STRUCTURE GEOTECHNICAL REPORT

RAMP G OVER RAMP F (STATION 733+14.83) Proposed SN: 010-1003

FAI RTE. 57/74 Section 10 (5-1-RS-1, 14-1,6) R Champaign County

> Contract No.: 70897 P-95-030-11 PTB: 161-28

Prepared By:

Christopher N. Farmer, P. E.

Bacon Farmer Workman Engineering & Testing, Inc.

500 South 17th Street Paducah, Kentucky 42003 Phone: (270) 443-1995

Prepared For:

Christopher Whitfield, PE

Crawford, Murphy, & Tilly, Inc. 401 SW Water Street, Suite 209

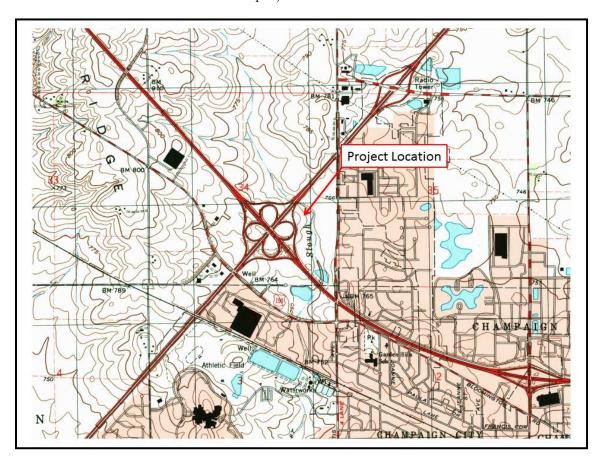
Peoria, Illinois 61602 Phone: (309) 680-1311

Report Date (Revision 2): August 22, 2016

(Revision 1): June 17, 2015

(Original): April 15, 2015

Attachments: Boring Location Map


Preliminary TS&L Subsurface Boring Logs Boring Profile Sheet

Pile Tables

Est. Factored Loadings

1.0 Project Description

The purpose of this geotechnical study is to explore the existing subsurface conditions present at the proposed structure location (SN 010-1003) (Station 733+14.83 – Ramp G) carrying I-74 over I-57 (Ramp G over Ramp F) in Section 10R, Township 20 North, Range 8 East of the 3rd PM in the city of Champaign, Champaign County, Illinois. In addition, to determined engineering properties of the subsurface soil, and develop design and construction recommendations for the project.

Exhibit 1: Project Location Map

2.0 Proposed Structure Information

Proposed Structures (SN 010-1003)

Based on the preliminary TS&L, the proposed structure (SN 010-1003), Station 733+14.83 will consist of a single span supported by one of two abutment options that are being considered. Two new 30 feet long approach slabs will be constructed on either end of the bridge.

The first abutment option is a PPC Bulb Tee (IL63-2438) on integral abutments with an estimated abutment length of 35' – 8". The superstructure will consist of tangent girders on a curved alignment with back to back abutment distances of 122'-11 1/4". Abutments will bear on single row of vertical steel piles.

The second abutment option is Steel Plate Girder with a 60 inch web depth on stub abutments with an abutment length of 34' - 0". The superstructure for this option would include a curved girder on curved alignment with back to back abutment distances of 124'-9 $\frac{1}{4}$ ". Abutments for this type of abutment will bear on two rows of piles with vertical back row and 12:3 battered pile front along the abutment and piles along the wings.

Final abutment type will be chosen based on efficiency, cost and district preference. The Type, Size and Location (TS&L) plan for the Ramp G over Ramp F has been included in the Appendix.

3.0 Existing Site Conditions

The existing location of the proposed structure is currently vacant land with elevation ranges from Elev. 756.16 to 756.36. Embankments heights of between approximately 32 to 34 feet in height are proposed in the general area.

3.1 Regional Geology

According to the Illinois State Geological Survey, "Bedrock Geology of Illinois" map, the site and surrounding area is situated in the Illinois Basin and is underlain by the Pennsylvanian-aged Tradewater Formation. The Illinois Basin is a Paleozoic depositional and structural basin centered in and underlying most of the state of Illinois. An Illinois Basin study reveals that the Tradewater Formation is composed of 70 to 80 percent shale and siltstone, 20 to 30 percent sandstone, and generally less than 5 percent coal and limestone. The Tradewater Formation is overlain by the Wedron Group, which is composed of mostly glacial till (an unsorted mixture of clay, silt, sand, and gravel) in broad ridges (last glaciation), and forms end moraines. The Wedron Group is finally capped by the

Peoria and Roxana Silts, which are composed of windblown silt (loess) generally thicker than 20 feet blankets upland surfaces in these areas.

4.0 Subsurface Exploration and Generalized Subsurface Conditions

This section describes the subsurface exploration program and laboratory testing program completed as part of this Structure Geotechnical Report (SGR). The locations and subsurface data were provided by McCleary Engineering and were completed based on field conditions and accessibility. Therefore, no site observations have been made by BFW relative to existing conditions of the structure, roadway or of subsurface sample conditions. The locations of the soil borings are shown on the Boring Location Map located in the Appendix. The subsurface exploration program was performed in accordance with applicable IDOT geotechnical manuals and procedures.

4.1 Subsurface Exploration

B-31

B-40/41

North Abutment

Pier (N/A)

The site subsurface exploration was conducted from January 30 to February 2, 2015 and included advancing a total of two (2) standard penetration test (SPT) borings within the vicinity of the proposed abutment locations. The locations of the soil borings are shown on the **Boring Location Map** provided in the Appendix.

Boring ID Location Station Offset Depth (feet) Surface Elevation (feet)

B-30 South Abutment 732+43.65 5.51 LT 75 756.36

5.73 LT

5.66 LT

75

75

756.36

756.16

Table 1 – Summary of Subsurface Exploration US 150

733+92.77

732+89.34

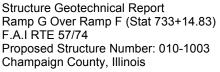
The soil borings were drilled using a track mounted drill rig. All of the borings were drilled using 3½ - inch I.D. hollow stem augers. Soil sampling was performed according to AASHTO T 206, "Penetration Test and Split Barrel Sampling of Soils." Soil samples were obtained at 2.5 foot intervals to a minimum depth of 20 feet below existing grade and 5 foot intervals thereafter. McCleary Engineering field representative inspected, visually classified and logged the soil samples during the subsurface exploration activities, and performed unconfined compressive strength tests on cohesive soil samples using a calibrated Rimac compression tester and a calibrated hand penetrometer in accordance with IDOT procedures and requirements. Representative soil samples were collected from each sample interval, and were placed in jars and returned to the laboratory for further testing and evaluation.

Structure Geotechnical Report Ramp G Over Ramp F (Stat 733+14.83) F.A.I RTE 57/74 Proposed Structure Number: 010-1003 Champaign County, Illinois

4.2 Laboratory Testing

All samples were inspected in the laboratory to verify the field classifications. A laboratory testing program was undertaken to characterize and determine engineering properties of the subsurface soils encountered in the area of the proposed bridge.

The following laboratory tests were performed on representative soil samples:


- Moisture content ASTM D2216 / AASHTO T-265
- Grain Size Analysis ASTM C136 / AASHTO T-88 / AASHTO T-90
- Unconfined compression ASTM D2166 / AASHTO T-208

The laboratory tests were performed in accordance with test procedures outlined in the IDOT Geotechnical Manual (1999) and per ASTM and AASHTO requirements. Based on the laboratory test results, the soils encountered were classified according to the AASHTO classification system. The results of the laboratory testing program are included in the Appendix and are shown along with the field test results in the Soil Boring Logs also located in the appendix.

4.3 Subsurface Conditions

This section provides a brief description of the soils encountered in the borings performed in the vicinity of the proposed improvements. Variations in the general subsurface soil profile were noted during the drilling activities. Detailed descriptions of the subsurface soils are provided in the Soil Boring Logs located in the Appendix and are shown graphically in the Subsurface Profiles. The soil boring logs provide specific soil conditions encountered at each soil boring location. The soil boring logs include soil descriptions, stratifications, penetration resistance, elevations, location of the samples and laboratory test data. Unless otherwise noted, soil descriptions indicated on boring logs are visual identifications. The stratifications shown on the boring logs represent the conditions only at the actual boring locations, and represent the approximate boundary between subsurface materials; however, the actual transition may be gradual.

Subsurface information was obtained during a geotechnical investigation conducted over the entire proposed I-57 / I-74 interchange modifications. Borings B-30, B-31 and B-40/41 were advanced in support of Proposed Structure 010-1003 from January 30 to February 2, 2015 along the proposed ramp alignment.

Bridge Abutments

Boring **B-30**, was advanced near the proposed south abutment, located at Station 732+32.06 (Elev. 756.36'). The boring was advanced in a relatively flat area, with approximately 12 inches of topsoil overlying the soil at each location. The soil profile underlying the topsoil in boring **B-30** is described as dark brown stiff silty clay, which extends to approximately 4 feet deep (Elev. 752.36'), where the material transitions to a loose brown sandy gravel with silt and clay. The upper soils had SPT N-values in the range of 2 to 9 and an unconfined compressive strength (Qu) of 1.5. By approximately 8 feet (Elev. 748.36'), the soil transitions to a very stiff gray silty clay loam till that extended to approximately 27 feet. The silt clay loam till soils had SPT N-values ranging from 10 to 16 and unconfined compressive At about 27 feet deep (Elev. 729.36'), a gray strength (Qu) values from 2.27 to 2.68. medium dense sand and gravel is encountered, extending deeper to approximately 32 feet deep (Elev. 724.36'). At this depth, the material changes to a gray hard silty clay loam till and continues to boring completion depth of 75 feet deep (Elev. 681.36'). The silty clay loam soils had SPT N-values ranging from 15 to 23 and unconfined compressive strength (Qu) values from 1.65 to 2.27.

Boring B-31, was advanced near the proposed north abutment was located at Station 733+81.80 (Elev. 756.36'). In boring **B-31**, underlying the topsoil layer is a stiff brown silty clay. The upper soils had SPT N-value of 5 and an unconfined compressive strength (Qu) of 0.91. By approximately 3 feet deep (Elev. 753.36'), the material changes to a loose, loamy medium to coarse wet sand. The sand had SPT N-values in the range of 4 to 8. At approximately 8 feet deep (Elev. 748.36'), the sand becomes mixed with gravel, exhibiting a medium dense consistency. The sand and gravel had SPT N-values of 25. By approximately 12 feet deep (Elev. 744.36'), the soil changes to a gray stiff silty clay loam till that continued in depth to approximately 22 feet deep (Elev. 734.36'). The silty clay loam till soils had SPT N-values in the range of 11 to 12 and unconfined compressive strengths (Qu) between 0.74 to 1.25. At about 22 feet the soil changes to a gray medium dense sand with trace gravel. The sandy soils had SPT N-values in the range of 22 to 27. By approximately 32 feet deep (Elev. 724.36'), the soil changes to a gray stiff silty clay loam till. This till continues with depth, becoming very stiff with trace sand, to boring completion depth of 75 feet deep (Elev. 681.36'). The soils had SPT N-values in the range of 16 to 32 and an unconfined compressive strength (Qu) between 1.46 to 3.09.

Structure Geotechnical Report Ramp G Over Ramp F (Stat 733+14.83) F.A.I RTE 57/74 Proposed Structure Number: 010-1003 Champaign County, Illinois

Borings **B-40 and B-41**, were originally intended as separate pier location boring but were combined to one boring **B-40/41** located at Station 732+89.34. Based on the preliminary TS&L the structure now has a single span and therefore no pier will be used. Boring **B-40/41** is presented for additional soils data. In boring **B-40/41**, underlying the topsoil layer is a moist stiff brown silty clay is encountered. By approximately 2.5 feet deep (Elev. 753.16'), the material changes to a loose brown clayey sand and gravel which increase in density with depth. At approximately 8.0 feet deep (Elev. 748.16'), the soil changes to a gray silty clay loam till where it transitions to sand and gravel at at depth of 27' (Elev. 729.16). The soil had SPT N-values ranging from 10 to 67. By approximately 32 feet deep, a stiff, wet gray silty clay till is encountered and extends to boring completion depths of 75 feet (Elev. 681.16).

4.4 Groundwater Conditions

Water levels were checked in each boring to determine the general groundwater conditions present at the site and were measured while drilling and after each boring was completed.

Groundwater was identified in each boring as follows:

Table 2 – Groundwater Elevations

Boring	Groundwater Elevation (At time of drilling)	Groundwater Elevation (@ boring completion)
B-30 (South Abut)	751.9	729.4
B-31 (North Abut)	748.4	N/A

No 24-hour groundwater readings were noted. No streambed elevations or surface water elevations were noted.

Water level readings were made in the boreholes at times and under conditions shown on the boring logs and stated in the text of this report. However, it should be noted that fluctuations in groundwater level may occur due to variations in rainfall, other climatic conditions, or other factors not evident at the time measurements were made and reported.

5.0 Geotechnical Evaluations

The section provides geotechnical analysis and recommendations for the design of the proposed bridge based on the results of the field exploration, laboratory testing, and geotechnical analysis.

Structure Geotechnical Report Ramp G Over Ramp F (Stat 733+14.83) F.A.I RTE 57/74 Proposed Structure Number: 010-1003 Champaign County, Illinois

5.1 Derivation of Soil Parameters for Design

Unit weights, friction angles and shear strength parameters were estimated using soil shear strength values and standard penetration test (SPT) using published correlations for N values results. **Table 3** - presents generalized soil parameters to be used based for designs on the laboratory and in-situ testing data:

Table 3 - Summary of Soil Parameters

		In situ	Undrai	ned	Drai	ned
Approximate Depth / Elevation (feet)	Soil Description	Unit Weight γ (pcf)	Cohesion c (psf)	Friction Angle Φ (degrees)	Cohesion c (psf)	Friction Angle Φ (degrees)
752' to surface	Silty Clay	120	1200	0	100	28
744 – 752	Sand / Sand & Gravel	130	0	34	0	34
729 – 744	Silty Clay Till	125	2,000	0	125	28

5.2 Settlement

The new approach slabs on either end of the bridge will be supported by new engineered fill. It is anticipated that approximately 32 feet (at the North abutment) and 34 feet (at the South abutment) will be placed at the new embankment approaches. Based on preliminary settlement calculations, the increase in stress due to the increase in fill would produce settlements in the range of less than 3-inch near the north and south abutments due to the consolidated nature of the site with interspersed dense sand lenses. The anticipated settlement should not adversely affect the approach pavements due to due primary settlement occurring during construction activities.

Piles are anticipated to be used at the bridge abutments and it is necessary to ensure by the use of settlement plates, enough settlement has taken place such that 0.4-inches or less of settlement remain prior to the installation of the piles to minimize the effects of any down drag forces on the piles. If this is not acceptable under an accelerated construction schedule, the SGR author should be contacted in order to provide alternate solutions that deal with downdrag issues. These solutions may include the use of wick drains to speed up settlement, or the use of precoring, or accounting for downdrag in the pile design (if possible.)

It is recommended that Settlement Platforms be constructed near Station 723+30 Offset 15' Rt. for the south abutment and Station 724+90 Offset 15' Lt for the northern abutment. Settlement plates shall be installed prior to embankment construction for monitoring the rate and amount of settlement throughout the embankment construction.

Structure Geotechnical Report Ramp G Over Ramp F (Stat 733+14.83) F.A.I RTE 57/74 Proposed Structure Number: 010-1003 Champaign County, Illinois

5.3 Slope Stability – Bridge Abutments

The proposed construction of Ramp G over Ramp F involves the construction of new abutments with end slopes. The proposed abutments types being considered are integral or stub with endslopes at 2 horizontal to 1 vertical (2H:1V). Slope stability of the bridge abutments was evaluated using a slope stability analysis software: *GSTABL7 with STEDwin*.

The proposed side slopes were analyzed based on the grading and the soils encountered during subsurface exploration. Three analyses were evaluated using the Bishop and Janbu analyses methods for the proposed slope geometry: end-of-construction (short term - undrained), long-term (drained) and a design seismic event. The analyses were performed using the soil parameters in Table 3 above. A critical factor of safety (FOS) was calculated for each condition. According to the current standard of practice, the target FOS is 1.5 for end-of-construction and long-term slope stability and 1.0 for the design seismic event.

In an effort to model the end-of-construction conditions, full cohesion we used with a friction angle of 0 degrees assumed. Nominal values for cohesion were used with full friction angle to model the long-term and seismic conditions to analyze the condition where pore water pressure has dissipated. The results of the analysis are shown on the following page in Table 4.

Based on the analysis performed, the proposed slopes meet the minimum required factor of safety of 1.5 (end-of-construction, long-term) and 1.0 (seismic).

Calculated Critical FOS Boring Slope End-of-Long Location Seismic Construction **Term** B-30, South Abut 2H:1V 28 1.8 1.5 2H:1V B-31, North Abut 2.8 1.8 1.5

Table 4 – Stability Analysis Results – Bridge Abutments

5.4 Seismic Parameters

The seismic hazard for the site was analyzed per the IDOT Geotechnical Manual, IDOT Bridge Design Manual, and AASHTO LRDF Bride Design Specifications. The Seismic Soil Site Class was determined per the requirements of All Geotechnical Manual Users (AGMU) Memo 9.1, Design Guide for Seismic Site Class Determination, and the "Seismic Site class Determination" Excel spreadsheet provided by IDOT.

Structure Geotechnical Report Ramp G Over Ramp F (Stat 733+14.83) F.A.I RTE 57/74 Proposed Structure Number: 010-1003 Champaign County, Illinois

The proposed bridge has a total length less than 130 feet, with no single span longer than 200 feet, therefore, a global Site Class Definition was determined for this project Based on the seismic hazard maps the following coefficients should be used in design:

 S_s =0.146 g, F_a =1.60; therefore Design Spectral Accelerations at 0.2 sec, (S_{Ds}) =0.233g S_1 =0.056 g, F_v =2.40; therefore Design Spectral Accelerations at 1.0 sec, (S_{Dt}) =0.135g

According to Table 3.10.3.1-1 (Site Class Definitions) of the 2008 AASHTO LRFD Manual, the project site soil profile is most accurately described as the AASHTO Soil Site Class D. According to Table 3.10.6-1 (Seismic Zones) of the 2008 AASHTO LRFD Manual, the Seismic Performance Zone is most accurately described as (SPZ)=1 (F_vS₁#0.15)

Liquefaction analysis was conducted using Design Guide AGMU Memo 10.1 – Liquefaction Analysis. As noted in the previous paragraph the Seismic Performance Zone (SPZ) is SPZ – 1 and the Peak Ground Acceleration (PGA) modified by the zero-period site factor, F_{pga} is less than 0.15. Therefore, no liquefaction of soil layers is anticipated to occur.

Table 5 – Seismic Coefficients Summary Table

Seismic Performance Zone (SPZ)	1
Design Spectral Acceleration at 0.2 sec. (S _{DS})	0.233 g
Design Spectral Acceleration at 1.0 sec. (S _{D1})	0.135 g
Soil Site Class	D

5.5 Scour

The proposed bridge structure carrying Ramp G will cross over Ramp F and no waterways are in the vicinity of the proposed project; therefore scour will not be a concern for this project.

5.6 Mining Activity

Based on a review of the Illinois State Geological Survey's on-line collection of County Coal Maps and Directories, the proposed structure is not located over a mine or mined out area.

5.7 Liquefaction

Based on the AGMU Memo 10.1 – Liquefaction Analysis Seismic Performance Zones 3 and 4 required liquefaction analysis, as well as, SPZ 2 with a Peak Seismic Ground Surface Acceleration, As equal to or greater than 0.15. The subject site is in SPZ 1 with a less than 0.15. Therefore liquefaction was not considered as a reduction for the pile design capacity or other foundation considerations included herein.

Structure Geotechnical Report Ramp G Over Ramp F (Stat 733+14.83) F.A.I RTE 57/74 Proposed Structure Number: 010-1003 Champaign County, Illinois

5.8 Approach Slabs

Based on information from the structural engineer, the approach slabs are 30 feet in length and will be cast-in-place. In accordance with the IDOT Bridge Manual, BFW evaluated the foundation soils at the approach slabs for bearing capacity and excessive settlement. With proper compaction of the approach subgrades, the bearing capacity and settlement requirements of the IDOT Bridge manual will be satisfied.

6.0 Foundation Type Evaluation and Design Recommendations

6.1 Foundation Type Feasibility

Based on the preliminary TS&L, the proposed structure (SN 010-1003), Station 733+14.83 will consist of a single span supported by one of two abutment options that are being considered. Two new 30 feet long approach slabs will be constructed on either end of the bridge.

The first abutment option is a PPC Bulb Tee (IL63-2438) on integral abutments with an estimated abutment length of 35' – 8". The superstructure will consist of tangent girders on a curved alignment with back to back abutment distances of 122'-11 1/4". Abutments will bear on single row of vertical steel piles.

The second abutment option is Steel Plate Girder with a 60-inch web depth on stub abutments with an abutment length of 34' - 0". The superstructure for this option would include a curved girder on curved alignment with back to back abutment distances of 124'-9 $\frac{1}{4}$ ". Abutments for this type of abutment will bear on two rows of piles with vertical back row and 12:3 battered pile front and piles along the wing.

The proposed abutment type for this structure is either integral or stub depending on the type of superstructure chosen. According to the IDOT Bridge manual, Section 3.8.3 on Integral Abutments, metal shell or HP-piles are permitted based on the overall length of the bridge. Metal shell or HP-piles are also permitted for stub abutment.

6.2 Driven Pile Supported Foundations

Piles considered for this site include HP-piles and metal shell piles. The Modified IDOT static method Excel spreadsheet was used to estimate the pile lengths at various axial geotechnical resistances for driven piles per AGMU Memo 10.2. Tables 7 and 8 summarize the estimated pile lengths at various axial resistances for metal shell piles and HP-piles various sizes piles for the <u>integral</u> abutment option (Tangent Girder on Curved Alignment)

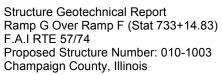
Tables 9 and 10 summarize the estimated pile lengths for various metal shell piles and HP-piles for the <u>stub</u> abutment option (Curved Girder on Curved Alignment). The complete IDOT Pile Design Tables for each substructure are included in the Appendix.

The factored resistance includes reduction for the geotechnical resistance of 0.55 for the pile installation. Based on the results of the subsurface investigation no geotechnical losses due to down drag or liquefaction were included in the axial pile capacity calculations. The anticipated factored structural loadings were obtained from the structural engineer and are provided in Table 6 on the following page.

The Nominal Required Bearing (R_N) represents the resistance the pile will experience during driving as well as assists the contractor in selecting a proper hammer size. The Factored Resistance Available (RF) documents the net long-term axial factored pile capacity available at the top of the pile to support factored substructure loads.

The pile cutoff elevations used for analysis were Elev. 781.48 and Elev. 779.57 for the North and South abutments, respectively for the PPC Bulb Tee option and Elev. 780.47 and 778.80 for the Steel Plate Girder option. The pile cutoff elevation included a 2 feet embedment into the integral abutment for the PPC Bulb Tee option and a 1 feet embedment into the abutment for the stub abutment as required by the Bridge Manual.

Pile shoes should be used for the metal shell due to presence of cobbles within the borings. Pile shoes HP piles should not be required due to the subsurface conditions and the absence of bedrock


Due to the relative consistency between the soil test borings, only one test pile should be required for abutments. A test pile is performed prior to production driving so that actual, on-site field data can be gathered to further evaluate pile driving requirements for the project. This is also the time in which the contractor's proposed equipment and methodologies identified in their Pile Installation Plan can be assessed.

Structure Geotechnical Report Ramp G Over Ramp F (Stat 733+14.83) F.A.I RTE 57/74 Proposed Structure Number: 010-1003 Champaign County, Illinois

Table 6: Structural Loadings

		I-57 - I 74 INTERCHANGE STRUCT	URES					
		Information for Geotechnical Engineering SGR's	03.24.2015					
Structure:		RAMP G over RAMP F	St	ation				
S.N.		010-1003						
No. of Span	s:	1	733+14.83					
Option No.		Superstructure Type / Option	<u>Substructure</u>					
		PPC BULB TEE IL63-2438						
		Superstructure: Tangent Girder on Curved Alignment						
		Substructure Element	ABUT 1	ABUT 2				
		Abutment Type: (Integral, Semi Integral, Stub, etc.)	Integral *	Integral *				
		Pier Type	n/a	n/a				
		Deck Joints	n/a	n/a				
	s	Bearing Type	Fixed	Fixed				
1	Details	Est. Bottom of Abutment Elevation	779.47	777.80				
	De	Est. Abutment Length	35'-8"	35'-8"				
		Est. Pier Bottom of Footing	n/a	n/a				
		Est. Pier Footing Dimensions	n/a	n/a				
		Total Factored Vertical DL + LL	1,958 Kips *	1,958 Kips *				
			Single row of ve	ertical steel piles.				
		Additional Notes / Comments		d Allowance (IM) egral abutment.				
		STEEL PLATE GIRDER, WEB DEPTH = 60 IN.						
		Superstructure: Curved Girder on Curved Alignment	Subs	<u>tructure</u>				
		Substructure Element	ABUT 1	ABUT 2				
		Abutment Type: (Integral, Semi Integral, Stub, etc.)	Stub	Stub				
		Pier Type	n/a	n/a				
		Deck Joints	Strip Seal	Strip Seal				
		Bearing Type	Elastomeric	Elastomeric				
	s	Est. Bottom of Abutment Elevation	779.47	777.8				
2	Details	Est. Abutment Length	34'-0"	34'-0"				
	۵	Est. Pier Bottom of Footing	n/a	n/a				
		Est. Pier Footing Dimensions	n/a	n/a				
		Total Factored Vertical DL + LL	1,359 Kips **	1,359 Kips **				
		Additional Notes / Comments	Two rows of pil row, 12:3 batte	es. Vertical back red front row.				
			** Dynamic Loa not included.	ad Allowance (IM)				

6.3 **Shallow Foundations**

Based on the soils encountered, the new span lengths and the amount of embankment fill, shallow foundations are not a feasible option for the proposed substructures of the bridge. It is anticipated that shallow foundations designed for the loads provided will undergo settlement and therefore will not be a feasible option and are not discussed in the report.

Design Capacity Limitations

There are no downdrag, liquefaction, scour, or settlement issues at this structure that would result in the loss of capacity of the piling. Therefore, no design capacity limitations are necessary.

6.4 **Lateral Load Resistance**

Section 3.10.1.10 of the 2012 IDOT Bridge manual requires performing detailed structure interaction analysis if the factored lateral loading per pile exceeds 3 kips. Lateral loadings applied to pile foundations are typically resisted by battering selected piles, the soil/structure interaction, pile flexure, or a combination of these factors. Based on information provided by the structural engineer the lateral loads were anticipated to be less than 3 kips.

Structure Geotechnical Report Ramp G Over Ramp F (Stat 733+14.83) F.A.I RTE 57/74 Proposed Structure Number: 010-1003 Champaign County, Illinois

Pile Capacity Tables (Tables 7 & 8) (PPC Bulb Tee Option – Integral Abutment)

Table 7 – North Abutment

Piling Driven at North Abutment (B-31 data) Nominal Factored **Estimated Pile** Required Resistance Length Bearing Available (Ft) (Kips) (Kips) Metal Shell 12" Φ w/0.25 walls 353* 194* Metal Shell 14" Φ w/0.25" walls 413* 227* Metal Shell 14" Φ w/0.312 walls 513* 282* HP 12 x 53 346** 190** HP 12 x 74

Table 8 – South Abutment

Piling Driv	en at South A	butment (B-30 data)
Nominal	Factored	Estimated Pile
Required	Resistance	Length
Bearing	Available	(Ft)
(Kips)	(Kips) al Shell 12" Ф	, ,
230	126	50
271	149	55
301	165	60
340	187	65
353*	194*	70
000	l Shell 14" Ф v	
272	150	50
324	178	55
358	197	60
402	221	65
413*	227*	67
	l Shell 14" Ф v	
402	221	65
434	238	70
462	254	75
490	270	80
513*	282*	85
	HP 12 x	53
334	184	80
355	195	85
380	209	90
408	255	95
418**	230**	98
	HP 12 x	74
291	160	65
307	169	70
324	178	75
342	188	80
363**	199**	85
	HP 14 x	73
401	221	80
425	234	85
455	250	90
491	270	95
501**	276**	98

*- Maximum Nominal Required Bearing
** - Nominal Required Bearing at End of Boring Data

Structure Geotechnical Report Ramp G Over Ramp F (Stat 733+14.83) F.A.I RTE 57/74

Proposed Structure Number: 010-1003

Champaign County, Illinois

355**

423** 195**

233**

HP 14 x 73

Pile Capacity Tables (Tables 9 & 10) (Steel Plate Girder Option – Stub Abutment)

Table 9 – North Abutment

Piling Driven at North Abutment (B-31 data) Factored Nominal **Estimated Pile** Required Resistance Length **Bearing** Available (Ft) (Kips) (Kips) Metal Shell 12" Φ w/0.25 walls 353* 194* Metal Shell 14" Φ w/0.25" walls 413* 227* Metal Shell 14" Φ w/0.312 walls 513* 282* HP 12 x 53 348** 191** HP 12 x 74 356** 196** HP 14 x 73 425** 234**

Table 10 – South Abutment

Piling Driv	en at South A	butment (B-30 data)
Nominal Required Bearing (Kips)	Factored Resistance Available (Kips)	Estimated Pile Length (Ft)
Met	al Shell 12" Ф	w/0.25 walls
230	126	49
271	149	54
301	165	59
340	187	64
353*	194*	69
Meta	al Shell 14" Ф	w/0.25" walls
272	150	49
324	178	54
358	197	59
402	221	64
413*	227*	66
Meta	al Shell 14" Ф	w/0.312 walls
434	238	69
446	245	72
475	262	77
505	278	82
513*	282*	84
	HP 12 x	53
334	184	79
355	195	84
380	209	89
408	225	94
418**	230**	97
	HP 12 x	74
342	188	79
363	199	84
388	213	89
418	230	94
427**	235**	97
	HP 14 x	73
401	221	79
425	234	84
455	250	89
491	270	94
501**	276**	97

*- Maximum Nominal Required Bearing ** - Nominal Required Bearing at End of Boring Data

Structure Geotechnical Report Ramp G Over Ramp F F.A.I RTE 57/74 Proposed Structure Number: 010-1002 Champaign County, Illinois

6.5 Wingwall Foundation Recommendations

Based on information provided by the structural engineer and the preliminary TS&L the wing walls for the integral abutment option will be cantilever in design and will not rely on soil bearing. Wing walls for the stub abutment option will be pile supported using pile capacity tables provided for each abutment.

7.0 Construction Considerations

All work performed for the proposed project should conform to the requirements in the IDOT Standard Specifications for Road and Bridge Construction (2012) and the Supplemental Specifications and Recurring Special Provisions (2015). Any deviation from the requirements in the manuals above should be approved by the design engineer.

7.1 Groundwater Management

Based on the depth of groundwater observed in the borings, significant groundwater management is not anticipated for bridge construction. The contactor should control groundwater and surface water infiltration to provide construction in dry condition. Temporary ditches, sumps, granular drainage blankets, stone ditch protection, or hand-laid riprap with geotextile underlayment could be used to divert groundwater if significant seepage is encountered during construction. If water seepage occurs during footing or where wet conditions are encountered such that the water cannot be removed with conventional sumping, we recommend placing open grade stone similar to IDOT CA-7 to stabilize the bottom of the excavation.

The CA-7 stone should be placed to 12 inches about the water table, in 12-inch lifts, and should be compacted with the use of a heavy smooth drum roller or heavy vibratory plate compactor until stable. The remaining portion of the excavation beneath the footing should be backfilled using approved structural fill.

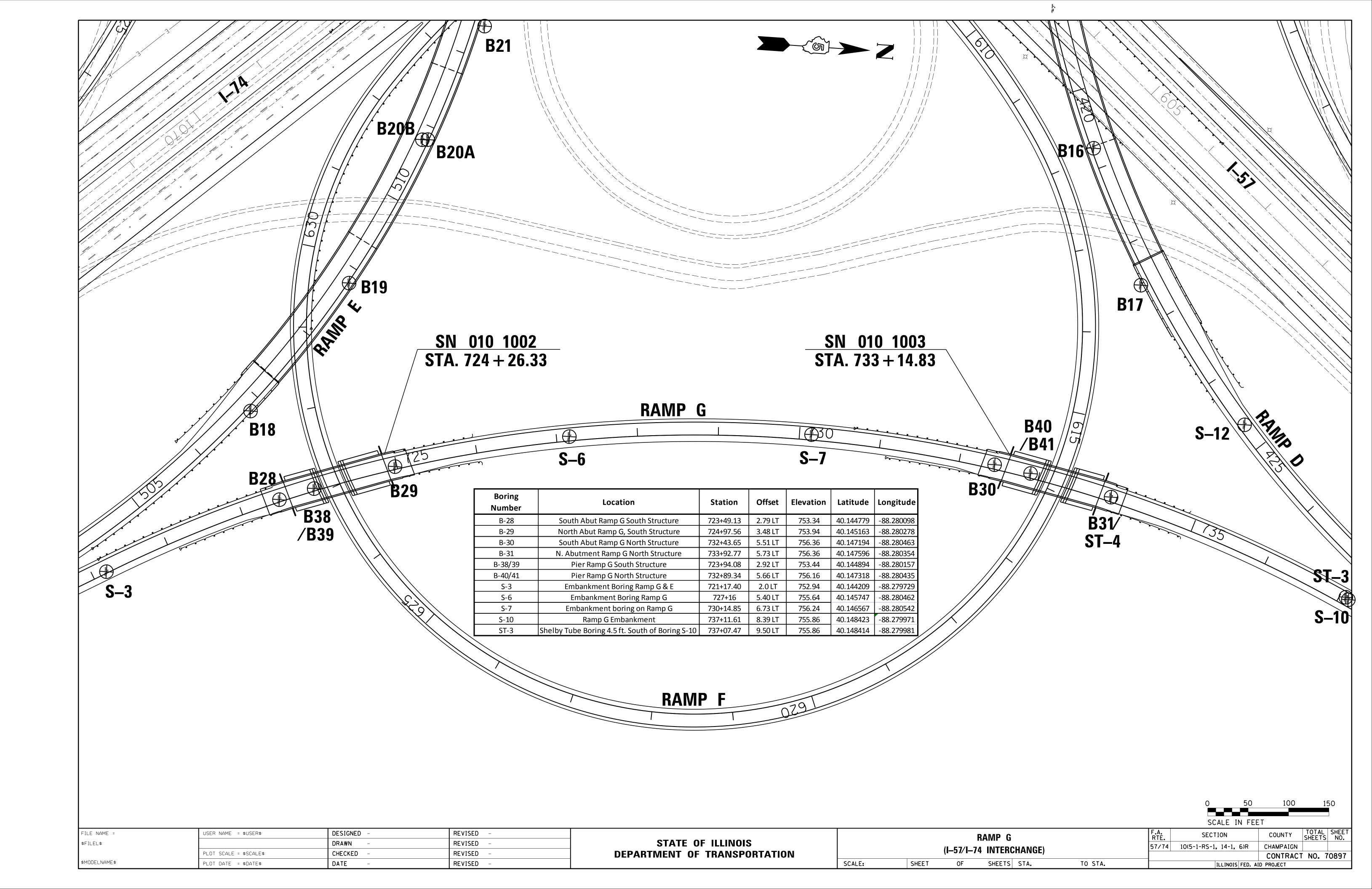
7.5 Temporary Sheeting and Soil Retention

Ramp G over Ramp F is new construction and will not encounter traffic until completion therefore, temporary sheeting and/or soil retention will not be required for this structure

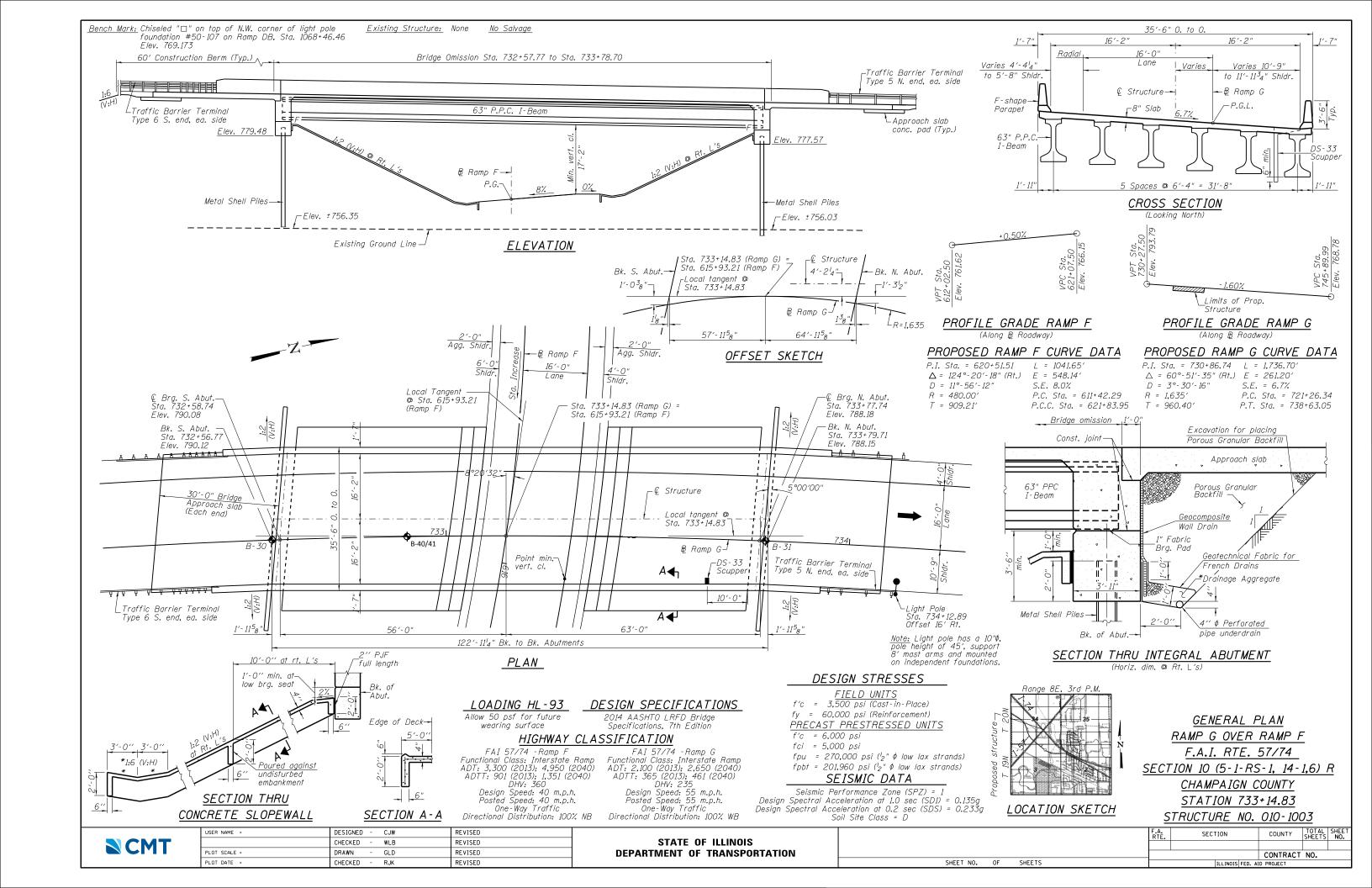
8.0 Limitations

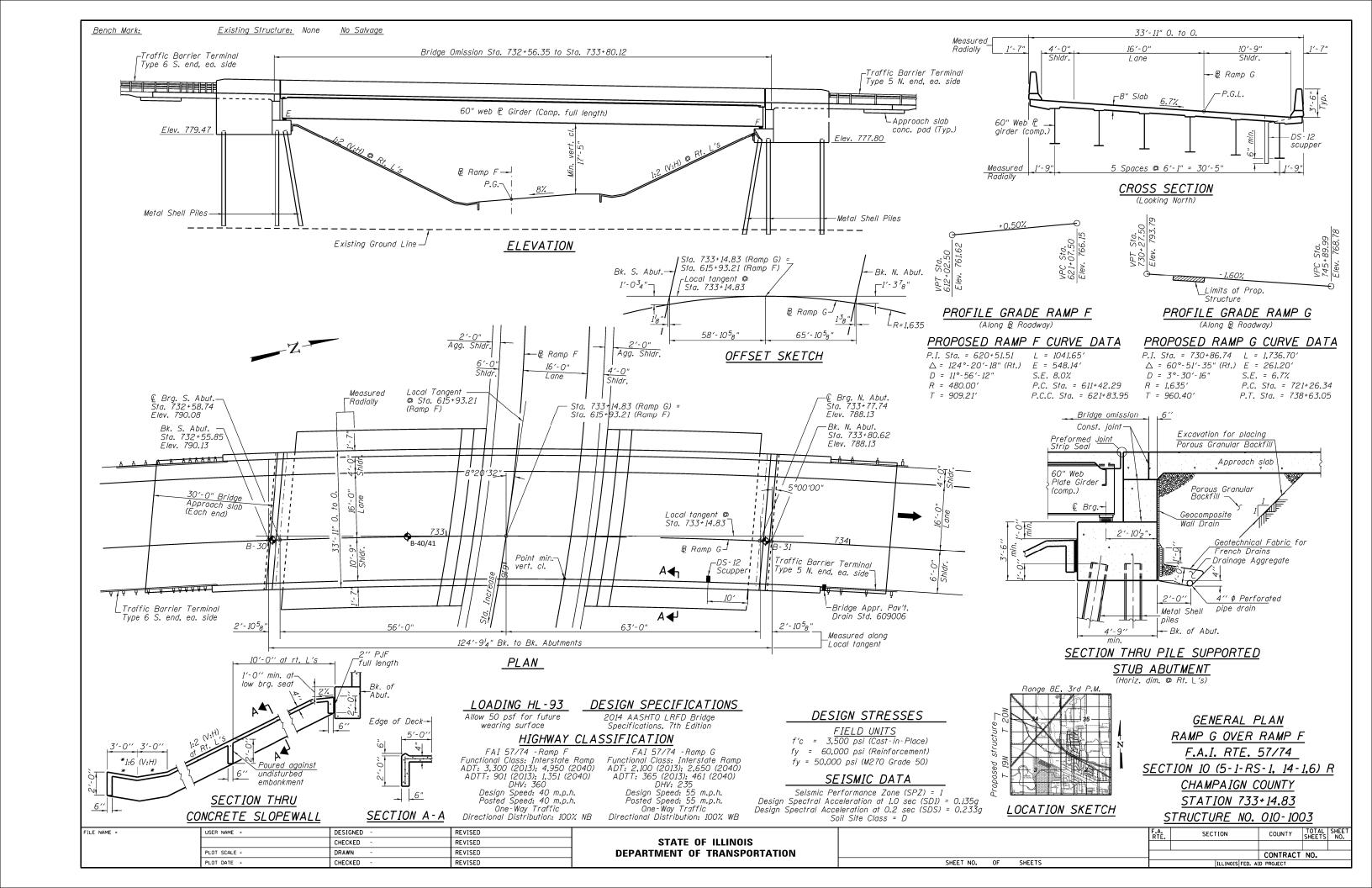
This report has been prepared for the exclusive use of the Illinois Department of Transportation and its structural consultant. The recommendations provided in the repot are specific to the project described herein, and are based on the information obtained from the soil boring locations within the project limits. The analysis have been performed and the

Structure Geotechnical Report US 150 (Bloomington Rd) over FAI 57 Existing Structure Number: 010-0050 Proposed Structure Number: 010-1050 Champaign County, Illinois


recommendations have been provided in this report are based on subsurface conditions determined at the location of the borings. The report may not reflect all variations that may occur between boring locations or at some other time, the nature and extend of which may not become evident until during the time of construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and review the recommendations provided herein in light of the new conditions

Structure Geotechnical Report US 150 (Bloomington Rd) over FAI 57 Existing Structure Number: 010-0050 Proposed Structure Number: 010-1050 Champaign County, Illinois


Appendix A


Soil Boring Location Map

Appendix B

Preliminary TS&Ls

Appendix C

Subsurface Boring Logs

Page $\underline{1}$ of $\underline{2}$

Date 1/30/15

ROUTE	I-57/74	DES	SCR	PTION		Sou	th Abut Ramp G North Structure	LC	OGGE	D BY	TL	_M
SECTION	10(5-1-RS-1, 14-1	I,6)R	, ι	OCAT	ION .	SEC.	34, TWP. 20N, RNG. 8E, 3 rd PM, de 40.147194, Longitude -88.2804	63				
COUNTY	Champaign D	RILLING	ME	THOD			HSA HAMMER			A	uto	
Station BORING NO Station Offset	B-30 732+43.65 5.2 ft LT ace Elev756.36		D E P T H	B L O W S	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter 751.9 Upon Completion 729.4 After Hrs.	ft.▼ ft.▽	D E P T H (ft)	B L O W S	U C S Qu (tsf)	M O I S T (%)
TOPSOIL: Silty	y Clay, dark brown	755.36	-				SILTY CLAY LOAM TILL: Gray, very stiff (continued)					
SILTY CLAY: [Oark Brown, stiff			3 4	1.5 P	19						
	RAVEL WITH SILT	752.36	Z	1		22			=	5	2.7	9
AND CLAY: Br	own, loose	748.36	-5	1 3 6		21	SAND AND GRAVEL: Gray, medium dense	729.3 6	-25	11	В	
SILTY CLAY L very stiff	OAM TILL: Gray,		-10	3 6 7	2.5 B	12			-30	4 8 8		14
		,	-	4 8 9	2.5 B	12	SILTY CLAY LOAM TILL: Gray, hard	724.36				
			-15	3 4 6	2.3 B	13			-35	11 8 11	4.3 B	12
		,		3 6 7	2.7 B	12	SILTY CLAY LOAM TILL: Gray, very stiff	719.36	-			
		•	20	2 6 6	2.5 B	12			-40	6 8 14	3.5 B	12

Page $\underline{2}$ of $\underline{2}$

Date 1/30/15

ROUTE	I-57/74	DES	SCRI	PTION		Sou	uth Abut Ramp G North Structure LOGGED BY						_M
SECTION	10(5-1-RS-1, 14-1,6)	R	L	OCAT	ION	SEC.	34, TWP. 20N, RNG. 8E,	3 rd PM,					
						Latitu	de 40.147194, Longitude	-88.28046			Δι	uto	
COUNTY	Champaign DRIL	LING	IVIE	IHOD			HSA I		TEG :			10	
Station	P. 00	=	D E P T	вьоу	U C S	M 0 − %	Surface Water Elev Stream Bed Elev	n/a	ft ft	D E P T	B L O W	U C S	M 0 - 0
Station	B-30 732+43.65 5.2 ft LT	-	н	S	Qu	Т	Groundwater Elev.: First Encounter Upon Completion	751.9 729.4	ft.▼ ft.∑	Н	s	Qu	Т
Ground Sur	face Elev. 756.36	ft	(ft)	(/6")	(tsf)	(%)	After Hrs		ft	(ft)	(/6'')	(tsf)	(%)
SILTY CLAY very stiff (con	LOAM TILL: Gray, tinued)		-	4			SILTY CLAY LOAM TILL stiff (continued)	.: Gray,		-	2		10
			-45	5 10	2.5 B	14				-65	4 14	1.9 B	13
SILTY CLAY stiff	70 LOAM TILL: Gray,	9.36		4						_	6		
			-	6 10	1.9 B	14				-70	9 14	2.3 B	12
			-50	6							5		
		W)	-55	7 9	1.7 B	14			681.36	-75	7 11	2.1 B	12
		9	-60	5 7 10	1.7 B	13	End of Boring			-80			

Page $\underline{1}$ of $\underline{2}$

Date 2/2/15_

ROUTE	I-57/74	DES	SCRI	PTION	I	N. Al	outment Ramp G North Structure	LC	GGE	ED BY	_TLM	I, TC
SECTION	10(5-1-RS-1, 14-1	,6)R	_ L	OCAT	ION _	SEC.	34, TWP. 20N, RNG. 8E, 3 rd PM, de 40.147596, Longitude -88.2803	854				
COUNTY	Champaign Di	RILLING						TYPE		AL	ITO	
Station	B-31		D E P T	B L O W	U C S	ω – o ⊼	Surface Water Elevn/a Stream Bed Elev	_ ft _ ft	D E P T	B L O W	U C S	M 0 - s
Station	733+92.77 5.7 ft LT		Н	S	Qu	Т	First Encounter 748.4 Upon Completion	_ ft. <u>▼</u>	Н	S	Qu	Т
Ground Surf	ace Elev. 756.36	ft	(ft)	(/6")	(tsf)	(%)	After Hrs	ft	(ft)	(/6'')	(tsf)	(%)
brown	Silty Clay, dark	755.36	=				SILTY CLAY TILL: Gray, stiff (continued)		-			
SILTY CLAY:	Brown, stiff			2	0.9	17		734.36	-			
				3	В		SAND: Gray, medium dense, medium, trace gravel		-			
SAND: Loose,	loamy, medium to	753.36					medium, trace graver	,	_	_		
coarse, wet bu	it no free water			1 2	0.2	19		i	-	5 6		14
			-5	2	В				-25	16		
			-									
				2		17						
			_	4		17						
SAND AND G	RAVEL: Brown,	748.36	<u> </u>						_			
medium dense			_	5 13		12			-	11		12
			-10	40					-30	13		
			=						>=			
		744.36		6 12	1.3	14		724.36	-			
SILTY CLAY L	OAM TILL: Gray,	744.36		13	P	14	SILTY CLAY LOAM TILL: Gray,					
stiff	-		_				stiff					
			-	3						7 8	47	13
			-15	5 6	0.7 B	14			-35	8	1.7 B	13
		740.86							-			
SILTY CLAY 1	TILL: Gray, stiff			2					-			
				4 8	1.0	14	OU TV OLAVI CAM TILL CON	719.36				
			ş=	0	В		SILTY CLAY LOAM TILL: Gray, very stiff		_			
			2	2					-	6		
				5	1.0	13	·			9	2.4	13
			20	7	B				-40	13	В	

Page $\underline{2}$ of $\underline{2}$

Date 2/2/15

ROUTE	I-57/74	DES	CRI	PTION		N. Al	outment Ramp G North Structure	LC	GGE	_TLM	I, TC			
SECTION	10(5-1-RS-1, 14-1,6)	R	_ L	OCAT	ION _	SEC.	34, TWP. 20N, RNG. 8E, 3 rd PM,	5.4						
				Latitude 40.147596, Longitude -88.28 METHOD HSA HAMME						AUTO				
		1							D	В	U	м		
STRUCT. NO.	:	=:	D E	B L	U	M	Surface Water Elevn/a Stream Bed Elev	ft	E	L	С	Ö		
			Р	0	S	1			P T	O W	S	I S		
BORING NO.	B-31 733+92.77	-:	T H	W S	Qu	S	Groundwater Elev.: 748.4	ft▼	н	s	Qu	Ť		
Offset	5.7 ft L1	_	/EL\	uem.	/4nf)	(%)	First Encounter 748.4 Upon Completion	ft	(ft)	(/6'')	(tsf)	(%)		
Ground Surf	ace Elev756.36	ft	(π)	(/6'')	(tsf)	(%)	After Hrs SILTY CLAY TILL: Gray, very stiff,		(1.5)	(,,,	(10.7)	(,,,		
very stiff (cont	_OAM TILL: Gray, tinued)						trace sand (continued)		1700					
	_		-						_					
SILTYCLAY		14.36												
trace sand	rice. Gray, our,		-											
			-	2					-	6				
		•		5	1.6 B	13			-65	10 11	1.5 B	14		
			-45	- 11	В				-65					
			-						-					
		;												
		,												
			-	4					_=	6		- 10		
			-50	7	1.5 B	12			-70	9 12	1.7 B	13		
			-50											
									_					
									-					
			-											
				7	1.0	40				7	3.1	12		
			-55	44	1.6 B	13		681.36	-75	40	В	'-		
							End of Boring		20-					
			_	-					-					
		99.36	-											
	TILL: Gray, very stiff,		-	-					_					
trace sand			_											
			_	4	22	13			-					
			60	8	2.3 B	13			-80					

Page $\underline{1}$ of $\underline{2}$

Date __1/30/15

ROUTE	1-57/74	DES	SCRI	PTION			Pier Ramp G North Structure	LC	LOGGED BY			I, TC
SECTION	10(5-1-RS-1, 14-1	1,6)R	_ ι	OCAT	ION _	, SEC.	34, TWP. 20N, RNG. 8E, 3 rd PM,	0.5				
COUNTY	Champaign D	RILLING	ME	THOD		Latitu	de 40.147318, Longitude -88.2804 HSA HAMMER			A	uto	
Station BORING NO. Station	B-40/41 732+89.34 5.7 ft LT	====	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. n/a Stream Bed Elev. Groundwater Elev.: First Encounter 750.2 Upon Completion washed	ft.▼	D E P T H	B L O W S	U C s Qu	M O I S T
Ground Sur	ace Elev. 756.16	ft	(ft)	(/6'')	(tsf)	(%)	After Hrs	ft	(ft)	(/6")	(tsf)	(%)
	ty Clay, dark brown	755.16	=	2			SILTY CLAY LOAM TILL: Gray, very stiff (continued)		-			
SILTY CLAY:	Brown, stiff	753.16	_	3 4	1.2 B	19						
CLAYEY SAN coarse	ID: Very loose,		-	1		21	No recovery, cobble			15 31		
		750.66	-5	1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-25	36		
SAND AND G loose, clean	RAVEL: Brown,	100.00	-	2		21		729.16				
		748.16		2			SAND AND GRAVEL: Gray, medium dense		_			
SILTY CLAY I very stiff	OAM TILL: Gray,		-10	6 4 7	2.9 B	12	washed sample, 3 ft. of sand flowed up into auger		-30	6 3 10		16
		:	-10	5								
			-	6 7	2.3 B	13	SILTY CLAY TILL: Gray, very stiff, trace gravel	724.16				
		-	-	5	2.5	13				13 10	3.5	12
		[]=	-15	6	В				-35 —	14	В	
		-		6 2 8	0.9 B	14	SILTY CLAY TILL: Gray, very stiff	719.66				
		8		5						6		
			-20	6 6	2.5 B	12			-40	8 12	2.5 B	13

Page $\underline{2}$ of $\underline{2}$

Date __1/30/15

ROUTE	1-57/74	DES	CRI	PTION			Pier Ramp G North Structure	LC)GGF	TLM	<u>,TC</u>	
SECTION _	10(5-1-RS-1, 14-1,6))R	_ L	OCAT	ION _	SEC.	34, TWP. 20N, RNG. 8E, 3 rd PM, de 40.147318, Longitude -88.2804	135				
COUNTY	Champaign DRIL	LING	ING METHOD			Lautu	HSA HAMMER	TYPE		Α	uto	
STRUCT. NO. Station BORING NO. Station	B-40/41 732+89.34		D E P T H	B L O	U C S	M O I S T	Surface Water Elev. n/a Stream Bed Elev. Groundwater Elev.: First Encounter 750.2 Upon Completion washed After Hrs.	_ ft	D E P T H	BLOWS	U C s Qu	M O I S T
Ground Surf	5.7 ft LT face Elev. 756.16	ft	(ft)	(/6'')	(tsf)	(%)	After Hrs.	ft	(ft)	(/6")	(tsf)	(%)
	TILL: Gray, very stiff	3		4			SILTY CLAY TILL: Gray, very stiff (continued) SANDY CLAY LOAM: Gray, stiff	694.16	-	11		
			-45	7 12	2.3 B	13			-65	8 9	1.3 B	16
SILTY CLAY	TILL: Gray, stiff	09.16		7						7		
		-	-50	8 12	1.4 B	13	2" Thick sand seam	004.40	-70	8 14	0.9 B	12
SILTY CLAY	TILL: Gray, very stiff	04.16	-	9			SILTY CLAY LOAM TILL: Gray, very stiff	684.16		7		
			-55	6 10	2.5 B	13		681.16	-75	9 35	2.3 B	12
		2 2 2	60	6 9 10	2.3 B	13	End of Boring		-80			

Appendix D

Boring Profile Sheet

ROUTE I-57/74

COUNTY Champaign PROJECT LOCATION

SECTION 10(5-1-RS-1, 14-1,6)R

SUBSURFACE PROFILE 010-1003

LEGEND

EL = Elevation (ft)

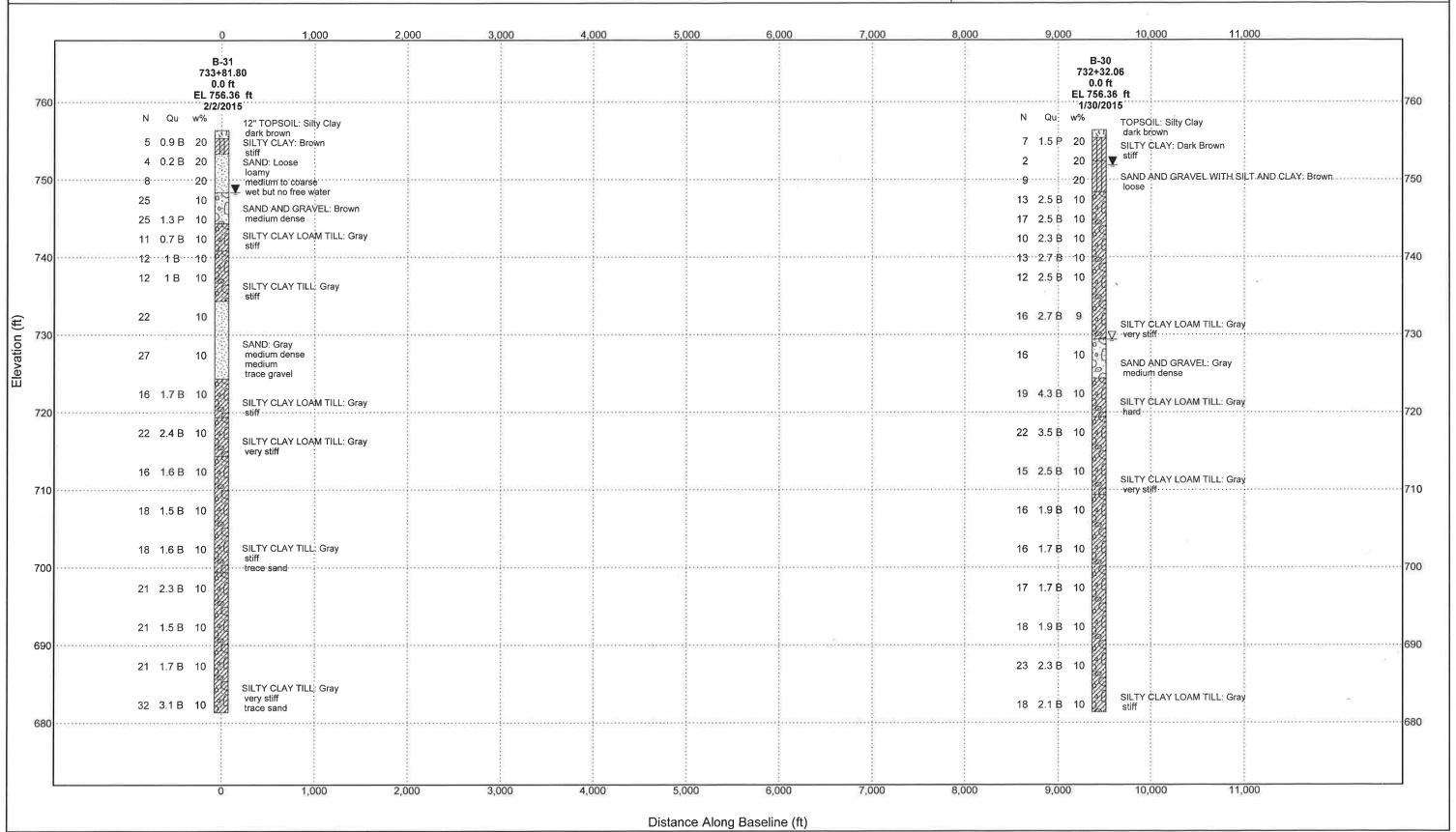
D = Depth Below Existing Ground Surface (ft)

N = SPT N-Value (AASHTO T206)

N = SPT N-Value (AASH 1 ∪ 1 ∠ ∪ ∪)
Qu = Unconfined compressive Strength (tsf)

Failure Mode (B= Bulge, S= shear, P= penetrometer)

Failure Mode (B= Bulge, S= shear, P= penetrometer)


And A SPT N-Value (AASH 1 ∪ 1 ∠ ∪ ∪)

Failure Mode (B= Bulge, S= shear, P= penetrometer)

Failure Mode (B= Bulge, S= shear, P= penetrometer)

WATER TABLE LEGEND

▼ = First Encountered

Appendix E	Αŗ	g	en	ıd	İΧ	E
------------	----	---	----	----	----	---

Pile Tables (North Abutment, South Abutment)

Pile Design Table for North Abutment - Integral utilizing Boring #31

	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Matal				Ctool		(Nips)	(Ft.)	Ctool			(Γι.)
wetars		w/.179" wal		Steer	HP 10 X 57	104	00	Steer	HP 14 X 73		60
NA -4-1 C	168	93	41		225	124	83		226	124	63
Metal		w/.25" walls			233	128	86		237	131	66
	168	93	41		243	134	88		247	136	68
	248	136	53		252	138	91		259	142	71
	260	143	56	۱	286	157	93		272	149	73
	279	154	58	Steel	HP 12 X 53				283	156	76
	295	162	61		225	124	73		309	170	78
	304	167	63		235	129	76		323	177	83
	317	174	66		255	140	78		334	183	86
	328	180	68		267	147	81		348	192	88
	340	187	71		268	148	83		360	198	91
	352	194	73		278	153	86		423	233	93
Metal S		w/.25" walls			290	159	88	Steel I	HP 14 X 89		
	198	109	41		300	165	91		229	126	63
	292	160	53		346	190	93		240	132	66
	306	169	56	Steel I	HP 12 X 63				250	138	68
	330	181	58		227	125	73		262	144	71
	349	192	61		237	130	76		275	151	73
	358	197	63		257	141	78		287	158	76
	372	205	66		270	148	81		312	172	78
	385	212	68		271	149	83		326	179	83
	399	219	71		280	154	86		337	186	86
Metal S	Shell 14"Ф	w/.312" wal	ls		292	161	88		352	194	88
	198	109	41		303	167	91		365	201	91
	292	160	53		350	192	93		428	236	93
	306	169	56	Steel I	HP 12 X 74			Steel I	HP 14 X 10	2	
	330	181	58		219	121	71		217	119	58
	349	192	61		230	127	73		231	127	63
	358	197	63		240	132	76		243	134	66
	372	205	66		261	143	78		253	139	68
	385	212	68		274	150	81		265	146	71
	399	219	71		275	151	83		278	153	73
	414	227	73		284	156	86		290	159	76
	428	235	76		296	163	88		316	174	78
	450	248	78		307	169	91		330	181	83
	469	258	81		355	195	93		341	188	86
	477	262	83	Steel I	HP 12 X 84				356	196	88
	491	270	86		222	122	71		369	203	91
	506	279	88		234	128	73		434	239	93
Steel F	IP 8 X 36				244	134	76	Steel I	HP 14 X 11		
	222	122	93		264	145	78		219	121	58
Steel F	IP 10 X 42				277	153	81		234	129	63
	228	126	86		278	153	83		246	135	66
	238	131	88		288	158	86		256	141	68
	246	136	91		300	165	88		268	147	71
	280	154	93		311	171	91		281	155	73
	_00				360	198	93		293	161	76
						.00	••		320	176	78
1									334	184	83
1				I				I	JU 1	107	00

	345	190	86
	361	198	88
	373	205	91
	439	242	93
	Precast 14"x 14"		
	180	99	25
	Timber Pile		
	145	79	36

Pile Design Table for North Abutment - Stub utilizing Boring #31

Pile D	esign Tab	le for North	n Abutmen	t - Stub	utilizing E	Boring #31					
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Motal		w/.179" wal	` ,	Stool	HP 10 X 57	(14160)	(1 t.)	Stool	HP 14 X 73		(1 4.7)
ivietai				Steer		50	40	Steer			0.5
	74	41	25		91	50	43		73	40	25
	114	63	27		117	64	55		99	54	27
	141	78	35		125	69	58		103	57	35
	150	83	38		142	78	60		116	64	38
	159	88	40		153	84	63		124	68	40
	168	93	43		155	85	65		133	73	43
Matal											
wetai		w/.25" walls			164	90	68		172	95	55
	74	41	25		171	94	70		184	101	58
	114	63	27		179	99	73		211	116	60
	141	78	35		188	103	75		226	124	65
	150	83	38		196	108	78		237	130	68
	159	88	40		212	117	80		247	136	70
	168	93	43		223	122	83		258	142	73
	247	136	55		225	124	85		271	149	75
	260	143	58		233	128	88		283	156	78
	279	153	60		243	134	90		308	170	80
	295	162	63		251	138	93		322	177	85
	304	167	65		286	157	95		333	183	88
	316	174	68	Stool	HP 12 X 53				348	191	90
				Steer		50	20				
	327	180	70 - 0		95	52 - 2	38		360	198	93
	339	186	73		102	56	40		423	233	95
	351	193	75		109	60	43	Steel	HP 14 X 89		
Metal	Shell 14"Φ	w/.25" walls	,		141	78	55		74	41	25
	87	48	25		151	83	58		100	55	27
	141	78	27		172	95	60		105	58	35
	166	91	35		185	102	63		117	64	38
	177	97	38		186	103	65		126	69	40
	188	103	40		196	108	68		134	74	43
	198	109	43		205	113	70		174	96	55
	291	160	55		214	118	73		187	103	58
	306	168	58		225	124	75		214	117	60
	329	181	60		235	129	78		228	126	65
	348	191	63		254	140	80		240	132	68
	357	196	65		267	147	83		250	138	70
	371	204	68		268	148	85		261	144	73
	384	211	70		278	153	88		275	151	75
	398	219	73		290	159	90		286	157	78
	413	227	75		300	165	93		312	172	80
Motal		w/.312" wal			346	190	95		326	179	85
Wietai				Stool		190	93				
	87	48	25	Steer	HP 12 X 63				337	185	88
	141	78	27		96	53	38		352	194	90
	166	91	35		103	57	40		364	200	93
	177	97	38		110	61	43		428	236	95
	188	103	40		143	78	55	Steel	HP 14 X 10	2	
	198	109	43		153	84	58		75	41	25
	291	160	55		174	95	60		102	56	27
	306	168	58		187	103	63 65		106	58 65	35
	329	181	60		188	104	65		118	65	38
	348	191	63		198	109	68		127	70	40
	357	196	65		207	114	70		136	75	43
	371	204	68		216	119	73	1	177	97	55
	384	211	70		227	125	75		189	104	58
	398	219	73		237	130	78		216	119	60
	413	227			257	141	80		231	127	65
			75 - 0								
	427	235	78		270	148	83		243	134	68
	450	247	80		271	149	85		253	139	70
	468	257	83		280	154	88		265	145	73
	476	262	85		292	161	90		278	153	75
	490	269	88		303	166	93		290	159	78
	506	278	90		349	192	95	1	316	174	80
Stool	HP 8 X 36	210	55	Stock	HP 12 X 74	102	55	1			
Joleen I		50		Steel		40	25		330	181	85
	91	50	55		87	48	35	1	341	188	88
	98	54	58		97	53	38		356	196	90
	110	60	60		105	58	40	1	369	203	93
	118	65	63		112	62	43		434	239	95
	122	67	65		145	80	55	Steel	HP 14 X 11	7	
	129	71	68		155	85	58		76	42	25
	135	74	70		176	97	60		103	57	27
	141				189			1	103		
I	141	78	73	I	109	104	63	I	107	59	35

148 81 75 85 85 78 8 166 91 80 210 110 68 8 129 71 40 1775 96 83 1778 98 85 184 101 88 240 132 76 191 105 58 191 105 58 192 106 90 199 109 93 199 109 93 199 122 95 122 95 163 184 184 89 185 142 89 185 182 89 183 78 183 88 183	-		-			-			
166	148	81	75	191	105	65	120	66	38
175 96 83	155	85	78	201	110	68	129	71	40
178	166	91	80	210	115	70	138	76	43
184	175	96	83	219	121	73	179	98	55
192 106 90 93 273 150 83 246 135 68 68 256 141 70 70 73 147 81 55 218 120 83 131 90 222 122 85 280 154 95 288 154 95 288 154 79 38 280 154 95 288 158 88 300 165 90 311 171 93 80 20 415 75 36 48 20 415 45 45 45 45 45 45 4	178	98	85	230	127	75	191	105	58
199 109 93 273 150 83 266 135 68 68 266 141 70 70 75 75 75 75 75 75	184	101	88	240	132	78	219	121	60
Steel HP 10 X 42 95 284 156 88 286 147 73 73 144 63 68 68 68 68 147 73 75 35 144 82 68 147 73 89 49 43 43 43 48 48 48 48 48	192	106	90	261	143	80	234	129	65
Steel HP 10 X 42 284 156 88 268 147 73 89 49 43 296 163 90 281 155 75 114 63 55 307 169 93 293 161 78 123 68 58 355 195 95 320 176 80 149 82 63 89 49 35 345 190 88 152 84 65 99 54 38 360 198 90 160 88 68 106 58 40 373 205 93 175 97 73 114 62 43 439 242 95 175 97 73 147 81 55 76 67 37 14 192 106 78 179 98 60 67 111 61 25	199	109	93	273	150	83	246	135	68
89	222	122	95	274	151	85	256	141	70
114 63 55	Steel HP 10 X 42			284	156	88	268	147	73
123 68 58	89	49	43	296	163	90	281	155	75
138 76 60 Steel HP 12 X 84 149 82 63 89 49 35 345 190 88 152 84 65 99 54 38 360 198 90 160 88 68 106 58 40 373 205 93 168 92 70 114 62 43 439 242 95 175 97 73 147 81 55 7 7 14 80 439 242 95 95 95 93 439 242 95 95 95 93 439 242 95 95 93 439 242 95 95 95 95 93 439 242 95 95 95 95 95 95 95 95 95 96	114	63	55	307	169	93	293	161	78
149 82 63 89 49 35 345 190 88 152 84 65 99 54 38 360 198 90 160 88 68 106 58 40 373 205 93 168 92 70 114 62 43 439 242 95 175 97 73 147 81 55 Precast 14"x 14" 95 184 101 75 157 86 58 66 67 37 14 192 106 78 179 98 60 107 59 22 207 114 80 192 106 63 111 61 25 218 120 83 193 106 65 180 99 27 220 121 85 204 112 68 180 99 27 238 131 90 222 122 73 137 75 35 </td <td>123</td> <td>68</td> <td>58</td> <td>355</td> <td>195</td> <td>95</td> <td>320</td> <td>176</td> <td>80</td>	123	68	58	355	195	95	320	176	80
152 84 65 99 54 38 360 198 90 160 88 68 106 58 40 373 205 93 168 92 70 114 62 43 439 242 95 175 97 73 147 81 55 86 58 67 37 14 192 106 78 179 98 60 107 59 22 207 114 80 192 106 63 107 59 22 218 120 83 193 106 65 180 99 27 220 121 85 204 112 68 180 99 27 238 131 90 222 122 73 124 68 30 246 135 93 233 128 75 137 75 35 280 154 95 244 134 78 145	138	76	60	Steel HP 12 X 84			334	183	85
160 88 68 106 58 40 40 373 205 93 93 114 62 43 439 242 95 95 95 114 62 43 439 242 95 95 95 114 80 147 81 55 67 37 14 14 14 14 14 15 15 86 58 60 60 107 59 22 22 12 111 61 25 14 101 75 14 101 75 14 107 59 22 106 63 107 59 22 111 61 25 12 111 61 25 180 99 27 7 111 61 25 180 99 27 7 7 188 48 27 124 68 30 124 134 78 124 68 30 137 75 35 137 75 35 137 75 35 145 79 38 <td>149</td> <td>82</td> <td>63</td> <td>89</td> <td>49</td> <td>35</td> <td>345</td> <td>190</td> <td>88</td>	149	82	63	89	49	35	345	190	88
168 92 70 175 97 73 184 101 75 192 106 78 192 106 78 192 106 78 179 98 60 218 120 83 220 121 85 228 126 88 238 131 90 246 135 93 280 154 95 264 145 80 277 152 83 278 153 85 288 158 88 300 165 90 311 171 93	152	84	65	99	54	38	360	198	90
175 97 73 147 81 55 Precast 14"x 14" 184 101 75 157 86 58 67 37 14 192 106 78 179 98 60 107 59 22 207 114 80 192 106 63 111 61 25 218 120 83 193 106 65 180 99 27 220 121 85 204 112 68 180 99 27 238 131 90 222 122 73 124 68 30 246 135 93 233 128 75 137 75 35 280 154 95 244 134 78 145 79 38 264 145 80 277 152 83 145 79 38 278 153 85 88 158 88 88 30 1445 80 <t< td=""><td>160</td><td>88</td><td>68</td><td>106</td><td>58</td><td>40</td><td>373</td><td>205</td><td>93</td></t<>	160	88	68	106	58	40	373	205	93
184 101 75 157 86 58 67 37 14 192 106 78 179 98 60 107 59 22 207 114 80 192 106 63 111 61 25 218 120 83 193 106 65 180 99 27 220 121 85 204 112 68 180 99 27 228 126 88 212 117 70 88 48 27 238 131 90 222 122 73 124 68 30 246 135 93 233 128 75 137 75 35 280 154 95 244 134 78 145 79 38 264 145 80 27 152 83 85 145 79 38 278 153 85 88 300 165 90 311	168	92	70	114	62	43	439	242	95
192 106 78 207 114 80 218 120 83 220 121 85 228 126 88 238 131 90 246 135 93 280 154 95 244 134 78 264 145 80 277 152 83 278 153 85 288 158 88 300 165 90 311 171 93	175	97	73	147	81	55	Precast 14"x 14"		
207 114 80 192 106 63 63 111 61 25 218 120 83 193 106 65 180 99 27 220 121 85 204 112 68 180 99 27 238 131 90 222 122 73 124 68 30 246 135 93 233 128 75 137 75 35 280 154 95 244 134 78 145 79 38 264 145 80 277 152 83 145 79 38 278 153 85 88 88 88 88 88 88 300 165 90 311 171 93 93 99 27	184	101	75	157	86	58	67	37	14
218 120 83 193 106 65 180 99 27 220 121 85 204 112 68 7 68 180 99 27 228 126 88 212 117 70 88 48 27 238 131 90 222 122 73 124 68 30 246 135 93 233 128 75 137 75 35 280 154 95 244 134 78 145 79 38 264 145 80 277 152 83 145 79 38 278 153 85 88	192	106	78	179	98	60	107	59	22
220 121 85 204 112 68 Timber Pile 228 126 88 212 117 70 88 48 27 238 131 90 222 122 73 124 68 30 246 135 93 233 128 75 137 75 35 280 154 95 244 134 78 145 79 38 264 145 80 277 152 83 145 79 38 278 153 85 88 88 88 88 88 300 165 90 90 311 171 93 94 95 94 95 94 95 94 95 94 95 94 95 94 95 94 95 94 95 </th <th>207</th> <th>114</th> <th>80</th> <th>192</th> <th>106</th> <th>63</th> <th>111</th> <th>61</th> <th>25</th>	207	114	80	192	106	63	111	61	25
228 126 88 238 131 90 246 135 93 280 154 95 244 134 78 264 145 80 277 152 83 278 153 85 288 158 88 300 165 90 311 171 93	218	120	83	193	106	65	180	99	27
238 131 90 246 135 93 280 154 95 264 145 80 277 152 83 278 153 85 288 158 88 300 165 90 311 171 93	220	121	85	204	112	68	Timber Pile		
246 135 93 280 154 95 264 145 80 277 152 83 278 153 85 288 158 88 300 165 90 311 171 93	228	126	88	212	117	70	88	48	27
280 154 95 244 134 78 145 79 38 264 145 80 277 152 83 278 153 85 88 88 300 165 90 311 171 93 9	238	131	90	222	122	73	124	68	30
264 145 80 277 152 83 278 153 85 288 158 88 300 165 90 311 171 93									
277 152 83 278 153 85 288 158 88 300 165 90 311 171 93	280	154	95				145	79	38
278 153 85 288 158 88 300 165 90 311 171 93									
288 158 88 300 165 90 311 171 93									
300 165 90 311 171 93									
311 171 93									
360 198 95									
				360	198	95			
11 11	I			1			l I		

Pile Design Table for South Abutment - Integral utilizing Boring #30

		ole for Sout			<u> </u>						1
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance			Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Ф	w/.179" wal	lls	Steel	HP 10 X 57			Steel I	HP 14 X 73		
	178	98	43		164	90	55		178	98	40
	194	107	45		194	107	58		190	105	43
	212	117	48		211	116	60		206	113	45
	230	126	50		220	121	63		226	124	48
Metal S	Shell 12"Ф	w/.25" wall:	s		235	129	65		235	129	53
	178	98	43		239	131	68		237	130	55
	194	107	45		250	138	70		295	162	58
	212	117	48		256	141	73		319	175	60
	230	126	50		265	146	75		327	180	63
	263	145	53		272	150	78		347	191	65
	271	149	55		281	154	80		347	191	68
	276	152	58		289	159	83		363	199	70
	301	165	60		298	164	85		367	202	73
	318	175	63		309	170	88		381	209	75
	340	187	65		319	175	90		389	214	78
	352	193	68		332	182	93		401	221	80
Metal S	Shell 14"Ф	w/.25" walls	s		342	188	95		413	227	83
	171	94	38		351	193	98		425	234	85
	194	106	40	Steel	HP 12 X 53				442	243	88
	211	116	43		184	101	48		455	250	90
	230	127	45		195	107	53		476	262	93
	252	139	48		196	108	55		491	270	95
	272	150	50		238	131	58		501	276	98
	315	173	53		258	142	60	Steel I	HP 14 X 89		
	324	178	55		267	147	63		180	99	40
	329	181	58		284	156	65		193	106	43
	358	197	60		287	158	68		209	115	45
	377	208	63		300	165	70		229	126	48
	402	221	65		305	168	73		238	131	53
Metal S	Shell 14"Ф	w/.312" wa	lls		316	174	75		240	132	55
	171	94	38		324	178	78		299	165	58
	194	106	40		334	184	80		323	178	60
	211	116	43		345	189	83		331	182	63
	230	127	45		355	195	85		351	193	65
	252	139	48		368	203	88		351	193	68
	272	150	50		380	209	90		367	202	70
	315	173	53		396	218	93		372	204	73
	324	178	55		408	225	95		385	212	75
	329	181	58		418	230	98		394	216	78
	358	197	60	Steel	HP 12 X 63				406	223	80
	377	208	63		169	93	45		418	230	83
	402	221	65		186	102	48		430	237	85
	414	228	68		196	108	53		447	246	88
	434	238	70		198	109	55		461	253	90
	446	245	73		241	132	58		481	265	93
	462	254	75		261	144	60		496	273	95
	475	262	78		270	148	63		507	279	98
	490	270	80		287	158	65	Steel I	HP 14 X 102	2	
	505	278	83		289	159	68		183	101	40
-				•				•			

Steel HP 8 X 36			303	166	70	196	108	43
182	100	65	308	169	73	212	116	45
187	103	68	319	176	75	232	127	48
196	108	70	327	180	78	240	132	53
202	111	73	337	186	80	243	133	55
209	115	75	348	191	83	303	167	58
215	118	78	358	197	85	328	180	60
222	122	80	372	204	88	335	184	63
229	126	83	383	211	90	355	196	68
236	130	85	399	220	93	371	204	70
245	135	88	412	227	95	376	207	73
252	139	90	422	232	98	390	214	75
262	144	93	Steel HP 12 X 74			398	219	78
271	149	95	172	95	45	410	226	80
278	153	98	188	104	48	423	232	83
Steel HP 10 X 42			199	109	53	435	239	85
161	88	55	201	111	55	452	249	88
190	104	58	245	135	58	466	256	90
207	114	60	265	146	60	487	268	93
215	118	63	273	150	63	502	276	95
229	126	65	291	160	65	513	282	98
234	129	68	293	161	68	Steel HP 14 X 117		
245	135	70	307	169	70	162	89	38
250	138	73	312	172	73	185	102	40
260	143	75	324	178	75	198	109	43
267	147	78	331	182	78	214	118	45
275	151	80	342	188	80	235	129	48
283	156	83	352	194	83	243	134	53
292	161	85	363	199	85	245	135	55

Pile Design Table for South Abutment - Stub utilizing Boring #30

		ne ioi sout				1					
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S		w/.179" wa		Steel	HP 10 X 57			Steel I	HP 14 X 73		
	109	60	31		102	56	37		105	58	29
	125	69	34		117	64	39		119	65	31
	143	79	37		127	70	42		140	77	34
	162	89	39		138	76	44		155	85	37
	178	98	42		151	83	47		178	98	39
	194	107	44		162	89	52		190	105	42
	212	117	47		164	90	54		206	113	44
	230	126	49		194	107	57		226	124	47
Metal \$	Shell 12"Ф	w/.25" wall:	S		211	116	59		235	129	52
	109	60	31		220	121	62		237	130	54
	125	69	34		235	129	64		295	162	57
	143	79	37		239	131	67		319	175	59
	162	89	39		250	138	69		327	180	62
	178	98	42		256	141	72		347	191	64
	194	107	44		265	146	74		347	191	67
	212	117	47		272	150	77		363	199	69
	230	126	49		281	154	79		367	202	72
	263	145	52		289	159	82		381	209	74
	271	149	54		298	164	84		389	214	77
	276	152	57		309	170	87		401	221	79
	301	165	59		319	175	89		413	227	82
	318	175	62		332	182	92		425	234	84
	340	187	64		342	188	94		442	243	87
	352	193	67		351	193	97		455	250	89
Metal \$	Shell 14"Φ	w/.25" walls	S	Steel	HP 12 X 53				476	262	92
	103	57	26		98	54	31		491	270	94
	131	72	31		112	62	34		501	276	97
	150	82	34		125	69	37	Steel I	HP 14 X 89		
	171	94	37		143	79	39		107	59	29
	194	106	39		154	85	42		121	67	31
	211	116	42		168	92	44		142	78	34
	230	127	44		184	101	47		157	86	37
	252	139	47		195	107	52		180	99	39
	272	150	49		196	108	54		193	106	42
	315	173	52		238	131	57		209	115	44
	324	178	54		258	142	59		229	126	47
	329	181	57		267	147	62		238	131	52
	358	197	59		284	156	64		240	132	54
	377	208	62		287	158	67		299	165	57
	402	221	64		300	165	69		323	178	59
Metal \$	Shell 14"Φ	w/.312" wa	ls		305	168	72		331	182	62
	103	57	26		316	174	74		351	193	64
	131	72	31		324	178	77		351	193	67
1	150	82	34		334	184	79		367	202	69
	171	94	37		345	189	82		372	204	72
	194	106	39		355	195	84		385	212	74
1	211	116	42		368	203	87		394	216	77
1	230	127	44		380	209	89		406	223	79
	252	139	47		396	218	92		418	230	82

272	150	49	408	225	94	430	237	84
315	173	52	418	230	97	447	246	87
324	178	54	Steel HP 12 X 63		• •	461	253	89
329	181	57	100	55	31	481	265	92
358	197	59	113	62	34	496	273	94
377	208	62	126	70	37	507	279	97
402	221	64	145	80	39	Steel HP 14 X 102		
414	228	67	156	86	42	108	59	29
434	238	69	169	93	44	122	67	31
446	245	72	186	102	47	144	79	34
462	254	74	196	108	52	159	88	37
475	262	77	198	109	54	183	101	39
490	270	79	241	132	57	196	108	42
505	278	82	261	144	59	212	116	44
Steel HP 8 X 36			270	148	62	232	127	47
107	59	44	287	158	64	240	132	52
117	64	47	289	159	67	243	133	54
126	70	49	303	166	69	303	167	57
128	70	52	308	169	72	328	180	59
129	71	54	319	176	74	335	184	62
149	82	57	327	180	77	355	196	67
162	89	59	337	186	79	371	204	69
171	94	62	348	191	82	376	207	72
182	100	64	358	197	84	390	214	74
187	103	67	372	204	87	398	219	77
196	108	69	383	211	89	410	226	79
202	111	72	399	220	92	423	232	82
209	115	74	412	227	94	435	239	84
215	118	77	422	232	97	452	249	87
222	122	79	Steel HP 12 X 74			466	256	89
229	126	82	102	56	31	487	268	92
236	130	84	115	63	34	502	276	94
245	135	87	128	71	37	513	282	97
252	139	89	147	81	39	Steel HP 14 X 117		
262	144	92	158	87	42	83	46	26
271	149	94	172	95	44	110	60	29
278	153	97	188	104	47	124	68	31
Steel HP 10 X 42			199	109	52	146	80	34
100	55	37	201	111	54	162	89	37
114	63	39	245	135	57	185	102	39
124	68	42	265	146	59	198	109	42
135	74	44	273	150	62	214	118	44
148	81	47	291	160	64	235	129	47
159	87	52	293	161	67	243	134	52
161	88	54	307	169	69	245	135	54
190	104	57	312	172	72	308	169	57
207	114	59	324	178	74	332	183	59
215	118	62	331	182	77	339	187	62
229	126	64	342	188	79	360	198	67
234	129	67	352	194	82	376	207	69
245	135	69	363	199	84	380	209	72
250	138	72	377	207	87	394	217	74
260	143	74	388	213	89	403	221	77
267	147	77	405	223	92	415	228	79
275	151	79	418	230	94	427	235	82
•			•		•	•		

283	156	82	427	235	97	440	242	84
292	161	84	Steel HP 12 X 84	200	31	457	252	87
303	167	87	103	57	31	471	259	89
312	172	89	117	64	34	492	271	92
325	172	92	130	72	37	508	279	94
020	170	32	149	82	39	519	285	97
			161	88	42	Precast 14"x 14"	200	0.
			175	96	44	67	37	15
			191	105	47	116	64	23
			202	111	52	132	72	26
			204	112	54	167	92	31
			248	137	57	191	105	34
			269	148	59	217	119	37
			278	153	62	246	136	39
			295	162	64	Timber Pile		
			297	164	67	95	52	31
			311	171	69	111	61	34
			316	174	72	130	72	37
			328	180	74	147	81	39
			336	185	77			
			346	191	79			
			357	196	82			
			367	202	84			
			382	210	87			
			393	216	89			
			410	226	92			
			423	233	94			
			433	238	97			

Appendix F

Estimated Factored Structural Loadings

		I-57 - I 74 INTERCHANGE STRUCTUR			
Charretine		Information for Geotechnical Engineering SGR's 03	<u> </u>	-ian	
Structure:		RAMP G over RAMP F	Stat	lion	
S.N.		010-1003	733+	14.83	
No. of Spans: Option No.		Superstructure Type / Option	Substr	<u>ucture</u>	
		PPC BULB TEE IL63-2438			
		Superstructure: Tangent Girder on Curved Alignment			
		Substructure Element	ABUT 1	ABUT 2	
		Abutment Type: (Integral, Semi Integral, Stub, etc.)	Integral *	Integral *	
		Pier Type	n/a	n/a	
		Deck Joints	n/a	n/a	
		Bearing Type	Fixed	Fixed	
		Est. Bottom of Abutment Elevation	779.47	777.8	
	ils	Est. Abutment Length	35'-8"	35'-8"	
1	Details	Est. Pier Bottom of Footing	n/a	n/a	
	۵	Est. Pier Footing Dimensions	n/a	n/a	
		Total Factored Vertical DL + LL	1,958 Kips *	1,958 Kips*	
		Total ractored vertical DE 1 EE	Single row of ve		
			piles.	irtical steel	
			piics.		
		Additional Notes / Comments	* Dynamic Load	Allowance	
			(IM) included for integral		
			<mark>abutment.</mark>		
		STEEL PLATE GIRDER, WEB DEPTH = 60 IN.	Substr	ucture	
		Superstructure: Curved Girder on Curved Alignment			
		Substructure Element	ABUT 1	ABUT 2	
		Abutment Type: (Integral, Semi Integral, Stub, etc.)	Stub	Stub	
		Pier Type	n/a	n/a	
		Deck Joints	Strip Seal	Strip Seal	
		Bearing Type	Elastomeric	Elastomeric	
	<u>s</u>	Est. Bottom of Abutment Elevation	779.47	777.8	
2	Details	Est. Abutment Length	34'-0"	34'-0"	
	De	Est. Pier Bottom of Footing	n/a	n/a	
		Est. Pier Footing Dimensions	n/a	n/a	
		Total Factored Vertical DL + LL	1,359 Kips **	1,359 Kips**	
			Two rows of pile		
			back row, 12:3	battered front	
		Additional Notes / Comments	row.		
		,	** Dynamic Loa	d Allowance	
			(IM) <u>not</u> include		