the equation $A_s = F_{pga} \times PGA$, where F_{pga} is the zero-period site amplification factor. Based on Table 3.10.3.2-1 in AASHTO LRFD Bridge Design Specifications, 9th ed., F_{pga} equals 1.59 for Site Class E and a PGA of 0.222 g. Therefore, the A_s used in the IDOT liquefaction analysis spreadsheet was 0.353 g.

The liquefaction analyses for all boreholes are provided in the attachment. The hammer efficiency is based on SPT calibration reports provided by TSi which were conducted in August and September 2021. Both automatic hammers used by TSi during the drilling program were 94.7% efficient. For boreholes where no groundwater was observed, the depth to groundwater during an earthquake was assumed to be 4.3 ft, the highest elevation observed in 13 of the 14 boreholes. Water was observed at the ground surface at B-1N approximately 14 days after drilling, but this was deemed to be unrepresentative of the site as a whole.

As seen in the attachment, there are some layers where the IDOT spreadsheet expects more data to fully complete the analysis (cells highlighted in red). For example, in boring B-1N at an elevation of 406 ft, the spreadsheet calculated the FS against liquefaction as 3.046 but also automatically highlighted the PI (plasticity index) and LL (liquid limit) values as missing. Were these values available, the spreadsheet would check whether the PI is greater than 12 or the moisture content/liquid limit ratio is less than 0.85. If either case was true, the spreadsheet would determine the layer is "Not Liquefiable" and replace the FS of 3.046 with a statement to this effect. Either answer is acceptable from a liquefaction standpoint, i.e. regardless of whether the FS is 3.046 or the layer is "not liquefiable," the layer is not expected to liquefy in the event of a design earthquake, and the additional PI and LL data provide no added value. Laboratory tests were focused on obtaining data for layers where the initial FS was either less than or close to 1.0.

After all laboratory tests and the liquefaction analyses were complete, there were only two layers where the factor of safety against liquefaction is less than 1.0: B-2.5 at a depth of 15 ft (FS=0.994) and B-4N at a depth of 10 ft (FS=0.936). The soil layers at these locations are a low plasticity silt (PI=5) and a loose sand (N=1), respectively, which are certainly considered potentially liquefiable soils. B-2.5 is closest to Pier 7 which, according to the original 1957 drawings, is founded on concrete piles with tips located approximately 24 ft below the silt layer in a layer of dense sand (N values ranging from 14 to 39). B-4N is located closest to Pier 10 which, again according to the 1957 drawings, is founded on concrete piles with tips approximately 45 ft below the loose sand layer in what is presumably the same layer of dense sand encountered in B-2.5 (N values ranging from 17 to 26).

Since the pile tips terminate in dense sand located much deeper than the potentially liquefiable soils and since "multiple layers...indicating a FS substantially less than 1.0" (IDOT Liquefaction Analysis Design Guide) are not present, WJE does not believe that further liquefaction analysis of the site is required. If these layers do liquefy in an earthquake, we believe the existing pier foundations will still meet the IDOT performance objectives of "no loss of life or loss of span" (IDOT Liquefaction Analysis Design Guide). However, WJE recommends the temporary shoring required during the rehabilitation of the above-grade foundation elements be placed below these potentially liquefiable layers (at least 15 ft below grade).

Attachment: Completed Liquefaction Analysis Spreadsheets for B&O Bridge Boreholes

			EQ MAGNITUDE SCALING FACTOR
REFERENCE BORING NUMBER	====== B-1N		(MSF) = 2.362
ELEVATION OF BORING GROUND SURFACE	====== 416.00 FT.		
DEPTH TO GROUNDWATER - DURING DRILLING ===========	======: 25.00 FT.) (E	Below Boring Ground Surface)	AVG. SHEAR WAVE VELOCITY (top 40')
DEPTH TO GROUNDWATER - DURING EARTHQUAKE	====== 0.00 PT. (E	Below Finished Grade Cut or Fill Surface)	V _{s,40} = 373 FT./SEC.
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As)) ===== 0.353	Groundwater was not encountered during drilling, but	
EARTHQUAKE MOMENT MAGNITUDE	5.1	numerical value in this cell such as "NE." Shallower	PGA CALCULATOR
FINISHED GRADE FILL OR CUT FROM BORING SURFACE	====== 0.00 FT.	groundwater depths generally increase the FS in each	Earthquake Moment Magnitude = 5.1
HAMMER EFFICIENCY	<mark>95</mark> %	layer by increasing (N ₁) _{60cs} , so we selected a value greater than the borehole depth to remove any affect of	Source-To-Site Distance, R (km) = 12.68
BOREHOLE DIAMETER	===== 2 .5 to 4.5 IN.	groundwater on the (N1)60cs calculation.	Ground Motion Prediction Equations = CEUS
SAMPLING METHOD====================================	===== Sampler w/out L	iners	PGA = 0.222
DATA REQUIRED			

			BUN	ING DA	IA	1		CON		JURING	JRILLING	ļ	CONDI	THONS DO	JRING EA	RINQUARE				
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFEC	TIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q u	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N1) 60	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
413.5	2.5	7	1.75				33.9	0.128	0.320	15.032	15.032	0.160	0.066	0.165	0.321	1.500	0.568	0.953	0.426	1.333 (D)
408.5	7.5	1	0.25		36	55	. 34.7	0.107	0.855	1.798	1.798	0.052	0.045	0.390	0.858	1.403	0.172	0.842	0.425	N.L. (2)
406	10	10	0.5	_			23.5	0.114	1.140	18.347	18.347	0.196	0.052	0.520	1.144	1,490	0.689	0.781	0.394	1.749 (D)
401	15	14		(32)			14.1	0 122	1 750	24 694	33 746	4 178	0.060	0.820	1 756	1 435	14,157	0.655	0.322	43.966 (D)
306	20	10		$\mathbf{\mathbf{\nabla}}$			6.9	0.126	2 380	31 325	31 325	0.601	0.064	1 1/0	2 388	1.460	1 781	0.530	0.259	NI (3)
550	20	15					0.5	0.120	2.500	51.525	51.525	0.001	0.004	1.140	2.000	1.204	1.701	0.555	0.255	N.L. (J)
	Lab valu	e was 45.4%	5, but any valu	e here gre	eater than a	bout 32%	returns a													
	(N1)60rs 1	o be larger t	than 34. This	then caus	es CRR ₇₅ to	be negati	ve (see													
	equatio	n below) wh	ich makes CRI	R negative	e as well. W	e used a v	alue of													
	32% just	t to show the	at the FS is ve	ry large ar	nd that this	layer is no	t likely to													
	the (N ₁)	so value of 2	4.7, which is c	lose to the	e value of 2	5 when th														
	spreads	heet determ	ines the layer	r is non-liq	uefiable [N.	L. (3)].														
	CDD	_ :	1 (N ₁	1)60cs	50		1													
	CAR	7.5 - 34 - ($N_{1}_{60cs} + 1$	135 + [$10(N_1)_{60cs}$	+ 45]2 -	200													
													1							
													1							
													1							
-													-		* FAC	TOR OF SAF	ETY DESC		-	

- N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85
- N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$
- (C) = CONTRACTIVE SOIL TYPES
- (D) = DILATIVE SOIL TYPES

0.25

1.25

0.25

0.25

77

62

40.2

59.8

6.1

5.9

104

87

408.6

403.6

398.6

393.6

388.6

383.6

378.6

373.6

368.6

363.6

358.6

353.6

343.6

333.6

323.6

313.6

5

10

15

20

25

30

35

40

45

50

55

60

70

80

90

100

3

6

15

8

14

32

25

23

25

21

26

62

32

31

40

67

LIQUEFACTION ANALYSIS

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.362

LOCITY (top 40') FT./SEC. 572

FACTOR

OF

SAFETY *

CRR/CSR

N.L. (1)

N.L. (2)

N.L. (2)

N.L. (3)

N.L. (3) N.L. (3)

N.L. (3) N.L. (3)

1.842 (D)

2.110 (D)

0.249

0.325

0.353

0.355

0.328

0.293

0.261

0.235

0.215

0.202

0.193

0.186

0.174

0.168

0.161

0.155

,	0,10	
	PGA CALCULATOR	
	Earthquake Moment Magnitude =	5.1
	Source-To-Site Distance, R (km) =	12.68
	Ground Motion Prediction Equations =	CEUS
	PGA = 0.222	

0.261

0.362

-0.094

0.654

0.692

0.935

0.272

7.057

-1.845

0.695

2.040

1.064

-1.306

0.882

-0.028

0.611

0.979

0.947

0.900

0.838

0.762

0.682

0.606

0.544

0.497

0.465

0.444

0.430

0.403

0.389

0.375

0.361

0.408

0.718

0.943

1.163

1.483

1.838

2,183

2.523

2.868

3.208

3.553

3.943

4.653

5 363

6.103

6.893

0.451

1.073

1.610

2.142

2.774

3.441

4.098

4.750

5.407

6.059

6.716

7.418

8.752

10.086

11.450

12.864

1.404

1.291

1.383

1,199

1.119

1.059

0.988

0.936

0.890

0.869

0.825

0.780

0.737

0716

0.655

0.624

0.045

0.062

0.045

0.044

0.064

0.071

0.069

0.068

0.069

0.068

0.069

0.078

0.071

0.071

0.074

0.079

																		. ,		
ELEVAT	ION OF B	ORING O	ROUND S	SURFAC	CE =====				413.60	FT.										
DEPTH 1	TO GROL	JNDWATI	ER - DURI	NG DRI	LLING =				18.00	FT. (E	Below Boring	Ground Su	irface)				AVG. S	HEAR WAVI	E VELOCI	
DEPTH 1	TO GROL	JNDWATI	ER - DURI	NG EAF	RTHQUA	KE ====			4.30	4.30 FT. (Below Finished Grade Cut or Fill Surface)							V [*] _{s,40'} = 572			
PEAK HO	EAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) ====																			
EARTHC	EARTHQUAKE MOMENT MAGNITUDE ====================================																PG	A CALCULA	TOR	
FINISHE	NISHED GRADE FILL OR CUT FROM BORING SURFACE ===========															E	Earthquak	e Moment Ma	agnitude =	
HAMMER	R EFFICII	ENCY===							95	%						S	ource-To-	Site Distance	, R (km) =	
BOREHO		IETER==						4	2.5 to 4.5	IN.						Grour	nd Motion	Prediction E	quations =	
SAMPLIN	NG METH	IOD====							Sample	r w/out Li	iners							PGA =	0.222	
			DATA	REQUI	RED											-				
			BOR	ING DA	TA			CON	DITIONS	DURING	DRILLING		COND	ITIONS D	URING EA	RTHQUAKE				
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	
SAMPLE	DEPTH	VALUE	STR., Q "	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N 1) 60	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	
411.1	2.5	3	0.75				39.6	0.118	0.295	6.418	6.418	0.083	0.118	0.295	0.295	1.500	0.294	0.991	0.228	

5.865

10.625

26.940

13.510

23.309

56.992

39.529

33.661

34.884

27.006

32.599

81,440

34.996

30 658

37.442

61.545

5.865

10.625

37.328

21.211

23.309

56.992

39.764

33.661

34.884

27.006

32.765

81.440

34.996

30 658

37.442

61.545

0.079

0.119

-0.029

0.231

0.262

0.374

0.116

3.192

-0.878

0.339

1.048

0.577

-0.750

0.522

-0.018

0.415

B-1S

55.9

31.4

27.5

31.9

25.6

17.7

23.5

22.4

25

22

15.7

19.8

19.8

15.1

17.1

18.1

0.107

0.124

0.107

0.044

0.064

0.071

0.069

0.068

0.069

0.068

0.069

0.078

0.071

0.071

0.074

0.079

0.563

1.183

1.718

1.938

2.258

2.613

2.958

3.298

3.643

3.983

4.328

4.718

5.428

6 1 3 8

6.878

7.668

* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

LIQUEFACTION ANALYSIS

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.362

AVG. SHEAR WAVE VELOCITY (top 40') 542 FT./SEC.

		• •			
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ====================================	4.30	FT. (Below Finished Grade Cut or Fill Surface)		V _{s,40} = 542	FT./SEC
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) =====	0.353				
EARTHQUAKE MOMENT MAGNITUDE ====================================	5.1			PGA CALCULATOR	
FINISHED GRADE FILL OR CUT FROM BORING SURFACE ========	0.00	FT.		Earthquake Moment Magnitude	= 5.1
HAMMER EFFICIENCY	95	%	S	Source-To-Site Distance, R (km)	= 12.68
BOREHOLE DIAMETER===================================	2.5 to 4.5	IN.	Grou	nd Motion Prediction Equations	= CEUS
SAMPLING METHOD	Sampler	r w/out Liners		PGA = 0.22	2
DATA REQUIRED					

B-2N

	BORING DATA				CONDITIONS DURING DRILLING					COND	ITIONS DU	JRING EA	RTHQUAKE							
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q u	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
416.1	2.5	4	1.75				27.2	0.128	0.320	8.482	8.482	0.100	0.128	0.320	0.320	1.500	0.354	0.988	0.227	N.L. (1)
413.6	5	4		62.8			27.9	0.108	0.590	7.751	14.302	0.153	0.046	0.435	0.479	1.500	0.542	0.973	0.246	2.203 (C)
408.6	10	7	2	99.7			34.7	0.130	1.240	12.208	19.650	0.211	0.068	0.775	1.131	1.341	0.669	0.932	0.312	2.144 (D)
398.6	20	16		38.1			26.3	0.124	2.480	25.165	35.198	-0.579	0.186	2.635	3.615	0.919	-1.256	0.801	0.252	N.L. (3)
393.6	25	3	0.25	69.4	7	27	28.6	0.044	2.700	4.428	10.314	0.116	0.044	2.855	4.147	0.933	0.255	0.717	0.239	1.067 (C)
388.6	30	17					24.2	0.066	3.030	24.812	24.812	0.288	0.066	3.185	4.789	0.876	0.597	0.633	0.219	2.726 (D)
383.6	35	25		6.2			26.1	0.069	3.375	36.288	36.526	-0.130	0.069	3.530	5.446	0.817	-0.251	0.559	0.198	N.L. (3)
378.6	40	30					19.7	0.071	3.730	42.239	42.239	0.187	0.071	3.885	6.113	0.785	0.346	0.500	0.181	N.L. (3)
373.6	45	24					21.8	0.069	4.075	30.790	30.790	0.535	0.069	4.230	6.770	0.779	0.984	0.458	0.168	N.L. (3)
368.6	50	35		5.9			29.4	0.072	4.435	45.160	45.381	0.243	0.072	4.590	7.442	0.734	0.422	0.430	0.160	N.L. (3)
363.6	55	56					26.7	0.077	4.820	72.396	72.396	0.505	0.077	4.975	8.139	0.711	0.848	0.412	0.155	N.L. (3)
358.6	60	53					30.4	0.076	5.200	65.281	65.281	0.447	0.076	5.355	8.831	0.690	0.728	0.401	0.152	N.L. (3)

* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.362

AVG. SHEAR WAVE VELOCITY (top 40') V_{s,40} = 367 FT./SEC.

PGA CALCULATOR	
Earthquake Moment Magnitude =	5.1
Source-To-Site Distance, R (km) =	12.68
Ground Motion Prediction Equations =	CEUS
PCA - 0 222	

ELEVATION OF BORING GROUND SURFACE ====================================	422.60	FT.	
DEPTH TO GROUNDWATER - DURING DRILLING ====================================	18.00	FT.	(Below Boring Ground Surface)
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ====================================	4.30	FT.	(Below Finished Grade Cut or Fill Surface)
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) =====	0.353		
EARTHQUAKE MOMENT MAGNITUDE ====================================	5.1		
FINISHED GRADE FILL OR CUT FROM BORING SURFACE ========	0.00	FT.	
HAMMER EFFICIENCY====================================	95	%	
BOREHOLE DIAMETER===================================	2.5 to 4.5	IN.	
SAMPLING METHOD====================================	Sampler	w/ou	t Liners

	BORING DATA				CONDITIONS DURING DRILLING				CONDITIONS DURING EARTHQUAK				RTHQUAKE							
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q _u	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
420.1	2.5	13					32.5	0.121	0.303	30.585	30.585	0.515	0.121	0.303	0.303	1.500	1.824	0.951	0.218	N.L. (1)
417.6	5	2		17.2			38	0.101	0.555	3.919	7.218	0.089	0.039	0.400	0.444	1.429	0.302	0.896	0.228	1.325 (C)
415.1	7.5	4		94.7			23.5	0.108	0.825	7.257	13.709	0.147	0.046	0.515	0.715	1.434	0.499	0.836	0.266	1.876 (C)
407.6	15	7		98.8	77	99	40.5	0.114	1.680	11.985	19.382	0.208	0.052	0.905	1.573	1.280	0.628	0.644	0.257	N.L. (2)
402.6	20	3		76.9			36.7	0.051	1.935	5.069	11.083	0.123	0.051	1.160	2.140	1.155	0.335	0.528	0.224	1.496 (C)

* FACTOR OF SAFETY DESCRIPTIONS

- N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_d/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

LIQUEFACTION ANALYSIS

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.362

AVG. SHEAR WAVE VELOCITY (top 40') V_{s,40} = **468** FT./SEC.

EEE Without of								
DEPTH TO GRO	UNDWATER - DURING DRILLING ===================================	13.00	FT.	(Below Boring Ground Surface)		AVG. SHEAR WAVE VEL	OCITY	((top 4
DEPTH TO GRO	UNDWATER - DURING EARTHQUAKE ==========================	4.30	FT.	(Below Finished Grade Cut or Fill Surface)		V [*] _{s,40'} = 46	8 F	T./SEC
PEAK HORIZ. G	ROUND SURFACE ACCELERATION COEFFICIENT (As) =====	0.353						
EARTHQUAKE I	IOMENT MAGNITUDE ====================================	5.1				PGA CALCULATOR		
FINISHED GRAD	E FILL OR CUT FROM BORING SURFACE ==========	0.00	FT.		E	Earthquake Moment Magnitu	de =	5.1
HAMMER EFFIC	IENCY====================================	95	%		S	ource-To-Site Distance, R (k	m) =	12.68
BOREHOLE DIA	METER===================================	2.5 to 4.5	IN.		Grour	nd Motion Prediction Equation	ns =	CEUS
SAMPLING MET	HOD====================================	Sample	r w/ou	It Liners		PGA = 0	.222	

= B-2.5

			BOR	ING DA	TA			CON	DITIONS	DURING D	DRILLING		COND	ITIONS DL	JRING EA	RTHQUAKE		-		
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q u	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
413.2	2.5	9					15.6	0.117	0.293	20.110	20.110	0.217	0.117	0.293	0.293	1.500	0.768	0.977	0.224	N.L. (1)
410.7	5	2		98.2			28.1	0.101	0.545	3.932	9.719	0.111	0.039	0.390	0.434	1.475	0.386	0.950	0.243	1.588 (C)
408.2	7.5	4	1.25	75.3			27.8	0.124	0.855	7.193	13.632	0.147	0.062	0.545	0.745	1.412	0.489	0.917	0.288	1.698 (C)
400.7	15	2	0.25	81.2	5	30	43.1	0.044	1.185	3.879	9.654	0.110	0.044	0.875	1.543	1.225	0.319	0.792	0.321	0.994 (C)
390.7	25	16					30.6	0.065	1.835	30.094	30.094	0.474	0.065	1.525	2.817	1.125	1.260	0.597	0.253	N.L. (3)
385.7	30	14					26.4	0.064	2.155	24.168	24.168	0.276	0.064	1.845	3.449	1.045	0.682	0.513	0.220	3.100 (D)
380.7	35	23					32.3	0.068	2.495	39.735	39.735	0.115	0.068	2.185	4.101	0.988	0.269	0.448	0.193	N.L. (3)
375.7	40	39					22.1	0.073	2.860	67.763	67.763	0.467	0.073	2.550	4.778	0.929	1.025	0.402	0.173	N.L. (3)
370.7	45	32					25.9	0.071	3.215	50.818	50.818	0.312	0.071	2.905	5.445	0.882	0.650	0.371	0.160	N.L. (3)
365.7	50	34					25.5	0.072	3.575	51.060	51.060	0.315	0.072	3.265	6.117	0.841	0.625	0.352	0.151	N.L. (3)
360.7	55	16					27.7	0.065	3.900	20.288	20.288	0.219	0.065	3.590	6.754	0.856	0.443	0.340	0.147	3.014 (D)
355.7	60	61					18.8	0.078	4.290	85.139	85.139	0.606	0.078	3.980	7.456	0.777	1.113	0.332	0.143	N.L. (3)
																	ETV DESC			

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.362

AVG. SHEAR WAVE VELOCITY (top 40') V_{s,40'} = **220** FT./SEC.

	PGA CALCULA	<u>FOR</u>	
	Earthquake Moment Ma	gnitude =	5.1
5	Source-To-Site Distance	, R (km) =	12.68
Grou	und Motion Prediction Eq	uations =	CEUS
	PGA =	0.222	

REFERENCE BORING NUMBER ==== = B-3N 18.00 FT. (Below Boring Ground Surface) 4.30 FT. (Below Finished Grade Cut or Fill Surface) PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) ===== 0.353 EARTHQUAKE MOMENT MAGNITUDE ======== 5.1 FINISHED GRADE FILL OR CUT FROM BORING SURFACE ======== 0.00 FT. <mark>95</mark> % == Sampler w/out Liners

			DATA	REQUI	RED			60.1				1	60.40	TIONS		DTUQUAKE				
51.514	20200	60 7	BOR	ING DA	IA DI ACT		140/67	CONL			DRILLING	600	COND	TTIONS D	JRING EA	RTHQUAKE	6000			546700
ELEV.	BORING SAMDI F	SPT	COMPR	% EINES	PLAST.	LIQUID	MOIST.	EFFEC	VEDT	CORR.	EQUIV. CLN.	CRR	EFFE		VERT	OVER-	CORR. DESIST	SOIL MASS	FO	FACTOR
SAMPLE	DEPTH	VALUE	STR. O	< #200	PI	11	W.	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR	FACTOR		SAFFTY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
411.7	2.5	10	2				22.3	0.130	0.325	22.372	22.372	0.247	0.130	0.325	0.325	1.500	0.877	0.883	0.203	N.L. (1)
409.2	5	6	1.75				20.5	0.128	0.645	11.426	11.426	0.126	0.066	0.490	0.534	1.422	0.423	0.770	0.193	2.192 (D
406.7	7.5	5	1.75				36.2	0.128	0.965	8.710	8.710	0.102	0.066	0.655	0.855	1.300	0.313	0.664	0.199	1.573 (C
399.2	15	1	1	97.7			35.8	0.122	1.880	1.635	6.962	0.087	0.060	1.105	1.773	1.149	0.237	0.410	0.151	1.570 (C
394.2	20	1	1	96.3			46.5	0.059	2.175	1.604	6.924	0.087	0.059	1.400	2.380	1.092	0.225	0.297	0.116	1.940 (C
1													1		* 540				1	

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

LIQUEFACTION ANALYSIS

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.362

 $\frac{\text{AVG. SHEAR WAVE VELOCITY (top 40')}}{V_{s,40'}} = 260 \text{ FT./SEC.}$

DEPTH TO GROUNDWATER - DURING DRILLING ====================================	8.00	FT.	(Below Boring Ground Surface)	Γ
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ====================================	4.30	FT.	(Below Finished Grade Cut or Fill Surface)	
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) =====	0.353			
EARTHQUAKE MOMENT MAGNITUDE ====================================	5.1			
FINISHED GRADE FILL OR CUT FROM BORING SURFACE ==========	0.00	FT.		E
HAMMER EFFICIENCY====================================	95	%		Sou
BOREHOLE DIAMETER===================================	2.5 to 4.5	IN.		Ground
SAMPLING METHOD====================================	Sampler	w/ou	t Liners	

=== B-3S

 PGA CALCULATOR

 Earthquake Moment Magnitude =

 Source-To-Site Distance, R (km) =

 Ground Motion Prediction Equations =

 PGA =
 0.222

			BOF	RING DA	TA			CON	DITIONS	DURING	DRILLING		COND	ITIONS DU	JRING EA	RTHQUAKE				
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q u	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
412	2.5	3	0.75				12.3	0.118	0.295	6.418	6.418	0.083	0.118	0.295	0.295	1.500	0.294	0.905	0.208	N.L. (1)
409.5	5	6					17.3	0.113	0.578	11.673	11.673	0.128	0.051	0.423	0.466	1.477	0.447	0.809	0.205	2.180 (D)
404.5	10	1		50.2			45.2	0.043	0.793	1.978	7.373	0.091	0.043	0.638	0.993	1.295	0.277	0.628	0.225	1.231 (C)
394.5	20	1	1.25	98.9			42.8	0.062	1.413	1.913	7.295	0.090	0.062	1.258	2.237	1.119	0.238	0.362	0.148	1.608 (C)
389.5	25	1	0.5	91.8	25	45	42.9	0.051	1.668	1.838	7.206	0.089	0.051	1.513	2.804	1.075	0.227	0.282	0.120	N.L. (2)
384.5	30	10	0.25				33.8	0.044	1.888	17.763	17.763	0.189	0.044	1.733	3.336	1.058	0.473	0.230	0.102	4.637 (D)
379.5	35	28					25.9	0.070	2.238	53.510	53.510	0.340	0.070	2.083	3.998	1.007	0.809	0.197	0.087	N.L. (3)
374.5	40	17					27.1	0.066	2.568	27.748	27.748	0.361	0.066	2.413	4.640	0.957	0.816	0.177	0.078	N.L. (3)
369.5	45	18					29.3	0.066	2.898	27.733	27.733	0.360	0.066	2.743	5.282	0.916	0.780	0.164	0.073	N.L. (3)
364.5	50	42					21.8	0.074	3.268	68.566	68.566	0.474	0.074	3.113	5.964	0.858	0.960	0.157	0.069	N.L. (3)
359.5	55	35					22.1	0.072	3.628	52.516	52.516	0.330	0.072	3.473	6.636	0.821	0.640	0.152	0.067	N.L. (3)
354.5	60	10					26.3	0.061	3.933	12.462	12.462	0.135	0.061	3.778	7.253	0.867	0.277	0.150	0.066	4.197 (C)
349.5	65	30					20.6	0.071	4.288	38.846	38.846	0.077	0.071	4.133	7.920	0.766	0.139	0.146	0.064	N.L. (3)
344.5	70	37					18.2	0.073	4.653	46.806	46.806	0.264	0.073	4.498	8.597	0.740	0.461	0.139	0.061	N.L. (3)
334.5	80	21					16.2	0.068	5.333	22.063	22.063	0.243	0.068	5.178	9.901	0.760	0.436	0.125	0.055	7.927 (D)
324.5	90	34					17.2	0.072	6.053	34.486	34.486	-1.809	0.072	5.898	11.245	0.675	-2.883	0.111	0.048	N.L. (3)
314.5	100	62					15.7	0.078	6.833	62.024	62.024	0.419	0.078	6.678	12.649	0.632	0.625	0.097	0.042	N.L. (3)

* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

DATA REQUIRED

LIQUEFACTION ANALYSIS

EQ MAGNITUDE	SCALING	FACTOR
(MSF) =	2.362	

 $\frac{\text{AVG. SHEAR WAVE VELOCITY (top 40')}}{V_{s,40'}} = 270 \text{ FT./SEC.}$

PGA CALCULATOR	
Earthquake Moment Magnitude =	5.1
Source-To-Site Distance, R (km) =	12.68
round Motion Prediction Equations =	CEUS
PCA - 0 222	

REFERENCE BORING NUMBER === = B-3.5 18.00 FT. (Below Boring Ground Surface) DEPTH TO GROUNDWATER - DURING EARTHQUAKE ================= 4.30 FT. (Below Finished Grade Cut or Fill Surface) PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) ===== 0.353 EARTHQUAKE MOMENT MAGNITUDE ======= 5.1 FINISHED GRADE FILL OR CUT FROM BORING SURFACE ======== 0.00 FT. <mark>95</mark> % Gı SAMPLING METHOD====== Sampler w/out Liners

			BOR	ING DA	TA			CON	DITIONS	DURING I	DRILLING		COND	TIONS DU	JRING EA	RTHQUAKE				
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q u	< #200	PI	LL	w	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N 1) 60	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
407.8	2.5	5	2.75				23	0.134	0.335	10.547	10.547	0.118	0.134	0.335	0.335	1.500	0.418	0.910	0.209	N.L. (1)
405.3	5	32		14.7			6.3	0.132	0.665	71.572	77.303	0.545	0.070	0.510	0.554	1.500	1.929	0.819	0.204	N.L. (3)
402.8	7.5	24	0.75				17.2	0.118	0.960	49.479	49.479	0.297	0.056	0.650	0.850	1.500	1.052	0.729	0.219	N.L. (3)
395.3	15	7					13.3	0.114	1.815	11.613	11.613	0.128	0.052	1.040	1.708	1.188	0.358	0.493	0.186	1.925 (D)
390.3	20	3		50.5			29.1	0.051	2.070	4.921	10.905	0.121	0.051	1.295	2.275	1.124	0.322	0.378	0.152	2.118 (C)
385.3	25	4	0.75				36.2	0.056	2.350	6.327	6.327	0.082	0.056	1.575	2.867	1.064	0.207	0.297	0.124	1.669 (C)
380.3	30	1	0.75		46	64	68.1	0.056	2.630	1.514	1.514	0.051	0.056	1.855	3.459	1.027	0.123	0.243	0.104	N.L. (2)
375.3	35	1	0.25				71.8	0.044	2.850	1.464	1.464	0.051	0.044	2.075	3.991	1.004	0.120	0.209	0.092	1.304 (C)
370.3	40	1	0.5	87.5			60.2	0.051	3.105	1.406	6.688	0.085	0.051	2.330	4.558	0.980	0.197	0.188	0.085	2.318 (C)
365.3	45	3	0.25				74.6	0.044	3.325	4.084	4.084	0.065	0.044	2.550	5.090	0.964	0.149	0.175	0.080	1.863 (C)
360.3	50	27					19.5	0.070	3.675	38.100	38.100	0.034	0.070	2.900	5.752	0.882	0.070	0.168	0.076	N.L. (3)
355.3	55	34					12.2	0.072	4.035	46.968	46.968	0.266	0.072	3.260	6.424	0.842	0.529	0.163	0.074	N.L. (3)
350.3	60	12					17.5	0.063	4.350	14.049	14.049	0.151	0.063	3.575	7.051	0.874	0.311	0.160	0.073	4.260 (D)

* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

LIQUEFACTION ANALYSIS

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.362

AVG. SHEAR WAVE VELOCITY (top 40') / _{s,40} = **224** FT./SEC.

DEPTH TO GROUNDWATER - DURING DRILLING	70.00	FT. (Below Boring	Ground Surface)		AVG. SHEAR WAVE	VELOCI	ΓY (top 4
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ====================================	4.30	FT. (Below Finishe	d Grade Cut or Fill Surface)		V [*] _{s,40'} =	224	FT./SEC
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) =====	0.353						
EARTHQUAKE MOMENT MAGNITUDE ====================================	5.1				PGA CALCULAT	OR	
FINISHED GRADE FILL OR CUT FROM BORING SURFACE ==========	0.00	FT.			Earthquake Moment Mag	nitude =	5.1
HAMMER EFFICIENCY	95	%		S	ource-To-Site Distance,	R (km) =	12.68
BOREHOLE DIAMETER===================================	2.5 to 4.5	IN.		Groui	nd Motion Prediction Equ	ations =	CEUS
SAMPLING METHOD	Sampler	w/out Liners			PGA =	0.222	

= B-4N

			BOR	ING DA	TA			CON	DITIONS	DURING I	DRILLING		COND	ITIONS D	JRING EA	RTHQUAKE				
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q "	< #200	PI	LL	w	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N 1) 60	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
405.4	2.5	6	1.25				6	0.124	0.310	12.768	12.768	0.138	0.124	0.310	0.310	1.500	0.490	0.885	0.203	N.L. (1)
402.9	5	5	1		13	29	23.4	0.122	0.615	9.612	9.612	0.110	0.060	0.460	0.504	1.419	0.368	0.774	0.195	N.L. (2)
400.4	7.5	3		19.1			17.9	0.105	0.878	5.360	9.206	0.106	0.043	0.568	0.767	1.348	0.338	0.669	0.208	1.625 (C)
397.9	10	1		13.3			13.7	0.095	1.115	1.804	3.859	0.064	0.033	0.650	1.006	1.267	0.191	0.574	0.204	0.936 (C)
392.9	15	8	2				24.6	0.130	1.765	13.426	13.426	0.145	0.068	0.990	1.658	1.212	0.414	0.417	0.160	2.588 (D)
387.9	20	4	1				59.1	0.122	2.375	6.154	6.154	0.081	0.060	1.290	2.270	1.109	0.212	0.304	0.123	1.724 (C)
382.9	25	1	0.25		30	49	45.1	0.107	2.910	1.419	1.419	0.050	0.045	1.515	2.807	1.070	0.128	0.228	0.097	N.L. (2)
377.9	30	1	0.25				57.7	0.107	3.445	1.308	1.308	0.050	0.045	1.740	3.344	1.040	0.123	0.179	0.079	1.557 (C)
372.9	35	1	0.25				87.9	0.107	3.980	1.210	1.210	0.050	0.045	1.965	3.881	1.015	0.119	0.149	0.067	1.776 (C)
367.9	40	1	0.25		42	63	59.8	0.107	4.515	1.126	1.126	0.050	0.045	2.190	4.418	0.994	0.116	0.130	0.060	N.L. (2)
362.9	45	17	0.25				65.1	0.107	5.050	17.958	17.958	0.191	0.045	2.415	4.955	0.964	0.436	0.119	0.056	7.786 (D)
357.9	50	26					17.1	0.129	5.695	26.420	26.420	0.323	0.067	2.750	5.602	0.917	0.700	0.112	0.052	N.L. (3)
352.9	55	11		6.4			26.7	0.119	6.290	10.031	10.149	0.114	0.057	3.035	6.199	0.920	0.249	0.108	0.051	4.882 (C)
347.9	60	17					19.2	0.124	6.910	14.513	14.513	0.155	0.062	3.345	6.821	0.888	0.326	0.106	0.049	6.653 (D)

* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

LIQUEFACTION ANALYSIS

EQ MAGNITUDE	SCALING	FACTOR
(MSF) =	2.362	

AVG. SHEAR WAVE VELOCITY (top 40') V _{s,40} = 373 FT./SEC.

PGA CALCULATOR	
Earthquake Moment Magnitude =	5.1
Source-To-Site Distance, R (km) =	12.68
Ground Motion Prediction Equations =	CEUS
PGA = 0.222	

REFERENCE BORING NUMBER	B-4S			
ELEVATION OF BORING GROUND SURFACE ====================================	406.80	FT.		
DEPTH TO GROUNDWATER - DURING DRILLING ====================================	18.00	FT. (E	Below Boring Ground Surfa	ice)
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ====================================	4.50	FT. (E	Below Finished Grade Cut	or Fill Surface)
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) =====	0.353			
EARTHQUAKE MOMENT MAGNITUDE ====================================	5.1			
FINISHED GRADE FILL OR CUT FROM BORING SURFACE ========	0.00	FT.		
HAMMER EFFICIENCY	95	%		
BOREHOLE DIAMETER===================================	2.5 to 4.5	IN.		
SAMPLING METHOD	Sampler	w/out Li	ners	

	BORING DATA							CON	DITIONS	DURING L]	COND	ITIONS DU	JRING EA	RTHQUAKE					
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q u	< #200	PI	LL	W _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N ₁) _{60cs}	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)		(r _d)	CSR	CRR/CSR
404.3	2.5	86	4.05				9.7	0.145	0.363	######	212.368	1.563	0.145	0.363	0.363	1.500	5.536	0.953	0.219	N.L. (1)
401.8	75	2/	1.20	04.4			10.4	0.124	0.073	####### 5 200	11 240	0.926	0.062	0.518	0.549	1.300	3.202 0.386	0.900	0.219	N.L. (3)
391.8	15	3	1.25	98.1			28.8	0.124	1 898	4 885	10.862	0.124	0.002	1 123	1 778	1 163	0.332	0.654	0.238	1.395 (C)
386.8	20	3		32.8			31.4	0.051	2.153	4.834	10.565	0.118	0.051	1.378	2.345	1.107	0.309	0.538	0.210	1.471 (C)
															* EAC		FTY DES	RIPTIONS		

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_d/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

EQ MAGNITUDE	SCALING	FACTOR
(MSF) =	2.362	

ELEVATION OF BORING GROUND SURFACE	====== 407.60 FT.	
DEPTH TO GROUNDWATER - DURING DRILLING ====================================	===== <u>5.50</u> FT. (Below Boring Ground Surface)	AVG. SHEAR WAVE VELOCITY (top 40')
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ==========	==== 4.30 F) (Below Finished Grade Cut or Fill Surface)	V _{s,40} = 324 FT./SEC.
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As)	0.353	
EARTHQUAKE MOMENT MAGNITUDE ====================================	===== 5.1 Groundwater was observed at 6.7 ft depth approximately 14 days after drilling. However, we	PGA CALCULATOR
FINISHED GRADE FILL OR CUT FROM BORING SURFACE	0.00 FT. believe this shallower value is more representative of	Earthquake Moment Magnitude = 5.1
HAMMER EFFICIENCY====================================	===== 95 % the site as a whole (and it is more conservative).	Source-To-Site Distance, R (km) = 12.68
BOREHOLE DIAMETER		Ground Motion Prediction Equations = CEUS
SAMPLING METHOD	Sampler w/out Liners	PGA = 0.222
DATA REQUIRED		
BORING DATA	CONDITIONS DURING DRILLING CONDITIONS DURING EAR	THQUAKE

ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH (ET)	VALUE	STR., Q u	< #200 (%)	PI	Ш	W _c (%)	WT.	STRESS	VALUE	N VALUE	MAG 7.5 CRR	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
405.1	2.5	17	3	(/0/			7.3	0.135	0.338	41.535	41.535	0.170	0.135	0.338	0.338	1.500	0.603	0.935	0.215	N.L. (1)
402.6	5	7	2.25	57.5			9.9	0.131	0.665	13.269	20.922	0.227	0.069	0.510	0.554	1.500	0.805	0.864	0.215	3.744 (D)
400.1	7.5	3		73.3			27	0.051	0.793	5.496	11.595	0.127	0.051	0.638	0.837	1.337	0.402	0.791	0.239	1.682 (C)
397.6	10	3	1.25	77.5			30.8	0.062	0.948	5.670	11.804	0.129	0.062	0.793	1.148	1.270	0.388	0.717	0.239	1.623 (C)
392.6	15	2	0.25	88.4	2	25	33.8	0.044	1.168	3.897	9.676	0.110	0.044	1.013	1.680 * FAC	1.185 TOR OF SAF	0.309 ETY DES(0.577	0.220	1.405 (C)

- N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85
- N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$
- (C) = CONTRACTIVE SOIL TYPES
- (D) = DILATIVE SOIL TYPES

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.362

 $\frac{\text{AVG. SHEAR WAVE VELOCITY (top 40')}}{V_{s,40'}} = 199 \text{ FT./SEC.}$

PGA CALCULATOR	
Earthquake Moment Magnitude =	5.1
Source-To-Site Distance, R (km) =	12.68
Ground Motion Prediction Equations =	CEUS
DCA - 0 222	

REFERENCE BORING NUMBER === B-5S 404.50 FT. 13.00 FT. (Below Boring Ground Surface) 4.30 FT. (Below Finished Grade Cut or Fill Surface) PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) ===== 0.353 EARTHQUAKE MOMENT MAGNITUDE ===== 5.1 FINISHED GRADE FILL OR CUT FROM BORING SURFACE ====== 0.00 FT. 95 % ==2.5 to 4.5 IN. SAMPLING METHOD= Sampler w/out Liners

			BOR	ING DA	TA			CON	DITIONS	DURING	DRILLING	1	CONDI	TIONS D	JRING EA	RTHQUAKE				
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q "	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR _{7.5}	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
402	2.5	10	1.5				26.4	0.126	0.315	22.461	22.461	0.249	0.126	0.315	0.315	1.500	0.881	0.869	0.200	N.L. (1)
399.5	5	5	1.5		41	57	29.3	0.126	0.630	9.567	9.567	0.109	0.064	0.475	0.519	1.408	0.364	0.746	0.187	N.L. (2)
394.5	10	1	2	89.1			33.1	0.130	1.280	1.726	7.071	0.088	0.068	0.815	1.171	1.226	0.256	0.532	0.175	1.463 (C)
389.5	15	1	0.5	79.4			32	0.051	1.535	1.773	7.128	0.089	0.051	1.070	1.738	1.157	0.242	0.370	0.138	1.754 (C)
384.5	20	1	0.25				67.2	0.044	1.755	1.760	1.760	0.052	0.044	1.290	2.270	1.104	0.135	0.257	0.104	1.298 (C)
379.5	20	1	0.25				23.0	0.044	1.975	1.713	1.713	0.052	0.044	1.510	2.602	1.070	0.130	0.182	0.078	1.007 (C)
369.5	35	1	0.5	00 1			66.2	0.051	2.230	1.041	6.884	0.031	0.051	2 020	3 936	1.037	0.120	0.135	0.039	2.130 (C)
364.5	40	5	0.0	55.1			14.7	0.051	2.400	7 490	7 490	0.007	0.051	2.020	4 523	0.983	0.207	0.100	0.040	5 325 (C)
359.5	45	34					20.8	0.072	3 120	55 808	55 808	0.363	0.000	2.200	5 195	0.914	0.783	0.000	0.035	N.L. (3)
354.5	50	11					12.1	0.062	3.430	14.782	14.782	0.158	0.062	2.965	5.817	0.916	0.342	0.072	0.032	10.688 (D)
349.5	55	36		5.5			23.2	0.073	3.795	52.605	52.768	0.333	0.073	3.330	6.494	0.835	0.656	0.068	0.030	N.L. (3)
344.5	60	22					17.1	0.068	4.135	27.881	27.881	0.365	0.068	3.670	7.146	0.828	0.715	0.066	0.029	N.L. (3)
339.5	65	23					24.8	0.068	4.475	27.735	27.735	0.361	0.068	4.010	7.798	0.804	0.685	0.062	0.028	N.L. (3)
334.5	70	29					15.9	0.071	4.830	34.175	34.175	-5.475	0.071	4.365	8.465	0.759	-9.810	0.055	0.025	N.L. (3)
329.5	75	24					16.4	0.069	5.175	26.156	26.156	0.317	0.069	4.710	9.122	0.767	0.574	0.048	0.021	N.L. (3)
324.5	80	45		3.9			17.5	0.075	5.550	51.530	51.530	0.320	0.075	5.085	9.809	0.705	0.532	0.041	0.018	N.L. (3)
319.5	85	36					17.4	0.073	5.915	37.547	37.547	-0.009	0.073	5.450	10.486	0.685	-0.014	0.034	0.015	N.L. (3)
314.5	90	48					20.4	0.075	6.290	50.135	50.135	0.305	0.075	5.825	11.173	0.667	0.480	0.027	0.012	N.L. (3)
309.5	95	40					19.3	0.074	6.660	38.477	38.477	0.057	0.074	6.195	11.855	0.651	0.088	0.020	0.009	N.L. (3)

* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

EARTHQUAKE MOMENT MAGNITUDE ====

ELEVATION OF BORING GROUND SURFACE ================

FINISHED GRADE FILL OR CUT FROM BORING SURFACE =======

LIQUEFACTION	ANALYSIS
--------------	----------

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.362

AVG. SHEAR WAVE VELOCITY (top 40') V s,40' = 217 FT./SEC.

(Below Finished Grade Cut or Fill Surface) Groundwater was not encountered during drilling, but the spreadsheet equations cannot process a non-numerical value in this cell such as "NE." Shallower groundwater depths generally increase the FS in each layer by increasing $(N_1)_{60ct}$, so we selected a value greater than the borehole depth to remove any affect of groundwater on the $(N_1)_{60cs}$ calculation.

PGA CALCULATOR Earthquake Moment Magnitude =

5.1 Source-To-Site Distance, R (km) = 12.68 Ground Motion Prediction Equations = CEUS PGA = 0.222

SAMPLING METHOD=

PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) =====

|--|

			BOR	ING DA	TA			CON	DITIONS	DURING I	DRILLING		CONDI	TIONS D	JRING EA	RTHQUAKE				
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q u	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
406.5	2.5	6	2.5				24.4	0.133	0.333	12.668	12.668	0.137	0.133	0.333	0.333	1.500	0.487	0.881	0.202	N.L. (1)
404	5	38	4.5				17.3	0.140	0.683	84.531	84.531	0.601	0.078	0.528	0.571	1.500	2.131	0.766	0.191	N.L. (3)
401.5	7.5	26	4.5	62.4	3	24	18.7	0.140	1.033	52.516	68.019	0.470	0.078	0.723	0.922	1.500	1.663	0.659	0.193	N.L. (2)
399	10	9	2.75				15.4	0.134	1.368	15.285	15.285	0.163	0.072	0.903	1.258	1.253	0.482	0.563	0.180	2.678 (D)
394	15	2	0.25	95.4	3	24	29.2	0.107	1.903	3.253	8.903	0.104	0.045	1.128	1.795	1.152	0.282	0.404	0.148	1.905 (C)
389	20	1	1	66.1			60.6	0.122	2.513	1.497	6.796	0.086	0.060	1.428	2.407	1.087	0.221	0.291	0.113	1.956 (C)
384	25	1		70.6			38.5	0.095	2.988	1.399	6.679	0.085	0.033	1.593	2.884	1.062	0.213	0.216	0.090	2.367 (C)
379	30	1					65.8	0.095	3.463	1.304	1.304	0.050	0.033	1.758	3.361	1.038	0.123	0.168	0.074	1.662 (C)
374	35	1	0.25		42	62	66.4	0.107	3.998	1.207	1.207	0.050	0.045	1.983	3.898	1.014	0.119	0.138	0.062	N.L. (2)
369	40	1	1				66.7	0.122	4.608	1.111	1.111	0.050	0.060	2.283	4.510	0.985	0.115	0.119	0.054	2.130 (C)
364	45	1					15.8	0.095	5.083	1.048	1.048	0.049	0.033	2.448	4.987	0.972	0.113	0.108	0.051	2.216 (C)
359	50	26					20.9	0.129	5.728	26.303	26.303	0.320	0.067	2.783	5.634	0.913	0.691	0.102	0.047	N.L. (3)
354	55	21		6.1			12.4	0.127	6.363	19.165	19.298	0.207	0.065	3.108	6.271	0.895	0.437	0.098	0.045	9.711 (D)
349	60	11					18	0.119	6.958	9.344	9.344	0.107	0.057	3.393	6.868	0.899	0.228	0.095	0.044	5.182 (C)

(Below Boring Ground Surface)

B-6N

409.00 FT.

65.00 F).

4.30 ET.

0.00 FT.

95 %

Sampler w/out Li

0.353

5.1

=2.5 to 4.5 IN.

* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.362

 $\frac{\text{AVG. SHEAR WAVE VELOCITY (top 40')}}{V_{s,40'}} = 239 \text{ FT./SEC.}$

PGA CALCULATOR	
Earthquake Moment Magnitude =	5.1
Source-To-Site Distance, R (km) =	12.68
Ground Motion Prediction Equations =	CEUS
PGA = 0.222	

REFERENCE BORING NUMBER ==== = B-6S 5.00 FT. (Below Boring Ground Surface) 4.30 FT. (Below Finished Grade Cut or Fill Surface) PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) ===== 0.353 EARTHQUAKE MOMENT MAGNITUDE ======= 5.1 FINISHED GRADE FILL OR CUT FROM BORING SURFACE ========= 0.00 FT. <mark>95</mark> % SAMPLING METHOD=== Sampler w/out Liners

	BORING DATA					CONDITIONS DURING DRILLING					COND	TIONS D	JRING EA	RTHQUAKE						
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q "	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N ₁) ₆₀	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
404.8	2.5	11	2.5				4.4	0.133	0.333	24.878	24.878	0.289	0.133	0.333	0.333	1.500	1.026	0.893	0.205	N.L. (1)
402.3	5	59	2.75				8.2	0.134	0.668	######	131.858	0.962	0.196	0.823	0.866	1.460	3.317	0.789	0.191	N.L. (3)
399.8	7.5	14	2.75				15.4	0.071	0.845	27.378	27.378	0.349	0.071	1.000	1.200	1.291	1.065	0.689	0.190	N.L. (3)
397.3	10	1	1.25		24	40	30.8	0.062	1.000	1.862	1.862	0.052	0.062	1.155	1.511	1.129	0.139	0.596	0.179	N.L. (2)
															* FAC	TOR OF SAF	ETY DESC	RIPTIONS		

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES