04-24-2020 LETTING ITEM 177

PLANS FOR PROPOSED FEDERAL-AID PROJECT


INDEX OF SHEETS

Sheet	Number	Sheet Title
	1	TITLE
	2	SUMMARY OF QUANTITIES
	3	PLAN AND PROFILE
	4	EROSION CONTROL PLAN
	5	CROSS SECTIONS
	6	GENERAL PLAN AND ELEVATION
	7	SUPERSTRUCTURE
	8	BEAM DETAILS (1 OF 2)
	9	BEAM DETAILS (2 OF 2)
	10	ABUTMENT
	11	RAIL DETAILS
	12	PILE DETAILS
	13	SOIL BORINGS (1 OF 2)
	14	SOIL BORINGS (2 OF 2)


HIGHWAY STANDARDS*

000001-07 STANDARD SYMBOLS, ABBREVIATIONS AND PATTERNS 001001-02 AREAS OF REINFORCEMENT BARS 001006 DECIMAL OF AN INCH AND OF A FOOT 280001-07 TEMPORARY EROSION CONTROL SYSTEMS 515001-04 NAME PLATE FOR BRIDGES 601101-02 CONCRETE HEADWALL FOR PIPE UNDERDRAINS 701006-05 OFF-RD OPERATIONS, 2L, 2W, 15' TO 24" FROM PAVEMENT EDGE 701301-04 LANE CLOSURE, 2L, 2W, SHORT TIME OPERATIONS 701901-08 TRAFFIC CONTROL DEVICES 720001-01 SIGN PANEL MOUNTING DETAILS 720006-04 SIGN PANEL RERCTION DETAILS 720001-01 METAL POSTS FOR SIGNS, MARKERS AND DELINEATORS 728001-01 TELESCOPING STEEL SIGN SUPPORT 729001-01 APPLICATIONS OF TYPES A AND B METAL POSTS (FOR SIGNS & MARKERS)

BLR 21–9 TYPICAL APPLICATION OF TRAFFIC CONTROL DEVICES FOR CONSTRUCTION ON RURAL LOCAL HIGHWAYS * SEE SPECIFICATIONS FOR STANDARDS

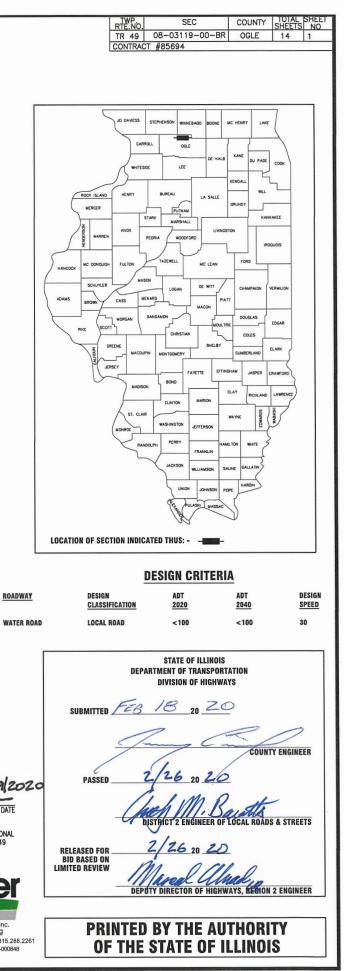
TR 49 WATER ROAD BRIDGE OVER MILL CREEK SECTION 08-03119-00-BR BYRON ROAD DISTRICT OGLE COUNTY S.N. 071-3342 PROJECT KT7J(580) JOB NO. C-92-050-19

SECTION 08-03119-00-BR ENDS AT STA. 12+25

STA. 9+95.83 PROPOSED STRUCTURE (SN 071-3342)

INCLUDES A SINGLE SPAN PRECAST PRESTRESSED CONCRETE DECK BEAM BRIDGE ON SPILL THROUGH ABUTMENTS. 44'-11" BK.-BK. ABUTMENTS.

STA. 9+94.69 Existing structure 071-3224


A SINGLE SPAN PRECAST CONCRETE DECK BEAM BRIDGE ON CLOSED PILE BENT ABUTMENTS WITH STEEL SHEET PILE ABUTMENT WALLS AND WINGWALLS. 27'-6" BK.-BK. ABUTMENTS.

LOCATION MAP GROSS LENGTH OF SECTION = 325 FEET (0.06 MILE) NET LENGTH OF SECTION = 325 FEET (0.06 MILE) TOWNSHIP 25 NORTH, RANGE 10 EAST

wendler engineering services, inc. civil - structural - surveying www.wendlergs.com ph: 815.288.2261 llinois Professional Design Firm No. 184-000848

THE FINAL TOP FOUR INCHES OF SOIL IN ANY RIGHT-OF-WAY AREA DISTURBED BY THE CONTRACTOR MUST BE CAPABLE OF SUPPORTING VEGETATION. THE SOIL MUST BE FROM THE A HORIZON (ZERO TO 2' DEEP) OF SOIL PROFILES OF LOCAL SOILS. THE COST OF THIS WORK SHALL BE INCLUDED IN THE UNIT PRICES BID AND NO ADDITIONAL COMPENSATION WILL BE ALLOWED.

ALL EMBANKMENT CONSTRUCTED OF COHESIVE SOIL SHALL BE CONSTRUCTED WITH NOT MORE THAN 110% OF OPTIMUM MOISTURE CONTENT, DETERMINED BY THE STANDARD PROCTOR TEST. COHESIVE SOIL SHALL BE DEFINED AS ANY SOIL WHICH CONTAINS GREATER THAN 10% PARTICLES BY WEIGHT PASSING THE #200 SIEVE. THE 110% OF OPTIMUM MOISTURE LIMIT MAY BE WAIVED IN FREE—DRAINING GRANULAR MATERIAL WHEN APPROVED BY THE ENGINEER.

SAW CUTS SHALL BE CONSIDERED INCLUDED IN THE COST OF THE PAY ITEM EARTH EXCAVATION (SPECIAL).

THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING UTILITY PROPERTY DURING CONSTRUCTION OPERATIONS AS OUTLINED IN ARTICLE 107.37 OF THE STANDARD SPECIFICATIONS. A MINIMUM OF 48 HOURS ADVANCE NOTICE IS REQUIRED FOR NON-EMERGENCY WORK. THE JULIE NUMBER IS 800-892-0123. THE FOLLOWING LISTED UTILITIES LOCATED WITHIN THE PROJECT LIMITS OR IMMEDIATELY ADJACENT TO THE PROJECT CONSTRUCTION LIMITS ARE MEMBERS OF JULIE:

TELEPHONE: VERIZON NORTH ELECTRIC: COMMONWEALTH EDISON COMPANY

THE APPLICABLE PORTIONS OF ARTICLE 105.07 OF THE STANDARD SPECIFICATION SHALL APPLY EXCEPT FOR THE FOLLOWING: THE CONTRACTOR SHALL BE RESPONSIBLE TO LOCATE THE VERTICAL DEPTHS OF THE UNDERGROUND UTILITIES WHICH MAY INTERFERE WITH CONSTRUCTION OPERATIONS. THIS WORK WILL NOT BE MEASURED OR PAID FOR SEPARATELY, BUT SHALL BE CONSIDERED AS INCLUDED IN THE UNIT BID PRICE FOR THE ITEM OF CONSTRUCTION INVOLVED.

EXCAVATION FOR THE BRIDGE OPENING AND CHANNEL TRANSITIONS TO THE EXISTING CHANNEL GRADES AT THE EASEMENT LIMITS SHALL NOT BE PAID SEPARATELY BUT CONSIDERED INCLUDED IN THE UNIT BID PRICE FOR REMOVAL OF EXISTING STRUCTURES

ALL BORROW/WASTE/USE SITES MUST BE APPROVED BY THE DEPARTMENT PRIOR TO REMOVING ANY MATERIAL FROM THE PROJECT OR INITIATING ANY EARTHMOVING ACTIVITIES, INCLUDING TEMPORARY STOCKPILING OUTSIDE THE LIMITS OF CONSTRUCTION.

BRIDGE FLOWS MUST BE MAINTAINED THROUGHOUT THE PROJECT. NORMAL FLOW SHALL BE ALLOWED TO PASS AT THE RATE IT ENTERS THE JOBSITE. HIGH FLOWS SHALL BE ALLOWED TO PASS WITHOUT CAUSING DAMAGE TO UPSTREAM PROPERTIES.

THE FOLLOWING FACTORS WERE USED FOR ESTIMATING PLAN QUANTITIES AND SHALL NOT BE USED FOR THE BASIS OF FINAL QUANTITIES.

STONE RIPRAP, CLASS A5	1.75 TONS / CU YD
AGGREGATE (SURFACE & BASE COURSES)	2.05 TONS / CU YD
TEMPORARY EROSION CONTROL SEEDING	100 POUNDS / ACRE / APPLICATION

THE AREA TO BE SEEDED SHALL CONSIST OF ALL DISTURBED EARTH SURFACES WITHIN THE R.O.W. AS DIRECTED BY THE ENGINEER

THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROPER DISPOSAL OF ALL EXCAVATED MATERIAL NOT USED IN THE FINAL EMBANKMENT AND FULL COMPENSATION FOR THIS IS INCLUDED IN THE CONTRACT UNIT PRICE BID FOR EARTH EXCAVATION (SPECIAL) UNLESS OTHERWISE NOTED. NO ADDITIONAL COMPENSATION IS ALLOWED.

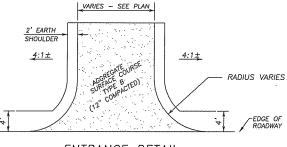
IF THE FINAL EMBANKMENT REQUIRES ADDITIONAL MATERIAL, THE CONTRACTOR SHALL BE RESPONSIBLE FOR FURNISHING EXCAVATION PER THE STANDARD SPECIFICATIONS AND PER SPECIAL PROVISION FOR FURNISHED EXCAVATION IN LOCAL ROADS AND STREETS RECURRING SPECIAL PROVISIONS ADOPTED APRIL 1, 2016 AND FULL COMPENSATION FOR THIS IS INCLUDED IN THE CONTRACT UNIT PRICE BID FOR EARTH EXCAVATION (SPECIAL) UNLESS OTHERWISE NOTED. NO ADDITIONAL COMPENSATION IS ALLOWED.

EXCAVATION NECESSARY FOR PLACEMENT OF RIPRAP SHALL BE INCLUDED IN COST OF STONE RIPRAP UNLESS OTHERWISE NOTED

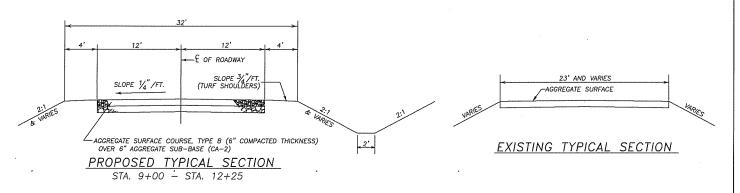
EXCAVATION NECESSARY FOR REMOVAL OF EXISTING STRUCTURES SHALL BE INCLUDED IN COST OF REMOVAL OF EXISTING STRUCTURES UNLESS OTHERWISE NOTED.

TEMPORARY DITCH CHECKS SHALL BE CONSTRUCTED AT LOCATIONS DETERMINED BY THE ENGINEER.

EARTHWORK SCHEDULE (EXCLUDING STA 9+73.36 TO STA 10+18.28)


COLUMN IDENTIFICATION	А	B = A * (1 - SLF)	С	D = B-C
LOCATION	EARTH EXCAVATION	EARTH EXCAVATION ADJUSTED FOR SHRINKAGE / LOSS	EMBANKMENT	EARTHWORK BALANCE WASTE OR SHORTAGE (–)
	CUBIC YARD	CUBIC YARD	CUBIC YARD	CUBIC YARD
STA. 11+45 TO STA. 14+80.64	69	52	8	44
STA. 16+47.76 TO STA. 18+75	155	116	5	111
TOTAL	224	168	13	155

SHRINKAGE / LOSS FACTOR (SLF) = 0.25


SCHEDULE OF QUANTITIES

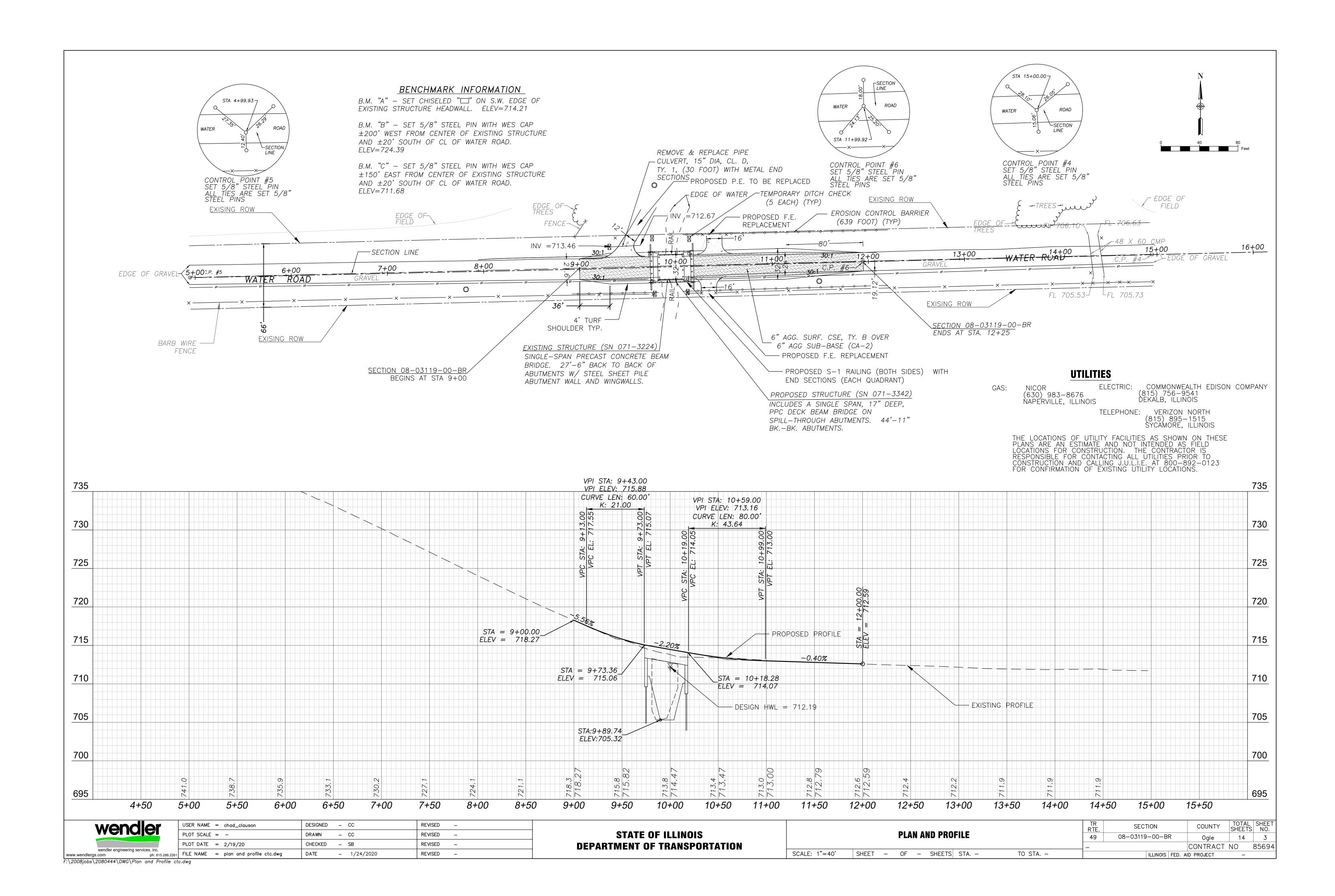
25100630	EROSION CONTROL BLANKET LOCATION LT. STA. 9+00 TO 9+73 RT. STA. 9+00 TO 9+73 LT. STA. 10+18 TO 12+25 RT. STA. 10+18 TO 12+25	SQ YD QUANTITY 71 54 90 84
	TOTAL	299
35101400	AGGREGATE BASE COURSE, TYPE B LOCATION STA. 9+00 TO 9+73 STA. 10+18 TO 12+25 TOTAL	TON QUANTITY 64 154 218
40200800	AGGREGATE SURFACE COURSE, TYPE B LOCATION STA. 9+00 TO 9+73 LT. STA 9+56.45 STA. 10+18 TO 12+25 RT. STA. 10+35.13 LT. STA 10+35.13	TON QUANTITY 64 33 154 22 27

TOTAL 300

ENTRANCE DETAIL

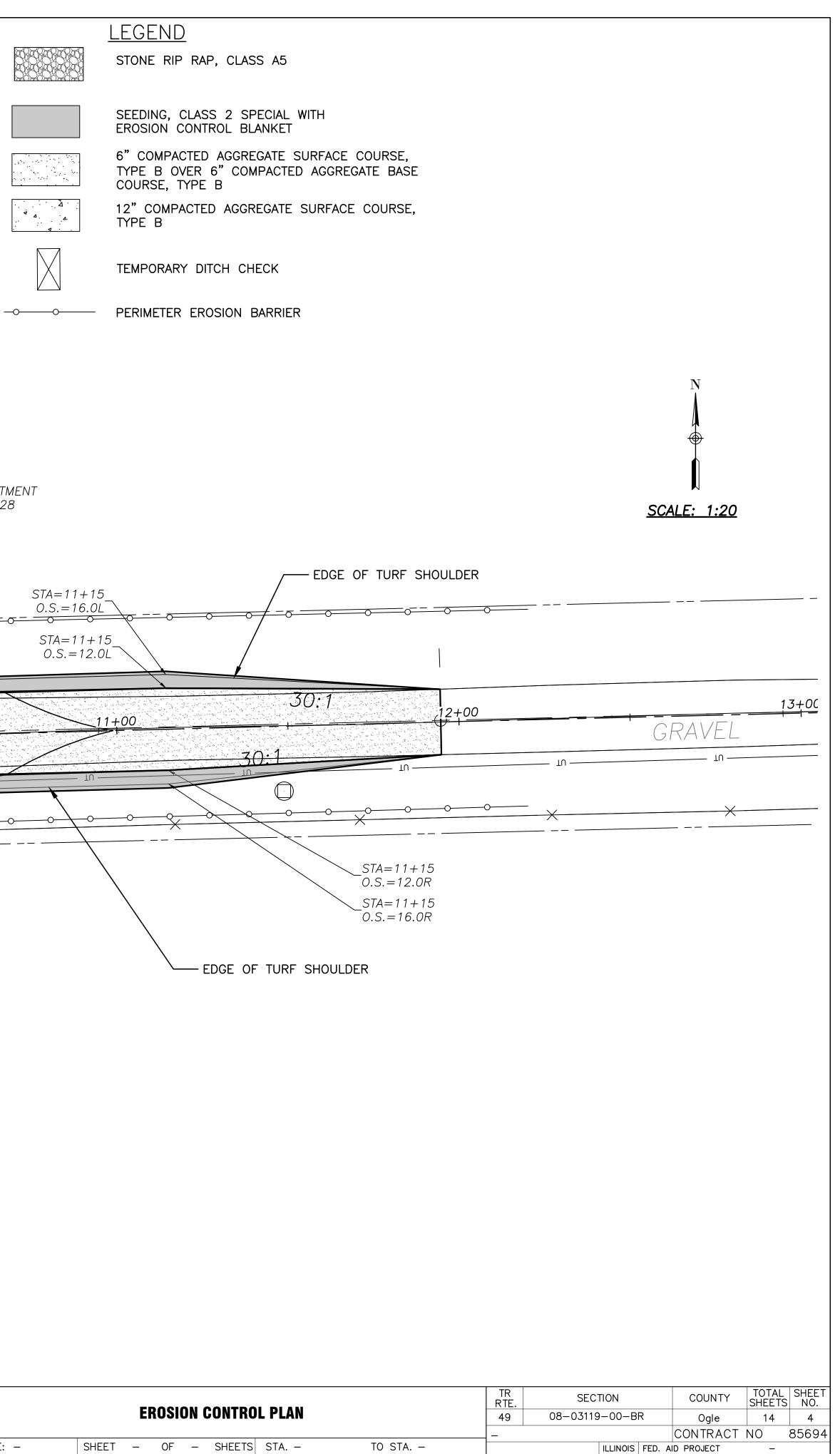
wondlor	USER NAME = chad_clauson	DESIGNED - CC	REVISED -		
weindei	PLOT SCALE = -	DRAWN - CC	REVISED -	STATE OF ILLINOIS	SUMMARY OF QUANTITIES
	PLOT DATE = 2/19/20	CHECKED - SB	REVISED -	DEPARTMENT OF TRANSPORTATION	
wender engineering services, inc. www.wendlergs.com ph: 815.288.2261	FILE NAME == plan and profile ctc.dwg	DATE - 1/24/2020	REVISED -		SCALE: - SHEET - OF - SHEETS STA

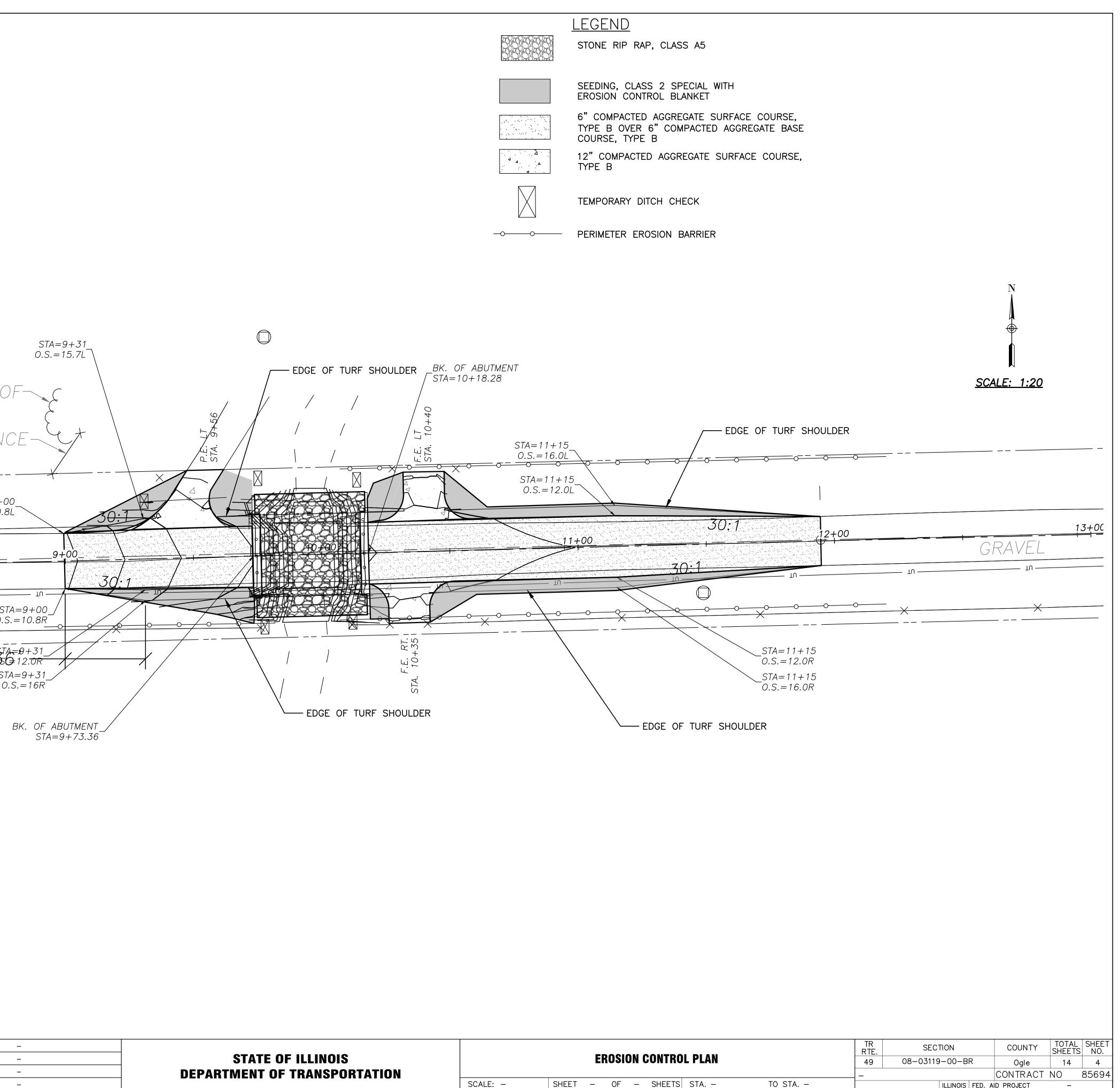
SUMMARY OF QUANTITIES

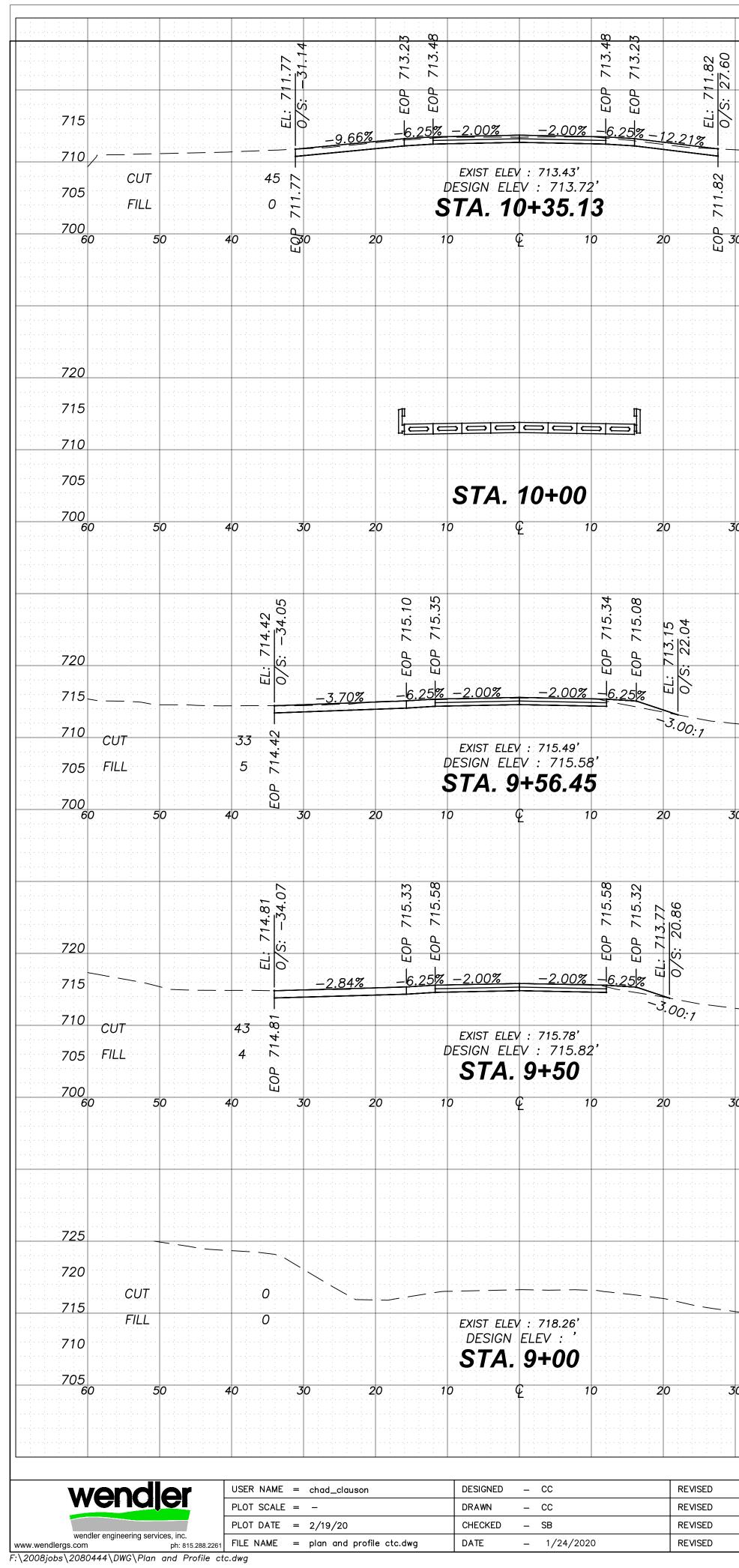

CONSTRUCTION TYPE CODE: 0010

Δ

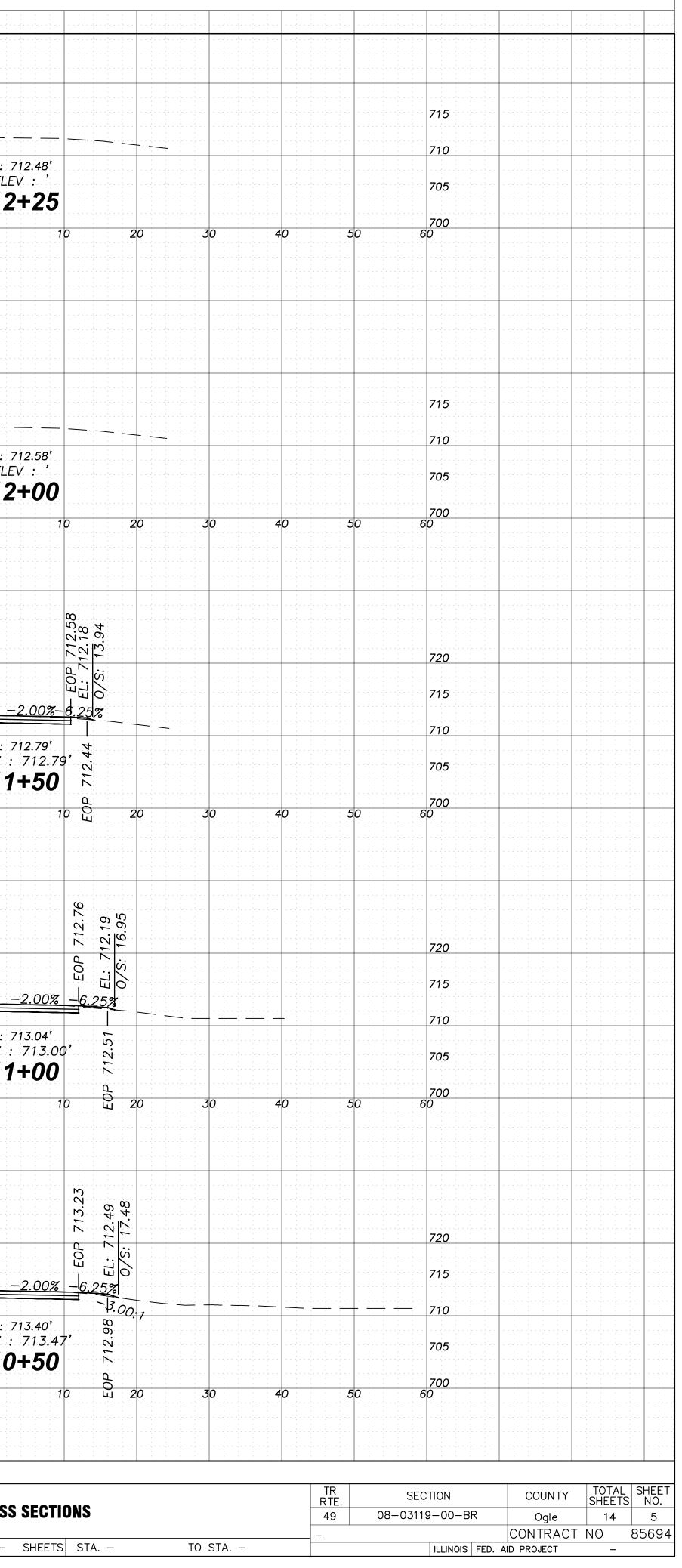
		CONSTRUCTION TYPE CODE: 0010		
ltem Number	Code	Item	Unit of Measure	Quantity
1	25100630	EROSION CONTROL BLANKET	SQ YD	299
2	28000305	TEMPORARY DITCH CHECKS	FOOT	5
3	28000400	PERIMETER EROSION BARRIER	FOOT	520
4	28100109	STONE RIPRAP, CLASS A5	SQ YD	250
5	28200200	FILTER FABRIC	SQ YD	175
6	35101400	AGGREGATE BASE COURSE, TYPE B	TON	218
7	40200800	TYPE B	TON	300
8	50100100	REMOVAL OF EXISTING STRUCTURES	EACH	1
9	50200100	STRUCTURE EXCAVATION	CU YD	52
10	50300225	CONCRETE STRUCTURES	CU YD	31.3
11	50300300	PROTECTIVE COAT	SQ YD	51.3
12	50400305	PRECAST PRESTRESSED CONCRETE DECK BEAMS (17" DEPTH)	SQ FT	1374
13	50800205	REINFORCEMENT BARS, EPOXY COATED	POUND	6240
14	50900205	STEEL RAILING, TYPE S1	FOOT	90
15	51200957	FURNISHING METAL SHELL PILES 12" X 0.250"	FOOT	160
16	51202305	DRIVING PILES	FOOT	160
17	51203200	TEST PILE METAL SHELLS	EACH	2
18	51500100	NAME PLATES	EACH	1
19	542D0220	PIPE CULVERTS, CLASS D, TYPE 1 15"	FOOT	30
20	54213450	END SECTIONS 15"	EACH	2
21	58600101	GRANULAR BACKFILL FOR STRUCTURES	CU YD	70
22	67100100	MOBILIZATION	L SUM	1
23	72501000	TERMINAL MARKER – DIRECT APPLIED	EACH	4
24	X2020410	EARTH EXCAVATION (SPECIAL)	CU YD	224
25	X2501000	SEEDING, CLASS 2 (SPECIAL)	ACRE	0.1
26	X7010216	TRAFFIC CONTROL AND PROTECTION, (SPECIAL)	L SUM	1
27	Z0013798	CONSTRUCTION LAYOUT	L SUM	1
28	Z0046304		FOOT	156

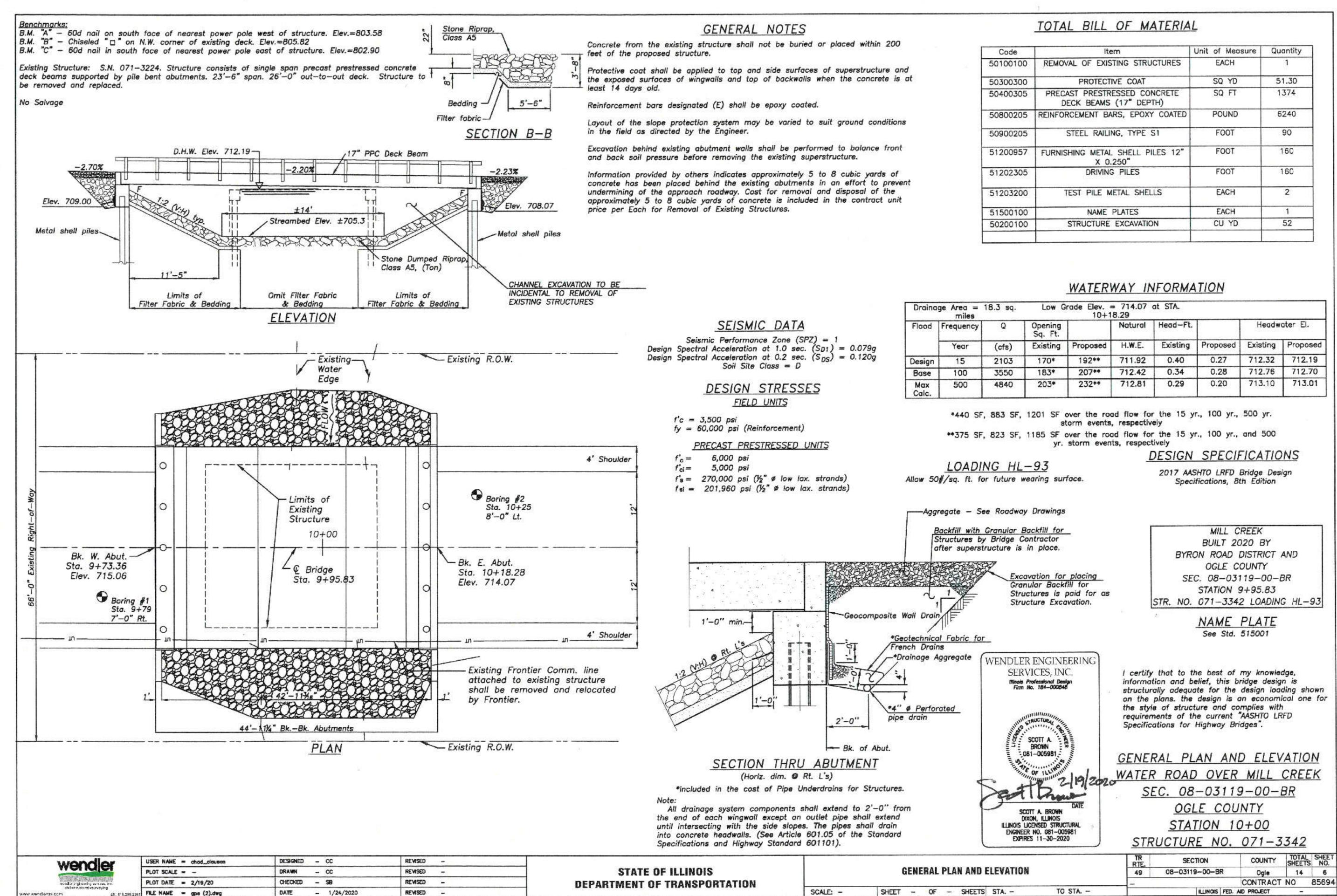

* – SEE SPECIAL PROVISIONS Δ – SPECIALTY ITEM


	TR RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
	49	08-03119-00-BR	Ogle	14	2
	-		CONTRACT	NO	85694
TO STA		ILLINOIS FED. A	ID PROJECT	-	

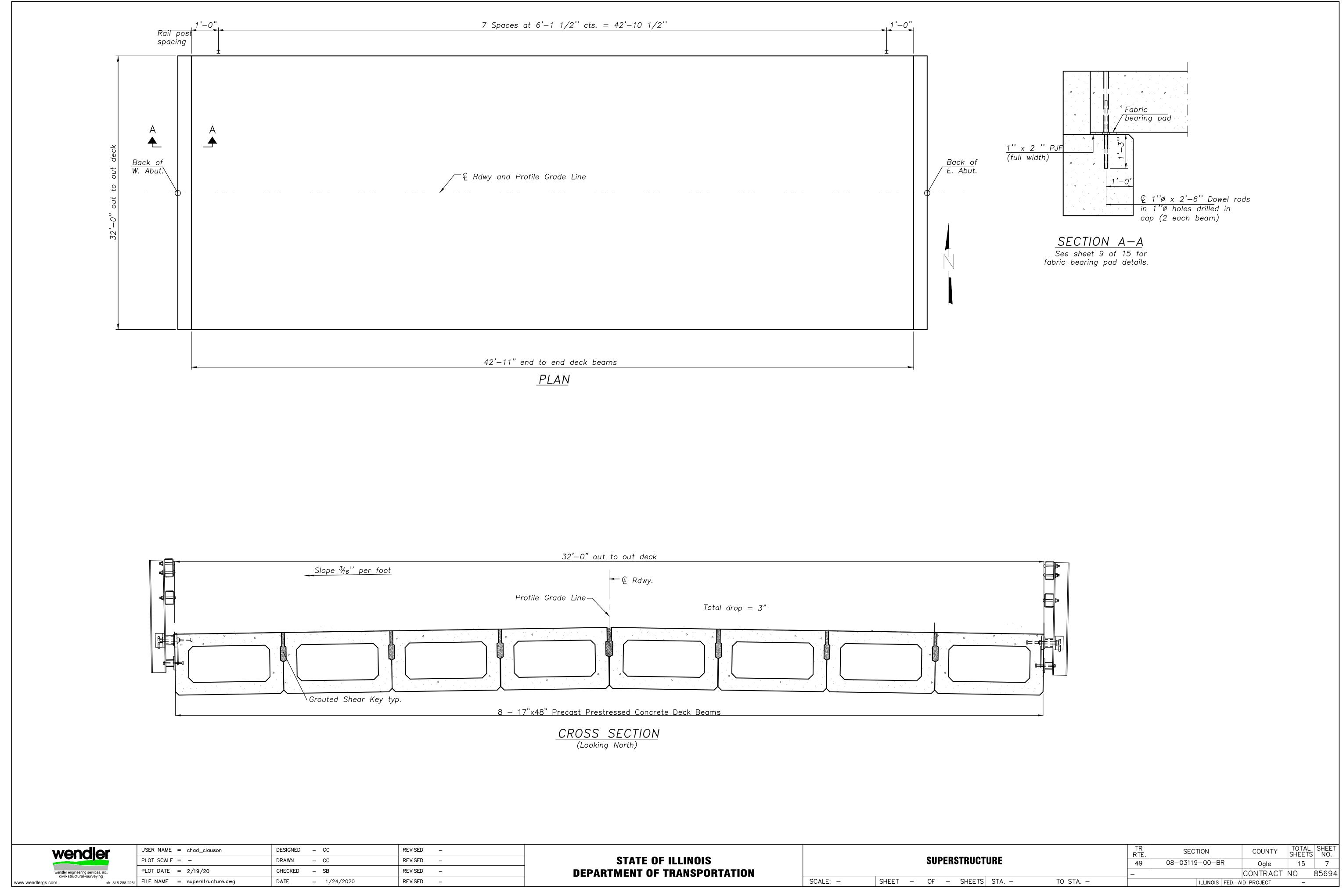


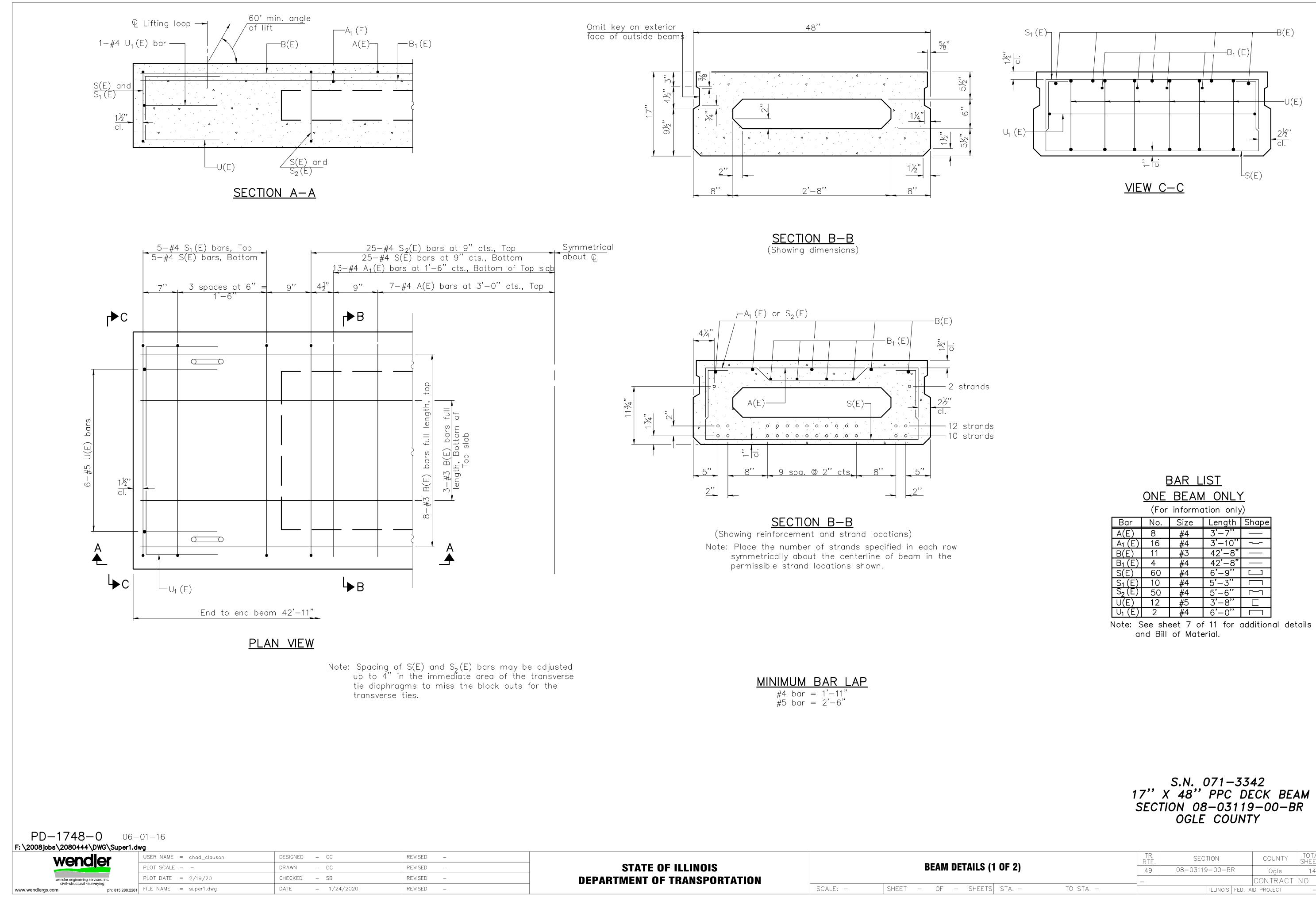
				E	EDGE O
EDGE O FIELD	F			7	REES
					FENC
					STA=9+00 0.S.=10.8
7+00		<u> 8+0</u>	00		
10	1U	TU -		10 —	ST/ 0.S
X	X		X		X
					STA QJSC STA O.
wendler	USER NAME = chad_clau PLOT SCALE = -	son	DESIGNED – O DRAWN – O	CC	REVISED REVISED
wendler engineering services, inc. www.wendlergs.com ph: 815.288.226	PLOT DATE = $2/19/20$ 1 FILE NAME = plan and plan	profile ctc.dwg	CHECKED – S DATE –	SB 1/24/2020	REVISED REVISED


F:\2008jobs\2080444\DWG\Plan and Profile ctc.dwg



	- - -										D	DEF	PA	RT									NOI SP(TA	TI	ON				SC	CALE	: -	_			S	SHE	ET	C — Of)SS (
													· · · · · · · · · · · · · · · · · · ·			· · · · ·																	· · · · ·				· · · · ·					
3(0		4	4 0	· · · · ·		5	0		 60	705		· · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · ·			70	00 60	0		5	50	· · · · · · ·	40	· · · · · · · · · · · · · · · · · · ·		3	0	· · · · · · · · · · · · · · · · · · ·	· · · · ·	2	0	EOP	۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰	10		Ę	
										· · · · · 7	710			· · · · ·				· · · · · · · · · · · · · · · · · · ·			70																712.			EXIST EL DESIGN E STA.	ĽΈV	1 :
			· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·	715				· · · · · · · · · · · · · · · · · · ·	· · · · ·				· · · · ·	71	0		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		<u> </u>		- <u>6</u> 86	<u>25</u>	/0	EXIST EL	EV	• 71
											720										71				UT TLL					24 1						: E F	0/S	· L		-2.00%		· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · ·				· · · · ·			· · · · · · · · · · · · · · · · · · ·	725					· · · · ·					72	20		~~~~	:UT		· · · · · · · · ·			71			· · · · · · ·			713.07		- F				
	· · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · ·	· · · · ·				· · · · · ·		· · · · · · · ·		· · · · ·	· · · · ·			· · · ·	· · · ·			· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·										16.17	2 0 Z)))			· · · · · · · · · · · · · · · · · · ·
										· · · · ·				· · · ·				· · · · ·																								
3(0			‡O			5	0		60	700				· · · · ·		· · · · · · · · · · · · · · · · · · ·				70) <u>()</u> 6	0		5	50		40			3	0			2	0	EOP	· · · · · · · · · · · · · · · · · · ·	10)	Ę	
											705										70																0 712.51			esign e STA.		
	· · · · · ·					· · · · ·	· · · · · ·				710				· · · · ·	· · · · ·		· · · · ·	· · · · ·	· · · ·	71		• • • • • •		· · · · · · · ·		· · · · · · · · ·	 · · · · ·		· · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·				,				EXIST EL		
											715										71	5	· · · · · · · · · · · · · · · · · · ·	F.	TLL .					1						EL.	0	· · · · ·		-2.00%		· · · · · · · · · · · · · · · · · · ·
	· · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			· · · 7	720	· · · · · · · · · · · · ·	· · · · · · · ·		· · ·						72	20		C	UT				· · · · · · · · · · · · · · · · · · ·	25				· · · · ·		11	1		`			
																																				22	6.85	712 76			· · · · · ·	
										 		· · · · ·	· · · · · · · ·		· · · · ·	-					· · · · · · · · · · · · · · · · · · ·												· · · · · ·				· · · · ·	· · · · · ·				
<i>з</i> (4				C															O			5			++U			3				2		· · · ·	Ē			¥.	
3(0		· · · · · · · · · · · · · · · · · · ·	10	· · · · · ·		 F	50		60	700		· · · · · · · ·						• • • •	· · · ·	70				· · · · · · · · · · · · · · · · · · ·	50		40			3	0	· · · · · ·	· · · · ·	2		· · · · · · · · · · · · · · · · · · ·	EOP 71	10			11-
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				- - - - - - - - - - - - - - - - - - -				705		· · · · · · · · ·		- - - - - - - -					-	70				· · · · · · ·		· · · · · · · · · · · · · · · · · · ·				- - - - - - - -						- - - - - - - - -	12.44	D.	exist el design e STA .	EV LEV	: 71
	_		· · · · · · · · · · · · · · · · · · ·		· · · · · ·		· · · ·				710		· · · · · · · · ·		· · · · ·				· · · · ·		71						· · · · · · · · · · · · · · · · · · ·						· · · · · ·									<u>-2</u>
	· · · · ·				· · · · · ·	·			-		7 <u>20</u> 715				· · · · · · · ·	· · · ·			-		72 71				UT ILL		· · · ·			21 1	· · · ·						EL: 712.	<u>- :S/c</u>	EOP	<u>%-2.00%</u>		
											700							· · · · ·				20															2.22	-13.74	712.58		· · · ·	
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · ·		·				· · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · ·				· · · ·					· · · · · · · · · · · · · · · · · · ·						· · · · ·				2 · · · ·		· . · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	~			· · · · · · · · · · · · · · · · · · ·
3(0		· · · · ·	1 0			5	0		60	700				· · · ·	· · · ·			· · · ·		70)0 6	0		5	50		40			3	0	· · · · · ·	· · · · ·	2	0	· · · · · ·		10		Ę	
										· · · ·	705							· · · · ·			70)5																		exist el DESIGI STA .	N . E	ELEV
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·	710		· · · · · · · · ·		· · · · ·	· · · · ·					71	0			TLL		· · · · · · · · · · · · · · · · · · ·			0			· · · · · · · · · · · · · · · · · · ·		<u></u>		· · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·								715				· · · · ·	· · · · ·					71	5	· · · · · · · · · · · · · · · · · · ·	\sim	UT		· · · · · · · · · · · · · · · · · · ·			0												· · · · · · · · · · · · · · · · · · ·
	· · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · ·				720		· · · · · · · ·		· · · ·	· · · ·									· · · · · · ·		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	· · · · ·			· · · ·					
	· · · · ·										· · · · · · · · · · · · · · · · · · ·				· · · · ·			· · · · ·	· · · · ·						· · · · · · · · · · · · · · · · · · ·		· · · · · ·			· · · · ·			· · · · · ·	· · · · ·			· · · ·					
																		· · ·																							· · · ·	
5 3(0		4	40			5	0		60	700		· · · · · ·		· · · · · ·	· · ·				· · · · ·	70) <u>)</u> 6	0		5	50		40			3	0			2	0	· · · · ·		10)	ç	
										· · · 7	705										70																			DESIGI STA.		
	<u> </u>	<u> </u>				<u>.</u>				 · · · 7	710				· · · · · · · · · · · · · · · · · · ·	· · · · ·					71	0		F	<u>1LL</u>					0								<u> </u>		EXIST EL	.EV	: 71
0/5										· · · 7	715			· · · ·				· · · · ·			71	5		С	UT			· · · · · ·		0											· · · · · ·	
27.6	· · · · · ·		· · · · · · · · · · · · · · · · · · ·										· · · · · · · · · · · · · · · · · · ·		· · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·						· · · ·							· · · · · · · · · · · · · · · · · · ·
0															· · · · ·	· · · · · ·							· · · · · · · · · · · · · · · · · · ·														· · · · · · · · · · · · · · · · · · ·					
-				-																						-										1						

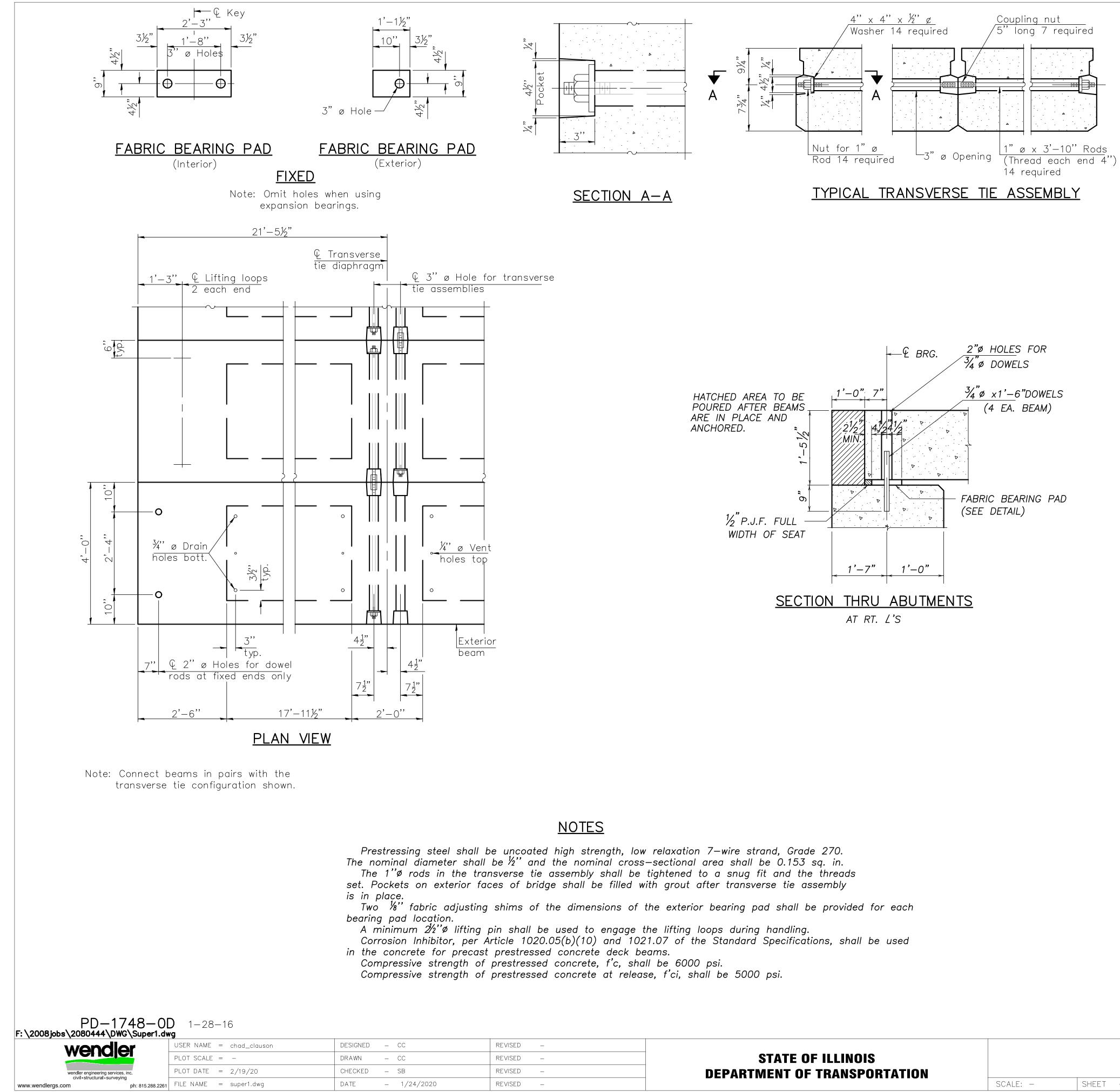




F:\2008jobs\2080444\DWG\GPE (2).dwg

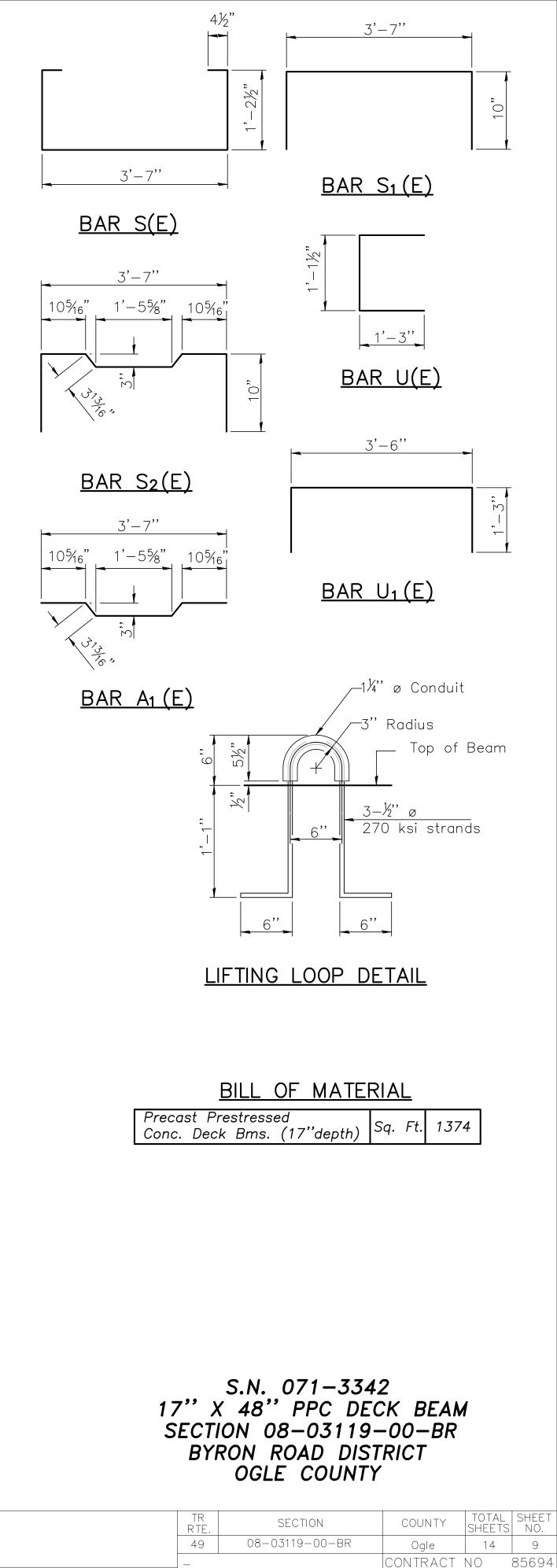
Code	Item	Unit of Measure	Quantity
50100100	REMOVAL OF EXISTING STRUCTURES	EACH	1
50300300	PROTECTIVE COAT	SQ YD	51.30
50400305	PRECAST PRESTRESSED CONCRETE DECK BEAMS (17" DEPTH)	SQ FT	1374
50800205	REINFORCEMENT BARS, EPOXY COATED	POUND	6240
50900205	STEEL RAILING, TYPE S1	FOOT	90
51200957	FURNISHING METAL SHELL PILES 12" X 0.250"	FOOT	160
51202305	DRIVING PILES	FOOT	160
51203200	TEST PILE METAL SHELLS	EACH	2
51500100	NAME PLATES	EACH	1
50200100	STRUCTURE EXCAVATION	CU YD	52

and the second se		The second s						
Head-Ft.		Headwater El.						
Existing	Proposed	Existing	Proposed					
0.40	0.27	712.32	712.19					
0.34	0.28	712.76	712.70					
0.29	0.20	713.10	713.01					
	0.40	0.40 0.27 0.34 0.28	0.40 0.27 712.32 0.34 0.28 712.76					

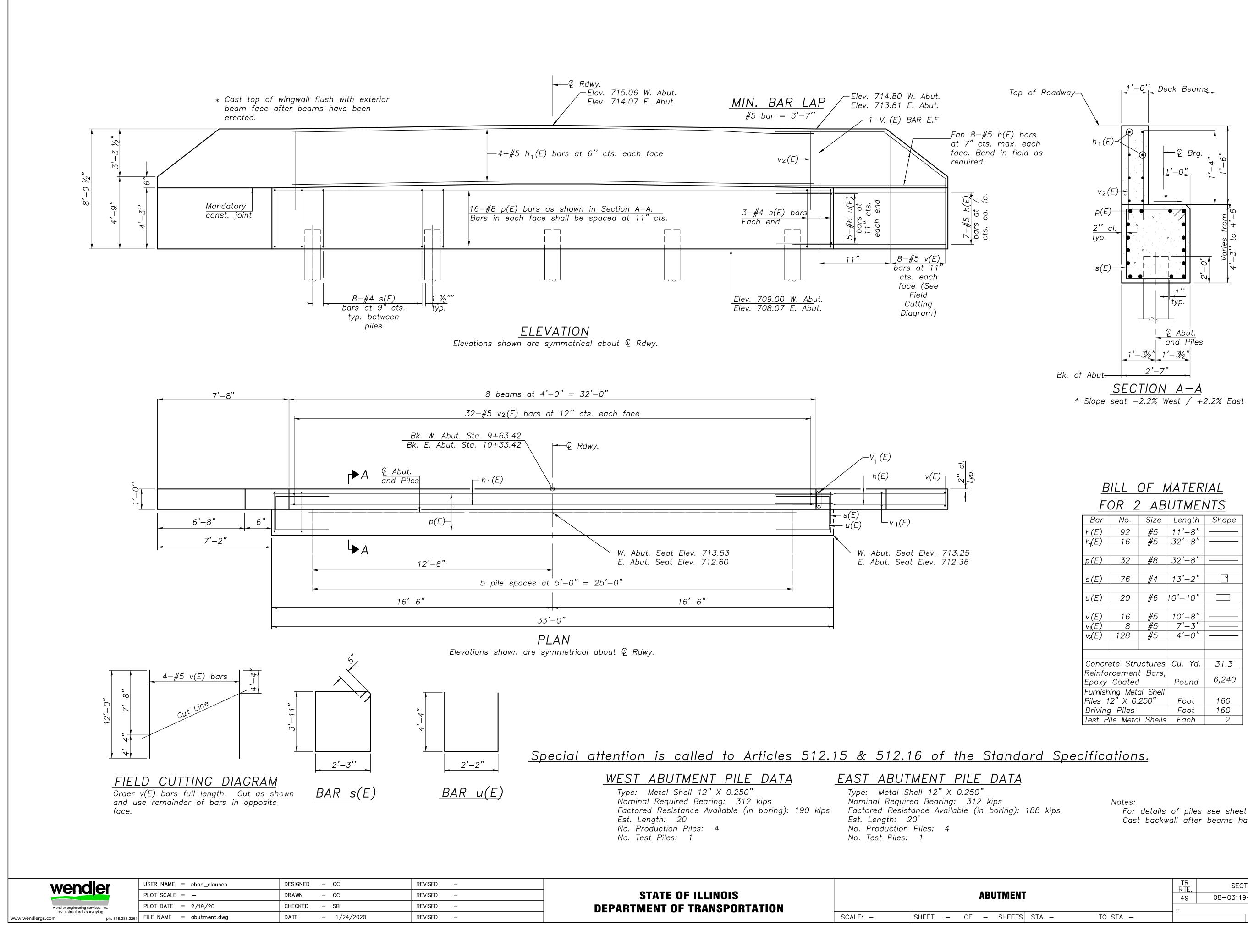


/ISED –			
1SED –	STATE OF ILLINOIS		BEAN
1SED –	DEPARTMENT OF TRANSPORTATION		
/ISED —		SCALE: -	SHEFT – OF

				_
	(For	informo	ation only	/)
Bar	No.	Size	Length	Shape
A(E)	8	#4	3'-7''	
A1 (E)	16	#4	3'-10''	}
B(E)	11	#3	42'-8"	
B ₁ (E)	4	#4	42'-8"	
S(E)	60	#4	6'-9''	
S ₁ (E)	10	#4	5'-3''	Γ
S ₂ (E)	50	#4	5'-6"	[
U(E)	12	# 5	3'-8''	
U_1 (E)	2	#4	6'-0''	

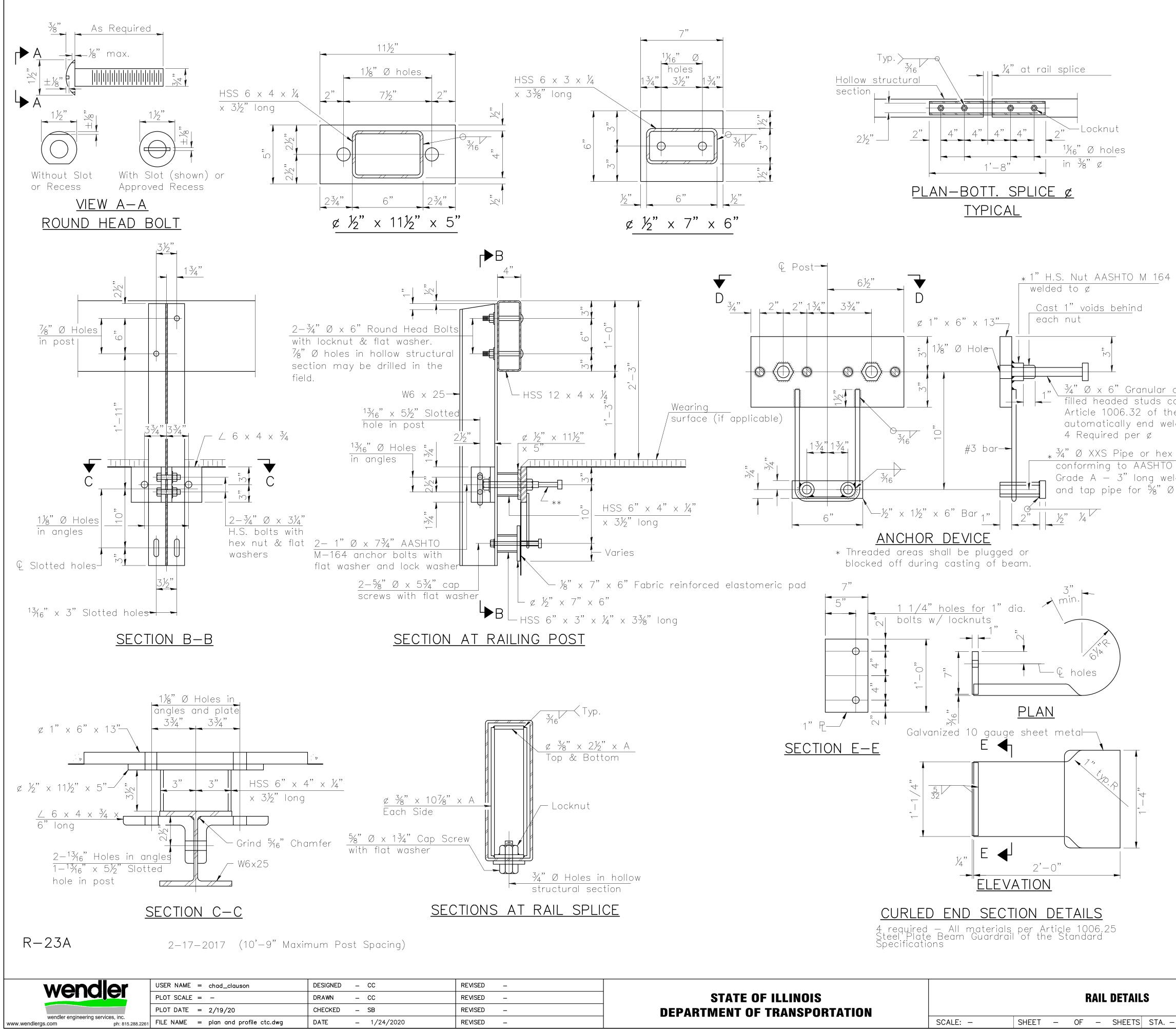

S.N. 07	1-3342
17" X 48" P	PC DECK BEAM
SECTION 08-	03119-00-BR
OGLE (COUNTY

	TR RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.	
M DETAILS (1 OF 2)	49	08-03119-00-	3R	Ogle	14	8
				CONTRACT	NO	85694
– SHEETS STA. – TO STA. –		ILLINOI	S FED. A	ID PROJECT	_	



stressed	concrete	at	release,	t ci,	shall	be	5000	psı.

SED –				
SED –	STATE OF ILLINOIS			BEAM
SED –	DEPARTMENT OF TRANSPORTATION			
SED –		SCALE: -	SHEET -	- OF


I DETAILS (2 OF 2) – SHEETS STA. – to sta. – ILLINOIS FED. AID PROJECT _

<u>F</u> (DR 2	<u> AB</u>	<u>UTME</u>	<u>.NTS</u>
Bar	No.	Size	Length	Shape
h(E)	92	#5	11'-8'	·
$h_1(E)$	16	#5	32'-8'	,
p(F)	32	#8	32'-8'	,
р(Е)	52	#0	52 -0	
s(E)	76	#4	13'-2'	' []
u(E)	20	#6	10'—10'	,
v (E) v ₁ (E)	16 8	#5 #5	10'-8' 7'-3'	
$v_1(E)$ $v_2(E)$	128	#5 #5	4'-0"	
Concre	ete Stru	uctures	Cu. Yd	. 31.3
	rcemen Coated		Pound	6,240
	ing Meto 2" X 0.		Foot	160
Driving	l Piles		Foot	160
Test Pi	'le Meta	l Shells	Each	2

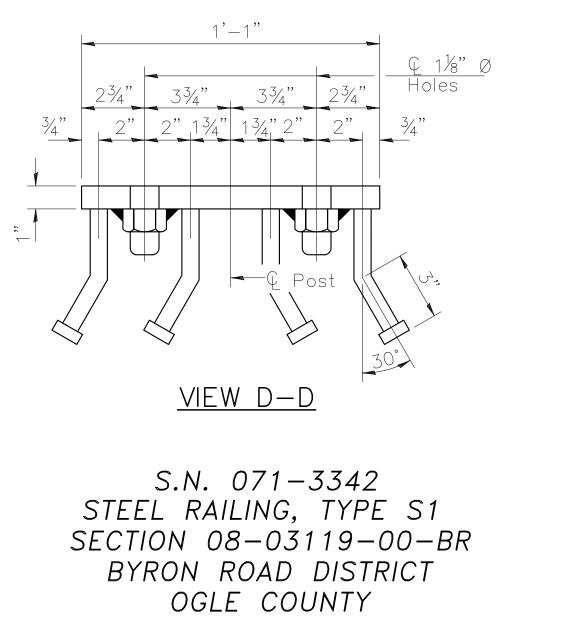
For details of piles see sheet 12 of 14. Cast backwall after beams have been erected.

	-		TR RTE.	SEC	TION		COUNTY	TOTAL SHEETS	SHEET NO.
BUTMENT	-		49	08–03119	—00—В	R	Ogle	14	10
			_				CONTRACT	NO	85694
SHEETS	STA. –	TO STA. –			ILLINOIS	FED. A	ID PROJECT	-	

F:\2008jobs\2080444\DWG\Plan and Profile ctc.dwg

NOTES Hollow structural steel tubing shall conform to the requirements of ASTM designation A-500 Grade B Structural Steel Tubing and shall meet the longitudinal CVN requirements of 15 ft-lbs at 0° F. All other steel shapes and plates shall conform to the requirements of AASHTO M-270 Grade 36 except posts and angles shall conform to AASHTO M-270, Grade 50. Bolts, cap screws, and nuts shall conform to the requirement of ASTM designation A-307 except for high strength bolts, nuts and washers noted which shall conform to AASHTO M-164. All bolts, nuts, cap screws, washers and lock washers shall be galvanized in accordance with AASHTO M-232. All posts, railing, rail splices, anchor devices and angles shall be galvanized after shop fabrication in accordance with AASHTO M-111 and ASTM A-385. Galvanized rail shall not be painted. Railing shall be in accordance with Section 509 of the Standard Specifications, except as noted, and will be paid for at the contract unit price per foot for STEEL RAILING, TYPE S-1. All field drilled holes shall be coated with an approved zinc rich paint before erection. The lower portion of the post flange in contact with concrete shall receive two coats of asphalt paint conforming to Section 1060.07 Type II or place 1/8" fabric bearing pad between the post and concrete. The 3/4"ø high strength bolts used to connect the 6"x 4"x 3/4" angles to the post shall be tightened in accordance with Article 505.04(f)(3) of the Standard Specifications. The 1"\$\vert\$ high strength bolts connecting the angles to the concrete shall be tightened to a snug fit and given an additional 1/8 turn. The 5/8"ø cap screws in bottom of posts shall be tightened to a snug fit only.

 $\frac{3}{4}$ " Ø x 6" Granular or solid flux filled headed studs conforming to Article 1006.32 of the Std. Specs. automatically end welded.

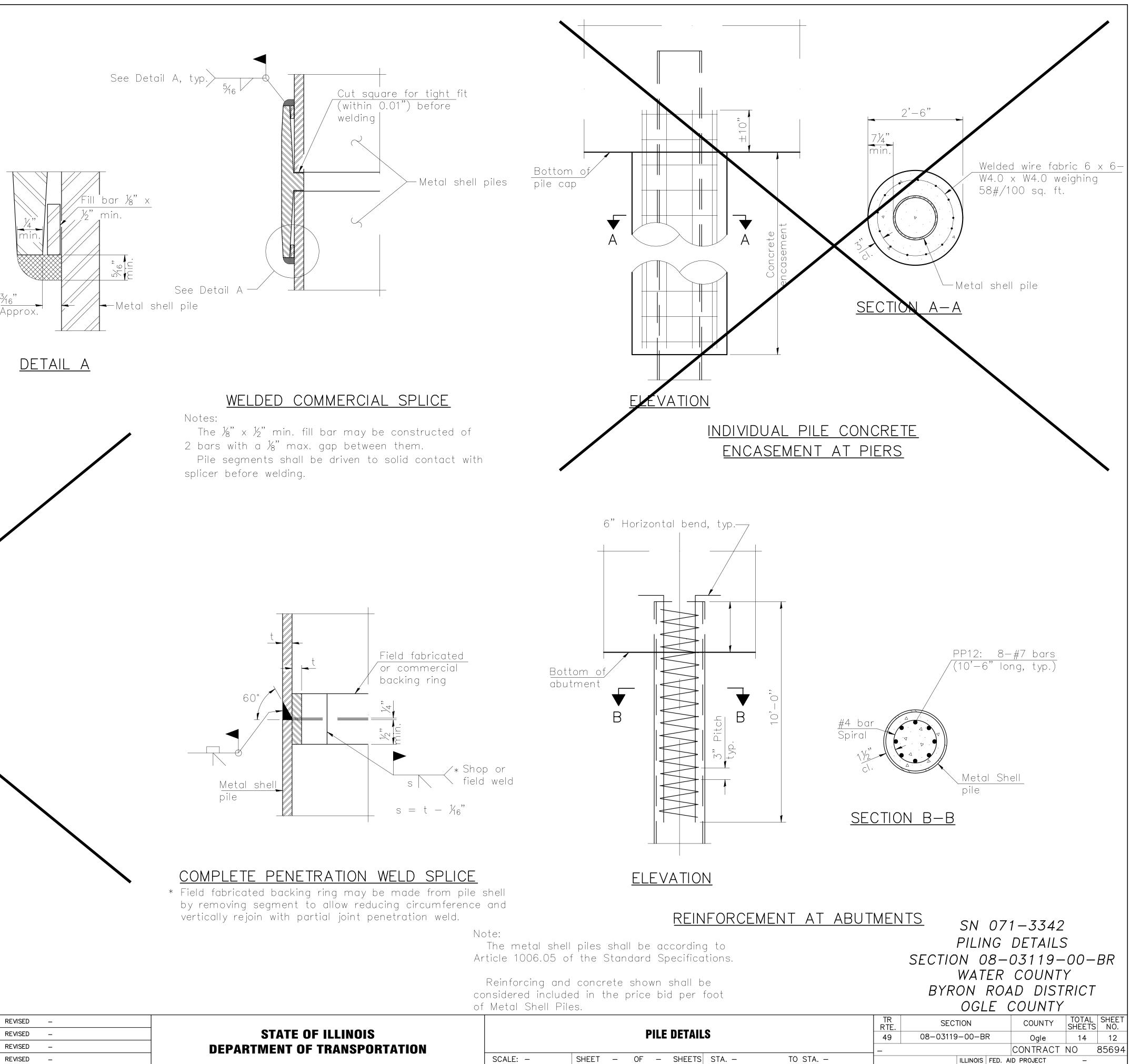

conforming to AASHTO M291, and tap pipe for $\frac{5}{8}$ " Ø Cap Screw. BILL OF MATERIAL

Item	Unit	Quantity
Steel Railing, Type S1	Foot	90

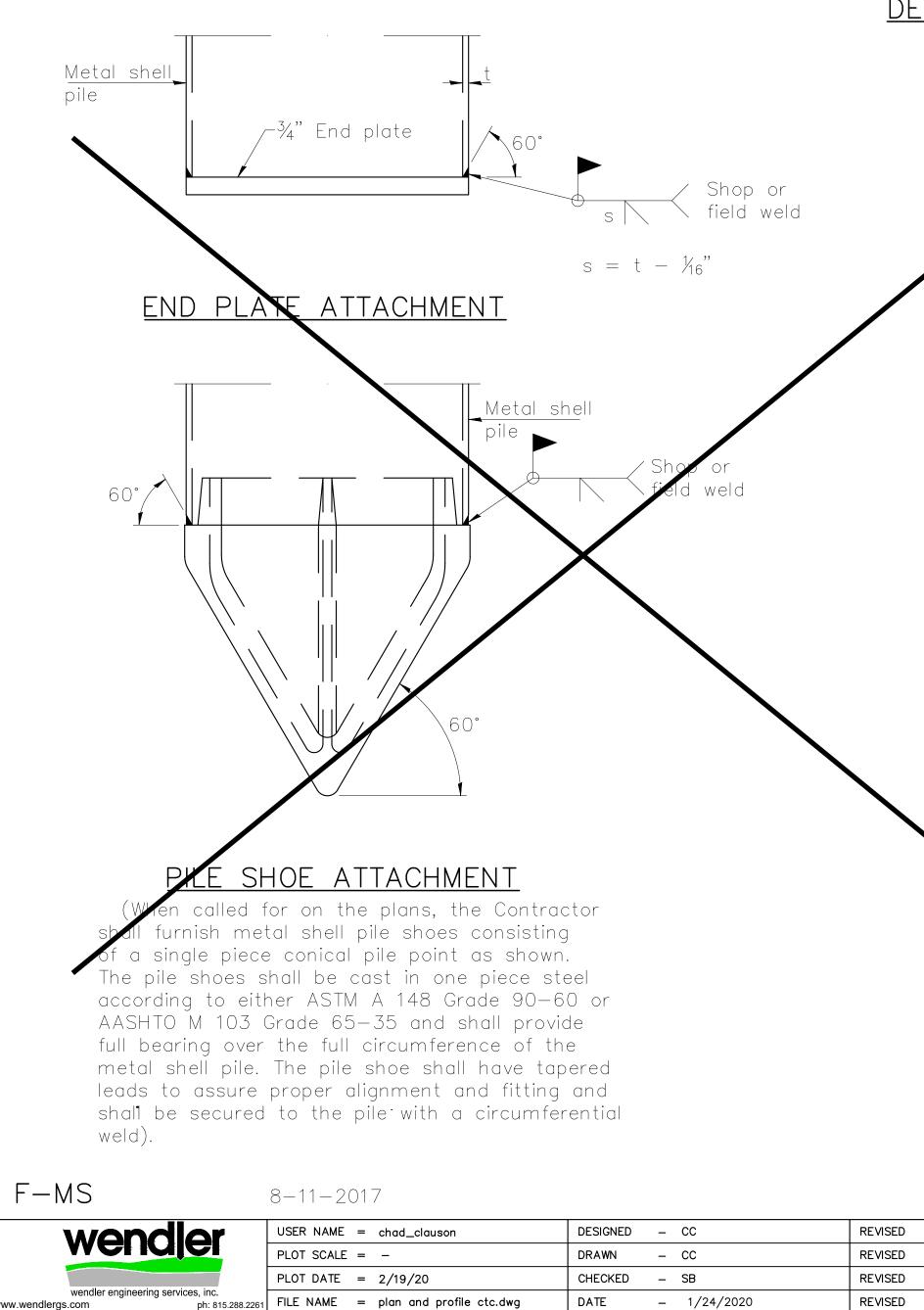
Notes:

For multi-span bridges, sufficient $\frac{1}{4}$ " x $*\frac{3}{4}$ " Ø XXS Pipe or hex coupler nuts 6" x 1'-2" galvanized steel shims shall be provided to align rail between adjacent spans. Grade A - 3" long welded to #3 bar Cost included with Steel Railing, Type S-1. All steel rail elements shall be galvanized according to Article 509.05 of the Standard Specifications.

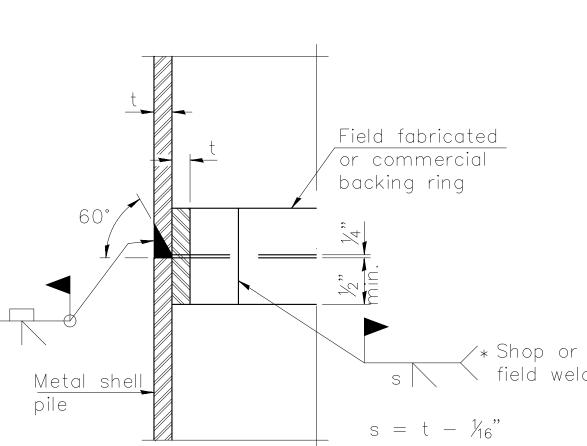
> ****** The studs of the anchor devices shall be placed below the top reinforcement bars and the outermost longitudinal reinforcement bar shall be placed directly above the studs of the rail post anchor device. The anchorage studs may be bent down $\frac{1}{2}$ " to accommodate the top reinforcement bar placement.



DETAILS		TR RTE.	SEC		COUNTY	TOTAL SHEETS	SHEET NO.		
		49	08-03119	-00-B	२	Ogle	14	11	
			_				CONTRACT	NO	85694
SHEETS	STA. –	TO STA. –			ILLINOIS	FED. A	ID PROJECT	_	



METAL SHELL PILE TABLE


Designation and outside diameter	Wall thickness t	Weight per foot (Lbs./ft.)	Inside volume (yd.³/ft.)
PP12	0.250"	31.37	0.0267
PP14	0.250"	36.71	0.0368
PP14	0.312"	45.61	0.0361
PP16	9.512"	52 32	0.0478
PP16	0.375"	62.64	0.0470

³∕₁₆" Approx.

www.wendlergs.com F:\2008jobs\2080444\DWG\Plan and Profile ctc.dwg

	www	Midwest Testing Services, In	c.	B	BOF	RIN	GL	OG			Phon	ne: 815-223-6	5696
		3705 Progress Blvd.				1					Fax:	815-223-6	6659
- OF	F-O-1	Peru, IL 61354		51	leet		01	5			e-ma	il: mts37@co	omcast.net
Client:		Engineering Services, Inc.			10,000	No.			B-1	0	- 	0	
5		08-03119-00-BR Byron Township unty, Illinois				: Ele [.] Dept	2000	1	00.8 50'	0	714 Rota	ary Depth	NA
		,			rt D		•	09	9/04/	09	· · · · · · · · · · · · · · · · · · ·	sh Date	09/04/0
							SA	AMPI	LES			DRI	LLED BY
Location:	7' Sout	h of centerline of roadway and									CF)	Randy Sat	franski
	21' we	est of center of existing bridge				e		N Value (Blows)	ar	(%)	(PCF)	Diedrich-D	0120
					No.	Typ	(TSF)	e (Bl	Shea	re (9	nsity		
(DEPTH) *ELEV.	DESC	CRIPTION OF MATERIALS	Graphic Log	Depth in feet	Sample No.	Sample Type		Value	Bulge / Shear	Moisture	Dry Density		
100.80	DLSC		ß	=	Sai	Sar	Qu	Z	Bu	Mc	D.	REN	MARKS
-				F,									
- 99.80 -													
- 98.80				-2									
- 97.80					1	SS					1		
-		ck And Brown Clay Mixed With oken Concrete And Limestone		-							{		
— 96.80 —		Fragments (Fill)		_4									
-95.80				5							-		
- 94.80				6	2	SS							
-				-									
- 93.80				7									
				-8	3	SS		28					
- 		Medium Yellowish Brown		- 9			_						
- 91.80		Limestone Fragments (Fill)		_									
-90.80				10	4	SS	0.8	6	В	26	1		
		Medium Black Silty Clay			4	00	0.8	0	D	20	4		
-		Medium Black Sitty Clay		12									
- 88.80			·	-	_	_					4		
- 87.80				—13	5	SS		21					
				-14							1		
-				-									
- 85.80	Me	dium Brown And Gray Coarse		— 15 —	6	SS		29			1		
- 84.80		Sand And Fine Gravel		-16	-								
- 83.80				-17									
-						22,000		100000			-		
- 82.80				18	7	SS		26					
				19									
- 80.80	Den	se Brown Fine Sand And Gravel		20									
				_ 20	8	SS		35				1	

USER NAME = chad_clauson PLOT SCALE = -

PLOT DATE = 2/19/20

DESIGNED – CC DRAWN – CC CHECKED – SB DATE – 1/24/2020 REVISED -REVISED -REVISED – REVISED -

wendler engineering services, inc. www.wendlergs.com ph: 815.288.2261 FILE NAME = plan and profile ctc.dwg F:\2008jobs\2080444\DWG\Plan and Profile ctc.dwg

	Midwest Testing Services, In	nc.	E	OR	INC	GLO	CG				e: 815-223-6696	\$100000
	3705 Progress Blvd.Peru, IL 61354		Sł	neet_	2	of .	3			Fax: e-ma	815-223-6659 il: mts37@comcast.net	
Client:	Wendler Engineering Services, Inc.			ring N				B-1				Client:
	me: Section 08-03119-00-BR Byron Township			face		1000 I	1	501		714 P ote		Projec
roject Site	e: Ogle County, Illinois			ger D rt Da		8-	09	50'			rry Depth NA sh Date 09/04/09	Projec
					7922240	SA	MPL	10110FAG - 12 - 1			DRILLED BY	
location:	7' South of centerline of roadway and	-								(F)	Randy Safranski	Locat
_	21' west of center of existing bridge	-			e		Value (Blows)	ar	(0)	(PCF)	Diedrich-D120	
				No.	typ	(TSF)	le (Bl	/ She	re (9	Density		
(DEPTH) ELEV. 79.80	DESCRIPTION OF MATERIALS	Graphic Log	Depth in feet	Sample No.	Sample Type	Qu (T	N Valu	Bulge / Shear	Moisture (%)	Dry De	REMARKS	(DEPT ELE 58
- 78.80			- 22									
-77.80			23	9	SS		44					
- 76.80	Dense Brown Fine Sand		24									55.8
-75.80			25	10	SS		32					54.8
-74.80			26									53.8
-73.80			27 									
-72.80			- 28	11	SS		34					— 51.8 —
-71.80	Dense Brown Fine Sand With Limestone Fragments		-29 -30									- 50.8
- 70.80 - - 69.80				12	SS		43					
- 68.80			32									- 47.8
- 67.80			- 33									 46.1
- 66.80			34									- 45.8
- 65.80			35	13	22	2.1	15	В	18			44.8
	Very Stiff Tan To Gray		36	13	55	2.1	15		10			43.8
-63.80	Silty Loam Till		37									42.1
-62.80 -		11	- 38									<u> </u>
-61.80			— 39 —									
- 60.80				14	SS	2.5	21	В	16			- 39.5
- 59.80										1		38.

Comments: Assumed center of existing bridge deck as 100.0.

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

SCALE: -

SHEET – OF –

Client:	me:Section	Midwest Testing Services, Inc. 3705 Progress Blvd. Peru, IL 61354 Engineering Services, Inc. 08-03119-00-BR Byron Township unty, Illinois		Sł Bor Sur Auj	ing face ger I	3 No. Ele Dept	91.0030	3	B-1 00.8 50'	0	Fax: e-mai 714 Rotar	ry Depth	559 ncast.net NA	
Location: (DEPTH) ELEV. 58.80	21' w	th of centerline of roadway and est of center of existing bridge CRIPTION OF MATERIALS	Graphic Log	T	Sample No.	Sample Type	ju (TSF)	N Value (Blows)		Moisture (%)	Dry Density (PCF)	Randy Safi Diedrich-D1		>
57.80 56.80 55.80 54.80 53.80 52.80 51.80	Very I	Very Stiff Silty Loam Till Dense Yellowish Brown Limestone (Penetrated With Rock Bit)		-43 -44 -45 -46 -47 -48 -48 -49	15	SS					-			
50.80 49.80 48.80 47.80 46.80 45.80		Bottom of Boring		50 51 52 53 54 55										
44.80 43.80 42.80 41.80 40.80 39.80				56 57 58 59 60 61 61										
Groundwat Comments:		ic water level after auger removal eleva ad center of existing bridge deck as 100		.5.										
SOIL BO	RINGS (1			TR RTE 49 			08–0			D—BF		COUNT Ogle CONTRAC	14	SHEE SNO. 13 8569

		Midwest Testing Services, Inc.		B	OF	RING	GL	OG			Phon	e: 815-223-	6696
	F-O-r	3705 Progress Blvd. Peru, IL 61354				1				3	Fax: e-mai	815-223- il: mts37@co	
Client:		Engineering Services, Inc.	-		ing		(2 -		B-2			7.0	
		08-03119-00-BR Byron Township unty, Illinois	Surface Elev.99.50Auger Depth53'								713.6 Rotary Depth N		
				Sta	rt Da	ate	S	09/04/09 SAMPLES			Finis	sh Date	09/0
Location:	8' Nort	h of centerline of roadway and					- SF				(t	Randy Sa	unities and and an
-		ast of center of existing bridge			No.	Type	SF)	e (Blows)	Shear	re (%)	insity (PCF)	Diedrich-I	
(DEPTH) *ELEV. 99.50	DESC	CRIPTION OF MATERIALS	Graphic Log	Depth in feet	Sample No.	Sample	Qu (TSI	N Value	Bulge / Shear	Moisture	Dry Dens	RE	MARK
98.50 		ck And Brown Clay Mixed With oken Concrete And Limestone Fragments (Fill)		-1 -2 -3 -4 -5	1	SS							
	Mec	dium Brown Silt And Limestone Fragments (Fill)			2	SS		19			-		
	Loos	e To Medium Black Sandy Loam			3	SS SS		5 9		18 16	-		
	M	edium Black Sandy Loam With Wood Fragments		12 13 14 15	5	SS	0 0	11		18			
		Medium Brown And Gray Fine To Coarse Gravel				SS SS		24		·	-		
-	De			-	7	SS		24			-		

Comments: Assumed center of existing bridge deck as 100.0.

USER NAME = chad_clauson PLOT SCALE = -

PLOT DATE = 2/19/20

DESIGNED – CC DRAWN – CC CHECKED – SB DATE – 1/24/2020

nt: Wend	Midwest Testing Services, Inc. 3705 Progress Blvd. Peru, IL 61354	BORING LOG Sheet 2 of 3 Boring No. B-2	Phone: 815-223-6696 Fax: 815-223-6659 e-mail: mts37@comcast.net	Client:	Midwest Testing Services, I 3705 Progress Blvd. Peru, IL 61354 Wendler Engineering Services, Inc.		<u>RING</u>		-	Fax:	: 815-223-6696 815-223-6659 : mts37@comcast.net
ect Name: Sectio ect Site: Ogle (ation: 8' N	on 08-03119-00-BR Byron Township County, Illinois forth of centerline of roadway and	Surface Elev. 99.50 Auger Depth 53' Start Date 09/04/09	Randy Safranski	Project Nam	e: Section 08-03119-00-BR Byron Township Ogle County, Illinois 8' North of centerline of roadway and	 Surface Auger Start D	e Elev. Depth Date	0 SAMP	99.50 53' 9/04/09 PLES	Finish	y Depth NA n Date 09/04/09 DRILLED BY Randy Safranski
DE: DE: DE: DE:	SCRIPTION OF MATERIALS	-		(DEPTH) ELEV. 57.50	25' east of center of existing bridge DESCRIPTION OF MATERIALS		Sample Type	Qu (1.5F) N Value (Blows)	Bulge / Shear	Dry Density (PCF)	Diedrich-D120 REMARKS
7.50 6.50 5.50 4.50 3.50	Dense Brown Fine Sand With Limestone Fragments	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Very Stiff Brownish Gray Silty Loam Till	43 44 45 46 -47	SS 2	2 16	B	17	
2.50 1.50 0.50	Dense Brown Fine Sand				Very Dense Yellowish Brown Limestone (Penetrated With Rock Bit)	·48 ·49 ·50	5 SS				
7.50 6.50 5.50 4.50	nse Brown Fine Sand To Coarse Sand	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-48.50 -47.50 -46.50 -45.50 -44.50 -43.50	Bottom of Boring	-51 -52 -53 -54 -55 -56 -57					
3.50 2.50 51.50 50.50 Ver 59.50 58.50	y Stiff Brownish Gray Silty Loam Till	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	-42.50 -41.50 -40.50 -39.50 -38.50 -37.50		- 58 - 59 - 60 - 61 - 62					
	tatic water level after auger removal elevation med center of existing bridge deck as 100.0.			Groundwater Comments:	Data: Static water level after auger removal e Assumed center of existing bridge deck as						