STRUCTURE GEOTECHNICAL REPORT

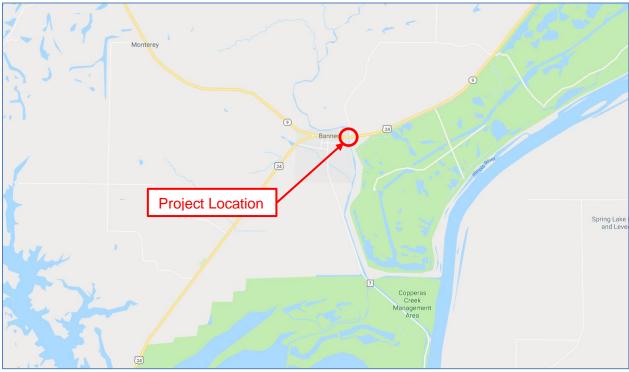
S.N. 029-0069 (prop.) 029-0001 (exist.)

US 24 / IL 9 over Copperas Creek FAP Route 317 Section (43-BR)BR Fulton County

engineers + planners + land surveyors

Prepared By:	WHKS & Co. Engineering 3695 S. 6 th Street, Springfield, IL 62703 (217) 483-9457
Prepared For:	Illinois Department of Transportation Region 3 / District 4
	May 14, 2020

Table of Contents


Ģ	Description and Scope1 General Information Project Background
S	ploration2 Subsurface Exploration and Testing Subsurface Conditions
	nnical Evaluations and Recommendations
C	ion Recommendations6 Driven Piles Drilled Shafts
Т	ction Considerations
F U S S F L S S S	Acces Boring Plan Preliminary TS&L JItimate 5-lane Bridge Cross Section Subsurface Data Profile Soil Boring and Rock Core Logs Rock Core Photos Laboratory Test Results Settlement Analysis Results Solope Stability Analysis Results Soil Site Class Analysis Results Integral Abutment Feasibility Results

Project Description and Scope

General Information

Based on the preliminary TS&L, the existing four-span continuous, non-composite rolled-steel beam bridge will be completely replaced. The proposed structure consists of a two-span, fully-composite 48" deep steel plate girder superstructure with both spans equaling 132'-2". The resulting total bridge length is 267'-8" back to back of abutments. The superstructure is supported by integral abutments and a solid wall bent pier. Stage construction is proposed. The map below shows the location of the project.

Location Map

The centerline of US 24 / IL 9 is on a curved alignment with a radius of 6,550.81 feet. The bridge is to be constructed on a tangent alignment and offset laterally such that the total curvature offset is split at the ends and middle of the bridge. The proposed structure will be designed in accordance with 2017 AASHTO LRFD Bridge Design Specifications, 8th Edition.

The structure is planned to be built in two separate phases. An interim phase and an ultimate phase. For the interim phase, the bridge will carry two 12'-0" lanes of traffic, one in each direction, with 10'-0" (min.) shoulders on each side. The total width of the bridge for the interim phase is 48'-3" out to out and is depicted in the TS&L provided in the Appendix. The proposed letting date for the interim Phase is November 2020.

For the ultimate phase, the bridge will be widened to carry four 12'-0" through lanes, a 13'-0" center left-turn lane and 10'-0" (min.) shoulders on each side. The total width of the widened bridge for the ultimate phase is 85'-3" out to out. The ultimate cross-section is provided for

information only in the Appendix. There is no planned letting date for the ultimate phase. This SGR applies only to the interim phase structure.

The estimated reactions at the substructure bearings for Service Load I and Strength I are given in the table below:

Substructure Unit	DC (kips)	DW (kips)	¹ LL (kips)	Total Load (Service I)	Total Load (Strength I)
Abutments	583.0	104.5	368.7	1,055.2	1,537.7
Pier	1,834.8	391.6	646.5	2,872.9	4,012.3

¹ Impact is included at the abutments and omitted at the pier

Note: in addition to the reaction at the bearings, the above DC loads include additional unfactored dead loads of 237.1 kips and 416.5 kips to account for the abutment cap/approach slab and pier cap/wall, respectively.

Project Background

Phase I work for this project originally began in the early 2000's and a TS&L for this project was prepared by Stanley Consultants in 2011 in metric units. At that time, the District did not have plans for the interim phase as described above. The TS&L prepared in 2011, therefore, only depicted the ultimate five-lane bridge configuration. The TS&L was approved as a basis for preparation of final plans by the Bureau of Bridge and Structures on February 16, 2011. A Structure Geotechnical Report was not prepared at that time.

Due to costs and availability of funding, the District decided to put the project on-hold until adequate funding could be obtained. Due to the poor condition of the existing structure, the District subsequently decided to replace the bridge in the interim phase described above.

Field Exploration

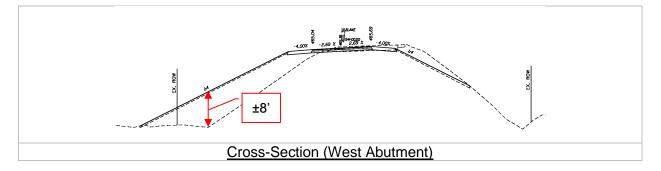
Subsurface Exploration and Testing

The soil borings for the project were drilled and tested in 2006 during the early stages of the initial project. No new borings were obtained for the interim phase of the project. The 2006 borings consist of 5 soil borings and three rock cores.

Borings #1 and #2 were drilled in the existing embankment cone laterally offset approximately 30' and 49' north of the northern edges of the proposed east and west abutments, respectively. Borings #3 and #4 were drilled in the stream channel. Boring #3 is approximately 22' north of the proposed bridge and boring #4 is approximately 13' south of the proposed bridge. Boring #5 was drilled in the existing overbank approximately 5' west of the centerline of the proposed pier, and approximately 1.8' north of the proposed centerline of US 24/IL 9. Borings #3, #4 and #5 were continued after auger refusal with rock cores.

Subsurface Conditions

Generally, the borings and rock cores indicate soft to very stiff cohesive material or loose to medium-dense cohesionless material overlaying rock consisting of weathered shale, sandstone and, in isolated areas, black coal. In the channel, rock was encountered around elevation 419. At the proposed west and east abutments, rock was encountered at elevation 425 and 442, respectively.


At the east abutment (Boring B-1), the material above rock consists of approximately 27.5' of stiff to very stiff clay loam or sandy clay loam with Qu values ranging from 1.8 to >4.5 tsf. At the west abutment, Boring B-2 indicates the material above rock consists of approximately 28' of very soft to medium clay loam or sandy clay loam with Qu values ranging from 0.5 tsf to 2.3 tsf. In the channel near the proposed pier location (Borings B-3, B-4 and B-5), indicate the material above rock consists of approximately 24' to 28' of very loose to loose, medium to coarse-grained brown sand with blow counts of 2 to 15 blows/foot.

The rock cores (B-3, B-4 and B-5) indicate layers of shale, sandstone and siltstone of varying strength and quality. Top of rock elevation ranges from 419 to 421. Beginning at the top of rock, the cores show a thin seam of very soft, poor quality shale or sandstone, followed by a \pm 5' layer of hard sandstone or shale with strengths of 200-500 tsf and RQD's of 50-60%. Below that, and to the bottom of the rock cores at elevation 399, is \pm 6' layer of soft silty shale or siltstone with strengths of 30-80 tsf and RQD's of 20-80%. At rock core B-5, this soft layer is only about 2-3' thick and indicates that higher strength sandstone or shale may exist below the bottom of the cores. Additionally, the rock core at the pier boring (B-5), shows a 3' thick layer of black coal at elevation 419 to 416.

Geotechnical Evaluations and Recommendations

<u>Settlement</u>

The proposed profile will result in a grade raise of approximately 0.0' and 3.5' at the west and east abutments, respectively. At the west abutment, the soil profile below the proposed embankment widening consists of very soft to soft silty or sandy clay loam with moisture contents ranging from 25% to 36% which are susceptible to large settlements when additional overburden pressures are added. Maximum depth of embankment fill at this location is approximately 8', resulting in 1.51" of calculated settlement. However, due to the location of maximum fill (as shown below) and the gentle proposed embankment slope of 1:4, this settlement is not anticipated to be problematic and therefore no mitigation is recommended.

At the east abutment, the proposed location of the abutment will be in front of the existing abutment, so settlement calculations assume an existing ground elevation of approximately elev. 550 after removal of the existing slope wall. This results in approximately 17 feet of fill to construct the new embankment in front of the existing abutment. At this location and based on boring B-1, settlement is estimated to be 0.45". No mitigation of settlement is necessary but effects of downdrag will be included in the resistance available computed for the foundation. Behind the existing abutment, the increase in grade raise of ± 3.5 ' will result in an insignificant amount of settlement.

Slope Stability

Stability of the embankment slopes was conducted assuming a grade raise above the top of the existing embankment of 0' and 3.5' at the west and east abutments, respectively. Based on an elevation of 449.7 for the proposed overbank and the existing streambed elevation 439.0, the heights of the proposed embankments are and ± 16 ' and ± 28.8 ' at the west and east abutments, respectively. These slopes are based on a draft of the TS&L and may change slightly as the TS&L is developed, however the assumption used for the slope stability analysis are conservative and the results should be unaffected by minor updates to the TS&L.

The proposed side slopes will be graded to 1:4 or will be no steeper than the existing slopes. Since no distress or sloughing of the existing slopes was noted, the proposed side slopes are anticipated to be stable. It is anticipated that the relatively minor increase in the embankment height at the east abutment will not result in any stability issues, however the proposed slopes for both abutments were analyzed using the slope stability analysis software SLIDE2. For the west embankment, Boring B-2 was used to develop the SLIDE2 model. For the east embankment, a combination of borings B-1, B-3 and B-5 were used to develop the model. Modelling both undrained ($\emptyset = 0$) conditions and drained conditions, resulted in Factors of Safety (FOS) of 3.1 and 2.0 against slope failure. Boring data was collected using STP Split Spoon sampling, so the minimum computed FOS's exceeded the allowable FOS of 1.5.

<u>Scour</u>

Scour depths from the HEC-RAS hydraulic analysis are shown are:

West Abutment	2.42' (Q100)	4.55' (Q200)
Pier	7.68' (Q100)	7.68' (Q200)
East Abutment	1.41' (Q100)	2.08' (Q200)

Based on Boring B-5, the upper 8-9 feet of material at the proposed pier location consists of stiff to hard silty loam with Unconfined Compressive Strengths (Qu) ranging from 2.3 tsf to 1.7 tsf. In accordance with Section 2.3.6.3.2 of the Bridge Manual, a 50% reduction in the above scour depths is appropriate. Due to the proposed grade raise, the soils at the abutments will consist of new embankment constructed in accordance with the IDOT Standard Specifications for Road and Bridge Construction. Embankment material may consist of granular soils and a 0% reduction is therefore appropriate. If scour depth is above the bottom of the cap at the abutments, the bottom of cap is provided as the adjusted scour depth. The following adjusted scour elevations are provided for the TS&L plan.

Design Scour Elevation Table						
Event/Limit	Design	Design Scour Elev. (ft.)			em 113	
State	W. Abut. Pier 1 E. Abut.					
Q100	455.3	441.2	457.	5		
Q200	455.3	441.0	457.	5	8	
Design	455.3	435.0	457.	5	0	
Check	455.3	435.0	457.	5		

Seismic Considerations

Based on the location of the proposed structure and boring data and in accordance with the 2017 AASHTO Standard Design Specifications, 8th edition, the ground motion site parameters are:

Peak Horizontal Acceleration (PGA)	= 0.048 g
Horizontal Response Spectral Acceleration Coeff. at 0.2-s on rock (S _S)	= 0.114 g
Horizontal Response Spectral Acceleration Coeff. at 1.0-s on rock (S ₁)	= 0.048 9
Site factor at zero-period on acceleration response spectrum (fpga)	= 1.6
Site factor on short-period range of acceleration response spectrum (f _a)	= 1.6
Site factor on long-period range of acceleration response spectrum (f ₀)	= 2.4

Based on Borings B-2, B-5 and B-1 for the West Abutment, Pier and East Abutment, respectively, the global Soil Site Class was determined to be Site Class D.

Seismic Data	
Seismic Performance Zone (SPZ) Pier 1	1
Design Spectral Acceleration at 1.0 sec. (S _{D1})	0.116 g
Design Spectral Acceleration at 0.2 sec. (S _{DS})	0.183 g
Soil Site Class	D

Based on the above, the following seismic data shall apply:

Foundation Recommendations

Based on the soil profile above bedrock, the depth to bedrock, the composition and quality of bedrock, and the proposed substructure types only driven piles and drilled shafts are practical foundation types.

Driven Piles

Driven piles are feasible at both abutments. Metal shell piles, while feasible, are not recommended due to the shallow depth of rock. We recommend H-piles driven to refusal. At the west and east abutments, we expect the H-piles to achieve bearing, after a nominal amount of penetration into shale, at approximately elevations 419 and 436, respectively. Estimated pile lengths at refusal are based on the reported blow counts at borings B-1 and B-2 along with observations of the strength and RQD values of similarly characterized shale in Rock Cores 3, 4 and 5. Additionally, the Factored Resistance Available shown for the piles at the East Abutment, has been reduced to account for downdrag losses from minor settlement as a result of the construction of the new embankment in front of the existing abutment.

Driven H-piles are also feasible at the pier, but the presence of an approximately 2.5' to 3' thick coal seam in boring B-5 complicates the pile length estimates. Larger H-piles may penetrate the coal layer and achieve bearing in the sandstone layer approximately 5' below the coal where smaller H-piles may refuse in the coal layer. To be conservative, the pile length estimates shown below for the pier assume that all pile sizes will penetrate the coal seam.

West Abutment					
Pile Size	Nom. Req'd Bearing (kips)	Factored Resistance Available (kips)	Est. Pile Length (ft)		
HP 8x36	286	157	39		
HP 10x42	335	184	38		
HP 10x57	454	250	41		
HP 12x53	419	231	38		
HP 12x63	497	274	40		
HP 12x74	589	324	41		
HP 12x84	664	365	42		
HP 14x73	578	318	39		
HP 14x89	705	388	41		
HP 14x102	810	446	42		

	Pier					
Pile Size	Nom. Req'd Bearing (kips)	Factored Resistance Available (kips)	Est. Pile Length ¹ (ft)			
HP 8x36	286	157	26			
HP 10x42	335	184	26			
HP 10x57	454	250	27			
HP 12x53	419	230	25			
HP 12x63	497	273	27			
HP 12x74	589	325	27			
HP 12x84	664	366	28			
HP 14x73	578	318	26			
HP 14x89	705	387	27			
HP 14x102	810	445	28			

¹ Assumes piles will drive through coal seam between elevations ±418 and ±415

East Abutment				
Pile Size	Nom. Req'd Bearing (kips)	Factored Resistance Available (kips)	Est. Pile Length (ft)	
HP 8x36	286	139	24	
HP 10x42	335	163	24	
HP 10x57	454	225	25	
HP 12x53	419	206	25	
HP 12x63	497	247	25	
HP 12x74	589	293	25	
HP 12x84	664	331	25	
HP 14x73	578	288	25	
HP 14x89	705	352	25	
HP 14x102	810	404	25	

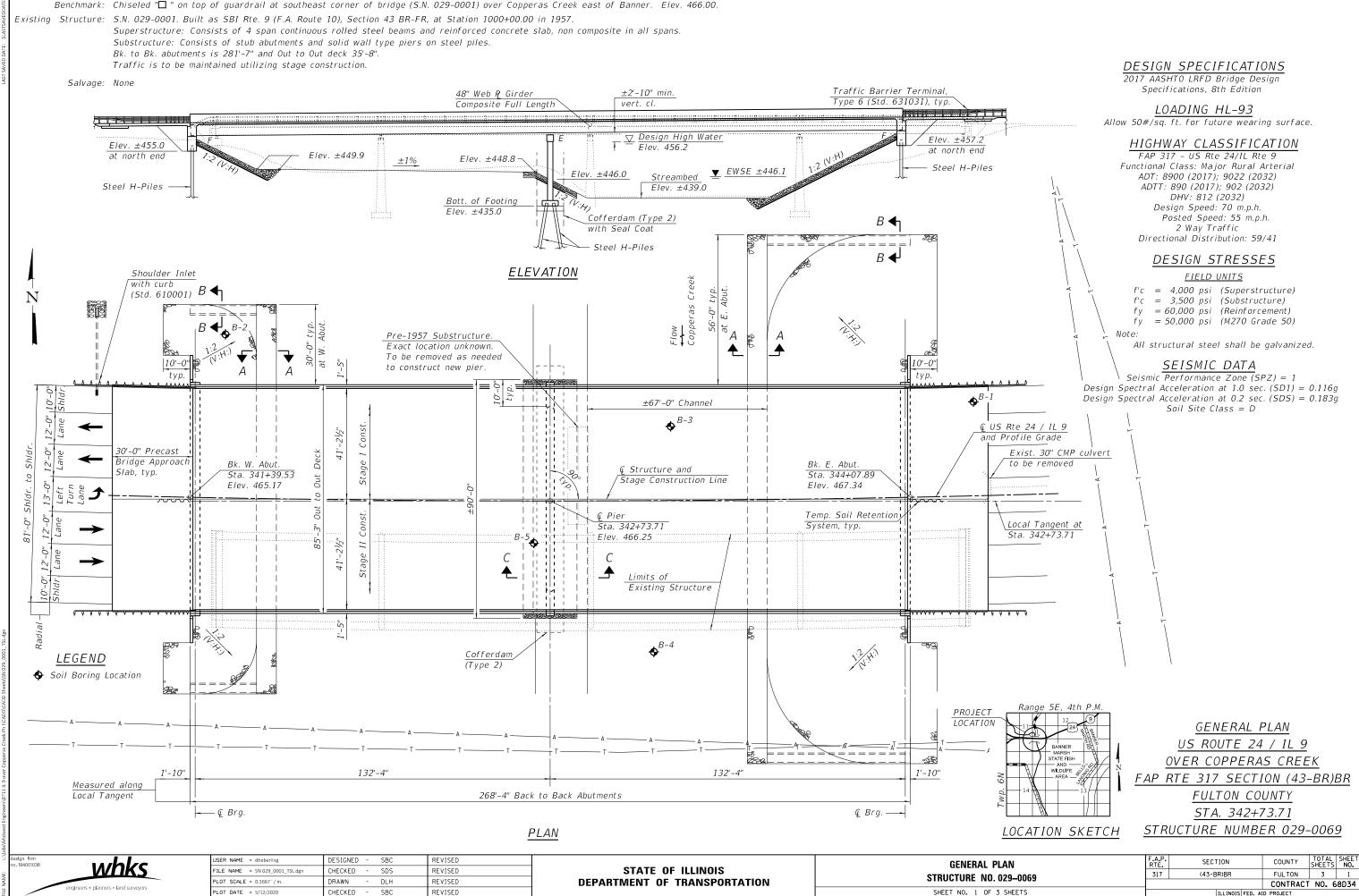
One test pile is recommended at each substructure unit. The location of the test piles may be determined at the discretion of the structural engineer.

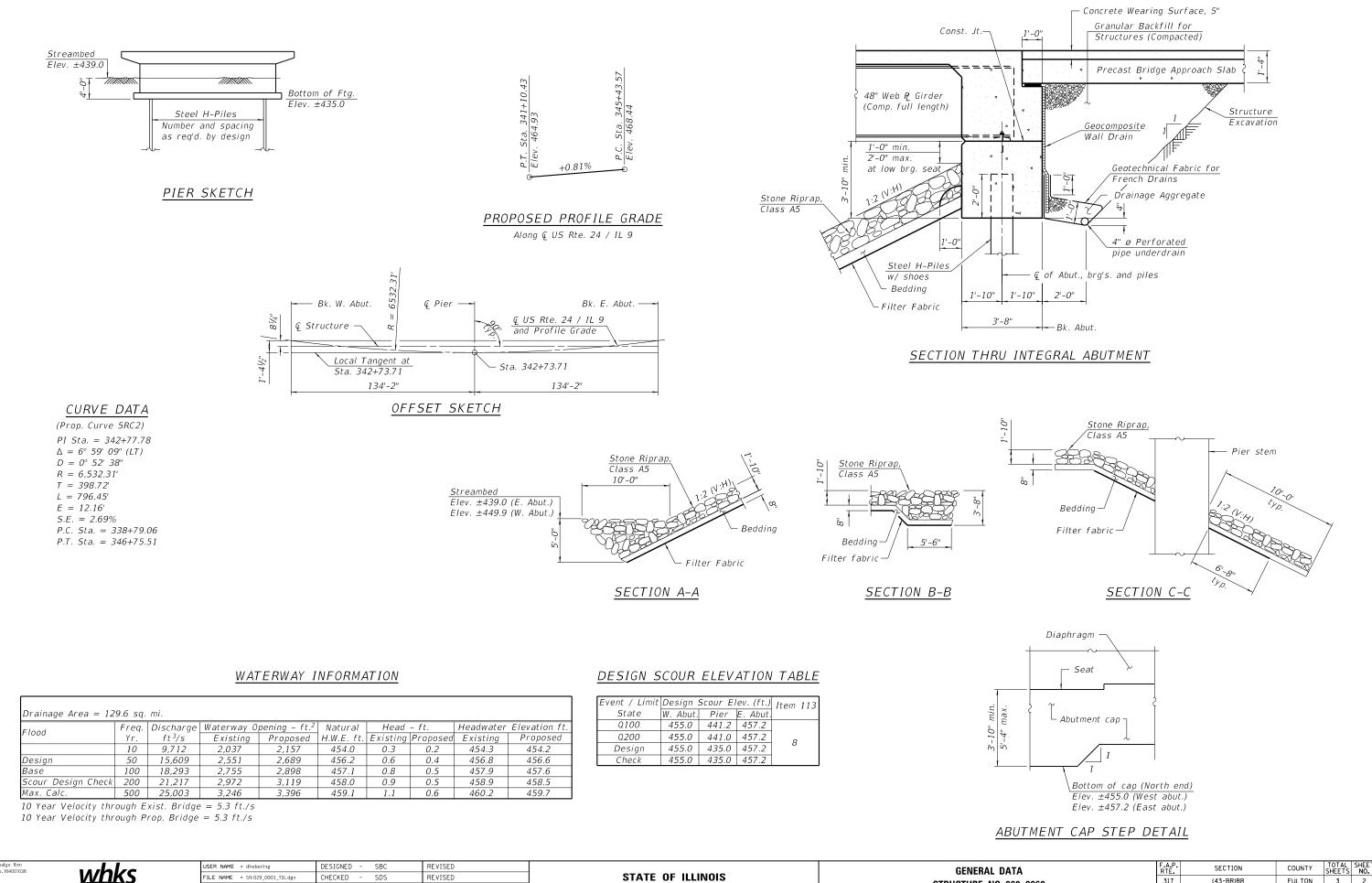
Drilled Shafts

The geological composition of Fulton County near the Copperas Creek area has been known to contain coal seams as well as open voids within the rock layers near and around the coal seam layers. Based on boring B-5, adequate factored resistance for shafts cannot be obtained above the coal seam and, due to the variable conditions encountered below the coal seam and the known issues mentioned above, the depth of the rock core is inadequate to properly determine the factored resistance of the shafts. If shafts are strongly desired, a new rock core that extends to a minimum elevation of 394 must be obtained. The new rock core should be obtained as close as practicable to the location of the proposed pier, but in no case further than approximately 15' in any direction from the pier.

Additionally, due to the fractured nature of coal and the likelihood of increased fracturing as a result of drilling operations for the installation of shafts, temporary casings to the top of shale will be necessary if drilled shafts are used.

Construction Considerations


Temporary Soil Retention System/Sheet Piling


Due to the weak soils at the west abutment, Temporary Cantilevered Sheet Pile does not appear feasible, therefore Temporary Soil Retention System is recommended for both abutments.

Cofferdams/Seal Coat

Based on the Estimated Water Surface Elevation of 447.2, the depth of water during construction could be as much as 12.2 ft. For this depth of water, a Type 2 Cofferdam will be required. Assuming the bottom of the proposed footing is set at elevation 435, seal coat concrete will be required.

Appendices

DEPARTMENT OF TRANSPORTATION

PLOT SCALE = 0.1667'/in.

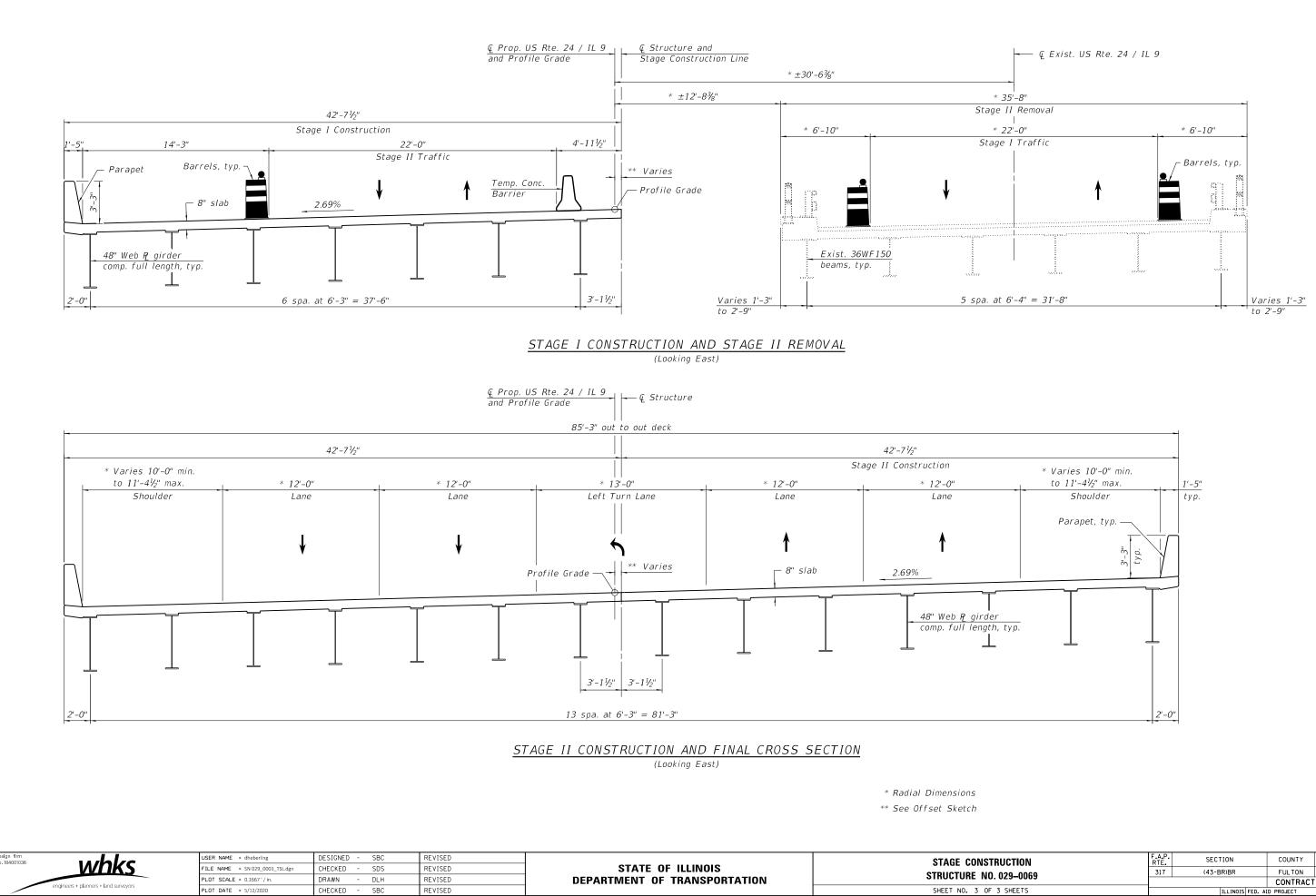
PLOT DATE = 5/12/2020

engineers + planners + land surveyor

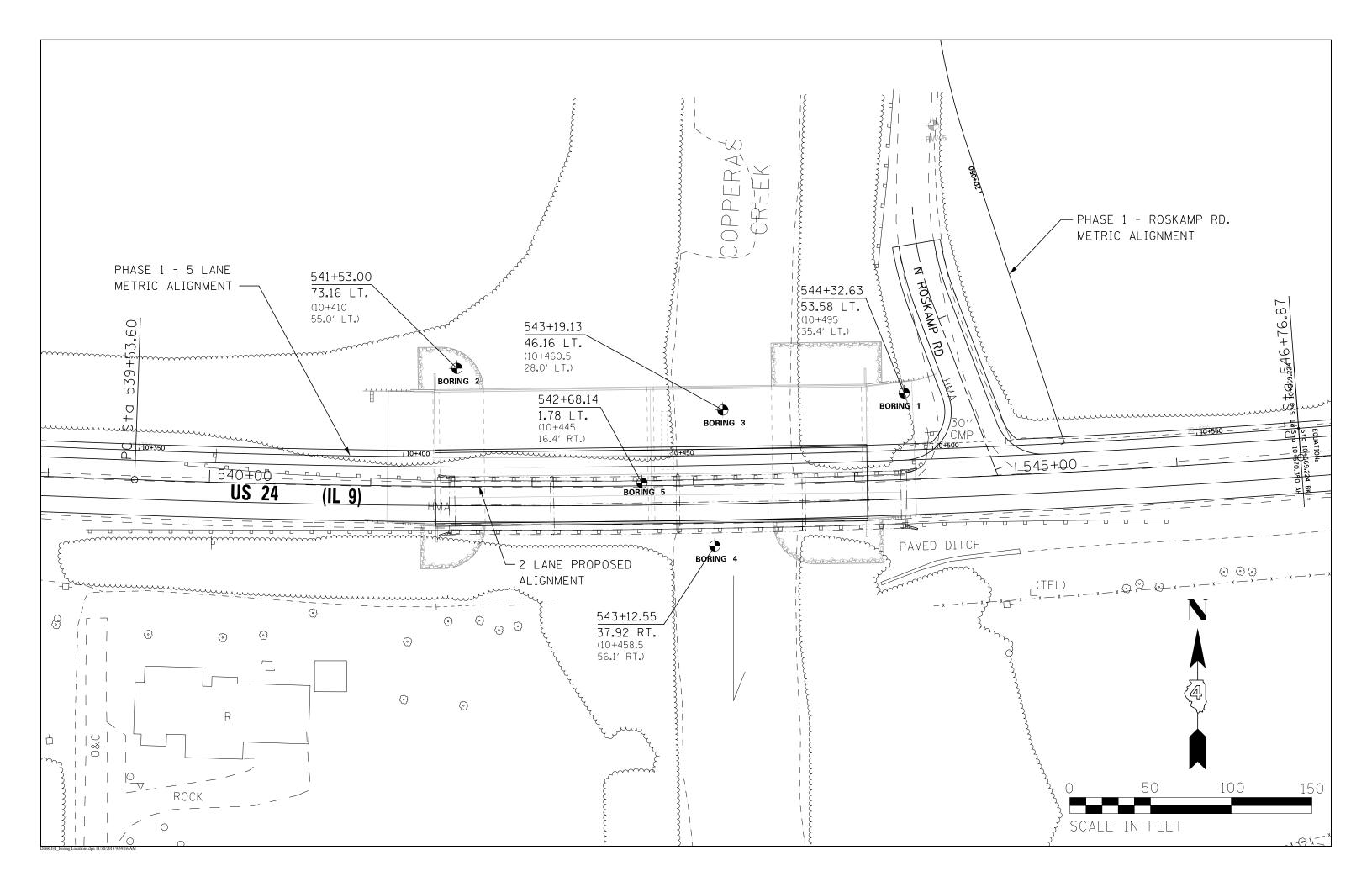
DRAWN

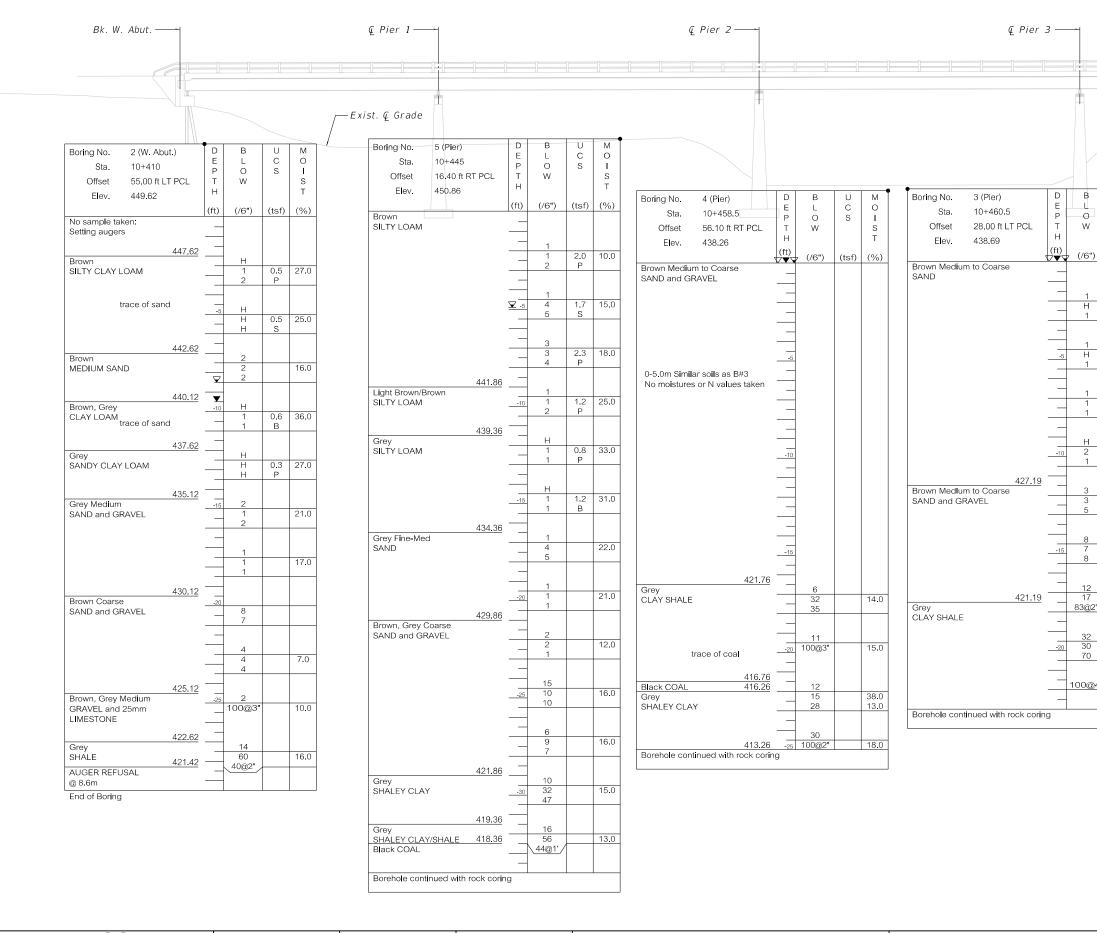
CHECKED -

DLH


SBC

REVISED

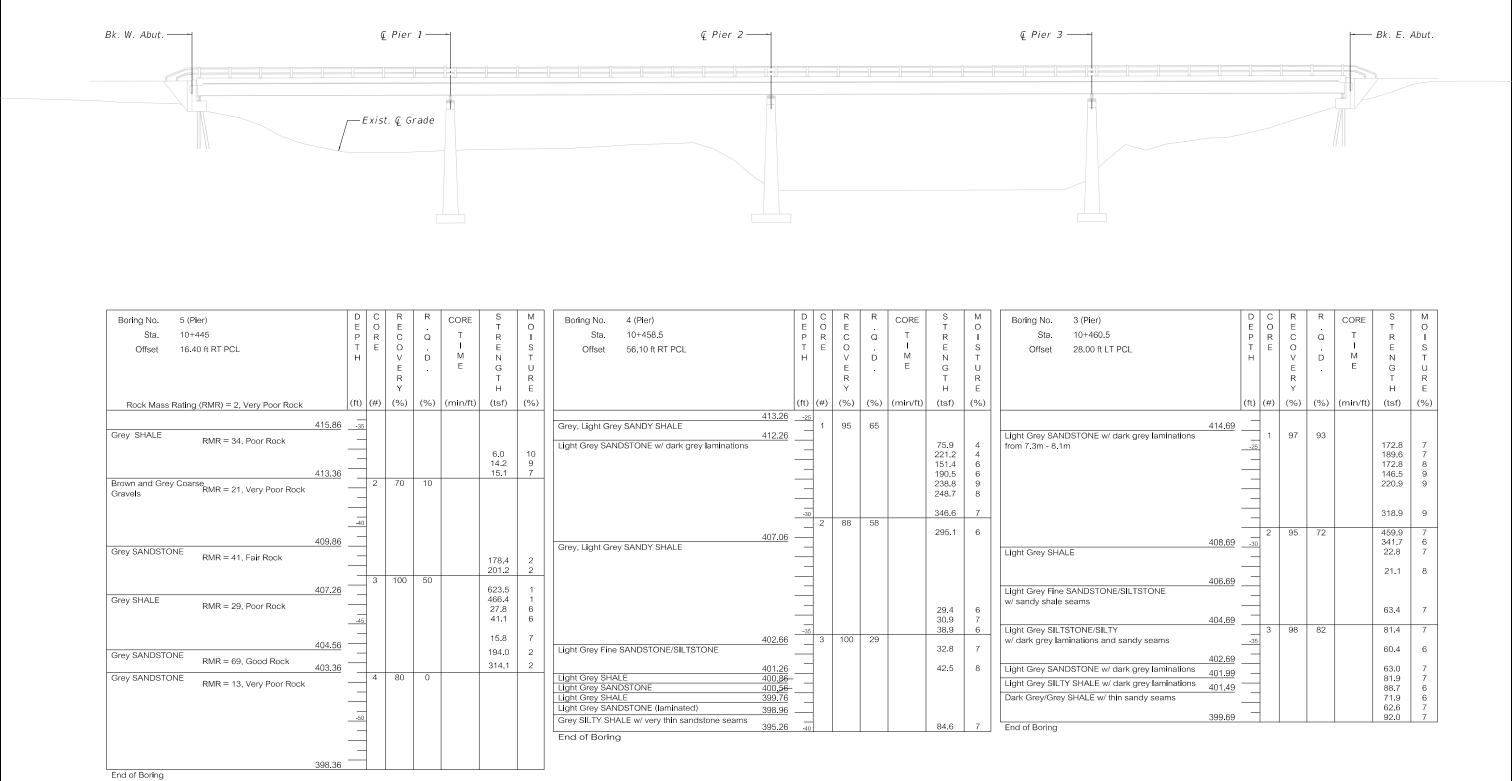

REVISED


STRUCTURE NO. SHEET NO. 2 OF

	IVIL.			JULLIS	110.
. 029–0069	317	(43-BR)BR	FULTON	3	2
			CONTRACT	NO. 6	8D34
3 SHEETS		ILLINOIS FED. A	ID PROJECT		

RUCTION	F.A.P. RTE	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
. 029–0069	317	(43-BR)BR	FULTON	3	3
. 025-0005	CONTRACT NO. 68D34				
3 SHEETS	ILLINOIS FED. AID PROJECT				

design firm no. 184001036	whice	USER NAME = dheberling	DESIGNED - SBC	REVISED		DRILLED BO
10.104001030	WIIKS	FILE NAME = 029_0001_Boring Data Profile.	gnCHECKED - SDS	REVISED	STATE OF ILLINOIS	
_		PLOT SCALE = 0:2"/in.	DRAWN - DLH	REVISED	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO.
	engineers + planners + land surveyors	PLOT DATE = 1/15/2019	CHECKED - SBC	REVISED		SHEET NO. 1 OF


Midwat Environmen 8711 II 0 mon Comm

— Bk. E. Abut.

			Boring No. 1 (E. Ab		DE	B	U C	M O
			Sta. 10+451.		Р	0	s	I
			Offset 35.40 ft I	LT PCL	Т	W		S
			Elev. 465.98		Н			Т
			No sample taken:	11 11	(ft)	(/6")	(tsf)	(%)
			Setting augers					
			Brown	464.48	_	5		
	U	М	GRAVEL LOAM		_	8	4.0	6.0
]	C S	0				9	Ρ	
	3	S		461.98				
		Т	Brown, Light Brown CLAY LOAM		-5	2	3.7	13.0
)	(tsf)	(%)				10	S	
						4		
					_	5 10	>4.5 P	11.C
		21.0						
						3		
					-10	5	>4.5	10.0
		20.0			_	6	Р	
				454.48				
			Brown, Grey SANDY CALY LOAM			4	>4.5	11 0
		18.0				6	P P	
		10.0		451.98	_			
			Grey	101.00	_	2		
			CLAY LOAM		-15	8 5	1.8 S	16.0
		19.0					0	
			Grey	449.48	_	2		
			SILTY LOAM			3	2.3	25.0
		14.0				4	В	
				446.98				
			Dark Grey SHALEY CLAY		-20	4	3.0	18.C
		14.0			20	11	B	
						11		
						23 37		12.0
2"		13.0 16.0						
-		10.0	Dark Grey	441.98		17		
			SHALE		-25	41		10.0
		11.0			_	59@5"		
				438.48		45 100@6"		10.0
04"		13.0	AUGER REFUSAL	400.40				10.0
			@ 8.38m		_			
			End of Boring					

<u>SUBSURFACE DATA PROFILE</u> <u>US ROUTE 24 / IL 9</u> <u>OVER COPPERAS CREEK</u> <u>FAP RTE 317 SECTION (43-BR)BR</u> <u>FULTON COUNTY</u> <u>STA. 542+73.91</u> STRUCTURE NUMBER 029-0069

DRINGS	F.A.P. RTE	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
. 029–0069	317	(43-BR)BR	FULTON	2	1
. 025-0005			CONTRACT	NO. 6	8D34
2 SHEETS		ILLINOIS FED.	AID PROJECT		

design firm no. 184001036	USER NAME = dheberling	DESIGNED -	SBC	REVISED		ROCK CORINGS	F.A.P. RTE.	SECTION	COUNTY TOTAL SHEET SHEETS NO.
	FILE NAME = 029_0001_Boring Data	Profile.dgrCHECKED -	SDS	REVISED	STATE OF ILLINOIS	STRUCTURE NO. 029–0069	317	(43-BR)BR	FULTON 2 2
engineers + planners + land surveyors	PLOT SCALE = 0:2 ','' / in. DRAWN - DLH REVISED s + planners + land surveyors PLOT DATE = 1/15/2019 CHECKED - SBC REVISED	DEPARTMENT OF TRANSPORTATION				CONTRACT NO. 68D34			
	PLOT DATE = 1/15/2019	CHECKED -	SBC	REVISED		SHEET NO. 2 OF 2 SHEETS		ILLINOIS FE	D. AID PROJECT

		D	С	R	R	CORE	S	м
0.5		E	0	E			Т	0
		P	R	С	Q	Т	R	
LT PCL		Т Н	E	O V	D	M	E N	S T
				E		E	N G	υ
				R	•		T	R
				Ŷ			н	E
		(ft)	(#)	(%)	(%)	(min/ft)	(tsf)	(%)
	414.69	·						
w/ dark grey laminations	+14.09		1	97	93			
		-25	1	÷.			172.8	7
							189.6	7
							172.8	8
		_					146.5 220.9	9 9
							220.9	3
		_	1					
			1				318.9	9
					70		450.0	
	408.69		2	95	72		459.9 341.7	7 6
	400.09	-30					22.8	7
		_					0	
			1				21.1	8
	406.69							
ONE/SILTSTONE		_						
							63.4	7
	404.69	_						
ILTY			3	98	82		81.4	7
and sandy seams		-35						
	400.60	_					60.4	6
w/ dark grey laminations	402.69						63.0	7
	401.99	_	1				81.9	7
w/ dark grey laminations	401.49		1				88.7	6
// thin sandy seams							71.9	6
	200.00	_					62.6	7
	399.69						92.0	7

SUBSURFACE DATA PROFILE US ROUTE 24 / IL 9 OVER COPPERAS CREEK FAP RTE 317 SECTION (43-BR)BR FULTON COUNTY STA. 542+73.91 STRUCTURE NUMBER 029-0069

	mor	•					Page	<u>1</u> of	f <u>1</u>
Illinois Depart of Transporta	tion			SO	IL BORING LOG		Date	8/29	/06
FAP 317 & 689 ROUTE (US 24 & IL 9)	ESCRI	PTION		L	IS 24 over Copperas Creek	LOGGE	DBY	<u>JA</u>	<u>R</u>
SECTION (43R)BR; (43BR)BR	L			SEC.	TWP., RNG.				
COUNTY Fulton DRILLI	NG ME	THOD		C			В	uto U	М
STRUCT. NO. 029-0069(prop) Station 10+451.755	D E P T	B L O W	U C S	M O I S	Surface Water Elev. <u>438.47</u> ft Stream Bed Elev. <u>438.26</u> ft Groundwater Elev.:	P	L O W S	C S Qu	0 1 S T
BORING NO. 1 (E. Abut) Station 10+495 Offset 35.40ft LT PCL	H ft (ft)	S	Qu (tsf)	т (%)	First Encounter None ft Upon Completion None ft After 24 Hrs. None ft		(/6")	(tsf)	(%)
Ground Surface Elev. 465.98 No sample taken: Setting augers	π (14)		(10-1)		Dark Grey SHALEY CLAY (continued)	_	11	В	
464 Brown GRAVEL LOAM	1.48	5	4.0	6.0	-		11 23 37		12.0
	1.98	9	P		44 Dark Grey SHALE	41.98	17		10.0
Brown, Light Brown CLAY LOAM		-5 8 10	3.7 S	13.0			59@		10.0
Bottom of E. Abutment Ca Elevation 455.6	ap	4		5 11.0	4	38.48	45 100@	-	10.0
		10			AUGER REFUSAL @ 8.38m End of Boring				
		10 5 4	>4.	5 10.			-30		
Brown, Grey SANDY CLAY LOAM	54.48	4	>4		0	-	-		
Grey CLAY LOAM	451.98	-15	3 1	.8 16 S	.0	-	-35		
Grey SILTY LOAM	449.48 -			.3 25 B	5.0	-			
Dark Grey SHALEY CLAY	446.98	-20	4	3.0 1	8.0		-40		

. .

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois Depart of Transporta	me tior	nt 1		SC	DIL BORING LOG	Page	<u>1</u>	of <u>1</u>
EAP 317 & 689	ESCR		N		US 24 over Copperas Creek LO			
SECTION(43R)BR; (43BR)BR						GOLD BI		<u> </u>
COUNTY Fulton DRILLIN	IG ME	тнор		(CME 750 HSA HAMMER TYPE	Au	ito	
STRUCT. NO. 029-0069(prop) Station 10+451.755 BORING NO. 2 (W. Abut) Station 10+410 Offset 55.00ft LT PCL Ground Surface Elev. 449.62 No sample taken: Setting augers	D E P T H	L O W S	U C S Qu (tsf)	M O I S T (%)	Groundwater Elev.: First Encounter <u>440.1</u> ft ▼ Upon Completion <u>NA wash</u> ft After <u>24</u> Hrs. <u>441.1</u> ft ▼	(ft) (/6")	U C S Qu (tsf)	M O I S T (%)
Brown SILTY CLAY LOAM	2	H 1 2	0.5 P	27.0	Brown Coarse SAND and GRAVEL (continued)	- 8 7 - 4 - 4 - 4 - 4		7.0
trace of sand	-5	H H H	0.5 S	25.0	425.12 Brown, Grey Medium GRAVEL and 25mm LIMESTONE -	- <u>-25</u> 2 _100@3"		10.0
Brown Medium SAND	 	2 2 2		16.0	422.62 Grey SHALE 421.42 – AUGER REFUSAL @ 8.6m End of Boring	14 60 40@2'		16.0
440.12 Brown, Grey CLAY LOAM trace of sand	<u>-10</u>	H 1 1	0.6 B	36.0		-30		
Grey SANDY CLAY LOAM		H H H	0.3 P	27.0				
Grey Medium SAND and GRAVEL		2 1 2		21.0	-	-35		
		1 1 1		17.0	_			
430.12	-20	1				-40		

.

`

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Division of Highways	me tior	nt 1		sc	DIL BORING LOG			of <u>2</u>
FAP 317 & 689					110.04		9/8	
SECTION(43R)BR; (43BR)BR					US 24 over Copperas Creek LOGG	ED BY	J,	<u>4R</u>
					AE 750/55 HSA HAMMER TYPE	А	uto	
STRUCT. NO. 029-0069(prop) Station 10+451.755 BORING NO. 3 (Pier) Station 10+460.5 Offset 28.00ft LT PCL Ground Surface Elev. 438.69 Brown Medium to Coarse SAND	E P T H	L O W S	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev.438.47 438.26ftD EStream Bed Elev.438.26ftFGroundwater Elev.:TTFirst Encounter438.7ft¥Upon Completion438.7ft¥After24Hrs.438.7ft¥Grey CLAY SHALE (continued)——	L O W S	U C S Qu (tsf)	
Bottom of Pier Footing/ Encasement Elev. 435.0		1 H 1		21.0	414.69	00@4		13.0
	5	1 H 1		20.0	Borehole continued with rock			
		1 1 H		18.0				
427.15 Brown Medium to Coarse SAND	-10	2 1		19.0				
and GRAVEL		3 5		14.0	 			
	-15	8 7 8		14.0				
Grey CLAY SHALE 421.19		12 17 33@2"		13.0 16.0				
	-20	32 30		11.0	-40			

٠

.

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

\bigcirc							
of Transportation ROCK CORE	LC	G			Page	<u>2</u> of	2
Division of Highways iDOT FAP 317 & 689					Date _		_
ROUTE (US 24 & IL 9) DESCRIPTION US 24 over Copperas Creek	<		L(DGGE	DBY _	_JAR	_
SECTION(43R)BR; (43BR)BR LOCATION _, SEC. , TWP. , RNG.							
COUNTY Fulton CORING METHOD DUAL BARREL			R	_	CORE	-	м
STRUCT. NO. 029-0069(prop) CORING BARREL TYPE & SIZE NWD4 5'			E C	R	т	T R	0
Station 10+451.755 Core Diameter 2.1 in	D E	с о	o V	Q	I M	E N	S T
BORING NO. 3 (Pier) Top of Rock Elev. 421.19 ft	P T	R E	E R	D	E	G T	UR
Offset 28.00ft LT PCL	Ĥ	-	Y	•		ี่ห่	Ē
Ground Surface Elev. 438.69 ft Lt Gr SANDSTONE W/ dk gr laminations from 7.3m - 8.1m 414.69	(ft)	(#)			(min/ft)	(tsf)	(%)
414.69	-25	1	97	93		172.8	7
						189.6	7
						172.8 146.5	1 1
						220.9	9 9
	-						
						318.9	9
408.69		2	95	72		459.9 341.7	7
Lt Gr SHALE	-30					22.8	6
Lt Gr Fine SANDSTONE/SILTSTONE W/ sandy shale seams 406.69						21.1	8
	-						
	_					63.4	7
Lt Gr SILTSTONE/SILTY SHALE w/ dk gr laminations & sandy seams		3	98	82		04.4	_
	-35					81.4	7
Lt Gr SANDSTONE W/ dk. gr laminations 402.69						60.4	6
Lt Gr SILTY SHALE W/dk gr laminations 401.99						63.0	7
Dk Gr/Gr SHALE w/ thin sandy seams 401.49						81.9 88.7	7
						71.9	6 6
End of Boring 399.69						62.6 92.0	7
	-40						
-							
-							
	-						

.

.

Color pictures of the cores <u>No</u> Cores will be stored for examination until <u>COMPLETION</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Depa of Transport	rtme atior	nt		SC		6			of <u>2</u>
EAP 317 & 689	DESCR	ΙΡΤΙΟΝ	J		US 24 over Copperas Creek	1000		9/7	
SECTION(43R)BR; (43BR)BR						_ 1066	EDBY	J,	<u>4R</u> _
COUNTY Fulton DRILI						YPE	A	uto	
STRUCT. NO. 029-0069(prop) Station 10+451.755 BORING NO. 4 (Pier) Station 10+458.5 Offset 56.10ft RT PCL Ground Surface Elev. 438.26	H	O W S	U C S Qu (tsf)	M 0 1 5 T (%)	Surface Water Elev.438.47Stream Bed Elev.438.26Groundwater Elev.:First EncounterUpon Completion438.3After24Hre428.2	ft E P T ft⊻ H ft ∑	L O W S	U C S Qu	M O I S T
Brown Med to Cse SAND and GRAVEL 0-5.0m Similar soils as B#3 No moistures or N values taken Bottom of Pier Footing/ Encasement Elev. 435.0 421 Grey CLAY SHALE		6 32 35		14.0	trace of coal Grey CLAY SHALE (continued) Black COAL 4 Gr SHALEY CLAY	ft (ft) (ft) <li(ft)< li=""> <li< td=""><td>12 15 28 30</td><td>(tsf)</td><td>(%) 38.0 13.0 18.0</td></li<></li(ft)<>	12 15 28 30	(tsf)	(%) 38.0 13.0 18.0
	-20	11 00@3		15.0					

.

.

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

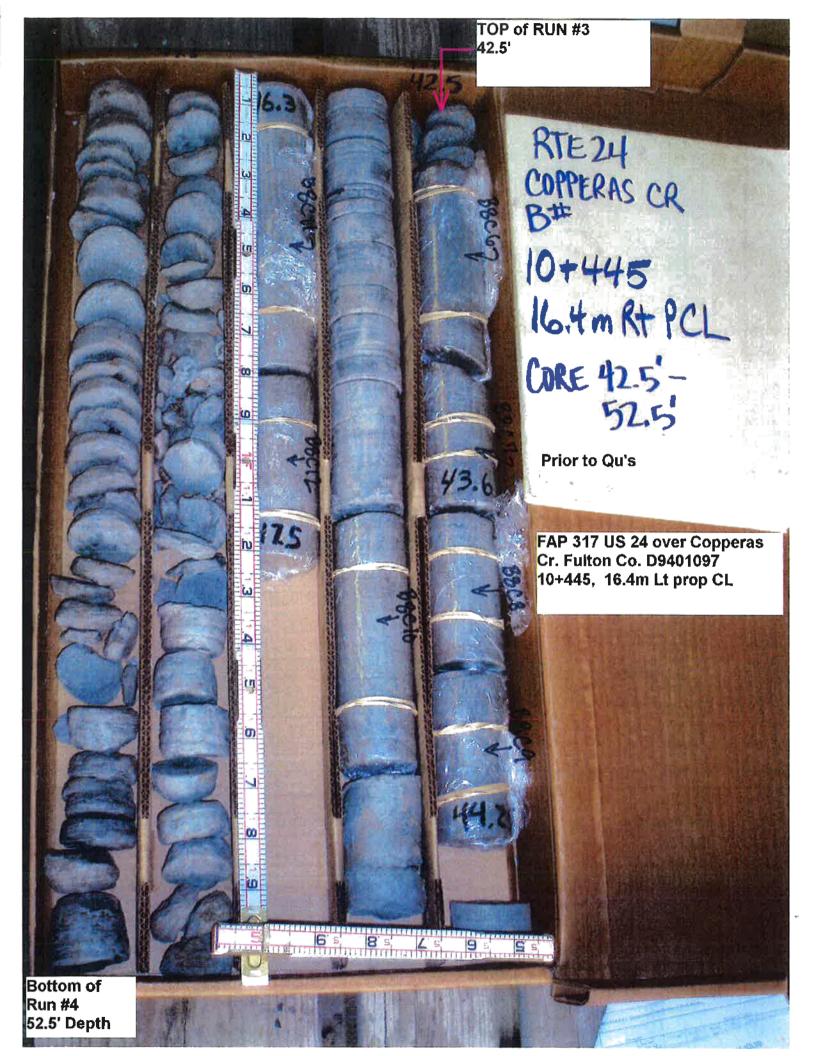
Illinois Department of Transportation ROCK CORE L	_00	2		Page j	<u>2</u> of	2
Division of Highways IDOT FAP 317 & 689				Date _	9/7/06	
ROUTE (US 24 & IL 9) DESCRIPTION US 24 over Copperas Creek		L	OGGE	DBY_	JAR	
SECTION(43R)BR; (43BR)BR LOCATION _, SEC. , TWP. , RNG.						
COUNTY Fulton CORING METHOD DUAL BARREL		R	R	CORE	S T	M
STRUCT. NO. 029-0069(prop) CORING BARREL TYPE & SIZE NWD4 5' Station 10+451.755 Core Diameter 2.1 in BORING NO. 4 (Pier) Top of Rock Elev. 420.76 ft Station 10+458.5 Begin Core Elev. 413.26 ft	D C E C P F T E	- C C O C V R E	R Q D	T I M E	R E N G T	0 S T U R
Offset 56.10ft RT PCL	н	Y			н	E
Ground Surface Elev. 438.26 ft Gr, Lt Gr SANDY SHALE 413.26		#) (%) 95	(%) 65	(min/ft)	(tsf)	(%)
Lt Gr SANDSTONE W/ dk. gr laminations						
Lt GL SANDS FONE WY dk. gn aminations					75.9 221.2	4
					151.4 190.5	
					238.8	9
					248.7	8
	-30	2 88	58		346.6	, 7
407.06	_				295.1	6
Gr, Lt Gr SANDY SHALE	-					
					29.4	6
	-35				30.9 38.9	7 6
402.66 Lt Gr Fine SANDSTONE/SILTSTONE	- 3	100	29		32.8	7
401.26	-				42.5	8
Lt Gr SHALE 400.86					42.5	D
Lt Gr SANDSTONE 400.56 Lt Gr SHALE 399.76						
Lt Gr SANDSTONE (laminated) 398.96						
Gr SILTY SHALE W/ v. thin sandstone seams 398.26	-40				84.6	7
End of Boring	_					
· · · · · · · · · · · · · · · · · · ·						
	_					
	-45					

Color pictures of the cores No Cores will be stored for examination until <u>COMPLETION</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Depar of Transporta	tme	ent n		S	OIL BORING LOG			of <u>2</u>
	ESCF		N		US 24 over Copperas Creek LOGG	Date		<u>15/07</u>
SECTION(43R)BR; (43BR)BR		LOCA		_ SEC	2., TWP., RNG.		J	<u>AR</u>
COUNTY Fulton DRILLI	NG ME	THO)		CME 750 HSA HAMMER TYPE	A	uto	
STRUCT. ND. 029-0069(prop) Station 10+451.755 BORING NO. 5 (Pier) Station 10+445 Offset 16.40ft RT PCL	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev.438.47 438.26ftDStream Bed Elev.438.26ftEGroundwater Elev.:TTFirst EncounterftH	B L O W	U C S Qu	M O I S T
Ground Surface Elev. 450.86 ft Brown SILTY LOAM	(ft)	(/6'')	(tsf)	(%)	Upon Completion NA wash ft After 24_ Hrs. 446.0 ft ✓ Gray Fine-Med SAND (continued)	(/6'') 1	(tsf)	(%)
		1			Brown & Gray Cse. SAND & GRAVEL	2		
		1 2	2.0 P	10.0		2 1		12.0
	¥-5	1 4 5	1.7 S	15.0		15 10 10		16.0
		3	2.3	18.0		6		
		4	P			9 7		16.0
Lt. Brown/Brown SILTY LOAM	-10	1 1 2	1.2 B	25.0	Gray SHALEY CLAY	10 32 47		15.0
Gray SILTY LOAM 439.36		H 1	0.8	33.0	Gray SHALEY CLAY/SHALE	16 56		13.0
Bottom of Pier Footing/		1	P		Black COAL	1@1/		10.0
Encasement Elev. 435.0	-15	H 1 1	1.2 B	31.0	-35			
Gray Fine-Med SAND 434.36		1		22.0				
		5						
	-20	1 1		21.0	-40			

.

÷


The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois Department of Transportation ROCK CC	ORE LO	G	Ì		Page _	<u>2</u> of	2
Division of Kighways IDOT FAP 317 & 689					Date _		
ROUTE (US 24 & IL 9) DESCRIPTION US 24 over Copp			L(OGGE	DBY_	JAR	
SECTION(43R)BR; (43BR)BR LOCATION _, SEC. , TWP. , RNG.							
COUNTY Fulton CORING METHOD DUAL BARREL			R	R	CORE	S T	M
STRUCT. NO. 029-0069(prop) CORING BARREL TYPE & SIZE NW Station 10+451.755 Core Diameter 2.1 in BOBING NO 5 (Diameter) 410.26 ft	'D4 5' D E P			à	T I M E	R E N	0
BORING NO. 5 (Pier) Top of Rock Elev. 419.36 ft Station 10+445 Begin Core Elev. 418.36 ft Offset 16.40ft RT PCL 6400 ft 6400 ft ft	T H	E	R Y			T H	U R E
Ground Surface Elev. 450.86 ft Black COAL (continued)	(ft)	(#)	(%)	(%)	(min/ft)	(tsf)	(%)
Rock Mass Rating(RMR)= 2, Very Poor Rock		-					
Gray SHALE RMR = 34, Poor Rock	415.86 -35						
						6.0 14.2	10 9
Brown & Gray Cse. GRAVELS RMR= -21, Very Poor Rock	413.36	2	70	10		15.1	7
				10			
Gray SANDSTONE RMR= 41, Fair Rock	40 409.86						
						178.4 201.2	2
Gray SHALE RMR= 29, Poor Rock	407.26	3	100	50		623.5 466.4	1
	-45					27.8 41.1	6 6
	404.56					15.8	7
Gray SANDSTONE RMR = 69, Good Rock						194.0	2
Gray, thin SANDSTONE & SHALE layers RMR = 13, Very Poor Rock	403.36	4	80	0		314.1	2
	-50						
End of Boring	398.36						

,

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until <u>COMPLETION</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Illinois Department of Transportation

Memorandum

То:	Derek Parish, Heather Shoup, Darren Reents Bill Kramer, Riyad Wahab
From:	Kurt Schmuck BMPR Soils Lab
Subject:	Rock Core Compression Testing
Date:	September 21, 2007

 County:
 Fulton

 Route:
 FAP-317 & 689 (US-24 & IL-9)

 Section:
 (43BR) BR

 Job # :
 D-94-010-97

 Contract:
 S.N.

 029-0069 prop. over Copperas Creek

 Date:
 9/19/2007

Boring: BB - 85

Unconfined Compressive Strength of Intact Rock Cores ASTM D-2938

All samples trimmed to maintain a length-to-diameter ratio of 2.0 to 2.5. ASTM D-4543

Approximate Stress Rate @ 20 psi/sec.

* Denotes strain rate of 2% per min. for soft materials.

· ·													
Station: 10+445 16.4m Rt. prop.CL						As	Unit V	Veight	Compressive Strength Data				
Sample	Depth	Dia.	Area	Length	Weight	Tested	(lbs	/ ft ³)			Stress		Deflec.
	(ft.)	_(in.)	(in ² .)	(in.)	(grams)	Moist. %	Wet	Dry	(lbs)	(psi)	(tsf)	(ksf)	(in.)
		*****						-					
B8C1*•	35.8 - 36.3	1.950	2.986	3.880	449.0	<mark>9.60</mark>	147.6	134.7	250	84	6.0	12.1	0.110
B8C2**	36.3 - 36.8	1.900	2.835	4.027	436.2	<mark>8.93</mark>	145.5	133.6	560	198	14.2	28.4	0.143
B8C3* •	36.8 - 37.5	2.009	3.170	3.962	478.5	<mark>7.41</mark>	145.1	135.1	665	210	15.1	30.2	0.153
B8C4*•	41.5 - 41.8	2.005	3.157	3.614	382.0	<mark>2.44</mark>	127.5	124.5	7825	2478	178.4	356.9	0.022
B8C5 •	41.8 - 42.2	2.020	3.205	3.975	443.0	<mark>2.13</mark>	132.5	129.7	8955	2794	201.2	402.4	0.027
B8C6 •	42.8 - 43.3	2.034	3.249	3.930	528.2	0 <mark>.96</mark>	157.6	156.1	28140	8660	623.5	1247.1	0.031
B8C7•	43.3 - 43.6	2.035	3.253	3.345	443.1	0 <mark>.94</mark>	155.2	153.7	21070	6478	466.4	932.8	0.031
B8C8**	43.6 - 43.9	1.970	3.048	3.842	464.8	6 <mark>.25</mark>	151.2	142.3	1175	385	27.8	55.5	0.110
B8C9*•	43.9 - 44.2	1.955	3.002	3.924	485.2	6 <mark>.06</mark>	156.9	148.0	1715	571	<mark>41.</mark> 1	82.3	0.096
B8C10*	45.4 - 45.9	1.984	3.092	4.045	506.3	6 <mark>.98</mark>	154.2	144.2	680	220	15 .8	31.7	0.079
B8C11	46.3 - 47.1	2.022	3.211	3.920	440.1	1 <mark>.91</mark>	133.2	130.7	8650	2694	194.0	387.9	0.027
B8C12	47.1 - 47.5	2.019	3.202	3.957	455.7	1. <mark>92</mark>	137.0	134.5	13965	4362	314 .1	628.1	0.026

Illinois Department of Transportation

Memorandum

То:	Derek Parish, Heather Shoup, Darren Reents Bill Kramer, Riyad Wahab
From:	Kurt Schmuck BMPR Soils Lab
Subject:	Rock Core Compression Testing
Date:	September 21, 2007

 County:
 Fulton

 Route:
 FAP-317 & 689 (US-24 & IL-9)

 Section:
 (43BR) BR

 Job # :
 D-94-010-97

 Contract:
 S.N.

 029-0069 prop. over Copperas Creek

 Date:
 9/19/2007

Boring: BB - 8 5

Unconfined Compressive Strength of Intact Rock Cores ASTM D-2938

All samples trimmed to maintain a length-to-diameter ratio of 2.0 to 2.5. ASTM D-4543

Approximate Stress Rate @ 20 psi/sec.

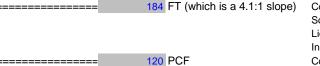
* Denotes strain rate of 2% per min. for soft materials.

Doning:				10									
Station: 10+445 16.4m Rt. prop.CL						As	Unit V	Veight	Compressive Strength Data				
Sample	Depth	Dia.	Area	Length	Weight	Tested	(lbs / ft^3)		Load		Stress		Deflec.
	(ft.)	(in.)	(in ² .)	(in.)	(grams)	Moist. %	Wet	Dry	(lbs)	(psi)	(tsf)	(ksf)	(in.)
1777		: *::::/						222	البنية (
B8C1*	35.8 - 36.3	1.950	2.986	3.880	449.0	9.60	147.6	134.7	250	84	6.0	12.1	0.110
B8C2*	36.3 - 36.8	1.900	2.835	4.027	436.2	8.93	145.5	133.6	560	198	14.2	28.4	0.143
B8C3*	36.8 - 37.5	2.009	3.170	3.962	478.5	7.41	145.1	135.1	665	210	15.1	30.2	0.153
B8C4*	41.5 - 41.8	2.005	3.157	3.614	382.0	2.44	127.5	124.5	7825	2478	178.4	356.9	0.022
B8C5	41.8 - 42.2	2.020	3.205	3.975	443.0	2.13	132.5	129.7	8955	2794	201.2	402.4	0.027
B8C6	42.8 - 43.3	2.034	3.249	3.930	528.2	0.96	157.6	156.1	28140	8660	623.5	1247.1	0.031
B8C7	43.3 - 43.6	2.035	3.253	3.345	443.1	0.94	155.2	153.7	21070	6478	466.4	932.8	0.031
B8C8*	43.6 - 43.9	1.970	3.048	3.842	464.8	6.25	151.2	142.3	1175	385	27.8	55.5	0.110
B8C9*	43.9 - 44.2	1.955	3.002	3.924	485.2	6.06	156.9	148.0	1715	571	41.1	82.3	0.096
B8C10*	45.4 - 45.9	1.984	3.092	4.045	506.3	6.98	154.2	144.2	680	220	15.8	31.7	0.079
B8C11	46.3 - 47.1	2.022	3.211	3.920	440.1	1.91	133.2	130.7	8650	2694	194.0	387.9	0.027
B8C12	47.1 - 47.5	2.019	3.202	3.957	455.7	1.92	137.0	134.5	13965	4362	314.1	628.1	0.026

Shoup, Heather Z

2

From:	Schmuck, Kurt W
Sent:	Friday, September 21, 2007 2:03 PM
То:	Parish, Derek C; Shoup, Heather Z; Reents, Darren L
Cc:	Kramer, William M; Wahab, Riyad M
Subject:	D-4 Copperas Creek Rock Cores
Attachments	Rock Cores Fulton Co SN 029-0069.doc


Ladies and Gentlemen,

Attached is a Word document with the results of unconfined compression testing of rock cores for the following District 4 project:

Fulton Co. FAP-317 & 689 (US-24 & IL-9) SN: 029-0069 prop. over Copperas Creek

Kurt Schmuck BMPR Soils Lab

COHESIVE SOIL SETTLEMENT ESTIMATE

17 FT

32 FT

130 FT (which is a 2.9:1 slope)

125 PCF

17 FT 43 FT

2 (1=2:1 bridge cone, 2=continuous embank., 3=rectangular surch.) 25 FT

ASSUMPTIONS:

NEW EMBANKMENT:

NEW EMBANKMENT FILL UNIT WEIGHT ====================================	
NEW EMBANKMENT FILL HEIGHT ====================================	
PROPOSED WIDTH AT TOP ==================================	
PROPOSED WIDTH AT BOTTOM ==================================	

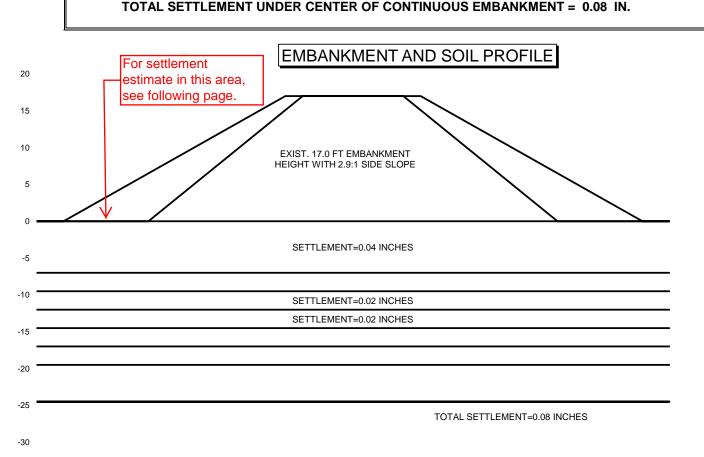
Illinois Department

LOCATION AND BORING USED ===== West Abutment / Boring B-2

DEPTH TO WATER TABLE (below top of existing embankment) ===

of Transportation

25 FT


Soil Deposit is Normally Consolidated Cohesive Layers are Saturated Soils have a Low Sensitivity Liquid Limit (LL)=Moist. Content (MC%) Initial Void Ratio (Eo)=2.7*(MC%)/100 Comp. Index (Cc)=0.009*(LL-10) Neglecting Granular & Secondary Settlem't

EXISTING EMBANKMENT (IF ANY):

TYPE OF SURCHARGE =======

EXISTING EMBANKMENT UNIT WEIGHT =============	=
EXISTING EMBANKMENT HEIGHT ====================================	=
EXISTING WIDTH AT TOP ==================================	=
EXISTING WIDTH AT BASE ====================================	=

	LAYER THICK	TOTAL UNIT WT.	UNCONF. COMP. STRENGTH (Qu)		EXISTING PRESSURE	PRESSURE INCREASE	INITIAL VOID	COMPRESSION INDEX	Qu CORRECTION	LAYER SETTLEMENT
-	(FT)	(PCF)	(TSF)	(%)	(KSF)	(KSF)	RATIO	(Cc)	FACTOR	(IN.)
	7.0	120	0.50	27	2.459	0.086	0.729	0.153	0.361	0.04
	2.5	120	0.00	16	2.999	0.094	0.432	0.054	1.000	Granular
	2.5	120	0.60	36	3.127	0.102	0.972	0.234	0.309	0.02
	2.5	120	0.30	27	3.249	0.113	0.729	0.153	0.550	0.02
	2.5	120	0.00	21	3.367	0.126	0.567	0.099	1.000	Granular
	2.5	120	0.00	17	3.480	0.140	0.459	0.063	1.000	Granular
	5.0	120	0.00	7	3.644	0.162	0.189	0.000	1.000	Granular

COHESIVE SOIL SETTLEMENT ESTIMATE

Settlement along side of

widened west abutment cone

3 (1=2:1 bridge cone, 2=continuous embank., 3=rectangular surch.) 25 FT

NEW EMBANKMENT:

LAYER

THICK

(FT) 7.0

2.5

2.5

2.5

2.5

2.5

5.0

NEW EMBANKMENT FILL UNIT WEIGHT ============
NEW EMBANKMENT FILL HEIGHT ====================================
PROPOSED WIDTH AT TOP ==================================
PROPOSED WIDTH AT BOTTOM ==================================
PROPOSED LENGTH OF RECTANGULAR SURCHARGE====

EXISTING EMBANKMENT (IF ANY):

EXISTING EMBANKMENT UNIT WEIGHT ===========
EXISTING EMBANKMENT HEIGHT ====================================
EXISTING WIDTH AT TOP ==================================
EXISTING WIDTH AT BASE ====================================
EXISTING LENGTH OF RECTANGULAR SURCHARGE=====

NG WIDTH	I AT TOP ====== I AT BASE ====== TH OF RECTANGU			0	FT FT (which FT	is a 0.0:1 slope)		, , , , , , , , , , , , , , , , , , , ,
TOTAL UNIT WT. (PCF)	UNCONF. COMP. STRENGTH (Qu) (TSF)	MOIST.	EXISTING PRESSURE (KSF)	PRESSURE INCREASE (KSF)	INITIAL VOID RATIO	COMPRESSION INDEX (Cc)	Qu CORRECTION FACTOR	LAYER SETTLEMENT (IN.)
120	0.50	27	0.420	0.872	0.729	0.153	0.361	1.31
120	0.00	16	0.990	0.480	0.432	0.054	1.000	Granular
120	0.60	36	1.290	0.344	0.972	0.234	0.309	0.11
120	0.30	27	1.590	0.253	0.729	0.153	0.550	0.09
120	0.00	21	1.890	0.192	0.567	0.099	1.000	Granular
120	0.00	17	2.190	0.149	0.459	0.063	1.000	Granular
120	0.00	7	2.640	0.107	0.189	0.000	1.000	Granular

EMBANKMENT AND SOIL PROFILE

TOTAL SETTLEMENT UNDER CENTER OF RECTANGULAR FOOTING = 1.51 IN.

10	
5	PROP. 8.0 FT HIGH EMBANKM'T WITH 0.0:1 SIDE SLOPE
0	
-5	SETTLEMENT=1.31 INCHES
-10	SETTLEMENT=0.11 INCHES
	SETTLEMENT=0.09 INCHES
-15	
-20	
-25	TOTAL SETTLEMENT=1.51 INCHES

TYPE OF SURCHARGE ======= DEPTH TO WATER TABLE (below top of existing embankment) ===

> 125 PCF 8 FT **ASSUMPTIONS:** 10 FT

10 FT		Soil Deposit is Normally Consolidated
10 FT (which is	a MUST EQUA	Cohesive Layers are Saturated
12 FT		Soils have a Low Sensitivity
		Liquid Limit (LL)=Moist. Content (MC%)
		Initial Void Ratio (Eo)=2.7*(MC%)/100
120 PCF		Comp. Index (Cc)=0.009*(LL-10)
0 FT		Neglecting Granular & Secondary Settlem't

COHESIVE SOIL SETTLEMENT ESTIMATE

2 (1=2:1 bridge cone, 2=continuous embank., 3=rectangular surch.)

NEW EMBANKMENT:

NEW EMBANKMENT FILL UNIT WEIGHT ====== NEW EMBANKMENT FILL HEIGHT ========== PROPOSED WIDTH AT TOP ======= PROPOSED WIDTH AT BOTTOM =======

Illinois Department

LOCATION AND BORING USED ===== East Abutment / Boring B-1

DEPTH TO WATER TABLE (below top of existing embankment) ===

of Transportation

22 FT

ASSUMPTIONS:

Soil Deposit is Normally Consolidated 124 FT (which is a 2.4:1 slope) Cohesive Layers are Saturated Soils have a Low Sensitivity Liquid Limit (LL)=Moist. Content (MC%) Initial Void Ratio (Eo)=2.7*(MC%)/100 Comp. Index (Cc)=0.009*(LL-10) Neglecting Granular & Secondary Settlem't 0 FT (which is a 0.0:1 slope)

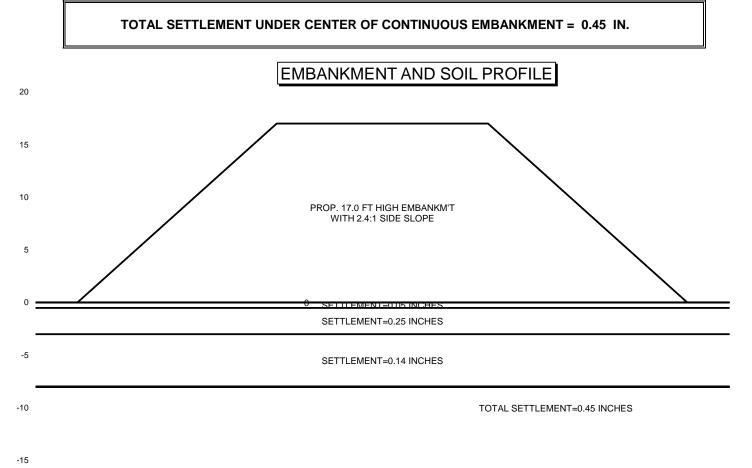
EXISTING EMBANKMENT (IF ANY):

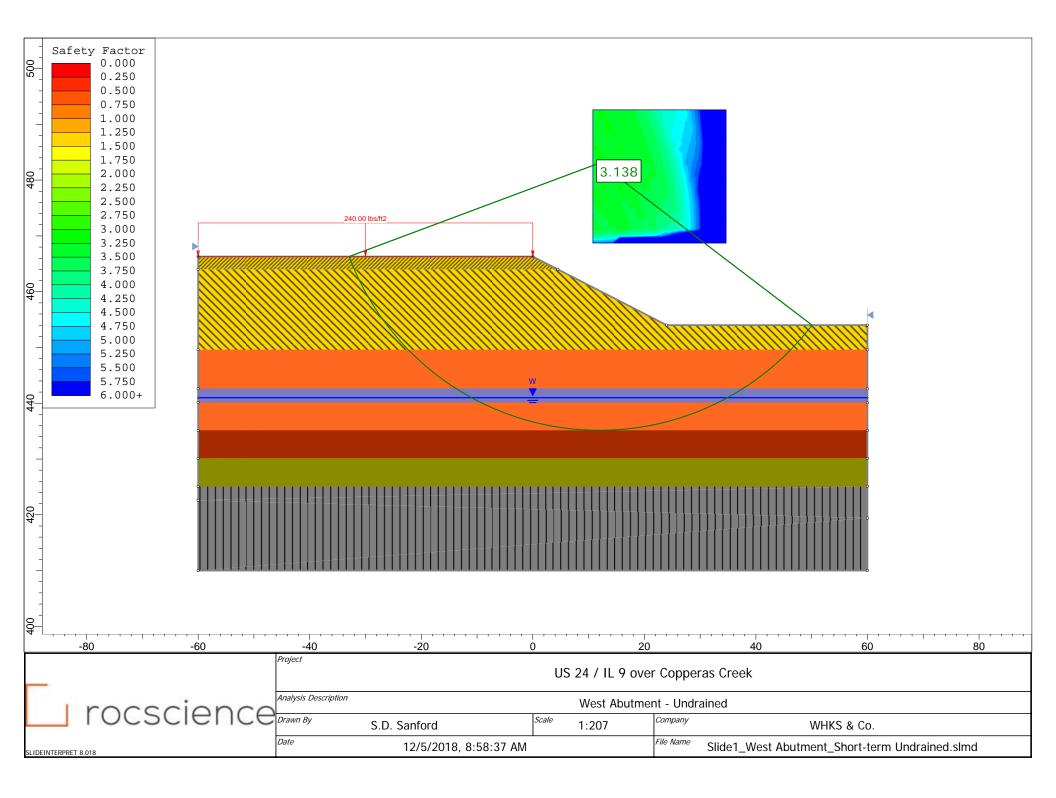
TYPE OF SURCHARGE =======

EXISTING EMBANKMENT UNIT WEIGHT ===========	
EXISTING EMBANKMENT HEIGHT ====================================	
EXISTING WIDTH AT TOP ==================================	
EXISTING WIDTH AT BASE ====================================	

	LAYER THICK (FT)	TOTAL UNIT WT. (PCF)	UNCONF. COMP. STRENGTH (Qu) (TSF)		EXISTING PRESSURE (KSF)	PRESSURE INCREASE (KSF)	INITIAL VOID RATIO	COMPRESSION INDEX (Cc)	Qu CORRECTION FACTOR	LAYER SETTLEMENT (IN.)
Ī	0.5	120	1.80	16	0.031	2.125	0.432	0.054	0.121	0.05
	2.5	120	2.30	25	0.212	2.125	0.675	0.135	0.100	0.25
	5.0	120	3.00	16	0.662	2.122	0.432	0.054	0.100	0.14

125 PCF


17 FT


43 FT

120 PCF

0 FT

0 FT

Slide Analysis Information Slide1_West Abutment_Short-term Undrained

Project Summary

File Name:	Slide1_West Abutment_Short-term Undrained.slmd
Slide Modeler Version:	8.018
Compute Time:	00h:00m:00.212s
Project Title:	US 24 / IL 9 over Copperas Creek
Analysis:	West Abutment - Undrained
Author:	S.D. Sanford
Company:	WHKS & Co.
Date Created:	12/5/2018, 8:58:37 AM

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Left to Right

Analysis Options

Slices Type:	Vertical
Analysis Methods	Used
	Bishop simplified
	Janbu simplified
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Create Tension Crack
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis:	No
Staged pseudostatic analysis:	No

Loading

• 1 Distributed Load present

Distributed Load 1			
Distribution:	Constant		
Magnitude [psf]:	240		
Orientation:	Normal to boundary		

Materials

Property	Proposed Embankment	Existing Embankment	Silty Clay Loam	Brown Medium Sand	Med. Sand and Gravel	Coarse Sand and Gravel	Shale
Color							
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Undrained	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Infinite strength
Unit Weight [lbs/ft3]	130	127	115	125	125	130	142
Allow Sliding Along Boundary							Yes
Cohesion [psf]	2500	2000	500	0	0	0	
Friction Angle [°]	10	6		33	35	40	
Cohesion Type			Constant				
Water Surface	None	None	Water Table	Water Table	Water Table	Water Table	None
Hu Value			0	1	1	1	
Ru Value	0	0					C

Global Minimums

Method: bishop simplified

FS	3.137680
Center:	11.961, 483.056
Radius:	47.914
Left Slip Surface Endpoint:	-32.928, 466.300
Right Slip Surface Endpoint:	50.060, 454.000
Resisting Moment:	4.90185e+06 lb-ft
Driving Moment:	1.56225e+06 lb-ft
Total Slice Area:	1515.65 ft2
Surface Horizontal Width:	82.9882 ft
Surface Average Height:	18.2634 ft

Method: janbu simplified

FS	3.324450
Center:	11.961, 491.410
Radius:	56.257
Left Slip Surface Endpoint:	-38.382, 466.300
Right Slip Surface Endpoint:	53.977, 454.000
Resisting Horizontal Force:	83659.2 lb
Driving Horizontal Force:	25164.8 lb
Total Slice Area:	1666.94 ft2
Surface Horizontal Width:	92.3584 ft
Surface Average Height:	18.0486 ft

Valid/Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	4497	
Number of Invalid Surfaces:	354	

Error Codes:

Error Code -108 reported for 97 surfaces Error Code -112 reported for 257 surfaces

Method: janbu simplified

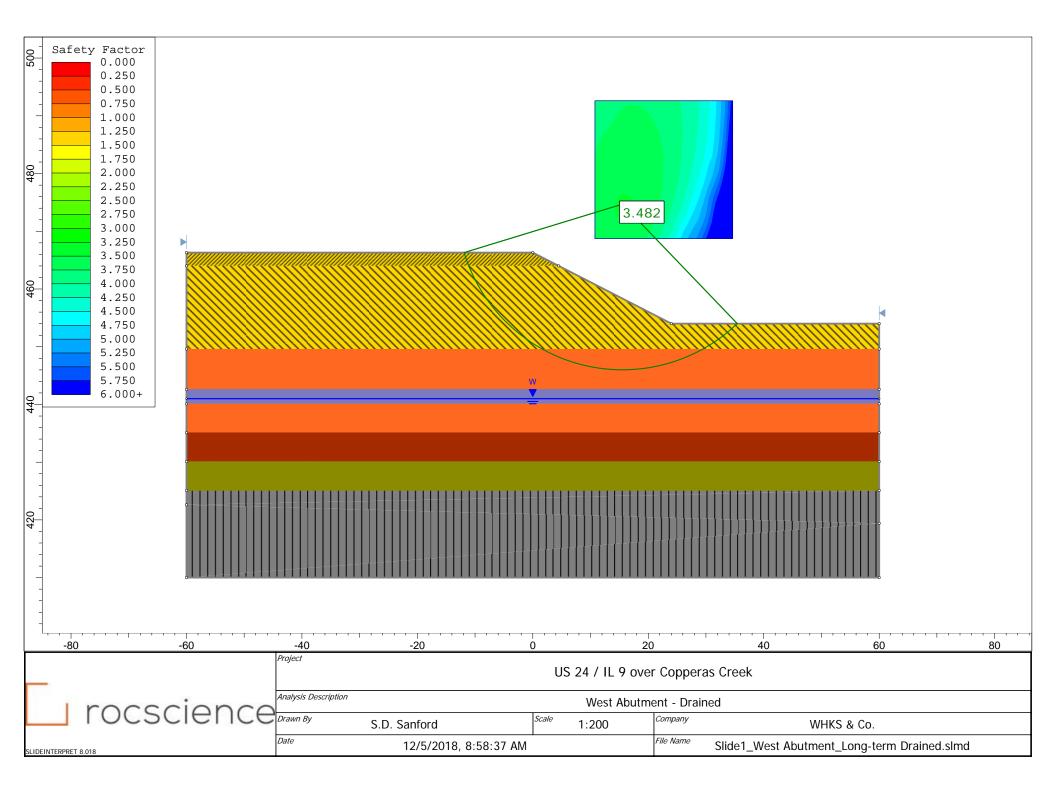
Number of Valid Surfaces:	3707	
Number of Invalid Surfaces:	1144	

Error Codes:

Error Code -108 reported for 108 surfaces Error Code -111 reported for 780 surfaces Error Code -112 reported for 256 surfaces

Error Codes

The following errors were encountered during the computation:


-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 3.13768

Slide Analysis Information Slide1_West Abutment_Long-term Drained

Project Summary

File Name:	Slide1_West Abutment_Long-term Drained.slmd
Slide Modeler Version:	8.018
Compute Time:	00h:00m:00.178s
Project Title:	US 24 / IL 9 over Copperas Creek
Analysis:	West Abutment - Drained
Author:	S.D. Sanford
Company:	WHKS & Co.
Date Created:	12/5/2018, 8:58:37 AM

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Left to Right

Analysis Options

Slices Type:	Vertical
Analysis Methods	Used
	Bishop simplified
	Janbu simplified
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Create Tension Crack
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis:	
Staged pseudostatic analysis:	No

Materials

Property	Proposed Embankment	Existing Embankment	Silty Clay Loam	Brown Medium Sand	Med. Sand and Gravel	Coarse Sand and Gravel	Shale
Color							
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Infinite strength
Unit Weight [lbs/ft3]	130	127	115	125	125	130	142
Allow Sliding Along Boundary							Yes
Cohesion [psf]	400	400	200	0	0	0	
Friction Angle [°]	37	35	24	33	35	40	
Water Surface	None	None	Water Table	Water Table	Water Table	Water Table	None
Hu Value			Automatically Calculated	Automatically Calculated	Automatically Calculated	Automatically Calculated	
Ru Value	0	0					0

Global Minimums

Method: bishop simplified

173059854.htm

FS	3.482230
Center:	15.541, 474.702
Radius:	28.701
Left Slip Surface Endpoint:	-11.903, 466.300
Right Slip Surface Endpoint:	35.420, 454.000
Resisting Moment:	1.46679e+06 lb-ft
Driving Moment:	421221 lb-ft
Total Slice Area:	474.065 ft2
Surface Horizontal Width:	47.3225 ft
Surface Average Height:	10.0177 ft

Method: janbu simplified

FS	3.147670
Center:	15.541, 472.315
Radius:	27.054
Left Slip Surface Endpoint:	-10.836, 466.300
Right Slip Surface Endpoint:	35.453, 454.000
Resisting Horizontal Force:	41526.9 lb
Driving Horizontal Force:	13192.9 lb
Total Slice Area:	489.069 ft2
Surface Horizontal Width:	46.2899 ft
Surface Average Height:	10.5654 ft

Valid/Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:4747Number of Invalid Surfaces:104

Error Codes:

Error Code -108 reported for 91 surfaces Error Code -112 reported for 13 surfaces

Method: janbu simplified

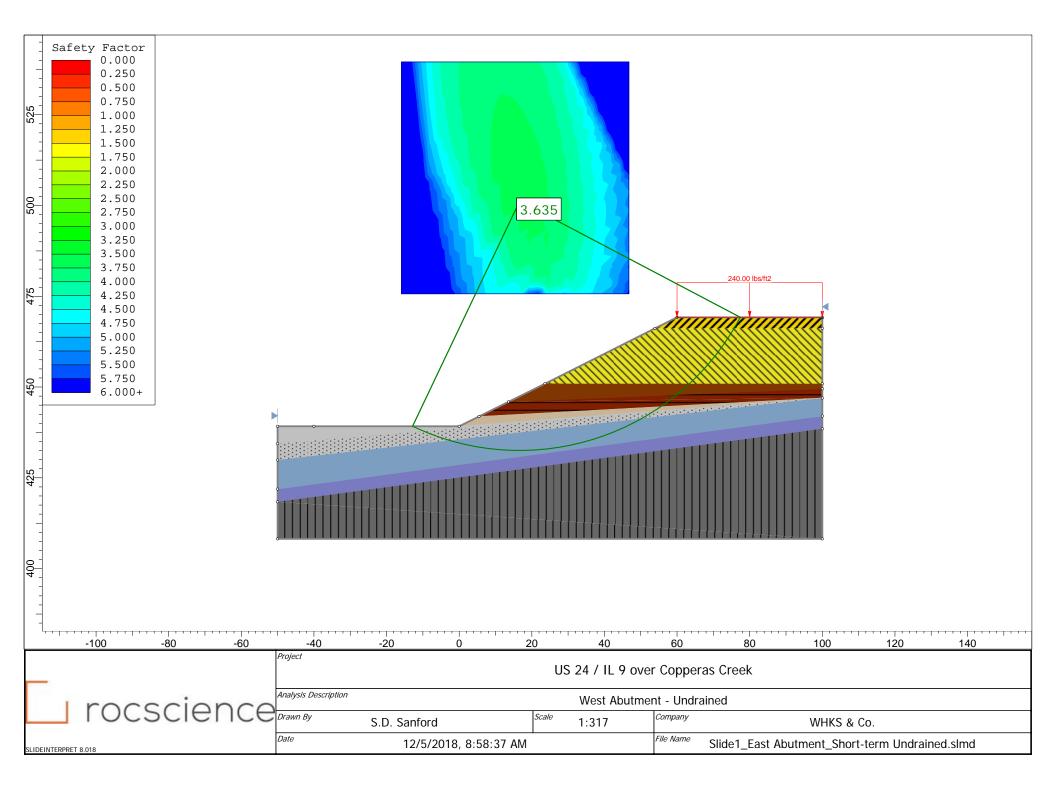
Number of Valid Surfaces:4742Number of Invalid Surfaces:109

Error Codes:

Error Code -108 reported for 103 surfaces Error Code -111 reported for 3 surfaces Error Code -112 reported for 3 surfaces

Error Codes

The following errors were encountered during the computation:


-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 3.48223

Slide Analysis Information

Slide1_East Abutment_Short-term Undrained

Project Summary

File Name:	Slide1_East Abutment_Short-term Undrained.slmd
Slide Modeler Version:	8.018
Compute Time:	00h:00m:04.373s
Project Title:	US 24 / IL 9 over Copperas Creek
Analysis:	West Abutment - Undrained
Author:	S.D. Sanford
Company:	WHKS & Co.
Date Created:	12/5/2018, 8:58:37 AM

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods U	sed
	Bishop simplified
	Janbu simplified
	Janbu corrected
	Spencer
	Sarma
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes
Sarma Interslice Strength Option:	Computed Average Value

Groundwater Analysis

12/13/2018

170916683.htm

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Invalid Surfaces
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis:	No
Staged pseudostatic analysis:	No

Loading

• 1 Distributed Load present

Distributed Load 1

Distribution:	Constant
Magnitude [psf]:	240
Orientation:	Normal to boundary

Materials

170916683.htm

Property	Proposed Embankment	Existing Embankment	Brown Silty Clay Loam	Brown Silty Loam	Lt. Brown Silty Loam	Gray Silty Loam	Grey Fine Sand	Coarse Sand and Gravel
Color								
Strength Type	Undrained	Undrained	Undrained	Undrained	Undrained	Undrained	Mohr- Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	130	125	127	125	121	122	125
Cohesion [psf]	3700	3700	1700	2000	1200	1000	0	0
Friction Angle [°]							30	40
Cohesion Type	Constant	Constant	Constant	Constant	Constant	Constant		
Water Surface	None	None	None	None	None	None	None	None
Ru Value	0	0	0	0	0	0	0	0

Property	Shaley Clay	Shale
Color		
Strength Type	Mohr-Coulomb	Infinite strength
Unit Weight [lbs/ft3]	20	20
Allow Sliding Along Boundary		Yes
Cohesion [psf]	1000	
Friction Angle [°]	44	
Water Surface	None	None
Ru Value	0	0

Global Minimums

Method: bishop simplified

FS	3.634990
Center:	16.666, 501.204
Radius:	68.663
Left Slip Surface Endpoint:	-12.832, 439.200
Right Slip Surface Endpoint:	77.415, 469.200
Resisting Moment:	1.43589e+07 lb-ft
Driving Moment:	3.95018e+06 lb-ft
Total Slice Area:	1316.25 ft2
Surface Horizontal Width:	90.2466 ft
Surface Average Height:	14.585 ft

Method: janbu simplified

FS	3.725120
Center:	16.666, 508.865
Radius:	76.962
Left Slip Surface Endpoint:	-16.042, 439.200
Right Slip Surface Endpoint:	82.619, 469.200
Resisting Horizontal Force:	187942 lb
Driving Horizontal Force:	50452.5 lb
Total Slice Area:	1497.22 ft2
Surface Horizontal Width:	98.6607 ft
Surface Average Height:	15.1754 ft

Method: janbu corrected

FS	3.986820
Center:	16.666, 508.865
Radius:	76.962
Left Slip Surface Endpoint:	-16.042, 439.200
Right Slip Surface Endpoint:	82.619, 469.200
Resisting Horizontal Force:	201145 lb
Driving Horizontal Force:	50452.5 lb
Total Slice Area:	1497.22 ft2
Surface Horizontal Width:	98.6607 ft
Surface Average Height:	15.1754 ft

Method: spencer

FS	3.756330
Center:	16.666, 513.973
Radius:	80.193
Left Slip Surface Endpoint:	-12.316, 439.200
Right Slip Surface Endpoint:	83.197, 469.200
Resisting Moment:	1.77021e+07 lb-ft
Driving Moment:	4.7126e+06 lb-ft
Resisting Horizontal Force:	180525 lb
Driving Horizontal Force:	48058.9 lb
Total Slice Area:	1358.51 ft2
Surface Horizontal Width:	95.5128 ft
Surface Average Height:	14.2234 ft

Method: sarma

FS	3.600170
Center:	16.666, 501.204
Radius:	68.663
Left Slip Surface Endpoint:	-12.832, 439.200
Right Slip Surface Endpoint:	77.415, 469.200
Total Slice Area:	1316.25 ft2
Surface Horizontal Width:	90.2466 ft
Surface Average Height:	14.585 ft

Valid/Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	7182	
Number of Invalid Surfaces:	254	

Error Codes:

Error Code -103 reported for 37 surfaces Error Code -108 reported for 31 surfaces Error Code -112 reported for 186 surfaces

Method: janbu simplified

Number of Valid Surfaces: 6959 Number of Invalid Surfaces: 477

Error Codes:

Error Code -103 reported for 37 surfaces Error Code -108 reported for 36 surfaces Error Code -111 reported for 218 surfaces Error Code -112 reported for 186 surfaces

Method: janbu corrected

Number of Valid Surfaces:6959Number of Invalid Surfaces:477

Error Codes:

Error Code -103 reported for 37 surfaces Error Code -108 reported for 36 surfaces Error Code -111 reported for 218 surfaces Error Code -112 reported for 186 surfaces

Method: spencer

Number of Valid Surfaces: 3986 Number of Invalid Surfaces: 3450

Error Codes:

Error Code -103 reported for 37 surfaces Error Code -108 reported for 54 surfaces Error Code -111 reported for 3173 surfaces Error Code -112 reported for 186 surfaces

Method: sarma

Number of Valid Surfaces:6925Number of Invalid Surfaces:511

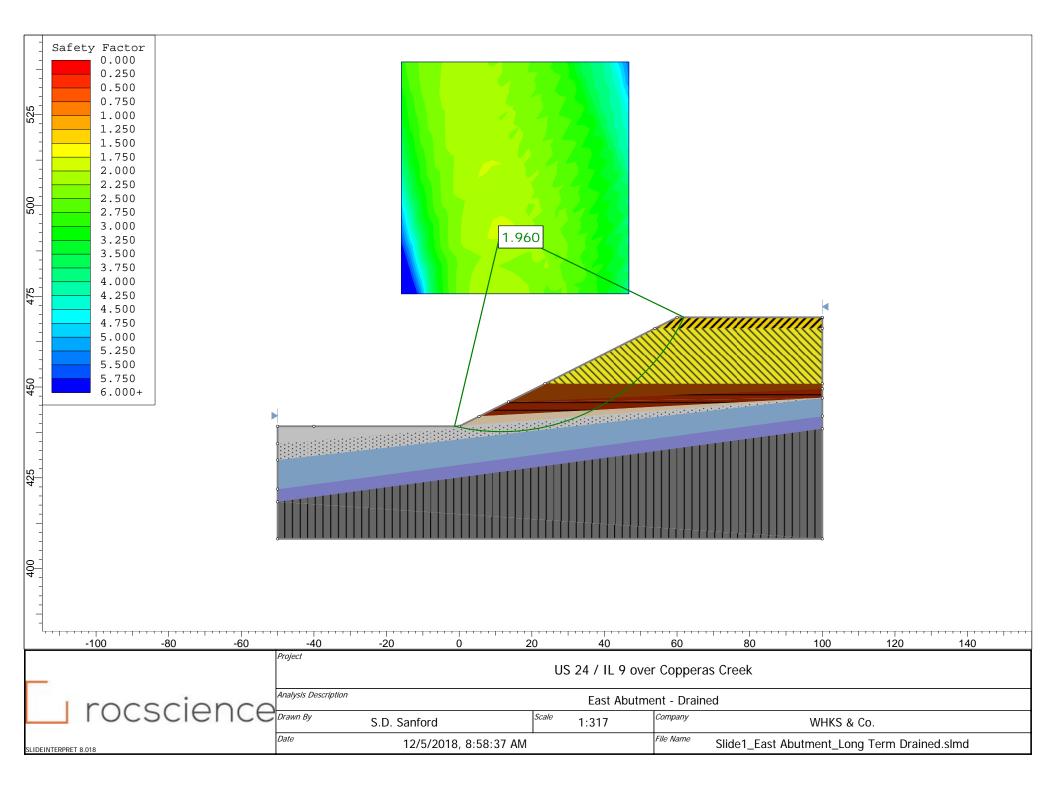
Error Codes:

Error Code -103 reported for 37 surfaces Error Code -108 reported for 36 surfaces Error Code -111 reported for 252 surfaces Error Code -112 reported for 186 surfaces

Error Codes

The following errors were encountered during the computation:

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.


-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 3.63499

Slide Analysis Information Slide1_East Abutment_Long Term Drained

Project Summary

File Name:	Slide1_East Abutment_Long Term Drained.slmd
Slide Modeler Version:	8.018
Compute Time:	00h:00m:01.394s
Project Title:	US 24 / IL 9 over Copperas Creek
Analysis:	East Abutment - Drained
Author:	S.D. Sanford
Company:	WHKS & Co.
Date Created:	12/5/2018, 8:58:37 AM

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Us	ed
	Bishop simplified
	Janbu simplified
	Janbu corrected
	Spencer
	Sarma
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes
Sarma Interslice Strength Option:	Computed Average Value

Groundwater Analysis

12/13/2018

172018007.htm

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Invalid Surfaces
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Proposed Embankment	Existing Embankment	Brown Silty Clay Loam	Brown Silty Loam	Lt. Brown Silty Loam	Gray Silty Loam	Grey Fine Sand	Coarse Sand and Gravel
Color								
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr- Coulomb	Mohr-Coulomb	-Mohr Coulomb	Mohr- Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	130	125	127	125	121	122	125
Cohesion [psf]	400	400	250	300	200	150	0	0
Friction Angle [°]	37	35	33	34	31	29	30	40
Water Surface	None	None	None	None	None	None	None	None
Ru Value	0	0	0	0	0	0	0	0

12/13/2018

Property	Shaley Clay	Shale
Color		
Strength Type	Mohr-Coulomb	Infinite strength
Unit Weight [lbs/ft3]	20	20
Allow Sliding Along Boundary		Yes
Cohesion [psf]	200	
Friction Angle [°]	44	
Water Surface	None	None
Ru Value	0	0

Global Minimums

Method: bishop simplified

FS	1.959910
Center:	11.657, 493.543
Radius:	55.860
Left Slip Surface Endpoint:	-1.273, 439.200
Right Slip Surface Endpoint:	61.934, 469.200
Resisting Moment:	3.22786e+06 lb-ft
Driving Moment:	1.64694e+06 lb-ft
Total Slice Area:	594.632 ft2
Surface Horizontal Width:	63.2066 ft
Surface Average Height:	9.40776 ft

Method: janbu simplified

FS	1.874660
Center:	14.162, 493.543
Radius:	55.700
Left Slip Surface Endpoint:	0.629, 439.512
Right Slip Surface Endpoint:	64.261, 469.200
Resisting Horizontal Force:	52342.7 lb
Driving Horizontal Force:	27921.1 lb
Total Slice Area:	657.462 ft2
Surface Horizontal Width:	63.6312 ft
Surface Average Height:	10.3324 ft

Method: janbu corrected

FS	1.999660
Center:	14.162, 493.543
Radius:	55.700
Left Slip Surface Endpoint:	0.629, 439.512
Right Slip Surface Endpoint:	64.261, 469.200
Resisting Horizontal Force:	55832.6 lb
Driving Horizontal Force:	27921.1 lb
Total Slice Area:	657.462 ft2
Surface Horizontal Width:	63.6312 ft
Surface Average Height:	10.3324 ft

Method: spencer

file:///C:/Users/ssanford/AppData/Local/Temp/RocscienceTempSlideInterpret_7/172018007.htm

172018007.htm

FS	1.950270
Center:	11.657, 493.543
Radius:	55.860
Left Slip Surface Endpoint:	-1.273, 439.200
Right Slip Surface Endpoint:	61.934, 469.200
Resisting Moment:	3.21197e+06 lb-ft
Driving Moment:	1.64694e+06 lb-ft
Resisting Horizontal Force:	48278.2 lb
Driving Horizontal Force:	24754.6 lb
Total Slice Area:	594.632 ft2
Surface Horizontal Width:	63.2066 ft
Surface Average Height:	9.40776 ft

Method: sarma

FS	1.950600
Center:	11.657, 493.543
Radius:	55.860
Left Slip Surface Endpoint:	-1.273, 439.200
Right Slip Surface Endpoint:	61.934, 469.200
Total Slice Area:	594.632 ft2
Surface Horizontal Width:	63.2066 ft
Surface Average Height:	9.40776 ft

Valid/Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:7370Number of Invalid Surfaces:66

Error Codes:

Error Code -103 reported for 37 surfaces Error Code -108 reported for 29 surfaces

Method: janbu simplified

Number of Valid Surfaces:7362Number of Invalid Surfaces:74

Error Codes:

Error Code -103 reported for 37 surfaces Error Code -108 reported for 36 surfaces Error Code -111 reported for 1 surface

Method: janbu corrected

Number of Valid Surfaces:7362Number of Invalid Surfaces:74

Error Codes:

Error Code -103 reported for 37 surfaces Error Code -108 reported for 36 surfaces Error Code -111 reported for 1 surface

Method: spencer

Number of Valid Surfaces: 7104 Number of Invalid Surfaces: 332

Error Codes:

Error Code -103 reported for 37 surfaces Error Code -108 reported for 38 surfaces Error Code -111 reported for 257 surfaces

Method: sarma

Number of Valid Surfaces:7362Number of Invalid Surfaces:74

Error Codes:

Error Code -103 reported for 37 surfaces Error Code -108 reported for 36 surfaces Error Code -111 reported for 1 surface

Error Codes

The following errors were encountered during the computation:

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

Slice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 1.95991

PROJECT TITLE===== US 24/IL 9 over Copperas Creek. S.N. 029-0001 (exist.) S.N. 029-0069 (prop.)

Substructure 1 Base of Substruct. Elev. (or ground surf for bents 456.6 Pile or Shaft Dia. 12 Boring Number 12 Top of Boring Elev. 450.6 Approximate Fixity Elev. 450.6 Individual Site Class Definition: 12 N (bar): 7 Y (Blows/ft.) Soil Site Class E N ₆ (bar): 12 Soil Site Class E Soil Site Class E N ₆ (bar): 12 Soil Site Class C	e of Substruct. Elev. (or ground surf for bents 456.6 ft. or Shaft Dia. 12 inches 12 ing Number 8-2 of Boring Elev. 450.6 ft. vidual Site Class Definition: 12 N (bar): 7 (Blows/ft.) Soil Site Class E N _{ch} (bar): 12 (Blows/ft.) Soil Site Class E		Substructure 4 Base of Substruct. Elev. (or ground surf for bents) Pile or Shaft Dia. Boring Number Top of Boring Elev. Approximate Fixity Elev. Individual Site Class Definition: N (bar): (Blows/ft.) Na, (bar): (Blows/ft.) Na Na, (bar): (kst)
Seismic Depth Bot. Of Elevation Sample Thick N Qu Boundary (t) (t,) (t,) (t,) Elevation 3.0 447.6 2.50 3 0.50 B 5.5 445.1 2.50 1 0.50 B 10.5 440.1 2.50 1 0.30 B 10.5 440.1 2.50 2 0.60 B 10.5 440.1 2.50 2 0.00 B 10.5 440.1 2.50 3 0.00 B 10.5 440.1 2.50 1 0.30 B 10.5 440.1 2.50 1 0.30 B 10.0 427.6 2.50 15 0.00 B 10.0 350.6 74.52 10 4.50 R 10.0 350.6 74.52 10 4.50 R 10.0 1.5 4.50 I I <t< td=""><td>Seismic both Bot. Of Sample Sample Thick. N Qu Boundary (ft) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) 2.1 446.9 2.50 3 2.00 1.001 1.001 4.6 435.0 2.50 3 2.00 1.001 1.001 1.001 1.001 4.6 436.9 2.50 2 0.80 1.001 1.011 1</td><td>Seismic Bot. Of Sample Sample Thick. N Qu Boundary (ft) (ft) (ft) (ft) 0 Boundary (ft) (ft) (ft) (ft) 0 B 461.0 2.50 11 1.00 B 463.5 2.50 18 1.00 B 456.0 2.50 15 1.00 B 453.5 2.50 9 1.00 B 456.0 2.50 15 1.00 B 2.6 450.0 3.50 11 1.00 B 3.1 449.5 0.52 13 1.80 B 5.6 447.0 2.50 10 0.00 B 13.1 439.5 2.50 100 0.00 B 99.8 352.8 86.70 100 4.50 R 1444.5 2.50 100 0.00 B 1.31 15.9 2.80 10</td><td>Seismic Bot. Of Sample Sample Depth Layer Depth Elevation Thick. N Qu Boundary (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)</td></t<>	Seismic both Bot. Of Sample Sample Thick. N Qu Boundary (ft) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) 2.1 446.9 2.50 3 2.00 1.001 1.001 4.6 435.0 2.50 3 2.00 1.001 1.001 1.001 1.001 4.6 436.9 2.50 2 0.80 1.001 1.011 1	Seismic Bot. Of Sample Sample Thick. N Qu Boundary (ft) (ft) (ft) (ft) 0 Boundary (ft) (ft) (ft) (ft) 0 B 461.0 2.50 11 1.00 B 463.5 2.50 18 1.00 B 456.0 2.50 15 1.00 B 453.5 2.50 9 1.00 B 456.0 2.50 15 1.00 B 2.6 450.0 3.50 11 1.00 B 3.1 449.5 0.52 13 1.80 B 5.6 447.0 2.50 10 0.00 B 13.1 439.5 2.50 100 0.00 B 99.8 352.8 86.70 100 4.50 R 1444.5 2.50 100 0.00 B 1.31 15.9 2.80 10	Seismic Bot. Of Sample Sample Depth Layer Depth Elevation Thick. N Qu Boundary (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)

Global Site Class Definition: Substructures 1 through 3

 N (bar):
 29 (Blows/ft.)
 Soil Site Class D

 N_{ch} (bar):
 49 (Blows/ft.)
 Soil Site Class D <----Controls</td>

 s_u (bar):
 2.63 (ksf)
 Soil Site Class C

INTEGRAL ABUTMENT FEASIBILITY ANALYSIS

14.00

1.00

0.50

1.00

4.00

48.00

Modified 10/30/17

IN

IN

IN

IN

IN

IN

FT

IN

KST

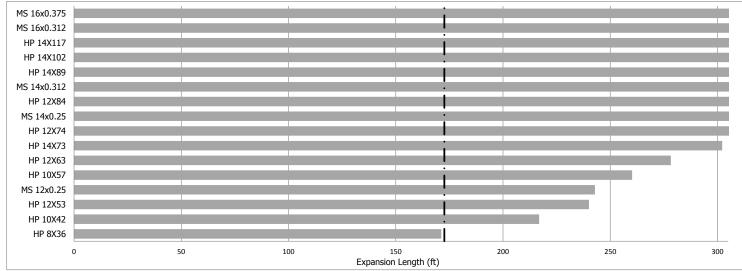
GENERAL DATA

STRUCTURE NUMBER====================================	029-0069	
STRUCTURE TYPE ====================================	MULTI-SPAN	
STRUCTURE SKEW====================================	0	DEGREES
SUPER. DATA IN REFERENCE TO SUB. DATA ====	ABUT 1	

TOTAL STRUCTURE LENGTH====================================	264.00 2	FT
END SPAN LENGTH ====================================	132.00	FT
ADJACENT INTERIOR SPAN LENGTH =========	132.00	FT

TOP FLANGE THICKNESS =================

SUPERSTRUCTURE POSITIVE MOMENT REGION DATA (ADJACENT SPAN)


SUPERSTRUCTURE POSITIVE MOMENT REGIO	N DATA (END OR M	ATN SPAN)
BEAM TYPE ====================================	`	
		1
TOP FLANGE WIDTH ==================	14.00	IN
TOP FLANGE THICKNESS ================	1.00	IN
WEB DEPTH ====================================	48.00	IN
WEB THICKNESS ===================================	0.50	IN
BOTTOM FLANGE WIDTH =================	14.00	IN
BOTTOM FLANGE THICKNESS ===================================	1.00	IN
BEAM SPACING PERP. TO CL ===================================	6.25	FT
SLAB THICKNESS ===================================	8.00	IN
SLAB F'C ===================================	4.00	KSI

ABUTMENT #1 DATA				
ABUTMENT NAME ====================================	West			
ABUTMENT REFERENCE BORING ===========	B-2			
BOTTOM OF ABUTMENT ELEVATION ========	456.5	FT		
ESTIMATED NUMBER OF PILES AT ABUT. ======	8			
PILE SPACING PERP. TO CL ==================	6.25	FT		

ABUTMENT #2 DATA									
ABUTMENT NAME ====================================	East								
ABUTMENT REFERENCE BORING==========	B-1								
BOTTOM OF ABUTMENT ELEVATION========	458.6	FT							
ESTIMATED NUMBER OF PILES AT ABUT.======	8								
PILE SPACING PERP. TO CL ===================================	6.25	FT							

SOIL DATA FOR 10 FT BENEATH BOTTOM OF ABUTMENT #1			SOIL DATA FOR 10 FT BENEATH BOTTOM OF ABUTMENT #2						
BOT. OF LAYER ELEV.	LAYER THICKNESS	UNCONFINED COMPRESSIVE STRENGTH	N S.P.T. VALUE	Qu EQUIV. FOR N VALUE	BOT. OF LAYER ELEV.	LAYER THICKNESS	UNCONFINED COMPRESSIVE STRENGTH	N S.P.T. VALUE	Qu EQUIV. FOR N VALUE
(FT)	(FT)	(TSF)	(BLOWS/12 IN.)	(TSF)	(FT)	(FT)	(TSF)	(BLOWS/12 IN.)	(TSF)
449.62	6.88	0.5			450.00	8.60	1.0		
447.62	2.00	0.5			449.48	0.52	1.8		
445.12	2.50	0.5			446.98	2.50	2.3		
442.62	2.50	0.5			441.98	5.00		100	4.2
441.12	1.50		4	1.7	438.48	3.50		200	4.7
15.38 FT = TOTAL DEPTH ENTERED 20.12 FT = TOTAL DEPTH ENTERED									
ENTER 10 FT OF SOIL DATA WEIGHTED AVERAGE QU FOR ABUTMENT #1======: 0.62 TSF			TSF	ENTER 10 FT OF SOIL DATA WEIGHTED AVERAGE Qu FOR ABUTMENT #2=====: 2.63			<u>2.61</u>	TSF	
PILE STIFFNESS MODIFIER FOR ABUTMENT #1 = 1/(1.45-[0.3*0.62])====================================			0.79		PILE STIFFNESS MODIFIER FOR ABUTMENT #2 = 1/(1.45-[0.3*2.61])====================================			1.50	

ABUT 1 (West) - EXPANSION LENGTH LIMIT CHART - 0 DEG. SKEW

 = Estimated expansion length for the indicated abutment. Piles with an expansion length greater than this are suitable for consideration. (Note: The same size pile should be used at both abutments.)