

11 Executive Drive, Suite 12, Fairview Heights, Illinois 62208 618-624-8610

Structural Geotechnical Report

Interstate 74 over French Creek FAI Route 74, Section 48(30B)BR Knox County, Illinois PTB153-042 Replacement Structures 048-0106 and 048-0107

Prepared For:

Oates Associates, Inc. 100 Lanter Court, Suite 1 Collinsville, Illinois 62234 618-345-2200

Prepared By:

Millennia Professional Services of Illinois, Ltd. 11 Executive Drive, Suite 12 Fairview Heights, Illinois 62208 618-624-8610

> Authored By: Jacob A. Schaeffer, PE <u>jschaeffer@millennia.pro</u> MPS Project Number MG18013 May 31, 2019 Revised: October 30, 2019

Contents

1.0 PROJECT DESCRIPTION AND PROPOSED STRUCTURE INFORMATION 1.1 1.1 Introduction 1.2 1.2 Project Description 1.3 1.3 Proposed Structure Information 1.3	5 5 5
2.0 SUBSURFACE EXPLORATION AND LABORATORY TESTING	↓ ↓ ↓
3.0 SUBSURFACE CONDITIONS	5
3.1 Geology	5
3.2 Generalized Subsurface Profile	5
3.3 Groundwater	5
4.0 GEOTECHNICAL EVALUATIONS	, , , , , ,
5.0 FOUNDATION EVALUATIONS AND DESIGN RECOMMENDATIONS)
6.0 CONSTRUCTION CONSIDERATIONS)
6.1 Temporary Sheeting and Soil Retention	2
6.2 Subgrade Water Protection	2
6.3 Driven Pile Installation	2
6.4 Subgrade, FIII, and Backfill12	2

- Appendix A Vicinity Map, Figure 1 Site and Boring Location Plan, Figure 2 Subsurface Profiles, Figures 3.1 & 3.2
 Appendix B - Boring Logs and Rock Core Photographs
 Appendix C - Seismic Site Class Spreadsheets
- Appendix D Pile Capacity Summaries

Structure Geotechnical Report Interstate 74 Over French Creek FAI Route 74, Section 48(30B)BR Replacement Structures 048-0106 and 048-0107 Knox County, Illinois

1.0 Project Description and Proposed Structure Information

1.1 Introduction

This report summarizes the results of a geotechnical investigation performed for the design of replacement structures for the existing bridges carrying Interstate 74 over French Creek south of Galesburg, Knox County, Illinois. The purpose of this study was to provide a geotechnical assessment of the planned replacement structures, based on subsurface conditions encountered at four borings performed by Millennia this year and eight borings performed by the Illinois Department of Transportation (IDOT) in 1965, for the existing structures. This report describes the exploration procedures used, presents the field and laboratory data, includes an assessment of the subsurface conditions in the area, and provides geotechnical recommendations for the construction.

1.2 **Project Description**

The project consists of the removal and replacement of the existing Interstate 74 bridges over French Creek in Knox County, Illinois. The general site area is shown on the attached Vicinity Map, Figure 1 in Appendix A. A plan that shows the approximate locations of the borings performed for this study, as well as the boring locations performed in 1965 is presented as the Site and Boring Location Plan, Figure 2 in Appendix A. French Creek is oriented north and south beneath the existing I-74 overpass structures and flows in a southern direction. The existing bridges are about 119-foot long, three-span concrete deck structures supported on steel beams. The end abutments of each existing bridge are founded on steel piles. The intermediate supports appear to be founded on spread footings. It is our understanding that the existing structures will be replaced with new single-span bridges using integral abutments. Based on the information provided, it appears that staged construction will be required to maintain traffic during construction.

1.3 Proposed Structure Information

The proposed structures will consist of two single-span bridges with concrete decks. The superstructures will be supported by integral abutments. It is our understanding that the roadway profile across the bridges will remain essentially unchanged, with little or no grade change for the embankments.

2.0 Subsurface Exploration and Laboratory Testing

2.1 Subsurface Exploration

From March 26 through 29, 2019, MPS conducted a subsurface exploration at the site, consisting of four soil test borings, designated as Borings B-1 EB and -2EB for the eastbound structures and Borings B-1 WB and -2WB for the westbound structures. The approximate locations of both sets of borings, as well as the borings previously drilled for the previous IDOT study in 1965 are indicated on the Site and Boring Location Plan, Figure 2.

The borings were advanced using hollow-stem auger drilling methods. Samples were obtained at 2.5-foot intervals until shale bedrock was encountered, and at 5-foot intervals thereafter to boring termination. Split-spoon samples were recovered using a 2-inch outside-diameter sampler, driven by a 140-pound hammer. This hammer has an energy efficiency rating of 75%. The split-spoon samples were placed in containers for later testing in the laboratory. The sampling sequence for each boring is summarized on the boring logs in Appendix B.

All of the borings were extended below the depth of approximately 35 feet (about 10 feet into augered shale), using NQ-size diamond bit, rock coring methods. The core samples recovered were measured in the field for percent recovery and RQD value. Each core sample was placed in a box for transport to the laboratory. Photographs were taken of the rock core samples and are attached in Appendix B.

Unconfined compression tests were performed on selected split-spoon samples using a Rimac field testing machine. The resulting unconfined compressive strengths are reported on the boring logs.

MPS has also included the boring log data from the 1960's plan set in Appendix B.

2.2 Laboratory Testing

A laboratory testing program consisting of natural moisture contents, Atterberg limits, and particle size distribution was conducted by MPS to determine selected engineering properties of the obtained soil samples. The results of the individual tests are presented on the boring logs in Appendix B.

3.0 Subsurface Conditions

Details of the subsurface conditions encountered at the borings are shown on the boring logs. The general subsurface conditions encountered and their pertinent engineering characteristics are described in the following paragraphs. Conditions represented by the borings should be considered applicable only at the boring locations on the dates shown; the reported conditions may be different at other locations and at other times.

3.1 Geology

The site lies on the Galesburg Plain of the Till Plains Section of the Central Lowland Physiographic Province. The surficial deposits surrounding the upland areas around the bridge site consist of Illinoisan Till of the Glasford Formations. Alluvial deposits consisting of the Cahokia Alluvium are present near the banks of French Creek. The alluvium consists of deposits of sand, silt, and clay, with local deposits of sandy gravel. The underlying bedrock is of the Pennsylvanian Carbondale Formation. This unit is a cyclic deposit, consisting of repeated layers of shale, limestone and sandstone, with thin layers of coal and underclay. The upper bedrock within the project area is predominantly shale.

3.2 Generalized Subsurface Profile

Existing fill or possible fill material related to the construction of the roadway embankment was encountered in each of the borings drilled for this study, to depths ranging from approximately 10 to 15 feet. The embankment soils typically consist of clay loam, silty clay loam, and silty clay. Trace amounts of gravel sized rock fragments were observed in the fill. Moisture contents range from 12 to 26%. The standard penetration test (N) values range from 4 to 16 blows per foot (bpf). Rimac unconfined compression test values on samples range from 1.5 to 3.9 tons per square foot (tsf).

Natural cohesive soils were encountered below the embankment fill at the site and are predominantly made up of silty clay, silty clay loam, and silt loam. The thickness of the cohesive material varies from about 2.5 to 10 feet. The natural soils contain variable amounts of sand, sand seams, and gravel. Moisture contents vary from 19 to 28%. The standard penetration test (N) values range 2 to 9 blows per foot (bpf). Rimac unconfined compression test values on samples range from 0.3 to 0.9 tsf.

Natural granular soils were encountered below the cohesive layer and above shale bedrock. The granular soils generally consist of sandy loam, gravelly sand, and clayey gravel. N-values in the granular soils vary from 3 to 13 bpf. The thickness of the granular soil varies from about 2.5 to 6 feet.

During the course of the fieldwork, shale bedrock was encountered at levels ranging from Elevation 611 to 613.5, approximately 24.0 to 26.5 feet below the natural ground surface. The N-values in the shale range from 50 for 3 inches to 50 for 5 inches of penetration. Moisture contents recorded in the split spoon samples of the shale vary from 7 to 13%. The shale bedrock was cored below a depth of approximately 35 feet at each of the boring locations. The shale is typically very soft to soft and is very fine grained. The core recovery ranges from 95 to 100% and the rock quality designation (RQD) varies from 0 to 93%.

The approximate elevations at which the top of shale were encountered for both this study and the study performed in the 1960's are summarized in Table 1 below:

Boring No.	Approximate Top of Shale Elevation (ft.)
B-1EB	611.9
B-2EB	611.2
B-1WB	612.5
B-2WB	612.3
1*	611.4
2*	613.3
3*	614.1
4*	613.6
5*	612.3
6*	613.1
7*	612.4
8*	612.4

Table 1
Bedrock Elevations (Approx.)

*= boring drilled for 1960's study

3.3 Groundwater

Groundwater was observed at all of the borings during drilling or at completion, at depths ranging from 10 feet (Elevation 612.4) to 25 feet (Elevation 625.9). The presence or absence of groundwater at a particular location does not necessarily indicate that groundwater will be present or absent at that location at other times. Groundwater levels may vary significantly over time due to the effect of seasonal variations in precipitation, the water level in the French Creek, or other factors not evident at the time of exploration.

4.0 Geotechnical Evaluations

4.1 Earthwork and Slope Stability

Grade changes on the approach embankments will be minimal along the roadways. For lane shifts or constructability, it may require that the embankments be widened accordingly in the vicinity of the abutments. It is our understanding that no significant changes to the inclination of the end slopes are planned. As such, we do not anticipate any issues related to slope stability.

4.2 Settlement

The proposed grade changes will be minimal for the new bridge profile. Therefore, issues related to settlement are not anticipated.

4.4 Mining Activity

A review of abandoned coal mines was made using the Illinois State Geological Survey (ISGS) website for mapped coal mines in Knox County, Illinois. Based on this information, the project site is unlikely to be undermined. The nearest coal mine is approximately 6 miles east of the site, near Brimfield.

4.5 Seismicity

Although several significant areas of seismic activity are present in the central United States, the site area is most directly affected by the Wabash Seismic Zone, located in south and east-central Illinois. An assessment of seismic criteria in accord with AASHTO 2009 Guide Specifications for LRFD Seismic Bridge Design has been performed for the site. The IDOT Spreadsheet "Seismic Site Class Determination" was used to determine a Soil Site Class C. We understand that IDOT utilizes the approximate fixity elevation as the point of reference. The United States Geological Survey (USGS) Design Maps Summary Report website was used with the Site Class C classification to provide acceleration coefficient values Sd_s of 0.12 g and Sd₁ of 0.075 g. The results of the Site Class determination and the Design Maps Summary Report are presented in Appendix C. Based on the guidelines in the IDOT All Geotechnical Manual Users (AGMU), including Table 3.15.2-1 in that manual, the Seismic Performance Zone is 1. The site soils do not appear to be susceptible to liquefaction and the effects of liquefaction may be ignored for this site.

4.6 Scour

Abutment slope protection should be included to protect against scour potential.

Countermeasure options for scour at bridge locations could include webwalls to eliminate debris collection between columns, riprap, partially grouted riprap, geotextile sand containers, and sheet piling. Lining the abutment slopes with either Class A4 or A5 stone riprap appears to be appropriate scour protection for the new structures. Skin friction and lateral load design values for piers and driven piles should be ignored in the scour zone. Based on information provided by Oates Associates, Inc., the design scour elevations for the 100-year and 200-year events for the bridges are shown in Table 2.

Table 2.1Summary of Design Scour ElevationsWestbound Structure

Event/Limit State	Design Scour E	Item 113	
	West Abutment	East Abutment	
Q100	628.27	629.14	
Q200	628.27	629.14	8
Design	628.27	629.14	
Check	628.27	629.14	

Table 2.2Summary of Design Scour ElevationsEastbound Structure

Event/Limit State	Design Scour E	Item 113	
	West Abutment	East Abutment	
Q100	628.06	628.79	
Q200	628.06	628.79	8
Design	628.06	628.79	
Check	628.06	628.79	

5.0 Foundation Evaluations and Design Recommendations

5.1 Driven Pile Foundations

The bridge structures may be supported on driven pile foundations. Pile capacities and driving depths have been assessed using the IDOT pile design spreadsheet "Pile Capacity and Length Estimates," version 10/18/2011. Steel H-piles and metal shell piles are both considered to be feasible for this site. However, metal shell piles are not recommended because of the proximity of rock where a possibility of pile damage during driving may occur. Hard driving is anticipated to penetrate a sufficient distance into the shale to achieve the maximum factored capacity, particularly for the heavier sections. Numerous available pile sections may be suitable, and final selection would be based on availability and structural requirements such as pile spacing, installation requirements, etc. Capacity reductions for liquefaction and downdrag do not apply at this site.

The four abutments have been assessed for selected pile sections. Copies of a typical input spreadsheet giving the input parameters for each substructure, and the corresponding summary sheets for the various pile types that are analyzed by the spreadsheet, are included in Appendix D. These tables provide the pile embedment length to develop various capacities, up to that approaching the factored design capacity of the pile. The tables were prepared for pile lengths corresponding to selected depths of the input stratigraphy. Data for key assumptions such as pile cutoff elevation and ground surface elevation against pile driving were provided to MPS by Oates Associates, Inc.

Preliminary factored loading for the bridges are in the following Table.

Table 5.1.

Preliminary Factored Axial Loads at Abutments (kips)

Strength I	Service I	Extreme I
1,722	1,244	1,226

Integral abutments are being considered for the new bridge structures. Use has been made of the pile selection chart given in ABD 12.3, 2012 Integral Abutment Bridge Policies.

The piles exhibited in the tables in Appendix D are the pile sections that are readily available in accordance with the IDOT Geotechnical Manual. With the exception of some of the pipe pile sections, the piles will achieve their nominal structural capacity within the shale. Pile sections that are lighter than those given in the tables for a given pile dimension and location will have a similar capacity-elevation relation, but are expected to reach the maximum capacity at a higher elevation. Steel H-piles should be driven into rock to their maximum required bearing, as indicated on the IDOT pile design length spreadsheets. It should be noted that H-Piles driven into shale may run shorter (or longer) than the IDOT pile design length spreadsheets estimate.

Pile Type and Size	Nominal Required Bearing (kips)	Factored Resistance Available (kips)	Estimated Pile Length (ft.)
HP 8x36	286	157	24
HP 10x42	335	184	23
HP 10x57	454	250	26
HP 12x53	418	230	23
HP 12x63	497	273	25
HP 12x74	589	324	27
HP 12x84	664	365	28
HP 14x73	578	318	24
HP 14x89	705	388	26
HP 14x102	810	445	28
HP 14x117	929	511	30

Table 5.2. Estimated Pile Length Tables Eastbound Structure – West Abutment (Pile Cutoff Elevation: 628.06)

Table 5.3.

Estimated Pile Length Tables Eastbound Structure – East Abutment (Pile Cutoff Elevation: 628.79)

Pile Type and Size	Nominal Required Bearing (kips)	Factored Resistance Available (kips)	Estimated Pile Length (ft.)
HP 8x36	286	157	26
HP 10x42	335	184	26
HP 10x57	454	250	28
HP 12x53	418	230	26
HP 12x63	497	273	27
HP 12x74	589	324	29
HP 12x84	664	365	30
HP 14x73	578	318	27
HP 14x89	705	388	29
HP 14x102	810	445	30
HP 14x117	929	511	32

Pile Type and Size	Nominal Required Bearing (kips)	Factored Resistance Available (kips)	Estimated Pile Length (ft.)
HP 8x36	286	157	24
HP 10x42	335	184	24
HP 10x57	454	250	26
HP 12x53	418	230	24
HP 12x63	497	273	25
HP 12x74	589	324	27
HP 12x84	664	365	28
HP 14x73	578	318	25
HP 14x89	705	388	27
HP 14x102	810	445	28
HP 14x117	929	511	30

Table 5.4. Estimated Pile Length Tables Westbound Structure – West Abutment (Pile Cutoff Elevation: 628.27)

Table 5.5.

Estimated Pile Length Tables Westbound Structure – East Abutment (Pile Cutoff Elevation: 629.14)

Pile Type and Size	Nominal Required Bearing (kips)	Factored Resistance Available (kips)	Estimated Pile Length (ft.)
HP 8x36	286	157	26
HP 10x42	335	184	26
HP 10x57	454	250	28
HP 12x53	418	230	26
HP 12x63	497	273	27
HP 12x74	589	324	29
HP 12x84	664	365	30
HP 14x73	578	318	27
HP 14x89	705	388	29
HP 14x102	810	445	30
HP 14x117	929	511	32

6.0 Construction Considerations

6.1 Temporary Sheeting and Soil Retention

The construction activities should be performed in accordance with the current IDOT Standard Specifications for Road and Bridge Construction. Trenching, excavating, and bracing should be performed in accordance with Occupational Safety and Health Administration (OSHA) regulations, and other applicable regulatory agencies. In accordance with the OSHA excavation standards, the soil at the site is considered to be Type C, which requires a side slope for excavations no steeper than 1.5H:1.0V. However, worker safety and classification of the excavation soil is the responsibility of the contractor. The excavation side slopes for structure foundations may interfere with existing utilities. This will require a temporary soil retention system such as a cantilever sheet pile wall, sheeting, or other temporary support.

Traffic along I-74 will be maintained by utilizing staged construction. It appears as though either a temporary sheet pile, which includes cantilever temporary sheet piling, or a soil retention system, will be feasible at the abutments. Cantilever sheet pile systems may be designed using IDOT Design Guide 3.13.1 – Temporary Sheet Piling Design. Temporary soil retention systems should be designed by an Illinois licensed structural engineer retained by the construction contractor.

6.2 Subgrade Water Protection

Groundwater seepage should be anticipated for excavations extending more than a few feet below the roadway level along I-74 if construction occurs during periods when the water level approaches the design high water elevation. It is anticipated that excavations for the pile cap foundations may be adequately dewatered using sump and pump methods.

6.3 Driven Pile Installation

The driven piles are to be furnished and installed according to the requirements of Section 512 of the IDOT Standard Specifications, 2012. MPS recommends that at least one test pile be driven at each substructure location, in accordance with Section 512.15. The piles should be fitted with reinforced tips to reduce the potential for damage during driving.

6.4 Subgrade, Fill, and Backfill

Earthwork activities including backfill and fill should be performed in accordance with Section 205 of the Standard Specifications.

7.0 Closing

This report has been prepared for the exclusive use of Oates Associates, Inc. and the Illinois Department of Transportation for use in the design and construction of the proposed I-74 over French Creek bridge structures project in Knox County, Illinois. This report has been prepared in accordance with generally accepted soil and foundation engineering practices. No other warranty, expressed or implied, is made to the professional advice and recommendations included herein. This report is not for use by parties other than those named or for purposes other than those stated herein. It may not contain sufficient information for the use of other parties or for other purposes.

If there is a substantial lapse of time between the submission of this report and the start of work at the site, or if conditions have changed due to natural causes or construction operations at or adjacent to the site, this report should be reviewed by MPS to determine the applicability of the analyses and recommendations considering the changed conditions and time lapse. The report should also be reviewed by MPS if changes occur in structure location, size, and type, or in the planned loads, elevations, grading plans, and project concepts.

These analyses and recommendations are based on data obtained from site reconnaissance, the borings performed for this study and other pertinent information presented herein. This report does not reflect any variations between, beyond, or below the borings. Should such variations become evident, it may be necessary to re-evaluate the recommendations of this report after performing on-site observation during the construction period and noting the characteristics of any such variation.

We appreciate this opportunity to be of service to you and would be pleased to discuss any aspect of this report with you at your convenience.

Sincerely,

Millennia Professional Services of Illinois, Ltd.

_cd. PROFESSIONA Jacob A. Schaeffer, P.E. Project Manager JACOB ALLEN SCHAEFFER SCHAEFFER 062.068397 John S. Kottemann, P.E. Senior Project Manager

Appendix A: Vicinity Map and Boring Location Plan

LOADING HL-93 Allow 50#/sq. ft. for future wearing surface.

DESIGN SPECIFICATIONS 2017 AASHTO LRFD Bridge Design Specifications, 8th Edition

DESIGN STRESSES FIELD UNITS

- f'c = 3,500 psi
- f'c = 4,000 psi (Superstructure Concrete) fy = 60,000 psi (Reinforcement)
- PRECAST PRESTRESSED UNITS
- f'c = 8,500 psi
- f'ci = 6,500 psi

fpu = 270,000 psi (0.6" ϕ Low Relaxation Strands) $fpbt = 202,300 psi (0.6" \phi Low Relaxation Strands)$

SEISMIC DATA

Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0 sec. (SD1) = 0.075 Design Spectral Acceleration at 0.2 sec. (SDS) = 0.120 Soil Site Class = C

HIGHWAY CLASSIFICATION

F.A.I. Rte. 74 (I-74) Functional Class: Interstate ADT: 7,050 (2015); 6,663 (2032) ADTT: 2,050 (2015); 1,950 (2032) DHV: 666 (a.m., 2032) Design Speed: 70 m.p.h. Posted Speed: 70 m.p.h. 1-Way Traffic Directional Distribution: 100

DESIGN SCOUR ELEVATION TABLE - WESTBOUND

Event / Limit	Design Sc)	
State	W. Abut. E. Abut.		Item 113
Q100	628.27	629.14	
Q200	628.27	629.14	0
Design	628.27	629.14	0
Check	628.27	629.14	

DESIGN SCOUR ELEVATION TABLE - EASTBOUND

Event / Limit	Design Scour Elevations (ft.))
State	W. Abut. E. Abut.		Item 113
Q100	628.06	628.79	
Q200	628.06	628.79	
Design	628.06	628.79	0
Check	628.06	628.79	

WATERWAY INFORMATION

Exist. Overtopping Elev. 636.80 @ Sta. 683+00													
age Area = 23.6 sq. mi. Prop. Overtopping Elev. 636.80 @ Sta. 683+00													
	Freq.	Q	0peni.	ng Ft²	Nat.	Head	– Ft.	Headwa	ater El.				
	Yr.	C.F.S.	Exist.	Prop.	H.W.E.	Exist.	Prop.	Exist.	Prop.				
	10	2,750	427	463	624.5	0.6	0.0	625.1	624.5				
n	50	4,280	559	605	626.4	1.1	0.4	627.5	626.8				
	100	4,980	608	657	627.1	1.4	0.6	628.5	627.7				
Check	200	5,690	659	711	627.8	1.6	0.8	629.4	628.6				
Calc.	500	6,650	750	807	628.9	1.8	1.0	630.7	629.9				

<u>GENERAL PLAN & ELEVATION</u>
<u>I-74 OVER FRENCH CREEK</u>
F.A.I. RTE. 74
<u>SEC. 48(30B)BR</u>
<u>KNOX COUNTY</u>
STATION 683+94.56
STRUCTURE NO. 048-0106 (WB,
STRUCTURE NO. 048-0107 (EB)

	F.A.I. RTE	SEC	TION		COUNTY	TOTAL SHEETS	SHEET NO.
	74	48(30	B)BR		KNOX		
					CONTRA	CT NO.	
2 SHEETS			ILLINOIS	FED. A	D PROJECT		

CROSS SECTION

(Looing west at S.N. 048-0106, Looking east at S.N. 048-0107 similar)

(Horiz. dim. @ Rt. Ľs)

Lifk Moen Civil Engineering Design CHECKED - CoL REVISED - REVISED - The State of ILLINOIS DEPARTMENT OF TRANSPORTATION The State of ILLINOIS DEPARTMENT OF TRANSPORTATION		USER NAME = acb	DESIGNED - ACB	REVISED -			F.A.I. RTE	SECTION	COUNTY	TOTAL SHEETS	HEET NO.
Civil Engineering Design PLOT SCALE = 0.1667 // in. DRAWN - ACB REVISED - DEPARTMENT OF TRANSPORTATION CONTRACT NO.	EFK•Moen		CHECKED - CDL	REVISED -	STATE OF ILLINOIS		74	48(30B)BR	KNOX		
	Civil Engineering Design	PLOT SCALE = 0.1667 ' / in	DRAWN - ACB	REVISED -	DEPARTMENT OF TRANSPORTATION				CONTRA	CT NO.	
PLOI DATE = 8/2//2019 CHECKED - CDL REVISED -		PLOT DATE = 8/27/2019	CHECKED - CDL	REVISED -		SHEET 2 OF 2 SHEETS		ILLINOIS FED. AI	D PROJECT		

<u>DETAILS</u> <u>I-74 OVER FRENCH CREEK</u> <u>F.A.I. RTE. 74</u> <u>SEC. 48(30B)BR</u> <u>KNOX COUNTY</u> <u>STATION 683+94.56</u> <u>STRUCTURE NO. 048-0106 (WB)</u> <u>STRUCTURE NO. 048-0107 (EB)</u>

I CREEK	F.A.I. RTE	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
	74	48-[29RS-7, 30RS-1];	72-3RS-2	KNOX		
TO STA.		ILLINOIS	PTB153-	042		

Appendix B. Boring Logs and Laboratory Test Results

Boring Logs for This Study

Page $\underline{1}$ of $\underline{2}$

SOIL BORING LOG

Illinois Department of Transportation

Division of Highways Millennia Professional Services of Illinois, Ltd.

Date 3/28/19

ROUTE	FAI RTE 74	DES	SCR	PTION	I	N	O 14 I-74 Over French Creek	L	OGGI	ED BY	<u>L. Wi</u>	illiams
SECTION	SEC			0047		West						
SECTION	40(000)01		_ L			Latitu	de , Longitude	,				
COUNTY	Peoria D	RILLING	ME	THOD		Hol	low Stem Auger HAM	MER TYPE		Auto	matic	
		ſ		_					T_	_		
STRUCT. NO.	048-0055		D	B	U	M	Surface Water Elev.	ft		B	U	M
Station			P	0	s	I	Stream Bed Elev.	ft	P	0	S	I I
BORING NO.	B-1 EB		Т	Ŵ		S	Groundwater Elev.:		T	Ŵ		S
Station	683+12		н	S	Qu	Т	First Encounter6	<u>17.9</u> ft ⊻	н	S	Qu	Т
Offset	12.0 ft Right		(f +)	(/6")	(tof)	(0/)	Upon Completion <u>6</u>	<u>25.9</u> ft∑	(#)	(/6")	(tof)	(0/)
Ground Surfa	ace Elev. 635.86	<u> </u>	(11)	(/0)	((5))	(%)	After <u>24</u> Hrs. <u>6</u>	<u>25.9</u> ft <u>¥</u>	(11)	(/0)	((5))	(70)
Brown Silty Cl	ay Loam, Trace						Brown Clayey Gravel, with Sa	and	_			
Glavel (Fill)		-		2						1		
				2	1.5	17				3		
		-		2	В					34		
									_	10		
		-		6	2.2	16		611.86		16		0
			5	6	3.3 B	10	Gray Shale			50/4		9
		-	-5	-					-23			
		-		3								
		-		4	3.1	17						
					В				_			
		-										
				2						44		
		-		4	2.1	12				50/3"		7
		$\overline{\nabla}$	∀ 10	6	В				-30			
		625.36							_			
Gray Silty Clay	/, Trace Organics	-		3								
				4	1.8	20						
		-		5	В							
		-										
				2						07		<u> </u>
		-		3	10	27				37 50/3"/		8
			-15	3	B	21		600 86	-35			
		-	10				Borehole continued with rock					
							coring.					
		-		0					_			
		-		1 2	1.0	23						
		617 86							—			
Brown Clavev	Gravel, with Sand	017.00										
				4								
		-		5						1		
			-20	4					-40			1

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

$\mathbf{\cdot}$	Division of Highways Millennia Professional Service	es of Illinois, Ltd.						D	ate3	/28/19
	FAI RTE 74		WO 14 I-74	Over Fre	nch Creek		_ LO	GGED	BY <u>L. V</u>	Villiams
	SEC 48(30B)BR	LOCATION	West Abutment,	SEC. , TV	VP. , RNG. ,					
	Peoria CC		Latitude , Long	nuae			R	Р	CORE	S
STRUCT. NO	048-0055	CORING BARREL	_ TYPE & SIZE 2	in	DE	C O	C O V	Q	T I M	R E N
3ORING NO. Station Offset	B-1 EB 683+12 12.0 ft Right	Top of Rock Ele Begin Core Elev	ev. 611.86 7. 600.86	ft ft	P T H	R E	E R Y	D	E	G T H
Ground Sur	face Elev. 635.86	ft			(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
Fray to Dark	Gray (Soft) Very Fine	Grained SHALE			600.86	1	95	88		I
										1
										1
										1
										1
					-40	-				1
										I
						-				I
										I
					_	-				1
										1
										1
					-45	2	100	93		
										1
					_					1
										1
						-				I
										I
					-50	-				I
										I
										I
						-				I
										1
					_	-				1
									1 · · · · · · · · · · · · · · · · · · ·	

End of Boring Color pictures of the cores Cores will be stored for examination until ______ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

SOIL BORING LOG

Illinois Department of Transportation

Division of Highways Millennia Professional Services of Illinois, Ltd. Page <u>1</u> of <u>2</u>

Date <u>3/26/19</u>

ROUTE	FAI RTE 74	DES	SCR	PTION	I I	N	O 14 I-74 Over French Creek	L(oggi	ED BY	L. W	illiams
SECTION _	SEC 48(30B)BR		_ L			West A	Abutment, SEC. , TWP. , RNG. ,					
COUNTY	Peoria D	RILLING	ME	THOD		Hol	low Stem Auger HAMMER			Auto	matic	
		۔۔۔۔۔ ا								_		
STRUCT. NO	0. 048-0054		DF	B	U C	M	Surface Water Elev.	_ ft	DF	B	U C	M
Station _			P	ō	S	I		_ "	P	ō	S	I
BORING NO	. <u>B-1 WB</u>		Т	W	0	S T	Groundwater Elev.:	c. 🕊	Т Н	W S	011	S T
Offset	64.0 ft Left				Qu	•	Upon Completion 619.5	_π⊻_ ft⊽			QU	•
Ground Su	rface Elev. 636.52	ft	(ft)	(/6")	(tsf)	(%)	After Hrs	ft	(ft)	(/6'')	(tsf)	(%)
Bituminous	shoulder (6 inch)	636.02						616.02				
Brown Clay,	Trace Gravel (Fill)	-		8			Brown Clayey Gravel, with Sand			2		
				5	3.9	13			_	3		21
		-	_	6	В					5		
		-										
				14				612.52	_	16		
		-		8			Gray Shale			50/5"/		9
		-	-5	6					-25			
		-		3								
		-		4	2.1	18						
				· '	В							
		-										
		-		3		10				50/5"		
			10	5	2.5 B	19						9
		-	- 10						-30			
		_		_								
				3	2.2	17						
		-		5	Z.S B							
		-	_						_			
		-		2	17	19				41		7
			-15	4	B			601.52	-35			
		621.02					Borehole continued with rock					
Brown Silty	Clay Loam	-		1			coring.					
		∇	,	3	0.9	21						
		<u> </u>	<u> </u>	5	В							
		618.52										
Gray Sandy	Loam		_	1								
		-		1		18						
			-20	2					-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Mill	ennia Professional Service	s of Illinois, Ltd.		_						20/13
SEC	FAI RTE 74	_ DESCRIPTION	<u>WO 14 I-74 C</u>	Over Frenc	h Creek		_ LO	GGED	BY <u>L.</u> V	Villiams
	48(30B)BR	LOCATION Wes	t Abutment, S	EC. , TWP	., RNG. ,					
DUNTY	Peoria CO						R	Б	CORE	S T
RUCT. NO.	048-0054	CORING BARREL TYP	PE & SIZE			•	C		T	R
tation		Core Diamotor	2	in	— D	0	V	Q	M	E N
RING NO.	B-1 WB	Top of Rock Elev.	612.52	_ ft	P	R	E	D	E	G
ation	683+18	Begin Core Elev.	601.52	_ ft	I H	E	R Y	•		н
ifset round Surface	64.0 ft Left	ft			(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
k Gary (Soft t	o Very Soft) Very F	— •• Fine Grained SHALE		(601.52	1	100	0	,	. ,
	. , .									
					-40					
					-45		100	00		
						2	100	30		
					-50					

<u>581.52</u> -55 End of Boring Color pictures of the cores Cores will be stored for examination until ______ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

SOIL BORING LOG

Illinois Department of Transportation

Division of Highways Millennia Professional Services of Illinois, Ltd. Page <u>1</u> of <u>2</u>

Date <u>3/29/19</u>

ROUTE	FAI RTE 74	DE\$	SCRI	PTION	I	N	O 14 I-74 Over French Creek	L(DGG	ED BY	<u>L. Wi</u>	illiams
SECTION	48(30B)BR		L	OCAT	ION _	West A	Abutment, SEC. , TWP. , RNG. ,					
COUNTY	Peoria D	RILLING	6 ME	THOD		Hol	low Stem Auger HAMMER	TYPE		Auto	matic	
STRUCT. NO. Station	048-0055		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	ft ft	D E P	B L O	U C S	M O I
BORING NO. Station Offset	B-2 EB 684+72 66.0 ft Right		H (ft)	vv S (/6")	Qu (tsf)	с т (%)	Groundwater Elev.: First Encounter 616.7 Upon Completion 617.7	_ft⊻ _ft⊻	H (ft)	vv S (/6")	Qu (tsf)	S Т (%)
Brown Silty C Gravel (Fill)	lay Loam, Trace	<u> </u>			()	(//)	Brown Gravelly Sand		·	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,	(70)
				7 7 4	2.9 B	12				0 4 8		20
Brown Silty C (Possible Fill)	lay, Trace Gravel	634.71		5						3		
		632.21	-5	5 7	2.9 B	21			-25	5		
Brown Silty C Gravel (Possi	lay Loam, Trace ble Fill)		- <u> </u>	2	19	26	Gray Shale	611.21		28		13
				5	B	20				25		10
			-10	6 6	2.7 B	13			-30	\50/5"/		8
				2 3 3	2.3 B	18						
		622.21	-15	5 7	2.3 B	18	Borehole continued with rock	602.71	-35	50/3"/		7
	у	619.71		2 2 2	0.8 B	19	comig.					
Gray Sandy L	oam	∇	-20	1		17						

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

(12)"	llinois Depa of Transpor	artment tation	ROCK	COR	RE LC)G		P	'age <u>2</u>	of <u>2</u>
Div Mil	vision of Highways Ilennia Professional Services	s of Illinois, Ltd.						D	ate <u>3</u>	/29/19
	FAI RTE 74	_ DESCRIPTION	WO 14 I-74	Over Fren	ch Creek		_ LO	GGED	BY <u>L. V</u>	Villiams
	48(30B)BR	LOCATION We	est Abutment, a titude . Long	SEC. , TWI itude	P. , RNG. ,					
	Peoria CO						R E	R	CORE	S T
TRUCT. NO	048-0055	CORING BARREL T	YPE & SIZE	in	D	C O	C O V	Q	T I M	R E N
	B-2 FB	Core Diameter Top of Rock Elev.	611.21	ft	P	R	Ē	D	E	G
Station	684+72	Begin Core Elev.	602.71	ft	H H	E	R	•		T H
Offset	66.0 ft Right	#			(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
ark Garv (Soft	to Very Soft) Very F	II Fine Grained SHALE			602 71	1	100	17	(,	()
						-				
						-				
]				
						-				
						-				
					-40	-				
						-				
						1				
						-				
						-				
						-				
						1				
					-45					
						2	100	49		
						-				
					_	1				
						1				
						-				
					-50	-				
						-				
						1				
						-				
						-				
						1				
					_	1				
]				
					582.71 -55					

SOIL BORING LOG

Page <u>1</u> of <u>2</u>

Date <u>3/27/19</u>

ROUTE	FAI RTE 74	_ DES	CRI	PTION	I	N	O 14 I-74 Over French Creek	L(DGGI	ED BY	L. Wi	illiams
SECTION _	SEC 48(30B)BR		_ L	OCAT		East A	butment, SEC., TWP., RNG.,					
COUNTY	Peoria DR	ILLING	MET	THOD		Hol	low Stem Auger HAMMER	R TYPE		Auto	matic	
STRUCT. NO	. <u>048-0054</u>	_	D E P T	B L O W	U C S	M O I S	Surface Water Elev Stream Bed Elev	ft ft	D E P T	B L O W	U C S	M O I S
Station	<u> </u>	_	Ĥ	S	Qu	Ť	First Encounter616.4	ft⊻	Ĥ	S	Qu	T
Offset Ground Sur	15.0 ft Left face Elev. 637.35	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion 612.4 After 24 Hrs. 620.4	ft⊻ ft⊽	(ft)	(/6'')	(tsf)	(%)
Brown Silty C	lay Loam, Trace	_					Gray Clay (continued)					
Gravel (Fill)		_		2			Trace Gravel below 21.0 ft	-	<u> </u>	1		
			_	2	3.5	16				2	0.3	28
				3	В			014.05		2	В	
		-					Brown Clayey Gravel, with Sand					
		_		2	0.0	10				3		
			-5	3	2.3 B	10		612.35	7 -25	6		
		_					Gray Shale	<u>×</u>				
		-		5						19		
		_	_	8						50/4"/		8
			_	8								
		_										
		_		4	15	19				25 \50/3"/		12
			-10	4	B				-30	00/0 /		12
		-		2								
		_		3	2.5	20						
		624.35	_	U	Б							
Gray Silty Lo	am with organics		_	2						24		
		_		5	1.9	19						8
			-15	5	В			602.35	-35			
Grav Clav		621.85	_				Borehole continued with rock coring.					
		_		1								
		Ţ	7	1 1	0.4 B	27						
		_										
			\neg	0								
		-	_	1	0.4	28						
			-20	1	B				-40			

Illinois Department of Transportation

Division of Highways Millennia Professional Services of Illinois, Ltd.

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

OUTE	FAI RTE 74	DESCRIPTION	WO 14 I-74	Over Fren	ch Creek		LO	GGED	BY L.V	Villia
	EC 48(30B)BR		East Abutment S	SEC TWE	P RNG		0		<u> </u>	
	Peoria CC		Latitude , Longi	itude	.,		R		CORE	S
JUNIT							E	R	т	T
RUCT. NO	048-0054	CORING BARREL	TYPE & SIZE		D	c	0 V	Q	i	E
	B 2 \//B	Core Diameter	<u>2</u> v 612.35	_ in ft	E P	R	E	D	E	м С
tation	<u>684+75</u>	Begin Core Elev	602.35	ft	T H	E	R Y	•		ר ד
ffset Fround Surfac	15.0 ft Left e Elev. 637.35	ft			(ft) (#)	(%)	(%)	(min/ft)	(ts
rk Gray (Soft) Very Fine Grained	I SHALE			602.35	1	100	3		
						-				
					-	-				
						-				
						-				
					-40)				
					_	-				
						-				
						-				
						5				
						2	100	38		
						-				
					-	-				
						-				
					-50)				
					_	-				
					_	-				
]				
					-	-				

Boring Log Information for 1960's Study

DEDICNED John W Clark Q.

CHILCKED Tai how

AWN

THEOMAD TAN

Rock Core Photographs

Rock Core Photographs WO 14 I-74 Over French Creek Project No. MG18013 Millennia Professional Services Boring B-1 EB

Run	Depth (ft.)	Recovery (%)	RQD (%)
1	35.0-45.0	95	88

Boring B-1 EB

Top Run 2			SOM A	C. C		
						P))
	Alto III San S	MAL		The sum a mark	and a second	
				- Marianez		
	1000				and the second	End Run 2

Run	Depth (ft.)	Recovery (%)	RQD (%)
2	45.0-55.0	100	93

Rock Core Photographs WO 14 I-74 Over French Creek Project No. MG18013 Millennia Professional Services

Run	Depth (ft.)	Recovery (%)	RQD (%)
1	35.0-45.0	100	17

Boring B-2 EB

Run	Depth (ft.)	Recovery (%)	RQD (%)
2	45.0-55.0	100	49

Boring B-2 EB

Rock Core Photographs WO 14 I-74 Over French Creek Project No. MG18013 Millennia Professional Services

Boring B-1 WB

Run	Depth (ft.)	Recovery (%)	RQD (%)
1	35.0-45.0	100	0

Boring B-1 WB

Run	Depth (ft.)	Recovery (%)	RQD (%)
2	45.0-55.0	100	30

Rock Core Photographs WO 14 I-74 Over French Creek Project No. MG18013 Millennia Professional Services Boring B-2 WB

Run	Depth (ft.)	Recovery (%)	RQD (%)
1	35.0-45.0	100	3
	_		

Boring B-2 WB

Run	Depth (ft.)	Recovery (%)	RQD (%)
2	45.0-55.0	100	38

Appendix C. Seismic Site Class Spreadsheet

SEISMIC SITE CLASS DETERMINATION

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

629 12 inches

PROJECT TITLE====1-74 over French Creek

Base of Substruct. Elev. (or ground surf for bens) 0.020 Base of Substruct. Elev. (or ground surf for bens) 0.020 Boring Number 0-160 Boring Number 0-22 ft. Individual Site Class Definition: 0.22 ft. N (dar): 50 (Bowrft). Soil Site Class C Seismic Bot. Of Soil Colum Soil Site Class C Seismic Bot. Of Soil Colum Soil Site Class C Soil Site Class C <t< th=""><th>Substructu</th><th>ire 1</th><th></th><th></th><th></th><th></th><th></th><th>Substructu</th><th>ıre 2</th><th></th><th></th><th></th><th></th><th>-</th></t<>	Substructu	ire 1						Substructu	ıre 2					-
Pile or Shatt Dia. 12 Pile or Shatt Dia. 12 1 12 1 12 1 1 12 1 <td>Base of Subst</td> <td>ruct. Elev. (o</td> <td>or ground su</td> <td>urf for</td> <td>bents)</td> <td>628</td> <td>ft.</td> <td>Base of Subst</td> <td>ruct. Elev. (d</td> <td>or ground su</td> <td>urf for</td> <td>bents)</td> <td>629</td> <td>ft.</td>	Base of Subst	ruct. Elev. (o	or ground su	urf for	bents)	628	ft.	Base of Subst	ruct. Elev. (d	or ground su	urf for	bents)	629	ft.
Boring Number B-XEB Top of Boring Elev. 632 ft. Approximate Fluty Elev. 632 ft. Individual Site Class Definition: 632 ft. N (Dar): 58 (Browrkh). Soil Site Class C Seigming Browner 58 (Browrkh). Soil Site Class C N, (Dar): 58 (Browrkh). Soil Site Class C Seigming Browner 58 (Browrkh). Soil Site Class C Seigming Browner 58 (Brownerkh). Soil Site Class C Seigming Browner 1000 (State Class C Seigming Browner 1000 (State Class C) Seigming B	Pile or Shaft D	ia.				12	inches	Pile or Shaft D	Dia.				12	incl
Top of Boring Elev. 0339 ft. Approximate Fixity Elev. 622 ft. Individual Site Class Definition: 623 ft. N (bar): 56 (Blowaft.) 50il Site Class C Soli Anto: 50i Site Class C 623 ft. Soli Anto: 50il Site Class C 623 ft. Soli Anto: 50il Site Class C 623 ft. Soli Anto: Soli Site Class C 623 ft. Soli Anto: Soli Site Class C 623 ft. Soli Anto: Soli Site Class C 623 ft. Soli Claum Sample Description 633 ft. 2.26 ft. 1.2 ft. 634 ft. 624 ft. 1.0 ft. 635 ft. 635 ft. 7.0 ft. 636 ft. 2.26 ft. 1.2 ft. 100.0 ft. 52.0 ft. 1.	Boring Numbe	er				B-1EB		Boring Numbe	er				B-2EB	
Approximate Fixity Elev. 622 ft. Individual Site Class Definition: N(har): 68 (Blows/ft.) Soil Site Class C N _n (har): 68 (Blows/ft.) Soil Site Class C Control Seismic Bot. Of Soil Site Class C Control Soil Colum Sample Totes control Soil Site Class C Soil Colum Sample Totes control Soil Site Class C Soil Colum Sample Totes control Soil Site Class D 1 633.0 2.26 11 3.0 633.0 2.26 11 3.0 633.0 2.26 11 2.0 1.0 621.0 1.0 0.0 0.0 630.0 2.0 11 2.0 0 3.5 618.5 2.20 11.0.0 0.0 630.0 2.26 12.20 0.0 3.5 618.5 2.20 91.60 0.0 7.5 618.0 2.20 10.0 623.0 2.20 12.20 0.0 0.0 6.00 7.5 618.0 2.20 10.0 6.00 6.00 7.5 6	Top of Boring	Elev.				636	ft.	Top of Boring	Elev.				638	ft.
Individual Site Class Definition: Individual Site Class Definition: N: (har): 58; (Blowsrft): Soil Site Class C Concentration N: (har): 43; (Biowsrft): Soil Site Class C Concentration Seismic Bot. Of Sample Leyer Association Soil Site Class D Soil Colum Sample Leyer Leyer Association Soil Site Class D Soil Colum Sample Leyer Description Bot. Of Sample Leyer 033.0 2.26 11 3.30 Concentration Soil Site Class D Sample Leyer 033.0 2.26 11 3.30 Concentration Sample Leyer 1.0 Colum Sample Leyer Sample Leyer 3.3 Colum Sample Leyer Sample Leyer 1.00 Colume Sample Leyer Sample Leyer 1.00 Colume Sample Leyer Sample Leyer 1.00 <td< td=""><td>Approximate F</td><td>ixity Elev.</td><td></td><td></td><td></td><td>622</td><td>ft.</td><td>Approximate F</td><td>Fixity Elev.</td><td></td><td></td><td></td><td>623</td><td>ft.</td></td<>	Approximate F	ixity Elev.				622	ft.	Approximate F	Fixity Elev.				623	ft.
Nan (bar): 55 (Bowsht) Soil Site Class C Na, (bar): 430 (Kt) Soil Site Class C Seismic Bot. Of 3430 Sample Layer Soil Sum Sample Description Depth Elevation Thick, N Qu Boundary (ft) (ft) (ft) (ft) (ft) Que 633.0 2.250 11 3.30 Case C Soil Colum Sample Description 06.00 616.0 2.250 11 3.30 Case C Particle Elevation Thick, N Qu Boundary (ft) (ft) <td< td=""><td>Individual Sit</td><td>e Class Def</td><td>inition:</td><td></td><td></td><td></td><td></td><td>Individual Sit</td><td>e Class Def</td><td>inition:</td><td></td><td></td><td></td><td></td></td<>	Individual Sit	e Class Def	inition:					Individual Sit	e Class Def	inition:				
Na, (bar): 35 Ellowsth. Soil Stie Class C <controls< th=""> Seismic Bot. Of Soil Stie Class C Soil Stie Class C <controls< td=""> Seismic Bot. Of Sample Layer Depth Elevation Thick. N. Q. Boundary (h) (th) (ts) Soil Stie Class C <controls< th=""> Soil Colum Sample Description Soil Stie Class C <controls< td=""> 0 Sample Description Soil Stie Class C <controls< td=""> 0 Controls Sample Description 0 Controls Sample Description 0 Controls 2.50 11 3.01 0 Controls 2.50 10 2.60 2.50 1.0 Controls 2.50 10 Boil Controls Boil Controls 3.5 6160 2.50 10 Boil Controls Boil Controls Boil Controls 3.5 6160 2.50 10 Boil Controls Boil Controls Boil Controls</controls<></controls<></controls<></controls<></controls<>	N (bar):	58	(Blows/ft.)	Soil	Site C	lass C		N (bar):	32	(Blows/ft.)	Soil	Site C	lass D	
S. (bar): <u>4.35</u> (ksf) Soil Site Class C Seismic Bot. Of Sample Layer Depth Elevation Thick. N Qu Boundary (t) (t) (ts) Claure Sample Description 633.0 2.50 11 3.30 Elevation Thick. N Qu Boundary (t) (ts) 2.50 11 3.30 Elevation Thick. N Qu Boundary (t) (ts) 2.50 11 3.30 Elevation Elevation Elevation Thick. N Qu Boundary (t) (ts) 2.50 11 3.30 Elevation	N _{ch} (bar):	85	(Blows/ft.)	Soil	Site C	lass C <co< td=""><td>ontrols</td><td>N_{ch} (bar):</td><td>38</td><td>(Blows/ft.)</td><td>Soil</td><td>Site C</td><td>lass D <co< td=""><td>ontro</td></co<></td></co<>	ontrols	N _{ch} (bar):	38	(Blows/ft.)	Soil	Site C	lass D <co< td=""><td>ontro</td></co<>	ontro
Seismic Bot. Of Soil Column Sample Layer Description Depth Elevation Thick. N Oue Boundary (f) (f) (f) (f) Sample S	s _u (bar):	4.36	(ksf)	Soil	Site C	lass C		s _u (bar):	4.38	(ksf)	Soil	Site C	lass C	
Soil Column Sample Description Depth Elevation Thick N Que Boundary (ft) (ft) <td< td=""><td>Seismic</td><td>Bot. Of</td><td>I</td><td></td><td></td><td>Layer</td><td></td><td>Seismic</td><td>Bot. Of</td><td></td><td></td><td></td><td>Layer</td><td></td></td<>	Seismic	Bot. Of	I			Layer		Seismic	Bot. Of				Layer	
Depth Elevation Thick. N Qu Boundary. (t) (t) (t) (t) (t) (t) (t) (t) 2.50 14 1.50 (t)	Soil Column	Sample	Sample			Description		Soil Column	Sample	Sample			Description	1
(ft) (ft) (ft) (ft) (ft) (ft) (ft) 633.6 2.50 4 1.50 633.0 2.50 11 2.40 B 625.6 2.50 11 3.30 633.0 2.50 12 2.40 B 625.6 2.50 10 2.10 B 633.0 2.50 12 2.70 - 625.7 2.50 10 2.10 B 625.0 2.50 12 2.70 - 625.5 2.50 4 10.0 B 2.50 12 2.70 - 615.5 2.50 4 10.0 B 2.50 12 2.70 - 615.5 2.50 12 2.70 - 625.0 2.50 12 - 10.0 52.50 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Depth	Elevation	Thick.	Ν	Qu	Boundary		Depth	Elevation	Thick.	Ν	Qu	Boundary	_
6335 2.50 4 1.50 6310 2.50 11 3.0 6285 2.50 11 3.10 6285 2.50 12 2.00 12 2.00 6285 2.50 10 2.10 B 6330 2.50 12 2.00 B 6285 2.50 7 1.00 C 2.50 12 2.00 B 600 616.0 2.50 2.50 12 2.00 B 60.0 615.0 2.50 12 2.00 B 50 615.0 2.50 12 2.00 B 60.0 610.0 2.50 12 2.00 B 100.0 502.0 97 B 7.5 615.5 2.50 12 2.0 100.0 502.0 97 0 0 0.0 7.0 0 0 100.0 502.0 97 0 0 0 </td <td>(ft)</td> <td></td> <td>(ft.)</td> <td></td> <td>(tsf)</td> <td></td> <td></td> <td>(ft)</td> <td></td> <td>(ft.)</td> <td></td> <td>(tsf)</td> <td></td> <td></td>	(ft)		(ft.)		(tsf)			(ft)		(ft.)		(tsf)		
6310 2.50 11 3.30 628.5 2.50 11 3.10 628.6 2.50 12 2.90 628.7 2.50 12 2.70 628.7 2.50 10 2.50 12 2.30 633.6 62.50 2.50 12 2.30 10 633.6 62.50 2.50 12 2.30 10 633.6 62.50 2.50 12 2.30 10 633.6 62.50 2.50 12 2.30 10 633.6 62.50 2.50 12 2.30 10 633.6 2.50 2.50 12 2.30 10 633.6 2.50 2.50 13 10 10 633.7 5.50 613.0 2.50 13 10 522.0 1.50 100 100 500 R 100.0 523.0 100 100 500 R 100.0 523.0 100 100 500 R 100.0 523.0 100 500 R 100.0 523.0 100 500 R 100 100 100		633.5	2.50	4	1.50				635.5	2.50	11	2.90	В	
626.0 2.50 11 3.10 626.0 2.50 2.50 12 2.70 625.0 2.50 7 1.00 627.0 2.50 12 2.20 <		631.0	2.50	11	3.30				633.0	2.50	12	2.90	В	
6260 2.50 10 2.10 B 6220 2.50 9 1.80 625 2.50 6 2.30 B 3.5 618.5 2.50 7 1.00 B 5.50 610.0 2.50 7 1.00 3.5 618.5 2.50 7 7 B 7.5 615.5 2.50 12 2.70 100.0 522.0 91.50 100 5.00 R 100.0 6130 2.50 13 B 100.0 522.0 91.50 100 5.00 R 100.0 6130 2.50 13 B 100.0 522.0 91.50 100 5.00 R 100.0 523.0 90.00 100 5.00 R 100.0 523.0 90.00 100 5.00 R 100.0		628.5	2.50	11	3.10				630.5	2.50	8	1.90		
623.5 2.50 9 1.80 625.5 2.50 4 0.00 8 3.5 616.5 2.50 4 100 B 2.50 4 0.00 B 6.0 616.0 2.50 4 100 B 2.50 4 0.00 B 6.0 615.0 2.50 37 B 7.5 615.5 2.50 12 - 100.0 522.0 91.50 100 500 R 100.0 613.0 2.50 12 - 100.0 523.0 91.50 100 500 R 100.0 523.0 90.00 100 5.00 R 100.0 523.0 90.00 100 5.00 R - <t< td=""><td></td><td>626.0</td><td>2.50</td><td>10</td><td>2.10</td><td>В</td><td></td><td></td><td>628.0</td><td>2.50</td><td>12</td><td>2.70</td><td></td><td></td></t<>		626.0	2.50	10	2.10	В			628.0	2.50	12	2.70		
1.0 6210 2.20 7 1.00 B 2.50 12 2.30 B 3.5 618.5 2.50 4 1.00 B 5.5 618.0 2.50 4 0.80 B 6.0 613.5 2.50 37 B 7.5 615.5 2.50 12 2.30 B 100.0 522.0 91.50 100 5.00 R 100.0 613.0 2.50 12		623.5	2.50	9	1.80				625.5	2.50	6	2.30		
3.5 618.5 2.20 4 1.00 B 2.5 5.0 2.50 4 0.80 B 6.0 616.0 2.50 9 9 5.5 5.5 5.5 2.50 2 B 613.5 2.50 3.7 B 7.5 613.0 2.50 12 - 610.0 91.50 0.500 R 100.0 613.0 2.50 12 - 613.0 2.50 12 - 613.0 2.50 12 - 613.0 2.50 12 - - - - 613.0 2.50 12 - - - - 613.0 2.50 12 - - - - 613.0 2.50 13 B - - - 613.0 2.50 10.0 0 5.00 R - 615.0 2.50 10.0 100.0 0 5.00 R 615.0 2.50 10 100.0 0 5.00 R 615.0 2.50 10 100.0 100.0 100.0 100.0 615.0 10 10 10	1.0	621.0	2.50	7	1.00				623.0	2.50	12	2.30	В	
6.0 616.0 2.60 5 0.00 2.50 2 0.00 2 8.5 613.5 2.50 37 B 7.5 615.5 2.50 12 - 100.0 5.20 91.50 100 5.00 R 100.0 5.00 R 100.0 5.20 91.50 100 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0 5.00 R 100.0	3.5	618.5	2.50		1.00	В		25	620.5	2.50	4	0.80	B	
8.5 613.5 2.60 37 B 7.5 615.5 2.60 12 100.0 522.0 91.50 100 5.00 R 100.0 613.0 2.50 13 B 100.0 522.0 91.50 100 5.00 R 100.0 613.0 2.50 13 B 100.0 522.0 90.00 100 5.00 R 100.0 523.0 90.00 100 5.00 R 100.0	6.0	616.0	2.50	م		5		5.0	618.0	2.50	2	0.00	B	
0133 233 37 0 <t< td=""><td>0.0</td><td>612.5</td><td>2.50</td><td>27</td><td></td><td>P</td><td></td><td>7.5</td><td>615.5</td><td>2.50</td><td>12</td><td></td><td></td><td></td></t<>	0.0	612.5	2.50	27		P		7.5	615.5	2.50	12			
1000 322.0 91.30 100 300 R 1000 523.0 90.00 100 500 R 1000 523.0 90.00 100 500 R 1000 100 500 R 1000 100 500 R 1000 100 100 100 100 100 100 100 1000 100 100 100 100 100 100 100 1000 100 100 100 100 100 100 100 1000 100 100 100 100 100 100 100 1000 100 100 100 100 100 100 100 1000 100 100 100 100 100 100 100 1000 100 100 100 100 100 100 100 1000 100 100 100 100 100 100 100 1000 100 100 100 100 100 100 100 1000 100 100 100 100 100 100 1000 <td< td=""><td>0.0</td><td>500.0</td><td>2.50</td><td>100</td><td>5.00</td><td>D</td><td></td><td>1.0</td><td>010.0</td><td>2.50</td><td>12</td><td></td><td>P</td><td></td></td<>	0.0	500.0	2.50	100	5.00	D		1.0	010.0	2.50	12		P	
	100.0	522.0	91.50	100	5.00	ĸ		10.0	500.0	2.50	10	5.00	B	
								100.0	523.0	90.00	100	5.00	R	

Substructu	re 3									
Base of Subst	ruct Flev (o	r around su	urf for l	hents)	628	ft				
Pile or Shaft D	ia.	i groana oo		001100)	12	inches				
Boring Numbe	ra.				B-1WB					
Top of Boring	Top of Boring Elev. 636.5 ft.									
Approximate F	ixity Elev.				622	ft.				
Individual Site	e Class Defi	inition:				•				
N (bar):	41	(Blows/ft)	Soil	Sita CI	ace D					
N ₋ (bar):	47	(Blows/ft.)	Soil	Site CI	ass D <cr< td=""><td>ntrols</td></cr<>	ntrols				
s. (bar):	4.42	(ksf)	Soil	Site CI	ass C					
		()								
Seismic	Bot. Of				Layer					
Soil Column	Sample	Sample			Description					
Depth	Elevation	Thick.	Ν	Qu	Boundary					
(ft)		(ft.)		(tsf)						
	634.0	2.50	11	3.90						
	631.5	2.50	14	2.10						
	629.0	2.50	7	2.10						
	626.5	2.50	12	2.50						
	624.0	2.50	9	2.30	D					
0.5	621.5	2.50	/	1.70	<u>B</u>					
3.U 5.5	616.5	2.50	0	0.90	D D					
0.0	614.0	2.50	0		D					
100.0	522.0	02.00	100	5.00	D					
100.0	522.0	32.00	100	5.00	IX I					
			_	_						

Substructure 4 Base of Substruct. Elev. (or ground surf for bents) 629 ft. Pile or Shaft Dia. 12 inches Boring Number B-2WB Top of Boring Elev. 637 ft Approximate Fixity Elev. 623 ft. Individual Site Class Definition: 23 (Blows/ft.) Soil Site Class D N (bar): N_{ch} (bar): 82 (Blows/ft.) Soil Site Class C s_u (bar): 2.49 (ksf) Soil Site Class C <----Controls Seismic Bot. Of Layer Soil Column Sample Sample Description Thick. Depth Elevation N Qu Boundary (ft) (ft.) (tsf) 634.5 2.5 3.50 632.0 2.5 2 3 629.5 2.50 2.30 627.0 2.5 1.50 2.50 9 2.50 В 624.5 622.0 2.50 10 1.90 В 1.0 619.5 2.50 0.40 В 3.5 6.0 617.0 2.50 0.40 В 8.5 614.5 2.50 В 11.0 612.0 2.50 В 100.0 523.0 89.00 R

Global Site Class Definition: Substructures 1 through 4

N (bar):	39	(Blows/ft.)	Soil Site Class D
N _{ch} (bar):	63	(Blows/ft.)	Soil Site Class C <controls< td=""></controls<>
s _u (bar):	3.9	(ksf)	Soil Site Class C

Modified on 12/10/10

Appendix D. Pile Capacity Summaries

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBST REFER	RUCTUF	RE======= ORING ===			East Bour B-1 EB	nd-West A	Abutment	<u>МАХ. </u>	REQUIRED	BEARIN	G & RESI	STANCE for S	Selected Pile	, Soil Profile,	& Losses
LRFD o	r ASD or	SEISMIC =	======		LRFD)		Maximu	m Nominal	Maximu	m Nominal	Maximum	Factored	Maxim	um Pile
PILE CI	JTOFF E	ELEV. =====	=======		630.06	ft		Req'd Be	aring of Pile	Req.d Bea	ring of Boring	Resistance Ava	ilable in <u>Boring</u>	Driveable Ler	igth in Boring
GROUN	ID SURF	ACE ELEV	AGAINS	T PILE DURING DRI	628.06	ft		286	KIPS	286	KIPS	157	KIPS	24	FT.
GEOTE	CHNICA	L LOSS TY	PE (None	e, Scour, Liquef., DD)	Scou	r									
BOTTO	M ELEV	OF SCOU	r, lique	F., or DD =======	628.06	ft									
TOP EL	EV. OF	LIQUEF. (so	layers a	bove apply DD) ====		= ft									
TOT 4:	FAOTO		- DU OT		1700										
TOTAL	FACIO	RED SUBST	RUCIU	RE LOAD =======	1722	kips									
TOTAL	LENGTH	HOF SUBS	TRUCTU	RE (along skew)====	======	= ft									
NUMBE			LES PER	SUBSTRUCTURE =											
	Approx.	Factored Lo	bading Ap	oplied per pile at 8 ft.	Cts =====		KIPS								
	Approx.	Factored Lo	bading Ap	oplied per pile at 3 ft.	Cts =====		KIPS								
) SIZE ====		Steel	HP 8 X 36	;									
	Plugaec	Pile Perime	eter====		2.695	FT.	Unplugged	l Pile Peri	meter====		3.892	FT.			
	Plugged	Pile End B	earing Ar	ea===============	0.454	SQFT.	Unplugged	Pile End	Bearing A	ea=====	0.074	SQFT.			
	000		5				1 000		5						
BOT.		UNCONE	6 D T		NOI	MINAL PLUC	GGED	NO	MINAL UNPLO	JG'D	NOMINAL	FACTORED	FACTORED	FACTORED	ESTMATED
		COMPR	3.P.I. N	OR ROCK I AVER	SIDE	END BRG	τοται	SIDE	END BRG	τοται	REQ'D	LOSS FROM	IOSSIOAD	RESISTANCE	PILE
ELEV	TUICK	STRENGTH	VALUE	DESCRIPTION	DECIET	DESIST.	DECIST	DESIGT	DESIST	DESIGT	DEADING		EROM DD	AVALABLE	

LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
625.56	2.50	2.10	10		8.1		19.5	11.7		13.5	14	0	0	7	5
623.06	2.50	1.80	9		7.3	11.5	21.8	10.6	1.9	23.3	22	0	0	12	7
620.56	2.50	1.00	7		4.8	6.4	26.6	6.9	1.0	30.2	27	0	0	15	10
618.06	2.50	1.00	4		4.8	6.4	35.2	6.9	1.0	37.7	35	0	0	19	12
615.56	2.50		9	Sandy Gravel	1.4	10.2	68.2	2.0	1.7	44.9	45	0	0	25	15
612.06	3.50		37	Sandy Gravel	11.3	41.8	94.2	16.3	6.8	63.6	64	0	0	35	18
611.06	1.00			Shale	33.6	56.5	127.8	48.5	9.2	112.0	112	0	0	62	19
610.06	1.00			Shale	33.6	56.5	161.4	48.5	9.2	160.5	161	0	0	88	20
609.06	1.00			Shale	33.6	56.5	194.9	48.5	9.2	209.0	195	0	0	107	21
608.06	1.00			Shale	33.6	56.5	228.5	48.5	9.2	257.5	229	0	0	126	22
607.06	1.00			Shale	33.6	56.5	262.1	48.5	9.2	306.0	262	0	0	144	23
606.06	1.00			Shale	33.6	56.5	295.6	48.5	9.2	354.4	296	θ	Ð	-163	2 4
605.06	1.00			Shale	33.6	56.5	329.2	48.5	9.2	402.9	329	θ	θ	-181	25
604.06	1.00			Shale	33.6	56.5	362.8	48.5	9.2	451.4	363	θ	θ	200	26
603.06	1.00			Shale	33.6	56.5	396.4	48.5	9.2	499.9	396	Ð	Ð	218	24
602.06	1.00			Snale	33.6	56.5	429.9	48.5	9.2	548.4	430	U	Ð	230	28
601.06	1.00			Shale	33.6	50.5	403.5	48.5	9.2	596.8	464	U	Ð	200	29
500.00	1.00			Shale	33.0	50.5	497.1	46.5	9.2	045.3	497	U	U	273	30
599.06	1.00			Snale	33.6	56.5	530.6	48.5	9.2	693.8	531	U	Ð	292	31
595.00	1.00			Shale	33.0	50.5	504.2	40.5	9.2	742.3	004	e e e e e e e e e e e e e e e e e e e	÷,	310	32
597.00	1.00			Shale	33.0	00.0 56 5	597.6 631.4	40.0	9.2	790.7	080 621	e e e e e e e e e e e e e e e e e e e	÷.	328	33 24
590.00	1.00			Shale	33.0	50.5	664.0	40.0 40.5	9.2	039.2	001 665	Q	4	347	34
595.00	1.00			Shale	33.0	50.5 E6 E	609.5	40.0	9.2	007.7	600	Q	4	300	30
594.00	1.00			Shale	33.0	50.5	722.1	40.0 40.5	9.2	930.2	722	0	4	402	30
502.00	1.00			Shale	33.6	56.5	765.7	40.5	9.2	1033 1	766	0	Ū.	400	29
501.06	1.00			Shale	33.6	56.5	700.7	48.5	9.2	1081.6	700	0	0	440	30
590.06	1.00			Shale	33.6	56.5	832.8	48.5	0.2	1130 1	933	ф Д	ф Д	459	40
589.06	1.00			Shale	33.6	56.5	866.4	48.5	9.2	1178.6	266	D D	ل م	400	40
588.06	1.00			Shale	33.6	56.5	899.9	48.5	9.2	1227 1	900	۵ م	Ď	495	42
587.06	1.00			Shale	33.6	56.5	933.5	48.5	9.2	1275.5	934	д Д	Â	513	43
586.06	1.00			Shale	33.6	56.5	967.1	48.5	9.2	1324.0	967	д Д	Â	532	44
585.06	1.00			Shale	33.6	56.5	1000 7	48.5	9.2	1372.5	1001	д Д	Â	550	45
584.06	1.00			Shale	33.6	56.5	1034.2	48.5	9.2	1421.0	1034	Ð	Ð	569	46
583.06	1.00			Shale	33.6	56.5	1067.8	48.5	9.2	1469.5	1068	,	,	587	47
582.06	1.00			Shale	33.6	56.5	1101.4	48.5	9.2	1517.9	1101	,	,	606	48
581.06	1.00			Shale	33.6	56.5	1134.9	48.5	9.2	1566.4	1135	,	Ð	624	49
580.06	1.00			Shale		56.5			9.2				-		-

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

179.2

179.2

179.2

179 2

179.2

179.2

179.2

179.2

179.2

179.2

179 2

179.2

179.2

179.2

179.2

179.2

179.2

179.2 179.2

179.2

179.2 179.2 889.0

948.8

1008.6

1068.4

1128.2

1188.0

1247.8

1307.6

1367.4

1427.2

1487.0

1546.7

1606.5

1666.3

1726.1

1785.9

1845.7

1905.5

1965.3

2025.1

2084.9

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

59.8

Shale Shale

Shale Shale Shale Shale

Shale

Modified 10/18/201

EFEREN	ICE B(ORING ===			B-2 EB		butment	MAX. I	REQUIRED	BEARIN	G & RESI	STANCE for S	Selected Pile	, Soil Profile,	, & Losses
					630.70	ft		Pog'd Ro	aring of Dilo	Pog d Rog	ring of Boring			Drivoable Lo	nath in Boring
					628 79	ft		Req 0 Be	KIPS	Req.0 Bea	KIPS	445		20 DIIVeable Lei	FT
OTECH		LLOSS TY	PF (None	Scour Liquef DD)	Scou					0.0	141 0		141 0		
				F or DD =================================	628 70	ft									
			n lavers a	hove apply DD =====	020.73	ft									
			o layero a			I.									
TAL FA	CTOF	RED SUBST	FRUCTUF	RE LOAD =======	1722	kips									
TAL LE	NGTH	OF SUBS	TRUCTU	RE (along skew)====	========	= ft									
MBER (OF RO	OWS OF PI	LES PER	SUBSTRUCTURE =	=======										
An	prox.	Factored L	oading Ar	plied per pile at 8 ft.	Cts =====		KIPS								
Ap	prox.	Factored L	oading Ar	plied per pile at 3 ft.	Cts =====		KIPS								
= TYPF		SIZE ====	======	Steel HI	P 14 X 102										
Pli	unned	Pile Perim	eter====		4 800	FT	Unplugged	l Pile Peri	meter====	=======	7 058	FT			
	ugged ugged	Dilo End P			· 1/30	SOFT	Unplugged	I Dilo End	Rearing Ar		0.208	SOFT			
1 10	uggeu		curing / a	cu	1.400	Older I.	Unpluggee			Cu	0.200				
									5						
									5						
									5						
от.					NO			NO		ICID		FACTORED	FACTORED		
DT. DF		UNCONF.	S.P.T.	GRANULAR	NOI	MINAL PLUC	GED	NOI	MINAL UNPLU	JG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATE
ot. F YER LA	AYER	UNCONF. COMPR.	S.P.T. N	GRANULAR OR ROCK LAYER	NOI SIDE	MINAL PLUC	GGED TOTAL	NOI SIDE	MINAL UNPLU	JG'D TOTAL	NOMINAL REQ'D	FACTORED GEOTECH. LOSS FROM	FACTORED GEOTECH. LOSS LOAD	FACTORED RESISTANCE	ESTIMATE PILE
T. F ER LA	AYER HICK.	UNCONF. COMPR. STRENGTH	S.P.T. N VALUE	GRANULAR OR ROCK LAYER DESCRIPTION	NOI SIDE RESIST.	MINAL PLUC END BRG. RESIST.	GGED TOTAL RESIST.	NOI SIDE RESIST.	MINAL UNPLU END BRG. RESIST.	JG'D TOTAL RESIST.	NOMINAL REQ'D BEARING	FACTORED GEOTECH. LOSS FROM SCOUR or DD	FACTORED GEOTECH. LOSS LOAD FROM DD	FACTORED RESISTANCE AVAILABLE	ESTIMATE PILE LENGTH
от. F ER LA EV. ТН Г.) (I	AYER HICK. (FT.)	UNCONF. COMPR. STRENGTH (TSF.)	S.P.T. N VALUE (BLOWS)	GRANULAR OR ROCK LAYER DESCRIPTION	NOI SIDE RESIST. (KIPS)	MINAL PLUC END BRG. RESIST. (KIPS)	GGED TOTAL RESIST. (KIPS)	NOI SIDE RESIST. (KIPS)	MINAL UNPLU END BRG. RESIST. (KIPS)	JG'D TOTAL RESIST. (KIPS)	NOMINAL REQ'D BEARING (KIPS)	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS)	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS)	FACTORED RESISTANCE AVAILABLE (KIPS)	ESTIMATE PILE LENGTH (FT.)
0T. F ER LA EV. Th T.) (1 .79 3	AYER HICK. (FT.) 3.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30	S.P.T. N VALUE (BLOWS)	GRANULAR OR ROCK LAYER DESCRIPTION	NOI SIDE RESIST. (KIPS) 18.3	MINAL PLUC END BRG. RESIST. (KIPS)	GGED TOTAL RESIST. (KIPS) 64.7	NOI SIDE RESIST. (KIPS) 27.0	MINAL UNPLU END BRG. RESIST. (KIPS)	JG'D TOTAL RESIST. (KIPS) 33.7	NOMINAL REQ'D BEARING (KIPS) 34	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS)	FACTORED RESISTANCE AVAILABLE (KIPS) 19	ESTIMATE PILE LENGTH (FT.) 5
07. F ER LA EV. Th T.) (1 .79 3 .79 3	AYER HICK. (FT.) 3.00 3.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 2.30	S.P.T. N VALUE (BLOWS) 6 12	GRANULAR OR ROCK LAYER DESCRIPTION	NOI SIDE RESIST. (KIPS) 18.3 18.3 18.3	MINAL PLUC END BRG. RESIST. (KIPS) 46.4	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5	NOI SIDE RESIST. (KIPS) 27.0 27.0 27.0 21.0	MINAL UNPLU END BRG. RESIST. (KIPS) 6.7	JG'D TOTAL RESIST. (KIPS) 33.7 56.3	NOMINAL REQ'D BEARING (KIPS) 34 53	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 19 29	ESTIMATE PILE LENGTH (FT.) 5 8
07. F ER LA EV. Th T.) (1 .79 3 .79 3 .29 2 70 2	AYER HICK. (FT.) 3.00 3.00 2.50	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2	GRANULAR OR ROCK LAYER DESCRIPTION	NOI SIDE RESIST. (KIPS) 18.3 18.3 7.1	MINAL PLUC END BRG. RESIST. (KIPS) 46.4 16.1	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 97.2	NOI SIDE RESIST. (KIPS) 27.0 27.0 27.0 27.0 10.4	MINAL UNPLO END BRG. RESIST. (KIPS) 6.7 2.3 1.0	JG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 74 2	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 19 29 28 30	ESTIMATE PILE LENGTH (FT.) 5 8 11
DT. DF (ER LA EV. TH T.) (1 3.79 3 .79 3 .29 2 .79 2 .79 2	AYER HICK. (FT.) 3.00 3.00 2.50 2.50 2.50	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2 2	GRANULAR OR ROCK LAYER DESCRIPTION	NOI SIDE RESIST. (KIPS) 18.3 18.3 7.1 0.4 2.9	MINAL PLUC END BRG. RESIST. (KIPS) 46.4 16.1 6.8 43.0	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 87.2 93.7	NOI SIDE RESIST. (KIPS) 27.0 27.0 10.4 0.6 4.2	MINAL UNPLU END BRG. RESIST. (KIPS) 6.7 2.3 1.0 6.2	JG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 71.2 75 9	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71 71	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 19 29 28 39 42	ESTIMATE PILE LENGTH (FT.) 5 8 11 13 16
DT. DF (ER LA EV. TH T.) (1) 5.79 3 2.79 3 0.29 2 7.79 2 5.29 2 29 4	AYER HICK. (FT.) 3.00 3.00 2.50 2.50 2.50 4.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2 12 13	GRANULAR OR ROCK LAYER DESCRIPTION	NOI SIDE RESIST. (KIPS) 18.3 18.3 7.1 0.4 2.9 5.0	MINAL PLUC END BRG. RESIST. (KIPS) 46.4 16.1 6.8 43.0 46.6	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 87.2 93.7 231.3	NOI SIDE RESIST. (KIPS) 27.0 27.0 10.4 0.6 4.2 7.3	MINAL UNPLU END BRG. RESIST. (KIPS) 6.7 2.3 1.0 6.2 6.7	JG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 71.2 75.9 102 5	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71 76 102	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 19 29 28 39 42 56	ESTIMATE PILE LENGTH (FT.) 5 8 11 13 16 20
OT. DF YER LA EV. TH T.) (1 5.79 3 2.79 3 2.79 3 0.29 2 7.79 2 5.29 2 1.29 4 1.29 4 0.29 12	AYER HICK. (FT.) 3.00 3.00 2.50 2.50 2.50 4.00 1.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2 12 12 13	GRANULAR OR ROCK LAYER DESCRIPTION Fine Sand Clean Coarse Sand Clean Coarse Sand Shale	NOI SIDE RESIST. (KIPS) 18.3 7.1 0.4 2.9 5.0 5.0	MINAL PLUC END BRG. RESIST. (KIPS) 46.4 16.1 6.8 43.0 46.6 179.2	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 87.2 93.7 231.3 291.1	NOI SIDE RESIST. (KIPS) 27.0 27.0 10.4 0.6 4.2 7.3 87 9	MINAL UNPLO END BRG. RESIST. (KIPS) 6.7 2.3 1.0 6.2 6.7 2.5 9	JG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 71.2 75.9 102.5 190.4	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71 76 102 190	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0 0 0 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0 0 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 19 29 28 39 42 56 105	ESTIMATE PILE LENGTH (FT.) 5 8 11 13 16 20 20 5
DT. DF FER LA EV. TF C(1) 5.79 3 3.79 3 3.79 3 3.29 2 2.29 2 2.29 4 3.29 1 3.29 1 3.29 1 3.29 2 3.29 2 4.29 2 3.29 4 3.29 2 3.29 2 3.29 4 3.29 2 3.29 4 3.29 2 3.29 4 3.29 4	AYER HICK. (FT.) 3.00 2.50 2.50 4.00 1.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2 12 12 13	GRANULAR OR ROCK LAYER DESCRIPTION Fine Sand Clean Coarse Sand Clean Coarse Sand Shale Shale	NOI SIDE RESIST. (KIPS) 18.3 7.1 0.4 2.9 5.0 59.8 59.8	MINAL PLUC END BRG. RESIST. (KIPS) 46.4 16.1 6.8 43.0 46.6 179.2 179.2	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 87.2 93.7 231.3 291.1 350.9	NOI SIDE RESIST. (KIPS) 27.0 27.0 27.0 27.0 10.4 0.6 4.2 7.3 87.9 87.9	MINAL UNPLU END BRG. RESIST. (KIPS) 6.7 2.3 1.0 6.2 6.7 25.9 25.9	JG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 65.3 71.2 75.9 102.5 190.4 278.3	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71 76 102 190 278	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 29 28 39 42 56 105 153	ESTIMATE PILE LENGTH (FT.) 5 8 11 13 16 20 20.5 21.5
DT. F F EV. TF T.) (1 779 3 779 3 779 2 29 2 779 2 29 2 29 2 29 2 29 4 29 1 29 1 29 1 29 1 29 1 29 2 20 4 20 1 20 1	AYER HICK. (FT.) 3.00 2.50 2.50 4.00 1.00 1.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2 12 13	GRANULAR OR ROCK LAYER DESCRIPTION Fine Sand Clean Coarse Sand Clean Coarse Sand Shale Shale Shale	NOI SIDE RESIST. (KIPS) 18.3 7.1 0.4 2.9 5.0 59.8 59.8 59.8	MINAL PLUC END BRG. RESIST. (KIPS) 46.4 16.1 6.8 43.0 46.6 179.2 179.2 179.2	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 87.2 93.7 231.3 291.1 350.9 410.7	NOI SIDE RESIST. (KIPS) 27.0 27.0 27.0 27.0 10.4 0.6 4.2 7.3 87.9 87.9 87.9	MINAL UNPLU END BRG. RESIST. (KIPS) 6.7 2.3 1.0 6.7 2.3 1.0 6.2 6.7 25.9 25.9 25.9	JG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 71.2 75.9 102.5 190.4 278.3 366.2	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71 76 102 190 278 366	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 19 29 28 39 42 56 105 153 201	ESTIMATE PILE LENGTH (FT.) 5 8 11 13 16 20.5 21.5 22.5
DT. F F EV. TF T.) ((7.79 3 7.79 3 7.79 2 2.29 2 7.79 2 2.29 2 2.29 4 2.29 1 2.29 1 2.29 1 2.29 1 2.29 1	AYER HICK. (FT.) 3.00 2.50 2.50 2.50 2.50 1.00 1.00 1.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2 12 13	GRANULAR OR ROCK LAYER DESCRIPTION Fine Sand Clean Coarse Sand Clean Coarse Sand Shale Shale Shale Shale	NOI SIDE RESIST. (KIPS) 18.3 18.3 18.3 18.3 7.1 0.4 2.9 5.0 59.8 59.8 59.8 59.8	MINAL PLUC END BRG. RESIST. (KIPS) 46.4 16.1 6.8 43.0 46.6 179.2 179.2 179.2 179.2	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 87.2 93.7 231.3 291.1 350.9 410.7 470.4	NOI SIDE RESIST. (КИРS) 27.0 27.0 10.4 4.2 7.3 87.9 87.9 87.9 87.9 87.9 87.9	MINAL UNPLU END BRG. RESIST. (KIPS) 6.7 2.3 1.0 6.2 6.7 25.9 25.9 25.9 25.9 25.9	JG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 71.2 75.9 102.5 190.4 278.3 366.2 190.4 278.3 366.2 454.2	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71 76 102 190 278 366 454	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 19 29 28 39 42 56 105 153 201 250	ESTIMATE PILE LENGTH (FT.) 5 8 11 13 16 20 20.5 21.5 22.5 23.5
DT. F ER LA EV. TH T.) (1 79 3 79 3 29 2 79 2 29 2 29 4 29 1 29 2 20 1 20 2 20 1 20 2 20 1 20 2 20 2 20 2 20 2 20 1 20 2 20 2 20 1 20 2 20 2 20 1 20 2 20 1 20 2 20 2 20 1 20 1	AYER HICK. (FT.) 3.00 2.50 2.50 2.50 2.50 1.00 1.00 1.00 1.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2 12 13	GRANULAR OR ROCK LAYER DESCRIPTION Fine Sand Clean Coarse Sand Clean Coarse Sand Clean Coarse Sand Shale Shale Shale Shale Shale Shale	NOI SIDE RESIST. (KIPS) 18.3 18.3 18.3 18.3 7.1 0.4 2.9 5.0 59.8 59.8 59.8 59.8 59.8	Alinal PLUC END BRG. RESIST. (KIPS) 46.4 16.1 6.8 43.0 46.6 179.2 179.2 179.2 179.2 179.2 179.2 179.2	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 87.2 93.7 231.3 291.1 350.9 410.7 470.4 530.2	NOI SIDE RESIST. (KIPS) 27.0 27.0 27.0 10.4 0.6 4.2 7.3 87.9 87.9 87.9 87.9 87.9 87.9	MINAL UNPLO END BRG. RESIST. (KIPS) 6.7 2.3 1.0 6.2 6.7 25.9 25.9 25.9 25.9 25.9 25.9 25.9	IG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 71.2 75.9 102.5 190.4 278.3 366.2 454.2	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71 76 102 190 278 366 454 530	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 19 29 28 39 42 56 105 153 201 250 292	ESTIMATE PILE LENGTH (FT.) 5 8 11 13 16 20 5 21.5 21.5 22.5 23.5 24.5
DT. IF IF IER LA EV. TF T T.79 3 2 .79 3 2 .79 2 2 .79 2 2 .29 2 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2 .29 1 2	AYER HICK. (FT.) 3.00 2.50 2.50 2.50 1.00 1.00 1.00 1.00 1.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2 12 13	GRANULAR OR ROCK LAYER DESCRIPTION Fine Sand Clean Coarse Sand Clean Coarse Sand Clean Coarse Sand Shale Shale Shale Shale Shale Shale Shale Shale	NOI SIDE RESIST. (KIPS) 18.3 18.3 7.1 0.4 2.9 5.0 59.8 59.8 59.8 59.8 59.8 59.8 59.8	MINAL PLUC END BRG. RESIST. (KIPS) 46.4 16.1 6.8 43.0 46.6 179.2 179.2 179.2 179.2 179.2 179.2	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 87.2 93.7 231.3 291.1 350.9 410.7 470.4 530.2 590.0	NOI SIDE RESIST. (KIPS) 27.0 10.4 0.6 4.2 7.3 87.9 87.9 87.9 87.9 87.9 87.9 87.9 87.9	MINAL UNPLU END BRG. RESIST. (KIPS) 6.7 2.3 1.0 6.2 6.7 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9	JG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 71.2 75.9 102.5 190.4 278.3 366.2 454.2 542.1 630.0	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71 76 102 190 278 366 454 530 590	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 29 28 39 42 56 105 153 201 250 292 325	ESTIMATE PILE LENGTH (FT.) 5 8 11 13 16 20 20.5 21.5 22.5 23.5 24.5 24.5 25.5
DT. F FER LA EV. TF T.79 3 .79 3 .29 2 .29 2 .29 2 .29 1 .29 1 .29 1 .29 1 .29 1 .29 1 .29 1 .29 1 .29 1 .29 1 .29 1 .29 1 .29 1	AYER HICK. (FT.) 3.00 2.50 2.50 1.00 1.00 1.00 1.00 1.00 1.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2 12 13	GRANULAR OR ROCK LAYER DESCRIPTION Fine Sand Clean Coarse Sand Clean Coarse Sand Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale	NOI SIDE RESIST. (KIPS) 18.3 7.1 0.4 2.9 5.0 59.8 59.8 59.8 59.8 59.8 59.8 59.8 59.8	AMINAL PLUC END BRG. RESIST. (KIPS) 46.4 16.1 6.8 43.0 46.6 179.2 179.2 179.2 179.2 179.2 179.2 179.2 179.2 179.2 179.2 179.2 179.2	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 87.2 93.7 231.3 291.1 350.9 410.7 470.4 530.2 590.0 649.8	NOI SIDE RESIST. (KIPS) 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	MINAL UNPLU END BRG. RESIST. (KIPS) 6.7 2.3 1.0 6.7 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9	JG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 71.2 71.2 70.5 190.4 278.3 366.2 454.2 542.1 630.0	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71 76 102 190 278 366 454 530 590 650	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 19 29 28 39 42 56 105 153 201 250 292 292 325 357	ESTIMATE PILE LENGTH (FT.) 5 8 11 13 16 20 20.5 21.5 22.5 23.5 24.5 25.5 26.5
DT. F EER LA EV. TH T.) (1 T.) (1 T.) (2 T.) (2	AYER HICK. (FT.) 3.00 2.50 2.50 2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00	UNCONF. COMPR. STRENGTH (TSF.) 2.30 2.30 0.80	S.P.T. N VALUE (BLOWS) 6 12 4 2 12 13	GRANULAR OR ROCK LAYER DESCRIPTION Fine Sand Clean Coarse Sand Clean Coarse Sand Clean Coarse Sand Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale	NOI SIDE RESIST. (KIPS) 18.3 18.3 18.3 7.1 0.4 2.9 5.0 59.8 59.8 59.8 59.8 59.8 59.8 59.8 59.8	ИINAL PLUC END BRG. RESIST. (КIPS) 46.4 16.1 6.8 43.0 46.6 179.2 179.2 179.2 179.2 179.2 179.2 179.2 179.2 179.2 179.2	GGED TOTAL RESIST. (KIPS) 64.7 52.8 50.5 87.2 93.7 231.3 291.1 350.9 410.7 470.4 530.2 590.0 649.8 709.6	NOI SIDE RESIST. (KIPS) 27.0 27.0 10.4 0.6 4.2 7.3 87.9 87.9 87.9 87.9 87.9 87.9 87.9 87.9	MINAL UNPLO END BRG. RESIST. (KIPS) 6.7 2.3 1.0 6.2 6.7 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9	JG'D TOTAL RESIST. (KIPS) 33.7 56.3 65.3 71.2 75.9 102.5 190.4 278.3 366.2 454.2 190.4 278.3 366.2 454.2 190.4 278.3 366.2 454.2 190.4 190.0 717.9 805.9	NOMINAL REQ'D BEARING (KIPS) 34 53 51 71 76 102 190 278 366 454 530 590 650 710	FACTORED GEOTECH. LOSS FROM SCOUR or DD 0	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACTORED RESISTANCE AVAILABLE (KIPS) 19 29 28 39 42 56 105 153 201 250 292 325 357 3300	ESTIMATI PILE LENGTI 5 5 8 11 13 16 20 20.5 21.5 22.5 23.5 24.5 24.5 25.5 26.5 26.5 27.5

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

25.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

87.9

1069.6

1157.6

1245.5

1333.4

1421.4

1509.3

1597.2

1685.1

1773.1

1861.0

1948.9

2036.8

2124.8

2212.7

2300.6

2388.5

2476.5

2564.4

2652.3

2740.3

2828.2

889

949

1009 1068

1128

1188

1248

1308

1367

1427 1487

1547

1607

1666

1726

1786

1846

1906 1965

2025

2085

Ð

θ

θ

θ

Ð

θ

Ð

Ð

Ð

θ

θ

Ð

θ

θ

Ð

Ð

θ

θ θ

θ

Ð

Ð

Ð

θ θ

Ð

θ

Ð

θ

Ð

ө Ө

θ

θ

0 Ф

Ð

θ

θ θ

θ

A

489

522

555 588

621

653

686

719

752

785 818

851

884

916 949

982

1015

1048 1081

1114

1147

30.5

31.5

32.5

33.5

34.5

35.5

-36.5 -37.5

38.5

39.5

40.5

41.5

42.5

43.5 44.5

45.5

46.5

47.5 48.5

49.5

50.5

600.29

599.29

598.29

597 29

596.29

595.29

594 29

593.29

592.29

591.29

590 29

589.29

588.29

587.29

586.29

585.29

584.29

583.29

582.29

581.29

580.29

579.29

1.00 1.00 1.00

1.00 1.00

1.00

1.00 1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00 1.00

1.00

1.00

1.00 1.00

1.00

1.00

1.00

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBSTRUCTURE====================================		DEADING & DESI	STANCE for Selected Bile	Sail Profile & Lassas
REFERENCE BORING ====================================	WAA. REQUIRED	BEARING & RESI	STANCE IOI Selected File,	Son Frome, & Losses
LRFD or ASD or SEISMIC ====================================	Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
PILE CUTOFF ELEV. ====================================	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
GROUND SURFACE ELEV. AGAINST PILE DURING DRI 628.27 ft	418 KIPS	418 KIPS	230 KIPS	24 FT.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) Scour	B	-		
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ======= 628.27 ft				
TOP ELEV. OF LIQUEF. (so layers above apply DD) ========== ft				
TOTAL FACTORED SUBSTRUCTURE LOAD ============ 1722 kips TOTAL LENGTH OF SUBSTRUCTURE (along skew)========= ft NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ======= ft Approx. Factored Loading Applied per pile at 8 ft. Cts =====: KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts =====: KIPS				
PILE TYPE AND SIZE ======== Steel HP 12 X 53				

5.800 FT. 0.108 SQFT.

BOT. OF		UNCONF.	S.P.T.	GRANULAR	NOI	MINAL PLUG	GED	NOI	MINAL UNPLU	JG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
625.77	2.50	2.50	12		13.4		45.1	19.5		23.0	23	0	0	13	5
623.27	2.50	2.30	9		12.6	31.7	49.4	18.5	3.5	40.6	41	0	0	22	7
620.77	2.50	1.70	7		10.4	23.4	48.8	15.2	2.6	54.5	49	0	0	27	10
618.27	2.50	0.90	8		6.5	12.4	50.2	9.5	1.4	63.4	50	0	0	28	12
615.77	2.50		3	Fine Sand	0.5	7.3	62.9	0.7	0.8	65.5	63	0	0	35	15
612.77	3.00		8	Sandy Gravel	2.2	19.6	168.1	3.3	2.1	80.0	80	0	0	44	18
611.77	1.00			Shale	49.4	122.5	217.5	72.3	13.4	152.3	152	0	0	84	18.5
610.77	1.00			Shale	49.4	122.5	266.9	72.3	13.4	224.5	225	0	0	123	19.5
609.77	1.00			Shale	49.4	122.5	316.3	72.3	13.4	296.8	297	0	0	163	20.5
608.77	1.00			Shale	49.4	122.5	365.7	72.3	13.4	369.0	366	0	0	201	21.5
607.77	1.00			Shale	49.4	122.5	415.1	72.3	13.4	441.3	415	0	0	228	22.5
605.77	1.00			Shale	49.4	122.5	404.0 514.0	72.3	13.4	595.9	400 514	U	Đ Đ	200 292	23.0 24.5
604 77	1.00			Shale	49.4	122.5	563.4	72.3	13.4	658.0	563	Ð	Ð	310	25.5
603 77	1.00			Shale	49.4	122.5	612.8	72.3	13.4	730.3	613	0	0	337	26.5
602.77	1.00			Shale	49.4	122.5	662.2	72.3	13.4	802.6	662	Ð	Ð	364	27.5
601.77	1.00			Shale	49.4	122.5	711.6	72.3	13.4	874.8	712	Ð	Ð	391	28.5
600.77	1.00			Shale	49.4	122.5	761.0	72.3	13.4	947.1	761	θ	θ	419	29.5
599.77	1.00			Shale	49.4	122.5	810.4	72.3	13.4	1019.3	810	θ	Ð	446	30.5
598.77	1.00			Shale	49.4	122.5	859.9	72.3	13.4	1091.6	860	θ	Ð	473	31.5
597.77	1.00			Shale	49.4	122.5	909.3	72.3	13.4	1163.8	909	Ð	Ð	500	32.5
596.77	1.00			Shale	49.4	122.5	958.7	72.3	13.4	1236.1	959	θ	θ	527	-33.5
595.77	1.00			Shale	49.4	122.5	1008.1	72.3	13.4	1308.3	1008	θ	θ	554	34.5
594.77	1.00			Shale	49.4	122.5	1057.5	72.3	13.4	1380.6	1058	θ	θ	582	35.5
593.77	1.00			Shale	49.4	122.5	1106.9	72.3	13.4	1452.8	1107	θ	θ	609	-36.5
592.77	1.00			Shale	49.4	122.5	1156.3	72.3	13.4	1525.1	1156	θ	θ	636	37.5
591.77	1.00			Shale	49.4	122.5	1205.7	72.3	13.4	1597.3	1206	θ	θ	663	-38.5
590.77	1.00			Shale	49.4	122.5	1255.2	72.3	13.4	1669.6	1255	θ	θ	690	-39.5
589.77	1.00			Shale	49.4	122.5	1304.6	72.3	13.4	1741.8	1305	θ	θ	718	40.5
588.77	1.00			Shale	49.4	122.5	1354.0	72.3	13.4	1814.1	1354	θ	θ	745	41.5
587.77	1.00			Shale	49.4	122.5	1403.4	72.3	13.4	1886.3	1403	θ	θ	772	42.5
586.77	1.00			Shale	49.4	122.5	1452.8	72.3	13.4	1958.6	1453	θ	θ	799	-43.5
585.77	1.00			Shale	49.4	122.5	1502.2	72.3	13.4	2030.8	1502	θ	θ	826	44.5
584.77	1.00			Shale	49.4	122.5	1551.6	72.3	13.4	2103.1	1552	θ	θ	853	45.5
583.77	1.00			Shale	49.4	122.5	1601.1	72.3	13.4	2175.3	1601	θ	θ	881	-46.5
582.77	1.00			Shale	49.4	122.5	1650.5	72.3	13.4	2247.6	1650	θ	θ	908	47.5
581.77	1.00			Shale	49.4	122.5	1699.9	72.3	13.4	2319.8	1700	Ð	Ð	935	48.5
580.77	1.00			Shale		122.5		I	13.4						

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBSTR REFERE	RUCTUF	RE======= ORING ===	=======		West Bou B-2 WB	nd-East A	butment	<u>МАХ. I</u>	REQUIRED	BEARIN	G & RESI	STANCE for S	Selected Pile	, Soil Profile,	& Losses
LRFD or	r ASD or	SEISMIC =	======	==============================	LRFD			Maximu	m Nominal	Maximu	m Nominal	Maximum	Factored	Maxim	um Pile
PILE CL	JTOFF E	ELEV. =====	=======		631.14	ft		Req'd Be	aring of <u>Pile</u>	Req.d Bea	ring of Boring	Resistance Ava	ilable in <u>Boring</u>	Driveable Le	ngth in <u>Boring</u>
GROUN	ID SURF	ACE ELEV	. AGAINS	T PILE DURING DR	629.14	ft		589	KIPS	589	KIPS	324	KIPS	29	FT.
GEOTE	CHNICA	L LOSS TY	PE (None	, Scour, Liquef., DD)	Scour										
BOTTO	M ELEV	. OF SCOU	R, LIQUE	F., or DD =======	629.14	ft									
TOP EL	EV. OF	LIQUEF. (so	layers a	bove apply DD) ====	=======	ft									
TOTAL I	FACTO	RED SUBST	RUCTUF	RE LOAD =======	1722	kips									
TOTAL I	LENGTH	H OF SUBS	TRUCTU	RE (along skew)====		ft									
NUMBE	R OF R	OWS OF PI	LES PER	SUBSTRUCTURE =											
	Approx.	Factored L	oading Ap	plied per pile at 8 ft.	Cts =====	:	KIPS								
	Approx.	Factored Lo	oading Ap	plied per pile at 3 ft.	Cts =====	:	KIPS								
PILE TY	PE AND) SIZE ====	======	Steel H	HP 12 X 74										
	Plugged	Pile Perim	eter====		4.050	FT.	Unplugged	I Pile Peri	meter====	=======	5.908	FT.			
	Plugged	l Pile End B	earing Ar	ea=======	1.025	SQFT.	Unplugged	I Pile End	Bearing Ar	ea=====	0.151	SQFT.			
-															
			1								1	54070050	51070050		
<i>вот.</i> ОГ		UNCONE	SPT		NON	MINAL PLUG	GED	NO	MINAL UNPLU	JG'D	NOMINAL	GEOTECH	GEOTECH	EACTORED	ESTIMATED
		COMPR	3.P.1. N	OR ROCK I AVER	SIDE	END BRG	τοται	SIDE	END BRG	τοται	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV	THICK	STRENGTH	VALUE	DESCRIPTION	RESIST	RESIST	RESIST	RESIST	RESIST	RESIST	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSE.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT)

ELEV. (FT.) THICK. (TSF.) STRENGTH (BLOWS) VALUE (BLOWS) DESCRIPTION RESIST. (KIPS) RESIST. (KIPS) RESIST. (KIPS) RESIST. (KIPS) RESIST. (KIPS) RESIST. (KIPS) RESIST. (KIPS) RESIST. (KIPS) BEARING (KIPS) SCOUR or DD (KIPS) FROM L (KIPS) 626.64 2.50 1.48 9 9.7 45.1 14.1 19.3 19 0 0 621.64 2.50 2.47 9 13.5 35.5 50.5 19.7 5.2 37.8 38 0 0 621.64 2.50 1.90 10 11.4 27.3 40.3 16.6 4.0 51.3 40 0 0 619.14 2.50 0.40 2 3.2 5.7 43.5 4.7 0.8 56.0 44 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0 0 0 614.14 5.50	AVAILABLE (KIPS) LENGTH (FT.) 11 5 21 7 22 10 24 12 25 15 37 17 47 20 88 20.5 128 21.5
(FT.) (TSF.) (BLOWS) (KIPS) (KIPS)<	(KIPS) (FT.) 11 5 21 7 22 10 24 12 25 15 37 17 47 20 88 20.5 128 21.5
626.64 2.50 1.48 9 9.7 45.1 14.1 19.3 19 0 0 624.14 2.50 2.47 9 13.5 35.5 50.5 19.7 5.2 37.8 38 0 0 624.14 2.50 1.90 10 11.4 27.3 40.3 16.6 4.0 51.3 40 0 0 619.14 2.50 0.40 2 3.2 5.7 43.5 4.7 0.8 56.0 44 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0 0 616.64 2.50 0.40 2 3.5 4.7 6.8 60.5 45 0	11 5 21 7 22 10 24 12 25 15 37 17 47 20 88 20.5 128 21.5
624.14 2.50 2.47 9 13.5 35.5 50.5 19.7 5.2 37.8 38 0 0 621.64 2.50 1.90 10 11.4 27.3 40.3 16.6 4.0 51.3 40 0 0 619.14 2.50 0.40 2 3.2 5.7 43.5 4.7 0.8 56.0 44 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0 0	21 7 22 10 24 12 25 15 37 17 47 20 88 20.5 128 21.5
621.64 2.50 1.90 10 11.4 27.3 40.3 16.6 4.0 51.3 40 0 0 619.14 2.50 0.40 2 3.2 5.7 43.5 4.7 0.8 56.0 44 0 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 56.0 44 0 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0	22 10 24 12 25 15 37 17 47 20 88 20.5 128 21.5
619.14 2.50 0.40 2 3.2 5.7 43.5 4.7 0.8 56.0 44 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 56.0 44 0 0 616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0 0 616.14 2.50 0.20 2.5 7 45.3 4.7 0.8 60.5 45 0 0	24 12 25 15 37 17 47 20 88 20.5 128 21.5
616.64 2.50 0.40 2 3.2 5.7 45.3 4.7 0.8 60.5 45 0<	25 15 37 17 47 20 88 20.5 128 21.5
	37 17 47 20 88 20.5 128 21.5
014.14 2.30 0.30 4 2.3 4.3 /1.0 3.0 0.0 0/.0 68 0 0 0	47 20 88 20.5 128 21.5
611.64 2.50 11 Sandy Gravel 2.6 28.1 173.8 3.8 4.1 86.1 86 0 0	88 20.5 128 21.5
610.64 1.00 Shale 50.5 127.7 224.2 73.6 18.9 159.7 160 0 0	128 21.5
609.64 1.00 Shale 50.5 127.7 274.7 73.6 18.9 233.3 233 0 0	
608.64 1.00 Shale 50.5 127.7 325.1 73.6 18.9 306.9 307 0 0	169 22.5
607.64 1.00 Shale 50.5 127.7 375.6 73.6 18.9 380.5 376 0 0	207 23.5
606.64 1.00 Shale 50.5 127.7 426.0 73.6 18.9 454.1 426 0 0	234 24.5
605.64 1.00 Shale 50.5 127.7 476.5 73.6 18.9 527.7 476 0 0	262 25.5
604.64 1.00 Shale 50.5 127.7 526.9 73.6 18.9 601.3 527 0 0	290 26.5
603.64 1.00 Shale 50.5 127.7 577.4 73.6 18.9 674.9 577 0 0	318 27.5
602.64 1.00 Shale 50.5 127.7 627.8 73.6 18.9 748.5 628 θ θ	345 28.5
601.64 1.00 Shale 50.5 127.7 678.3 73.6 18.9 822.1 678 0 0	373 29.5
600.64 1.00 Shale 50.5 127.7 728.7 73.6 18.9 895.7 72.9 θ	401 30.5
599.64 1.00 Shale 50.5 127.7 779.2 73.6 18.9 969.3 779 θ θ	429 31.5
598.64 1.00 Shale 50.5 127.7 829.6 73.6 18.9 1042.9 830 0 0	456
597.64 1.00 Shale 50.5 127.7 880.1 73.6 18.9 1116.5 880 0 0 0	484 33.5
596.64 1.00 Shale 50.5 127.7 930.5 73.6 18.9 1190.1 931 0 0	512 34.5
595.64 1.00 Shale 50.5 127.7 981.0 73.6 18.9 1263.7 981 0 0	540 35.5
594.64 1.00 Shale 50.5 127.7 1031.4 73.6 18.9 1337.3 1031 θ θ	567 36.5
593.64 1.00 Shale 50.5 127.7 1081.9 73.6 18.9 1410.9 1 082 0 0	595 37.5
592.64 1.00 Shale 50.5 127.7 1132.3 73.6 18.9 1484.5 1132 0 0	623 38.5
591.64 1.00 Shale 50.5 127.7 1182.8 73.6 18.9 1558.1 1183 0 0	651 39.5
590.64 1.00 Shale 50.5 127.7 1233.2 73.6 18.9 1631.7 1233 θ θ	678 40.5
589.64 1.00 Shale 50.5 127.7 1283.7 73.6 18.9 1705.3 1284 θ θ	706 41.5
588.64 1.00 Shale 50.5 127.7 1334.2 73.6 18.9 1778.9 1334 θ θ	73 4 42.5
587.64 1.00 Shale 50.5 127.7 1384.6 73.6 18.9 1852.5 1385 θ	762 43.5
586.64 1.00 Shale 50.5 127.7 1435.1 73.6 18.9 1926.1 1435 θ θ	789 44.5
585.64 1.00 Shale 50.5 127.7 1485.5 73.6 18.9 1999.7 1486 0 0	817 45.5
584.64 1.00 Shale 50.5 127.7 1536.0 73.6 18.9 2073.3 1536 0 0	845 46.5
583.64 1.00 Shale 50.5 127.7 1586.4 73.6 18.9 2146.9 1586 0	873 47.5
582.64 1.00 Shale 50.5 127.7 1636.9 73.6 18.9 2220.5 1637 0	900 48.5
581.64 1.00 Shale 50.5 127.7 1687.3 73.6 18.9 2294.1 1687. θ	928 49.5
580.64 1.00 Shale 127.7 18.9	