STRUCTURE GEOTECHNICAL REPORT CIRCLE INTERCHANGE RECONSTRUCTION RETAINING WALL 51 (PROPOSED SN 016-Z048) F.A.I ROUTE 90/94, (KENNEDY EXPRESSWAY) IDOT D-91-227-13/ PTB 163-001 COOK COUNTY, ILLINOIS

> For AECOM 303 East Wacker Drive Chicago, IL 60601 (312) 938-0300

Submitted by Wang Engineering, Inc. 1145 North Main Street Lombard, IL 60148 (630) 953-9928

> Original: January 24, 2018 Revised: December 3, 2018

Technical Report Documentation Page

1. Title and Subtitle	2. Report Date			
Structure Geotechnical R	Original : January 24, 2018			
Circle Interchange Recon	struction	Revised : December 3, 2018		
Retaining Wall 51, F.A.I.	Route 90/94			
Station 6344+29.31 to Sta	ation 6347+16.69	3. Report Type SGR RGR		
		\Box Draft \boxtimes Final \boxtimes Revised		
4. Route / Section / County		5. IDOT Job No./Contract		
FAI 90/94/2014-015R&E	3-R / Cook	D-91-259-12/60X94		
6. PTB / Item No. 7. Existing Structure Number(s)		8. Proposed Structure Number(s)		
163/001	No existing wall	016-Z048		
9. Prepared by	Contributor(s)	Author Phone Number/Email Address		
Wang Engineering, Inc.	Author: Mohammed Kothawala, P.E., D.GE.	(630) 953-9928 Ext 1036		
1145 N Main Street	QC/QA: Mickey L. Snider, P.E.	mkothawala@wangeng.com		
Lombard, IL 60148	PIC: Corina T. Farez, P.E., P.G.			
10. Prepared for	Structural Engineer	Contact Phone Number		
AECOM	Mirela Keserovic, PE	(312) 373-6572		
303 East Wacker Drive	AECOM			
Chicago, IL 60601				

11. Abstract

Retaining Wall 51 will be constructed along the proposed widening of the alley along the Archdiocese of Chicago's Joseph Cardinal Bernardin Archives & Records Center. The proposed 290'-4" long retaining wall will have a maximum retained height of $8'-6\frac{3}{3}$ " and a maximum total height of $12'-0\frac{3}{3}$ ". The proposed Wall 51 is located behind the Wall 29 (016-Z017). We understand Wall 29 will be constructed first with a back slope of 1:3 (V:H); the alley widening and Wall 51 will be constructed in a future contract. There will be a 256-foot long noise abatement wall along the widened alley and designed by the contractor. This report provides geotechnical recommendations for the design and construction of the proposed retaining wall.

No specific borings were drilled for Wall 51. There are two Wall 29 borings and one VST boring. The soil information included in this report is based on soil type for these borings. Beneath the pavement or topsoil, the subsurface soils consists of up to 3 to 12 feet of fill materials, up to 3 feet medium stiff to very stiff clay crust, up to 43 feet of very soft to medium stiff silty clay, 30 feet of very stiff to hard clay loam, and 40 feet of hard silty clay loam or dense to very dense silt to silty loam and sand extending to the boring termination depths or weathered bedrock. Sound bedrock was encountered at an elevation of about 476 feet. Groundwater was encountered within the fill layer at elevation of 589 feet. Groundwater is also present within the granular layers just above the top of bedrock.

Given that the location and geometry, the proposed MSE wall is feasible with the use of Class III LCCF for bottom and regular fill material for top 3 feet as well as backfill area behind the MSE wall zone and with reinforcement zone of 1.0H. The wall will have a maximum factored bearing resistance of 1,850 psf using a geotechnical resistance factor of 0.65. The maximum long-term consolidation settlement of foundation soils will be up to 1.0 inch.

If there are other considerations and MSE wall is not possible, the drilled shaft and/or drilled pile walls could be considered. For these walls, geotechnical parameters for design are presented in this report. It should be noted that the passive wedge of the drilled shaft or drilled soldier wall will be significantly reduced due to the proposed slope in front of the wall and proximity to the Wall 29 (SN 016-Z017). It will require ground anchors.

12. Path to archived file

S:\Netprojects\11000401\Reports\SGRs\Walls\Z048 Wall 51\RPT_Wang_MAK_NSB_11000401SGRFinalWall51_v04_20181203.doc

TABLE OF CONTENTS

1.0	INTRODUCTION	
1.1	PROJECT DESCRIPTIC	N
1.2	PROPOSED STRUCTU	RE
1.3	EXISTING STRUCTUR	Е2
2.0	SITE CONDITION	S AND GEOLOGICAL SETTING
2.1	PHYSIOGRAPHY	
2.2	SURFICIAL COVER	
2.3	BEDROCK	
3.0	METHODS OF IN	VESTIGATION4
3.1	SUBSURFACE INVEST	IGATION4
3.2	VANE SHEAR TESTS	
3.3	LABORATORY TEST	NG
3.4	ADDITIONAL BORING	is
4.0	RESULTS OF FIE	LD AND LABORATORY INVESTIGATIONS 6
4.1	SOIL CONDITIONS	
4.2	GROUNDWATER CON	DITIONS7
4.3	SEISMIC DESIGN CON	ISIDERATIONS
5.0	ANALYSIS AND F	ECOMMENDATIONS
5.1	RETAINING WALL T	PE EVALUATION
5.2	MSE WALL	
5	2.1 Bearing Resist	ance and External Stability Analyses
5	2.2 Settlement And	lyses 11
5	2.3 Global Stabili	y Analyses
5.3	DRILLED SHAFT OR I	ORILLED SOLDIER PILE WALLS
5	3.1 Ground Anche	rs
5	3.2 Settlement And	lyses
5	3.3 Global Stabili	y Analyses
5.4	GROUND MOVEMEN	EVALUATIONS
6.0	CONSTRUCTION	CONSIDERATIONS 19

EXH	HBITS	
REF	TERENCES	23
7.0	QUALIFICATIONS	22
6.6	CONSTRUCTION MONITORING	
6.5	WALL CONSTRUCTION	21
6.4	DRILLED SHAFT CONSTRUCTION	20
6.3	FILLING AND BACKFILLING	20
6.2	DEWATERING	20
6.1		

- 1. Site Location Map
- 2. Site and Regional Geology
- 3. Boring Location Plan
- 4. Subsurface Soil Data Profile

APPENDIX A

Boring Logs

APPENDIX B

Laboratory Test Results

APPENDIX C

Global Stability Analyses

APPENDIX D

Type, Size, and Location Plan

APPENDIX E

Cross-Section Drawings

APPENDIX F

Ground Movement Evaluations

LIST OF TABLES

Table 1: Estimated Applied Factored Equivalent Bearing Pressure	10
Table 2: Estimated Long-term Settlement	11
Table 3: Global Stability Analyses Results	12
Table 4: Short-term (Undrained) Geotechnical Parameters for Design of Drilled Shaft or Soldier Pile Walls	14
Table 5: Long-term (Drained) Geotechnical Parameters for Design of Drilled Shaft or Soldier Pile Walls	15
Table 6: Recommended Parameters for Lateral Load Analysis of Drilled Shaft or Soldier Pile Walls	16
Table 7 : Grout-to-Ground Bond Values for Ground Anchor Design	17

STRUCTURE GEOTECHNICAL REPORT CIRCLE INTERCHANGE RECONSTRUCTION RETAINING WALL 51 (PROPOSED SN 016-Z048) F.A.I. ROUTE 90/94 IDOT D-91-227-13/PTB 163-001 COOK COUNTY, ILLINOIS FOR AECOM

1.0 INTRODUCTION

This report presents the results of Wang Engineering, Inc. (Wang) subsurface investigation, laboratory testing, geotechnical engineering evaluations and recommendations for a new retaining wall, designated as Retaining Wall 51 (SN016-Z048) to support the existing alley widening for the existing building; 711 W Monroe Street (Archdiocese of Chicago's Joseph Cardinal Bernardin Archives & Records Center). The Wall 51 will be behind the new Retaining Wall 29 (SN 016-Z017) in connection with the Circle Interchange Reconstruction project in the City of Chicago, Cook County, Illinois. A *Site Location Map* is presented as Exhibit 1.

The purpose of our investigation was to characterize the site soil and groundwater conditions, perform geotechnical engineering analyses, and provide recommendations for the design and construction of the new wall.

1.1 Project Description

The Circle Interchange is over 50 years old and has significant congestion and safety problems. The project is aiming to improve safety and mobility as well as upgrade the mainline and interchange facilities. The project will also improve other modes of transportation such as transit, pedestrians and bicyclists within the same corridor.

The Circle Interchange Reconstruction project is along Interstate 90/94 (I-90/94) from south of Roosevelt Road to north of Lake Street, along Interstate 290 (I-290) from Loomis Street to the Circle Interchange; and along Congress Parkway from the Circle Interchange to Canal Street/Old Post Office. The routes typically have three lanes of traffic in each direction with mostly one lane ramp at

interchanges. Locally, the north leg is known as the Kennedy Expressway, the south leg as the Dan Ryan Expressway and the west leg as the Eisenhower Expressway. Within the project area, there are several cross street bridges over I-90/94 and I-290 considered for reconstruction. Along I-90/94, from south to north, the cross street overpasses include Taylor Street, Van Buren Street, Jackson Boulevard, and Adams Street. Along I-290, from west to east, the cross street overpasses include Morgan Street, Peoria Street, and Halsted Street.

The proposed improvements include additional through lanes in each direction on I-90/94. The horizontal alignment and vertical profiles throughout the interchange will be improved. A new two-lane flyover, Ramp NW (Flyover) will be constructed for I-90/94 northbound to I-290 westbound traffic. Cross street bridges, Morgan Street, Harrison Street, Halsted Street, Peoria Street, Taylor Street, Adams Street, Jackson Boulevard, and Van Buren Street will be reconstructed. Various existing ramps will be reconstructed and up to fifty one new retaining walls will be constructed.

1.2 Proposed Structure

Retaining wall 51 (SN 016-Z048) is proposed to support the widening of an existing alley along the Archdiocese of Chicago's Joseph Cardinal Bernardin Archives & Records Center. Based on the Type, Size, and Location (TSL) plan dated January 24, 2018 provided by AECOM, the wall is proposed to be a Mechanically Stabilized Earth (MSE) wall located behind the proposed Retaining Wall 29 (SN 016-Z017). We also understand Wall 29 will be constructed first with a back slope of 1: 3 (V:H). After that the alley widening and Wall 51 will be constructed in a future contract.

The 290'-4" long MSE wall begins at Station 6344+29.31 and ends at Station 6347+16.69. The wall will have a maximum retained height of 8'-6³/₈" and a maximum total height of 12'-0³/₈". A 256-foot long noise abatement wall is proposed along the widened alley and we understand this noise abatement wall will be designed by the contractor. The TSL plan is included in the *Appendix D*.

1.3 Existing Structure

There is an about 100-foot long cast-in-place (CIP) concrete retaining wall along the existing alley and will be removed.

2.0 SITE CONDITIONS AND GEOLOGICAL SETTING

The project area is located within the City of Chicago limits. On the USGS Chicago Loop 7.5 Minute Series map, the retaining wall is located in the NE¹/₄ of Section 17, Tier 39 N, Range 14 E of the Third Principal Meridian. A Site Location Map is presented as Exhibit 1.

The following review of published geologic data, with emphasis on factors that might influence the design and construction of the proposed engineering works, is meant to place the project area within a geological framework and confirm the dependability and consistency of the present subsurface investigation results. For the study of the regional geologic framework, Wang considered northeastern Illinois in general and Cook County in particular. Exhibit 2 illustrates the *Site and Regional Geology*.

2.1 Physiography

The general topography of the project area slopes gently southeast toward Lake Michigan. The retaining wall is situated within the Chicago Lake Plain Physiographic Subsection. In general the area is characterized by a flat surface, underlain largely by till, which slopes gently toward the lake. The existing grade elevation along the proposed wall alignment is approximately 595 feet.

2.2 Surficial Cover

Within the project area, a 95-foot thick or more, Wisconsinan-age glacial drift covers the bedrock (Leetaru et al. 2004). The glacial cover is made up of clay and silt of the Equality Formation of the Mason Group and diamictons of the Wadsworth and Lemont Formations of the Wedron Group (Hansel and Johnson 1996). The Equality Formation, known informally as the "Chicago Blue Clay", is made up of bedded silt and clay, locally laminated, with lenses and/or thin beds of sand and gravel. The Wadsworth Formation consists of relatively homogenous, massive, gray till with clay to silty clay matrix, with dolostone and shale clasts and occasional lenses of sorted and stratified silt. The Wadsworth Formation is underlined by the pebbly silty clay loam to silty loam diamicton of the Yorkville Member of the Lemont Formation, known informally as the "Chicago hardpan".

From a geotechnical viewpoint, the Equality Formation is characterized by low strength, medium to high plasticity, and medium to high moisture content, whereas the Wadsworth Formation is characterized by low plasticity, medium to low moisture content, medium to very stiff consistency, poor permeability, and low compressibility. The Yorkville Member hardpan is characterized by low plasticity, high blow counts, and low moisture content (Bauer et al. 1991; Peck and Reed 1954).

2.3 Bedrock

Our subsurface investigation results fit into the local geologic context. The borings drilled in the project area revealed that the native sediments consist of clay to silty clay diamicton of the Wadsworth Formation resting on top of more competent silty clay loam diamicton (hardpan) of the Lemont Formation. The bridge boring encountered the bedrock at an elevation of 475.6 feet.

3.0 METHODS OF INVESTIGATION

The following sections outline the subsurface and laboratory investigations. All elevations in this report are based on NAVD 1988.

3.1 Subsurface Investigation

There were no borings performed for the proposed Wall 51; therefore, we have referenced seven nearby structure borings, designated as 27-RWB-01, 27-RWB-02, 27-ST-01, 29-RWB-01, 29-RWB-02, 0589-B-03 and 2054-B-04 drilled from June to October, 2014. Wang also performed Boring VST-02 to obtain in-situ vane shear strength of soft clay. The as-drilled boring locations were surveyed by Dynasty Group, Inc. and station and offset information for each boring were provided by AECOM. Boring location data are presented in the *Boring Logs* (Appendix A). The as-drilled boring locations are shown in the *Boring Location Plan* (Exhibit 3).

We also considered the Piezometer 30-PZ-01 located about 500 feet north of Wall 51. The piezometer was installed in accordance with ASTM D5092, "Standard Practice for Design and Installation of Groundwater Monitoring Wells in Aquifers."

A truck-mounted drilling rigs equipped with hollow stem augers, were used to advance and maintain an open borehole to 10 feet depth after that mud rotary was used to the boring termination depth. Soil sampling was performed according to AASHTO T 206, "*Penetration Test and Split Barrel Sampling of Soils*." The soil was sampled at 2.5-foot intervals to 30 feet bgs and at 5-foot intervals to boring termination depths. Shelby tube samples were obtained from Borings 27-ST-01 and 29-RWB-02. Soil samples collected from each sampling interval were placed in sealed jars and transported to Wang Geotechnical Laboratory in Lombard, Illinois for further examination and laboratory testing.

Field boring logs, prepared and maintained by a Wang engineer or geologist, include lithological descriptions, visual-manual soil/rock classifications, results of Rimac and pocket penetrometer

unconfined compressive strength tests, results of Standard Penetration Tests (SPT) recorded as blows per 6 inches of penetration. The SPT N value, shown on the soil profile, is the sum of the second and third blows per 6 inches. The soils were described and classified according to Illinois Division of Highways (IDH) Textural Classification system. The field logs were finalized by an experienced engineering geologist after verifying the field visual classifications and laboratory test results.

Groundwater observations were made during drilling to a depth of 10 feet before using rotary wash method. Due to safety considerations, boreholes were backfilled with grout immediately upon completion. Groundwater levels in the piezometer were recorded autonomously at defined intervals by digital pressure loggers suspended within the water column. Barometric affects are compensated by a second in-air pressure logger installed in the riser pipe. Data is retrieved from loggers periodically, downloaded to a computer for analysis.

3.2 Vane Shear Tests

Wang performed vane shear tests in Boring VST-02. Vane shear test was performed using calibrated RocTest vane shear equipment. Tests were performed in undisturbed and remolded conditions. The sensitivity shown on the boring logs is the ratio of shear strength in undisturbed and remolded conditions. In general, the vane shear values for soft clays were significantly higher than the corresponding values from unconfined compressive strength tests using the RIMAC apparatus. Vane shear test results were used for analyses.

3.3 Laboratory Testing

The soil samples were tested in the laboratory for moisture content (AASHTO T265). Atterberg limits (AASHTO T 89/T 90) and particle size analyses (AASHTO T 88) tests were performed on selected soil samples representing the main soil layers encountered during the investigation. Shelby tube samples from Borings 27-ST-01 and 29-RWB-01 were tested for unconfined compressive strength (T208), triaxial unconsolidated undrained compression (T296), and one-dimensional consolidation (T216). Field visual descriptions of the soil samples were verified in the laboratory. Laboratory test results are shown in the *Boring Logs* (Appendix A), in the *Soil Profile* (Exhibit 4), and in the *Laboratory Test Results* (Appendix B).

3.4 Additional Borings

We have addressed the wall design using nearby borings. However, the wall is much longer than the coverage provided by the nearby borings. Thus, we are recommending drilling and sampling three

additional Geoprobe borings (hand auger borings) along the wall alignment. These additional borings will be located between Boring 29-RWB-01 and beginning of the wall to a depth of 12 feet. We will update this SGR considering data obtained from these additional borings.

4.0 RESULTS OF FIELD AND LABORATORY INVESTIGATIONS

Detailed descriptions of the soil conditions encountered during our subsurface investigation are presented in the attached *Boring Logs* (Appendix A) and in the *Soil Profile* (Exhibit 4). Please note that strata contact lines represent approximate boundaries between soil types. The actual transition between soil types in the field may be gradual in horizontal and vertical directions.

4.1 Soil Conditions

Borings drilled on the roadway encountered 5 to 7 inches of asphalt overlying 7 to 9 inches of concrete followed by gravelly sand to sand fill. Borings drilled on the grassy area encountered 4 to 5 inches of silty clay loam to loam topsoil. In descending order, the general lithologic succession encountered beneath the pavement structure or topsoil includes: 1) man-made ground (fill); 2) very stiff silty clay loam; 3) very soft to medium stiff clay to silty clay; 4) stiff to hard clay to silty clay loam; 5) medium dense to very dense silt to silty loam and sand to gravelly sand; and 6) strong dolostone.

1) Man-made ground (fill)

Underneath the topsoil, pavement structure, or at the surface, the borings encountered 3 to 12 feet of fill materials. Granular fill consists of loose to very dense, gray gravelly sand to brown sandy gravel and sandy loam. Cohesive fill includes medium stiff to hard, brown to gray silty clay to silty clay loam. The granular fill layer has N values of 4 to over 50 blows per foot and moisture content values of 5 to 14%. The cohesive fill layer has unconfined compressive strength (Q_u) values of 0.9 to 4.1 tsf and moisture content values of 15 to 28%.

2) Very stiff silty clay loam

Beneath the fill, at an elevation of 583 feet, Boring 0589-B-03 encountered about 3-foot thick of very stiff, gray silty clay loam. This layer has a Q_u value of 2.6 tsf and moisture content value of 20%. This layer is commonly known as the "crust."

3) Very soft to medium stiff clay to silty clay

At elevations of 576 to 584 feet (3 to 11 feet bgs), the borings revealed up to 43 feet of very soft to medium stiff, gray clay to silty clay with Rimac Qu values of 0.08 to 0.90 tsf and moisture content values of 17 to 29%. Laboratory index testing on samples from this layer showed liquid limit (L_L) values of 34% and plastic limit (P_L) values of 16 to 17%. This layer is commonly known as the "*Chicago Blue Clay*."

As discussed in Section 3.2, undrained shear strength values from vane shear tests are generally higher than Rimac tests. In-situ undisturbed vane shear strengths obtained in Boring VST-02 between elevations 575 and 542 feet varied from 430 to greater than 1750 psf.

4) Stiff to hard clay to silty clay loam

At elevations of 537 to 543 feet (42 to 52 feet bgs), the borings encountered up to 30 feet of stiff to hard clay to silty clay loam with interbedded medium stiff clay to silty clay. The clay to silty clay has Q_u values of 0.8 to 4.0 tsf and moisture content values of 13 to 37%.

(5) Medium dense to very dense silt to silty loam and sand to gravelly sand

At elevations of 513 to 518 feet (62 to 82 feet bgs) the borings encountered up to 40 feet of medium dense to very dense silt to silty loam and sand to gravelly sand. This layer has N values of 22 to over 50 blows per foot. Numerous sampler refusal and hard drilling conditions were recorded within this layer.

(6) Strong dolostone

The bridge boring, 2054-B-04, encountered bedrock and cored strong, good quality dolostone at elevation of 475.6 feet. The rock quality designation (RQD) was 79% with a uniaxial compressive strength value of 10,470 psi.

4.2 Groundwater Conditions

Groundwater was observed during drilling at an elevation of 589 feet (5.5 bgs) within the granular fill. The groundwater was not observed during drilling or after drilling in borings due to the mud rotary drilling from 10 to 18 feet bgs.

Piezometer 30-PZ-01 was installed 500 feet north of Retaining Wall 51 within the granular soils (**layer 5**) with the top and bottom of piezometer screen elevations at 503.7 and 493.7 feet (89.5 to 99.5 feet

bgs), respectively. The groundwater levels monitored in the piezometer showed groundwater elevations ranging from 544.1 to 547.4 feet, with an average hydrostatic elevation within aquifer at 546 feet. The first and last readings were taken on November 21, 2014 and March 30, 2017.

The design and construction of the wall should consider the perched groundwater between 589 and 583 feet elevations within the fill layers. The design and construction of the drilled shaft or drilled soldier pile walls should consider the granular soils (**layer 5**) as water bearing and under hydrostatic pressure.

4.3 Seismic Design Considerations

The retaining wall is located in Seismic Performance Zone (SPZ) 1 and is not required to be designed for seismic forces as per 2012 IDOT *Bridge Manual* (IDOT 2012).

5.0 ANALYSIS AND RECOMMENDATIONS

5.1 Retaining Wall Type Evaluation

Based on the TSL plan and the cross-section drawings, the proposed Retaining Wall 51 is a cut and fill wall along the alley widening for the existing the Archdiocese of Chicago's Joseph Cardinal Bernardin Archives & Records Center. The proposed 290'-4" long Retaining Wall 51 begins at north of Adams Street Bridge and ends at immediately west of Monroe Street Bridge west abutment wingwall. Based on the cross-section drawings, the first 100 feet long of wall will be a fill type wall with a maximum retained height of 6.8 feet. Then the wall will be a half cut and half fill wall with a maximum retained height of 8.5 feet and a maximum total height of 12.0 feet. The Wall 51 is located behind the Wall 29 (SN016-Z017). Based on the information provided by AECOM, we understand the Wall 29 (SN 016-Z017) will be constructed first with a back slope of 1: 3 (V:H) then the proposed alley widening and Wall 51 will be constructed in a future contract.

There will be a 256-foot long noise abatement wall proposed along the widened alley and we understand this noise abatement wall will be designed by the contractor. The corrugated sleeves can be installed prior to the MSE wall construction and noise abatement wall shafts may be placed in the sleeves. There is the existing 100-foot long CIP wall along the existing alley and will be removed.

The applicable wall types for Wall 51 include mechanically-stabilized earth (MSE) or Reinforced-Concrete Cantilever (RCC) walls; however, MSE will require combined fill as a fill material for MSE

wall reinforced zone as well as backfill zone behind MSE wall zone. The RCC wall will require deep foundations. Drilled shaft and/or drilled soldier pile walls could also be considered. Driven soldier pile or permanent sheet piling walls are not feasible due to noise and vibration.

The following sections present the results of our geotechnical engineering analyses and recommendations for the MSE wall and drilled shaft or drilled soldier pile and lagging wall design and construction.

5.2 MSE Wall

The MSE retaining wall base should be established a minimum of 3.5 feet below the finished grade at the front face of the wall for frost protection.

5.2.1 Bearing Resistance and External Stability Analyses

Based on our boring data and MSE wall base elevations, we expect the foundation soils to be either cohesive/granular fill or very soft to medium stiff clay to silty clay. We estimate the foundation soils will have a nominal bearing resistance of 2,900 psf and a factored bearing resistance of 1,850 psf based on a geotechnical resistance factor of 0.65 (AASHTO 2014).

We analyzed the following options to satisfy the factored bearing resistance available, external stability, settlement, and global stability. Based on cross-section drawings dated November 17, 2017, we have considered two critical sections for our analyses which are close to the maximum wall heights; Station 6345+50.00 and Station 6345+67.55. We have considered base widths (reinforcement lengths) equal to 8 feet (required minimum) to one time of total wall height (H) to satisfy the external stability requirements.

- 1. Using regular fill material (unit weight of 125 pcf) for the MSE wall zone and backfill zone for temporary excavation area with the slope of approximately 1:2.4 to 1.2.5 (V:H);
- 2. Using IDOT District One Class III Lightweight Cellular Concrete Fill (LCCF) (unit weight of 42 pcf) for bottom half and regular fill for top half of the MSE wall zone area and also for the backfill zone for temporary excavation area with the slope of approximately 1:2.4 to 1.2.5 (V:H); and
- 3. Using IDOT District One Class III LCCF below top 3 feet and regular fill for the top 3.0 feet of the MSE wall zone area and also backfill zone for temporary excavation area with the slope of approximately 1:2.4 to 1.2.5 (V:H).

Since landscaping including small trees is proposed, we did not considered LCCF for the full height of MSE wall zone and also for the backfill behind the MSE wall zone. The estimated applied factored equivalent bearing pressure for above three options is provided in Table 1.

	Table 1: Estimation	ated Applied Factored Equivalent Bea	aring Pressure	
Station	Maximum Total Height (H)	MSE Wall Fill and Backfill Materials Options	Reinforcement Zone Width	Estimated Applied Factored Bearing Pressure
	(feet)		(feet)	(psf)
		Option1 : Regular fill	8.0 (required minimum)	3450
6345+50	11.3	Option 2 : Regular fill for top half and Class III LCCF for bottom half	11.3 (1.0 H)	2050
		Option 3 :Regular fill for top 3 feet and Class III LCCF for bottom (approximately 8.3 feet)	11.3 (1.0 H)	1750
		Option 1 : Regular fill	8.4 (0.7 H)	3650
6345+67.55 ⁽¹⁾	12.0	Option 2 : Regular fill for top half and Class III LCCF for bottom half	12.0 (1.0 H)	2100
		Option 3 : Regular fill for top 3 feet and Class III LCCF for bottom (approximately 9.0 feet)	12.0 (1.0 H)	1800

⁽¹⁾ MSE wall section is located behind the Wall 29; H- Total height of the MSE wall.

- For the Option 1, the wall will apply a maximum factored equivalent bearing pressure of 3,650 psf with 0.7 H MSE wall reinforcement width or minimum of 8 feet which exceeds the factored bearing resistance available, thus Option 1 is not feasible.
- For Option 2, we estimate the wall will apply a maximum equivalent factored bearing pressure of 2,100 psf with 1.0 H MSE wall reinforcement width which exceeds the factored bearing resistance available as well.

- For Option 3, we estimate the wall will apply a maximum equivalent factored bearing pressure of 1,800 psf with 1.0 H MSE wall reinforcement width; thus, the foundation soils will have sufficient bearing resistance to support the wall.
- We conclude that Option 3 is feasible based on the bearing resistance available and external stability checks; therefore, we have considered this option for further analyses.

The estimated friction angle between an MSE wall base and underlying cohesive soil is 30°, and the corresponding friction coefficient is 0.58. MSE retaining walls are designed based on a geotechnical sliding resistance factor of 1.0 for soil-on-soil contact (AASHTO 2014). Our analyses show that a minimum of 1.0 times the total height of wall of reinforcement zone is needed to satisfy the MSE wall external stability checks.

5.2.2 Settlement Analyses

We performed settlement analyses for Option 3 as described in Section 5.2.1 using data from Borings 29-RWB-01 and VST-02. We calculated the corresponding long-term settlement of cohesive foundation soils using IDOT *Spreadsheet for Cohesive Soils* dated December 9, 2014. We noted that in calculating the net service pressure for settlement evaluations, the effect of excavation required to the MSE wall base was taken into consideration. The estimated net service pressure and calculated settlement are shown in Table 2.

Table 2: Estimated Long-term Settlement					
Station	Maximum Total Height (H)	MSE Wall Fill and Backfill Materials Options	Reinforcement Zone Width	Estimated Net Service Pressure	Estimated Long-term Settlement
	(feet)		(feet)	(psf)	(inch)
6345+50	11.3	Option 3 : Regular fill for top 3 feet and Class III LCCF for bottom (approx. 8.3 feet)	11.3 (1.0 H)	450	1.0
6345+67.55 ⁽¹⁾	12.0	Option 3 : Regular fill for top 3 feet and Class III LCCF for bottom (approx. 9.0 feet)	12.0 (1.0 H)	350	0.8

⁽¹⁾ MSE wall section is located behind the Wall 29; H- Total height of the MSE wall.

The estimated long-term settlement will be up to 1.0 inch which is generally acceptable for landscaped areas.

5.2.3 Global Stability Analyses

Global stability analysis was performed at Stations 6345+50 and 6345+67.55 for both short-term (undrained) and long-term (drained) soil conditions and for Option 3 as described in Section 5.2.1. The computer program, SLIDE Version 6.0, was used to calculate the factor of safety (FOS). The minimum required FOS against global instability according to IDOT is 1.5 for both conditions. The analyses results are presented in Exhibits C-1 through C-6 and summarized in Table 3.

		Table 3: Global Stability	Analyses Results		
Station	Maximum Total Height (H)	MSE Wall Fill and Backfill Materials Options	Reinforcement Zone Width	Short-term (Undrained) FOS	Long-term (Drained) FOS
	(feet)		(feet)		
6345+50	11.3	Option 3 : Regular fill for top 3 feet and Class III LCCF for bottom (approx. 8.3 feet)	11.3 (1.0 H)	1.50 (Exhibit C-1)	1.76 (Exhibit C-2)
6345+67.55 ⁽¹⁾	12.0	Option 3 : Regular fill for top 3 feet and Class III LCCF for bottom (approx. 9.0 feet)	12.0 (1.0 H)	1.89 and 1.85 (Exhibits C-3 and C-4)	2.40 and 2.73 (Exhibits C-5 and C-6)

⁽¹⁾ MSE wall section is located behind the Wall 29; H- Total height of the MSE wall.

To satisfy the IDOT minimum required FOS of 1.5, we recommend that the Option 3 with regular fill for top 3 feet and Class III LCCF for the remaining portion.

We conclude that Option 3 with regular fill for top 3 feet and Class III LCCF for the remaining portion as MSE wall fill as well as backfill material behind the MSE zone; and reinforcement length of 1.0 H will be required for the proposed MSE wall construction. The estimated long-term settlement will be up to 1 inch which is acceptable for the wall.

We also note that the existing building foundation details were not available at the time of this report; we recommend building surcharge pressure should be considered in the MSE wall design. It is understood that the existing building is supported on spread footings at elevation 585.0 feet. However, in our global slope stability analysis we considered assumed surcharge of 500 psf and conservatively at existing grade elevation 594.0 feet.

5.3 Drilled Shaft or Drilled Soldier Pile Walls

As an alternative to MSE wall, we recommend the tangent or drilled soldier pile walls. These wall types should be designed for both lateral earth pressure and lateral deformation. The embedment depth in moment equilibrium for the wall section should be designed in accordance with the LRFD guidelines (AASHTO 2014). Generally, over-consolidated clayey soils, such as the stiff to very stiff clays and very dense silty loam will exhibit lower overall shear strength in the long-term condition; normally-consolidated clayey soils, however, such as the very soft to medium stiff clay to silty clay (Chicago blue clay) will likely exhibit significantly lower shear strength in the short-term condition. Therefore, the lateral earth pressure analysis should be performed for walls in both the short-term (undrained) and long-term (drained) condition using the soil parameters shown in Tables 4 and 5.

The undrained shear strength properties of the soft to medium stiff silty clay are taken from the vane shear test results shown in Boring VST-02. The earth pressure coefficients are calculated based on horizontal slopes behind the wall. In addition, the results of unconfined compressive test results and undrained shear strength (cohesion) results from triaxial UU tests from Shelby tube boring 27-ST-01were also considered in the development of soil parameters. The drained soft to medium stiff silty clay friction angle parameters have been taken from the consolidated-undrained (CU) triaxial tests performed on this layer from the Circle Interchange project.

The design of the wall should ignore 3 feet of soil in front of the wall measured from the finished ground surface elevation in providing passive pressure due to excavation required for installation of concrete facing, drainage system and frost-heave condition. In developing the design lateral pressure, the lateral pressure due to construction equipment surcharge load should be added to the lateral earth pressure. Drainage behind the wall and underdrain should be as per 2012 IDOT *Bridge Manual* (IDOT 2012). The water pressure should be added to the earth pressure if drainage is not provided.

The potential pressure/load from the existing Archdiocese of Chicago's Joseph Cardinal Bernardin Archives & Records Center building on the proposed wall must be considered in design of the wall.

(Ref. Borings: 29-R	WB-01, 29-RW	B-02, VST-0	2, 27-ST-01, a	nd 2054-B-04)	
		Undrained Shear Strength Properties Earth Pressure Coef		e Coefficients	
Soil Description (Layer)	Unit Weight, γ (pcf)	Cohesion (psf)	Friction Angle (°)	Active Pressure	Passive Pressure
NEW FILL Finished Grade to EL 590 feet	120	0	30	0.33	
Loose to V Dense SANDY GRAVEL FILL El 590 to 583 feet	120	0	32	0.31	1.716 ⁽¹⁾
Soft to M Stiff CLAY to SILTY CLAY EL 583 to 575 feet	110	480	0	1.00	1.00
Soft to M Stiff CLAY to SILTY CLAY EL 575 to 565 feet	110	480	0	1.00	1.00
Soft to M Stiff CLAY to SILTY CLAY EL 565 to 553 feet	110	650	0	1.00	1.00
M Stiff CLAY to SILTY CLAY EL 553 to 547 feet	115	900	0	1.00	1.00
Stiff CLAY to SILTY CLAY EL 547 to 540 feet	115	1200	0	1.00	1.00
Stiff SILTY CLAY LOAM to SILTY LOAM EL 540 to 535 feet	125	1400	0	1.00	1.00
V Stiff SILTY CLAY LOAM to SILTY LOAM EL 535 to 517 feet	120	2200	0	1.00	1.00
Dense SAND EL 517 to 512 feet	63 ⁽²⁾	0	37	0.25	4.02
Dense SILT to SILTY LOAM EL 512 to 483 feet	63 ⁽²⁾	0	36	0.26	3.85

Table 4: Short-term (Undrained) Geotechnical Parameters for Design of Drilled Shaft or Soldier Pile Walls (Ref. Borings: 29-RWB-01, 29-RWB-02, VST-02, 27-ST-01, and 2054-B-04)

(1) Earth pressure coefficients for 1:3 (V:H) front slope ; (2) Submerged unit weight.

			ear Strength erties	Earth Pressure	e Coefficients
Soil Description (Layer)	Unit - Weight, γ (pcf)	Cohesion (psf)	Friction Angle (°)	Active Pressure	Passive Pressure
NEW FILL Finished Grade to EL 590 feet	120	0	30	0.33	
Loose to V Dense SANDY GRAVEL FILL El 590 to 583 feet	120	0	32	0.31	1.716 ⁽¹⁾
Soft to M Stiff CLAY to SILTY CLAY EL 583 to 575 feet	110	80	29	0.35	1.552 ⁽¹⁾
Soft to M Stiff CLAY to SILTY CLAY EL 575 to 565 feet	110	80	29	0.35	2.88
Soft to M Stiff CLAY to SILTY CLAY EL 565 to 553 feet	110	80	29	0.35	2.88
M Stiff CLAY to SILTY CLAY EL 553 to 547 feet	115	100	30	0.33	3.00
Stiff CLAY to SILTY CLAY EL 547 to 540 feet	115	100	30	0.33	3.00
Stiff SILTY CLAY LOAM to SILTY LOAM EL 540 to 535 feet	125	100	30	0.33	3.00
V Stiff SILTY CLAY LOAM to SILTY LOAM EL 535 to 517 feet	120	120	30	0.33	3.00
Dense SAND EL 517 to 512 feet	63 ⁽²⁾	0	35	0.25	4.02
Dense SILT to SILTY LOAM EL 512 to 483 feet	63 ⁽²⁾	0	36	0.26	3.85

Table 5: Long-term (Drained) Geotechnical Parameters for Design of Drilled Shaft or Soldier Pile Walls (Ref. Borings: 29-RWB-01, 29-RWB-02, VST-02, 27-ST-01, and 2054-B-04)

(1) Earth pressure coefficients for 1:3 (V:H) front slope ; (2) Submerged unit weight.

Design considerations should include deflection control at the top of the wall. The lateral deformation of the wall should be designed using the parameters shown in Table 6 using the p-y curve (COMP624) method.

Soil Type (Layer)	Unit Weight, γ (pcf)	Undrained Shear Strength, c _u (psf)	Estimated Friction Angle, Φ (°)	Estimated Lateral Soil Modulus Parameter, k (pci)	Estimated Soil Strain Parameter, ε ₅₀ (%)
NEW FILL	120	0	30	50	
Finished Grade to EL 590 feet					
Loose to V Dense SANDY					
GRAVEL FILL	120	0	32	50	
El 590 to 583 feet					
Soft to M Stiff CLAY to					
SILTY CLAY	110	480	0	50	1.5
EL 583 to 565 feet					
Soft to M Stiff CLAY to					
SILTY CLAY	110	650	0	80	1.3
EL 565 to 553 feet					
M Stiff CLAY to SILTY CLAY	115	900	0	100	1.0
EL 553 to 547 feet	115	200	0	100	1.0
Stiff CLAY to SILTY CLAY	115	1200	0	500	0.9
EL 547 to 540 feet	115	1200	0	500	0.9
Stiff SILTY CLAY LOAM to					
SILTY LOAM	125	1400	0	500	0.9
EL 540 to 535 feet					
V Stiff SILTY CLAY LOAM to					
SILTY LOAM	120	2200	0	500	0.6
EL 535 to 517 feet					
Dense SAND	63 ⁽¹⁾	0	37	125	
EL 517 to 512 feet		0	57	123	
Dense SILT to SILTY LOAM	63 ⁽¹⁾	0	26	125	
EL 512 to 483 feet		U	36	125	
) Submerged unit weight.					

Table 6: Recommended Parameters for Lateral Load Analysis of Drilled Shaft or Soldier Pile Walls (Ref. Borings: 29-RWB-01, 29-RWB-02, VST-02, 27-ST-01, and 2054-B-04)

(1) Submerged unit weight.

5.3.1 Ground Anchors

It should be noted that the passive wedge of the drilled shaft or drilled soldier wall will be significantly reduced due to the proposed slope in front of the wall and proximity to the Wall 29 (SN 016-Z017). It will require ground anchors. Design and construction of ground anchors should be in accordance with the 2017 AASHTO LRFD Bridge Design Specifications. The US Department of Transportation Federal Highway Administration publications FHWA-IF-99-015 and FHWA/Rd-82/047 may also be referred for the design and construction of ground anchors.

For the purpose of preliminary design, the ultimate load transfer from the bond length to the soil and rock may be estimated from the unit values for grout to ground bond strength shown in Table 7. These values vary with actual ground conditions, drilling, and grouting and anchor installation procedures. The final design should be completed by a specialty contractor who is qualified to perform ground anchor design and construction. The design capacity of each anchor should be verified by testing before accepting the anchor. As per 2017 AASHTO, the pullout resistance factor for anchor is 0.65 for cohesionless soils, 0.70 for cohesive soils, and 0.50 for rock.

Elevation Range		Grout-to-Ground Bond Ultimate Strength (ksf)		
	Soil Type/ Rock Description	Gravity Grouted Anchor	Pressure Grouted Anchor	
Finished Grade to 590 feet	NEW FILL	0.3	0.3	
EL 590 to 583 feet	Loose to V Dense SANDY GRAVEL FILL	0.4	0.4	
EL 583 to 565 feet	Soft to M Stiff CLAY to SILTY CLAY	0.3	0.3	
EL 565 to 553 feet	Soft to M Stiff CLAY to SILTY CLAY	0.3	0.3	
EL 553 to 547 feet	M Stiff CLAY to SILTY CLAY	0.5	0.5	
EL 547 to 540 feet	Stiff CLAY to SILTY CLAY	0.7	0.9	
EL 540 to 535 feet	Stiff SILTY CLAY LOAM to SILTY LOAM	0.8	0.9	

Table 7 : Grout-to-Ground Bond Values for Ground Anchor Design
(Reference Borings: 29-RWB-01, 29-RWB-02, VST-02, 27-ST-01, and 2054-B-04)

Elevation Range	Soil Type/ Rock Description	Grout-to-Ground Bond Ultimate Strength (ksf)	
		Gravity Grouted Anchor	Pressure Grouted Anchor
EL 535 to 517 feet	V Stiff SILTY CLAY LOAM to SILTY LOAM	1.0	1.3
EL 517 to 512 feet	Dense SAND	2.0	4.0
EL 512 to 475 feet	Dense SILT to SILTY LOAM	2.5	4.5
EL 475 to 465 feet	DOLOSTONE (BEDROCK)	35.0	35.0

5.3.2 Settlement Analyses

Based on the c*ross-section* drawings, to reach the design finished grade at backface of the drilled soldier pile or drilled shaft walls, we estimate that up to 5 feet of new fill will be required creating a surcharge load behind the wall. Our settlement analyses show the soil will undergo less than 1 inch of settlement which is generally acceptable for landscaping areas.

5.3.3 Global Stability Analyses

Since the Wall 51 is adjacent to the Wall 29, the tip elevation for drilled shaft wall should match with the Wall 29 drilled shaft termination depth.

5.4 Ground Movement Evaluations

There is an existing building at 711 W. Monroe Street (Archdiocese of Chicago's Joseph Cardinal Bernardin Archives & Records Center) about 35 to 45 feet away from Wall 51. Information provided by AECOM indicates that the existing building is supported on spread footings at estimated elevation of 585 feet.

The potential impact of the wall on the building was evaluated at Station 6345+67.55 where the maximum exposed height of the wall is 6.9 feet. As per IDOT wall deflection criteria (included in Appendix F) maximum allowable wall deflection is up to 1.0% of the exposed wall height which is about 0.85 inch, if the wall is not supporting sensitive structures or facilities. For walls supporting sensitive structures, the maximum allowable wall deflection should be limited to 0.5% of the exposed

wall height which is about 0.43 inches, or less as required, to prevent detrimental effects on adjacent structures or facilities.

Using empirical data compiled from various research papers, Wang estimates the ground settlement adjacent to the building induced by the maximum lateral wall deflection of one inch is about 0.25 inches. Ground movement estimate calculations including method used are included in Appendix F.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Excavation

Any required excavations should be performed in accordance with local, state, and federal regulations including current OSHA regulations. The potential effect of ground movements upon nearby structures and utilities should be considered during construction. Any open excavation to a depth of 4 feet should have a slope of 1:2 (V:H) for cohesive soils and 1:2.5 (V:H) for granular soils.

Based on the TSL Plan, we understand the alley will be closed for traffic during Wall 51 construction. We performed global slope stability analysis for a temporary excavation slope of approximately 1:2.5 (V:H) which will be a typical slope from MSE wall base to the existing right of way. Our analyses indicate the FOS of about 1.5. We also note that the existing building foundation details were not available at the time of this report; therefore, our analyses are preliminary.

Temporary open cut slope of 1:2.5 has adequate slope stability. However, existing granular soils could have perched groundwater during construction and surface slugging and groundwater dewatering should be expected. Open cut slope excavation next to the existing building structure and lowering of groundwater could also create instability of building foundation system. We recommend that foundation system of the existing building should be considered in the design of the temporary slope by the Contractor. As an alternate the temporary soil retention system (TSRS) should be considered instead of open cut slope excavation. The design of TSRS should consider saturated granular soils; and lateral load from the building foundation, surcharge from the alley traffic and construction equipment. The allowable deflection of the TSRS should be as per city of Chicago requirements and to avoid any movement of the exiting building and settlement of the alley pavement.

6.2 Dewatering

Based on the results of our investigation and proposed excavation for the wall, perched water is likely to be encountered during construction during times of heavy precipitation which should be removed through conventional sump and pump methods.

6.3 Filling and Backfilling

All fill and backfill materials will be as per IDOT *Standard Specification for Road and Bridge Construction* (IDOT 2016).

6.4 Drilled Shaft Construction

If the drilled shafts wall is selected, the drilled shafts should be constructed in accordance with the IDOT Special Provision Drilled Shafts (GBSP No. 86). Drilled shaft installation procedure should be reviewed and approved by IDOT.

The groundwater is expected to be located within the granular fill soils layer. As a minimum, casing will be required in the upper surficial granular fill soils extending into clay to prevent groundwater from entering the shafts and prevent loss of ground around the shafts. The casing should be socketed a few feet into the clay soil to effectively seal the groundwater infiltration into the drilled shafts. Special care should be taken to prevent loss of ground during shaft installation adjacent to the existing buried utilities. It is recommended to advance the casing ahead of the excavation operation. Groundwater is also expected from granular layers within very stiff to hard clay deposit and above the bedrock. Drilled shafts extending through and into these granular soils will require casing and/or a slurry method of excavation.

The soft soil layer with Q_u less than 0.5 tsf (500 psf cohesion) is prone to squeeze if left open for long period of time. Therefore, to minimize the squeeze potential, casing should be provided. Due to high squeeze potential, the following note should appear on the final plans:

'Due to the squeeze potential of the clay soils, the use of temporary casing will be required to properly construct the shafts. Casing may be pulled or remain in place, as determined by the Contractor at no cost to the Department.'

If the casing is not used or concreting in wet shafts, the structural integrity of concrete shaft should be verified by non-destructing integrity testing using the Crosshole Sonic Logging (CSL) method. The

IDOT special provision "*Crosshole Sonic Logging*" dated March 9, 2010 or latest edition should be included for this inspection and testing requirements. Wang recommends providing CSL in one drilled shaft for every five soldier-pile drilled shafts.

6.5 Wall Construction

The wall should be constructed as per IDOT *Standard Specification for Road and Bridge Construction* (IDOT 2016). Class III LCCF should be as per IDOT District One special provision.

6.6 Construction Monitoring

Given the proximity of building, roads, and utilities, Wang recommends special precautions should be taken during the construction not to undermine the existing foundations, pavements and utilities.

To prevent any damage to the existing building (Archdiocese of Chicago's Joseph Cardinal Bernardin Archives & Records Center), we recommend establishing survey points on the west side wall of this building to monitor the vertical and horizontal movements and installing inclinometers before the Wall 29 construction begins between the proposed wall location and the building to monitor ground movement.

7.0 QUALIFICATIONS

The analysis and recommendations submitted in this report are based upon the data obtained from the borings drilled at the locations shown on the boring logs and in Exhibit 3. This report does not reflect any variations that may occur between the borings or elsewhere on the site, variations whose nature and extent may not become evident until the course of construction. In the event that any changes in the design and/or location of Retaining Wall 51 (SN016-Z048) are planned, we should be timely informed so that our recommendations can be adjusted accordingly.

It has been a pleasure to assist AECOM and the Illinois Department of Transportation on this project. Please call if there are any questions, or if we can be of further service.

Respectfully Submitted,

WANG ENGINEERING, INC.

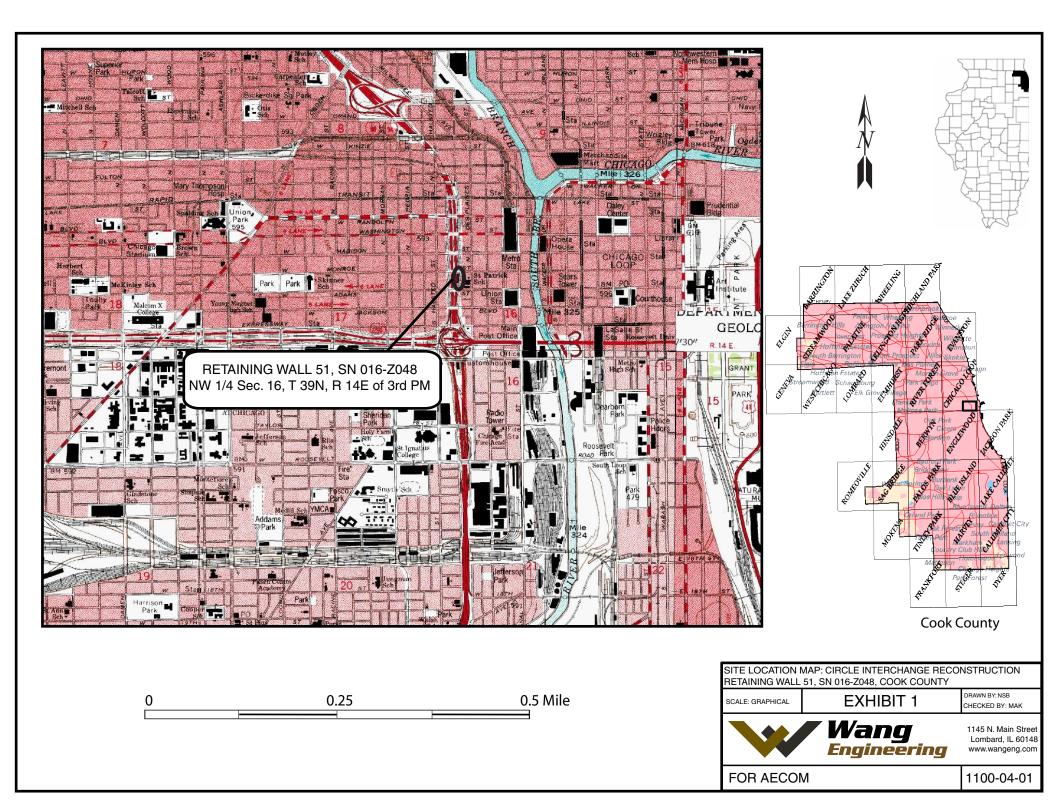
Ulaleothersda 12-3-2018

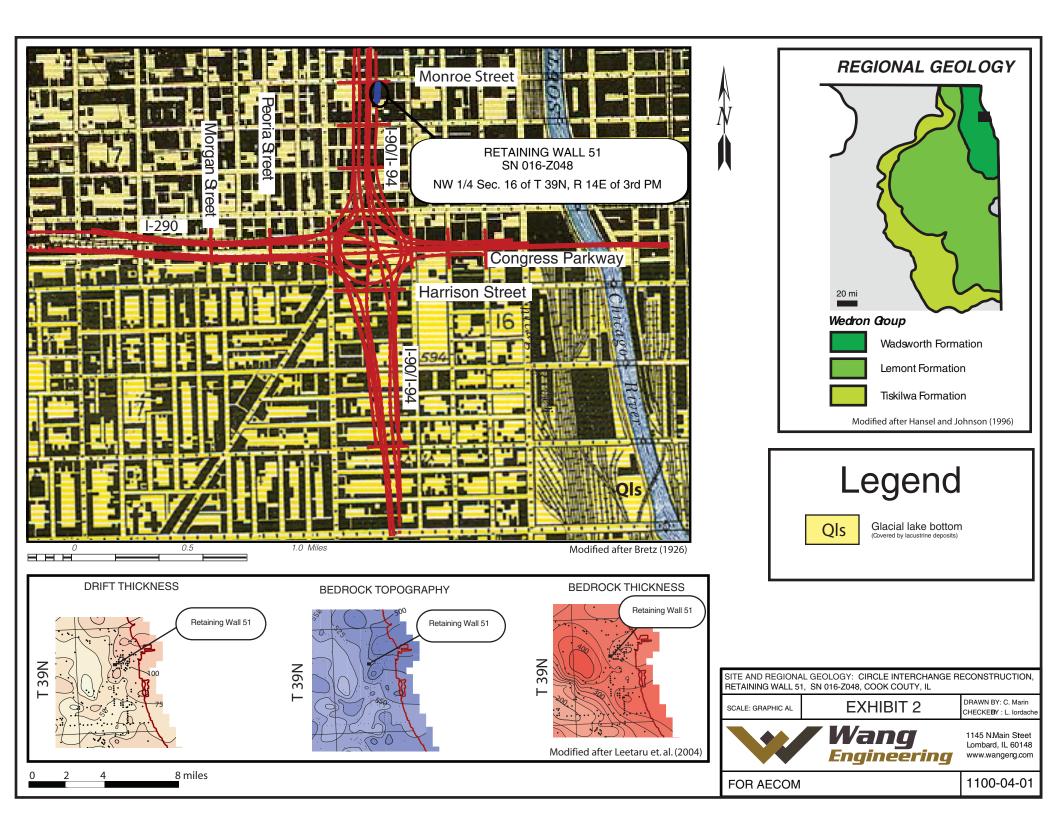
Mohammed Kothawala, P.E., D.GE. Senior Geotechnical Engineer

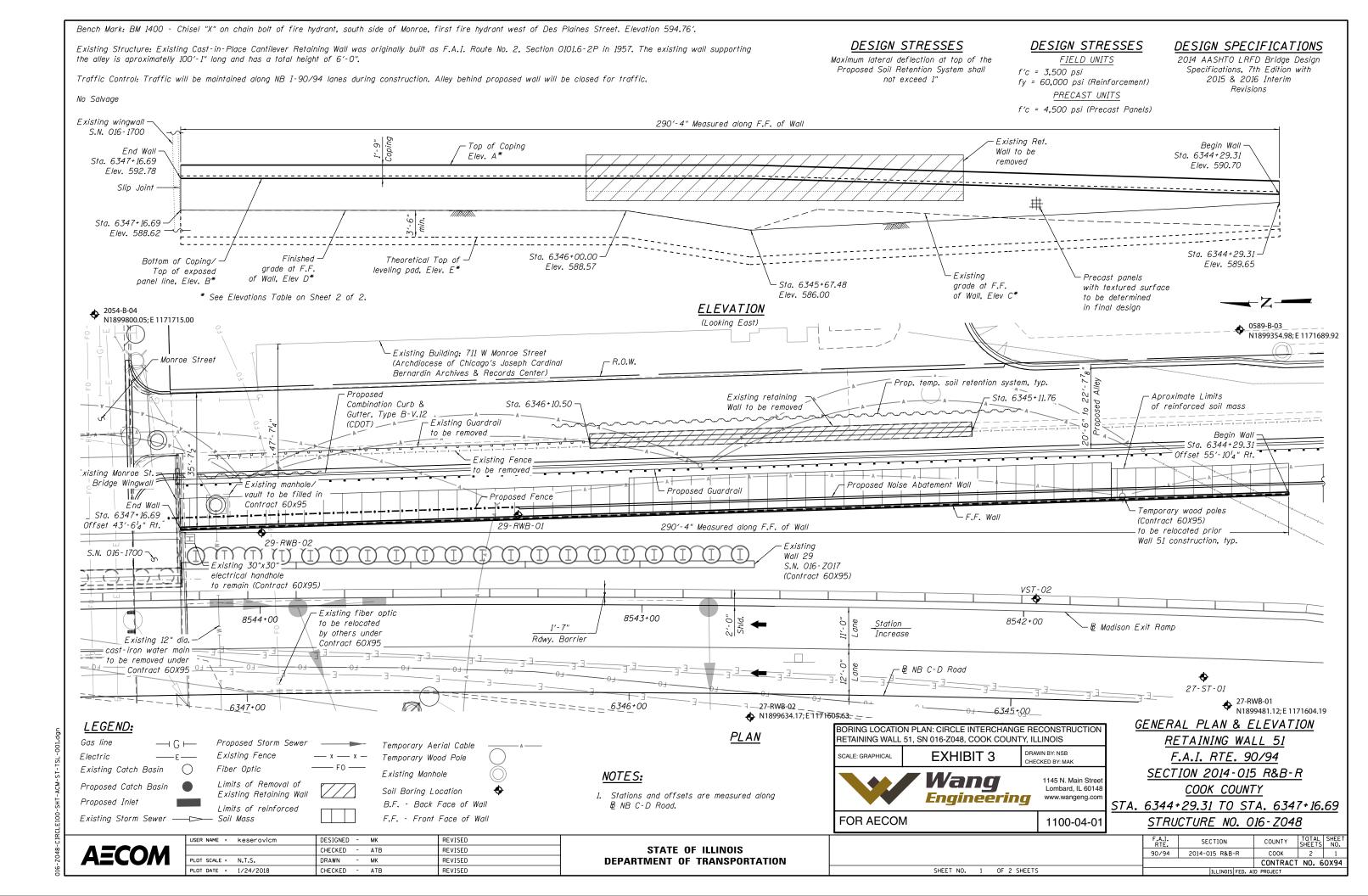
B.Ba

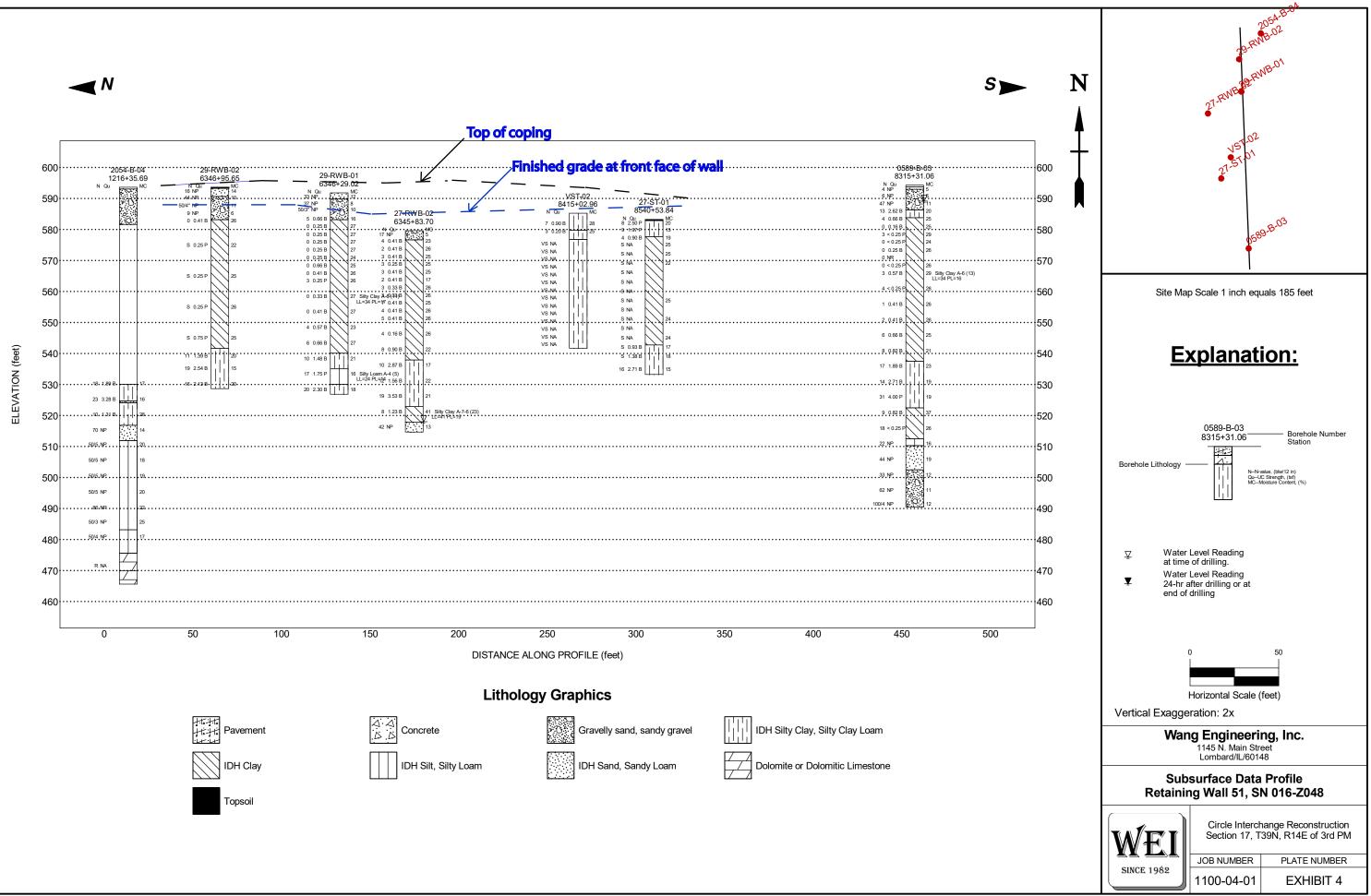
Nesam S. Balakumaran Project Geotechnical Engineer

Corina T. Farez, P.E., P.G. Vice President

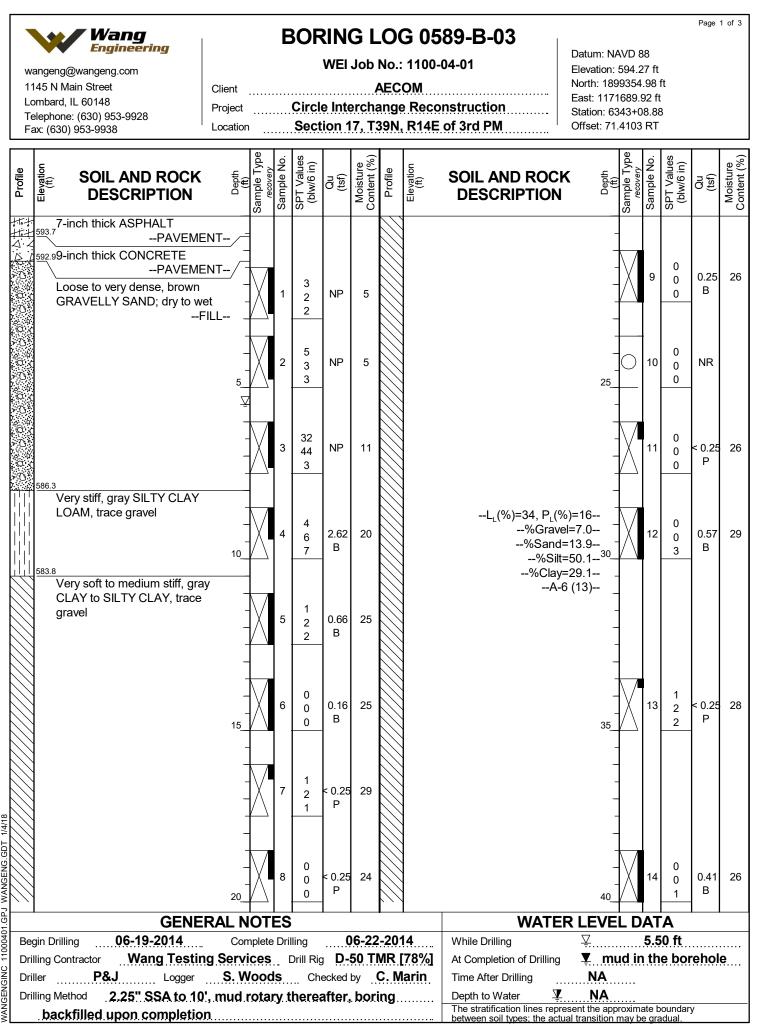



REFERENCES


- AMERICAN ASSOCIATION OF STATE HIGHWAY TRANSPORTATION OFFICIALS (2014) *LRFD Bridge Design Specifications*. United States Department of Transportation, Washington, D.C.
- BAUER, R.A., CURRY, B.B., GRAESE, A.M., VAIDEN, R.C., SU, W.J., and HASEK, M.J., 1991, Geotechnical Properties of Selected Pleistocene, Silurian, and Ordovician Deposits of Northeastern Illinois: Environmental Geology 139, Illinois State Geological Survey, 69 p.
- HANSEL, A.K., and JOHNSON, W.H. (1996) Wedron and Mason Groups: Lithostratigraphic Reclassification of the Wisconsin Episode, Lake Michigan Lobe Area: ISGS Bulletin 104.
 Illinois State Geological Survey, Champaign, IL. 116 p.
- LEETARU, H.E., SARGENT, M.L., AND KOLATA, D.R, 2004, *Geologic Atlas of Cook County for Planning Purposes*, ISGS, Champaign, IL
- ILLINOIS DEPARTMENT OF TRANSPORTATION (2015) *Geotechnical Manual*. IDOT Bureau of Materials and Physical Research, Springfield, IL.
- ILLINOIS DEPARTMENT OF TRANSPORTATION (2016) *Standard Specifications for Road and Bridge Construction.* IDOT Division of Highways, Springfield, IL.
- ILLINOIS DEPARTMENT OF TRANSPORTATION (2012) *Bridge Manual*. IDOT Bureau of Bridges and Structures, Springfield, IL.
- WILLMAN, H.B., 1971, *Summary of the Geology of the Chicago Area*, ISGS Circular C460: Urbana, Illinois State Geological Survey, p. 77.
- PECK, R.B., and REED, W.C., 1954, *Engineering Properties of Chicago Subsoils*: University of Illinois Engineering Experiment Station Bulletin No. 423: Urbana, University of Illinois, 62 p.



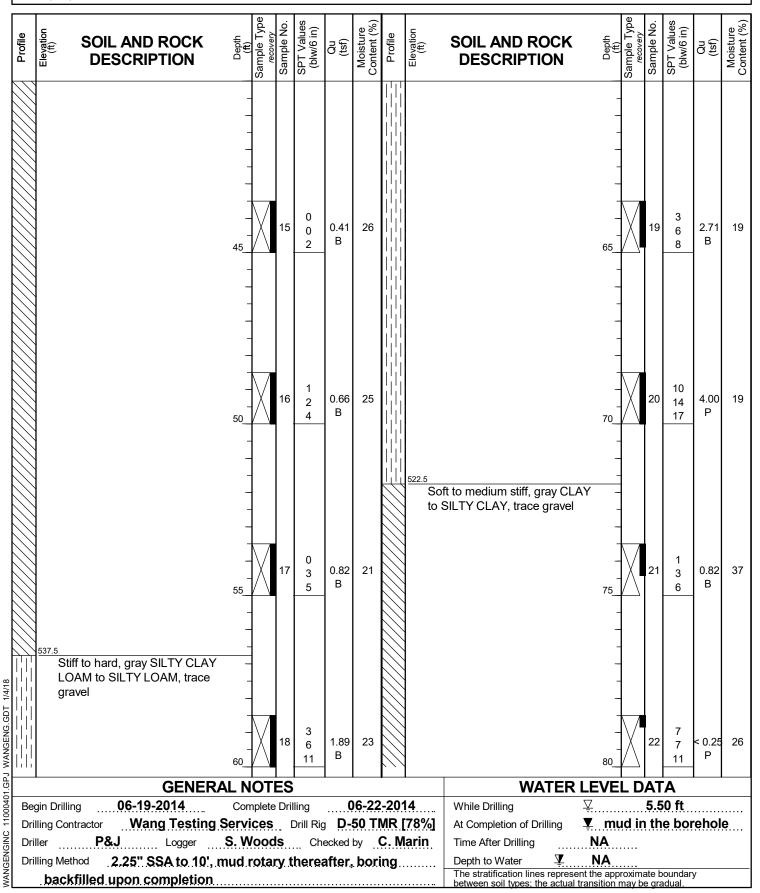
EXHIBITS



APPENDIX A

VANGENGINC 11000401.GPJ WANGENG.GDT

BORING LOG 0589-B-03


WEI Job No.: 1100-04-01

Page 2 of 3

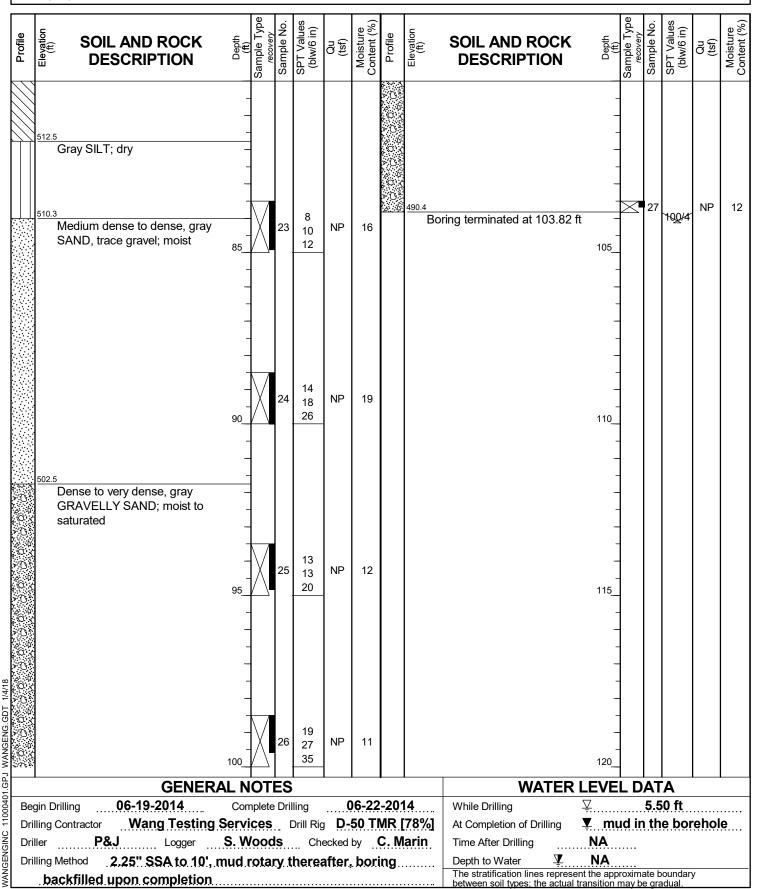
wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 594.27 ft North: 1899354.98 ft East: 1171689.92 ft Station: 6343+08.88 Offset: 71.4103 RT

BORING LOG 0589-B-03

WEI Job No.: 1100-04-01


wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 594.27 ft North: 1899354.98 ft East: 1171689.92 ft Station: 6343+08.88 Offset: 71.4103 RT

	Wang Engineering
--	---------------------

BORING LOG 2054-B-04

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.64 ft North: 1899800.05 ft East: 1171715.00 ft Station: 6347+47.80 Offset: 87.9267 RT

	Profile	SOIL AND ROCK	Depth (ft) Sample Type	recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROO DESCRIPTIO		Sample Type recovery Sample No	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
		7-inch thick CONCRETE										0,			
0	с. С	Construction debris									-				
	0.0 0		-								-				
	0 0	hard drilling, 1 to 12 feet possible cobbles									-				
	0 0										-				
<u> </u>	0.0 0		_								-				
	• C•		-								-				
	0.6		5								25				
	2.0 0.0														
0	, C		_								-				
	а. О		-								-				
	0°. •		-								-				
	0 0		-								-				
0	0.0 0										-				
	°. C	Drilled without sampling	_								-				
	, 0 é		40								-				
	0 0 0		10								30				
) 0								Dri	lled without sampling	-				
	0 0 0										-				
	0	581.6	_								-				
		Drilled without sampling	-								-				
			-								-				
											_				
			_								-				
			15								35				
			-								-				
											-				
											_				
/18			-								-				
T 1/4,			-								-				
G GD			-								-				
NGEN											-				
WANGENGINC 11000401.GPJ WANGENG.GDT 1/4/18			20								40				
31.GP		GENERAI		TES	5	·	·	•		WAT	ER LEVE	LDA	TA	·	
00040			Comple		-)8-25			While Drilling	¥		ry wa		
11		Iling Contractor Wang Testing Se										Muq	1 at 12	ft	
ENGI	Dril									Time After Drilling Depth to Water	NA ⊈ NA	•••••			
/ANG	ווע	ling Method 2.25" IDA HSA to 18 backfilled upon completion			-				-	The stratification lines re between soil types; the a	epresent the app	roximate	boundar	у	
≤L										between soil types: the a	actual transition i	mav be c	iradual.		

BORING LOG 2054-B-04

WEI Job No.: 1100-04-01

Page 2 of 4

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

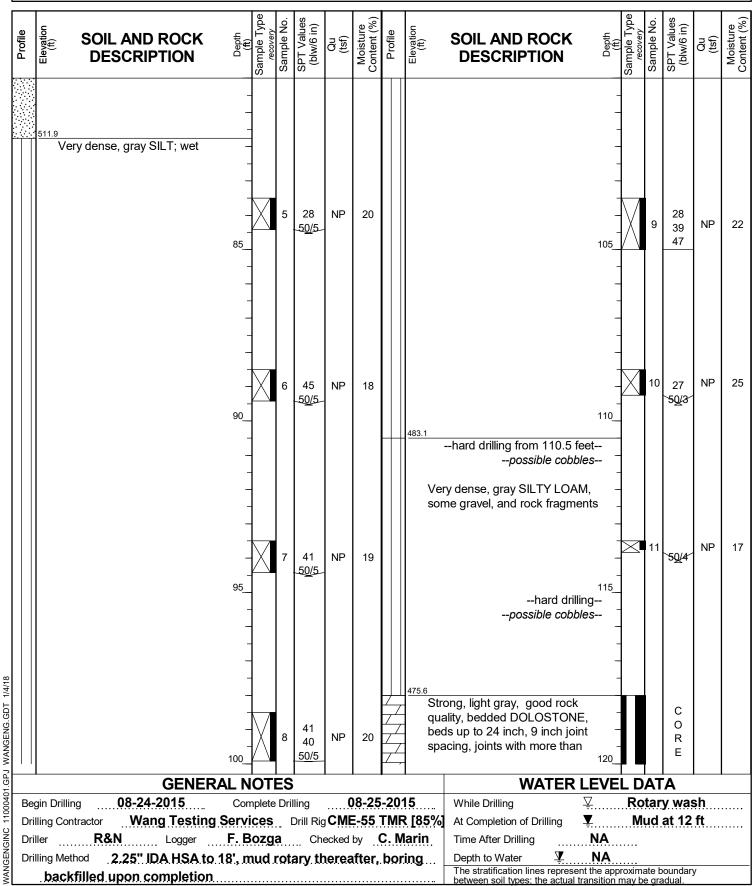
Datum: NAVD 88 Elevation: 593.64 ft North: 1899800.05 ft East: 1171715.00 ft Station: 6347+47.80 Offset: 87.9267 RT

	WANGENGING 11000401.6PJ WANGENG.GD1 1/4/18				Drofilo
					Elevation (ft)
		onned without sampling	Drilled without sampling		SOIL AND ROCK DESCRIPTION
- - - 60_		_ _ _ _ _ 55_		- - - - - 45_	Depth (ft) Sample Type recovery Sample No.
					SPT Values (blw/6 in)
					Qu (tsf)
					Moisture Content (%)
					Profile
	<u>516.9</u>		Sati		Elevation (ft)
ry dense, gray, fine erbedded silt; wet			ay GRAVELLY SAN urated f, gray SILTY CLAY	f to very stiff, gray S AY LOAM, trace gra	SOIL AND RO DESCRIPTIO
SAND, -					
					Sample Type
4		3	2	1	Sample No.
16 25 45		4 4 6	12 11 12	6 7 11	SPT Values (blw/6 in)
NP		1.31 B	3.28 B	1.89 B	Qu (tsf)
14		28	16	17	Moisture Content (%)

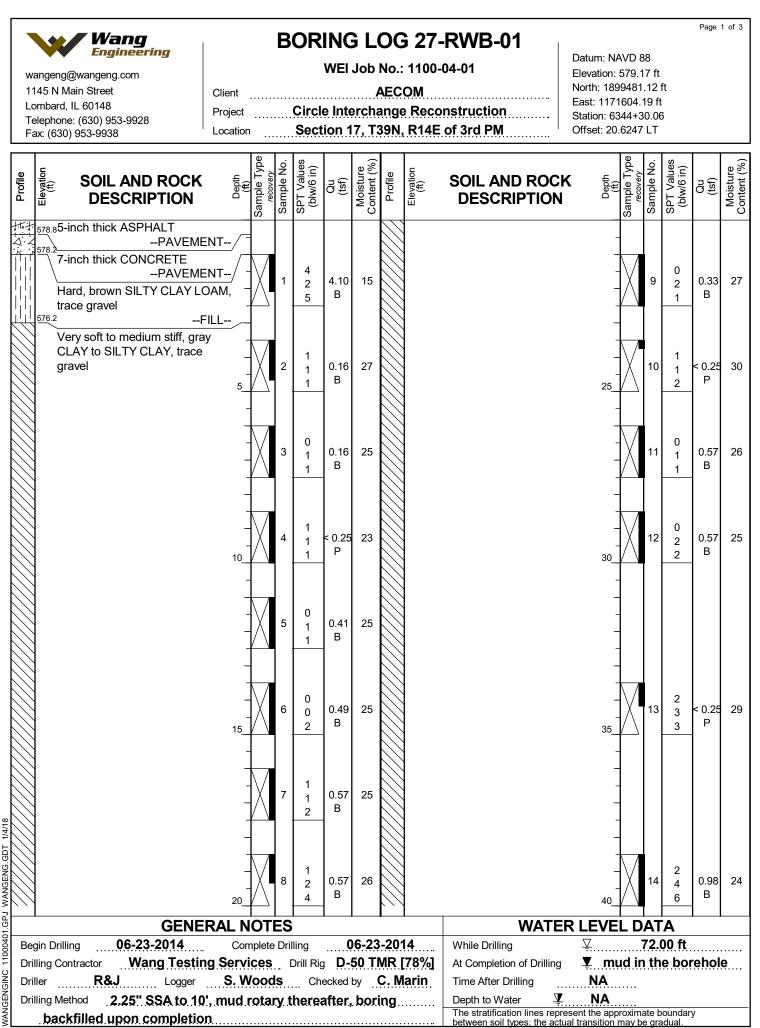
BORING LOG 2054-B-04

WEI Job No.: 1100-04-01

Page 3 of 4


wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

 Client
 AECOM


 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

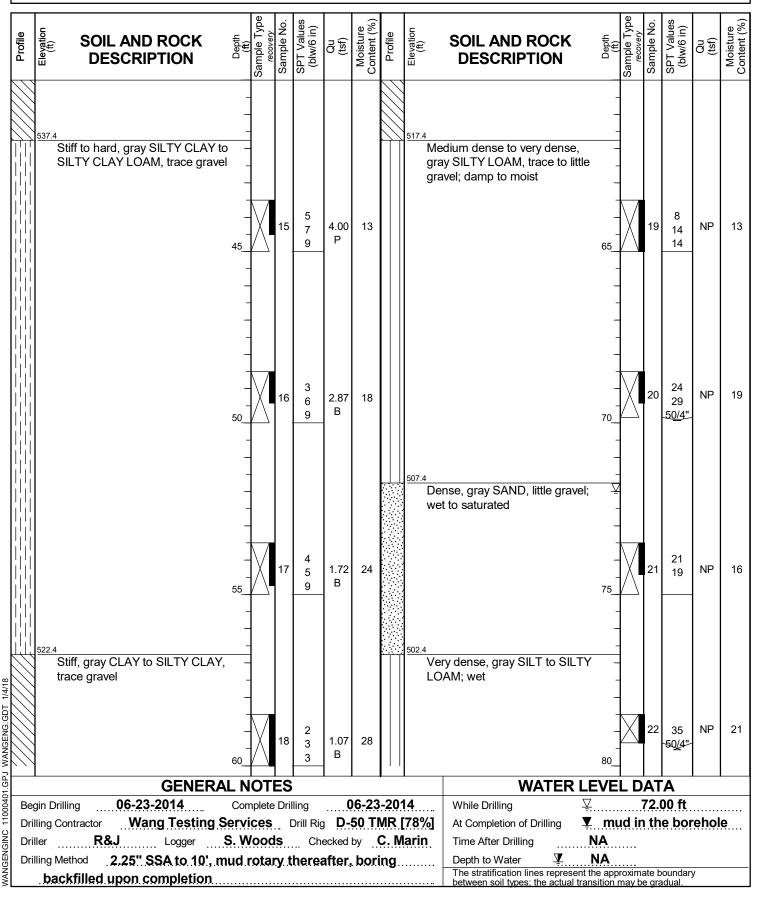
Datum: NAVD 88 Elevation: 593.64 ft North: 1899800.05 ft East: 1171715.00 ft Station: 6347+47.80 Offset: 87.9267 RT

11 Lo Te	wangeng.com 145 N Main Street ombard, IL 60148 elephone: (630) 953-9928 ax: (630) 953-9938	Client Project Location		Circl	LOG 2054-B-04 Datum: NAVD 88 Elevation: 593.64 ft North: 1899800.05 ft East: 1171715.00 ft Station: 6347+47.80 Offset: 87.9267 RT					4 ft 05 ft 0 ft 7.80	Page 4 of 4			
Profile	SOIL AND ROCK	Depth (ft)	Sample Type recovery Sample No	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROC DESCRIPTION		Sample Type	Sample No. SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	0.2 inch or no infilling, vuggy with stylolitic surfaces.	/, and _	0,											
	Run 1 -RECOVERY= 9 RQD= 7 Qu = 10,470	79%	1											
	465.6 Boring terminated at 128.00	- ft												
Ben														
Po	GENE gin Drilling 08-24-2015	15		ER LEVE ♀			sh							
Dri Dri	gin Drilling 08-24-2015 Iling Contractor Wang Testii Iler R&N Logger	ng Servi		Drill Ri	gCM		TMF	R [85%]	While Drilling At Completion of Drilling Time After Drilling		Mu	ary wa Id at 12		
Dri	ling Method 2.25" IDA HSA backfilled upon completion			-				-	Depth to Water The stratification lines rep between soil types; the act	resent the apr	oroxima may be	te boundar gradual	У	

BORING LOG 27-RWB-01

WEI Job No.: 1100-04-01

Page 2 of 3


wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

 Client
 AECOM

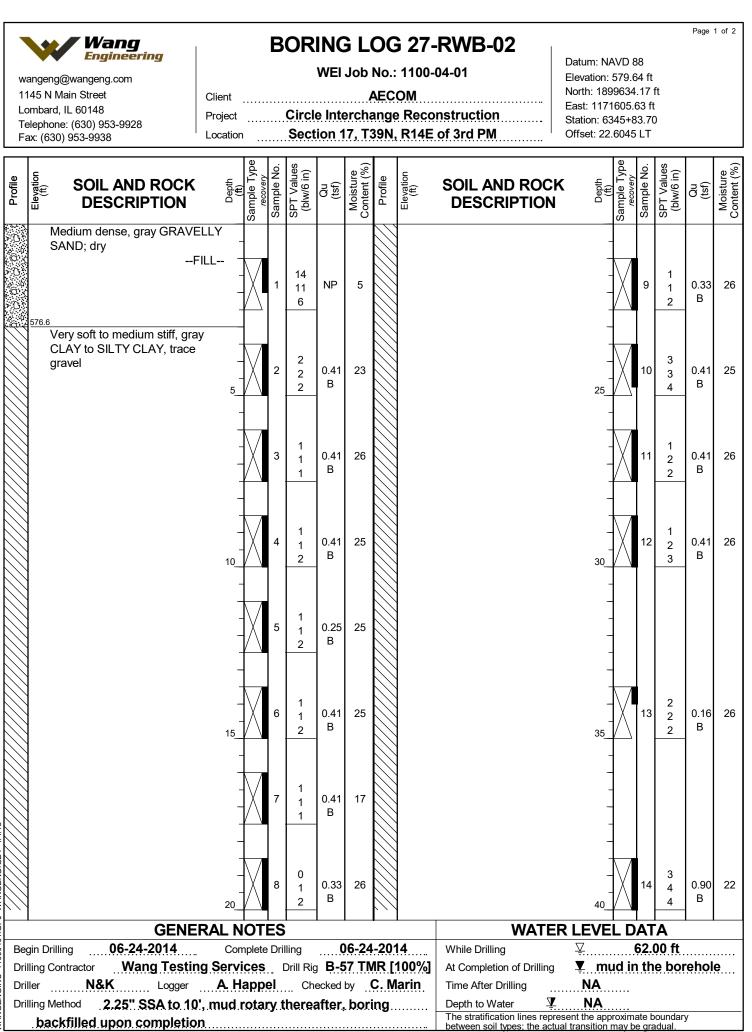
 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 579.17 ft North: 1899481.12 ft East: 1171604.19 ft Station: 6344+30.06 Offset: 20.6247 LT

BORING LOG 27-RWB-01

WEI Job No.: 1100-04-01


Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

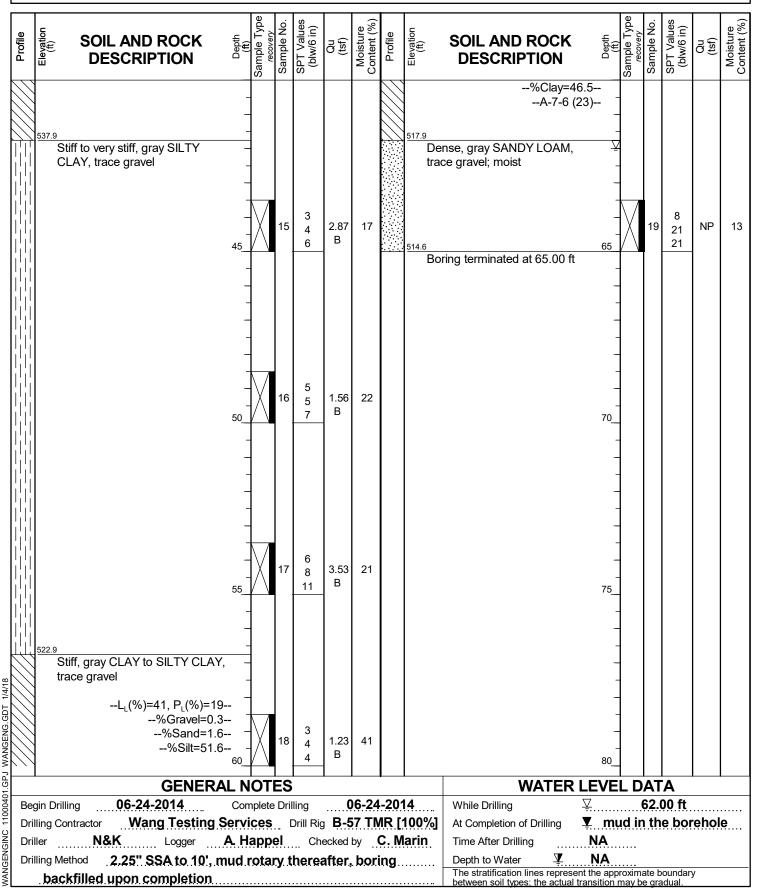
Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

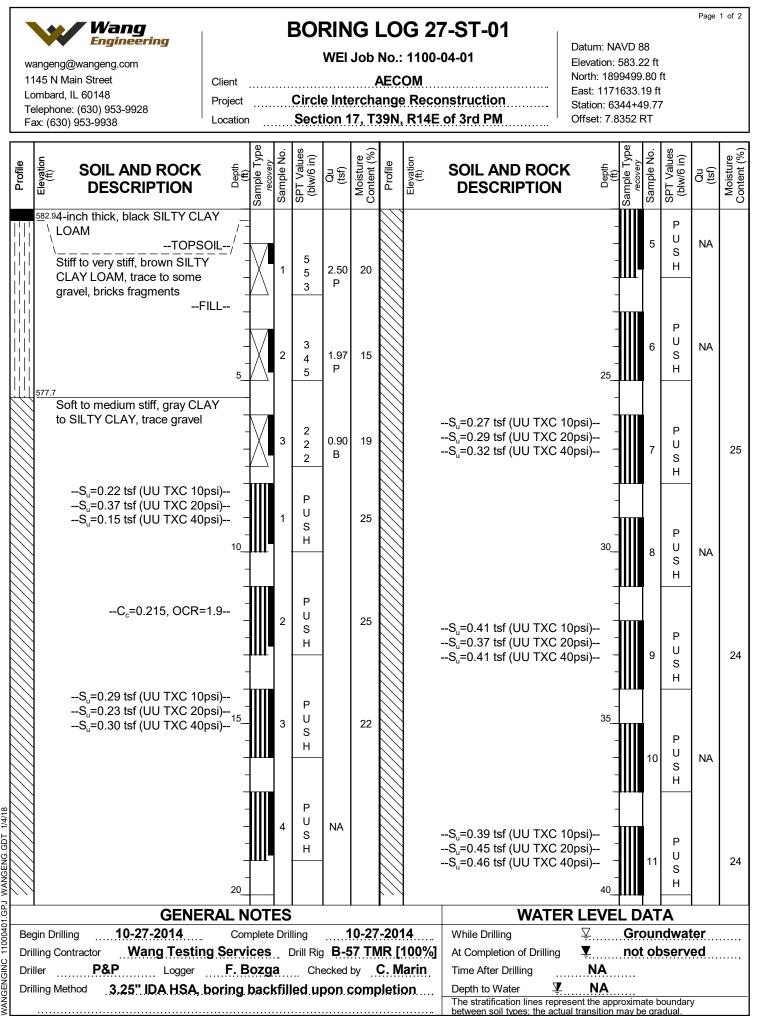
Datum: NAVD 88 Elevation: 579.17 ft North: 1899481.12 ft East: 1171604.19 ft Station: 6344+30.06 Offset: 20.6247 LT

	ax: (630)) 953-9938	Location	·		Sect	ion 1	17, T:	39N,	R14E	of 3rd PM	Offset: 20.	6247	LT			
Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture
			-														
			-														
			-														
			-	\bigvee	23	31	NP	19									
			85	\square	23	5 <u>0/</u> 5"		13									
			_														
			-														
			-														
			_														
			-	X	24	18 33 45	NP	26									
			90			-10											
			-														
			-														
			-	0	25		NA										
			-														
		ROLLER BIT REFUSA	95														
_	483.2 B	oring terminated at 96.00 ft	~														
			-														
			_														
			-														
			_ 100														
	·	GENER	AL N	ОТ	ËS	·		·	•	·	WATER		L D	AT	Α		
	gin Drill	• • • • • • • • • • • • • • • • • • • •		nplete		-)6-23			While Drilling	<u>¥</u>					
	lling Co ller	ntractor Wang Testing R&J Logger	Servi S. W														
	lling Me										Depth to Water 🖳 NA						
	bac	kfilled upon completion			-				-		The stratification lines represe between soil types; the actual	ent the app	roxim	ate b	oundar	у	

WANGENGINC 11000401.GPJ WANGENG.GDT 1/4/18

BORING LOG 27-RWB-02


WEI Job No.: 1100-04-01


Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

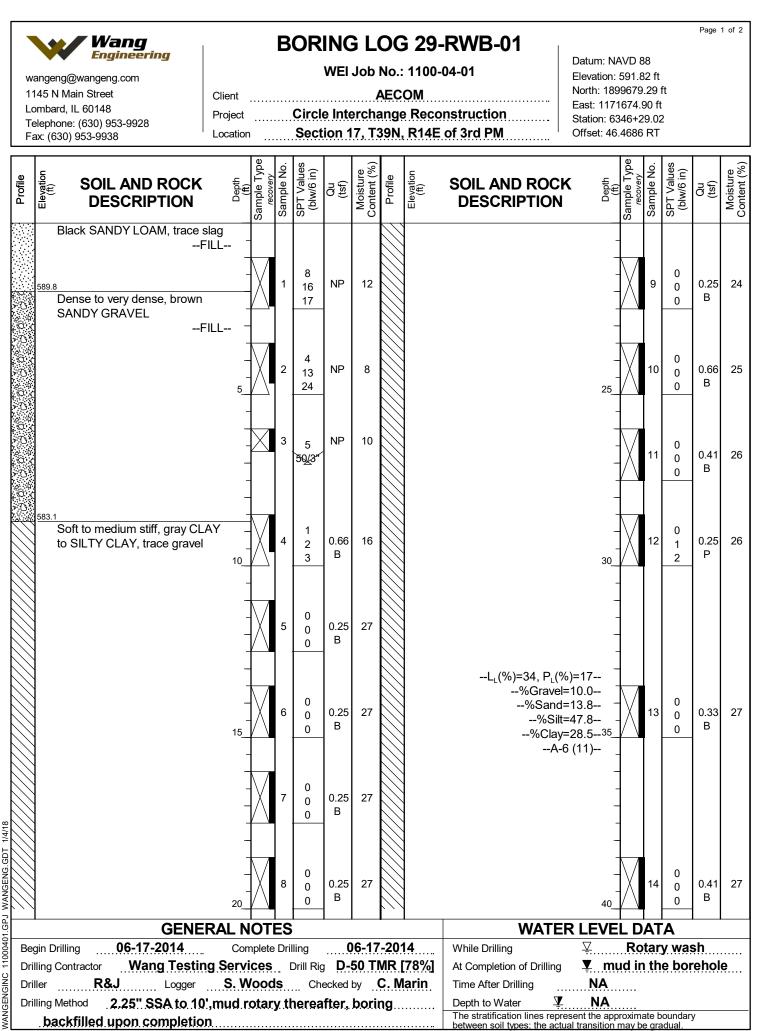
Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 579.64 ft North: 1899634.17 ft East: 1171605.63 ft Station: 6345+83.70 Offset: 22.6045 LT

VANGENGINC 11000401.GPJ WANGENG.GDT

BORING LOG 27-ST-01

WEI Job No.: 1100-04-01


Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

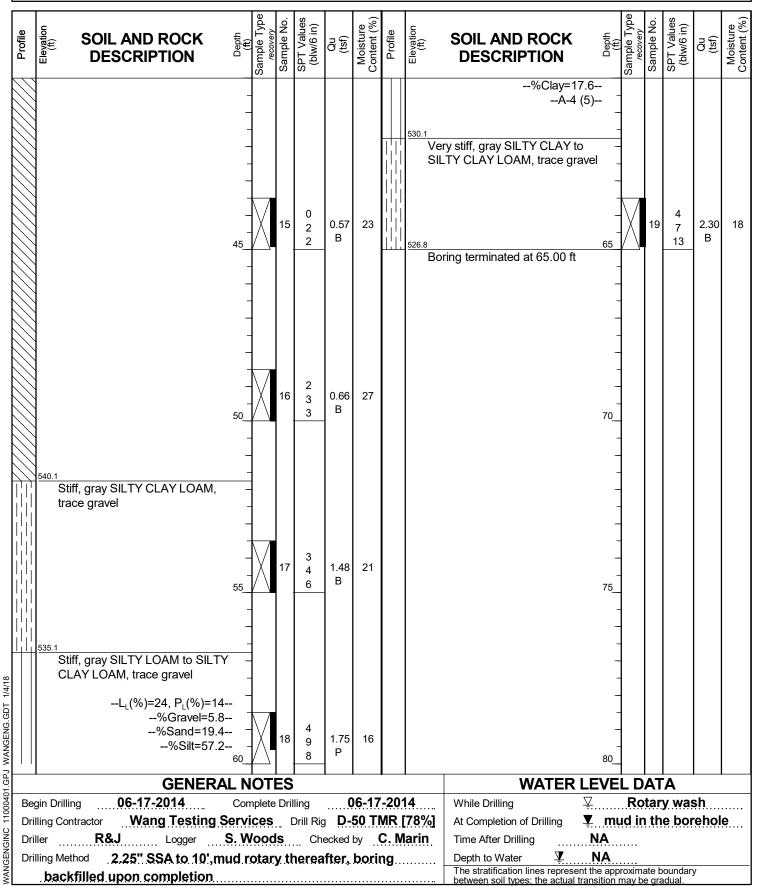
Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

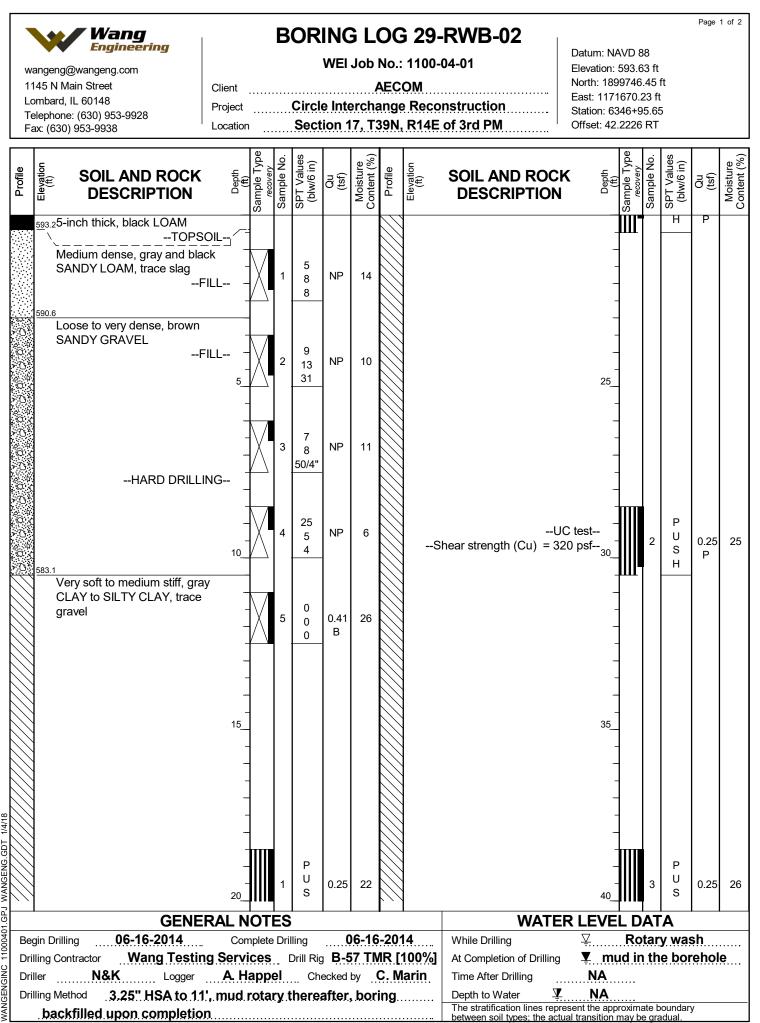
Datum: NAVD 88 Elevation: 583.22 ft North: 1899499.80 ft East: 1171633.19 ft Station: 6344+49.77 Offset: 7.8352 RT

		()													
Drofilo		SOIL AND ROCK	Depth (ft) Sample Type	<i>recovery</i> Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND RO DESCRIPTIO		Sample Type	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
k				-								, ,			
		Stiff to very stiff, gray SILTY CLAY to SILTY CLAY LOAM, trace gravel Laboratory Q _u =0.93 tsf-		12	P U S H	0.93 B	17								
		Laboratory Q _u =1.38 tsf-	- 45	13	P U S H	1.38 B	18								
		533.2 Boring terminated at 50.00 ft		14	5 7 9	2.71 B	15								
WANGENGINC 11000401.GPJ WANGENG.GDT 1/4/18		GENERA	55 60 L NO ⁻	FES						WA	TER LEVE	LDA	NTA		
0401	Bea	in Drilling 10-27-2014	Comple			1	0-27	'-20'	4	While Drilling	<u> </u>		undwa	ter	
1100	-	ling Contractor Wang Testing S								At Completion of Drill			observ		
INC	Drill		F. Boz							Time After Drilling	NA				
ENG		ling Method 3.25" IDA HSA, bor								Depth to Water	⊥ NA	•••••			ľ
WANG				~13111 	н н		******	********	····	The stratification lines between soil types; the	represent the app	roximat nav be	e boundar gradual.	у	

VANGENGINC 11000401.GPJ WANGENG.GDT

BORING LOG 29-RWB-01


WEI Job No.: 1100-04-01


Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

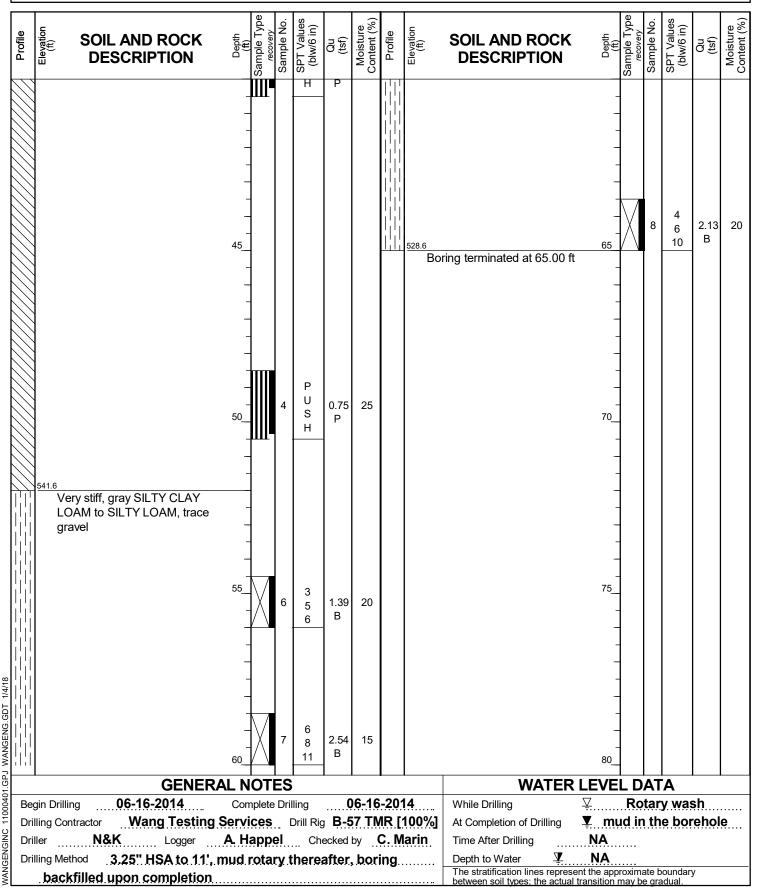
Datum: NAVD 88 Elevation: 591.82 ft North: 1899679.29 ft East: 1171674.90 ft Station: 6346+29.02 Offset: 46.4686 RT

VANGENGINC 11000401.GPJ WANGENG.GDT

BORING LOG 29-RWB-02

WEI Job No.: 1100-04-01

Page 2 of 2


wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.63 ft North: 1899746.45 ft East: 1171670.23 ft Station: 6346+95.65 Offset: 42.2226 RT

BORING LOG 30-PZ-01

WEI Job No.: 1100-04-01

Page 1 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.22 ft North: 1900001.55 ft East: 1171691.06 ft Station: 6349+48.39 Offset: 76.6657 RT

	Profile	DESCRIPTION	Sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No. SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	<u> </u>		Sar Sar	a) SP		Cor⊠	-		DESCRIPTION		San	C D S D		GG C
		Drilled without sampling								-	-			
										-				
										- - 25	-			
		-								-				
		piezometer stabilized water level reading reading during well								-	-			
		development (11/21/2014) = - 48.90 feet bgs reading date: 12/11/2014 = _ 48.45 feet bgs ₁₀ _								- - 30_				
		-								-	-			
								In B	zometer Data: nstalled in Nov. 5, 2014 ientonite Seal 85 to 87.5 fee		-			
		 15						<i>T</i>	op of Sand Pack at 87.5 fee op of Screen at 89.5 feet ottom of Screen at 99.5 fee	-	-			
		-								-	-			
DT 1/4/18										-				
WANGENGINC 11000401.GPJ WANGENG.GDT 1/4/18		 20								- - 40_				
01.GP.		GENERAL N	OTES				•		WATER				• •	
10004			plete Dril	-		1-06			While Drilling	¥		8.00 ft	•••••	
NC 1		Illing Contractor Wang Testing Servi Iller P&P Logger F. B							At Completion of Drilling Time After Drilling	¥ 1 hour		2.00 ft		
BNG		Illing Method 4.25" HSA, monitoring								2.20 f				
WANG	-	· · · · · · · · · · · · · · · · · · ·	····		·····	•••••••			The stratification lines represented between soil types; the actual t			e boundar gradual	У	

BORING LOG 30-PZ-01

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

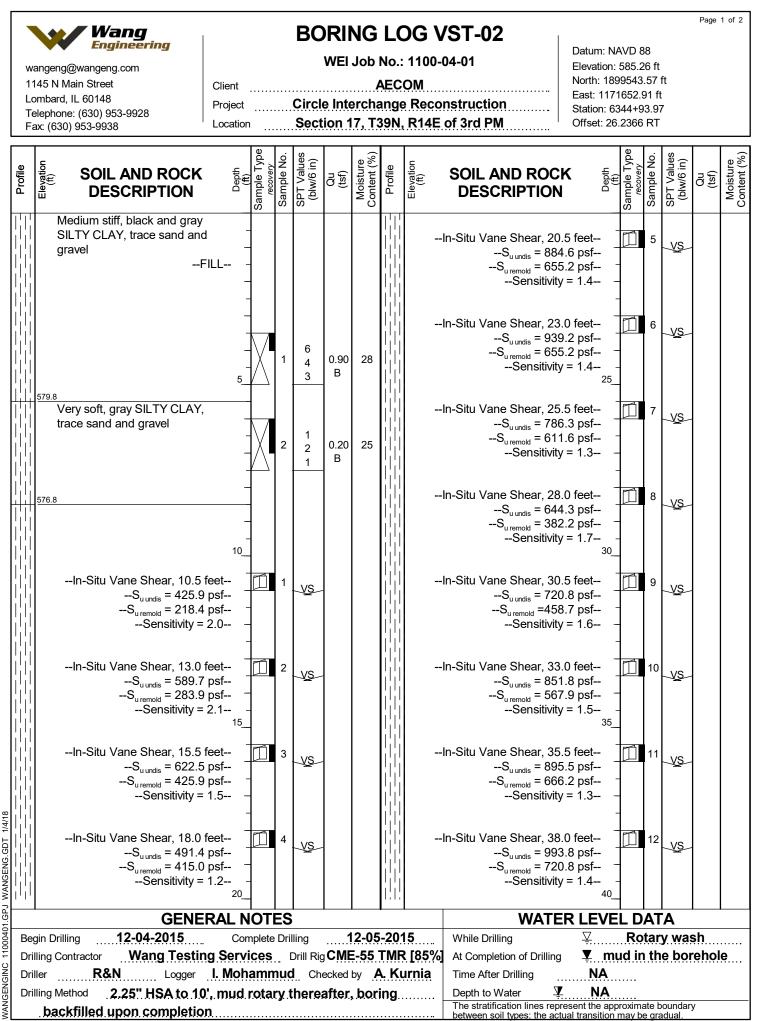
 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.22 ft North: 1900001.55 ft East: 1171691.06 ft Station: 6349+48.39 Offset: 76.6657 RT

Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCH DESCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
											_					
			_								-					
			-								V					
			-								-					
			-								-					
			-								-					
			-													
			45								65					
			-								-					
			-								-					
			-								-					
			-								-					
			$\overline{\Delta}$								_					
			_								-					
			-								_					
			-								-					
			50								70					
			-								-					
											-					
			_								_					
			-								-					
			-								-					
											_					
			55								75					
			_								-					
			-								_					
			-								-					
_	p	iezometer stabilized water lev														
1/4/18		reading reading during w									-					
en		development (11/21/2014)	= -								-					
SN L		48.90 feet bg									-					
ANG		reading date: 12/11/2014- 48.45 feet bg:									- 80					
≤ [
MANGENGINC 11000401.GPJ WANGENG.GDT 1/4/18	GENERAL NOTES Begin Drilling 11-05-2014 Complete Drilling 11-06-2014															
2001 D001 Re	egin Drillii Tilling Cor															
	Drilling Contractor Wang Testing Services Drill Rig B-57 TMR [100' Driller P&P Logger F. Bozga Checked by CLM									Time After Drilling 24 hours						
	illing Met															
			_							The stratification lines repre- between soil types; the actu	sent the app	roxima	ate b	oundary	/	

BORING LOG 30-PZ-01

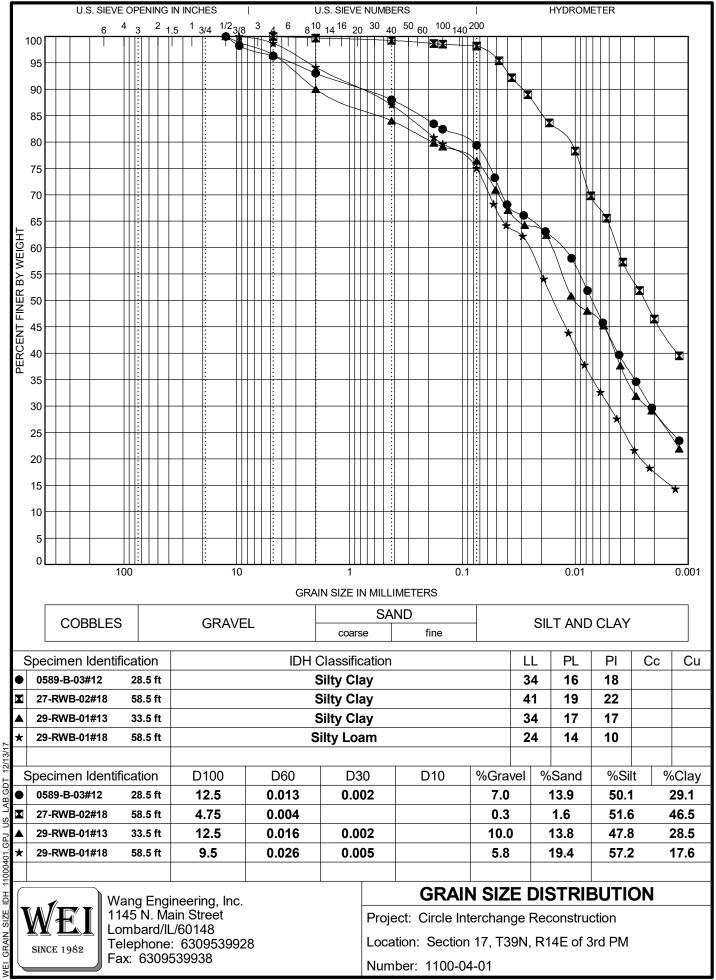
WEI Job No.: 1100-04-01

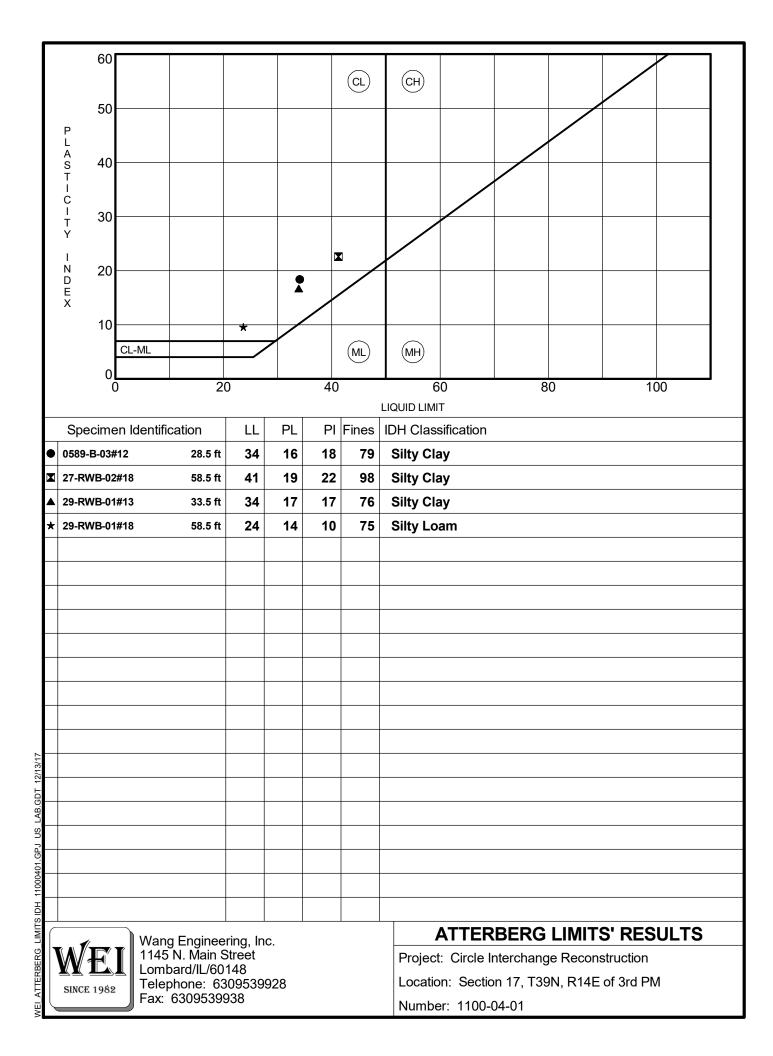

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: (630) 953-9928 Fax: (630) 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.22 ft North: 1900001.55 ft East: 1171691.06 ft Station: 6349+48.39 Offset: 76.6657 RT


		,													
Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND R DESCRIPT		Sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	 	ezometer Data: Installed in Nov. 5, 2014 Bentonite Seal 85 to 87.5 f Top of Sand Pack at 87.5 f Top of Screen at 89.5 feet Bottom of Screen at 99.5 fe	ieet –												
	tra		Wet90 - - -	1	20 21 21	NP	16								
	Ve	ery dense, gray GRAVELL AND 	Y - Wet 95_	2	36 35 20	NP	8								
MANGENGINC 11000401.GPJ WANGENG.GDT 1/4/18 La La Berrie Color 2000 La Color 2000	(493.2 Bo		RAL NO	3 TES	25 45 47	NP	6			W	ATER LEVE	L DA	TA		
Bending 1100040 Dr Dr Dr Dr	egin Drilli filling Co filler filling Me	ntractor Wang Testi P&P Logger	ng Service F. Boz	es 2ga	Drill Rig	B-5 ecked	by	/IR [′ CL	100%] .M	While Drilling At Completion of I Time After Drilling Depth to Water	Drilling 24 hour ¥ 62.20 f	t	.00 ft		
AN N										The stratification line between soil types;	the actual transition	mav be d	radual.	у	


Γ	Wang			BC	RII	NG LOG VST-02						Page 2 of 2				
					WEI	Job	No.:	1100-0	04-01	Datum: N/ Elevation:						
	1145 N Main Street	Client		•••••			AEC			North: 189 East: 1171			t			
	Lombard, IL 60148 Telephone: (630) 953-9928								nstruction of 3rd PM	Station: 63 Offset: 26	844+9	3.97				
	Fax: (630) 953-9938						,,,,,			011301. 20						
Profile	SOIL AND ROCK	Depth (ft) Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROC DESCRIPTION		Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	
	In-Situ Vane Shear, 40.5 S _{u undis} = 1277.7 S _{u remold} = 808.1 Sensitivity =	psf psf 1.6	13	<u>VS</u>												
	<u>S_{u undis} > 1750</u> Boring terminated at 43.50 ft	psf		VS												
		-														
		-														
		-														
		- - 55_														
WANGENG.GUI 1/4/10		-														
WANGLI		60														
	GENE		WATE	R LEVE												
	Begin Drilling 12-04-2015 Drilling Contractor Wang Testir	ng Services	. . C	Drill Rig			TMF	R [85%]								
<u></u>	Driller R&N Logger Drilling Method 2.25" HSA to 10 backfilled upon completio								Time After Drilling Depth to Water The stratification lines reported by tween soil types: the acceleration lines reported by the stratification lines reported by the stration lines reported by the		 roxima	ate bo	oundary	1		

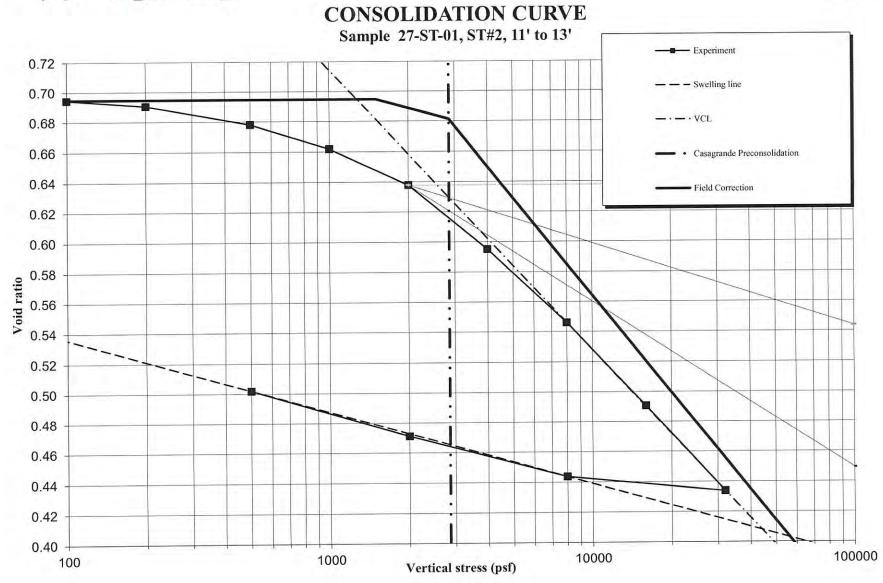
APPENDIX B

AR GDT <u>v</u> 11000401 GP.I Ы SIZE GRAIN ΝE

ONE-DIMENSIONAL CONSOLIDATION TEST AASHTO T 216 / ASTM D 2435

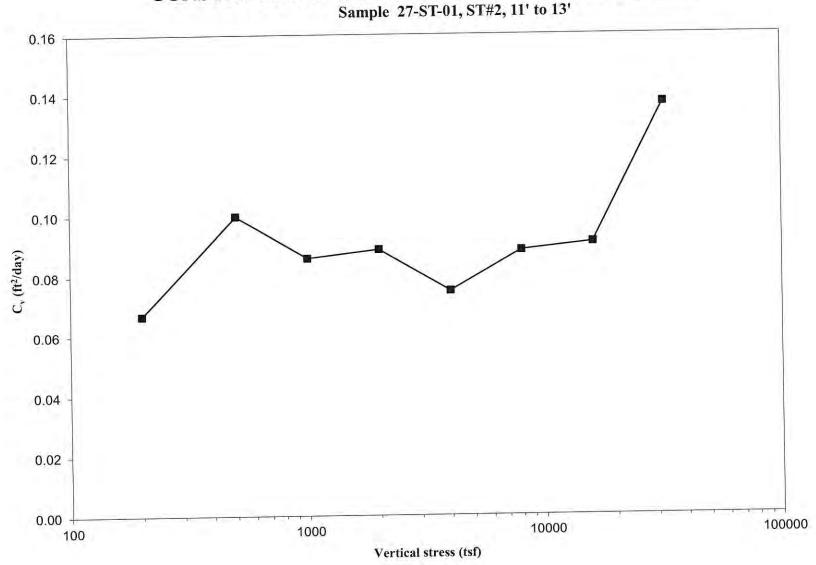
Project: Circle Interch	ange	Tested by: M. Snider	
Client: AECOM		Prepared by: M. Snider	
Soil Sample ID: Boring 27-ST	-01, ST#2, 11' to 13'	Test date: 11/12/2014	
Sample Description: Gray CLAY	with trace gravel (CL)	WEI: 1100-04-01	
Initial sample height =	1.002 in	Ring diameter =	2.495 in
Initial sample mass =	164.84 g	Ring mass =	109.56 g
Initial water content =	25.26%	Initial sample and ring mass =	274.40 g
Initial dry unit weight =	102.36 pcf	Tare mass =	73.00 g
Initial void ratio =	0.695	Final ring and sample mass =	267.10 g
Initial degree of saturation =	101.06%	Mass of wet sample and tare =	230.16 g
		Mass of dry sample and tare =	204.60 g
Final sample mass =	157.16 g	Initial dial reading =	0.01000 in
Final dry sample mass =	131.60 g	Final dial reading =	0.12070 in
Final water content =	19.42%	LL=	n.a. %
Final dry unit weight =	115.07 pcf	PL=	n.a. %
Final void ratio =	0.508	% Sand=	n.a. %
Final degree of saturation =	100.00%	% Silt=	n.a. %
Estimated specific gravity =	2.78	% Clay=	n.a. %
		In-Situ Vertical Effective Stress =	1500 psf

Compression and Swelling Indices


Compression index $C_c =$	0.186	Preconsolidation p	oressure,s _C
Field corrected $C_c =$	0.215	Casagrande Method =	2856 psf
Swelling index C _s =	0.048	Over-Consolidation Ratio (OCR) =	1.90
			Elamond

Load number	Vertical stress	Dial reading	System deflection	Vertical strain	Void ratio	C_v	Cae	Elapsed time
	psf	in	in	%		ft²/day	%	min
1	100.0	0.01013	0.00010	0.02	0.694	N/A	N/A	480
2	200.0	0.01232	0.00023	0.25	0.690	0.0667	0.09	1500
3	500.0	0.01932	0.00058	0.99	0.678	0.0998	0.07	3240
4	1000.0	0.02858	0.00090	1.94	0.662	0.0858	0.16	480
5	2000.0	0.04233	0.00135	3.36	0.638	0.0886	0.17	975
6	4000.0	0.06705	0.00193	5.89	0,595	0.0748	0.33	1740
7	8000.0	0.09545	0.00253	8.78	0.546	0.0882	0.32	1140
8	16000.0	0.12745	0.00324	12.04	0.491	0.0907	0.45	480
9	32000.0	0.16011	0.00413	15.39	0.434	0.1370	0.36	915
10	8000.0	0.15546	0.00295	14.81	0.444	N/A	N/A	480
11	2000.0	0.14028	0.00198	13.20	0.471	N/A	N/A	1335
11	500.0	0.12285	0.00123	11.38	0.502	N/A	N/A	3270

Date: 11.20.14 Date: 12/20/14 Prepared by: 1. Date: Checked by:



s:\netprojects\1870701\consolidation\ch13\lws_wang_mls_1870701consol_40to42feet_120910.xls

CONSOLIDATION COEFFICIENT (Cv) vs. VERTICAL STRESS Sample 27-ST-01, ST#2, 11' to 13'

UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL (AASHTO T 208 / ASTM D 2166)

Project: Circle Interchange Client: AECOM WEI Job No.: 1100-04-01 Soil Sample ID: 27-ST-01, ST#12 (41.0-43.0ft) Type/Condition: ST/Undisturbed Liquid Limit (%): NA Plastic Limit (%): NA

Average initial height $h_0 = 6.03$	in
Average initial diameter $d_0 = 2.84$	in
Height to diameter ratio= 2.13	
Mass of wet sample = 1371.50	g
Mass of dry sample and tare = 1188.00	g
Mass of tare $= 14.26$	g
Specific gravity $= 2.76$	(estimated)

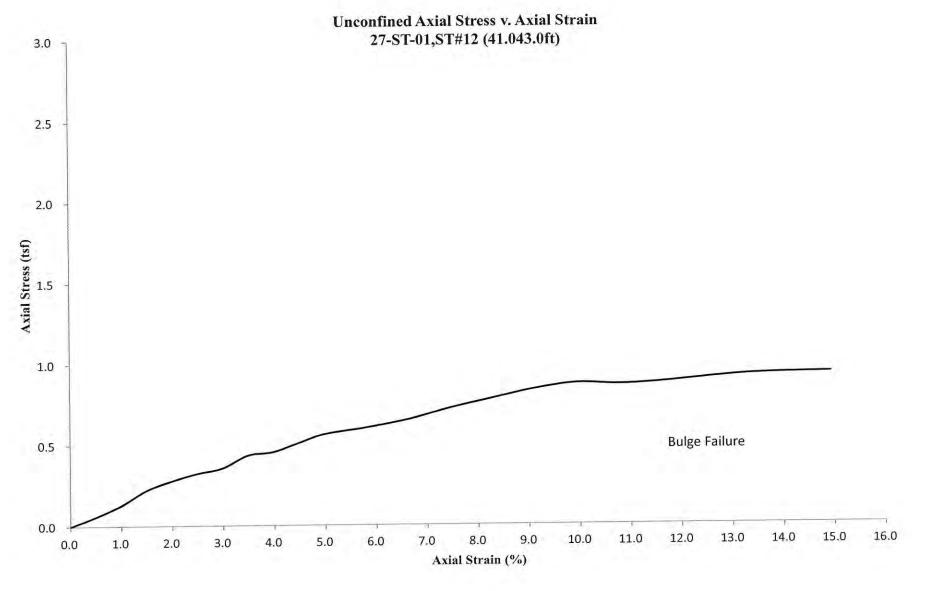
1

Analyst name: A. Mohammed Date received: 10/27/2014 Test date: 11/15/2014 Sample description: Gray Silty Clay trace Gravel

> Sand(%): NA Silt(%): NA Clay(%): NA (specimen) Initial water content w = 16.85% Initial unit weight g = 137.13 pcf pcf Initial dry unit weight $g_d = 117.35$ Initial void ratio $e_0 = 0.47$ Initial degree of saturation $S_r = 99\%$ Average Rate of Strain= 1%/min tsf Unconfined compressive strength $q_u = 0.93$ tsf Shear Strength= 0.47

Displacement (in)	Force (lbs)	Strain (%)	Stress (tsf)	
Δh	F	e	S	
0.00	0.00	0.00	0.00	
0.03	5.19	0.50	0.06	
0.06	11.41	1.00	0.13	
0.09	19.70	1.49	0.22	
0.12	24.89	1.99	0.28	
0.15	29.04	2.49	0.32	
0.18	32.15	2.99	0.36	
0.21	39.41	3.48	0.43	
0.24	41.48	3.98	0.45	
0.27	46.67	4.48	0.51	
0.30	51.85	4.98	0.56	
0.35	56.00	5.81	0.60	
0.40	61.18	6.63	0.65	
0.45	68.44	7.46	0.72	
0.50	74.66	8.29	0.78	
0.55	80.89	9.12	0.84	
0.60	85.03	9.95	0.87	
0.65	85.03	10.78	0.86	
0.70	87.11	11.61	0.88	
0.80	93.33	13.27	0.92	
0.90	96.44	14.93	0.93	
			-	

NOTES:


Prepared by:

Checked by:

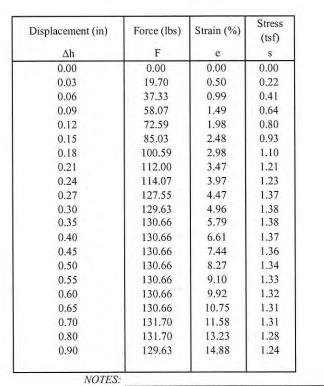
11.20.14 Date: 11/20/14 Date:

UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL (AASHTO T 208 / ASTM D 2166)

Project: Circle Interchange Client: AECOM WEI Job No.: 1100-04-01 Soil Sample ID: 27-ST-01, ST#13 (44.0-46.0ft) Type/Condition: ST/Undistubed Liquid Limit (%): NA Plastic Limit (%): NA

Average initial height $h_0 = 6.05$	in	
Average initial diameter $d_0 = 2.86$	in	
Height to diameter ratio= 2.12		
Mass of wet sample = 1331.10	g	
Mass of dry sample and tare = 1200.00	g	
Mass of tare = 72.52	g	
Specific gravity $= 2.76$	(estimated)	

Analyst name: A. Mohammed Date received: 10/27/2014 Test date: 11/15/2014 Sample description: Gray Silty Clay w.layer of Silt

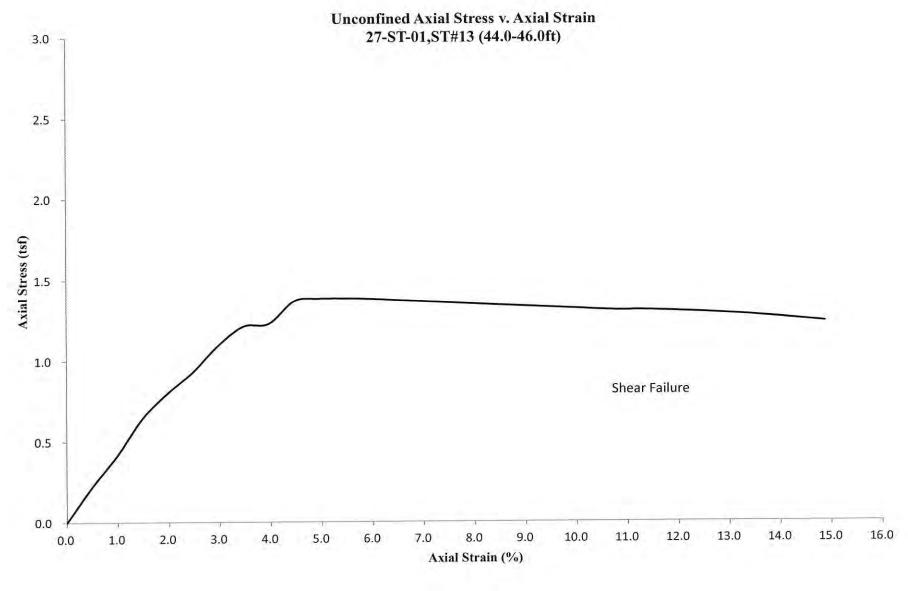

> Sand(%): NA Silt(%): NA Clay(%): NA

Initial water content $w = 18.06\%$	(specimen)
Initial unit weight g = 130.72	pcf
Initial dry unit weight $g_d = 110.72$	pcf
Initial void ratio $e_0 = 0.56$	
Initial degree of saturation $S_r = 90\%$	
Average Rate of Strain= 1%/min	
Unconfined compressive strength $q_u = 1.38$	tsf
Shear Strength= 0.69	tsf

1100 -04-01

44-46

27-57-1 57-13


Prepared by: _____

Checked by:

Date: 11.20.14 Date: 1/16/14

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

	The source of a most		
Project: Circle Intrechange		Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/12/2014	
Soil Sample ID: 27-ST-01, ST#1 (8	.0-10.0ft)	Sample description: Gray CLAY	
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.45 in	Initial water content w =	23.15%
Initial diameter d ₀ =	2.85 in	Initial unit weight $\gamma_w =$	130.13 pcf
Initial area $A_0 =$	6.37 in ²	Initial dry unit weight $\gamma_d =$	105.67 pcf
Mass of wet sample and tare $M_i =$	1198.48 g	Initial void ratio $e_0 =$	0.642
Mass of dry sample and tare $M_d =$	975.70 g	Initial degree of saturation S _r =	100%
Mass of tare $M_t =$	13.28 g		
Mass of sample Ms=	1185.20 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	10.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	1.91		
		Deviator stress at failure $D\sigma_f =$	0.44 tsf
		Major principal stress at failure $\sigma_1 =$	1.16 tsf

Major	principal	stress at	failure σ_1	-	1.16

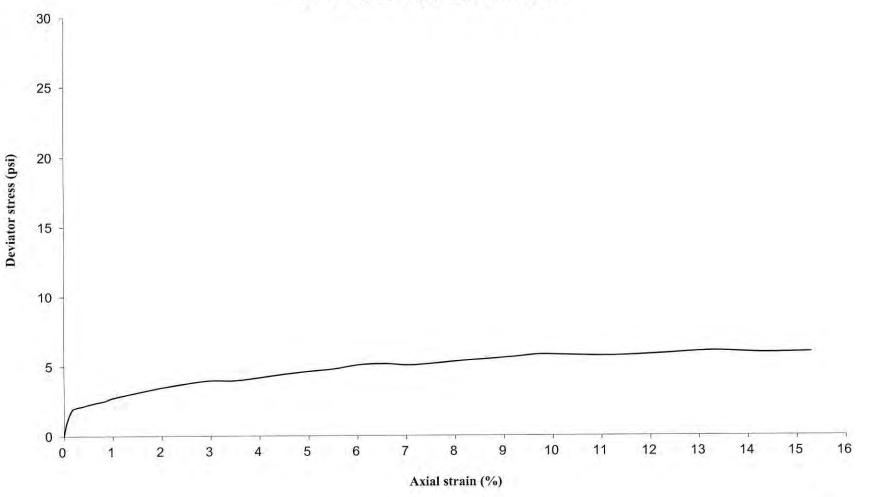
"/20/14

Date:

Δh 0.00 0.00 0.01 0.01 0.02 0.02	F 0.00 6.65 11.86 13.13 13.62	e 0.00 0.06 0.16	σ ₁ -σ ₃ 0.00 1.04	
0.00 0.01 0.01 0.02	6.65 11.86 13.13 13.62	0.06 0.16	1.04	
0.01 0.01 0.02	11.86 13.13 13.62	0.16		
0.01 0.01 0.02	13.13 13.62			Statement and American Statements
0.02	13.62	0.26	1.86	Ster
		0.26	2.05	- 11 (11 C
0.02		0.36	2.13	S3 412-
	14.24	0.46	2.23	50 514125
0.03	14.86	0.56	2.32	St. Links
0.04	15.47	0.66	2.41	
0.04	15.97	0.77	2.49	
0.05	16.60	0.87	2.58	
0.05	17.54	0.97	2.73	
0.08	20.19	1.49	3.12	
0.11	22.59	1.98	3.48	
0.14	24.54	2.48	3.76	
0.16	26.12	2.98	3.98	and the second s
0.19	26.25	3.48	3.98	
0.22	27.69	3.97	4.17	
0.24	29.52	4.49	4.42	
0.27	31.01	5.01	4.62	
0.30	32.33	5.53	4.79	
0.33	34.49	6.04	5.09	
0.36	35.16	6.55	5.16	
0.38	34.70	7.06	5.06	
0.41	35.69	7.57	5.18	
0.44	37.08	8.10	5.35	Bulge
0.47	38.20	8.64	5.48	
0.50	39.56	9.21	5.64	
0.53	40.96	9.72	5.80	
0.56	40.98	10.23	5.77	
0.61	41.01	11.23	5.71	
0.67	42.63	12.28	5.87	
0.72	44.46	13.28	6.05	
0.78	44.05	14.28	5.93	
0.83	44.93	15.28	5.97	and the state of the state

n

Checked by:



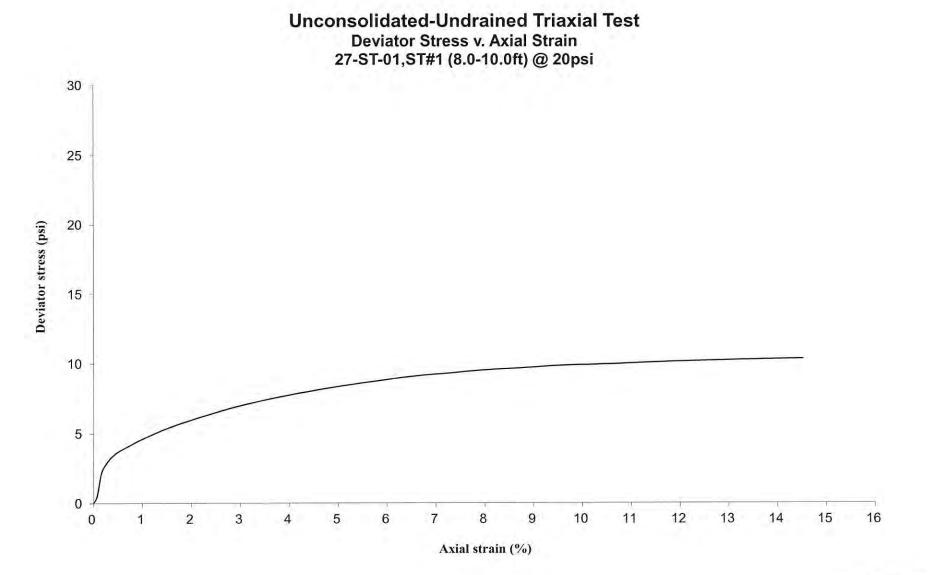
1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

Unconsolidated-Undrained Triaxial Test Deviator Stress v. Axial Strain 27-ST-01, ST#1 (8.0-10.0ft) @ 10 psi

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95


	AADITTO T 270	TROTINE BLOCO DE	
Project: Circle Interchange		Analyst name: M. de los Reyes Date received: 10/27/2014	
Client: AECOM		Test date: 11/12/2014	
WEI Job No.: 1100-04-01			
Soil Sample ID: 27-ST-01, ST#1 (8	.0-10.0ft)	Sample description: Gray CLAY	
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.79 in	Initial water content w =	20.32%
Initial diameter $d_0 =$	2.84 in	Initial unit weight $\gamma_w =$	129.98 pcf
Initial area $A_0 =$	6.35 in ²	Initial dry unit weight $\gamma_d =$	108.03 pcf
Mass of wet sample and tare $M_i =$	1266.80 g	Initial void ratio $e_0 =$	0.606
Mass of dry sample and tare $M_d =$	1055.10 g	Initial degree of saturation $S_r =$	93%
Mass of tare $M_t =$	13.30 g		
Mass of sample Ms=	1253.50 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.04		
		Deviator stress at failure $D\sigma_f =$	0.74 tsf
		Major principal stress at failure $\sigma_1 =$	2.18 tsf

	Deviator Stress (psi)	Axial Strain (%)	Axial Force (lbs)	Axial Displacement (in)
	σ_1 - σ_3	e	F	Δh
	0.00	0.00	0.00	0.00
	0.48	0.07	3.05	0.00
and the second second	2.13	0.16	13.56	0.01
A UP II A	2.78	0.25	17.66	0.01
	3.20	0.34	20.38	0.02
	3.53	0.44	22.49	0.03
	3.76	0.54	23.98	0.03
The second second second second second	3.96	0.64	25.30	0.04
	4.15	0.75	26.55	0.04
A CONTRACTOR OF THE OWNER OWNER OF THE OWNER	4.34	0.85	27.78	0.05
	4.51	0.95	28.93	0.05
	5.29	1.44	34.05	0.08
	5.89	1.94	38.12	0.11
	6.42	2.42	41.77	0.14
100	6.90	2.90	45.08	0.17
	7.29	3.39	47.92	0.20
and the second s	7.65	3.87	50.49	0.22
	7.97	4.36	52.90	0.25
	8.27	4.86	55.16	0.28
	8.52	5.34	57.14	0.31
	8.75	5.81	58.96	0.34
	8.97	6.27	60.71	0.36
	9.15	6.74	62.26	0.39
	9.28	7.21	63.45	0.42
Bulg	9.43	7.70	64.87	0.45
	9.56	8.18	66.07	0.47
	9.66	8.72	67.14	0.50
	9.77	9.19	68.24	0.53
	9.86	9.66	69.24	0.56
	9.95	10.62	70.66	0.61
	10.09	11.61	72.46	0.67
	10.19	12.60	74.02	0.73
	10.28	13.55	75.46	0.78
	10.35	14.52	76.82	0.84

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

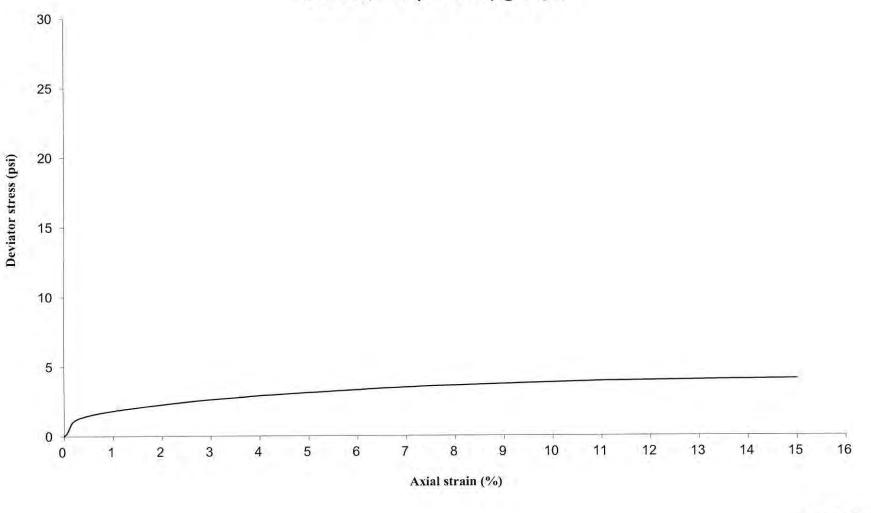
www.wangeng.com

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchang Client: AECOM	e	Analyst name: M. de los Reyes Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/12/2014	
Soil Sample ID: 27-ST-01, ST#1 (8	.0-10.0ft)	Sample description: Gray CLAY	
Type/Condition: ST/Undisturbed			
Initial height h ₀ =	5.58 in	Initial water content w =	25.27%
Initial diameter $d_0 =$	2.83 in	Initial unit weight $\gamma_w =$	130.04 pcf
Initial area A ₀ =	6.28 in ²	Initial dry unit weight $\gamma_d =$	103.81 pcf
Mass of wet sample and tare M _i =	1209.60 g	Initial void ratio $e_0 =$	0.671
Mass of dry sample and tare $M_d =$	968.30 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	13.30 g		
Mass of sample Ms=	1196.30 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	40.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	1.97		
		Deviator stress at failure $D\sigma_f =$	0.29 tsf

Major principal stress at failure $\sigma_1 =$ 3.17 tsf


Axial Displacement (in)	Axial Force (lbs)	Axial Strain (%)	Deviator Stress (psi)	
Δh	F	e	$\sigma_1 - \sigma_3$	
0.00	0.00	0.00	0.00	
0.00	1.48	0.07	0.24	
0.01	5.87	0.16	0.93	10
0.01	7.53	0.26	1.20	N N
0.02	8,41	0.36	1.33	1
0.03	9.06	0.45	1.44	1000
0.03	9.62	0.55	1.52	
0.04	10.07	0.66	1.59	20.0
0.04	10.49	0.75	1.66	
0.05	10.89	0.85	1.72	
0.05	11.28	0.95	1.78	
0.08	12.87	1.45	2.02	
0.11	14.29	1.94	2.23	
0.14	15.59	2.43	2.42	
0.16	16.75	2.92	2.59	
0.19	17.74	3.43	2.73	
0.22	18.83	3.92	2.88	
0.25	19.66	4.45	2.99	
0.28	20.54	4.97	3.11	
0.31	21.32	5.49	3.21	
0.33	22.08	5.99	3.30	
0.36	22.89	6.48	3.41	
0.39	23.53	6.97	3.48	
0.42	24.19	7.46	3.56	
0.44	24.66	7.96	3.61	Bulge
0.47	25.19	8.47	3.67	
0.50	25.77	9.02	3.73	
0.53	26.30	9.50	3.79	
0.56	26.74	9.99	3.83	
0.61	27.69	10.96	3.92	17
0.67	28.34	11.97	3.97	
0.72	29.00	12.98	4.02	
0.78	29.62	13.99	4.06	
0.84	30.18	15.00	4.08	
			red by:	Jay Date: 11.20.14
			ked by:	Jan Date: 11.20.14 A. f. Date: 11/20/14

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

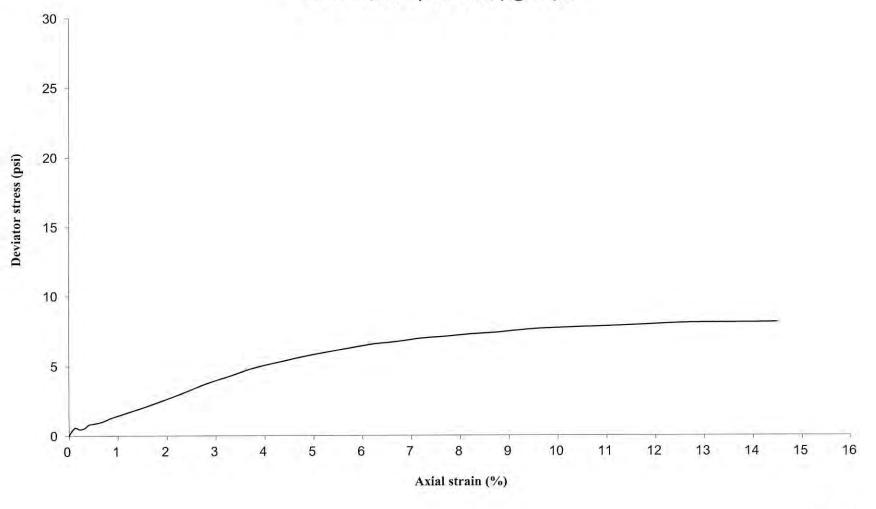
Unconsolidated-Undrained Triaxial Test Deviator Stress v. Axial Strain 27-ST-01,ST#1 (8.0-10.0ft) @ 40 psi

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	A CONTRACTOR OF A CONTRACT	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/19/2014	
Soil Sample ID: 27-ST-01, ST#3 (1	4.0-16.0ft)	Sample description: Gray SILTY CL	AY trace Gravel
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.68 in	Initial water content w =	21.78%
Initial diameter $d_0 =$	2.82 in	Initial unit weight $\gamma_w =$	132.78 pcf
Initial area $A_0 =$	6.26 in ²	Initial dry unit weight $\gamma_d =$	109.04 pcf
Mass of wet sample and tare $M_i =$	1425.89 g	Initial void ratio $e_0 =$	0.591
Mass of dry sample and tare $M_d =$	1204.50 g	Initial degree of saturation S _r =	100%
Mass of tare $M_t =$	187.79 g		
Mass of sample Ms=	1238.10 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	10.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.01		
		Deviator stress at failure $D\sigma_f =$	0.58 tsf

Major principal stress at failure $\sigma_1 =$ 1.30 tsf


Date: 11/20/14

	Axial Displacement (in)	Axial Force (lbs)	Axial Strain (%)	Deviator Stress (psi)	
	Δh	F	e	σ_1 - σ_3	
-	0.00	0.00	0.00	0.00	and the second se
	0.00	1.78	0.05	0.29	10 A A A A A A A A A A A A A A A A A A A
	0.01	3.64	0.13	0.58	
	0.01	2.93	0.22	0.47	
	0.02	3.40	0.31	0.54	
	0.02	4.96	0.40	0.79	
	0.03	5.37	0.50	0.85	¥20
	0.03	5.85	0.59	0.93	15.
	0.04	6.46	0.69	1.02	
	0.04	7.38	0.79	1.17	
	0.05	8.29	0.89	1.31	
	0.08	11.86	1.38	1.87	10 million (1990)
	0.10	15.56	1.85	2.44	
	0.13	19.63	2.32	3.06	22
	0.16	24.00	2.79	3.73	
	0.19	27.66	3.28	4.28	
	0.21	31.48	3.76	4.84	Linn mi ni
	0.24	34.34	4.25	5.26	1100-04-01
	0.27	37.08	4.75	5.65	22-57-1
	0.30	39.50	5.25	5.98	67-31-1 A
	0.33	41.69	5.74	6.28	572 (14 - 16)
	0.35	43.78	6.23	6.56	21 2114 - 101
	0.38	45.17	6.72	6.73	ID osi
	0.41	46.98	7.20	6.97	1100-04-01 27-57-1 573 (14'-16') 10 psi
	0.44	48.06	7.69	7.09	Bulge Failur
	0.46	49.40	8.18	7.25	
	0.50	50.49	8.73	7.37	
	0.52	51.91	9.21	7.53	
	0.55	53.06	9.69	7.66	
	0.60	54.51	10.64	7.79	
	0.66	55.95	11.60	7.91	
	0.71	57.63	12.56	8.05	
	0.77	58.48	13.52	8.08	
	0.82	59.37	14.50	8.11	

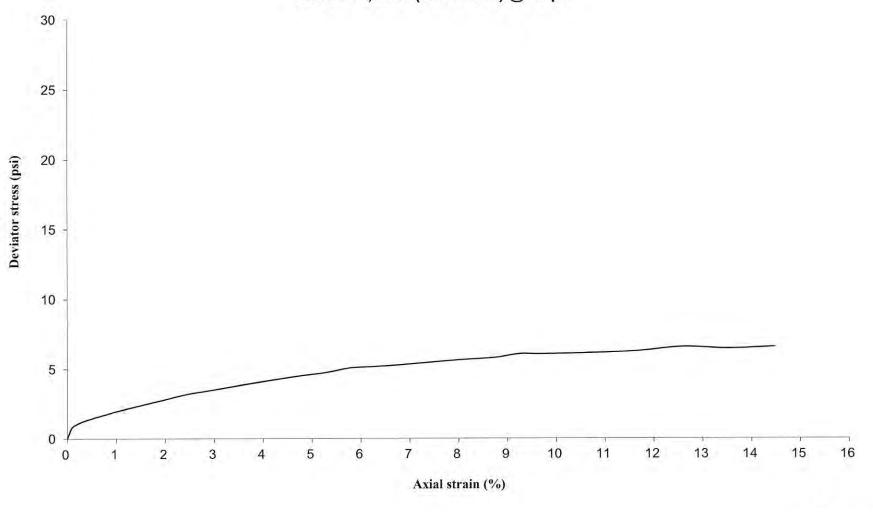
Checked by:

Unconsolidated-Undrained Triaxial Test Deviator Stress v. Axial Strain 27-ST-01,ST#3 (14.0-16.0ft) @ 10 psi

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

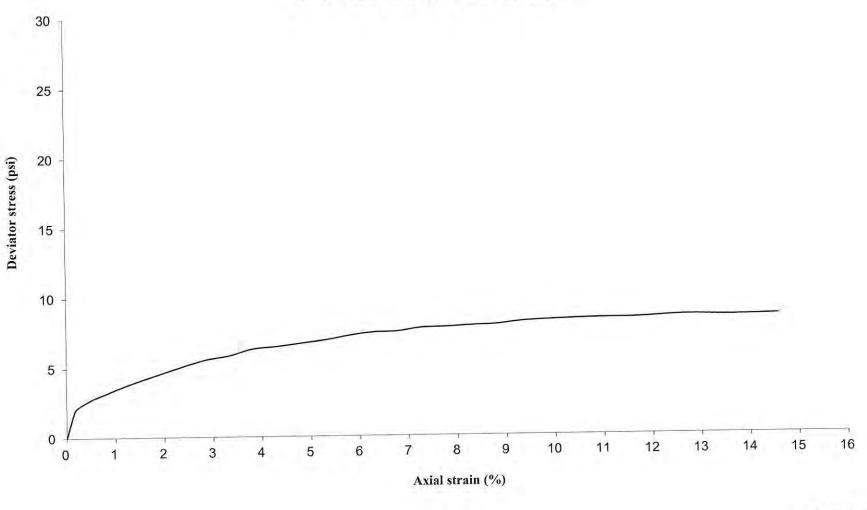
	1 4 1 4 6 6 6 1 K K K K K K K K K K K K K K K K	STATUS OF CALLS OF	
Project: Circle Interchange		Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/19/2014	
Soil Sample ID: 27-ST-01, ST#3 (1	4.0-16.0ft)	Sample description: Gray SILTY CL	AY trace Gravel
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.68 in	Initial water content w =	23.12%
Initial diameter $d_0 =$	2.84 in	Initial unit weight $\gamma_w =$	129.95 pcf
Initial area $A_0 =$	6.32 in ²	Initial dry unit weight $\gamma_d =$	105.55 pcf
Mass of wet sample and tare M _i =	1409.07 g	Initial void ratio $e_0 =$	0.643
Mass of dry sample and tare $M_d =$	1179.40 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	185.87 g		
Mass of sample Ms=	1223.20 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.00		
		Deviator stress at failure $D\sigma_f =$	0.47 tsf


Major principal stress at failure $\sigma_1 =$ 1.91 tsf

Axial Displacement	Axial Force	Axial Strain	Deviator Stress	
(in)	(lbs)	(%)	(psi)	
Δh	F	e	$\sigma_1 - \sigma_3$	
0.00	0.00	0.00	0.00	
0.01	4.87	0.09	0.77	
0.01	6.43	0.18	1.02	
0.02	7.46	0.28	1.18	
0.02	8.24	0.37	1.30	
0.03	8.95	0.47	1.41	
0.03	9.65	0.57	1.52	and the second se
0.04	10.28	0.67	1.62	
0.04	10.93	0.77	1.72	
0.05	11.57	0.86	1.82	
0.05	12.20	0.96	1.91	P2
0.08	15.05	1.45	2.35	
0.11	17.69	1.94	2.75	
0.14	20.47	2.42	3.16	
0.16	22.32	2.89	3.43	
0.19	24.35	3.38	3.72	
0.22	26.28	3.84	4.00	the second s
0.25	28.22	4.33	4.27	line of at
0.27	30.00	4.81	4.52	1100-04-01
0.30	31.59	5.29	4.74	23-57-1
0.33	33.90	5.77	5.06	er all i it le
0.35	34.70	6.24	5.15	27-57-1 573 (14'-16')
0.38	35.60	6.73	5.26	
0.41	36.72	7.21	5.39	20 psi
0.44	37.94	7.70	5.54	Bulge
0.47	39.04	8.20	5.67	
0.50	40.18	8.76	5.80	
0.52	42.19	9.24	6.06	
0.55	42.39	9.72	6.06	
0.61	43.35	10.68	6.13	
0.66	44.78	11.64	6.26	
0.71	47.51	12.59	6.57	
0.77	47.15	13.53	6.45	
0.82	48.62	14.48	6.58	
		Prepa	red by:	Jary Date: 11.20.14 Date: 11/20/14
		Chaol	ked by:	L Date: 11/20/14

Unconsolidated-Undrained Triaxial Test Deviator Stress v. Axial Strain 27-ST-01,ST#3 (14.0-16.0ft) @ 20 psi

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST


AASHTO T 296 / ASTM D 2850-95

	AADIIIO I MIOI			
Project: Circle Interchange Client: AECOM WEI Job No.: 1100-04-01 Soil Sample ID: 27-ST-01, ST#3 (1-		Analyst name: M. de los Reyes Date received: 10/27/2014 Test date: 11/19/2014 Sample description: Gray SILTY CL/	AY trace Gravel	
Type/Condition: ST/Undisturbed Initial height $h_0 =$ Initial diameter $d_0 =$	5.72 in 2.81 in	Initial water content $w =$ Initial unit weight $\gamma_w =$	21.88% 134.04 pcf	
Initial area A_0 = Mass of wet sample and tare M_i = Mass of dry sample and tare M_d =	6.20 in ² 1413.00 g 1188.90 g	Initial dry unit weight γ_d = Initial void ratio e_0 = Initial degree of saturation S_r =	109.98 pcf 0.577 100%	
$\begin{array}{l} Mass \ of \ tare \ M_t = \\ Mass \ of \ sample \ Ms = \\ Estimated \ specific \ gravity \ G_s = \\ Cell \ confining \ pressure \ \sigma_3 = \\ Rate \ of \ strain = \end{array}$	164.60 g 1248.40 g 2.78 40.0 psi 1 %/min	Liquid Limit (%): Plastic Limit (%): Sand(%): Silt(%):	NA NA NA NA	
Proving Ring Factor = Height to diameter ratio =	1.000 2.04	Clay(%): Deviator stress at failure $D\sigma_f =$ Major principal stress at failure $\sigma_1 =$	0.61 tsf 3.49 tsf	

Axial Displacement (in)	Axial Force (lbs)	Axial Strain (%)	Deviator Stress (psi)	
Δh	F	e	σ_1 - σ_3	
0.00	0.00	0.00	0.00	1-
0.00	6.23	0.08	1.00	
0.01	12.22	0.17	1.97	10 miles
0.02	14.15	0.27	2.28	45
0.02	15.39	0.36	2.47	82
0.03	16.54	0.45	2.66	40
0.03	17.66	0.55	2.83	
0.04	18.48	0.65	2.96	
0.04	19.42	0.75	3.11	6
0.05	20.26	0.85	3.24	2
0.05	21.22	0.95	3.39	
0.08	25.22	1.43	4.01	1 124
0.11	28.78	1.92	4.55	
0.14	32.35	2.39	5.09	
0.16	35.43	2.86	5.55	
0.19	37.38	3.34	5.83	
0.22	40.56	3.81	6.29	1100-04-01
0.25	41.84	4.31	6.46	100 million (100 m
0.28	43.51	4.81	6.68	27 - 57 - 1 573 (14' - 16') 40pri
0.30	45.20	5.31	6.90	
0.33	47.44	5.80	7.21	573 (14'-16)
0.36	49.07	6.29	7.42	
0.39	49.66	6.78	7.47	Hopsi
0.42	51.55	7.26	7.71	
0.44	52.16	7.76	7.76	Bulge
0.47	53.05	8.26	7.85	
0.50	53.85	8.81	7.92	
0.53	55.44	9.29	8.11	
0.56	56.36	9.77	8.20	
0.61	57.70	10.73	8.31	
0.67	58.58	11.70	8.34	
0.73	60.34	12.67	8.50	
0.78	60.61	13.62	8.44	
0.83	61.67	14.58	8.50	
		Prep	bared by:	Date: 11.20.14 Date: 11/20/14

Unconsolidated-Undrained Triaxial Test Deviator Stress v. Axial Strain 27-ST-01,ST#3 (14.0-16.0ft) @ 40 psi

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchang	e	Analyst name: M. de los Reyes			
Client: AECOM		Date received: 10/27/2014			
WEI Job No.: 1100-04-01		Test date: 11/17/2014			
Soil Sample ID: 27-ST-01, ST#7 (2	6.0-28.0ft)	Sample description: Gray SILTY CL	AY trace Gravel		
Type/Condition: ST/Undisturned					
Initial height h ₀ =	5.65 in	Initial water content w =	25.13%		
Initial diameter $d_0 =$	2.86 in	Initial unit weight $\gamma_w =$	127.32 pcf		
Initial area $A_0 =$	6.40 in ²	Initial dry unit weight $\gamma_d =$	101.74 pcf		
Mass of wet sample and tare $M_i =$	1222.00 g	Initial void ratio $e_0 =$	0.705		
Mass of dry sample and tare $M_d =$	979.30 g	Initial degree of saturation S _r =	99%		
Mass of tare $M_t =$	13.70 g				
Mass of sample Ms=	1208.30 g	Liquid Limit (%):	NA		
Estimated specific gravity Gs =	2.78	Plastic Limit (%):	NA		
Cell confining pressure $\sigma_3 =$	10.0 psi	Sand(%):	NA		
Rate of strain =	1 %/min	Silt(%):	NA		
Proving Ring Factor =	1.000	Clay(%):	NA		
Height to diameter ratio =	1.98				
		Deviator stress at failure $D\sigma_{r} =$	0.55 tsf		

1	1100-04-01
1. K	2=-57-01
- Andrews	57-07(26-5)
1.	lo PSI
200	THE R. P. LEWIS CO.
	1
	- A
	AND STATES
10	
	Bulge Failure

11.20.14

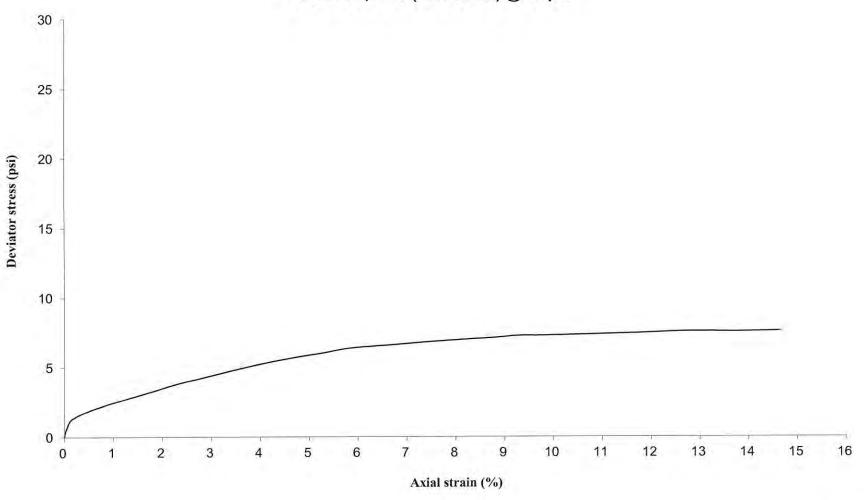
114

11/20

Date:

Date:

10m


E

Checked by:

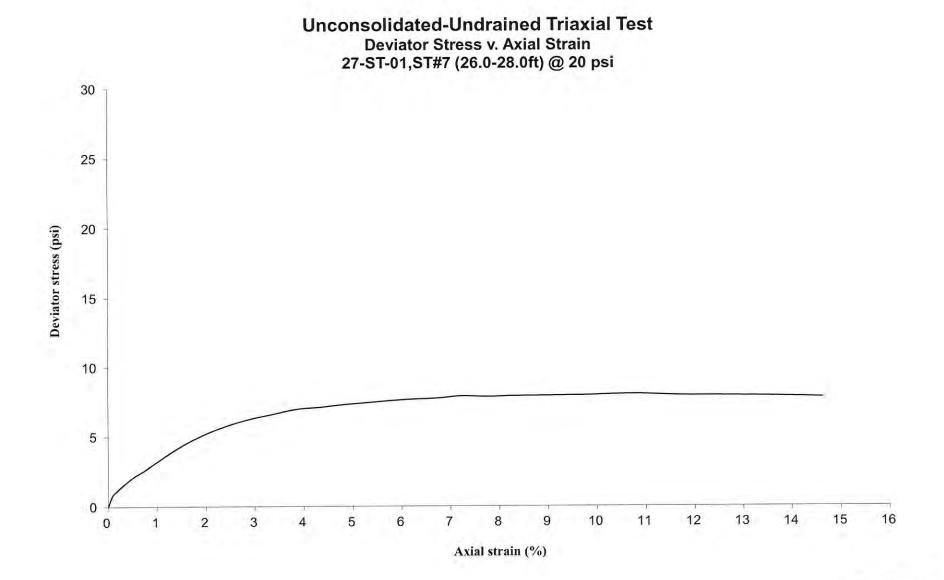
Axial Displacement (in)	Axial Force (lbs)	Axial Strain (%)	Deviato Stress (psi)
Δh	F	e	σ1-σ3
0.00	0.00	0.00	0.00
0.00	2.74	0.02	0.43
0.01	7.47	0.11	1.17
0.01	9.10	0.21	1.42
0.02	10.28	0.30	1.60
0.02	11.25	0.40	1.75
0.03	12.11	0.50	1.88
0.03	12.97	0.60	2.01
0.04	13.76	0.70	2.13
0.05	14.52	0.80	2.25
0.05	15.30	0.90	2.37
0.08	18.65	1.40	2.87
0.11	21.96	1.88	3.36
0.13	25.36	2.36	3.87
0.16	28.04	2.83	4.25
0.19	30.95	3.31	4.67
0.21	33.66	3.78	5.06
0.24	36.31	4.28	5.43
0.27	38.62	4.78	5.74
0.30	40.60	5.27	6.01
0.33	42.93	5.76	6.32
0.35	44.25	6.24	6.48
0.38	45.29	6.73	6.60
0.41	46.50	7.22	6.74
0.44	47.63	7.73	6.86
0.47	48.74	8.24	6.98
0.50	49.83	8.80	7.10
0.52	51.13	9.29	7.24
0.55	51.47	9.78	7.25
0.61	52.61	10.75	7.33
0.66	53.91	11.75	7.43
0.72	55.41	12.73	7.55
0.77	55.90	13.69	7.54
0.83	56.90	14.65	7.58

Unconsolidated-Undrained Triaxial Test Deviator Stress v. Axial Strain 27-ST-01,ST#7 (26.0-28.0ft) @ 10 psi

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

	INTERNATION I MYO		
Project: Circle Interchange		Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/17/2014	and the second
Soil Sample ID: 27-ST-01, ST#7 (2	6.0-28.0ft)	Sample description: Gray SILTY CL.	AY trace Gravel
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.70 in	Initial water content w =	24.93%
Initial diameter $d_0 =$	2.85 in	Initial unit weight $\gamma_w =$	128.36 pcf
Initial area $A_0 =$	6.36 in ²	Initial dry unit weight $\gamma_d =$	102.74 pcf
Mass of wet sample and tare $M_i =$	1234.50 g	Initial void ratio $e_0 =$	0.688
Mass of dry sample and tare $M_d =$	990.90 g	Initial degree of saturation S _r =	100%
Mass of tare $M_t =$	13.70 g		
Mass of sample Ms=	1220.80 g	Liquid Limit (%):	NA
Estimated specific gravity Gs =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.00		
		Deviator stress at failure $D\sigma_f =$	0.58 tsf
		Major principal stress at failure $\sigma_1 =$	2.02 tsf


Axial Displacement (in)	Axial Force (lbs)	Axial Strain (%)	Deviator Stress (psi)	
Δh	F	e	σ1-α3	
0.00	0.00	0.00	0.00	1100-04-01 27-57-01 57-07 (25-20) 20 PST
0.00	4.81	0.08	0.76	1100 04-0)
0.01	7.23	0.18	1.13	27-57-01
0.02	9.15	0.27	1.43	CT-CZ lac an
0.02	10.99	0.37	1.72	S/ - OF (26-20)
0.03	12.75	0.47	1.99	20 PCT
0.03	14.31	0.57	2.24	
0.04	15.59	0.67	2.43	
0.04	17.06	0.77	2.66	HIT-MAN
0.05	18.61	0.87	2.90	
0.06	20.16	0.97	3.14	
0.08	27.48	1.46	4.26	
0.11	33.22	1.95	5.12	
0.14	37.62	2.43	5.77	Contraction of the
0.16	40.98	2.89	6.26	
0.19	43.57	3.38	6.62	
0.22	46.11	3.85	6.97	
0.25	47.27	4.34	7.11	
0.28	48.80	4.83	7.30	
0.30	49.99	5.31	7.44	A TOTAL CONTRACTOR
0.33	51.13	5.78	7.57	
0.36	52.09	6.26	7.68	
0.38	52.84	6.75	7.74	
0.41	54.14	7.23	7.89	
0.44	54.11	7.73	7.85	Bul
0.47	54.74	8.24	7.90	
0.50	55.19	8.78	7.91	
0.53	55.65	9.27	7.94	
0.56	56.04	9.76	7.95	
0.61	57.30	10.74	8.04	
0.67	57.18	11.73	7.93	
0.72	57.66	12.70	7.91	
0.78	57.99	13.67	7.87	
0.83	58.11	14.62	7.80	
		During	ared by:	Jay Date: 11.20.14

1. F

Checked by: _

Date: 1/20/14

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

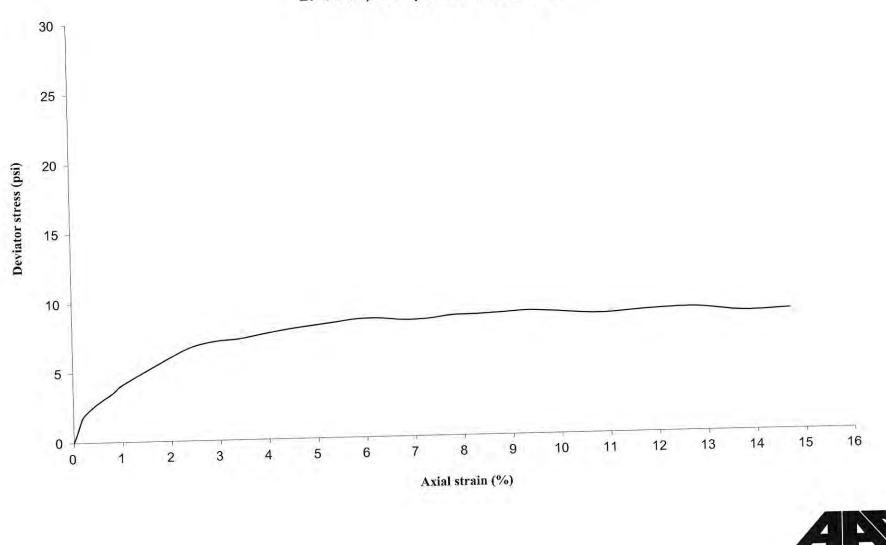
	The toring a most		
Project: Circle Interchange		Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/17/2014	
Soil Sample ID: 27-ST-01, ST# 7 (2	.6.0-28.0ft)	Sample description: Gray SILTY CLA	AY trace Gravel
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.66 in	Initial water content w =	25.20%
Initial diameter $d_0 =$	2.84 in	Initial unit weight $\gamma_w =$	128.37 pcf
Initial area $A_0 =$	6.34 in ²	Initial dry unit weight $\gamma_d =$	102.54 pcf
Mass of wet sample and tare $M_i =$	1224.75 g	Initial void ratio $e_0 =$	0.692
Mass of dry sample and tare M _d =	981.20 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	14.55 g		
Mass of sample Ms=	1210.20 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	40.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	1.99		
		Deviator stress at failure $D\sigma_f =$	0.64 tsf
		Major principal stress at failure $\sigma_1 =$	3.52 tsf

Axial	Axial	Axial	Deviator
Displacement	Force	Strain	Stress
(in)	(lbs)	(%)	(psi)
Δh	F	e	$\sigma_1 - \sigma_3$
0.00	0.00	0.00	0.00
0.00	4.90	0.08	0.77
0.01	10.84	0.18	1.71
0.02	13.46	0.27	2.12
0.02	15.44	0.37	2.42
0.03	17.13	0.46	2.69
0.03	18.77	0.57	2.94
0.04	20.38	0.67	3.19
0.04	21.90	0.77	3.42
0.05	23.70	0.87	3.70
0.06	25.77	0.97	4.02
0.08	32.27	1.47	5.01
0.11	38.33	1.95	5.92
0.14	43.76	2.43	6.73
0.16	46.58	2.91	7.13
0.19	47.71	3.39	7.27
0.22	49.92	3.87	7.56
0.25	52.17	4.36	7.87
0.27	53.98	4.85	8.10
0.30	55.63	5.34	8.30
0.33	57.40	5.82	8.52
0.36	57.87	6.30	8.55
0.38	57.18	6.79	8.40
0.41	57.80	7.27	8.45
0.44	59.61	7.77	8.67
0.47	60.22	8.28	8.71
0.50	61.21	8.83	8.80
0.53	62.21	9.33	8.89
0.56	62.01	9.82	8.82
0.61	61.20	10.80	8.61
0.67	63.50	11.80	8.83
0.72	64.93	12.78	8.93
0.78	63.24	13.74	8.60
0.83	64.75	14.70	8.71

Date: 11.20.14 Date: 4/20/14

an

1:P

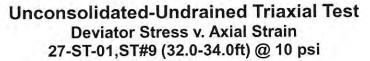

Checked by: _

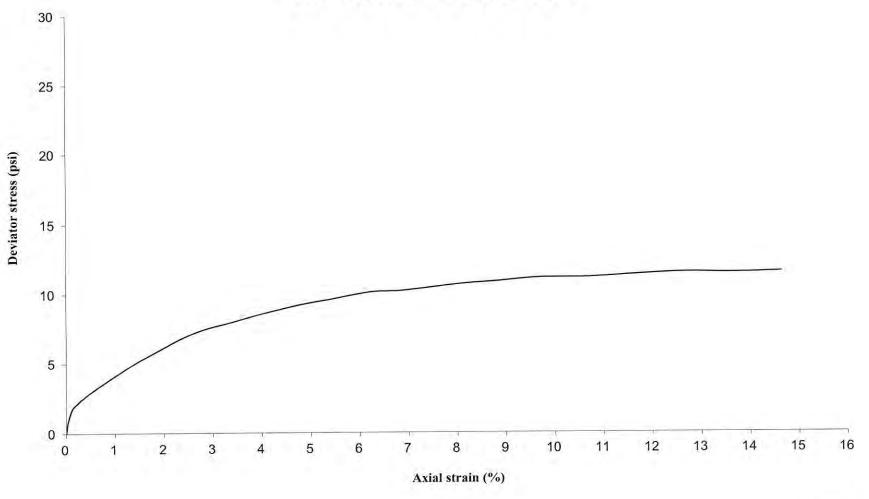
AASHTO R18

Unconsolidated-Undrained Triaxial Test Deviator Stress v. Axial Strain 27-ST-01,ST#7 (26.0-28.0ft) @ 40 psi

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95


Project: Circle Interchange		Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/18/2014	
Soil Sample ID: 27-ST-01, ST# 9 (3	32.0-34.0ft)	Sample description: Gray SILTY CL	AY
Type/Condition: ST/Undisturbed			
Initial height h ₀ =	5.65 in	Initial water content w =	24.22%
Initial diameter d ₀ =	2.85 in	Initial unit weight $\gamma_w =$	128.04 pcf
Initial area $A_0 =$	6.40 in ²	Initial dry unit weight $\gamma_d =$	103.08 pcf
Mass of wet sample and tare $M_i =$	1401.10 g	Initial void ratio $e_0 =$	0.683
Mass of dry sample and tare $M_d =$	1164.50 g	Initial degree of saturation S _r =	99%
Mass of tare $M_t =$	187.60 g		
Mass of sample Ms=	1213.50 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	10.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	1.98		
		Deviator stress at failure $D\sigma_f =$	0.83 tsf

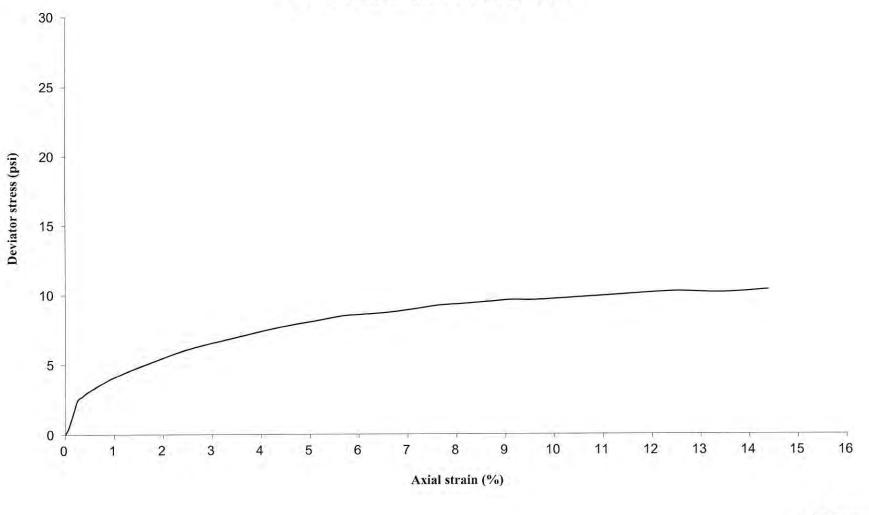

Major principal stress at failure $\sigma_1 = 1.55$ tsf

ess	Deviator Stress (psi)	Axial Strain (%)	Axial Force (lbs)	Axial Displacement (in)
σ3	σ_1 - σ_3	e	F	Δh
	0.00	0.00	0.00	0.00
	0.78	0.03	4.96	0.00
	1.72	0.12	11.01	0.01
	2.09	0.21	13.38	0.01
	2.38	0.30	15.27	0.02
	2.65	0.39	17.00	0.02
0	2.90	0.49	18.65	0.03
14 1100-04	3.14	0.59	20.19	0.03
	3.38	0.69	21.75	0.04
51 22-3	3.61	0.79	23.30	0.04
36	3.86	0.89	24.91	0.05
77	4.97	1.39	32.21	0.08
00 10 8	5.90	1.87	38.47	0.11
32	6.82	2.37	44.67	0.13
48	7.48	2.85	49.22	0.16
)3	7.93	3.34	52.44	0.19
41	8.41	3.83	55.92	0.22
36	8.86	4.34	59.22	0.25
27	9.27	4.85	62.29	0.27
56	9.56	5.34	64.61	0.30
39	9.89	5.83	67.17	0.33
15	10.15	6.31	69.26	0.36
20	10.20	6.79	69.97	0.38
37	10.37	7.27	71.51	0.41
.57 Bul	10.57	7.77	73.30	0.44
.74	10.74	8.26	74.91	0.47
.87	10.87	8.80	76.23	0.50
	11.02	9.28	77.70	0.52
	11.13	9.75	78.87	0.55
	11.15	10.69	79.84	0.60
.36	11.36	11.69	82.25	0.66
	11.50	12.68	84.23	0.72
	11.45	13.66	84.83	0.77
.53	11.53	14.64	86.42	0.83
Jary Date: 11.20.14 1. L Date: 11/20/14	red by:	Prepa		

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	a	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/18/2014	
Soil Sample ID: 27-ST-01, ST# 9 (32.0-34.0ft)	Sample description: Gray SILTY CL	AY
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.73 in	Initial water content w =	24.37%
Initial diameter $d_0 =$	2.82 in	Initial unit weight $\gamma_w =$	128.93 pcf
Initial area A ₀ =	6.27 in ²	Initial dry unit weight $\gamma_d =$	103.67 pcf
Mass of wet sample and tare $M_i =$	1404.41 g	Initial void ratio $e_0 =$	0.673
Mass of dry sample and tare $M_d =$	1166.20 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	188.71 g		
Mass of sample Ms=	1215.70 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.03		
		Deviator stress at failure $D\sigma_f =$	0.75 tsf


Major principal stress at failure $\sigma_1 = 2.19$ tsf

	Deviator Stress (psi)	Axial Strain (%)	Axial Force (lbs)	Axial Displacement (in)
	σ1-σ3	e	F	Δh
	0.00	0.00	0.00	0.00
	0.49	0.07	3.07	0.00
	1.50	0.16	9.41	0.01
	2.46	0.25	15.47	0.01
	2.73	0.34	17.19	0.02
	2.99	0.44	18.81	0.03
1100-04-0	3.22	0.54	20.26	0.03
27-57-1/51	3.43	0.64	21.62	0.04
32-34	3.62	0.74	22.86	0.04
DF 37	3.81	0.84	24.06	0.05
20 851	3.99	0.93	25.22	0.05
A CONTRACTOR	4.69	1.41	29.82	0.08
a stranger and a stranger	5.31	1.88	33.89	0.11
	5.91	2.35	37.91	0.13
した記録	6.37	2.81	41.10	0.16
10 250 min	6.77	3.29	43.87	0.19
	7.16	3.76	46.64	0.22
	7.57	4.25	49.52	0.24
	7.88	4.72	51.84	0.27
	8.17	5.20	54.00	0.30
	8.48	5.67	56.34	0.33
	8.60	6.15	57.45	0.35
	8.75	6.64	58.70	0.38
	8.97	7.12	60.50	0.41
Bulge Fa	9.23	7.62	62.60	0.44
	9.35	8.11	63.75	0.46
	9.49	8.65	65.13	0.50
	9.63	9.13	66.41	0.52
	9.62	9.61	66.72	0.55
	9.83	10.58	68.86	0.61
	10.04	11.54	71.15	0.66
	10.24	12.49	73.31	0.72
	10.16	13.44	73.54	0.77
	10.37	14.39	75.91	0.82
Tay Date: 11.20.14 Life Date: 11/20/14	red by:	Prepa	/5.91	0.82

AASHTO RIS

Unconsolidated-Undrained Triaxial Test Deviator Stress v. Axial Strain 27-ST-01,ST#9 (32.0-34.0ft) @ 20 psi

AASHTO R18

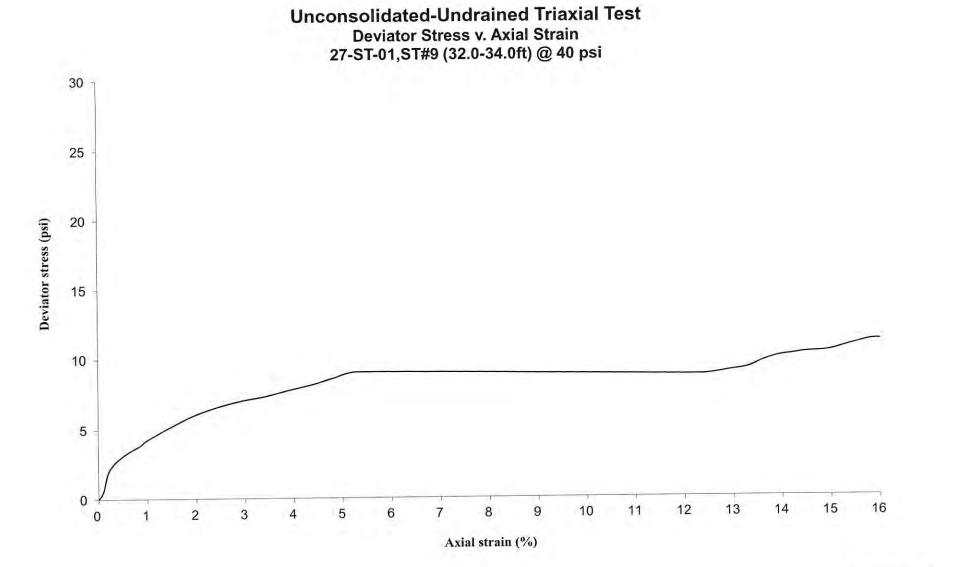
UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

The state of the second second second			
Project: Circle Interchan	ge	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/18/2014	
Soil Sample ID: 27-ST-01, ST# 9	(32.0-34.0ft)	Sample description: Gray SILTY CL.	AY
Type/Condition: ST/Undisturbed			
Initial height h ₀ =	5.70 in	Initial water content w =	23.66%
Initial diameter $d_0 =$	2.84 in	Initial unit weight $\gamma_w =$	129.69 pcf
Initial area $A_0 =$	6.35 in ²	Initial dry unit weight $\gamma_d =$	104.87 pcf
Mass of wet sample and tare M _i =	1417.98 g	Initial void ratio $e_0 =$	0.654
Mass of dry sample and tare $M_d =$	1182.20 g	Initial degree of saturation S _r =	100%
Mass of tare $M_t =$	185.68 g		
Mass of sample Ms=	1232.30 g	Liquid Limit (%):	NA
Estimated specific gravity Gs =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	40.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.01		
		Deviator stress at failure $D\sigma_f =$	0.82 tsf
		Major principal stress at failure $\sigma_1 =$	3.70 tsf

Major principal stress at failure $\sigma_1 =$	3.70 1
--	--------

Date:


"120/14

	Deviator Stress (psi)	Axial Strain (%)	Axial Force (lbs)	Axial Displacement (in)
	σ1-σ3	e	F	Δh
	0.00	0.00	0.00	0.00
The second s	0.53	0.10	3.34	0.01
	1.81	0.19	11.52	0.01
	2.38	0.28	15.15	0.02
	2.74	0.38	17.45	0.02
1100-04-0 27-5T-1 (ST 32-34	3.02	0.48	19.27	0.03
	3.27	0.58	20.85	0.03
21-51-1(5)	3.49	0.68	22.29	0.04
32-34	3.68	0.78	23.56	0.04
40 PS1	3.89	0.88	24.92	0.05
stoks]	4.19	0.98	26.89	0.06
	5.17	1.48	33.33	0.08
	5.98	1.95	38.73	0.11
	6.58	2.44	42.84	0.14
	7.01	2.93	45.86	0.17
	7.31	3.41	48.03	0.19
	7.73	3.89	51.07	0.22
	8.13	4.38	53.97	0.25
	8.62	4.86	57.54	0.28
	9.01	5.33	60.44	0.30
	8.73	12.30	63.19	0.70
	8.86	12.71	64.46	0.72
	8.96	12.87	65.31	0.73
	9.16	13.25	67.00	0.76
Bulge Fa	9.36	13.43	68.61	0.77
	9.66	13.62	70.97	0.78
	9.99	13.94	73.69	0.80
	10.12	14.24	74.91	0.81
	10.24	14.46	75.99	0.82
	10.36	14.97	77.38	0.85
	10.78	15.42	80.95	0.88
	11.15	15.88	84.11	0.91
	11.08	16.35	84.09	0.93
	11.33	16.80	86.42	0.96

Checked by:

ŀ

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

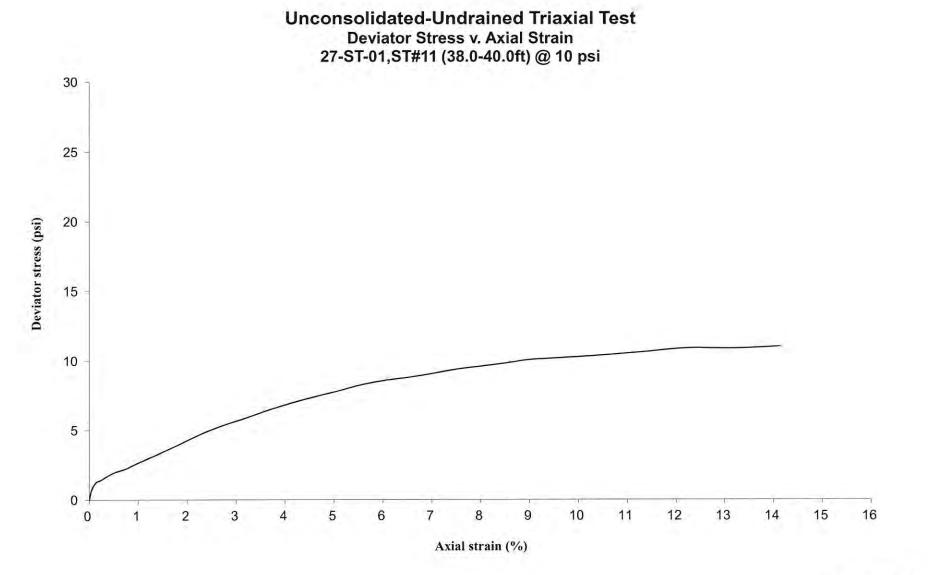
AASHTO T 296 / ASTM D 2850-95

	1 2 2 2 3 7 5 1 5 1 5 1 5 C 5 C 5	A BOR AT A D D A F C C F	
Project: Circle Interchang	2	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/18/2014	
Soil Sample ID: 27-ST-01, ST# 11	(38.0-40.0ft)	Sample description: Gray SILTY CL	AY trace Gravel
Type/Condition: ST/Undisturbed			
Initial height h ₀ =	5.78 in	Initial water content w =	21.69%
Initial diameter d ₀ =	2.85 in	Initial unit weight $\gamma_w =$	131.61 pcf
Initial area $A_0 =$	6.36 in ²	Initial dry unit weight $\gamma_d =$	108.15 pcf
Mass of wet sample and tare M _i =	1457.41 g	Initial void ratio $e_0 =$	0.604
Mass of dry sample and tare $M_d =$	1231.00 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	187.11 g		
Mass of sample Ms=	1270.30 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	10.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.03		
		Deviator stress at failure $D\sigma_f =$	0.79 tsf
		1 사람은 가슴 가슴 가슴 가슴 가슴 가슴 가슴 가슴 가슴이 가슴	S 10.2 5. 2

Major principal stress at failure $\sigma_1 = 1.51$ tsf

11/20/14

Date:


	Deviator Stress	Axial Strain	Axial Force	Axial Displacement
	(psi)	(%)	(lbs)	(in)
	σ1-03	e	F	Δh
	0.00	0.00	0.00	0.00
	0.71	0.05	4.54	0.00
	1.24	0.14	7.88	0.01
	1.38	0.23	8.82	0.01
	1.58	0.32	10.07	0.02
	1.76	0.41	11.24	0.02
	1.94	0.50	12.43	0.03
	2.06	0.60	13.16	0.03
	2.16	0.70	13.82	0.04
	2.29	0.79	14.71	0.05
	2.47	0.89	15.86	0.05
	3.22	1.36	20.75	0.08
	3.96	1.83	25.63	0.11
	4.72	2.28	30.73	0.13
	5.35	2.74	34.99	0.16
	5.89	3.21	38.70	0.19
	6.46	3.67	42.66	0.21
	6.98	4.15	46.32	0.24
	7.42	4.63	49.48	0.27
	7.84	5.11	52.53	0.30
	8.28	5.58	55.81	0.32
	8.59	6.05	58.16	0.35
	8.81	6.54	59.94	0.38
	9.09	7.02	62.17	0.41
Bulge F	9.38	7.51	64.52	0.43
	9.59	7.99	66.29	0.46
	9.82	8.52	68.29	0.49
	10.07	8.98	70.38	0.52
	10.18	9.45	71.50	0.55
	10.37	10.40	73.66	0.60
	10.65	11.34	76.38	0.66
	10.92	12.26	79.15	0.71
	10.89	13,19	79.83	0.76
	11.04	14.14	81.79	0.82

1.4

Checked by: _

AASHTO R18

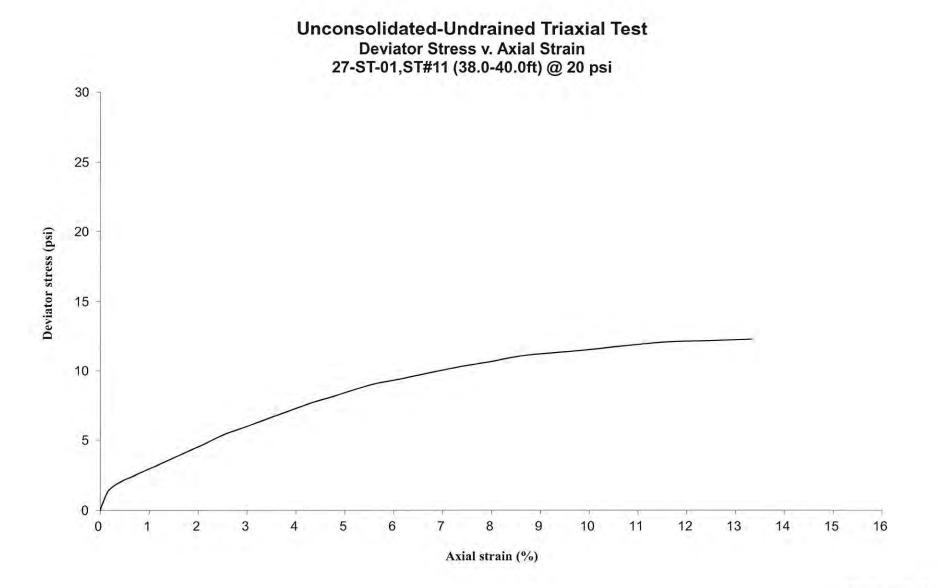
UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange		Analyst name: M. de los Reyes	
Client: AECOM		Date received: 10/27/2014	
WEI Job No.: 1100-04-01		Test date: 11/18/2014	
Soil Sample ID: 27-ST-01, ST# 11	(38.0-40.0ft)	Sample description: Gray SILTY CL.	AY trace Gravel
Type/Condition: ST/Undisturbed		and the second se	
Initial height $h_0 =$	6.15 in	Initial water content w =	20.07%
Initial diameter $d_0 =$	2.83 in	Initial unit weight $\gamma_w =$	123.88 pcf
Initial area $A_0 =$	6.28 in ²	Initial dry unit weight $\gamma_d =$	103.18 pcf
Mass of wet sample and tare M _i =	1444.33 g	Initial void ratio $e_0 =$	0.681
Mass of dry sample and tare $M_d =$	1234.20 g	Initial degree of saturation Sr =	82%
Mass of tare $M_t =$	187.13 g		
Mass of sample Ms=	1257.20 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.18		
		Deviator stress at failure $D\sigma_f =$	0.89 tsf
		Major principal stress at failure $\sigma_1 =$	2.33 tsf

Major	principal	stress at	failure	$\sigma_1 =$	2.33
rejor	bimerba	000 000 M	initia e	01	-100

11/20/14

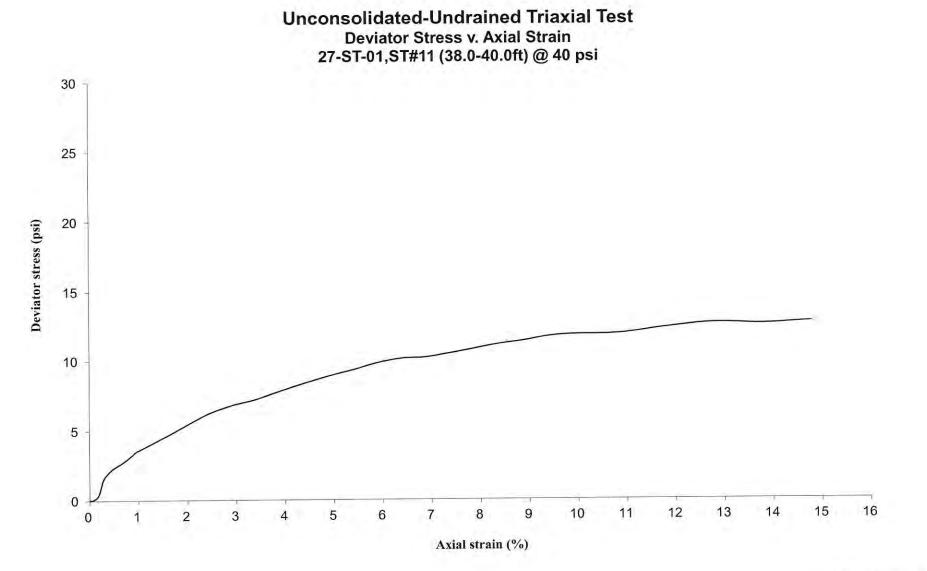

Date:

	Deviator Stress (psi)	Axial Strain (%)	Axial Force (lbs)	Axial Displacement (in)
	σ_1 - σ_3	e	F	Δh
	0.00	0.00	0.00	0.00
	0.14	0.01	0.88	0.00
and the second s	0.64	0.07	4.05	0.00
	1.31	0.16	8.23	0.01
	1.62	0.24	10.21	0.01
	1.84	0.33	11.60	0.02
	2.02	0.42	12.72	0.03
and the second second	2.17	0.51	13.70	0.03
1100-04-0	2.31	0.61	14.59	0.04
27-572 (-	2.45	0.70	15.53	0.04
-1 314 (51	2.60	0.79	16.47	0.05
38-40-	3.31	1.24	21.05	0.08
	4.00	1.68	25.57	0.10
2 Poly	4.70	2.12	30.17	0.13
201341	5.43	2.56	35.02	0.16
	5.99	3.00	38.77	0.18
and the second states of the second states	6.57	3.44	42.73	0.21
	7.13	3.88	46.64	0.24
	7.70	4.33	50.55	0.27
	8.16	4.77	53.85	0.29
	8.65	5.21	57.33	0.32
	9.08	5.64	60.47	0.35
	9.37	6.09	62.69	0.37
	9.70	6.54	65.24	0.40
Bulge Fa	10.04	6.99	67.81	0.43
	10.35	7.45	70.29	0.46
	10.64	7.96	72.65	0.49
	10.95	8.40	75.12	0.52
	11.18	8.85	77.05	0.54
	11.45	9.77	79.71	0.60
	11.78	10.66	82.82	0.66
	12.08	11.55	85.83	0.71
	12.18	12.44	87.39	0.77
	12.30	13.32	89.16	0.82

1.L

Checked by:

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST


AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	2	Analyst name: M. de los Reyes		
Client: AECOM		Date received: 10/27/2014		
WEI Job No.: 1100-04-01		Test date: 11/18/2014		
Soil Sample ID: 27-ST-01, ST# 11	(38.0-40.0ft)	Sample description: Gray SILTY CL	AY trace Gravel	
Type/Condition: ST/Undisturbed				
Initial height $h_0 =$	5.59 in	Initial water content w =	24.12%	
Initial diameter $d_0 =$	2.83 in	Initial unit weight $\gamma_w =$	128.35 pcf	
Initial area $A_0 =$	6.31 in ²	Initial dry unit weight $\gamma_d =$	103.40 pcf	
Mass of wet sample and tare M _i =	1374.20 g	Initial void ratio $e_0 =$	0.678	
Mass of dry sample and tare $M_d =$	1143.50 g	Initial degree of saturation S _r =	99%	
Mass of tare $M_t =$	187.20 g			
Mass of sample Ms=	1187.00 g	Liquid Limit (%):	NA	
Estimated specific gravity Gs =	2.78	Plastic Limit (%):	NA	
Cell confining pressure $\sigma_3 =$	40.0 psi	Sand(%):	NA	
Rate of strain =	1 %/min	Silt(%):	NA	
Proving Ring Factor =	1.000	Clay(%):	NA	
Height to diameter ratio =	1.97			
		Deviator stress at failure $D\sigma_f =$	0.92 tsf	
		Major principal stress at failure $\sigma_1 =$	3.80 tsf	

	Deviator Stress (psi)	Axial Strain (%)	Axial Force (lbs)	Axial Displacement (in)
	σ_1 - σ_3	e	F	Δh
	0.00	0.00	0.00	0.00
the state of the strength of t	0.09	0.09	0.54	0.01
	0.41	0.18	2.57	0.01
Berteur- 2005.	1.45	0.28	9.18	0.02
The second s	1.91	0.37	12.11	0.02
State State State State	2.24	0.46	14.18	0.03
A CONTRACTOR OF THE PARTY OF TH	2.46	0.56	15.59	0.03
1100-011-01	2.68	0.66	17.01	0.04
1100-04-01	2.93	0.77	18.64	0.04
27-ST-1 (ST	3.21	0.86	20.44	0.05
29-40	3.50	0.96	22.26	0.05
UD PS	4.39	1.45	28.07	0.08
A TOP-	5.30	1.94	34.08	0.11
A Contraction	6.20	2.42	40.07	0.14
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.80	2.90	44.17	0.16
A CONTRACTOR	7.22	3.39	47.13	0.19
1	7.79	3.88	51.11	0.22
	8.36	4.39	55.13	0.25
	8.87	4.90	58.81	0.27
	9.31	5.40	62.06	0.30
	9.80	5.90	65.66	0.33
	10.11	6.39	68.12	0.36
	10.19	6.89	69.05	0.38
	10.47	7.38	71.31	0.41
Bulge F	10.80	7.88	73.90	0.44
	11.13	8.38	76.61	0.47
	11.39	8.92	78.84	0.50
	11.69	9.41	81.37	0.53
	11.81	9.89	82.69	0.55
	11.88	10.86	84.06	0.61
	12.32	11.84	88.16	0.66
	12.64	12.81	91.41	0.72
	12.55	13.79	91.80	0.77
	12.73	14.78	94.24	0.83
Jany Date: 11.20.14 15 f Date: "/20/14	red by:		94.24	0.85

UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL (AASHTO T 208 / ASTM D 2166)

Project: Circle Interchange Client: AECOM WEI Job No.: 1100-04-01 Soil Sample ID: 29-RWB-02, ST#3 (28.5-30.0ft) Type/Condition: ST/ Undisturbed Liquid Limit (%): NA Plastic Limit (%): NA

Average initial height $h_0 = 6.06$	in
Average initial diameter $d_0 = 2.75$	in
Height to diameter ratio= 2.21	
Mass of wet sample = 1245.30	g
Mass of dry sample and tare $= 1014.20$	g
Mass of tare $= 13.42$	g
Specific gravity $= 2.76$	(estimated)

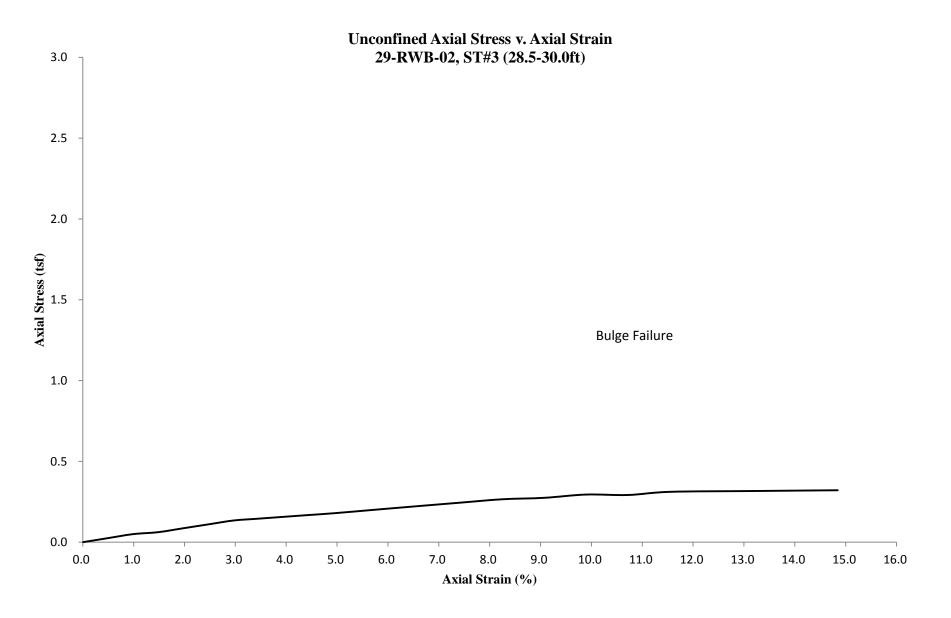
Displacement (in)	Force (lbs)	Strain (%)	Stress (tsf)				
Δh	F	е	s				
0.00	0.00	0.00	0.00				
0.03	2.07	0.49	0.03				
0.06	4.15	0.99	0.05				
0.09	5.19	1.48	0.06				
0.12	7.26	1.98	0.09				
0.15	9.33	2.47	0.11				
0.18	11.41	2.97	0.13				
0.21	12.44	3.46	0.15				
0.24	13.48	3.96	0.16				
0.27	14.52	4.45	0.17				
0.30	15.56	4.95	0.18				
0.35	17.63	5.77	0.20				
0.40	19.70	6.60	0.22				
0.45	21.78	7.42	0.24				
0.50	23.85	8.25	0.27				
0.55	24.89	9.07	0.27				
0.60	26.96	9.90	0.29				
0.65	26.96	10.72	0.29				
0.70	29.04	11.54	0.31				
0.80	30.07	13.19	0.32				
0.90	31.11	14.84	0.32				
NOTES:	NOTES:						

Prepared by: _____

Date: _____

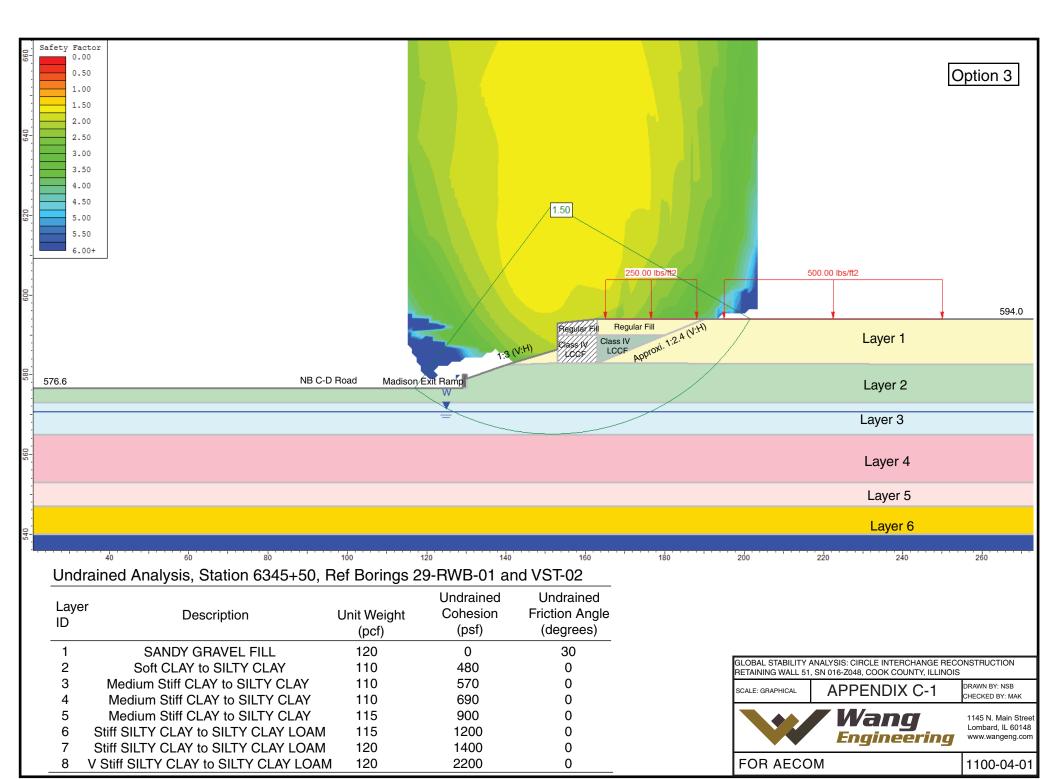
Checked by: _____ Date: _____

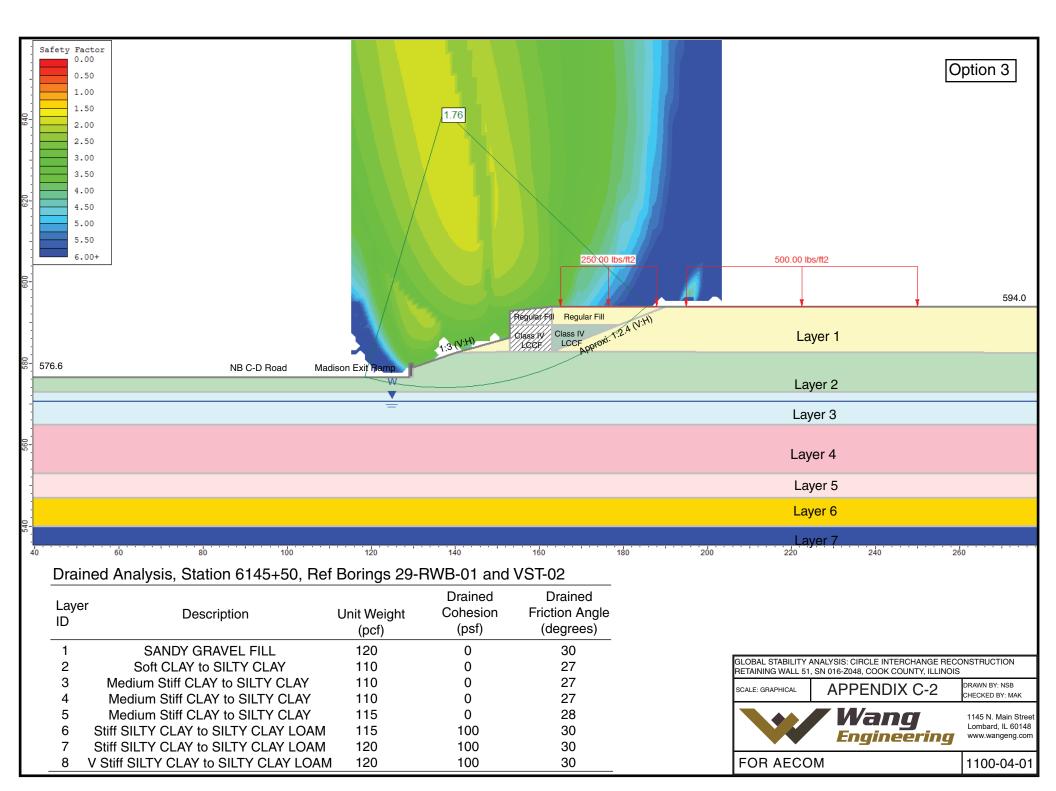
R
SHTO R18

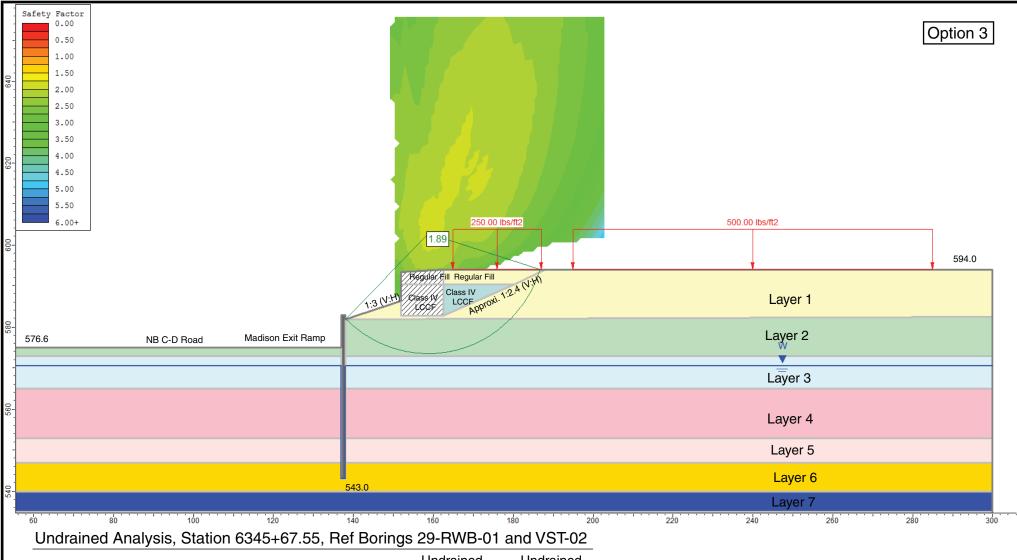

Date received: Test date: Sample description:		
Sand(%):	NA	
Silt(%):	NA	
Clay(%):	NA	
	Initial water content $w = 24.43\%$	(sj

Analyst name: A. Mohammed

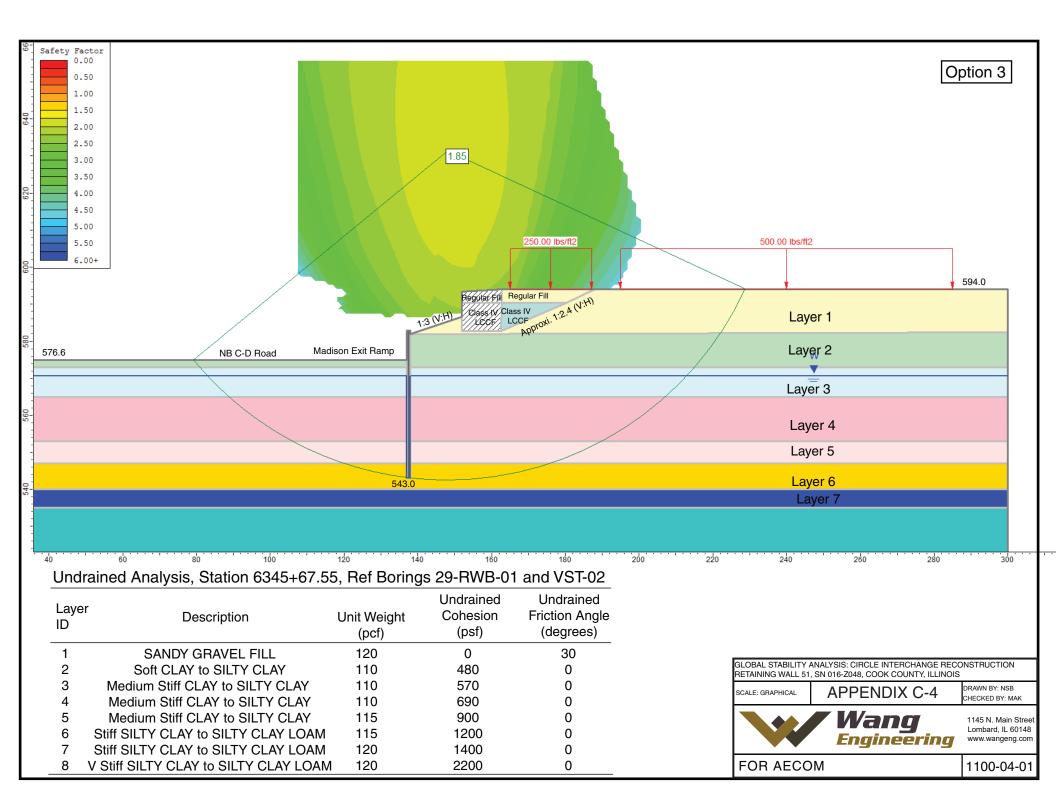
Initial water content $w = 24.43\%$	(specimen)
Initial unit weight $g = 131.82$	pcf
Initial dry unit weight $g_d = 105.94$	pcf
Initial void ratio $e_0 = 0.63$	
Initial degree of saturation $S_r = 100\%$	
Average Rate of Strain= 1%/min	
Unconfined compressive strength $q_u = 0.32$	tsf
Shear Strength= 0.16	tsf

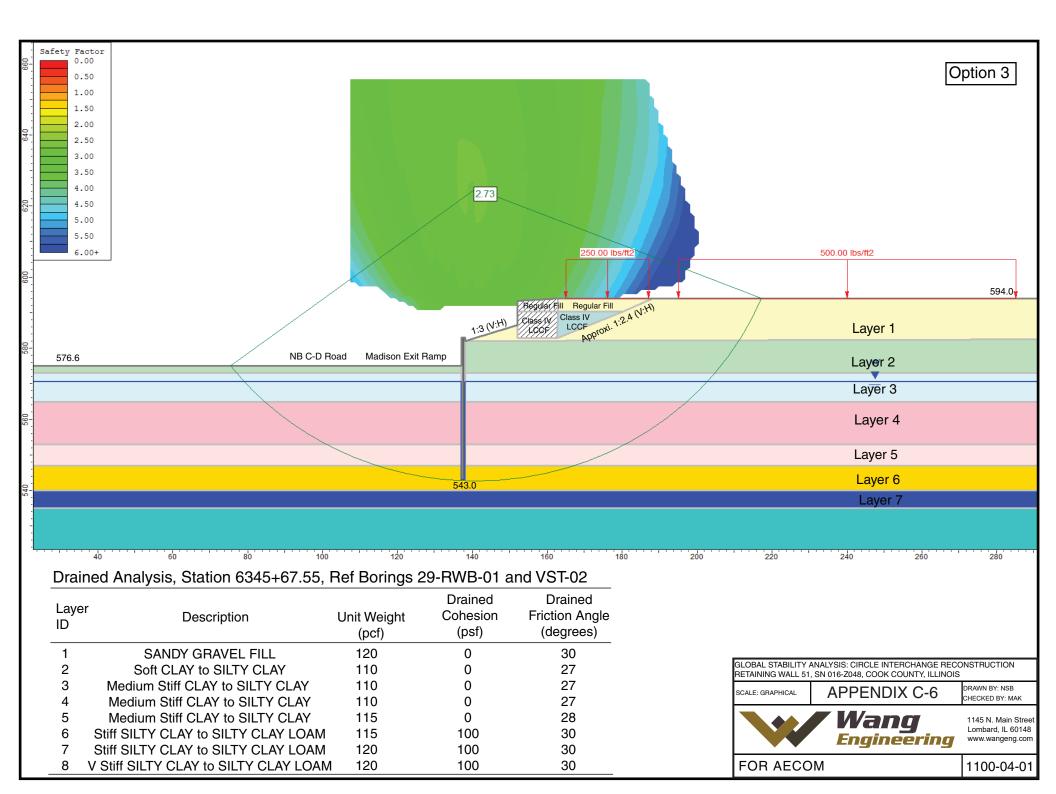






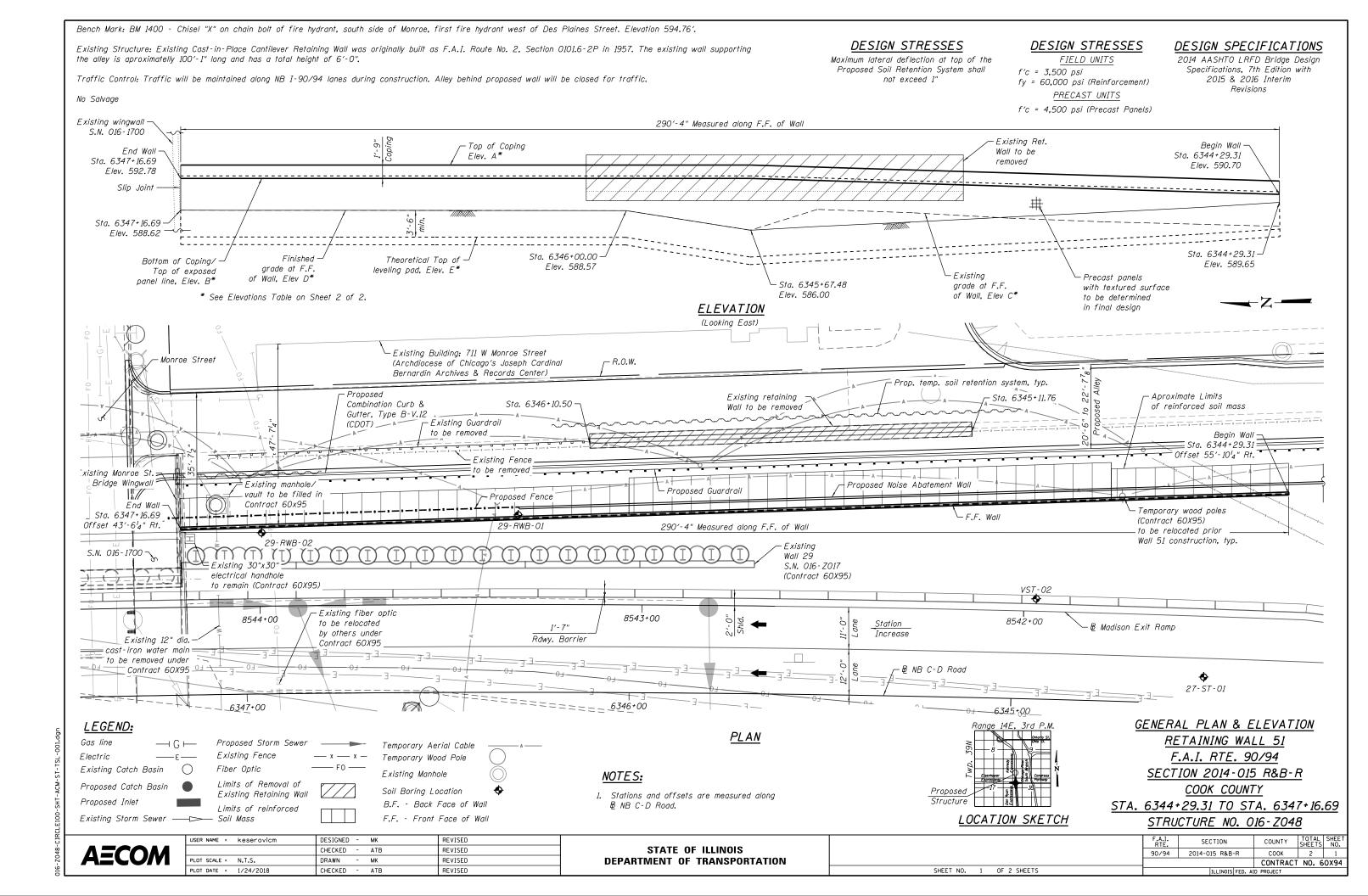
APPENDIX C

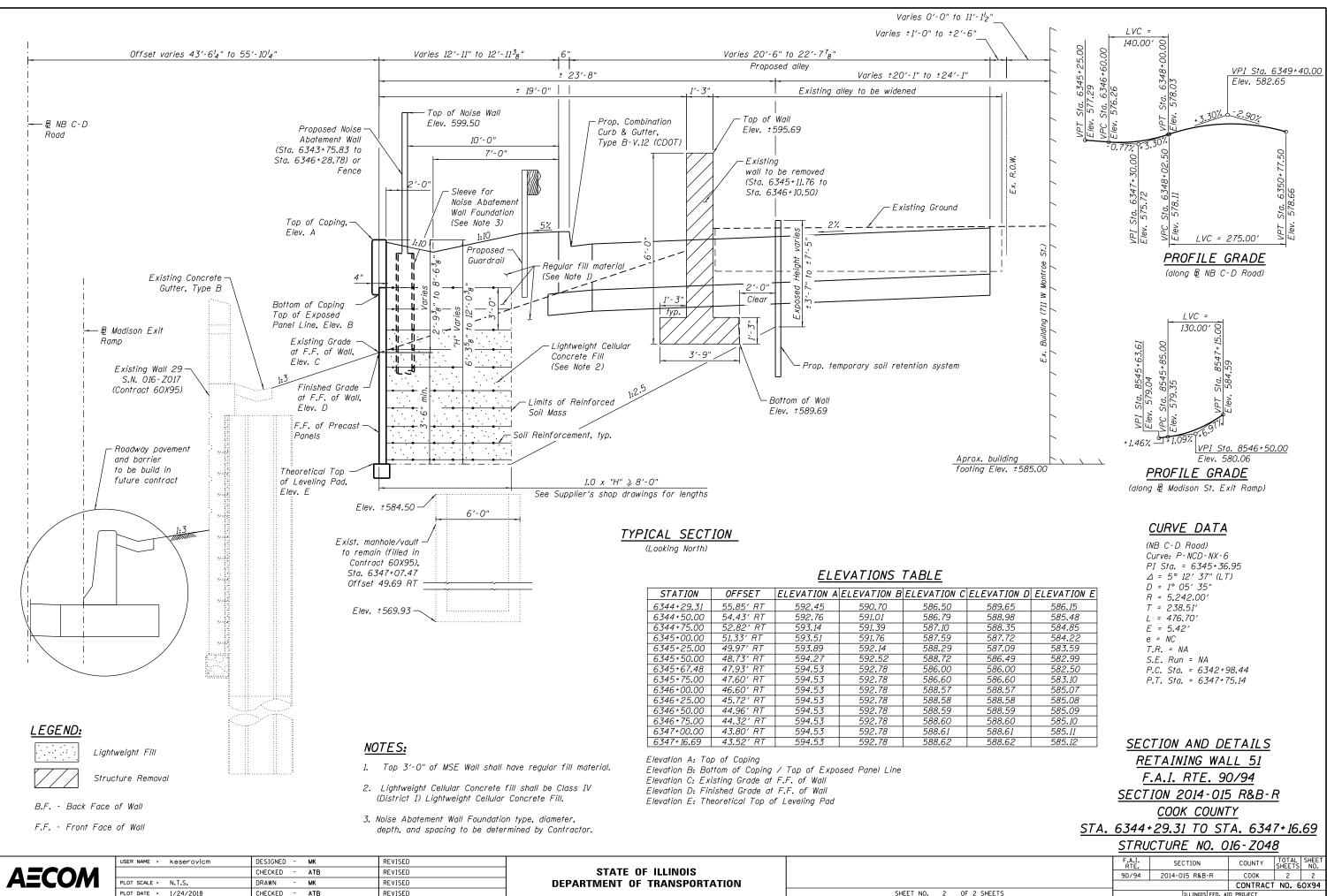


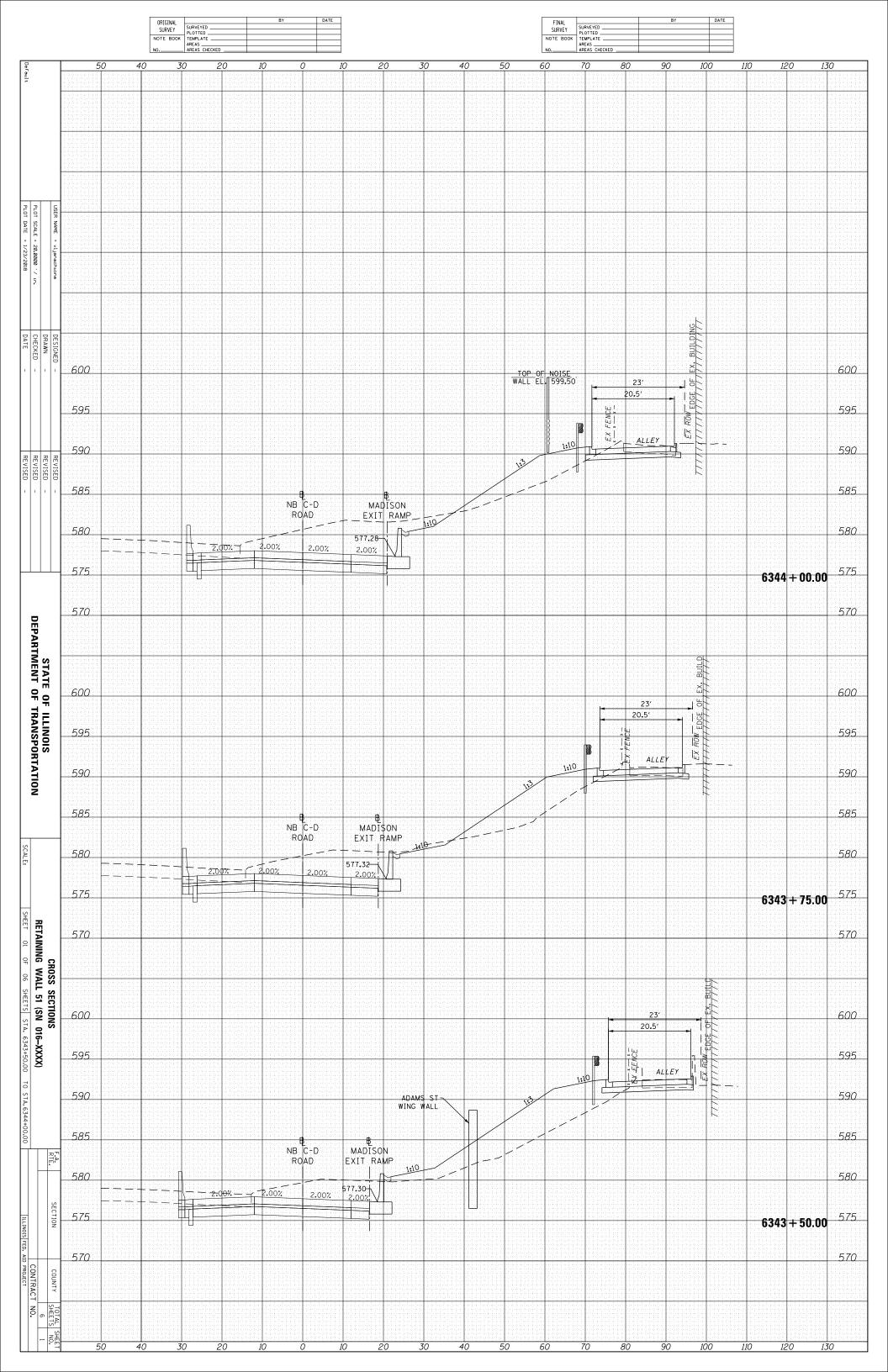

Lay ID	er Description	Unit Weight (pcf)	Undrained Cohesion (psf)	Undrained Friction Angle (degrees)	
1	SANDY GRAVEL FILL	120	0	30	
2	Soft CLAY to SILTY CLAY	110	480	0	GLOBAL STABILITY ANALYSIS: CIRCLE INTERCHANGE RECONSTRUCTION RETAINING WALL 51, SN 016-Z048, COOK COUNTY, ILLINOIS
3	Medium Stiff CLAY to SILTY CLAY	110	570	0	SCALE: GRAPHICAL APPENDIX C-3
4	Medium Stiff CLAY to SILTY CLAY	110	690	0	
5	Medium Stiff CLAY to SILTY CLAY	115	900	0	1145 N. Main 3 Lombard III 6
6	Stiff SILTY CLAY to SILTY CLAY LOAM	115	1200	0	Engineering Lombard, IL 60 www.wangeng
7	Stiff SILTY CLAY to SILTY CLAY LOAM	120	1400	0	
8	V Stiff SILTY CLAY to SILTY CLAY LOAN	1 120	2200	0	FOR AECOM 1100-04
-					

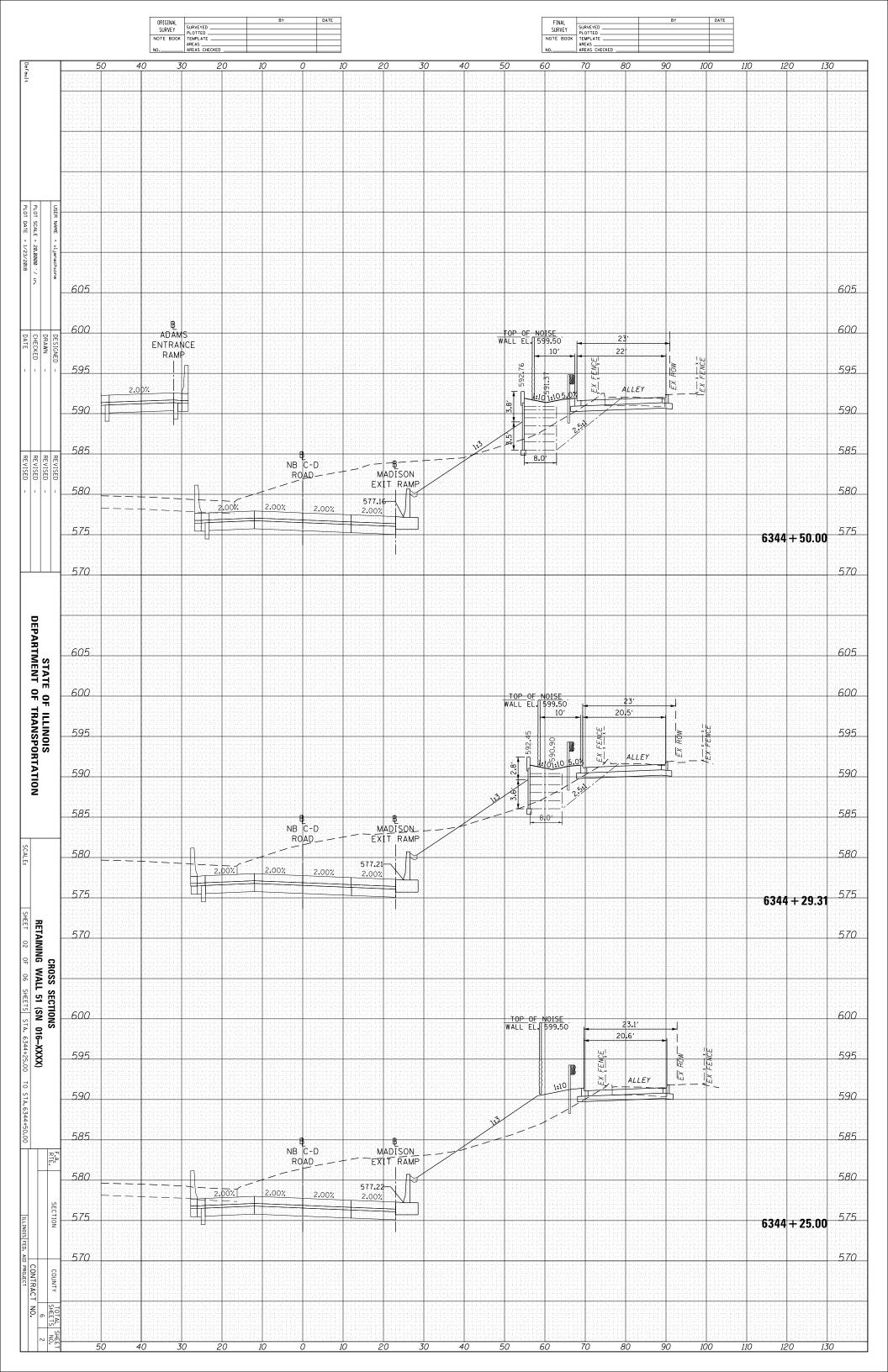
DRAWN BY: NSB CHECKED BY: MAK 1145 N. Main Street Lombard, IL 60148 www.wangeng.com

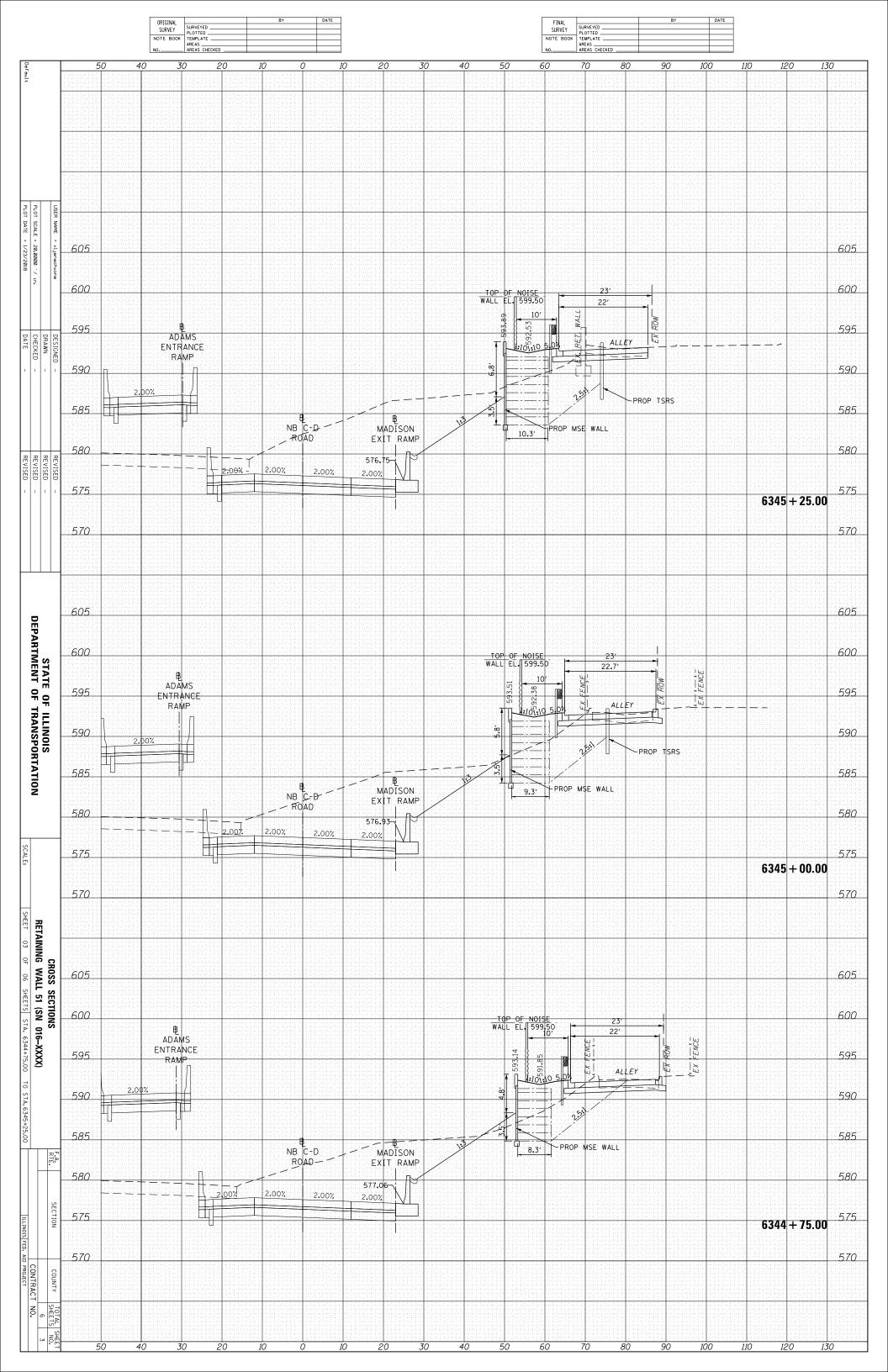
1100-04-01

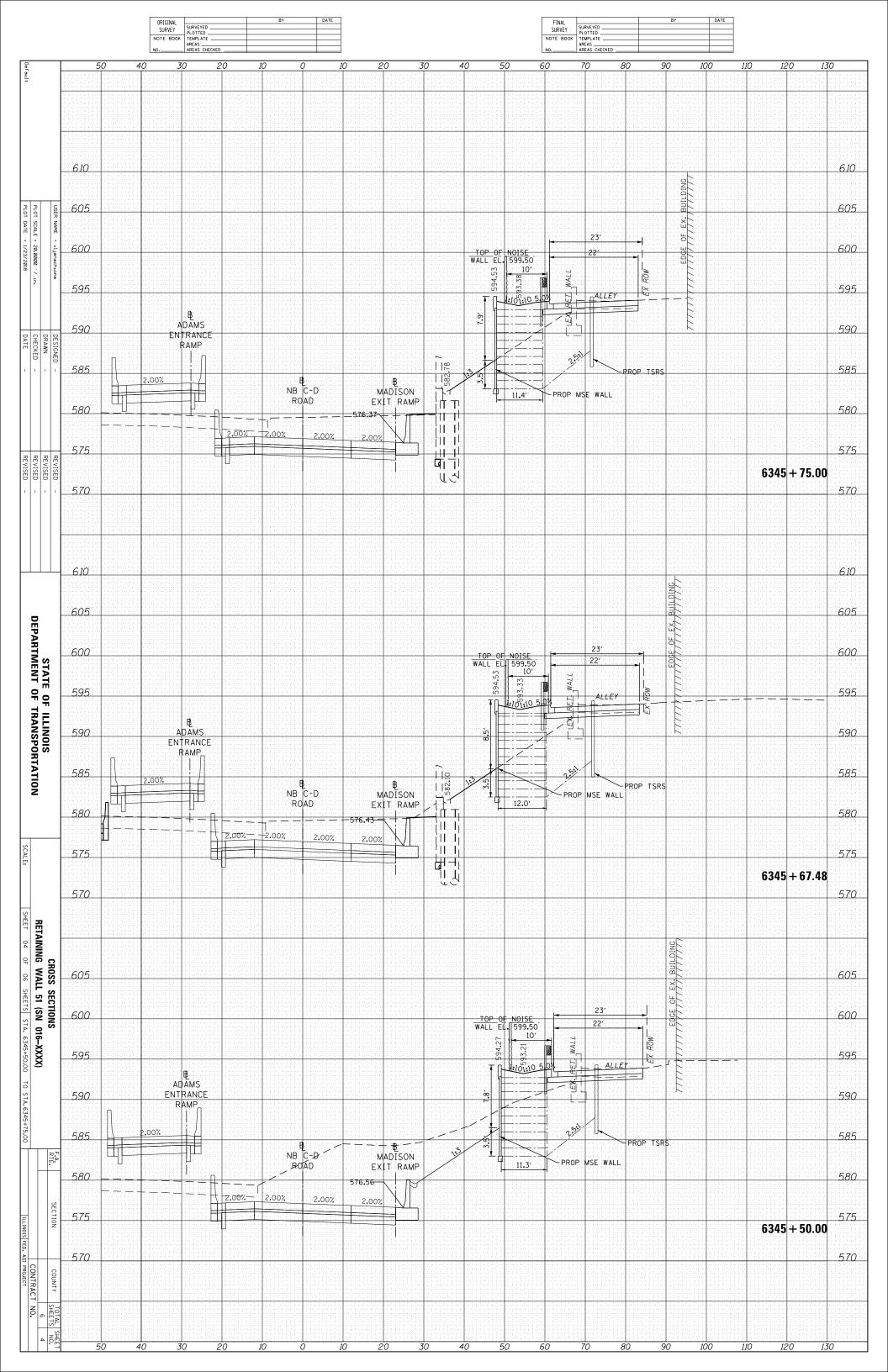


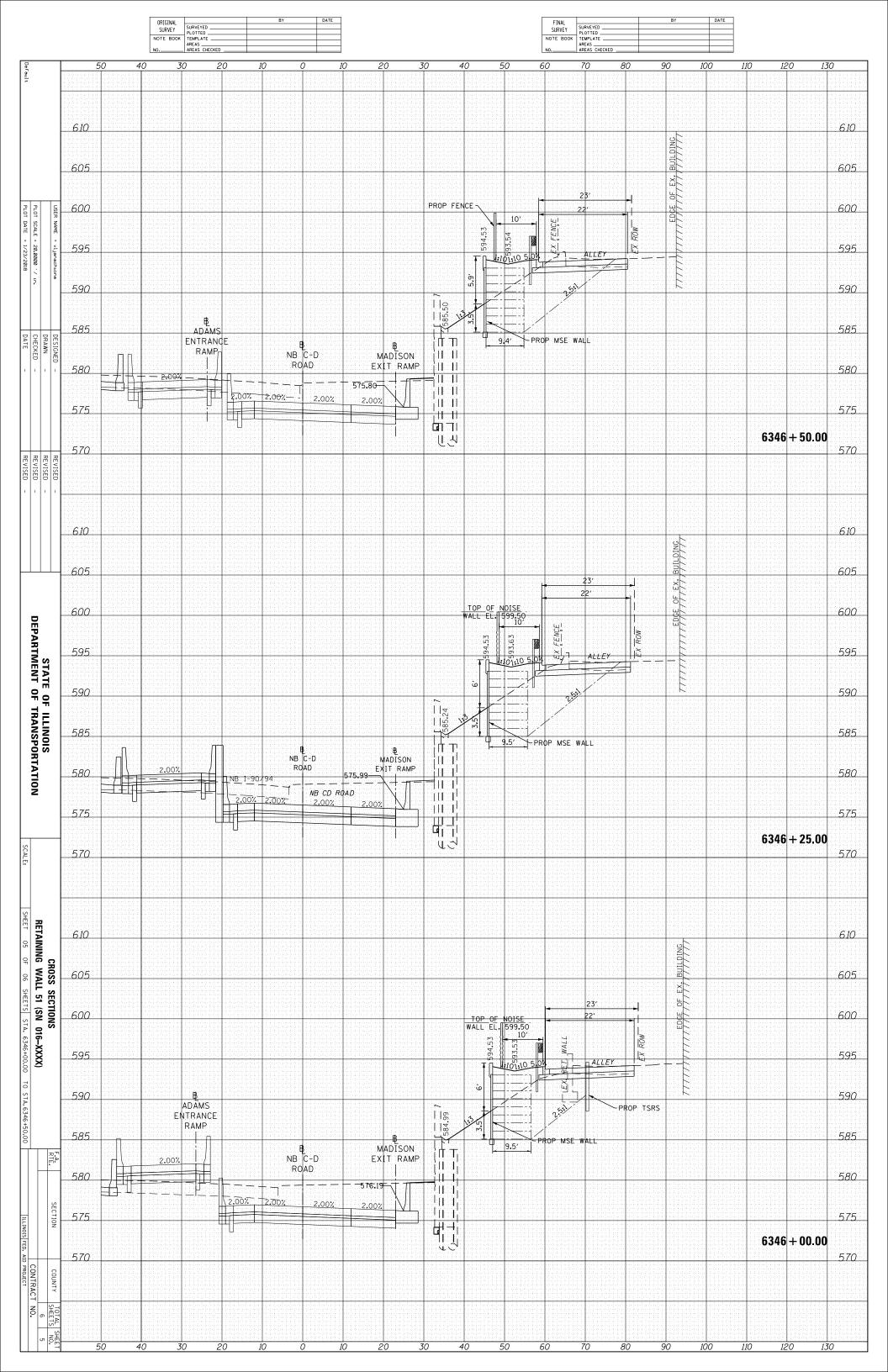


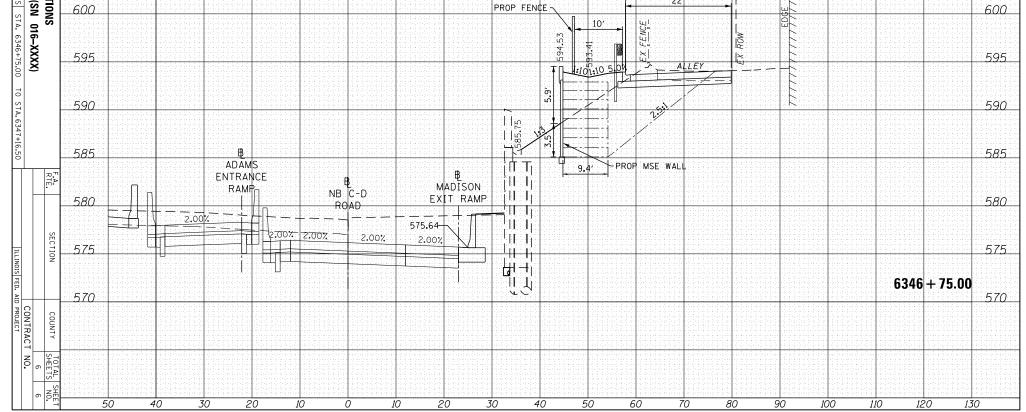

APPENDIX D








APPENDIX E



			URIGINAL SURVEY NOTE BOOK	SURVEYED				FINAL SURVEYED 0 SURVEYED PLOTTED 0 NOTE BOOK TEMPLATE 0 NOAREAS CHECKED 0					
			NO							CKED		_	
Default	5	60 4(0 3	0 20	10 0 .	10 20	30 40	50	60 70	80	90 100	110 120	130
÷													
	610												610
	605												605
USER NAME = vljanachucne PLDT SCALE = 20,0000 '/ in. PLDT DATE = 1/23/2018										BUILDING			
	600						PROP FENCE -		23'	BUIL ///			600
									22'	EX.			
							2 2 2 2	86	•	HOW			595
= vl.janachione = 20.0000 ' / = 1/23/2018	555						T	1:101:10 5.04		EDGE			
18 18													
	590								2,511	PROPUTSRS			590
				b			586.16						
DES DRA DAT	585				b	R R		9.4 PR(DP MSE WALL				585
DESIGNED DRAWN CHECKED DATE				ENTRANCE RAMP	NB C-D	MADISON) }			///			
	580	<u> </u>		-	ROAD	LAIII NAMI							580
			2.		2.007 2.007	2.00%						6347 + 1	6.69
	575												575
			2										
ע ע ע ע	570												570
REVISED REVISED REVISED REVISED													
	610												610
	605												605
										BUILDING			
	600						PROP FENCE		23	•₩			600
								10'		0F ≰X			
	595						L 	13.15	X *	EDGE O			595
DEF							7						
ARI	590						õ						590
ST	590							<u></u>	2.51	DD05 TCDC			590
	5.05						586.00		/	- PROP TSRS			
PF PF	585			ADAMS			h T i	9.4 PR	OP MSE WALL				585
STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION		П		ADAMS ENTRANCE RAMP _D	NB C÷D ROAD	B MADISON EXIT RAMP							
	580	/]										580
ORT/			2.0		2.00%	575.64							
ATIC	575												575
Z													
	570						ų C.					6347 + 0	0.00 570
SCALE:	565												565
SHEET													
CROSS SECTION RETAINING WALL 51 (S RET 06 OF 06 SHEETS	610												610
	605										OF EX. BUILDING		605
									2₹′		<u>/////</u>		
I (S	600						PROP FENCE		23' 22	<u> </u>	<u></u> 0F		

APPENDIX F

Date: 12/14/2017 Sheet: NSB Engineering Calculation By: Approved By: m. Seyhon Project Number: 1100-04-01 Client Name: 1145 North Main Street Project Name: ______ Civrele Dirchang Lombard, Illinois 60148 Phone: (630)-953-9928 Relaining 51 816-2048 SP Ground Movement Estimates To estimate the surface groun Purpose: Movement at the existing ocese ricago's Joseph OT Carl Bernardyn Recor hives ente NS Montroe Sweet 1ocaleo 711 W. Wall 51 Paust References: $\left(1\right)$ augh, wand O Rourke TC1990 Induced Movement onstruction - situ m 80 14, Sich and Chow 993 terics 9100 nara 01 during Settlements excauation rfac Gestechnical Sournel anadian -76 P758 VBOXu 2.14 and Wana J.H. Nang and Groundhalements 2010) Wall Seep ex availant in Shanghai 110 Journel of Everteel Souls Soll irmeneal ngineer Geoen 985 - 994 Assumptions : building is about 3: away of from Wall 51 351045 aximum height of wall near G134+25.00 is about 7.8 Feel and exposed height of 4-2 feet

Quality Engineering Services Since 1982

Environmental

Wang	Date: 121	14/2017	Sheet:	_of7
Engineering	Calculation By:	psb	Approved By:	
	Project Number:	1100-04-0	Client Name:	AECOM
1145 North Main Street Lombard, Illinois 60148	Project Name:	Circle	Thiercha	MC.
Phone: (630)-953-9928			RWSI	(SN016-2048)
Notations:	SI - Ma		1	
10010013	Shm= Ma		displace	ment
	- Wa			
		round su		
	Svm= A	low Gre	nundsurface	+ settement
Design Criteria	: Fox Sh	is I	1. of expa	ed height
þ	······		0.5 m	
	For Ju	1mg 1 > C	2.5% OF	exposedheigh
			0.25 11	rehes
	For Max	Shmis		
	I OY MAGX	Shm 13	IINC	
Evaluations.	From	6.14 U	sing a r	abion
	Q		0	
		vm	6	
		Shm		
	0	= 0.517	rchs(1).	200100000
	2um			to to vira
	0		····	
	DV.	n = 0 = 20	5 inchast (2.5 0
			() () () () () () () () () ()	reflection
	Sun	z = l ini	ch (11ng	Critevia
	~ 1	• •	- in ich	de Techy)
.Men	rom Fig	ure ll		
	C G	1 1.0	5/ =	10.7
	for o	11+= 4=	11.2	
			170	
AActio				L
Metho	1 + CC10	mgh and	OROW	Ke, 1990
	- Su			
	a a	0		
	Shm			
Α	Indianble	Bellem	ent-	
h h	910			

Geotechnical . . Quality Engineering Services Since 1982

 Date:
 1211412017
 Sheet:
 3

 Calculation By:
 NSB
 Approved By:
 wand Engineering Project Number: _____ OU -OL -OL Client Name: ____ 1145 North Main Street Project Name: <u>Circle Dherchampe</u> RW 51 (SP 51) Lombard, Illinois 60148 816.2048) Phone: (630)-953-9928 King et al Czoci Method IL 80 Settlement-Negligidole Based on our evaluations, We and cipate the maximum ground settlement of less Conclusion Based on n han 0.25 inclus anticipated will not be derimental the existing build

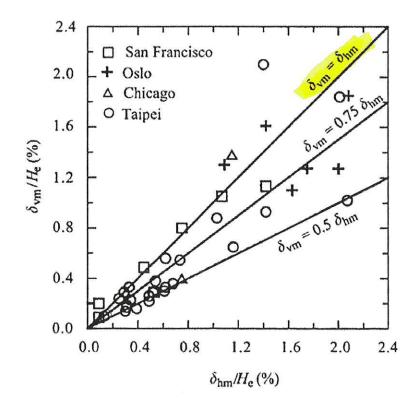
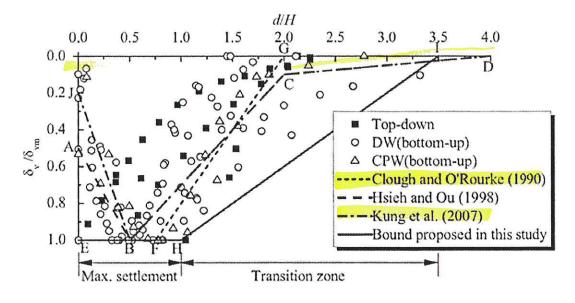
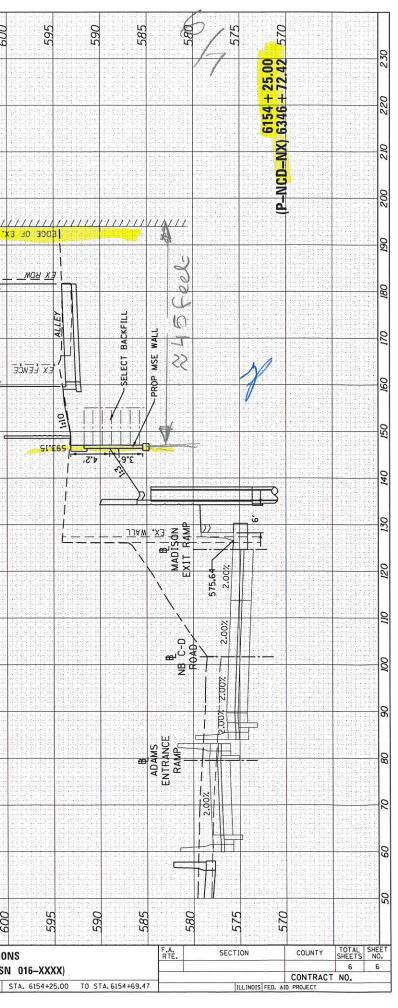



Figure 6.14 Maximum ground surface settlement and lateral wall deflection (Ou et al., 1993).

OU, C.-Y., HSIEH, P.-G., AND CHIOU, D.-C., 1993, Characteristics of ground surface settlement during excavation: Canadian Geotechnical Journal, v. 30, p. 758-767.



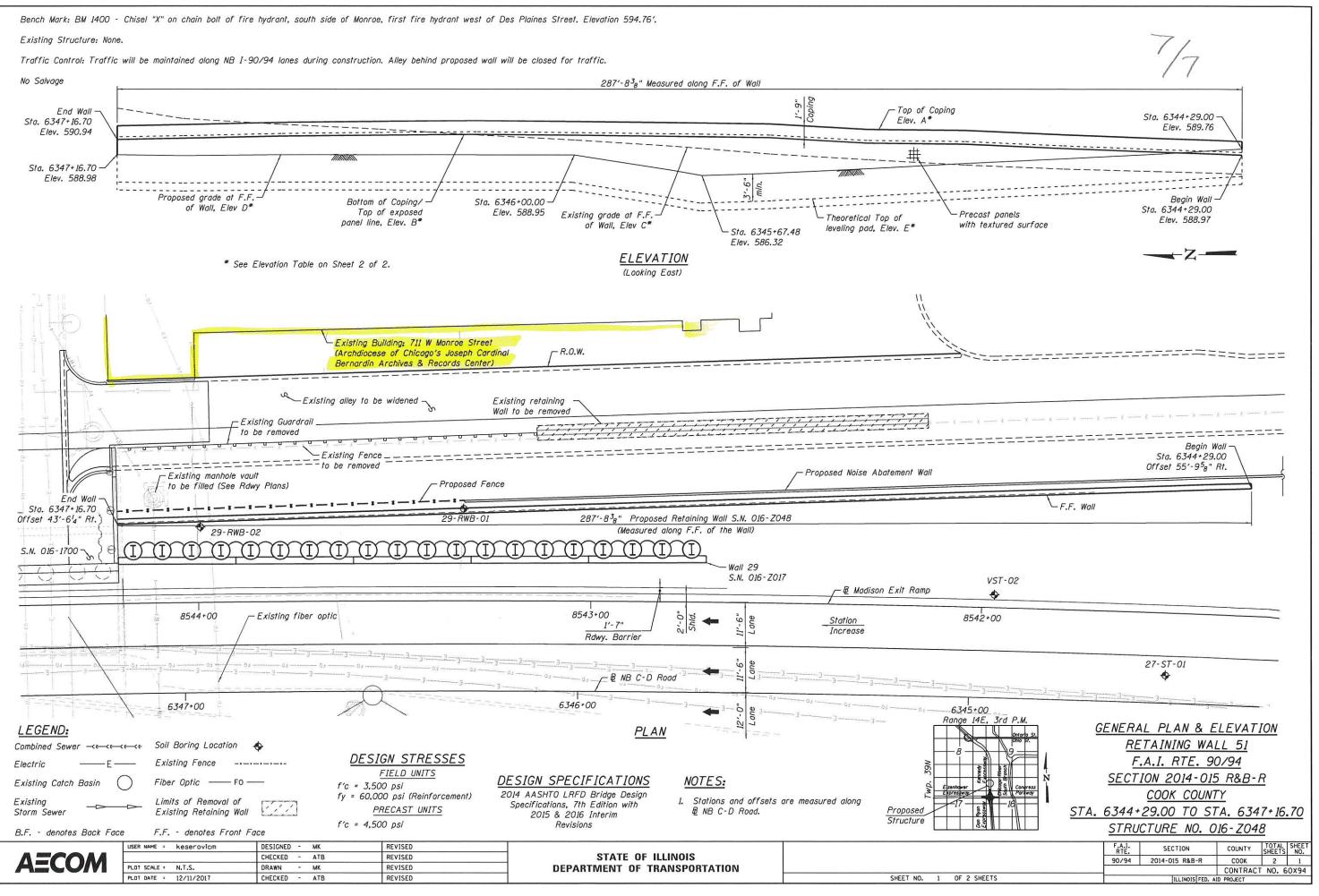

9/7

Fig. 11. Relationship between ground settlement normalized by maximum settlement and normalized distance from wall

WANG, J., XU, Z., AND WANG, W., 2009, Wall and ground movements due to deep excavations in Shanghai soft soils Journal of Geotechnical and Geoenvironmental Engineering, v. 136, p. 985-994.

		610	USER NAME = vljanachiane PLOT SCALE = 28.0820 '/ in.	DRAWN - REV	15ED - 15ED - 15ED - 15ED -	STATE OF ILLINOIS DEPARTMENT OF TRANSPORTA	220	019 CROSS SEC RETAINING WALL 51	
	50 60								
ORICIUAL SURVEY NOTE BOOK REALATE NOTE BOOK REAS REAS REAS REAS REAS	70 80					ENTRANCE 2.002 2.002 2.002 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.			
6	I 06			5.00%					
DATE	011 00			NB C-D R0AD 2.00%: 2.00		NB C-D ROAD 2.000			
	120 130			EXIT RAMP		575.63			
	140 1						<u> </u>		
FINAL SURVEY NOTE BOOK NO.	50 160								.
SURVEYED SURVEYED REMULATE AREAS AREAS CHECKED	170 180	7///// 9NIGT	<u>, , , , , , , , , , , , , , , , , , , </u>		N N				55
BY	190 20					//////////////////////////////////////	<u>e</u>	<u>/////// \$NIGTI</u>	<u>///</u>
DATE	2 0 2 0			(P–NCD–NX) 6347 + 17.81			(P–NCD–NX) 6346 + 97.27		
	220 230			the second s					
		605	600 595 590	585 580 570	610 605 600	595 585 580	565	610	600

B-CIRCLE100-SHT-ACM-ST-TSL