STRUCTURE GEOTECHNICAL REPORT CIRCLE INTERCHANGE RECONSTRUCTION RETAINING WALL 37 (PROPOSED SN 016-1826) JACKSON EXIT RAMP F.A.I ROUTE 90/94, (KENNEDY EXPRESSWAY) IDOT D-91-227-13/ PTB 163-001 COOK COUNTY, ILLINOIS

> For AECOM 303 East Wacker Drive Chicago, IL 60601 (312) 938-0300

Submitted by Wang Engineering, Inc. 1145 North Main Street Lombard, IL 60148 (630) 953-9928

> Original: November 29, 2017 Revised: January 2, 2019

Technical Report Documentation Page

1. Title and Subtitle	2. Report Date						
Structure Geotechnical R	Original: November 29, 2017						
Circle Interchange Recon	Revised: January 2, 2019						
Retaining Wall 37, F.A.I.	Route 90/94	3. Report Type SGR RGR					
Station 8282+72.47 to Sta	Station 8282+72.47 to Station 8286+02.19						
4. Route / Section / County	4. Route / Section / County						
FAI 90/94/2014-015R&E	3 -R/ Cook	D-91-259-12/60X94					
6. PTB / Item No.	8. Proposed Structure Number(s)						
163/001	No existing wall	016-1826					
9. Prepared by	Contributor(s)	Author Phone Number/Email Address					
Wang Engineering, Inc.	Author: Metin W. Seyhun, P.E.	(630) 953-9928 Ext 1018					
1145 N Main Street	QC/QA: Mohammed Kothawala, P.E., D.GE.	mseyhun@wangeng.com					
Lombard, IL 60148	PIC: Corina T. Farez, P.E., P.G.						
10. Prepared for	Structural Engineer	Contact Phone Number					
AECOM	(847) 407-5235						
303 East Wacker Drive	TranSystems						
Chicago, IL 60601							
<u> </u>							

11. Abstract

To facilitate the widening and reconstruction of Circle Interchange, Retaining Wall 37 will be constructed along Jackson Exit Ramp between Adams Street Bridge west abutment to Jackson Street. The proposed 330-foot long Retaining Wall 37 will be constructed as a combination of 180-foot long, 18.7 feet maximum retained height new drilled shaft wall and 150-foot long, 10.7 feet maximum retained height drilled soldier pile and lagging wall. The wall height gradually decreasing from Adams Street to Jackson Street. This report provides geotechnical recommendations for the design and construction of the proposed retaining wall.

Beneath the pavement or topsoil, the subsurface soils consists of up to 10 feet of fill materials, up to 7 feet medium stiff to very stiff clay crust, up to 43 feet of very soft to medium stiff silty clay, 35 feet of stiff to hard clay loam, and very dense silt to silty loam and sand extending to the boring termination depths or weathered bedrock. Sound bedrock was encountered at an elevation of about 484 feet. Groundwater was encountered within the fill layers at elevations of 580 to 588 feet. Under pressure water-bearing layers are expected at deeper levels.

For the drilled shaft and drilled soldier pile and lagging walls, geotechnical parameters for design are presented in this report. The global stability factor of safety for the wall at the minimum recommended embedment elevation of 541 feet is 1.6 and 3.6 for undrained and drained conditions, respectively.

12. Path to archived file

S:\Netprojects\11000401\Reports\SGRs\Walls\1826 Wall 37\RPT_Wang_MWS_11000401SGRWall37RevisedFinal_20190102.doc

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	PROJECT DESCRIPTION	1
1.2	PROPOSED STRUCTURE	2
1.3	EXISTING STRUCTURE	2
2.0	SITE CONDITIONS AND GEOLOGICAL SETTING	2
2.1	Physiography	3
2.2	SURFICIAL COVER	3
2.3	Bedrock	3
3.0	METHODS OF INVESTIGATION	4
3.1	SUBSURFACE INVESTIGATION	4
3.2	VANE SHEAR TESTS	5
3.3	LABORATORY TESTING	5
4.0	RESULTS OF FIELD AND LABORATORY INVESTIGATIONS	6
4.1	SOIL CONDITIONS	6
4.2	GROUNDWATER CONDITIONS	7
4.3	Seismic Design Considerations	8
5.0	ANALYSIS AND RECOMMENDATIONS	8
5.1	RETAINING WALL TYPE EVALUATION	8
5.2	DRILLED SHAFT AND DRILLED SOLDIER PILE WALLS	8
5.	2.1 Settlement Analyses	13
5.	2.2 Global Stability Analyses	14
5.3	GROUND MOVEMENT EVALUATIONS	14
6.0	CONSTRUCTION CONSIDERATIONS	15
6.1	EXCAVATION	15
6.2	FILLING AND BACKFILLING	15
6.3	DRILLED SHAFTS	15
6.4	WALL CONSTRUCTION	16
6.5	CONSTRUCTION MONITORING	16

7.0	QUALIFICATIONS
RE	FERENCES
EX	HIBITS
	1. Site Location Map
, 4	2. Site and Regional Geology
-	3. Boring Location Plan
4	4. Subsurface Soil Data Profile
AP	PENDIX A
i	Boring Logs
AP	PENDIX B
i	Laboratory Test Results
AP	PENDIX C
(Global Stability Analyses
AP	PENDIX D
,	Type Size Location Plan
AP	PENDIX E
(Ground Movement Evaluations

LIST OF TABLES

Table 1: Short-term (Undrained) Geotechnical Parameters for Design of Drilled Shaft and Soldier Pile Walls	10
Table 2: Long-term (Drained) Geotechnical Parameters for Design of Drilled Shaft and Soldier Pile Walls	11
Table 3: Recommended Parameters for Lateral Load Analysis of Drilled Shaft and Soldier Pile Walls	12

STRUCTURE GEOTECHNICAL REPORT CIRCLE INTERCHANGE RECONSTRUCTION RETAINING WALL 37 (PROPOSED SN 016-1826) JACKSON EXIT RAMP F.A.I. ROUTE 90/94 (KENNEDY EXPRESSWAY) IDOT D-91-227-13/PTB 163-001 COOK COUNTY, ILLINOIS FOR AECOM

1.0 INTRODUCTION

This report presents the results of our subsurface investigation, laboratory testing, geotechnical engineering evaluations and recommendations for a new retaining wall, designated as SN 016-1826 (Retaining Wall 37) proposed along the Jackson Exit Ramp in connection with the Circle Interchange Reconstruction project in the City of Chicago, Cook County, Illinois. A *Site Location Map* is presented as Exhibit 1.

The purpose of Wang Engineering, Inc. (Wang) investigation was to characterize the site soil and groundwater conditions, perform geotechnical engineering analyses, and provide recommendations for the design and construction of the new wall structure.

1.1 Project Description

The Circle Interchange is over 50 years old and has significant congestion and safety problems. The project is aiming to improve safety and mobility as well as upgrade the mainline and interchange facilities. The project will also improve other modes of transportation such as transit, pedestrians and bicyclists within the same corridor.

The Circle Interchange Reconstruction project is along Interstate 90/94 (I-90/94) from south of Roosevelt Road to north of Lake Street, along Interstate 290 (I-290) from Loomis Street to the Circle Interchange; and along Congress Parkway from the Circle Interchange to Canal Street/Old Post Office. The routes typically have three lanes of traffic in each direction with mostly one lane ramp at interchanges. Locally, the north leg is known as the Kennedy Expressway, the south leg as the Dan Ryan Expressway and the west leg as the Eisenhower Expressway. Within the project area, there are

several cross street bridges over I-90/94 and I-290 considered for reconstruction. Along I-90/94, from south to north, the cross street overpasses include Taylor Street, Van Buren Street, Jackson Boulevard, and Adams Street. Along I-290, from west to east, the cross street overpasses include Morgan Street, Peoria Street, and Halsted Street.

The proposed improvements include additional through lanes in each direction on I-90/94. The horizontal alignment and vertical profiles throughout the interchange will be improved. A new two-lane flyover, Ramp NW (Flyover) will be constructed for I-90/94 northbound to I-290 westbound traffic. Cross street bridges, Morgan Street, Harrison Street, Halsted Street, Peoria Street, Taylor Street, Adams Street, Jackson Boulevard, and Van Buren Street will be reconstructed. Various existing ramps will be reconstructed and up to fifty new retaining walls will be constructed.

1.2 Proposed Structure

Retaining wall 37 (SN 016-1826) is proposed along the Jackson Exit Ramp. Based on the Type, Size, and Location (TSL) plan dated November 29, 2017 provided by TranSystems Corporation, the 330-foot wall is proposed to be a combination of drilled shaft and drilled soldier pile walls. The 180-foot drilled shaft and lagging wall begins at Station 8282+72.47 at the Adams Street Bridge west abutment and ends at Station 8284+52.28. The 150-foot drilled soldier pile wall starts at the end of drilled shaft wall at Station 8284+52.28 ends at Station 8286+02.19. The drilled shaft and drilled soldier pile walls will have maximum retained heights of 18.69 and 10.68 feet, respectively. There will be 5.4 and 4.0-foot high concrete parapets on top of the drilled shaft and drilled soldier pile walls, respectively. The TSL plan is included in the Appendix D.

1.3 Existing Structure

There is an existing CIP cantilever wall, designated as Wall 16 with fence supported on pile foundations. The existing CIP wall alignment follows the proposed wall on the west side and crosses at an approximate Station 8284+60 then follows the proposed wall on the east side. Based on the TSL plan, the existing CIP wall will be removed.

2.0 SITE CONDITIONS AND GEOLOGICAL SETTING

The site is located within the City of Chicago at the I-90/94 and I-290 Circle Interchange. On the USGS *Chicago Loop 7.5 Minute Series* map, the wall is located in the NW¹/4 of Section 16, Tier 39 N, Range 14 E of the Third Principal Meridian.

The following review of published geologic data, with emphasis on factors that might influence the design and construction of the proposed engineering works, is meant to place the project area within a geological framework and confirm the dependability and consistency of the present subsurface investigation results. For the study of the regional geologic framework, Wang considered northeastern Illinois in general and Cook County in particular. Exhibit 2 illustrates the *Site and Regional Geology*.

2.1 Physiography

The wall is situated within the Chicago Lake Plain Physiographic Subsection. The area is characterized by a flat surface that slopes gently toward the lake, largely made of groundmoraine till covered by thin and discontinuous lacustrine silt and clay. The ground elevation along the wall ranges from 581 feet at the south end to 591 feet at the north end.

2.2 Surficial Cover

The project area was shaped during the Wisconsinan-age glaciation, and more than 75-foot thick drift covers the bedrock (Leetaru et al. 2004). The glacial cover is made up of clay and silt of the Equality Formation of the Mason Group and diamictons of the Wadsworth and Lemont Formations of the Wedron Group (Hansel and Johnson 1996). The Equality Formation is made up of bedded silt and clay, locally laminated, with lenses and/or thin beds of sand and gravel. The Wadsworth Formation consists of relatively homogenous, massive, gray till with clay to silty clay matrix, with dolostone and shale clasts and occasional lenses of sorted and stratified silt. The Wadsworth Formation is underlain by the pebbly silty clay loam to silty loam diamicton of the Yorkville Member of the Lemont Formation, known informally as the Chicago "hardpan."

From a geotechnical viewpoint, the Equality Formation is characterized by low strength, medium to high plasticity, and medium to high moisture content, whereas the Wadsworth Formation is characterized by low plasticity, medium to low moisture content, medium to very stiff consistency, poor permeability, and low compressibility. The Yorkville Member (hardpan) is characterized by low plasticity, high blow counts, and low moisture content (Bauer et al. 1991; Peck and Reed 1954).

2.3 Bedrock

In the project area, the glacigenic deposits unconformably rest over approximately 350-foot thick Silurian-age dolostone (Leetaru et al 2004). The top of bedrock may be encountered at 475 to 500 feet elevation or 75 to 100 feet below ground surface (bgs) or more. The Silurian dolostone dips gently

eastward at a pace of 15 feet per mile. Only inactive faults are known in the area, and the seismic risk is minimal (Leetaru et al. 2004; Willman 1971). There are no records of mining activity in the area, but deep tunnel excavations are known to exist.

Our subsurface investigation results fit into the local geologic context. The borings drilled in the project area revealed the native sediments consist of clay to silty clay diamicton of the Wadsworth Formation resting on top of more competent silty clay loam diamicton (hardpan) of the Lemont Formation, which in turn is underlain by bedrock. Sound dolostone bedrock was sampled at a depth of 94 feet bgs, corresponding to 483.9 feet elevation, within the range predicted based on published geological data.

3.0 METHODS OF INVESTIGATION

The following sections outline the subsurface and laboratory investigations. All elevations in this report are based on NAVD 1988.

3.1 Subsurface Investigation

Wang drilled two structure borings, designated as 37-RWB-01 and 37-RWB-02 in July to August, 2014. Wang has also referenced five nearby structure borings, designated as 08-RWB-01 through 08-RWB-03, 0589-B-01, 1702-B-01, and 08-ST-01 drilled in June to November, 2014. The as-drilled boring locations were surveyed by Dynasty Group, Inc. and station and offset information for each boring were provided by AECOM. Boring location data are presented in the *Boring Logs* (Appendix A). The as-drilled boring locations are shown in the *Boring Location Plan* (Exhibit 3).

We also considered the Piezometer 30-PZ-01 located about 800 feet northeast of Wall 37. The piezometer was installed in accordance with ASTM D5092, "*Standard Practice for Design and Installation of Groundwater Monitoring Wells in Aquifers.*"

A truck-mounted drilling rig equipped with hollow stem augers, was used to advance and maintain an open borehole to 10 to 15 feet depths after that mud rotary was used to the boring termination depth. Soil sampling was performed according to AASHTO T 206, "*Penetration Test and Split Barrel Sampling of Soils*." The soil was sampled at 2.5-foot intervals to 30 feet bgs and at 5-foot intervals to boring termination depths. Soil samples collected from each sampling interval were placed in sealed

jars and transported to Wang Geotechnical Laboratory in Lombard, Illinois for further examination and laboratory testing.

Field boring logs, prepared and maintained by a Wang engineer or geologist, include lithological descriptions, visual-manual soil/rock classifications, results of Rimac and pocket penetrometer unconfined compressive strength tests, results of Standard Penetration Tests (SPT) recorded as blows per 6 inches of penetration. The SPT N value, shown on the soil profile, is the sum of the second and third blows per 6 inches. The soils were described and classified according to Illinois Division of Highways (IDH) Textural Classification system. The field logs were finalized by an experienced engineering geologist after verifying the field visual classifications and laboratory test results.

Groundwater observations were made during drilling to depths of 10 to 15 feet before using rotary wash method. Due to safety considerations, boreholes were backfilled with grout immediately upon completion. Groundwater levels in the piezometer were recorded autonomously at defined intervals by digital pressure loggers suspended within the water column. Barometric affects are compensated by a second in-air pressure logger installed in the riser pipe. Data is retrieved from loggers periodically, downloaded to a computer for analysis.

3.2 Vane Shear Tests

Wang performed vane shear tests in Borings VST-02 and 0589-B-01. Vane shear tests are performed using calibrated RocTest vane shear equipment. Tests were performed in undisturbed and remolded conditions. The sensitivity shown on the boring logs is the ratio of shear strength in undisturbed and remolded conditions. In general, the vane shear strength values for soft clays were significantly higher than the corresponding values from unconfined compressive strength tests using the RIMAC apparatus. Vane shear test results were used in our analyses.

3.3 Laboratory Testing

The soil samples were tested in the laboratory for moisture content (AASHTO T265). Atterberg limits (AASHTO T 89/T 90) and particle size analyses (AASHTO T 88) tests were performed on selected soil samples representing the main soil layers encountered during the investigation. Shelby tube samples from Boring 08-ST-01 were tested for unconfined compressive strength (T208), triaxial unconsolidated undrained compression (T296), and one-dimensional consolidation (T216). Field visual descriptions of the soil samples were verified in the laboratory. Laboratory test results are

shown in the *Boring Logs* (Appendix A), in the *Soil Profile* (Exhibit 4), and in the *Laboratory Test Results* (Appendix B).

4.0 RESULTS OF FIELD AND LABORATORY INVESTIGATIONS

Detailed descriptions of the soil conditions encountered during our subsurface investigation are presented in the attached *Boring Logs* (Appendix A) and in the *Soil Profile* (Exhibit 4). Please note that strata contact lines represent approximate boundaries between soil types. The actual transition between soil types in the field may be gradual in horizontal and vertical directions.

4.1 Soil Conditions

Borings drilled on the roadway encountered 3 to 6 inches of asphalt and/or 8 to 12 inches of concrete followed by sand to gravelly sand base course. Borings drilled on the grassy area encountered 4 inches of silty clay loam topsoil. In descending order, the general lithologic succession encountered beneath the pavement structure or topsoil includes: 1) man-made ground (fill); 2) medium stiff to very stiff silty clay to silty clay loam; 3) very soft to medium stiff clay to silty clay; 4) stiff to hard silty clay to silty clay loam; 5) medium dense to very dense silt to silty loam and sand; and 6) weathered to sound dolostone.

1) Man-made ground (fill)

Underneath the topsoil or pavement structure, the borings encountered 3 to 10 feet of fill materials. Granular fill consists of loose to dense, black to gray sand to gravelly sand. Cohesive fill includes stiff to very stiff, brown and gray silty clay loam. The granular fill layer has N-values of 6 to 34 blows per foot and moisture content values of 3 to 14%. The cohesive fill layer has unconfined compressive strength (Q_u) values ranging from 1.3 to 2.5 tsf and moisture content values of 14 to 23%.

2) Medium stiff to very stiff silty clay to silty loam

Beneath the fill, at elevations of 576 to 588 feet, the borings encountered 3 to 7 feet of medium stiff to very stiff, brown to gray silty clay to silty clay loam. This layer has Q_u values ranging from 0.6 to 2.5 tsf and moisture content values between 14 and 27%. This layer is commonly known as the "crust."

3) Very soft to medium stiff clay to silty clay

At elevations of 569 to 582 feet (8 to 13 feet bgs), the borings revealed up to 43 feet of very soft to medium stiff, gray clay to silty clay with Rimac Qu values of 0.16 to 0.74 tsf and moisture content values of 16 to 30%. Laboratory index testing on samples from this layer showed liquid limit (L_L) values of 28 to 36% and plastic limit (P_L) values of 14 to 18%. Laboratory triaxial unconsolidated undrained test on samples from this layer showed undrained cohesion values ranging from 432 to 1008 psf. This layer is commonly known as the "*Chicago Blue Clay*."

As discussed in Section 3.2, undrained shear strength values from vane shear tests are generally higher than Rimac tests. In-situ undisturbed vane shear strengths obtained in Borings VST-02 and 0589-B-01 between elevations 575 and 542 feet varied from 430 to 1750 psf.

4) Stiff to hard silty clay to silty clay loam

At elevations of 541 to 552 feet (47 to 52 feet bgs), the borings encountered up to 35 feet of medium stiff to hard silty clay to silty clay loam. The silty clay to silty clay loam has Q_u values of 1.0 to 6.9 tsf and moisture content values of 13 to 30%. The borings encountered 3 to 5 feet of medium dense silt to silty loam layers with N values of 18 to 21 blows per foot.

(5) Medium dense to very dense silt to silty loam and sand

At elevations of 517 to 518 feet (49 to 59 feet bgs) the borings encountered medium dense to very dense silty loam and sand. This layer has N values of 18 to over 50 blows per foot.

(6) Weathered to sound bedrock

At an elevation of 504 feet (90 feet bgs) Boring 0589-B-01 revealed about 3 feet of weathered bedrock. Based on the nearby Boring 0589-B-02, strong bedrock was encountered at an elevation of 483.9 feet or 94 feet bgs.

4.2 Groundwater Conditions

Groundwater was observed during drilling at an elevation of 580 feet (8 bgs) within the granular fill layer. The groundwater was not observed during drilling or after drilling in borings due to the mud rotary drilling from 10 to 15 feet bgs.

Piezometer 30-PZ-01 was installed 800 feet northeast of Retaining Wall 37 within the granular soils (**layer 5**) with the top and bottom of piezometer screen elevations at 503.7 and 493.7 feet (89.5 to 99.5

feet bgs), respectively. The groundwater levels monitored in the piezometer showed groundwater elevations ranging from 544.1 to 547.4 feet, with an average hydrostatic elevation within aquifer at 546 feet. The first and last readings were taken on November 21, 2014 and March 30, 2017.

The design and construction of the wall should consider the perched groundwater between 580 and 588 feet elevations within the fill layers. The design and construction of the drilled shaft and drilled soldier pile walls should consider the granular soils (**layer 5**) as water bearing and under hydrostatic pressure.

4.3 Seismic Design Considerations

The retaining wall is located in Seismic Performance Zone (SPZ) 1 and is not required to be designed for seismic forces as per 2012 IDOT *Bridge Manual* (IDOT 2012).

5.0 ANALYSIS AND RECOMMENDATIONS

5.1 Retaining Wall Type Evaluation

Based on the TSL plan, the proposed Retaining Wall 37 is a cut wall along the Jackson Exit Ramp. The proposed 330-foot long Retaining Wall 37 will be constructed in a combination of 180-foot long, 18.7 feet maximum retained height new drilled shaft and lagging wall and 150-foot long, 10.7 feet maximum retained height drilled soldier pile and lagging wall.

The following sections present the results of our geotechnical engineering analyses and recommendations for the drilled shaft and drilled soldier pile walls design and construction.

5.2 Drilled Shaft and Drilled Soldier Pile Walls

We recommend drilled shafts and drilled soldier piles should be designed for both lateral earth pressure and lateral deformation. The embedment depth in moment equilibrium for the wall section should be designed in accordance with the LRFD guidelines (AASHTO 2014). Generally, overconsolidated clayey soils, such as the stiff to very stiff clays and very dense silty loam will exhibit lower overall shear strength in the long-term condition; normally-consolidated clayey soils, however, such as the very soft to medium stiff clay to silty clay (Chicago blue clay) will likely exhibit significantly lower shear strength in the short-term (undrained) and long-term (drained) condition using the soil parameters shown in Tables 1 and 2.

The undrained shear strength properties of the soft to medium stiff silty clay are taken from the vane shear test results shown in Borings VST-02 and 0589-B-01 and the earth pressure coefficients for the layers assumed horizontal slopes behind and in front of the walls. In addition, the results of unconfined compressive test results and undrained shear strength (cohesion) results from triaxial UU tests from Shelby tube boring 08-ST-01were also considered in the development of soil parameters. The drained soft to medium stiff silty clay friction angle parameters have been taken from the consolidated-undrained (CU) triaxial tests performed on this layer from the Circle Interchange project.

The design of the wall should ignore 3 feet of soil in front of the wall measured from the finished ground surface elevation in providing passive pressure due to excavation required for installation of concrete facing, drainage system and frost-heave condition. In developing the design lateral pressure, the lateral pressure due to construction equipment surcharge load should be added to the lateral earth pressure. Drainage behind the wall and underdrain should be as per 2012 IDOT *Bridge Manual* (IDOT 2012). The water pressure should be added to the earth pressure if drainage is not provided.

The potential pressure/load from the existing buildings and parking lots on the proposed wall must be considered in design of the wall. In addition, the design of soldier pile wall should also consider the existing abandoned fright tunnel crossing near Station 8284+70 and the existing ComEd Ductbank crossing near Station 8284+80 and should avoid soldier piles along the existing tunnel crossings.

Table 1: Short-term (Undrained) Geotechnical Parameters for Design of Drilled Shaft and Soldier Pile Walls (Reference Borings: 37-RWB-01, 37-RWB-02, VST-02, 08-ST-01, and 0589-B-01)

		Undrained Sh Prope		Earth Pressur	e Coefficients
Soil Description (Layer)	Unit er) Weight, γ C (pcf)		Friction Angle (°)	Active Pressure	Passive Pressure
GRAVELLY SAND to SAND					
FILL	120	0	30	0.31	3.00
Surface to EL 588 feet					
Stiff to V Stiff SILTY CLAY	120	1500	0	1.00	1.00
EL 588 to 583 feet			-		
Soft to M Stiff					
CLAY to SILTY CLAY	120	600	0	1.00	1.00
EL 583 to 580 feet					
Soft to M Stiff					
CLAY to SILTY CLAY	120	530	0	1.00	1.00
EL 580 to 566 feet					
Soft to M Stiff					
CLAY to SILTY CLAY	120	750	0	1.00	1.00
EL 566 to 553 feet					
Soft to M Stiff					
CLAY to SILTY CLAY	120	910	0	1.00	1.00
EL 553 to 545 feet					
Stiff SILTY CLAY	125	1300	0	1.00	1.00
EL 545 to 541 feet	123	1300	0	1.00	1.00
V Stiff SILTY CLAY					
EL 541 to 537 feet	125	2100	0	1.00	1.00
M Dense to V Dense					
SILTY LOAM	125	0	35	0.27	3.69
EL 537 to 525 feet	120	Ŭ	55	0.27	5.07
V Stiff SILTY CLAY	125	2000	0	1.00	1.00
EL 525 to 518 feet					
M Dense GRAVELLY SANDY	105	0	24	0.00	2 5 4
LOAM to LOAM	125	0	34	0.28	3.54
EL 518 to 513 feet					
Dense SAND	130	0	36	0.26	3.85
EL 513 to 504 feet					

		Undrained Sh Prope	U	Earth Pressure Coefficients			
Soil Description (Layer)	Unit Weight, γ (pcf)	Cohesion (psf)	Friction Angle (°)	Active Pressure	Passive Pressure		
V Dense WEATHERED BEDROCK EL 504 to 501 feet	130	0	37	0.25	4.02		

Table 2: Long-term (Drained) Geotechnical Parameters for Design of Drilled Shaft and Soldier Pile Walls (Reference Borings: 37-RWB-01, 37-RWB-02, VST-02, 08-ST-01, and 0589-B-01)

		Drained She Prope		Earth Pressur	e Coefficients
Soil Description (Layer)	Unit Weight, γ (pcf)	Cohesion (psf)	Friction Angle (°)	Active Pressure	Passive Pressure
GRAVELLY SAND to SAND FILL Surface to EL 588 feet	120	0	30	0.33	3.00
Stiff to V Stiff SILTY CLAY EL 588 to 583 feet	120	100	30	0.33	3.00
Soft to M Stiff CLAY to SILTY CLAY EL 583 to 580 feet	120	0	28	0.36	2.77
Soft to M Stiff CLAY to SILTY CLAY EL 580 to 566 feet	120	0	27	0.38	2.66
Soft to M Stiff CLAY to SILTY CLAY EL 566 to 553 feet	120	0	27	0.38	2.66
Soft to M Stiff CLAY to SILTY CLAY EL 553 to 545 feet	120	0	27	0.38	2.66
Stiff SILTY CLAY EL 545 to 541 feet	125	80	29	0.35	2.88
V Stiff SILTY CLAY EL 541 to 537 feet	125	100	30	0.33	3.00

		Drained She Prope	-	Earth Pressure Coefficients			
Soil Description (Layer)	Unit Weight, γ (pcf)	Cohesion (psf)	Friction Angle (°)	Active Pressure	Passive Pressure		
M Dense to V Dense SILTY LOAM EL 537 to 525 feet	125	0	35	0.27	3.69		
V Stiff SILTY CLAY EL 525 to 518 feet	125	100	30	0.33	3.00		
M Dense GRAVELLY SANDY LOAM to LOAM EL 518 to 513 feet	125	0	34	0.28	3.54		
Dense SAND EL 513 to 504 feet	130	0	36	0.26	3.85		
V Dense WEATHERED BEDROCK EL 504 to 501 feet	130	0	37	0.25	4.02		

Design considerations should include deflection control at the top of the wall. The lateral deformation of the wall should be designed using the parameters shown in Table 3 using the p-y curve (COMP624) method.

Soil Type (Layer)	Unit Weight, γ (pcf)	Undrained Shear Strength, c _u (psf)	Estimated Friction Angle, Φ (°)	Estimated Lateral Soil Modulus Parameter, k (pci)	Estimated Soil Strain Parameter, ε ₅₀ (%)
GRAVELLY SAND to SAND					
FILL	120	0	30	30	
Surface to EL 588 feet					
Stiff to V Stiff SILTY CLAY	120	1500	0	500	0.8
EL 588 to 583 feet	120	1500	0	500	0.0
Soft to M Stiff					
CLAY to SILTY CLAY	120	600	0	70	1.0
EL 583 to 580 feet					

Table 3: Recommended Parameters for Lateral Load Analysis of Drilled Shaft and Soldier Pile Walls (Reference Borings: 37-RWB-01, 37-RWB-02, VST-02, 08-ST-01, and 0589-B-01)

Soil Type (Layer)	Unit Weight, γ (pcf)	Undrained Shear Strength, c _u (psf)	Estimated Friction Angle, Φ (°)	Estimated Lateral Soil Modulus Parameter, k (pci)	Estimated Soil Strain Parameter, ε ₅₀ (%)
Soft to M Stiff					
CLAY to SILTY CLAY	120	530	0	60	1.0
EL 580 to 566 feet					
Soft to M Stiff					
CLAY to SILTY CLAY	120	750	0	80	1.0
EL 566 to 553 feet					
Soft to M Stiff					
CLAY to SILTY CLAY	120	910	0	100	1.0
EL 553 to 545 feet					
Stiff SILTY CLAY	125	1300	0	500	0.4
EL 545 to 541 feet	125	1500	0	500	0.4
V Stiff SILTY CLAY	125	2100	0	1000	0.5
EL 541 to 537 feet	125	2100	0	1000	0.5
M Dense to V Dense					
SILTY LOAM	125	0	35	100	
EL 537 to 525 feet					
V Stiff SILTY CLAY	125	2000	0	1000	0.4
EL 525 to 518 feet	125	2000	0	1000	
M Dense GRAVELLY					
SANDY LOAM to LOAM	125	0	34	60	
EL 518 to 513 feet					
Dense SAND	130	0	36	125	
EL 513 to 504 feet				125	
V Dense WEATHERED					
BEDROCK	130	0	37	125	
EL 504 to 501 feet					

5.2.1 Settlement Analyses

Based on the *Cross-Section* drawings, to reach the design finished grade at backface of the drilled shaft and drilled soldier pile walls, we estimate that up to 7 feet of new fill will be required creating a surcharge load behind the wall. Our settlement analyses show the soil will undergo up to 0.5 inches of settlement which is generally acceptable for parking lot or landscaping areas.

The nearest existing building (765 W Adams Street) is 13.6 to 30 feet away from the proposed Wall 37. The surface settlement induced by installation of Wall 37 is discussed in Section 5.4.

5.2.2 Global Stability Analyses

The global stability of the retaining wall at Station 8282+72.47 was analyzed based on the soil profile described in Section 4.1 and the information provided in the TSL. Due to the presence of soft and medium stiff clay, the tip of the shaft should not terminate above an elevation of 541 feet. The minimum required FOS for both short (undrained) and long-term (drained) conditions is 1.5 (IDOT 2012). *Slide* v6.0 evaluation exhibits employing the Bishop Simplified method of analysis are shown in Appendix C. We estimate the wall tip elevation at elevation 541 feet has a minimum undrained FOS of 1.5 (Appendix C-1) and a drained FOS of 3.5(Appendix C-2). The FOS meets the minimum requirement.

5.3 Ground Movement Evaluations

There is an existing building at 765 W. Adams Street (Arkadia Tower) behind the Drilled shaft Wall between Station 8282+72.47 and Station 8284+52.58. The building is about 13 to 30 feet away from the Wall 37. From information provided by TranSystems, Wang understands that the Arkadia Tower is supported on deep foundations.

Wall 37's potential impact on the building was determined at three locations (Station 8282+73, Station 8283+60, and Station 8284+52) considering IDOT wall deflection criteria issued on November 14, 2016. IDOT's wall deflection criteria states that the project limitations are set for a maximum allowable wall deflection of up to 1.0% of the exposed wall height (which is about 1.3 to 2.2 inches), if the wall is not supporting sensitive structures or facilities. For walls supporting sensitive structures, the maximum allowable wall deflection should be limited to 0.5% of the exposed wall height (which is about 0.6 to 1.1 inches), or less as required, to prevent detrimental effects on adjacent structures or facilities. The TSL plan shows the maximum total lateral wall deflection of the wall is 1 inch. The acceptable surface movement by CDOT is maximum 0.25 inches.

Using empirical data compiled from various research papers, Wang estimates the ground movement adjacent to the building induced by the maximum lateral wall deflection of 1 inch is about 0.3 to 0.6 inches which exceeds CDOT's ground movement criteria. Ground movement estimates including method used are included in Appendix E. Since the building is supported on deep foundations, there might not be a damaging effect on the general structure. The potential impact of the wall deflection inducing ground movements on other existing structures such as the existing structure walls, any buried

utilities, and slab- on-grades must be considered on the final design to ensure specific deformation limits are not exceeded, leading to settlement and structural displacements.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Excavation

Any required excavations should be performed in accordance with local, state, and federal regulations including current OSHA regulations. The potential effect of ground movements upon nearby structures and utilities should be considered during construction. Any open excavation to a depth of 4 feet should have a slope of 1:2 (V:H) for cohesive soils and 1:2.5 (V:H) for granular soils or flatter. Based on the TSL plan, a Temporary Soil Retention System (TSRS) will be used for the removal of the existing retaining wall. In addition, the TSRS will also be used to construct catch basins and other drainage structures in front of the proposed wall. The influence of the construction of these structures on the new wall must be considered during the wall design. The TSRS should have deflection control to prevent movement of the proposed wall if they are constructed after the proposed wall construction.

6.2 Filling and Backfilling

All fill and backfill materials will be as per IDOT *Standard Specification for Road and Bridge Construction* (IDOT 2016).

6.3 Drilled Shaft Encasement

Groundwater was encountered within the granular fill, about 3 to 8 feet below the ground surface, and will be encountered during drilling of the drilled shafts and drilled soldier pile excavations. The installation of drilled shafts and drilled soldier piles extending into the medium dense to very dense silt and silty loam and sand (**Layer 5**) will encounter groundwater that will present challenges in maintaining an open borehole. Temporary or permanent casings should be used when the groundwater is encountered. Failure to anticipate the challenges posed by the groundwater at this location will result in caving or heaving sand and weakening of the foundation soils.

The soft soil layer with Qu less than 0.5 tsf (500 psf cohesion) is prone to squeeze if left open for long period of time. Therefore, to minimize the squeeze potential, casing should be provided. Due to high squeeze potential, the following note should appear on the final plans:

'Due to the squeeze potential of the clay soils, the use of temporary casing will be required to properly construct the shafts. Casing may be pulled or remain in place, as determined by the Contractor at no cost to the Department.'

6.4 Wall Construction

The wall should be constructed as per IDOT *Standard Specification for Road and Bridge Construction* (IDOT 2016).

6.5 Construction Monitoring

Given the proximity of structure, roads, and utilities, Wang recommends special precautions should be taken during the construction to not to undermine the existing foundations, pavements and utilities.

To prevent any damage to the existing Arkadia Tower, we recommend the following monitoring during construction of the wall:

- Establish survey points on the east side wall of the Arkadia Tower to monitor the vertical and horizontal movements;
- Establish survey points at top of the wall to monitor deflection of the wall during and after construction of the wall;
- Install inclinometers before the wall construction begins between the proposed wall location and the building to monitor ground movement.

7.0 QUALIFICATIONS

The analysis and recommendations submitted in this report are based upon the data obtained from the borings drilled at the locations shown on the boring logs and in Exhibit 3. This report does not reflect any variations that may occur between the borings or elsewhere on the site, variations whose nature and extent may not become evident until the course of construction. In the event that any changes in the design and/or location of Retaining Wall 37 (SN016-1826) are planned, we should be timely informed so that our recommendations can be adjusted accordingly.

It has been a pleasure to assist AECOM and the Illinois Department of Transportation on this project. Please call if there are any questions, or if we can be of further service.

11/30/2019

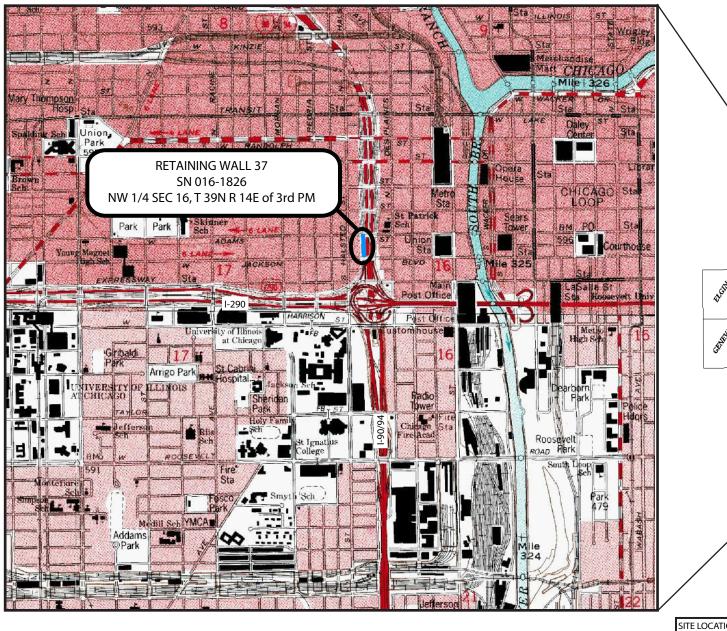
EX8.

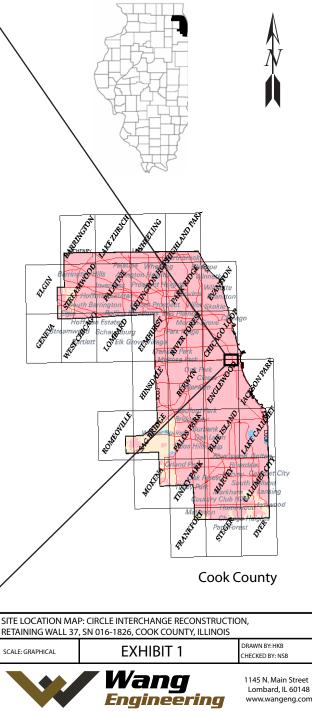
Respectfully Submitted,

WANG ENGINEERING, INC ROFESSIONA Metin W. Seyhun, P.E. ENGINEER Senior Geotechnical Engineer -Baln

Nesam S. Balakumaran Project Geotechnical Engineer

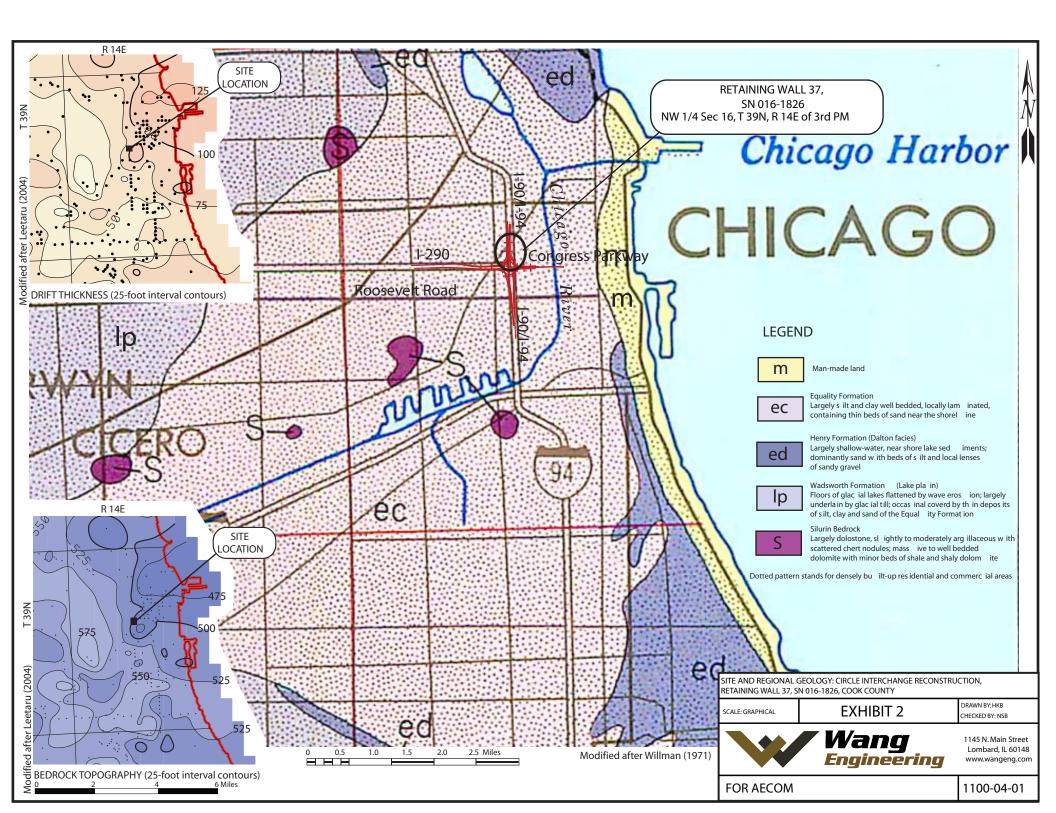
Corina T. Farez, P.E., P.G. Vice President

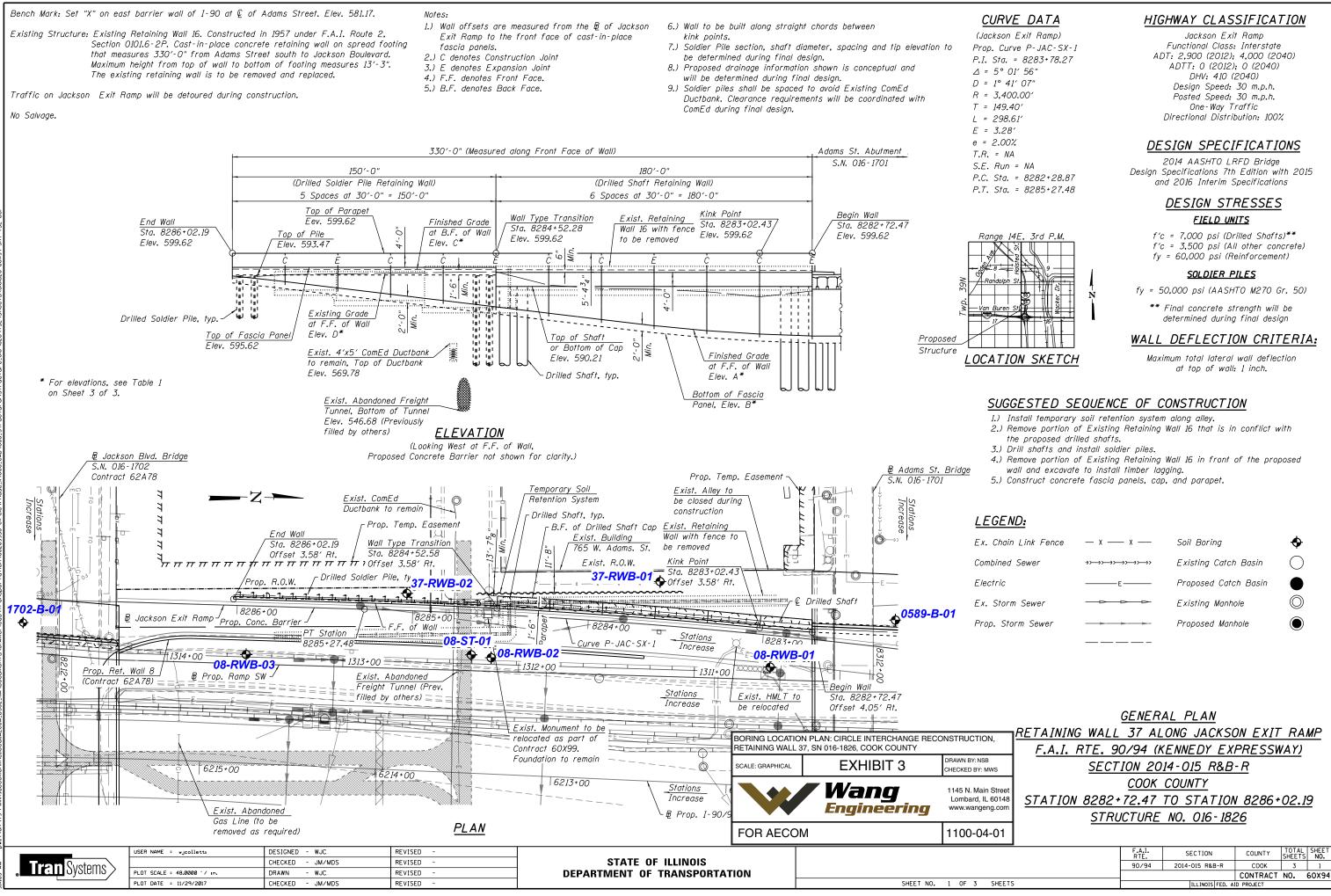


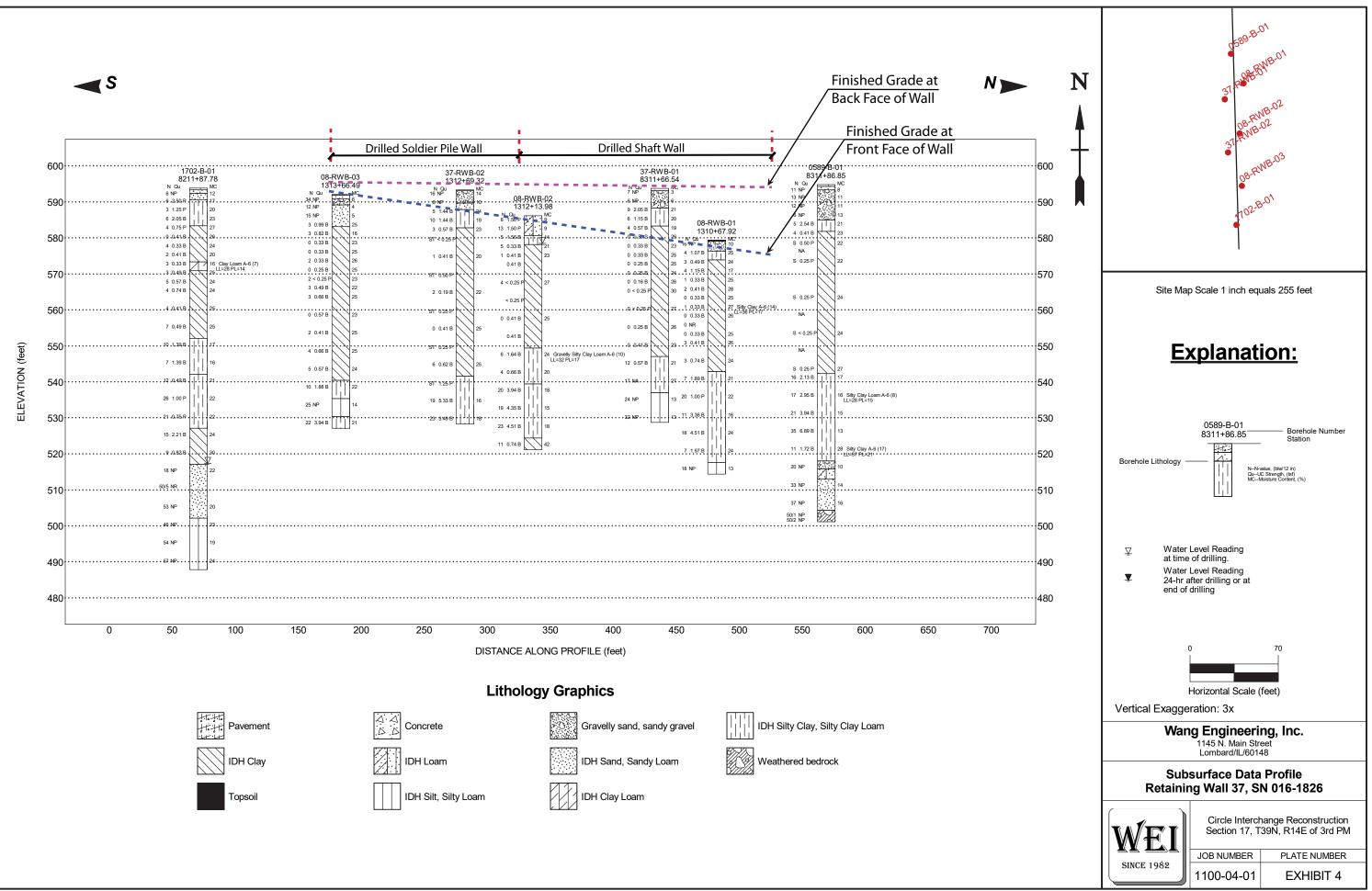

REFERENCES

- AMERICAN ASSOCIATION OF STATE HIGHWAY TRANSPORTATION OFFICIALS (2014) *LRFD Bridge Design Specifications*. United States Department of Transportation, Washington, D.C.
- BAUER, R.A., CURRY, B.B., GRAESE, A.M., VAIDEN, R.C., SU, W.J., and HASEK, M.J., 1991, Geotechnical Properties of Selected Pleistocene, Silurian, and Ordovician Deposits of Northeastern Illinois: Environmental Geology 139, Illinois State Geological Survey, 69 p.
- HANSEL, A.K., and JOHNSON, W.H. (1996) Wedron and Mason Groups: Lithostratigraphic Reclassification of the Wisconsin Episode, Lake Michigan Lobe Area: ISGS Bulletin 104.
 Illinois State Geological Survey, Champaign, IL. 116 p.
- LEETARU, H.E., SARGENT, M.L., AND KOLATA, D.R, 2004, *Geologic Atlas of Cook County for Planning Purposes*, ISGS, Champaign, IL
- ILLINOIS DEPARTMENT OF TRANSPORTATION (2015) *Geotechnical Manual*. IDOT Bureau of Materials and Physical Research, Springfield, IL.
- ILLINOIS DEPARTMENT OF TRANSPORTATION (2016) *Standard Specifications for Road and Bridge Construction.* IDOT Division of Highways, Springfield, IL.
- ILLINOIS DEPARTMENT OF TRANSPORTATION (2012) *Bridge Manual*. IDOT Bureau of Bridges and Structures, Springfield, IL.
- WILLMAN, H.B., 1971, *Summary of the Geology of the Chicago Area*, ISGS Circular C460: Urbana, Illinois State Geological Survey, p. 77.
- PECK, R.B., and REED, W.C., 1954, *Engineering Properties of Chicago Subsoils*: University of Illinois Engineering Experiment Station Bulletin No. 423: Urbana, University of Illinois, 62 p.

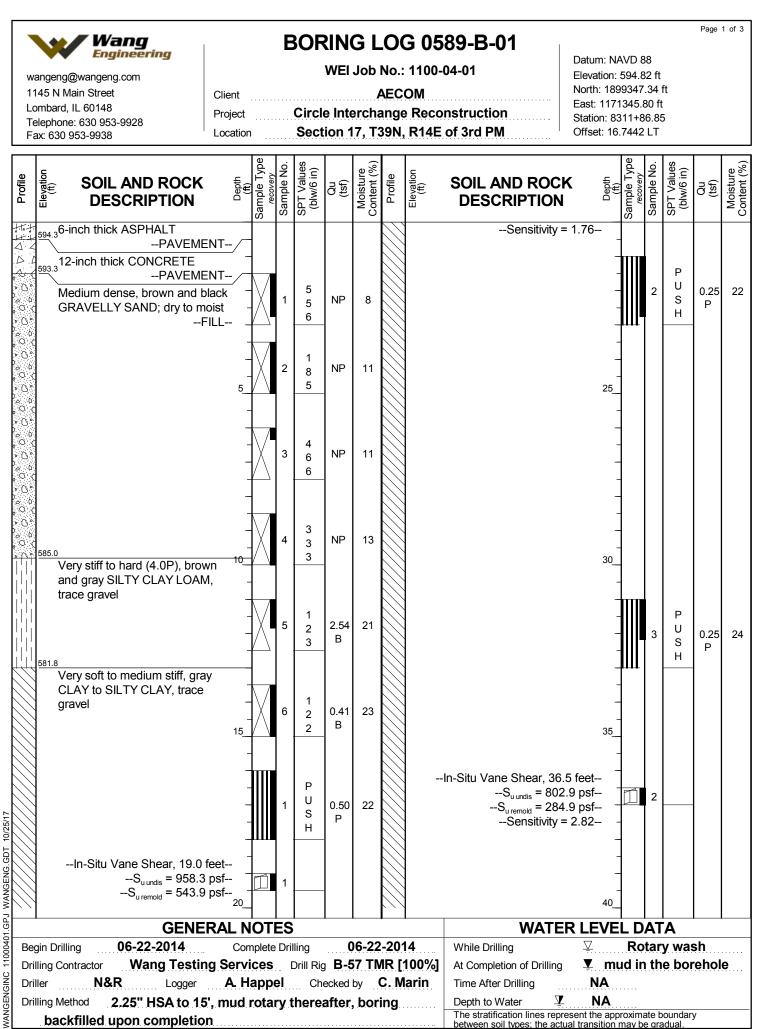
EXHIBITS

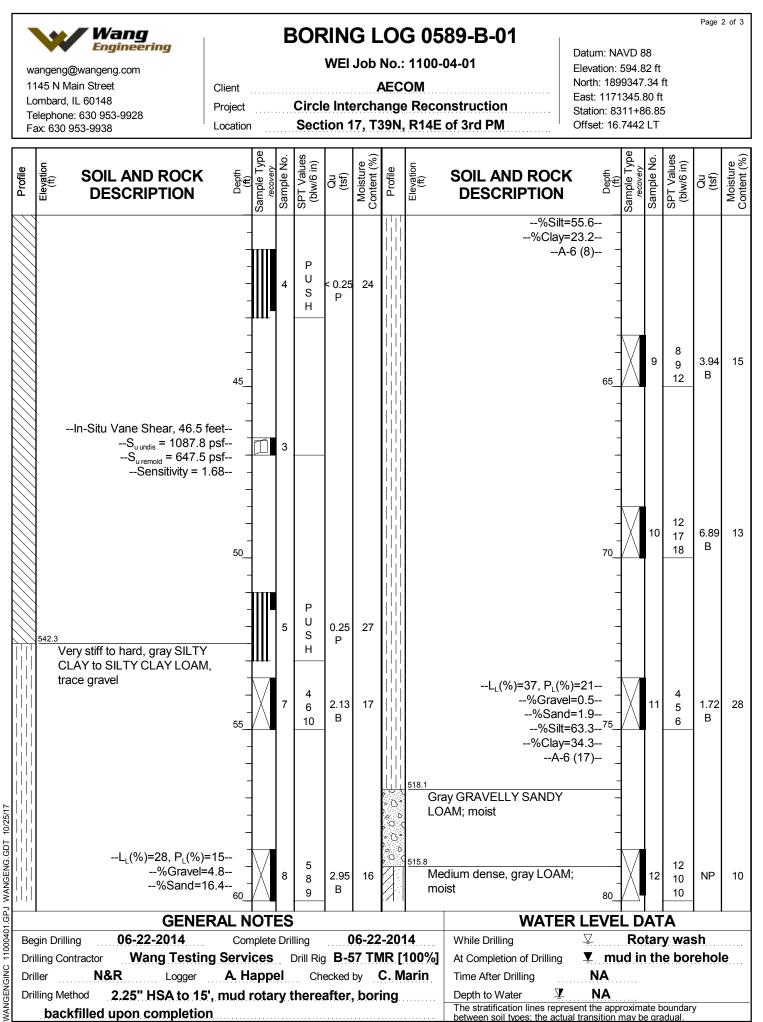





1100-04-01

www.wangeng.com


Ex. Chain Link Fence	— x — x —	Soil Boring	\blacklozenge
Combined Sewer	$\rightarrow \rightarrow $	Existing Catch Basin	\bigcirc
Electric	E	Proposed Catch Basin	${ \bullet }$
Ex. Storm Sewer	<u>>_</u> >>	Existing Manhole	\bigcirc
Prop. Storm Sewer		Proposed Manhole	\bigcirc



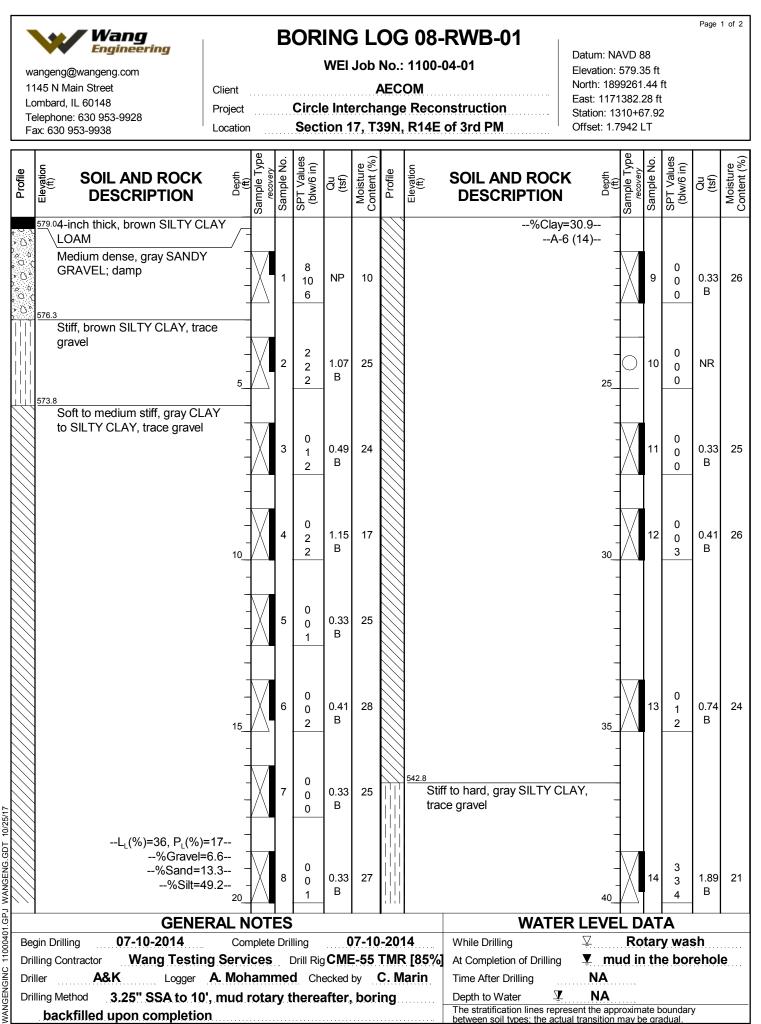
EI 11X17 11000401.GPJ BEARING-TRIAL.GDT 10/16/17

APPENDIX A

Client

BORING LOG 0589-B-01

WEI Job No.: 1100-04-01


Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928

AECOM Project **Circle Interchange Reconstruction** Section 17 T39N R14F of 3rd PM Location

Datum: NAVD 88 Elevation: 594.82 ft North: 1899347.34 ft East: 1171345.80 ft Station: 8311+86.85 Offset: 16 7442 | T

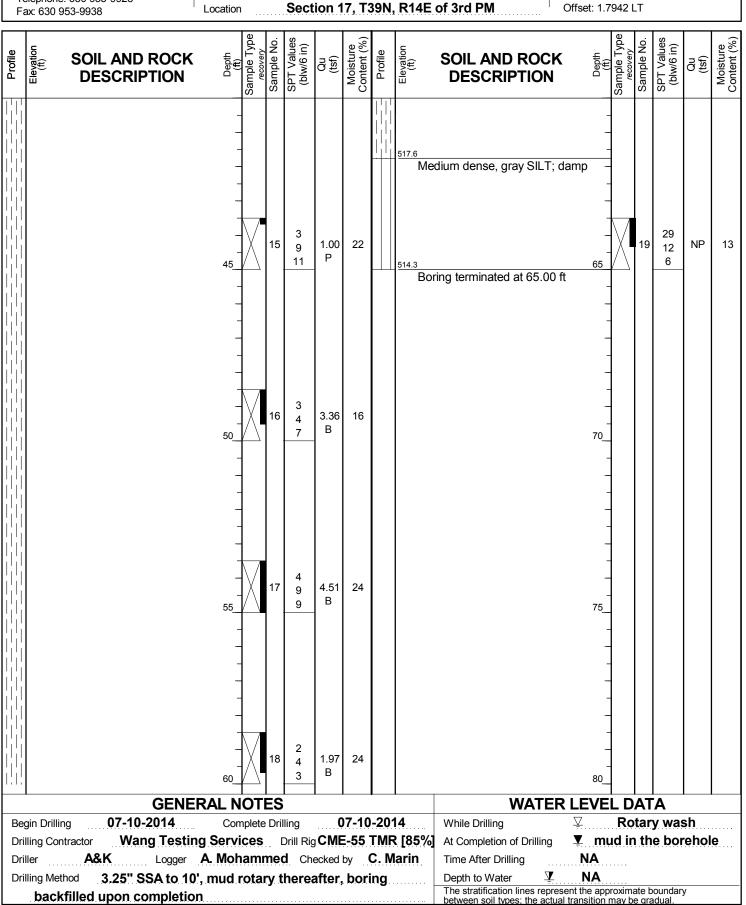
		e e		6		-									
SOIL AND ROCK DESCRIPTION	Depth (ff)	Sample Type recovery	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ff)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
a B DESCRIPTION 513.1 Dense, gray, fine to medium SAND; moist 504.3 DIFFICULT DRILLING at 9 Very dense, grayish DOLOSTONE fragmentsWEATHERED BEDROCAUGER REFUSA 501.1 Boring terminated at 93.50 ft			13	12 16 17 13 17 20 50/1 50/2	NP NP NP	14 Cont	-A		DESCRIPTION		Samp	Sam	SPT (blv		Cont
GENER Begin Drilling 06-22-2014 Drilling Contractor Wang Testing Driller N&R Logger Drilling Method 2.25" HSA to 15', backfilled upon completion	Com Servio A. Ha mud r	plete ces appe otar	Dril C el ryt	Drill Rig Che here a	B-5 ecked	by (bori	IR [^ C. M Ing	100%] arin	WATEF While Drilling At Completion of Drilling Time After Drilling Depth to Water The stratification lines repre between soil types; the actual	⊻ ▼ m NA NA	Ro ud ir	otar 1 th	y was e bor	ehol	•••••

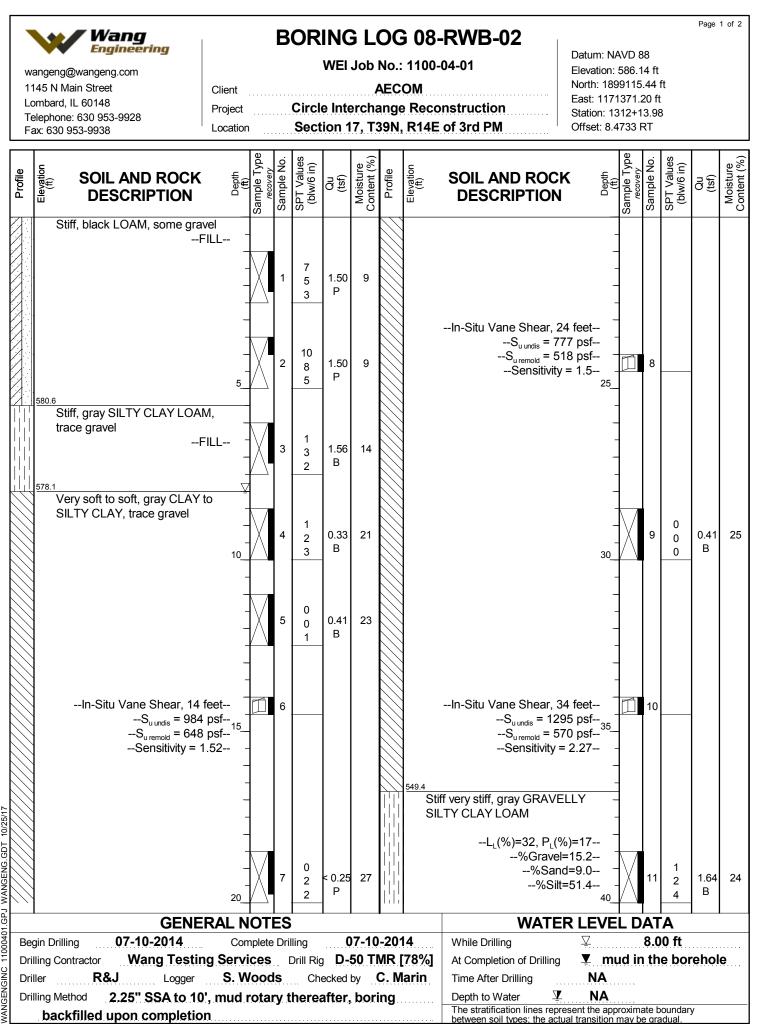
VANGENGINC 11000401.GPJ WANGENG.GDT

Client

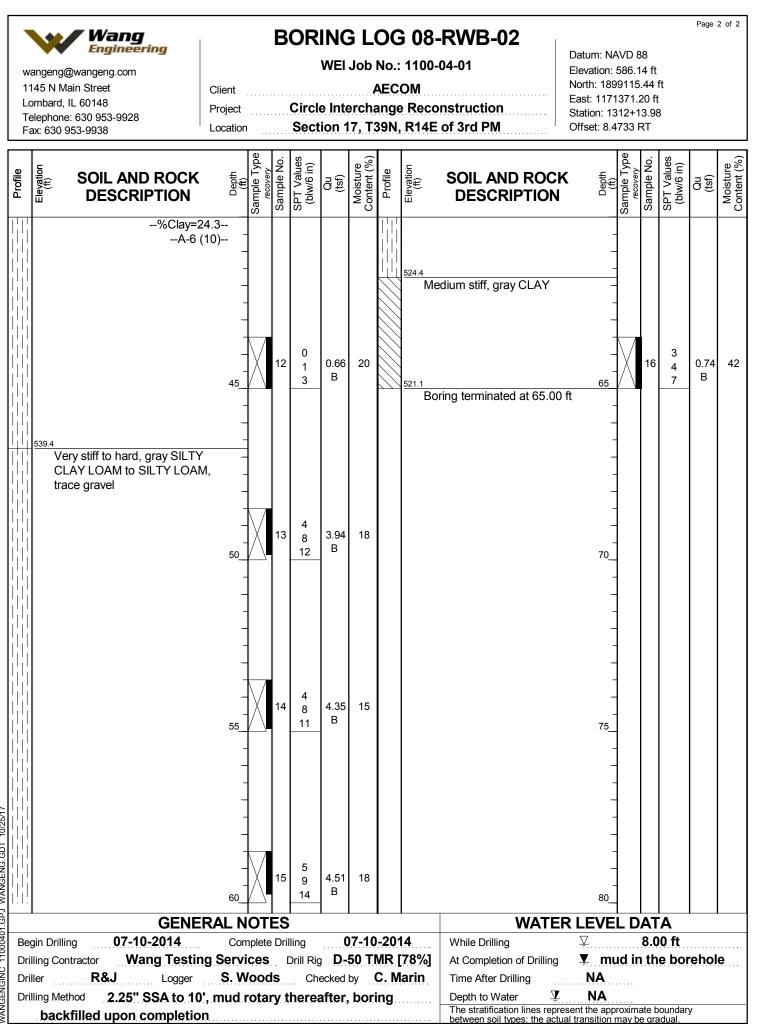
Project

BORING LOG 08-RWB-01

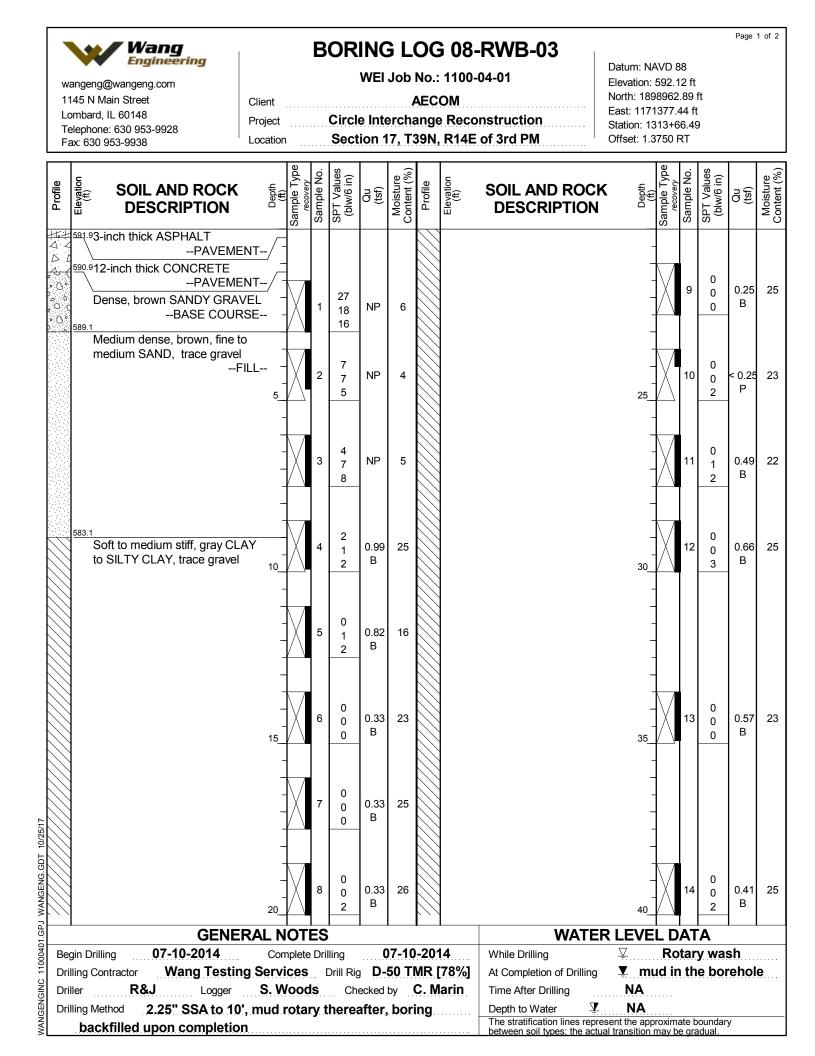

WEI Job No.: 1100-04-01


Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938


WANGENGINC 11000401.GPJ WANGENG.GDT 10/25/17

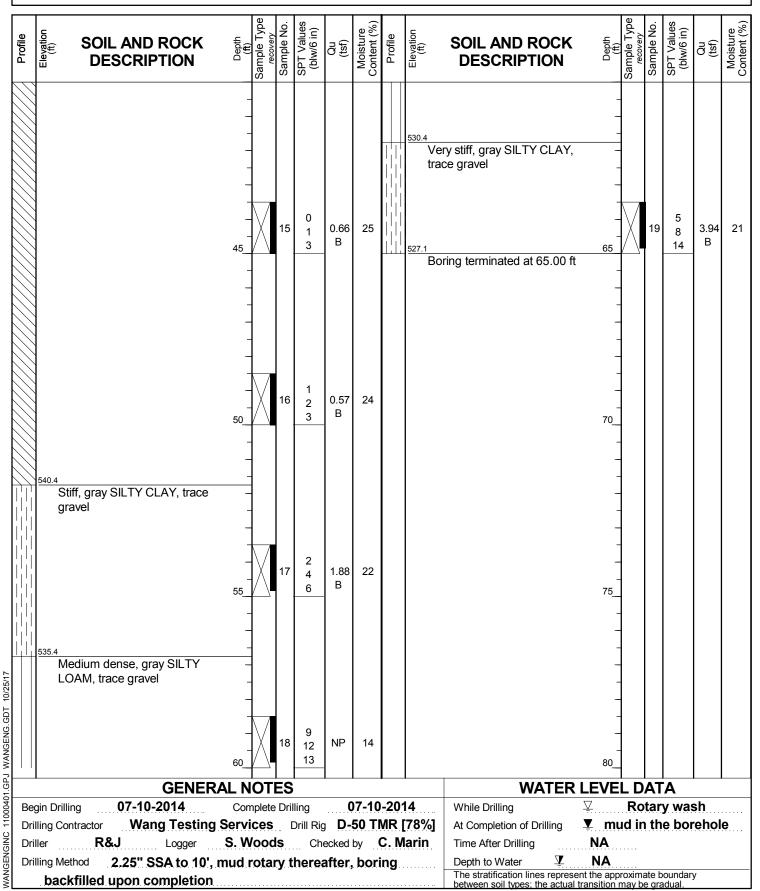
AECOM Circle Interchange Reconstruction Datum: NAVD 88 Elevation: 579.35 ft North: 1899261.44 ft East: 1171382.28 ft Station: 1310+67.92 Offset: 1.7942 LT

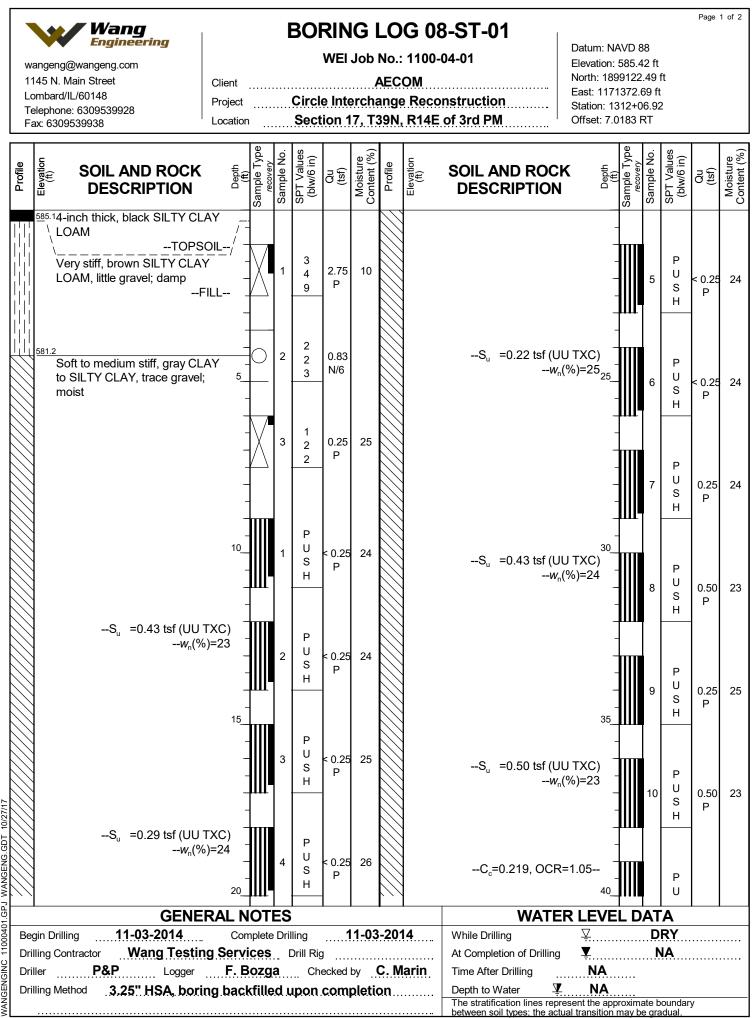


VANGENGINC 11000401.GPJ WANGENG.GDT

WANGENGINC 11000401.GPJ WANGENG.GDT 10/25/17

BORING LOG 08-RWB-03


WEI Job No.: 1100-04-01


Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

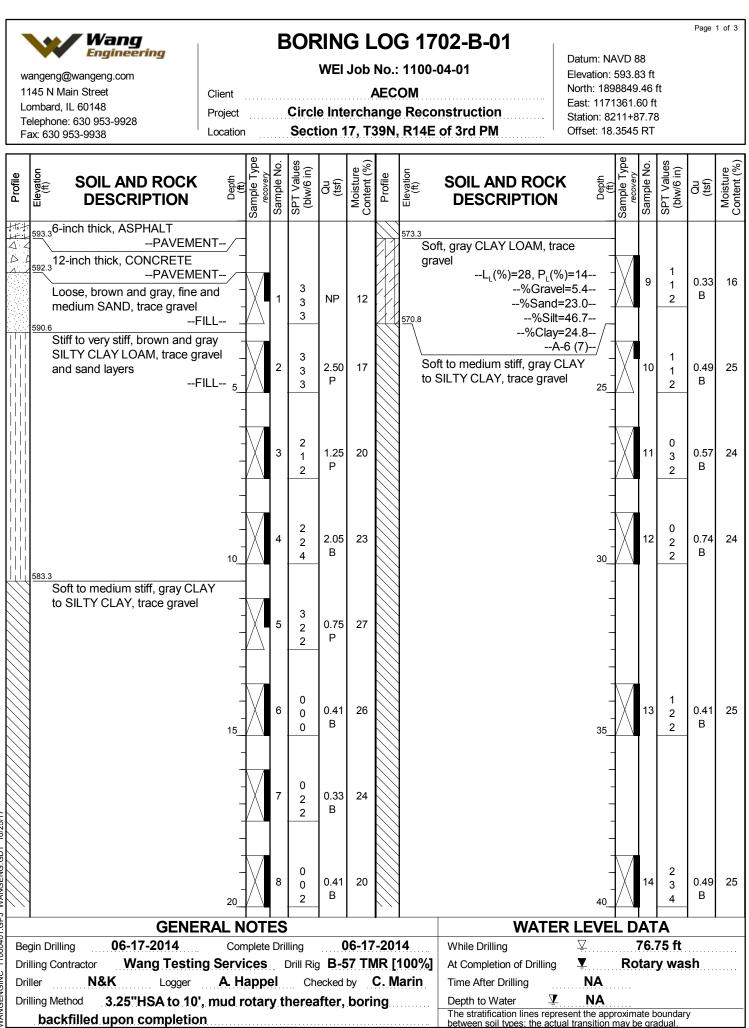
Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 592.12 ft North: 1898962.89 ft East: 1171377.44 ft Station: 1313+66.49 Offset: 1.3750 RT

WANGENGINC 11000401.GPJ WANGENG.GDT

BORING LOG 08-ST-01

WEI Job No.: 1100-04-01


Page 2 of 2

wangeng@wangeng.com 1145 N. Main Street Lombard/IL/60148 Telephone: 6309539928 Fax: 6309539938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 585.42 ft North: 1899122.49 ft East: 1171372.69 ft Station: 1312+06.92 Offset: 7.0183 RT

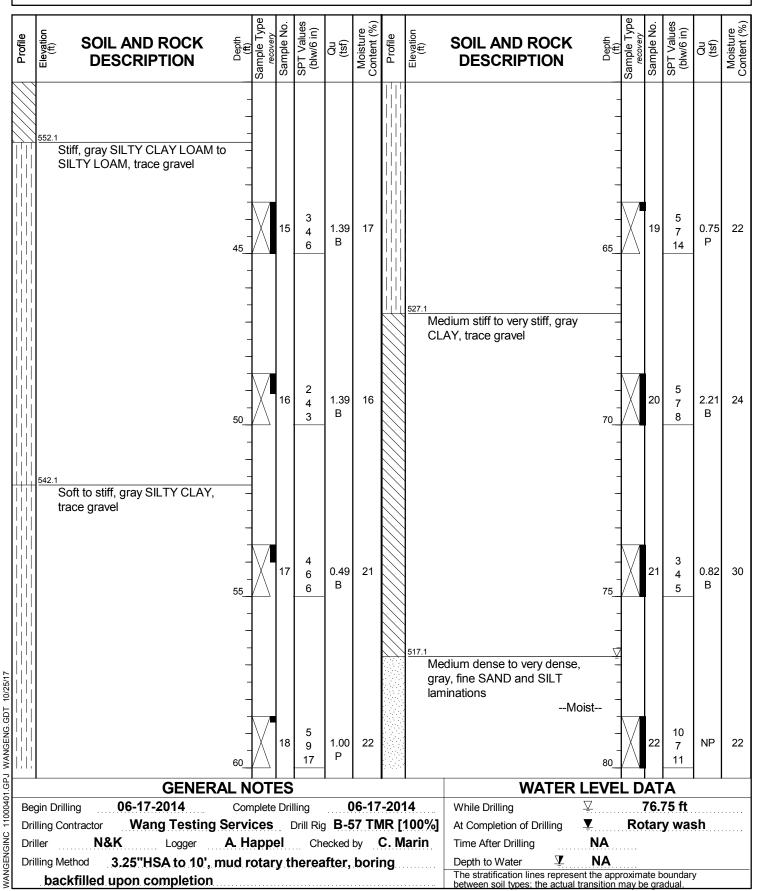
Г																
Profile	SOIL AND ROCK	Depth (ft)	Sample Type recovery	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCI DESCRIPTION		Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	Laboratory Q _u =0.39 tsi <i>w_n</i> (%)=			11	S H U	0.50 P	26									
	Laboratory Q _u =0.19 tsi	45		12	S H	0.25 P	25									
	537.9 Very stiff, gray SILTY CLAY			13	P U S H	0.75 P	25									
	LOAM, trace gravel; damp Laboratory Q _u =3.31 tst w _n (%)=	f (B), - :19 50_ -		14	P U S H	3.25 P	19									
	532.9 Boring terminated at 51.50 ft		$\left \right\rangle$	4	5 8 12	3.85 B	20									
		- - 55_ -														
		-														
	GENEI	- - 60 RAL N(=0						WATE	R LEVE			Δ		
	egin Drilling 11-03-2014				ling	1	1-03	-201	14	While Drilling	<u>V LL VL</u> <u><u>V</u></u>			RY		
	illing Contractor Wang Testin				-					At Completion of Drilling	<u>÷</u> ⊈			<u>хі</u> А		
		F. Bc					bv		arin	Time After Drilling	+ NA		!!			
	rilling Method 3,25" HSA, borir									Depth to Water		•••••				
	. •/4911969, DOLU	19.MAKU				~~				The stratification lines repr		roxim may b	ate bo	oundary dual.	/	

WANGENGINC 11000401.GPJ WANGENG.GDT 10/25/17

BORING LOG 1702-B-01

WEI Job No.: 1100-04-01

Page 2 of 3


wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

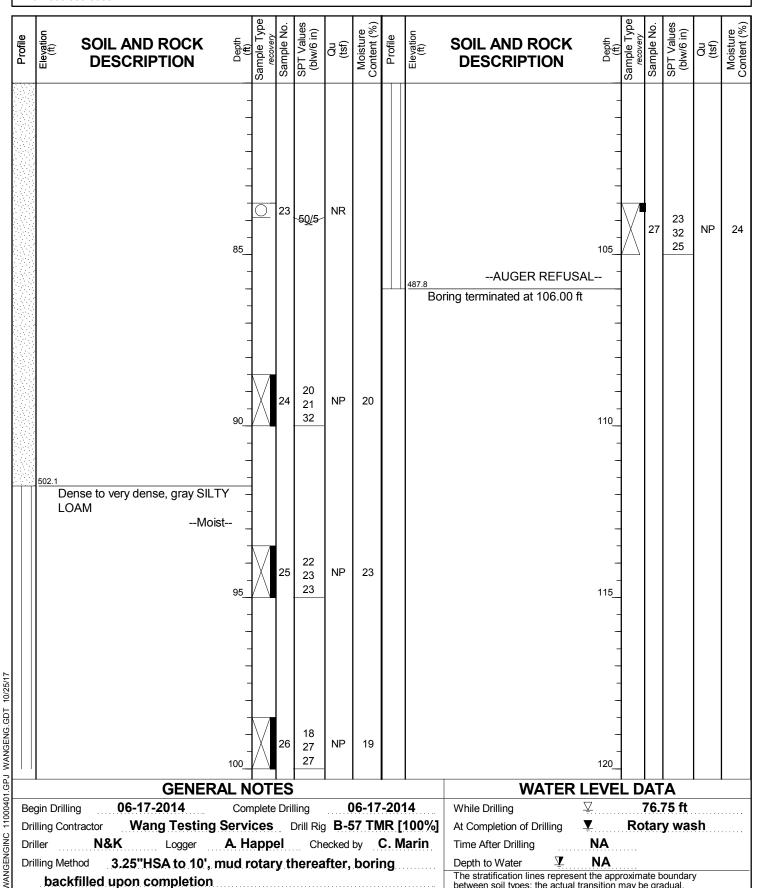
 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.83 ft North: 1898849.46 ft East: 1171361.60 ft Station: 8211+87.78 Offset: 18.3545 RT

BORING LOG 1702-B-01

WEI Job No.: 1100-04-01


Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Client Project **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

Datum: NAVD 88 Elevation: 593.83 ft North: 1898849.46 ft East: 1171361.60 ft Station: 8211+87.78 Offset: 18.3545 RT

between soil types; the actual transition may be gradual

BORING LOG 30-PZ-01

WEI Job No.: 1100-04-01

Page 1 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.22 ft North: 1900001.55 ft East: 1171691.06 ft Station: 8546+56.54 Offset: 38.1896 RT

_											
Profile			Sample No. SPT Values (blw/6 in)	Qu (tsf) Moisture	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	recovery Sample No. SPT Values (blw/6 in)	Qu (tsf) Moisture Content (%)	
		-						-			
	Drilled with	out sampling						-			
		-						Ţ			
		_						-			
		_						-			
		5						Ø5_			
		-						-			
	piezometer stabiliz	- 						-			
		reading									
	development (1							-			
	reading date: 48	12/11/2014 = 3.45 feet bgs ₁₀						30_			
		_						-			
		-									
		-					zometer Data: nstalled in Nov. 5, 2014	-			
		-				7	entonite Seal 85 to 87.5 feet op of Sand Pack at 87.5 feet	-			
		-					op of Screen at 89.5 feet ottom of Screen at 99.5 feet	-			
		15						35			
		_						-			
111		_						-			
01 10/25		-						-			
SENG.GL		-						-			
WANGENGING 11000401.GPJ WANGENG.GDI 10/25/17		20						8 0_			
5.		GENERAL NOT	ES		. —		WATER L	EVEL	DATA		
600 E	Begin Drilling 11-05-2			11.	-06-20	14	While Drilling 📮		48.00 ft		
	• •	Testing Services	-				At Completion of Drilling		32.00 ft		
		Logger F. Bozg		ecked by				hours			
		SA, monitoring wat					Depth to Water				
ANC		, montoring nat					The stratification lines represent	he approxi	mate boundar	/	
>∟			between soil types; the actual transition may be gradual.								

BORING LOG 30-PZ-01

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

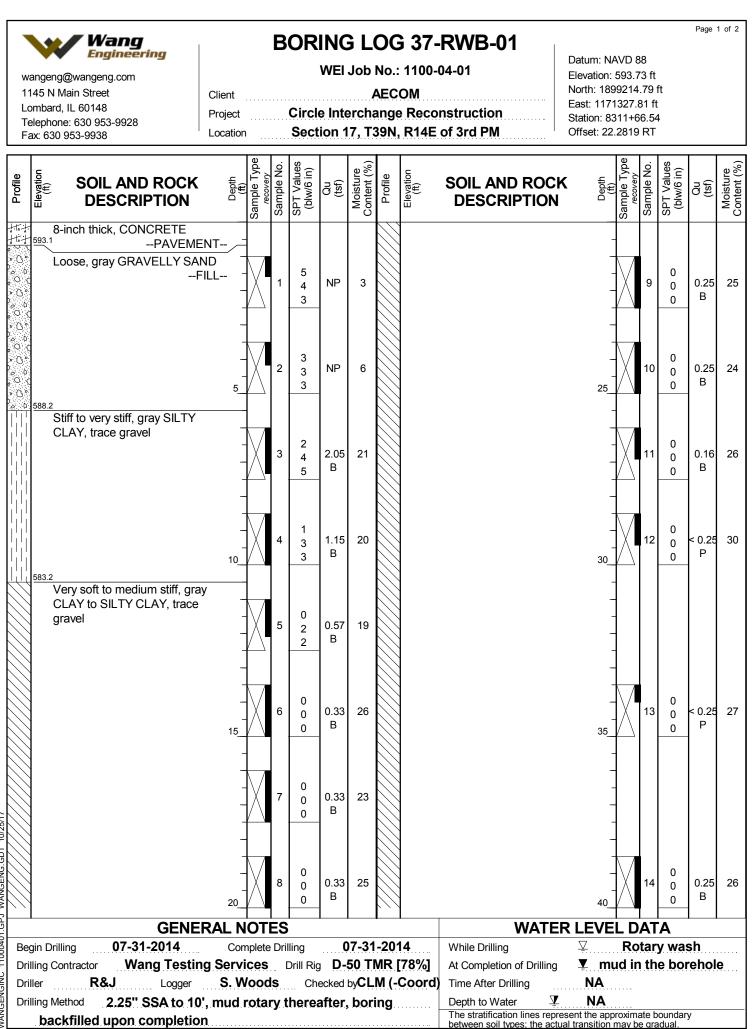
Datum: NAVD 88 Elevation: 593.22 ft North: 1900001.55 ft East: 1171691.06 ft Station: 8546+56.54 Offset: 38.1896 RT

Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type recovery	Sample No. SPT Values	(blw/6 in) Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROC DESCRIPTION		Sample Type	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
			-											
			_											
			-											
			-											
			-											
			45											
			-											
			-											
			-											
			$\overline{\Delta}$											
			-											
			50											
			-											
			-											
			-											
			55											
			_											
			-											
11/67	p	iezometer stabilized water le reading												
101		reading during w development (11/21/2014	vell –											
19.91		48.90 feet bg	s											
NANGE		reading date: 12/11/2014 48.45 feet bg												
		GENER		ES					WATE	R LEVE				
B	egin Drilli	ng 11-05-2014	Complete	Drilling		11-06			While Drilling	<u> </u>	4	8.00 ft		
	rilling Cor						-	_	At Completion of Drilling			2.00 ft		
	riller rilling Me	P&P Logger	F. Bozga		Checked		CL		Time After Drilling Depth to Water	24 hour 62.20 f				
Depth to Water V 62.20 ft Depth to Water V 62.20 ft The stratification lines represent the approximate boundary between soil types; the actual transition may be gradual.														

Client

Project

BORING LOG 30-PZ-01


WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction Datum: NAVD 88 Elevation: 593.22 ft North: 1900001.55 ft East: 1171691.06 ft Station: 8546+56.54 Offset: 38.1896 RT

	ax: 630 953		Location	R14E	Offset: 38.1896 RT									
Profile		OIL AND ROC DESCRIPTION	Lepth Depth (ft) Sample Type	Sample No. SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCH DESCRIPTION	Depth (ff)	Sample Type	Sample No. SPT Values (hlw/6 in)	Qu (tsf)	Moisture Content (%)
	Insta Beni Top Top	meter Data: Illed in Nov. 5, 2014 tonite Seal 85 to 87. of Sand Pack at 87. of Screen at 89.5 fe om of Screen at 99.5	5 feet - 5 feet - et _											
	trace	lense, gray, coarse gravel	SAND,	1 20 1 21 21	NP	16								
	SAND Wet Wet Wet 2 36 35 20 Wet 													
	493.2	11-05-2014	Complete	Drilling		6			WATE While Drilling	R LEVE ⊈		ATA 48.00 ff		
Dr	illing Contrac iller illing Methoo	P&P Logge	sting Services er F. Bozga nonitoring wate	L C	necked		IR [1 CL	-	At Completion of Drilling ▼ 32.00 ft Time After Drilling 24 hours Depth to Water ▼ 62.20 ft The stratification lines represent the approximate boundary between soil twees the actual transition may be gradual					

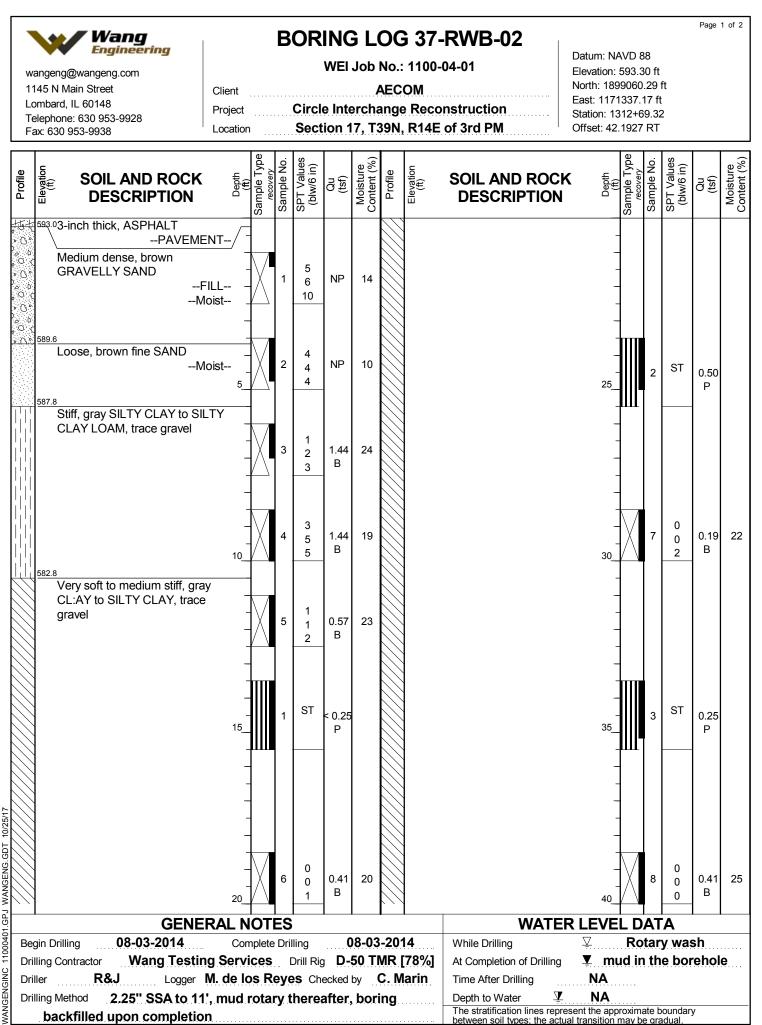
WANGENGINC 11000401.GPJ WANGENG.GDT 10/25/17

BORING LOG 37-RWB-01

WEI Job No.: 1100-04-01

Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938


 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

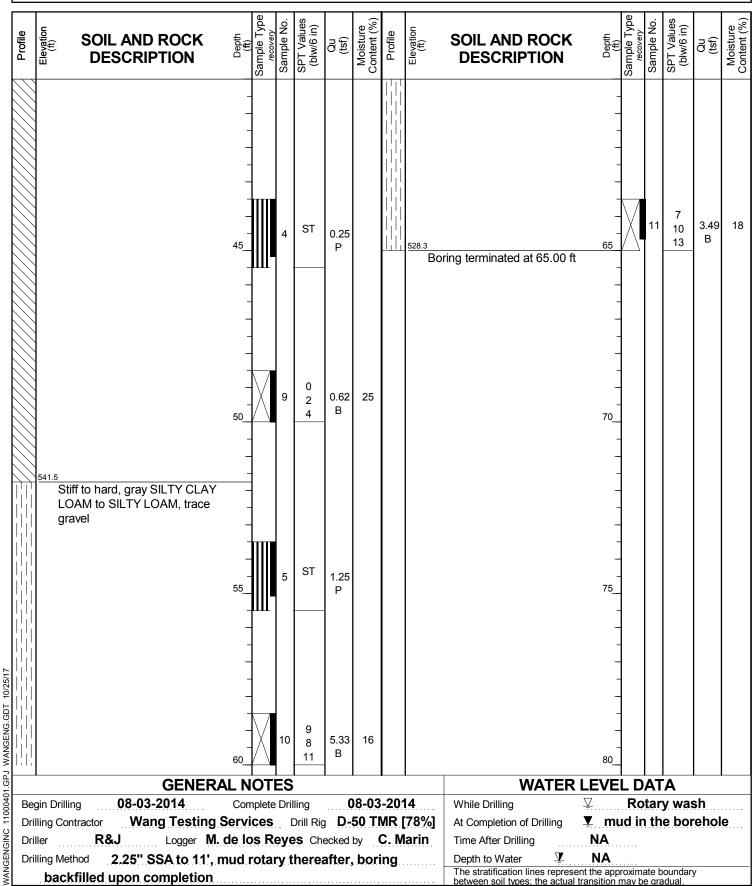
Datum: NAVD 88 Elevation: 593.73 ft North: 1899214.79 ft East: 1171327.81 ft Station: 8311+66.54 Offset: 22.2819 RT

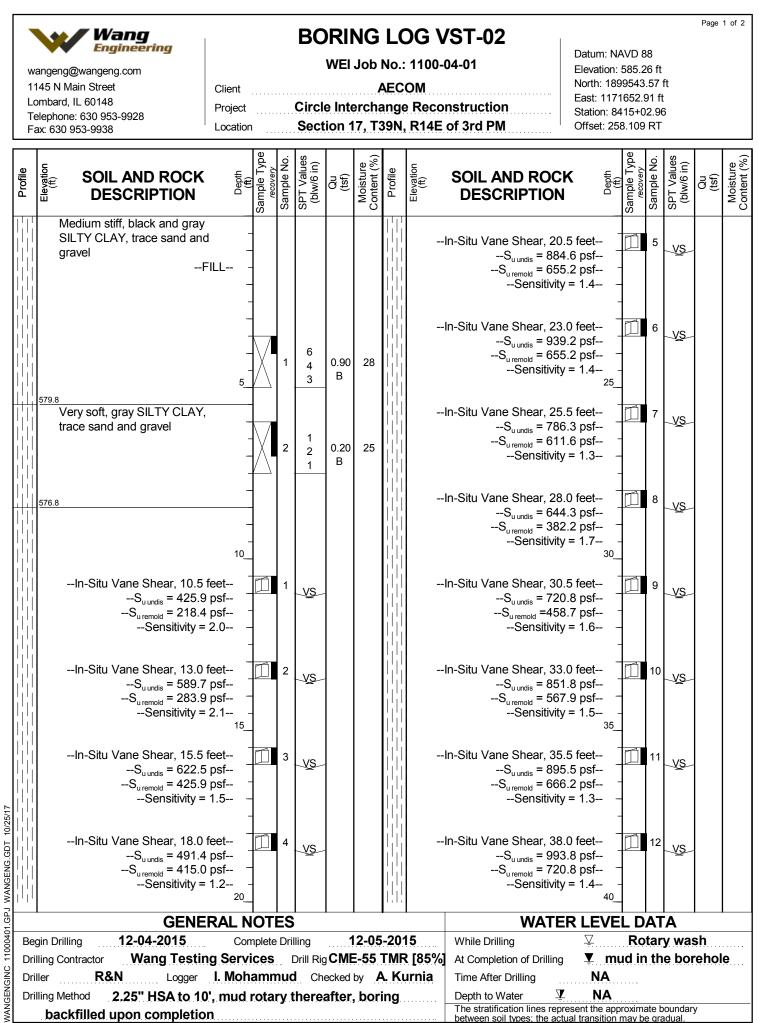
45 0 B D	Profile	SE.	ND ROCK RIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND F DESCRIPT		Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture
45 15 0 0.41 23 237.0 65 19 15 NP 18 3 0.57 21 21 80 ming terminated at 65.00 ft 19 15 NP 19 15 0 0.57 21 80 ming terminated at 65.00 ft 19 15 10				-										-					
As 7.0 Medium stiff, gray SILTY CLAY, trace to some gravel						15			23			S	AND lenses	- - - 		19		NP	1:
Medium stiff, gray SILTY CLAY, trace to some gravel - 16 3 0.57 21 50 - - 50 - - 50 - - 50 - - 50 - - 50 - - 50 - - 50 - - 50 - - 50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -				45			0	В				ring terminated at	65.00 ft	65 -			17		
Disturbed sample Disturbed samp		Medium stiff, g												-					
Disturbed sample -55 17 6 NA 27 75 75 is37.0 Medium dense to dense, gray -				- - 50_		16	6		21					- - 70_					
Disturbed sample -55 17 6 NA 27 75 75 537.0 -55 11 14														-					
image: sign sign sign sign sign sign sign sign		-	-Disturbed sample	-		17	6	NA	27					- - - 75					
SILTY LOAM, trace gravel, sand lenses Image: sand lenses			a to donao grav																
Image: Services Drilling 07-31-2014 MP 13		SILTY LOAM,		-			ß							-					
Begin Drilling 07-31-2014 Complete Drilling 07-31-2014 While Drilling \vee Rotary wash Drilling Contractor Wang Testing Services Drill Rig D-50 TMR [78%] At Completion of Drilling \vee mud in the borehole Driller R&J Logger S. Woods Checked byCLM (-Coord) Time After Drilling NA			GENERA				9 15	NP	13			104					Δ		
Drilling Contractor Wang Testing Services Drill Rig D-50 TMR [78%] At Completion of Drilling ¥ mud in the borehole Driller R&J Logger S. Woods Checked byCLM (-Coord) Time After Drilling NA	Bea	in Drilling N7						ſ)7-31	-20	14							sh	
Drilling Method 2.25" SSA to 10', mud rotary thereafter, boring Depth to Water Y NA	Drill Drill	ling Contractor ler R&J	Wang Testing S	Servi S. W	ces lood	ء Is	Drill Rig Che	D- ecked	50 TI	MR M (-	[78%] Coord)	At Completion of I Time After Drilling	Drilling I	m					e

BORING LOG 37-RWB-02

WEI Job No.: 1100-04-01

Page 2 of 2

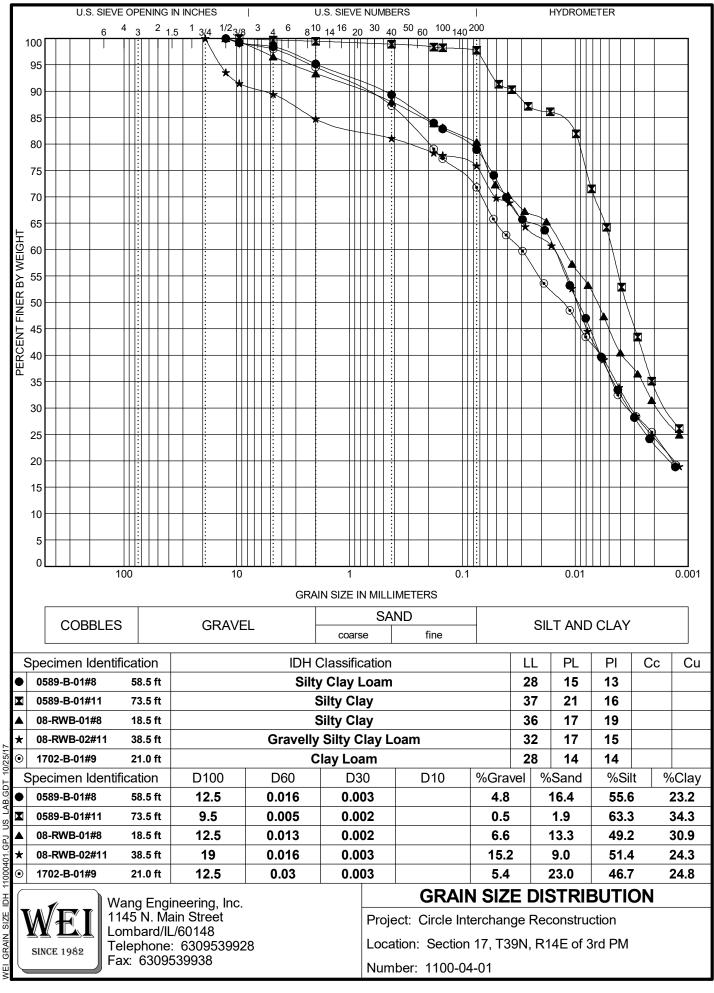

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

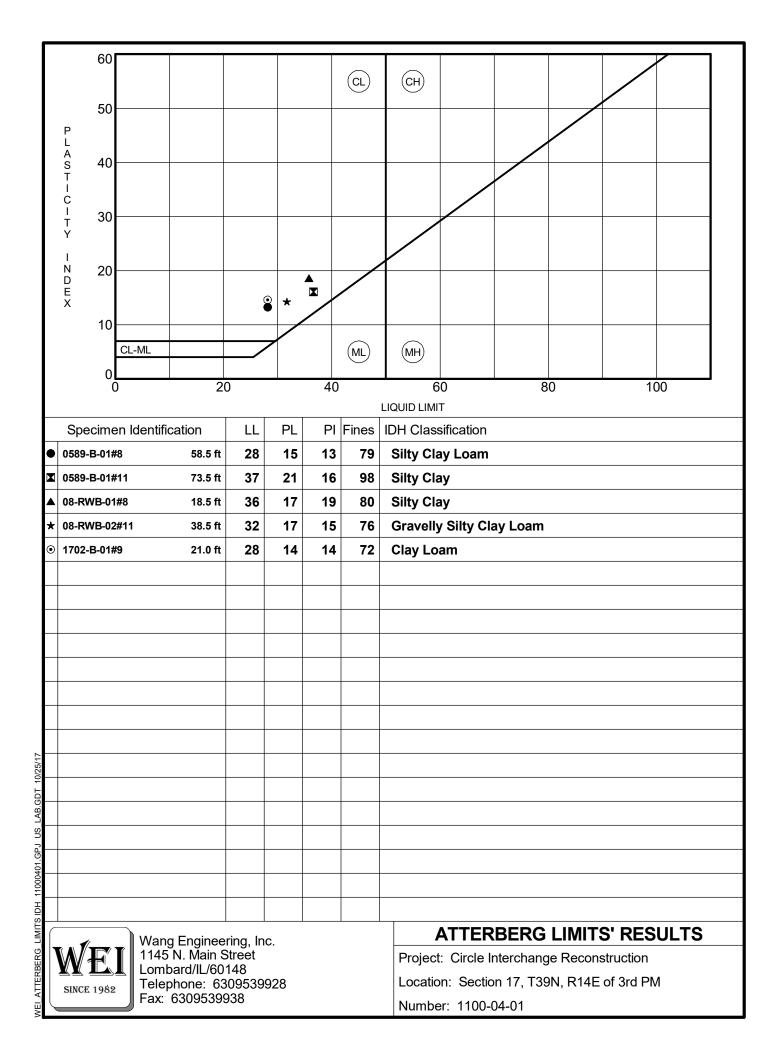

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.30 ft North: 1899060.29 ft East: 1171337.17 ft Station: 1312+69.32 Offset: 42.1927 RT



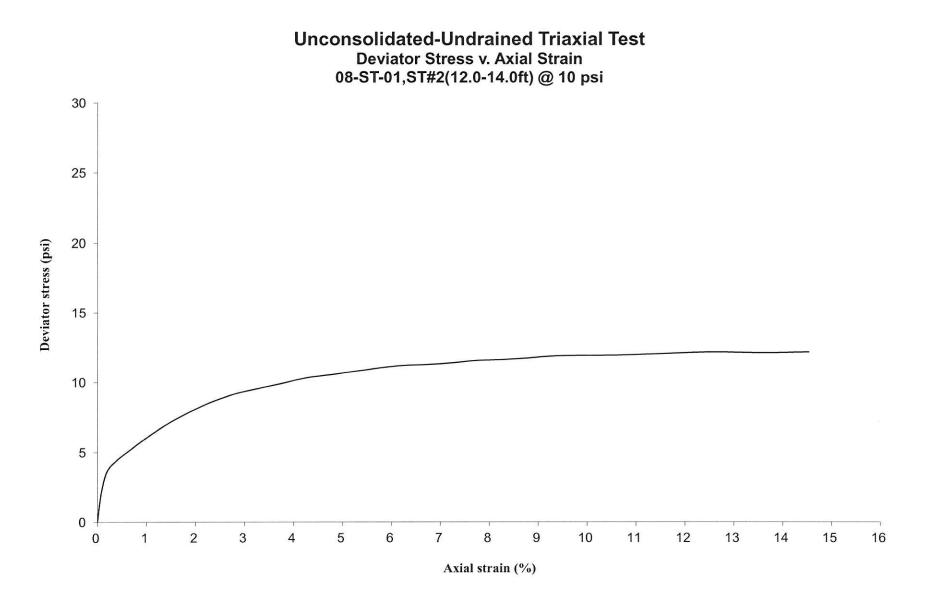

Page 2 of 2Page 2 of 2													
BOIL AND ROCK	Depth (ft) Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROC DESCRIPTION	0.5	Sample Type	Sample No. SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
In-Situ Vane Shear, 40.5 f S _{u undis} = 1277.7 S _{u remold} = 808.1 Sensitivity = 541.8 In-Situ Vane Shear, 43.0 f S _{u undis} > 1750 Boring terminated at 43.50 ft	psf	13	VS_VS										
	-												
							l			Ц			
Begin Drilling 12-04-2015 Drilling Contractor Wang Testin	I. Moham	e Drilli D mud	rill Rig Che	CME ecked	by 📕	TMR λ. Κι	R [85%]	While Drilling	NA V NA	Rot ud in	ary wa the bc	orehol	e

APPENDIX B

T L L U U ġ 10 1000401 НО SIZF GRAIN

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

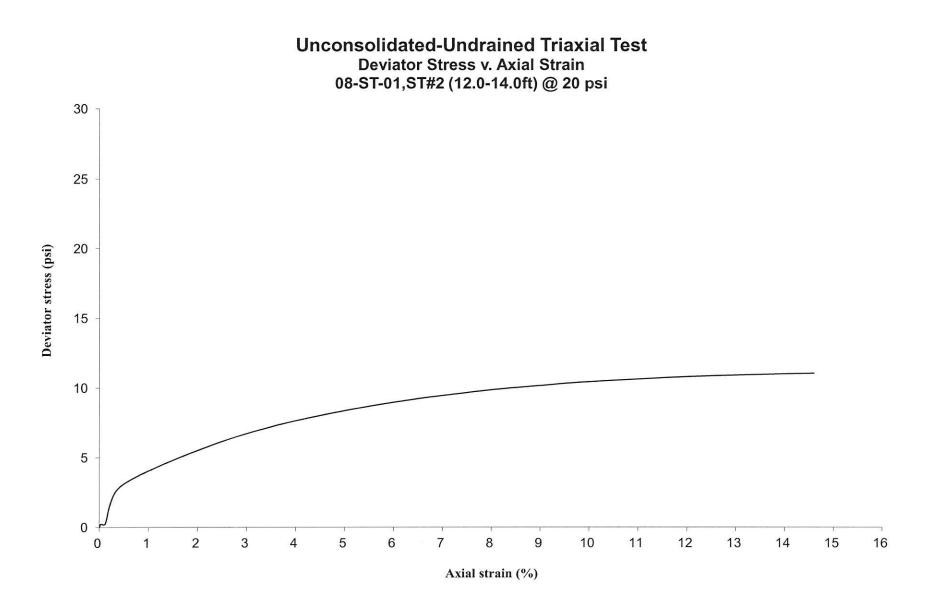
AASHTO T 296 / ASTM D 2850-95


Initial diameter $d_0 =$ 2.85 inInitial unit weight $\gamma_w =$ 129.4Initial area $A_0 =$ 6.36 in ² Initial dry unit weight $\gamma_d =$ 105.2Mass of wet sample and tare $M_i =$ 1411.30 gInitial dry unit weight $\gamma_d =$ 105.2Mass of dry sample and tare $M_d =$ 1182.10 gInitial degree of saturation $S_r =$ 999Mass of sample Mass of sample Mass1224.30 gLiquid Limit (%):N//Estimated specific gravity $G_s =$ 2.78Plastic Limit (%):N//Cell confining pressure $\sigma_3 =$ 10.0 psiSand(%):N//Rate of strain =1 %/minSilt(%):N//Proving Ring Factor =1.000Clay(%):N/Height to diameter ratio =1.99Deviator stress at failure $D\sigma_f =$ 0.88						
WEI Job No.: 1100-04-01Test date: 12/4/2014Soil Sample ID: 08-ST-01, ST#2 (12.0-14.0ft)Test date: 12/4/2014Sample SST-01, ST#2 (12.0-14.0ft)Sample SST-01, ST#2 (12.0-14.0ft)Initial diameter $d_0 = 2.85$ inInitial unit weight $\gamma_w = 129.4$ Initial dry unit weight $\gamma_w = 109.4$ Mass of wet sample and tare $M_1 = 1182.10$ gInitial degree of saturation $S_r = 999$ Mass of sample Ms= 1224.30 gLiquid Limit (%): N/Cell confining pressure	Project: Circle Interchang	e		Analyst name: M. de los Reyes		
Soil Sample ID: 08-ST-01, ST#2 (12.0-14.0ft)Sample description: Soft Gray CLAYType/Condition: ST/UndisturbedSample description: Soft Gray CLAYInitial height $h_0 = 5.67$ inInitial water content $w = 23.039$ Initial diameter $d_0 = 2.85$ inInitial unit weight $\gamma_w = 129.4$ Initial area $A_0 = 6.36$ in ² Initial unit weight $\gamma_d = 105.2$ Mass of wet sample and tare $M_i = 1411.30$ gInitial dry unit weight $\gamma_d = 0.64$ Mass of dry sample and tare $M_d = 1182.10$ gInitial degree of saturation $S_r = 999$ Mass of stare $M_i = 187.00$ gInitial degree of saturation $S_r = 999$ Mass of sample Ms= 1224.30 gLiquid Limit (%):Mass of stare $M_i = 187.00$ gSand(%):Mass of stare $M_i = 187.00$ gSand(%):Mass of sample Ms= 1224.30 gLiquid Limit (%):Mass of stare $M_i = 187.00$ gSand(%):Mass of sample Ms= 1224.30 gLiquid Limit (%):Mass of stare $M_i = 187.00$ gSand(%):Mass of stare $M_i = 187.00$ gSand(%):Mass of sample Ms= 1224.30 gLiquid Limit (%):Mass of stare $M_i = 187.00$ gSand(%):Mass of stare $M_i = 187.00$ gSand(%):Mass of stare $M_i = 1224.30$ gLiquid Limit (%):Mass of stare $M_i = 199$ Sand(%):Mass of stare $M_i = 199$ N/MinDeviator stress at failure $D\sigma_f = 0.88$	Client: AECOM			Date received: 11/3/2014		
Type/Condition: ST/UndisturbedInitial height $h_0 = 5.67$ inInitial water content $w = 23.039$ Initial diameter $d_0 = 2.85$ inInitial unit weight $\gamma_w = 129.4$ Initial area $A_0 = 6.36$ in ² Initial unit weight $\gamma_d = 105.2$ Mass of wet sample and tare $M_i = 1411.30$ gInitial dry unit weight $\gamma_d = 0.64$ Mass of dry sample and tare $M_d = 1182.10$ gInitial degree of saturation $S_r = 999$ Mass of stare $M_i = 187.00$ gInitial degree of saturation $S_r = 999$ Mass of sample Ms= 1224.30 gLiquid Limit (%):Mass of sample Ms= 1224.30 gLiquid Limit (%):Mass of stare In $s_1 = 0.00$ psiSand(%):Cell confining pressure $\sigma_3 = 10.0$ psiSand(%):N/Rate of strain = 1 %/minSilt(%):Proving Ring Factor = 1.000Clay(%):Height to diameter ratio = 1.99Deviator stress at failure $D\sigma_f = 0.88$	WEI Job No.: 1100-04-01			Test date: 12/4/2014		
Initial height $h_0 =$ 5.67 inInitial water content $w =$ 23.03%Initial diameter $d_0 =$ 2.85 inInitial unit weight $\gamma_w =$ 129.4Initial area $A_0 =$ 6.36 in ² Initial unit weight $\gamma_w =$ 129.4Mass of wet sample and tare $M_i =$ 1411.30 gInitial dry unit weight $\gamma_d =$ 105.2Mass of dry sample and tare $M_i =$ 1182.10 gInitial dry unit weight $\gamma_d =$ 0.64Mass of stare $M_i =$ 187.00 gInitial degree of saturation $S_r =$ 99%Mass of sample Ms=1224.30 gLiquid Limit (%):N/2Estimated specific gravity $G_s =$ 2.78Plastic Limit (%):N/2Cell confining pressure $\sigma_3 =$ 10.0 psiSand(%):N/2Proving Ring Factor =1.000Clay(%):N/2Height to diameter ratio =1.99Deviator stress at failure $D\sigma_f =$ 0.88	Soil Sample ID: 08-ST-01, ST#2 (1	2.0-14.0ft)		Sample description: Soft Gray CLAY		
Initial diameter $d_0 = 2.85$ inInitial unit weight $\gamma_w = 129.4$ Initial area $A_0 = 6.36$ in ² Initial unit weight $\gamma_w = 129.4$ Initial area $A_0 = 6.36$ in ² Initial unit weight $\gamma_d = 105.2$ Mass of wet sample and tare $M_i = 1411.30$ gInitial dry unit weight $\gamma_d = 0.64$ Mass of dry sample and tare $M_i = 1182.10$ gInitial dry unit weight $\gamma_d = 0.64$ Mass of dry sample and tare $M_i = 1182.10$ gInitial degree of saturation $S_r = 999$ Mass of stare $M_i = 1224.30$ gLiquid Limit (%):Mass of sample Ms=1224.30 gLiquid Limit (%):N/2Estimated specific gravity $G_s = 2.78$ Plastic Limit (%):Cell confining pressure $\sigma_3 = 10.0$ psiSand(%):Rate of strain = 1 %/minSilt(%):Proving Ring Factor = 1.000Clay(%):Height to diameter ratio = 1.99Deviator stress at failure $D\sigma_f = 0.88$	Type/Condition: ST/Undisturbed					
Initial area $A_0 = 6.36$ in²Initial dry unit weight $\gamma_d = 105.2$ Mass of wet sample and tare $M_i = 1411.30$ gInitial dry unit weight $\gamma_d = 0.64$ Mass of dry sample and tare $M_d = 1182.10$ gInitial void ratio $e_0 = 0.64$ Mass of dry sample and tare $M_d = 1182.10$ gInitial degree of saturation $S_r = 999$ Mass of stare $M_i = 187.00$ gInitial degree of saturation $S_r = 2.78$ Mass of sample $M_s = 1224.30$ gLiquid Limit (%):Estimated specific gravity $G_s = 2.78$ Plastic Limit (%):Cell confining pressure $\sigma_3 = 10.0$ psiSand(%):Rate of strain = 1 %/minSilt(%):Proving Ring Factor = 1.000Clay(%):Height to diameter ratio = 1.99Deviator stress at failure $D\sigma_f = 0.88$	Initial height $h_0 =$	5.67 in	1	Initial water content w =	23.03%	
Mass of wet sample and tare $M_i =$ 1411.30 gInitial of ant weight q_d 103.2Mass of wet sample and tare $M_d =$ 1182.10 gInitial void ratio $e_0 =$ 0.64Mass of dry sample and tare $M_i =$ 1182.10 gInitial degree of saturation $S_r =$ 999Mass of tare $M_i =$ 187.00 gInitial degree of saturation $S_r =$ 999Mass of sample Ms=1224.30 gLiquid Limit (%):N/2Estimated specific gravity $G_s =$ 2.78Plastic Limit (%):N/2Cell confining pressure $\sigma_3 =$ 10.0 psiSand(%):N/2Rate of strain =1 %/minSilt(%):N/2Proving Ring Factor =1.000Clay(%):N/2Height to diameter ratio =1.99Deviator stress at failure $D\sigma_f =$ 0.88	Initial diameter $d_0 =$	2.85 in	1	Initial unit weight $\gamma_w =$	129.45	pcf
Mass of dry sample and tare M_d =1182.10 gInitial degree of saturation S_r =999Mass of tare M_i =187.00 gMass of sample Ms=1224.30 gLiquid Limit (%):N/Estimated specific gravity G_s =2.78Plastic Limit (%):N/Cell confining pressure σ_3 =10.0 psiSand(%):N/Rate of strain =1 %/minSilt(%):N/Proving Ring Factor =1.000Clay(%):N/Height to diameter ratio =1.99Deviator stress at failure $D\sigma_f$ =0.88	Initial area $A_0 =$	6.36 in	12	Initial dry unit weight $\gamma_d =$	105.22	pcf
Mass of tare $M_i =$ 187.00 gLiquid Limit (%):N/Mass of sample Ms=1224.30 gLiquid Limit (%):N/Estimated specific gravity $G_s =$ 2.78Plastic Limit (%):N/Cell confining pressure $\sigma_3 =$ 10.0 psiSand(%):N/Rate of strain =1 %/minSilt(%):N/Proving Ring Factor =1.000Clay(%):N/Height to diameter ratio =1.99Deviator stress at failure $D\sigma_f =$ 0.88	Mass of wet sample and tare $M_i =$	1411.30 g		Initial void ratio $e_0 =$	0.649	
Mass of sample Ms=1224.30 gLiquid Limit (%):N/Estimated specific gravity $G_s =$ 2.78Plastic Limit (%):N/Cell confining pressure $\sigma_3 =$ 10.0 psiSand(%):N/Rate of strain =1 %/minSilt(%):N/Proving Ring Factor =1.000Clay(%):N/Height to diameter ratio =1.99Deviator stress at failure $D\sigma_f =$ 0.88	Mass of dry sample and tare $M_d =$	1182.10 g		Initial degree of saturation $S_r =$	99%	
Estimated specific gravity $G_s = 2.78$ Plastic Limit (%):N/Cell confining pressure $\sigma_3 = 10.0$ psiSand(%):N/Rate of strain = 1 %/minSilt(%):N/Proving Ring Factor = 1.000Clay(%):N/Height to diameter ratio = 1.99Deviator stress at failure $D\sigma_f = 0.88$	Mass of tare $M_t =$	187.00 g				
Cell confining pressure $\sigma_3 =$ 10.0 psiSand(%):N/Rate of strain =1 %/minSilt(%):N/Proving Ring Factor =1.000Clay(%):N/Height to diameter ratio =1.99Deviator stress at failure $D\sigma_f =$ 0.88	Mass of sample Ms=	1224.30 g		Liquid Limit (%):	NA	
Rate of strain =1%/minSilt(%):N/Proving Ring Factor =1.000Clay(%):N/Height to diameter ratio =1.99Deviator stress at failure $D\sigma_f =$ 0.88	Estimated specific gravity G _s =	2.78		Plastic Limit (%):	NA	
Proving Ring Factor =1.000Clay(%):NzHeight to diameter ratio =1.99Deviator stress at failure $D\sigma_f =$ 0.88	Cell confining pressure $\sigma_3 =$	10.0 ps	si	Sand(%):	NA	
Height to diameter ratio = 1.99 Deviator stress at failure $D\sigma_f = 0.88$	Rate of strain =	1 %	/min	Silt(%):	NA	
Deviator stress at failure $D\sigma_f = 0.88$	Proving Ring Factor =	1.000		Clay(%):	NA	
	Height to diameter ratio =	1.99				
Major principal stress at failure $\sigma_1 = 1.60$				Deviator stress at failure $D\sigma_f =$	0.88	tsf
				Major principal stress at failure $\sigma_1 =$	1.60	tsf

laj	or p	orincipal	stress at	failure σ_1	=	1.60	t
- 3	. r			innui e o j		1.00	

Axial Displacement	Axial Force	Axial Strain	Deviator Stress	
(in)	(lbs)	(%)	(psi)	
Δh	F	e	σ_1 - σ_3	
0.00	0.00	0.00	0.00	
0.00	12.19	0.07	1.92	and the second s
0.01	21.05	0.16	3.31	
0.01	25.10	0.25	3.94	
0.02	27.30	0.35	4.28	
0.02	29.28	0.44	4.59	
0.03	31.04	0.54	4.86	
0.04	32.71	0.64	5.11	A A A A A
0.04	34.39	0.74	5.37	
0.05	36.05	0.83	5.62	
0.05	37.65	0.93	5.87	
0.08	44.93	1.40	6.97	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWN
0.11	50.96	1.87	7.87	1100-04-01
0.13	56.03	2.34	8.61	A 08-ST-01
0.16	60.02	2.80	9.18	ST#2[12'-14'
0.19	62.92	3.29	9.57	ST#2(12'-14') 10psi
0.21	65.67	3.77	9.94	iopsi
0.24	68.62	4.27	10.33	
0.27	70.48	4.76	10.56	
0.30	72.42	5.27	10.79	
0.33	74.40	5.75	11.03	
0.35	76.02	6.24	11.21	
0.38	76.83	6.74	11.27	
0.41	78.03	7.23	11.39	
0.44	79.57	7.72	11.55	Bulge Failure
0.47	80.43	8.21	11.61	
0.50	81.66	8.75	11.72	
0.52	83.00	9.21	11.85	
0.55	83.82	9.68	11.91	
0.60	84.94	10.66	11.94	
0.66	86.72	11.61	12.06	
0.71	88.42	12.58	12.16	
0.77	89.05	13.55	12.11	
0.82	90.41	14.53	12.16	
			ed by:	Tay Date: 12.17.14 Life Date: 12/17/14

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com


UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	2	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 11/3/2014	
WEI Job No.: 1100-04-01		Test date: 12/4/2014	
Soil Sample ID: 08-ST-01, ST#2 (1	2.0-14.0ft)	Sample description: Soft Gray CLAY	
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.63 in	Initial water content w =	23.02%
Initial diameter $d_0 =$	2.83 in	Initial unit weight $\gamma_w =$	130.54 pcf
Initial area $A_0 =$	6.29 in ²	Initial dry unit weight $\gamma_d =$	106.11 pcf
Mass of wet sample and tare M _i =	1377.67 g	Initial void ratio $e_0 =$	0.635
Mass of dry sample and tare $M_d =$	1150.70 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	164.57 g		
Mass of sample Ms=	1213.10 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	1.99		
		Deviator stress at failure $D\sigma_f =$	0.79 tsf
		Major principal stress at failure σ_1 =	2.23 tsf

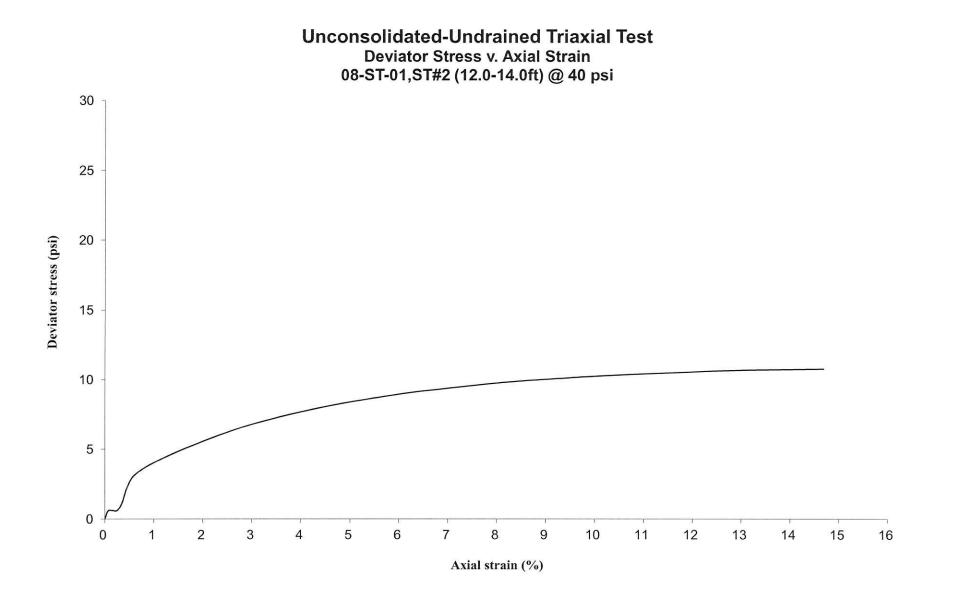
Axial	Axial	Axial	Deviator	
Displacement	Force	Strain	Stress	
(in)	(lbs)	(%)	(psi)	
Δh	F	e	σ_1 - σ_3	
0.00	0.00	0.00	0.00	
0.00	1.44	0.03	0.23	
0.01	1.53	0.12	0.24	
0.01	9.45	0.21	1.50	the second is
0.02	14.86	0.30	2.36	and the second sec
0.02	17.72	0.39	2.81	
0.03	19.52	0.49	3.09	
0.03	20.88	0.59	3.30	
0.04	22.12	0.69	3.49	
0.04	23.30	0.79	3.68	
0.05	24.39	0.88	3.84	
0.08	29.41	1.37	4.61	
0.10	33.92	1.84	5.29	1100-04-01
0.13	38.11	2.31	5.92	08-57-01
0.16	41.96	2.78	6.49	07 1 2 (12) 11 D
0.18	45.44	3.28	6.99	ST#2(12'-14')
0.21	48.63	3.76	7.44	Zopsi
0.24	51.55	4.27	7.85	
0.27	54.27	4.78	8.22	
0.30	56.75	5.29	8.55	
0.33	58.99	5.78	8.84	
0.35	61.06	6.26	9.10	
0.38	63.00	6.75	9.34	
0.41	64.72	7.24	9.55	
0.44	66.51	7.74	9.76	Bulge Failure
0.46	68.06	8.22	9.93	
0.49	69.56	8.77	10.09	
0.52	70.91	9.24	10.23	
0.55	72.19	9.71	10.37	
0.60	74.37	10.67	10.56	
0.66	76.49	11.65	10.75	
0.71	78.24	12.63	10.87	
0.77	79.83	13.61	10.97	
0.82	81.29	14.60	11.04	-
			red by:	Date: 12.17.14 A: L Date: 12/17/14
		Check	ed by:	Date: 01(1/14

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	Ś		Analyst name: M. de los Reyes	
Client: AECOM			Date received: 11/3/2014	
WEI Job No.: 1100-04-01			Test date: 12/4/2014	
Soil Sample ID: 08-ST-01, ST#2 (1	2.0-14.0ft)		Sample description: Soft Gray CLAY	
Type/Condition: ST/Undisturbed				
Initial height $h_0 =$	5.64 in		Initial water content w =	23.51%
Initial diameter $d_0 =$	2.83 in		Initial unit weight $\gamma_w =$	131.67 pcf
Initial area $A_0 =$	6.29 in ²	£	Initial dry unit weight $\gamma_d =$	106.61 pcf
Mass of wet sample and tare $M_i =$	1410.74 g		Initial void ratio $e_0 =$	0.627
Mass of dry sample and tare $M_d =$	1177.60 g		Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	185.84 g			
Mass of sample Ms=	1224.90 g		Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78		Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	40.0 psi		Sand(%):	NA
Rate of strain =	1 %/	min	Silt(%):	NA
Proving Ring Factor =	1.000		Clay(%):	NA
Height to diameter ratio =	1.99			
			Deviator stress at failure $D\sigma_f =$	0.77 tsf
			Major principal stress at failure $\sigma_1 =$	3.65 tsf


	Deviator	Axial	Axial	Axial
	Stress	Strain	Force	Displacement
	(psi)	(%)	(lbs)	(in)
	σ_1 - σ_3	e	F	Δh
	0.00	0.00	0.00	0.00
	0.57	0.07	3.61	0.00
	0.60	0.16	3.81	0.01
	0.60	0.25	3.81	0.01
	1.06	0.34	6.71	0.02
	2.14	0.44	13.49	0.02
	2.87	0.54	18.15	0.03
	3.25	0.64	20.55	0.04
	3.50	0.73	22.15	0.04
	3.70	0.82	23.48	0.05
A CONTRACTOR OF THE OWNER	3.90	0.92	24.72	0.05
1100-04	4.69	1.40	29.94	0.08
08-ST-0	5.39	1.87	34.54	0.11
08-51-0	6.02	2.35	38.79	0.13
ST#2(12	6.59	2.82	42.66	0.16
40ps	7.08	3.32	46.08	0.19
	7.52	3.82	49.18	0.22
	7.92	4.33	52.06	0.24
	8.28	4.83	54.70	0.27
	8.58	5.34	57.01	0.30
	8.85	5.82	59.06	0.33
	9.09	6.30	61.02	0.36
	9.29	6.80	62.69	0.38
	9.49	7.29	64.34	0.41
Bulg	9.67	7.78	65.93	0.44
	9.83	8.26	67.35	0.47
	9.97	8.80	68.74	0.50
	10.08	9.30	69.88	0.52
	10.19	9.77	71.01	0.55
1	10.36	10.75	73.01	0.61
	10.51	11.72	74.84	0.66
	10.65	12.69	76.68	0.72
	10.71	13.69	78.01	0.77
	10.75	14.69	79.25	0.83
Dary Date: 12.17.19 A:1. Date: 12/17/14	red by:	1		

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

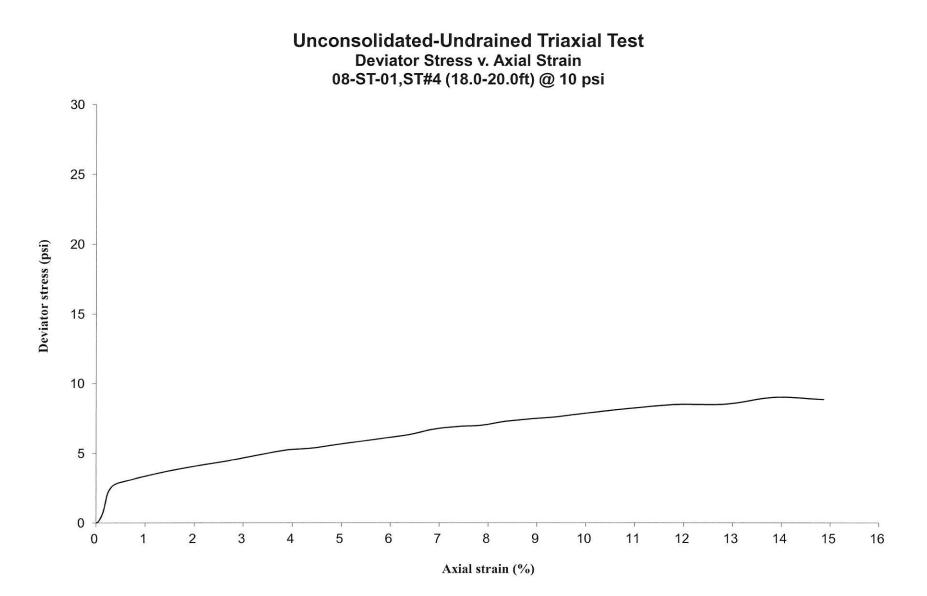
www.wangeng.com

AASHTO R18

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchang	e		Analyst name: M. de los Reyes	
Client: AECOM			Date received: 11/3/2014	
WEI Job No.: 1100-04-01			Test date: 12/8/2014	
Soil Sample ID: 08-ST-01, ST#4 (1	8.0-20.0ft)		Sample description: Soft Gray CLAY	
Type/Condition: ST/Undisturbed				
Initial height $h_0 =$	5.56	in	Initial water content w =	23.66%
Initial diameter $d_0 =$	2.85	in	Initial unit weight $\gamma_w =$	130.14 pcf
Initial area $A_0 =$	6.40	in ²	Initial dry unit weight $\gamma_d =$	105.24 pcf
Mass of wet sample and tare $M_i =$	1228.82	g	Initial void ratio $e_0 =$	0.648
Mass of dry sample and tare $M_d =$	996.30	g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	13.62	g		
Mass of sample Ms=	1215.20	g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78		Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	10.0	psi	Sand(%):	NA
Rate of strain =	1	%/min	Silt(%):	NA
Proving Ring Factor =	1.000		Clay(%):	NA
Height to diameter ratio =	1.95			
				0

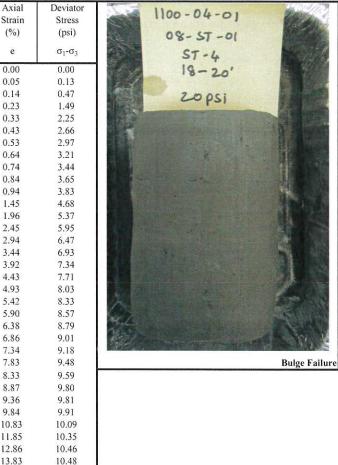

Deviator stress at failure $D\sigma_f =$ 0.65 tsf 1.37 tsf

Axial	Axial	Axial	Deviator	
Displacement	Force	Strain	Stress	1100-04-01
(in)	(lbs)	(%)	(psi)	
Δh	F	e	σ_1 - σ_3	08- ST-01
0.00	0.00	0.00	0.00	ST-4 18-20
0.00	0.79	0.05	0.12	18-20
0.01	5.10	0.14	0.80	
0.01	13.08	0.23	2.04	lo psi
0.02	16.82	0.32	2.62	110-
0.02	18.16	0.42	2.83	
0.03	18.87	0.52	2.93	
0.03	19.48	0.62	3.03	
0.04	20.07	0.72	3.11	
0.05	20.70	0.82	3.21	
0.05	21.29	0.92	3.30	
0.08	23.94	1.41	3.69	
0.11	26.21	1.91	4.02	
0.13	28.19	2.40	4.30	
0.16	30.27	2.90	4.60	
0.19	32.71	3.40	4.94	
0.22	34.89	3.90	5.24	
0.25	35.94	4.41	5.37	
0.27	37.88	4.92	5.63	
0.30	39.63	5.43	5.86	
0.33	41.48	5.92	6.10	
0.36	43.29	6.40	6.33	
0.38	46.15	6.89	6.72	
0.41	47.68	7.37	6.90	
0.44	48.56	7.86	6.99	
0.46	50.78	8.36	7.27	
0.50	52.37	8.91	7.46	
0.52	53.59	9.39	7.59	
0.55	55.35	9.86	7.80	
0.60	58.72	10.84	8.18	
0.66	61.53	11.85	8.48	
0.72	62.45	12.87	8.51	
0.77	66.78	13.87	8.99	
0.83	66.40	14.87	8.84	p
		Prena	red by:	Jan Date: 17.13 L. Date: 12/17
		epa		

Axial

D.

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com


UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange Client: AECOM WEI Job No.: 1100-04-01	2		Analyst name: M. de los Reyes Date received: 11/3/2014 Test date: 12/8/2014	
Soil Sample ID: 08-ST-01,ST#4 (18	3.0-20.0ft)		Sample description: Soft Gray CLAY	
Type/Condition: ST/Undisturbed				
Initial height $h_0 =$	5.59	in	Initial water content w =	24.21%
Initial diameter $d_0 =$	2.83	in	Initial unit weight $\gamma_w =$	129.07 pcf
Initial area $A_0 =$	6.28	in ²	Initial dry unit weight $\gamma_d =$	103.91 pcf
Mass of wet sample and tare $M_i =$	1203.10	g	Initial void ratio $e_0 =$	0.669
Mass of dry sample and tare $M_d =$	971.20	g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	13.40	g		
Mass of sample Ms=	1189.70	g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78		Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0	psi	Sand(%):	NA
Rate of strain =	1	%/min	Silt(%):	NA
Proving Ring Factor =	1.000		Clay(%):	NA
Height to diameter ratio =	1.98			

Deviator stress at failure $D\sigma_f =$ 0.76 tsf

Major principal stress at failure $\sigma_1 =$ 2.20 tsf

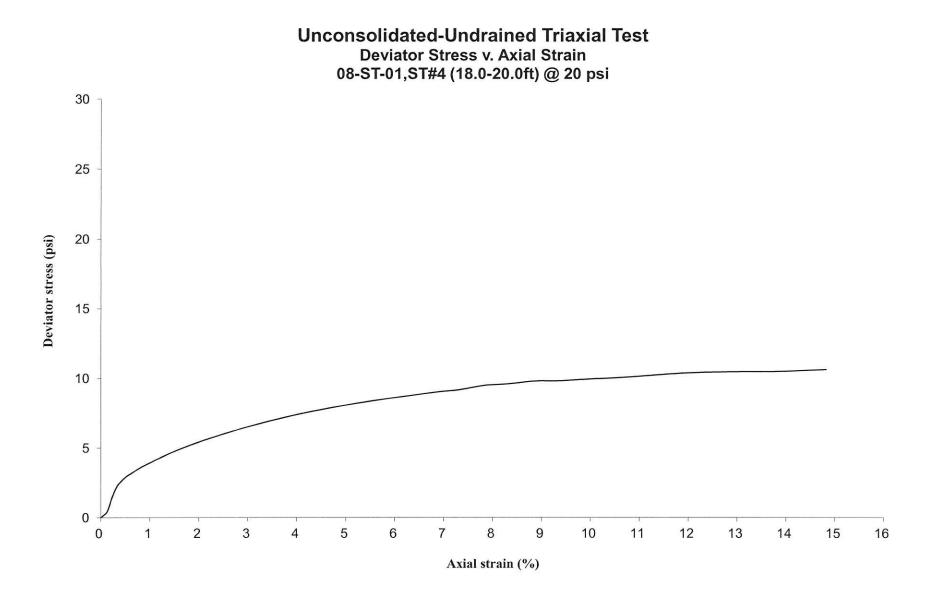
Date: 12.17.19 Date: 12/17/14

$\begin{array}{c ccccc} 0 & 0 & 0 & 0 \\ 79 & 0 & 0 & 0 \\ 96 & 0 & 1 \\ 36 & 0 & 2 \\ 15 & 0 & 3 \\ 82 & 0 & 4 \\ 75 & 0 & 5 \\ 29 & 0 & 6 \\ 79 & 0 & 7 \\ 14 & 0 & 8 \\ 32 & 0 & 9 \\ 87 & 1 & 4 \\ 43 & 1 & 9 \\ 32 & 2 & 4 \\ 86 & 2 & 9 \\ 09 & 3 & 4 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 5 5 5 5 5 5 7 7 3 5 7 3
00 0.0 00 0.0 79 0.0 96 0.1 36 0.2 1.15 0.3 .82 0.4 .75 0.5 .29 0.6 .79 0.7 .14 0.8 .32 0.9 .87 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	$\begin{array}{c ccccc} & & & & & \\ \hline 00 & & 0.00 \\ 05 & & 0.12 \\ 05 & & 0.12 \\ 14 & & 0.47 \\ 23 & 1.46 \\ 33 & 2.25 \\ 43 & 2.66 \\ 53 & 2.97 \\ 54 & 3.2 \\ 55 & 2.97 \\ 54 & 3.2 \\ 74 & 3.44 \\ 34 & 3.65 \\ 04 & 3.82 \\ 45 & 4.68 \\ 96 & 5.37 \\ 45 & 5.95 \\ 04 & 6.47 \end{array}$	0 3 7 9 5 5 6 6 7 7 1 4 4 5 3 8 8 7 7 5 7 3
79 0.0 96 0.1 36 0.2 .15 0.3 .82 0.4 .75 0.5 .29 0.6 .79 0.7 .14 0.8 .32 0.9 .87 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	05 0.13 14 0.47 23 1.49 33 2.29 43 2.66 53 2.97 54 3.21 74 3.44 34 3.65 04 3.82 15 4.66 06 5.37 45 5.95 04 6.47	3 7 99 5 6 6 7 1 4 4 5 5 3 8 8 7 7 5 7 3
96 0.1 36 0.2 .15 0.3 .82 0.4 .75 0.5 .29 0.6 .79 0.7 .14 0.8 .32 0.4 .32 2.4 .87 1.4 .82 2.4 .86 2.9 .09 3.4	14 0.47 23 1.49 33 2.25 43 2.66 53 2.97 54 3.21 74 3.44 34 3.65 245 4.65 245 4.65 256 5.95 24 6.47	7 9 5 6 6 7 1 4 4 5 5 8 8 7 7 5 7 3
36 0.2 .15 0.3 .82 0.4 .75 0.5 .29 0.6 .79 0.7 .14 0.8 .32 0.4 .33 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	23 1.49 33 2.25 43 2.60 53 2.97 54 3.21 54 3.21 74 3.44 34 3.65 94 3.82 45 4.66 96 5.37 45 5.95 94 6.47	9 5 6 7 1 4 4 5 3 8 8 7 5 5 7 3
.15 0.3 .82 0.4 .75 0.5 .29 0.6 .79 0.7 .14 0.8 .32 0.9 .87 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	33 2.25 43 2.66 53 2.97 54 3.21 74 3.44 34 3.65 94 3.82 45 4.66 96 5.37 45 5.95 94 6.47	5 7 1 4 5 3 8 7 5 7 3
.82 0.4 .75 0.5 .29 0.6 .79 0.7 .14 0.8 .32 0.9 .87 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	43 2.66 53 2.97 54 3.21 74 3.44 34 3.65 94 3.83 45 4.66 96 5.37 45 5.95 94 6.47	5 7 1 4 5 3 8 7 5 7 7 3
.75 0.5 .29 0.6 .79 0.7 .14 0.8 .32 0.9 .87 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	53 2.97 54 3.21 74 3.44 34 3.65 94 3.83 45 4.68 96 5.37 45 5.95 94 6.47	7 1 4 5 3 8 7 5 7 7 3
.29 0.6 .79 0.7 .14 0.8 .32 0.9 .87 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	54 3.21 74 3.44 34 3.65 94 3.83 45 4.68 96 5.37 45 5.95 94 6.47	1 4 5 3 8 7 5 7 7 3
.79 0.7 .14 0.8 .32 0.9 .87 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	74 3.44 34 3.65 94 3.83 45 4.68 96 5.37 45 5.95 94 6.47	4 5 3 8 7 5 7 3
.14 0.8 .32 0.9 .87 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	34 3.65 34 3.83 45 4.68 96 5.37 45 5.95 94 6.47	5 3 8 7 5 7 3
.32 0.9 .87 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	94 3.83 45 4.68 96 5.37 45 5.95 94 6.47	3 8 7 5 7 3
.87 1.4 .43 1.9 .32 2.4 .86 2.9 .09 3.4	45 4.68 96 5.37 45 5.95 94 6.47	8 7 5 7 3
.43 1.9 .32 2.4 .86 2.9 .09 3.4	96 5.37 45 5.95 94 6.47	7 5 7 3
.32 2.4 .86 2.9 .09 3.4	45 5.95 94 6.47	5 7 3
.86 2.9 .09 3.4	94 6.47	7
.09 3.4		3
	14 6.93	
		1
.01 3.9	92 7.34	
.66 4.4	13 7.71	1
.06 4.9	8.03	3
.32 5.4	42 8.33	3
.22 5.9	90 8.57	7
.97 6.3	38 8.79	9
.77 6.8	36 9.01	1
.26 7.3	9.18	8
.63 7.8	33 9.48	8
.75 8.3	33 9.59	9
.53 8.8		0
.00 9.3		
	9.91	1
.08 9.8	83 10.0	9
	85 10.3	5
.10 10.		202
.10 10. .78 11.	86 10.4	
.10 10. .78 11. .40 12.		0
	10 10. 78 11.	1010.8310.07811.8510.34012.8610.4

Checked by: ____

Axial

Ci....


Fana

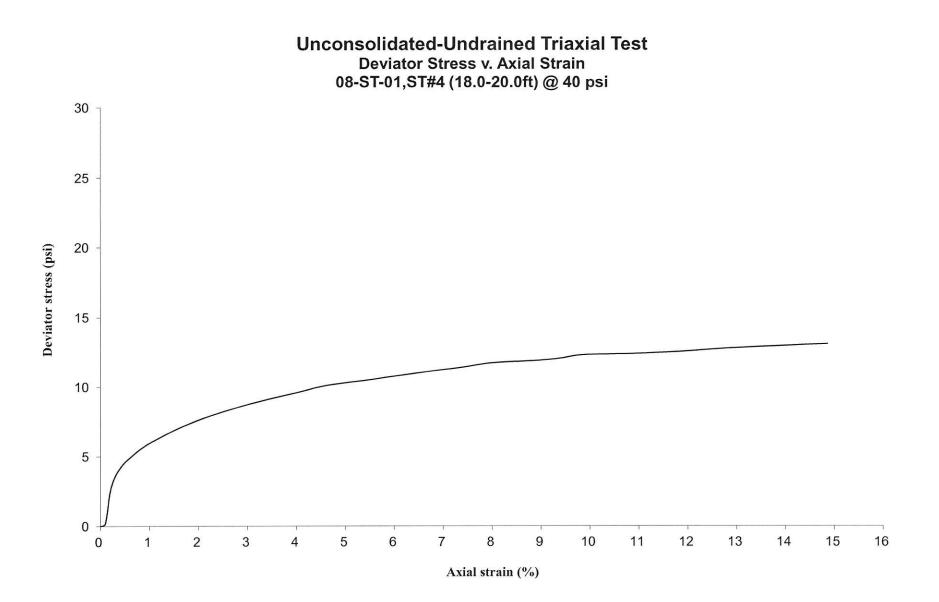
1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	1	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 11/3/2014	
WEI Job No.: 1100-04-01		Test date: 12/8/2014	
Soil Sample ID: 08-ST-01,ST#4 (18	.0-20.0ft)	Sample description: Soft Gray CLAY	
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.62 in	Initial water content w =	19.65%
Initial diameter $d_0 =$	2.85 in	Initial unit weight $\gamma_w =$	147.15 pcf
Initial area $A_0 =$	6.36 in ²	Initial dry unit weight $\gamma_d =$	122.98 pcf
Mass of wet sample and tare $M_i =$	1540.99 g	Initial void ratio $e_0 =$	0.411
Mass of dry sample and tare $M_d =$	1314.20 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	160.29 g		
Mass of sample Ms=	1380.70 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	40.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	1.98		
		Deviator stress at failure $D\sigma_f =$	0.94 tsf


Deviator stress at failure $D\sigma_f =$ Major principal stress at failure $\sigma_1 =$ 3.82 tsf

Displacement (in) △h 0.00 0.01 0.01 0.02 0.02	Force (lbs) F 0.00 1.25	Strain (%) e 0.00	Stress (psi) σ ₁ -σ ₃	1100 -04 -01 08-ST -01 ST -4
Δh 0.00 0.01 0.01 0.02	F 0.00	e		10-72-80
0.00 0.01 0.01 0.02	0.00		σ_1 - σ_3	08-31-01
0.01 0.01 0.02		0.00		
0.01 0.02	1.25	0.00	0.00	ST-4
0.02		0.10	0.20	18-20
	15.95	0.20	2.50	a survey and the second
0.02	22.59	0.30	3.54	18-20 40 psi
0.02	26.36	0.40	4.13	10131
0.03	29.18	0.49	4.57	
0.03	31.24	0.59	4.88	
0.04	33.24	0.69	5.19	
0.04	35.04	0.79	5.47	
0.05	36.62	0.89	5.71	
0.06	38.17	0.99	5.94	
0.08	44.19	1.49	6.84	
0.11	49.15	1.97	7.58	
0.14	53.32	2.46	8.18	
0.17	56.83	2.95	8.67	
0.19	60.20	3.45	9.14	
0.22	63.24	3.97	9.55	The second states of the
0.25	66.61	4.48	10.00	
0.28	68.77	4.98	10.27	A second second second
0.31	70.50	5.46	10.48	
0.33	72.60	5.94	10.74	17
0.36	74.49	6.42	10.96	
0.39	76.41	6.90	11.18	
0.42	78.30	7.40	11.40	
0.44	80.67	7.90	11.68	
0.47	81.90	8.39	11.80	
0.50	82.96	8.91	11.88	
0.53	84.50	9.39	12.04	
0.55	86.71	9.86	12.29	
0.61	88.25	10.86	12.37	
0.67	90.43	11.87	12.53	
0.72	93.14	12.86	12.76	
0.78	95.36	13.85	12.92	
0.84	97.63	14.86	13.07	

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

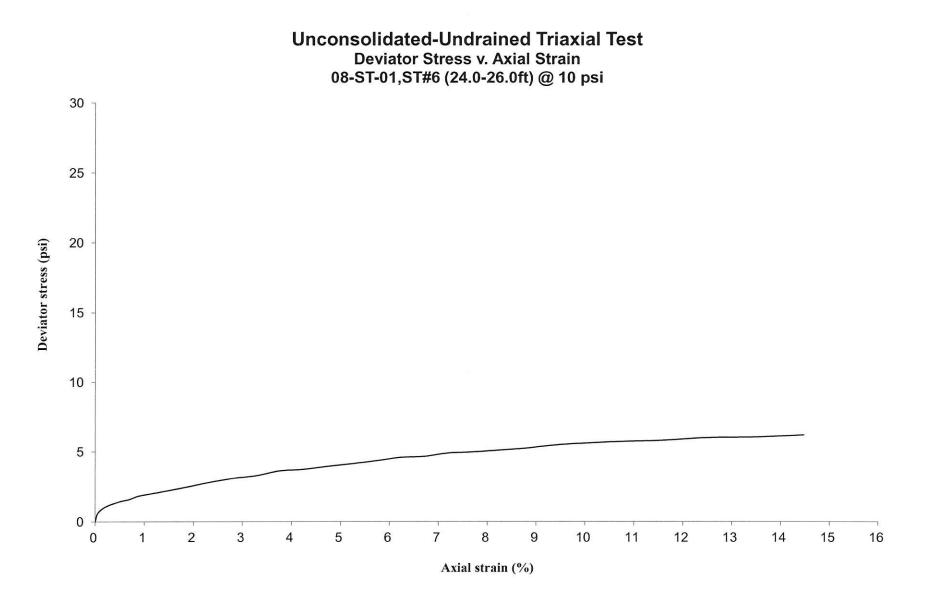
AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	2	Analyst name: M. de los Reyes	
Client: AECOM	Client: AECOM		
WEI Job No.: 1100-04-01	WEI Job No.: 1100-04-01		
Soil Sample ID: 08-ST-01,ST#6 (24.0-26.0ft)		Sample description: Gray SILTY CL	AY
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.75 in	Initial water content w =	25.04%
Initial diameter $d_0 =$	2.81 in	Initial unit weight $\gamma_w =$	130.77 pcf
Initial area $A_0 =$	6.18 in ²	Initial dry unit weight $\gamma_d =$	104.58 pcf
Mass of wet sample and tare M _i =	1232.74 g	Initial void ratio $e_0 =$	0.659
Mass of dry sample and tare $M_d =$	988.70 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	14.14 g		
Mass of sample Ms=	1218.60 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	10.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.05		
		Deviator stress at failure $D\sigma_f =$	0.45 tsf
			The second residence

Major principal stress at failure $\sigma_1 = 1.17$ tsf

Date: 12.17.14 Date: 12/17/14

Axial	Axial	Axial	Deviator
Displacement	Force	Strain	Stress
(in)	(lbs)	(%)	(psi)
Δh	F	e	σ_1 - σ_3
0.00	0.00	0.00	0.00
0.00	3.43	0.04	0.56
0.01	5.52	0.14	0.89
0.01	6.71	0.23	1.08
0.02	7.59	0.32	1.22
0.02	8.29	0.41	1.34
0.03	8.97	0.51	1.44
0.04	9.48	0.61	1.52
0.04	10.00	0.71	1.61
0.05	10.81	0.80	1.74
0.05	11.51	0.90	1.85
0.08	13.47	1.38	2.15
0.11	15.51	1.85	2.46
0.13	17.78	2.33	2.81
0.16	19.63	2.79	3.09
0.19	20.96	3.28	3.28
0.22	23.26	3.75	3.62
0.24	24.12	4.25	3.74
0.27	25.68	4.76	3.96
0.30	27.04	5.26	4.15
0.33	28.58	5.75	4.36
0.36	30.23	6.23	4.59
0.39	30.86	6.71	4.66
0.41	32.65	7.19	4.90
0.44	33.33	7.68	4.98
0.47	34.25	8.17	5.09
0.50	35.32	8.71	5.22
0.53	36.73	9.18	5.40
0.55	37.91	9.65	5.54
0.61	39.45	10.59	5.71
0.66	40.59	11.56	5.81
0.72	42.43	12.53	6.01
0.78	43.22	13.50	6.05
0.83	44.76	14.48	6.19


Prepared by: _ Checked by: _

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

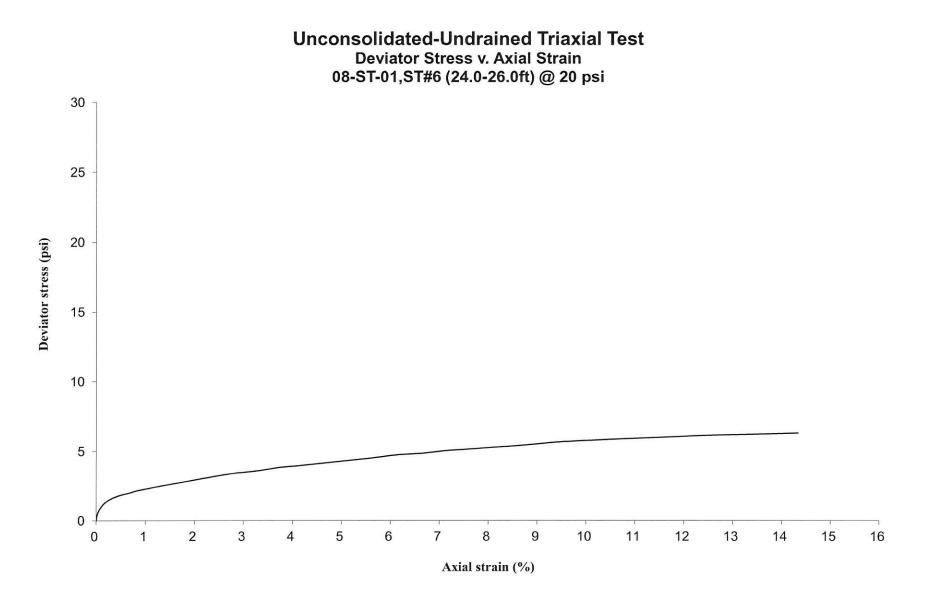
AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange Client: AECOM			Analyst name: Example Date received: Example	
WEI Job No.: 1100-04-01			Test date: Example	
Soil Sample ID: 08-ST-01, ST#6 (2-	4.0-26.0ft)		Sample description: Example	
Type/Condition: ST/Undisturbed				
Initial height $h_0 =$	5.81	in	Initial water content w =	25.30%
Initial diameter $d_0 =$	2.83	in	Initial unit weight $\gamma_w =$	128.61 pcf
Initial area $A_0 =$	6.28	in ²	Initial dry unit weight $\gamma_d =$	102.64 pcf
Mass of wet sample and tare $M_i =$	1244.80	g	Initial void ratio $e_0 =$	0.690
Mass of dry sample and tare $M_d =$	996.20	g	Initial degree of saturation S _r =	100%
Mass of tare $M_t =$	13.60	g		
Mass of sample Ms=	1231.20	g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78		Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0	psi	Sand(%):	NA
Rate of strain =	1	%/min	Silt(%):	NA
Proving Ring Factor =	1.000		Clay(%):	NA
Height to diameter ratio =	2.05			

Deviator stress at failure $D\sigma_f = 0.45$ tsf

Major principal stress at failure $\sigma_1 =$ 1.89 tsf

Date: 12.17.14 Date: 12/17/14


Axial	Axial	Axial	Deviator	
Displacement	Force	Strain	Stress	
(in)	(lbs)	(%)	(psi)	
Δh	F	e	σ_1 - σ_3	
0.00	0.00	0.00	0.00	1
0.00	3.30	0.03	0.52	
0.01	6.73	0.12	1.07	
0.01	8.57	0.21	1.36	
0.02	9.81	0.30	1.56	
0.02	10.71	0.39	1.70	
0.03	11.49	0.49	1.82	
0.03	12.05	0.58	1.91	
0.04	12.58	0.68	1.99	
0.04	13.25	0.77	2.09	
0.05	13.81	0.86	2.18	
0.08	15.98	1.34	2.51	
0.11	17.93	1.81	2.80	
0.13	20.01	2.28	3.11	
0.16	21.87	2.75	3.39	
0.19	23.15	3.24	3.57	
0.22	24.97	3.72	3.83	
0.25	26.16	4.22	3.99	
0.27	27.55	4.72	4.18	
0.30	28.85	5.21	4.36	
0.33	30.32	5.71	4.55	
0.36	31.77	6.17	4.75	
0.39	32.59	6.65	4.85	
0.41	33.98	7.12	5.03	
0.44	34.90	7.60	5.14	
0.47	35.96	8.08	5.26	
0.50	37.03	8.61	5.39	
0.53	38.23	9.07	5.54	
0.55	39.33	9.53	5.67	
0.61	40.86	10.47	5.83	
0.66	42.28	11.43	5.96	
0.72	43.81	12.40	6.11	
0.78	44.93	13.37	6.20	
0.83	46.09	14.34	6.29	

Prepared by: Checked by:

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com



UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

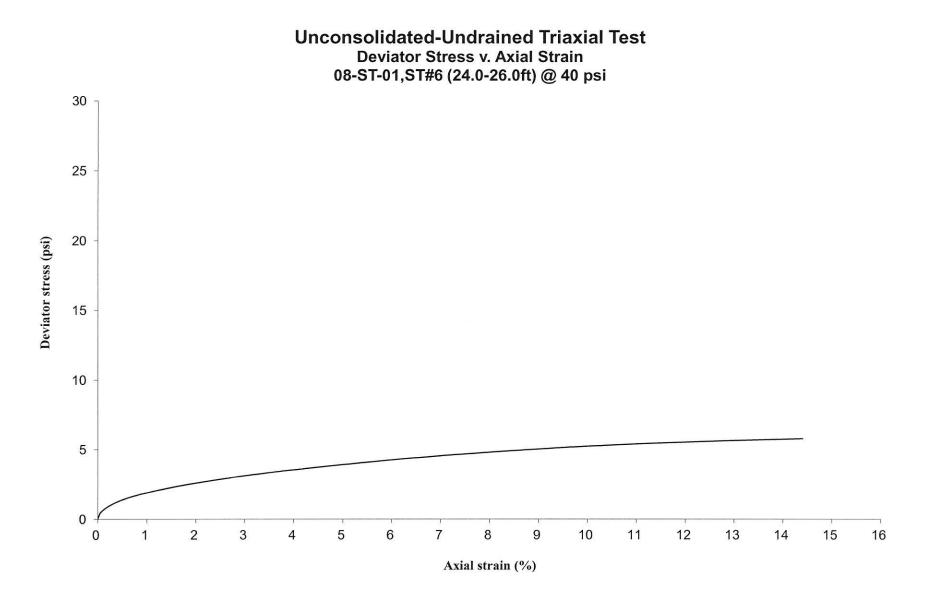
AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	e	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 11/3/2014	
WEI Job No.: 1100-04-01		Test date: 12/9/2014	
Soil Sample ID: 08-ST-01,ST#6 (2-	4.0-26.0ft)	Sample description: Gray SILTY CL	AY
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.80 in	Initial water content w =	24.94%
Initial diameter $d_0 =$	2.83 in	Initial unit weight $\gamma_w =$	129.80 pcf
Initial area $A_0 =$	6.29 in ²	Initial dry unit weight $\gamma_d =$	103.89 pcf
Mass of wet sample and tare $M_i =$	1255.72 g	Initial void ratio $e_0 =$	0.670
Mass of dry sample and tare $M_d =$	1007.70 g	Initial degree of saturation Sr =	100%
Mass of tare $M_t =$	13.32 g		
Mass of sample Ms=	1242.40 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	40.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.05		
		Deviator stress at failure $D\sigma_f =$	0.42 tsf

Major principal stress at failure $\sigma_1 =$ 3.30 tsf

Axial	Axial	Axial	Deviator	Γ
Displacement	Force	Strain	Stress	
(in)	(lbs)	(%)	(psi)	
Δh	F	e	σ_1 - σ_3	
0.00	0.00	0.00	0.00	1
0.00	2.72	0.05	0.43	
0.01	4.52	0.14	0.72	
0.01	5.90	0.23	0.94	
0.02	7.03	0.32	1.11	С.
0.02	8.01	0.41	1.27	
0.03	8.85	0.51	1.40	
0.04	9.60	0.61	1.52	
0.04	10.30	0.71	1.63	
0.05	10.93	0.81	1.72	
0.05	11.51	0.90	1.81	
0.08	13.93	1.38	2.18	
0.11	16.03	1.86	2.50	
0.14	17.89	2.34	2.78	
0.16	19.57	2.82	3.02	
0.19	21.06	3.30	3.24	
0.22	22.55	3.77	3.45	
0.25	23.95	4.29	3.64	
0.28	25.30	4.78	3.83	
0.31	26.61	5.27	4.01	
0.33	27.81	5.75	4.17	
0.36	29.00	6.21	4.32	
0.39	30.05	6.68	4.46	
0.41	31.11	7.14	4.59	
0.44	32.09	7.63	4.71	
0.47	33.09	8.11	4.83	
0.50	34.10	8.64	4.95	
0.53	34.98	9.11	5.05	
0.55	35.85	9.57	5.15	
0.61	37.35	10.50	5.31	
0.67	38.83	11.49	5.46	
0.72	40.12	12.47	5.58	
0.78	41.30	13.43	5.68	
0.83	42.45	14.40	5.77	

Prepared by:


Joy Date: 12.17.14 B Date: 12/17/14 AL Checked by:

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

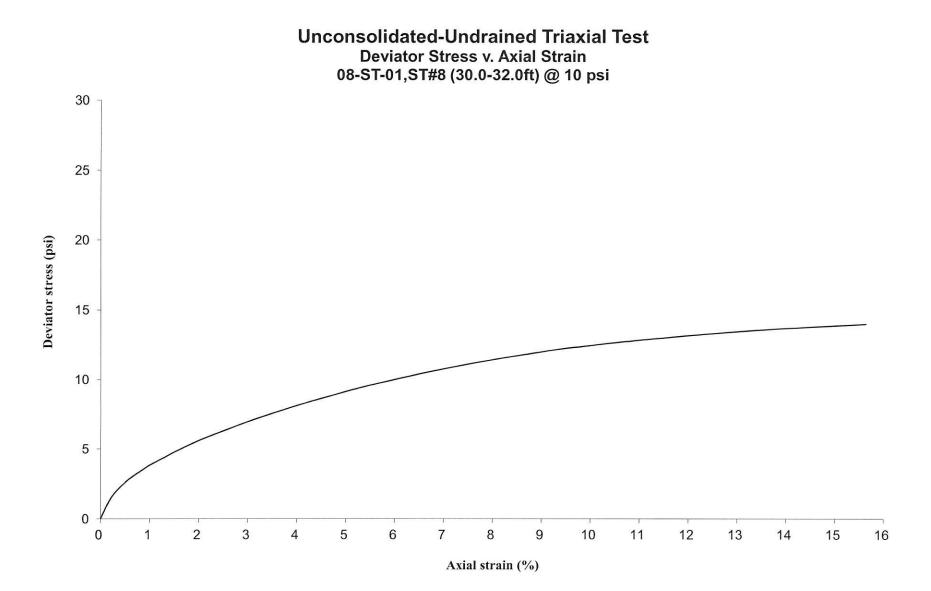


UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	2	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 11/3/2014	
WEI Job No.: 1100-04-01		Test date: 12/9/2014	
Soil Sample ID: 08-ST-01, ST#8 (3	0.0-32.0ft)	Sample description: Soft Gray SILTY	CLAY
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.91 in	Initial water content w =	24.19%
Initial diameter $d_0 =$	2.82 in	Initial unit weight $\gamma_w =$	129.86 pcf
Initial area $A_0 =$	6.25 in ²	Initial dry unit weight $\gamma_d =$	104.57 pcf
Mass of wet sample and tare $M_i =$	1272.70 g	Initial void ratio $e_0 =$	0.659
Mass of dry sample and tare $M_d =$	1027.40 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	13.30 g		
Mass of sample Ms=	1259.40 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	10.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.09	50 - 19 4 08 - 508 - 5	
		Deviator stress at failure $D\sigma_f =$	0.88 tsf

0.88 tsf 1.60 tsf Major principal stress at failure $\sigma_1 =$



Axial Displacement (in)	Axial Force (lbs)	Axial Strain (%)	Deviator Stress (psi)	1100-04-01 08-5T-01 5T #8
Δh	F	(70) e	σ ₁ -σ ₃	08-ST-01
0.00	0.00	0.00	10 AS	ST # 8
0.00	5.20	0.00	0.00 0.83	20:-32
0.01	9,49	0.11	1.51	30
0.02	12.49	0.22	1.99	in PSi
0.02	12.49	0.32	2.39	10 10:
0.03	17.23	0.43	- 100 - 100 - 100	
0.03	17.23	0.54	2.74	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O
0.04	20.26	0.64	2.99	
0.04			3.22	
	22.10	0.86	3.50	
0.06	23.88	0.97	3.78	
0.06	24.61	1.03	3.90	
0.09	31.25	1.59	4.92	
0.12	36.15	2.05	5.66	A STATE OF THE OWNER WITH THE OWNER WITH
0.15	41.35	2.62	6.44	A STREET, STRE
0.18	45.70	3.12	7.08	A State of the second s
0.22	50.11	3.66	7.72	
0.25	54.36	4.21	8.33	
0.28	57.67	4.68	8.79	
0.31	61.59	5.22	9.34	
0.34	64.74	5.72	9.76	
0.37	68.08	6.27	10.21	
0.40	71.14	6.79	10.61	
0.43	74.01	7.31	10.97	
0.46	76.68	7.82	11.31	
0.49	79.16	8.32	11.61	
0.52	81.76	8.88	11.92	
0.56	84.12	9.39	12.19	
0.58	85.92	9.89	12.38	
0.62	88.03	10.43	12.61	
0.68	91.55	11.46	12.97	
0.74	94.89	12.48	13.28	
0.80	98.10	13.56	13.56	
0.86	100.80	14.57	13.77	
0.92	103.52	15.64	13.97	0
		Prepa	red by:	Cary Date: 12.17. ht Date: 12/17/1
		Check	ked by:	L'L Date: (2/17/)

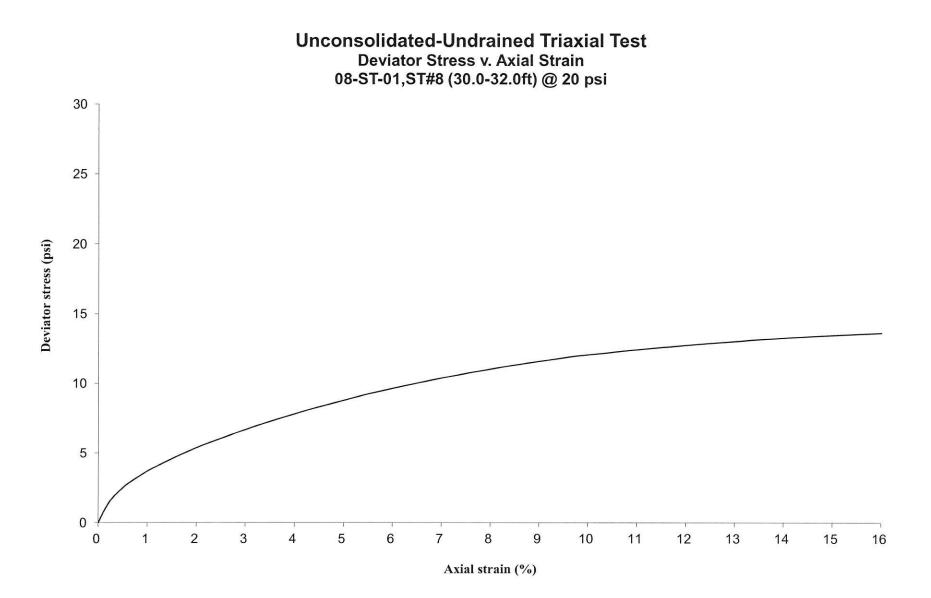
1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	2		Analyst name: M. de los Reyes	
Client: AECOM			Date received: 11/3/2014	
WEI Job No.: 1100-04-01			Test date: 12/9/2014	
Soil Sample ID: 08-ST-01, ST#8 (3)	0.0-32.0ft)		Sample description: Soft Gray SILTY	CLAY
Type/Condition: ST/Undisturbed				
Initial height $h_0 =$	5.67 i	n	Initial water content w =	24.36%
Initial diameter $d_0 =$	2.84 i	n	Initial unit weight $\gamma_w =$	129.16 pcf
Initial area $A_0 =$	6.34 i	n ²	Initial dry unit weight $\gamma_d =$	103.86 pcf
Mass of wet sample and tare $M_i =$	1231.22 g		Initial void ratio $e_0 =$	0.670
Mass of dry sample and tare $M_d =$	992.70 g		Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	13.72 g			
Mass of sample Ms=	1217.50 g	FI	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78		Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0 p	osi	Sand(%):	NA
Rate of strain =	1 9	%/min	Silt(%):	NA
Proving Ring Factor =	1.000		Clay(%):	NA
Height to diameter ratio =	1.99			
			Deviator stress at failure $D\sigma_f =$	0.86 tsf


Major principal stress at failure $\sigma_1 =$ 2.30 tsf

1100-04-01 08-5T-01 5T#8	Deviator Stress (psi)	Axial Strain (%)	Axial Force (lbs)	Axial Displacement (in)
08-57-01	σ1-σ3	e	F	Δh
ST #0 ,	0.00	0.00	0.00	0.00
30'-32	0.82	0.11	5.20	0.01
	1.49	0.23	9.49	0.01
20 PSi	1.96	0.34	12.49	0.02
	2.36	0.45	15.00	0.03
	2.70	0.57	17.23	0.03
	2.95	0.67	18.79	0.04
	3.17	0.76	20.26	0.04
	3.46	0.89	22.10	0.05
	3.73	1.01	23.88	0.06
	3.84	1.07	24.61	0.06
	4.85	1.66	31.25	0.09
	5.58	2.14	36.15	0.12
	6.35	2.73	41.35	0.15
	6.98	3.25	45.70	0.18
	7.60	3.82	50.11	0.22
	8.20	4.39	54.36	0.25
	8.66	4.88	57.67	0.28
	9.19	5.44	61.59	0.31
	9.61	5.97	64.74	0.34
	10.04	6.54	68.08	0.37
	10.43	7.08	71.14	0.40
	10.79	7.63	74.01	0.43
	11.11	8.16	76.68	0.46
B	11.41	8.68	79.16	0.49
	11.71	9.26	81.76	0.52
	11.97	9.79	84.12	0.56
	12.16	10.32	85.92	0.58
	12.38	10.88	88.03	0.62
	12.72	11.95	91.55	0.68
	13.02	13.02	94.89	0.74
	13.29	14.14	98.10	0.80
	13.49	15.19	100.80	0.86
	13.67	16.31	103.52	0.92

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

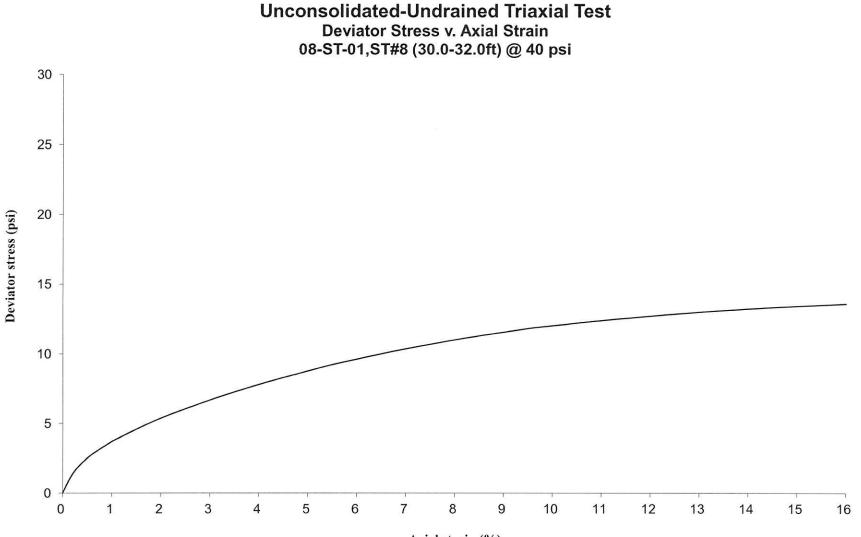
AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchange	2	Analyst name: M. de los Reyes	
Client: AECOM		Date received: 11/3/2014	
WEI Job No.: 1100-04-01		Test date: 12/10/2014	
Soil Sample ID: 08-ST-01, ST#8 (30	0.0-32.0ft)	Sample description: Soft Gray SILTY	CLAY
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.74 in	Initial water content w =	23.83%
Initial diameter $d_0 =$	2.85 in	Initial unit weight $\gamma_w =$	128.85 pcf
Initial area $A_0 =$	6.39 in ²	Initial dry unit weight $\gamma_d =$	104.06 pcf
Mass of wet sample and tare $M_i =$	1252.67 g	Initial void ratio $e_0 =$	0.667
Mass of dry sample and tare $M_d =$	1014.20 g	Initial degree of saturation $S_r =$	99%
Mass of tare $M_t =$	13.47 g		
Mass of sample Ms=	1239.20 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	40.0 psi	Sand(%):	NA
Rate of strain =	1 %/n	nin Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.01		
		Deviator stress at failure $D\sigma_f =$	0.86 tsf

Major principal stress at failure $\sigma_1 = 3.74$ tsf

Date: 12.17.14Date: 12/17/14

Axial	Axial	Axial	Deviator
Displacement	Force	Strain	Stress
(in)	(lbs)	(%)	(psi)
Δh	F	e	σ_1 - σ_3
0.00	0.00	0.00	0.00
0.01	5.20	0.11	0.81
0.01	9.49	0.22	1.48
0.02	12.49	0.33	1.95
0.03	15.00	0.45	2.34
0.03	17.23	0.56	2.68
0.04	18.79	0.66	2.92
0.04	20.26	0.75	3.15
0.05	22.10	0.88	3.43
0.06	23.88	1.00	3.70
0.06	24.61	1.06	3.81
0.09	31.25	1.64	4.81
0.12	36.15	2.12	5.54
0.15	41.35	2.70	6.30
0.18	45.70	3.21	6.92
0.22	50.11	3.77	7.55
0.25	54.36	4.34	8.14
0.28	57.67	4.82	8.59
0.31	61.59	5.38	9.12
0.34	64.74	5.90	9.54
0.37	68.08	6.46	9.97
0.40	71.14	7.00	10.36
0.43	74.01	7.54	10.71
0.46	76.68	8.06	11.04
0.49	79.16	8.58	11.33
0.52	81.76	9.15	11.63
0.56	84.12	9.68	11.89
0.58	85.92	10.20	12.08
0.62	88.03	10.75	12.30
0.68	91.55	11.81	12.64
0.74	94.89	12.86	12.94
0.80	98.10	13.97	13.21
0.86	100.80	15.01	13.41
0.92	103.52	16.12	13.59


Prepared by: _ Checked by: _

AASHTO R18

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

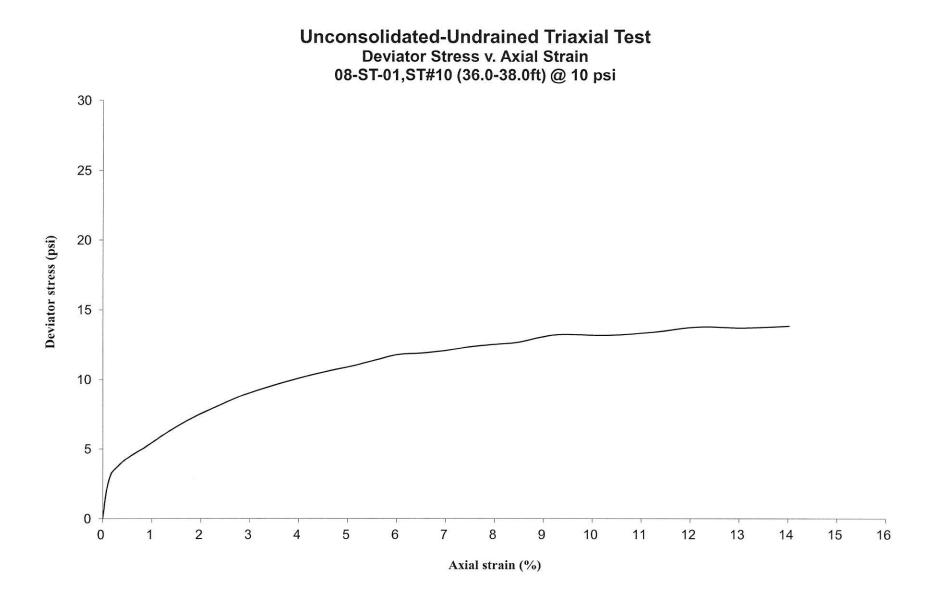
Axial strain (%)

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95

Project: Circle Interchang	e	Analyst name: A. Mohammed	
Client: AECOM		Date received: 11/3/2014	
WEI Job No.: 1100-04-01		Test date: 12/12/2014	
Soil Sample ID: 08-ST-01 ST#10 (36.0-38.0ft)	Sample description: Soft Gray SILTY	CLAY
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.88 in	Initial water content w =	24.70%
Initial diameter $d_0 =$	2.84 in	Initial unit weight $\gamma_w =$	128.21 pcf
Initial area $A_0 =$	6.32 in ²	Initial dry unit weight $\gamma_d =$	102.81 pcf
Mass of wet sample and tare $M_i =$	1263.86 g	Initial void ratio $e_0 =$	0.687
Mass of dry sample and tare $M_d =$	1016.20 g	Initial degree of saturation S _r =	100%
Mass of tare $M_t =$	13.66 g		
Mass of sample Ms=	1250.20 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	10.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.07		
		Deviator stress at failure $D\sigma_{c} =$	1.00 tsf

Deviator stress at failure $D\sigma_f =$ 1.00 tsf 1.72 tsf


Major principal stress at failure $\sigma_1 =$

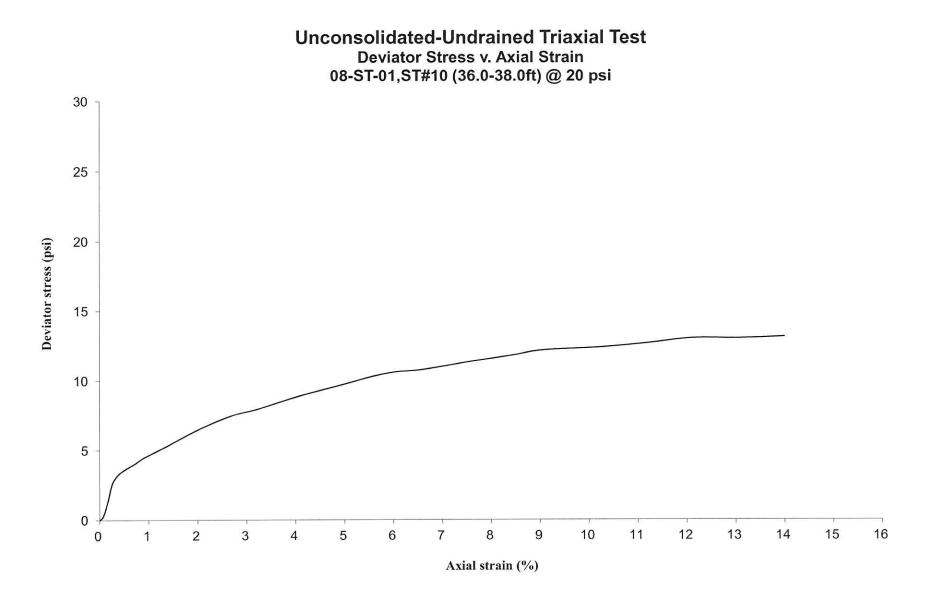
Axial	Axial	Axial	Deviator	1100-04
Displacement	Force	Strain	Stress	1100-04-01
(in)	(lbs)	(%)	(psi)	08-ST-01
Δh	F	e	σ_1 - σ_3	ST-10
0.00	0.00	0.00	0.00	36-38
0.00	12.40	0.08	1.96	30-38
0.01	20.05	0.17	3.17	10 002
0.02	22.62	0.26	3.57	lo psi
0.02	24.72	0.35	3.90	
0.03	26.55	0.44	4.18	
0.03	28.07	0.54	4.42	
0.04	29.62	0.64	4.66	
0.04	30.94	0.74	4.86	
0.05	32.15	0.83	5.04	
0.05	33.63	0.92	5.27	
0.08	40.90	1.40	6.38	
0.11	47.00	1.86	7.30	
0.14	52.00	2.31	8.04	
0.16	56.78	2.76	8.73	
0.19	60.65	3.22	9.29	
0.22	64.19	3.68	9.78	
0.24	67.46	4.15	10.23	
0.27	70.45	4.62	10.63	
0.30	73.08	5.09	10.97	
0.33	76.27	5.55	11.40	
0.35	79.39	6.02	11.80	
0.38	80.49	6.50	11.91	
0.41	82.10	6.98	12.08	A design of the second s
0.44	84.27	7.46	12.34	Bulge Failure
0.47	85.89	7.94	12.51	
0.50	87.51	8.47	12.67	
0.52	90.47	8.93	13.03	
0.55	92.33	9.39	13.23	
0.61	92.85	10.32	13.17	
0.66	95.54	11.25	13.41	
0.72	99.18	12.17	13.78	
0.77	99.70	13.09	13.71	
0.82	101.77	14.02	13.84	e
			red by:	Date: 12.17.19 A: 12 Date: 12/17/14

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928

www.wangeng.com

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95


Project: Circle Interchang	e	Analyst name: A. Mohammed	
Client: AECOM		Date received: 11/3/2014	
WEI Job No.: 1100-04-01		Test date: 12/12/2014	
Soil Sample ID: 08-ST-01, ST#10 (36.0-38.0ft)	Sample description: Soft Gray SILTY	CLAY
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.89 in	Initial water content w =	23.92%
Initial diameter $d_0 =$	2.83 in	Initial unit weight $\gamma_w =$	130.11 pcf
Initial area $A_0 =$	6.29 in ²	Initial dry unit weight $\gamma_d =$	104.99 pcf
Mass of wet sample and tare M _i =	1277.35 g	Initial void ratio $e_0 =$	0.652
Mass of dry sample and tare $M_d =$	1033.40 g	Initial degree of saturation $S_r =$	100%
Mass of tare $M_t =$	13.65 g		
Mass of sample Ms=	1263.70 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	20.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.08		
		Deviator stress at failure $D\sigma_f =$	0.95 tsf

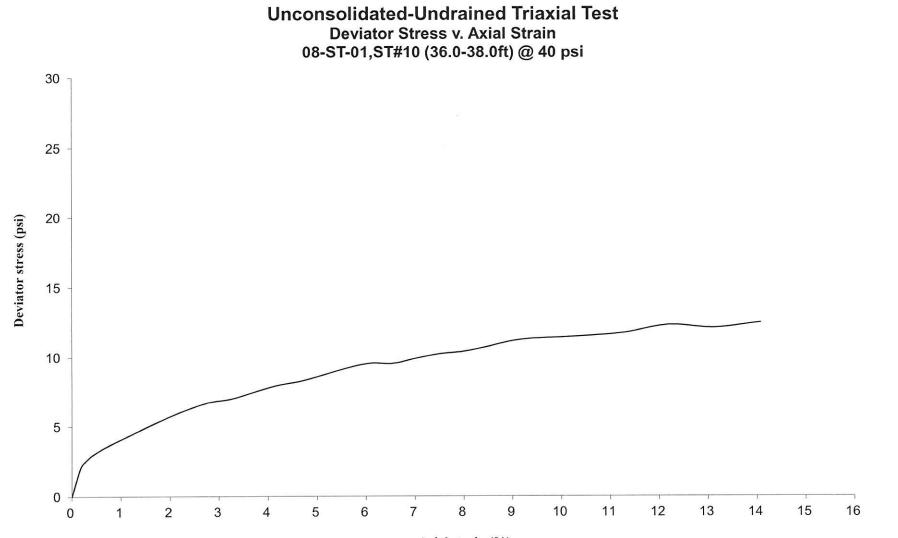
2.39 tsf Major principal stress at failure $\sigma_1 =$

			D .	
Axial	Axial	Axial	Deviator	
Displacement	Force	Strain	Stress	1100-04-01
(in)	(lbs)	(%)	(psi)	08-5T-01
$\Delta \mathbf{h}$	F	e	σ_1 - σ_3	ST-10
0.00	0.00	0.00	0.00	
0.00	1.60	0.07	0.25	36-38
0.01	7.85	0.16	1.25	
0.01	15.95	0.25	2.53	20 psi
0.02	19.57	0.34	3.10	
0.03	21.56	0.43	3.42	
0.03	23.03	0.53	3.64	
0.04	24.35	0.63	3.85	State of the second
0.04	25.60	0.72	4.04	
0.05	27.02	0.82	4.26	
0.05	28.41	0.91	4.48	
0.08	33.84	1.38	5.31	
0.11	39.50	1.83	6.17	A STATE OF A
0.13	44.47	2.28	6.91	
0.16	48.63	2.73	7.53	
0.19	51.44	3.19	7.92	
0.21	55.00	3.65	8.43	
0.24	58.63	4.13	8.94	
0.27	61.86	4.61	9.39	
0.30	65.10	5.08	9.83	
0.33	68.40	5.56	10.28	
0.35	70.85	6.03	10.59	
0.38	72.18	6.50	10.74	
0.41	74.20	6.97	10.98	
0.44	76.61	7.45	11.28	Bulge Failure
0.47	78.72	7.93	11.53	
0.50	81.01	8.44	11.80	
0.52	83.52	8.90	12.10	
0.55	84.80	9.35	12.23	
0.60	86.72	10.27	12.38	
0.66	89.75	11.21	12.68	
0.71	93.21	12.13	13.03	
0.77	94.12	13.05	13.02	
0.82	96.01	13.99	13.14	1
		•	red by:	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST

AASHTO T 296 / ASTM D 2850-95


Project: Circle Interchnag	e	Analyst name: A. Mohammed	
Client: AECOM		Date received: 11/3/2014	
WEI Job No.: 1100-04-01		Test date: 12/12/2014	
Soil Sample ID: 08-ST-01, ST#10 (36.0-38.0ft)	Sample description: Soft Gray SILTY	CLAY
Type/Condition: ST/Undisturbed			
Initial height $h_0 =$	5.88 in	Initial water content w =	22.81%
Initial diameter $d_0 =$	2.85 in	Initial unit weight $\gamma_w =$	129.67 pcf
Initial area $A_0 =$	6.36 in ²	Initial dry unit weight $\gamma_d =$	105.58 pcf
Mass of wet sample and tare M _i =	1286.16 g	Initial void ratio $e_0 =$	0.643
Mass of dry sample and tare $M_d =$	1049.70 g	Initial degree of saturation $S_r =$	99%
Mass of tare $M_t =$	13.26 g		
Mass of sample Ms=	1272.90 g	Liquid Limit (%):	NA
Estimated specific gravity G _s =	2.78	Plastic Limit (%):	NA
Cell confining pressure $\sigma_3 =$	40.0 psi	Sand(%):	NA
Rate of strain =	1 %/min	Silt(%):	NA
Proving Ring Factor =	1.000	Clay(%):	NA
Height to diameter ratio =	2.07		
		Deviator stress at failure $D\sigma_f =$	0.90 tsf
		Major principal stress at failure $\sigma_1 =$	3.78 tsf

	1100-04-01 08-57-01 ST-10	
	36-38' 40.psi	
Y NY		
	Bi	ılge Failur

Axial Displacement	Axial Force	Axial	Deviator Stress	100-04-01
		Strain		1100-04-01
(in)	(lbs)	(%)	(psi)	08-57-01
Δh	F	e	σ_1 - σ_3	
0.00	0.00	0.00	0.00	ST-10 36-38'
0.01	7.23	0.09	1.14	26.10
0.01	13.62	0.19	2.14	10-0
0.02	16.27	0.29	2.55	40 psi
0.02	18.19	0.38	2.85	40.53
0.03	19.63	0.47	3.07	
0.03	20.96	0.57	3.28	
0.04	22.18	0.66	3.47	
0.04	23.30	0.75	3.64	
0.05	24.48	0.85	3.82	
0.06	25.51	0.95	3.97	
0.08	30.56	1.40	4.74	
0.11	35.52	1.86	5.48	
0.14	40.09	2.31	6.16	
0.16	43.81	2.78	6.70	
0.19	45.64	3.24	6.95	
0.22	49.07	3.70	7.43	
0.25	52.61	4.18	7.93	
0.27	54.98	4.66	8.25	
0.30	58.29	5.13	8.70	
0.33	61.88	5.60	9.19	
0.36	64.62	6.09	9.55	
0.39	64.87	6.56	9.54	
0.41	67.70	7.03	9.90	
0.44	70.24	7.51	10.22	
0.47	71.69	7.99	10.38	
0.50	74.58	8.49	10.74	
0.53	77.63	8.95	11.12	
0.55	79.42	9.42	11.32	
0.61	81.30	10.33	11.47	
0.66	83.95	11.27	11.72	
0.72	88.89	12.19	12.28	
0.77	88.41	13.13	12.08	
0.77	92.18	14.07	12.46	

Axial strain (%)

UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL

(AASHTO T 208 / ASTM D 2166)

Analyst name: A. Mohammed

Date received: 11/3/2014 Test date: 12/11/2014

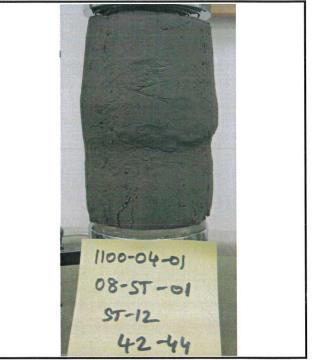
Sample description: Gray Silty Clay

Sand(%): NA

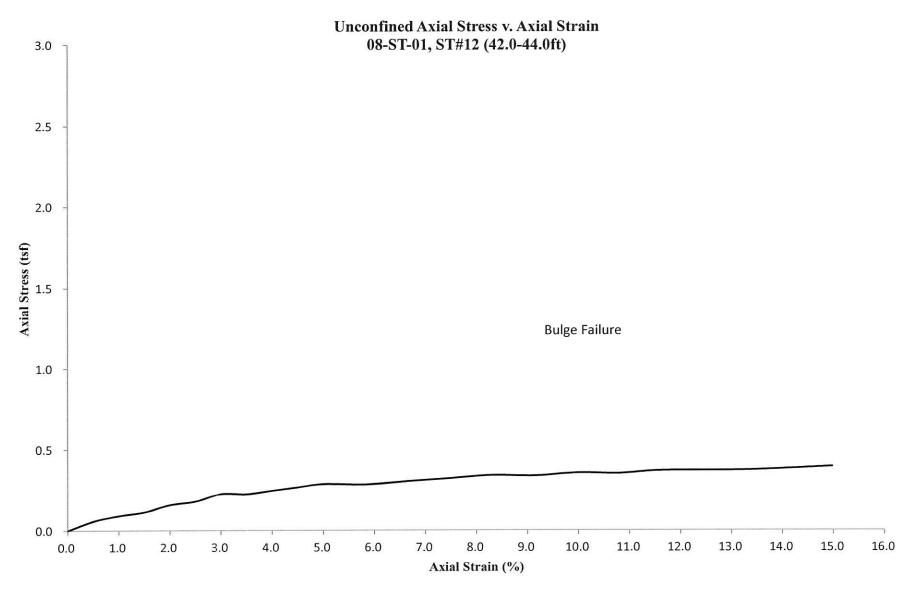
Project: Circle Interchange Client: AECOM WEI Job No.: 1100-04-01 Soil Sample ID: 08-ST-01, ST#12 (42.0-44.0ft) Type/Condition: ST/Undisturbed Liquid Limit (%): NA Plastic Limit (%): NA

Average initial height $h_0 = 6.01$	in
Average initial diameter $d_0 = 2.87$	in
Height to diameter ratio= 2.09	
Mass of wet sample = 1330.30	g
Mass of dry sample and tare = 1111.90	g
Mass of tare $= 13.60$	g
Specific gravity $= 2.76$	(estimated)

Displacement (in)	Force (lbs)	Strain (%)	Stress (tsf)
Δh	F	e	S
0.00	0.00	0.00	0.00
0.03	5.19	0.50	0.06
0.06	8.30	1.00	0.09
0.09	10.37	1.50	0.11
0.12	14.52	2.00	0.16
0.15	16.59	2.50	0.18
0.18	20.74	3.00	0.22
0.21	20.74	3.49	0.22
0.24	22.81	3.99	0.24
0.27	24.89	4.49	0.26
0.30	26.96	4.99	0.29
0.35	26.96	5.82	0.28
0.40	29.04	6.66	0.30
0.45	31.11	7.49	0.32
0.50	33.18	8.32	0.34
0.55	33.18	9.15	0.34
0.60	35.26	9.99	0.35
0.65	35.26	10.82	0.35
0.70	37.33	11.65	0.37
0.80	38.37	13.31	0.37
0.90	41.48	14.98	0.39


NOTES:

C Prepared by: Checked by:


Date: $\frac{12.16.14}{16/14}$

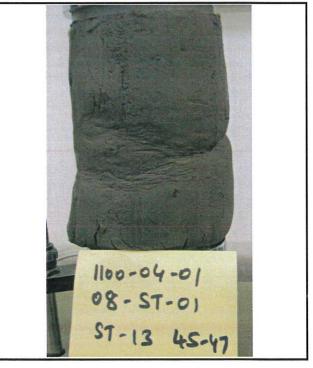
Silt(%): NA Clay(%): NA	
Initial water content $w = 21.12\%$	(specimen)
Initial unit weight $g = 130.41$	pcf
Initial dry unit weight $g_d = 107.67$	pcf
Initial void ratio $e_0 = 0.60$	
Initial degree of saturation $S_r = 97\%$	
Average Rate of Strain= 1%/min	ı
Unconfined compressive strength $q_u = 0.39$	tsf
Shear Strength= 0.20	tsf

UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL

(AASHTO T 208 / ASTM D 2166)

Analyst name: A. Mohammed Date received: 11/3/2014

Test date: 12/11/2014

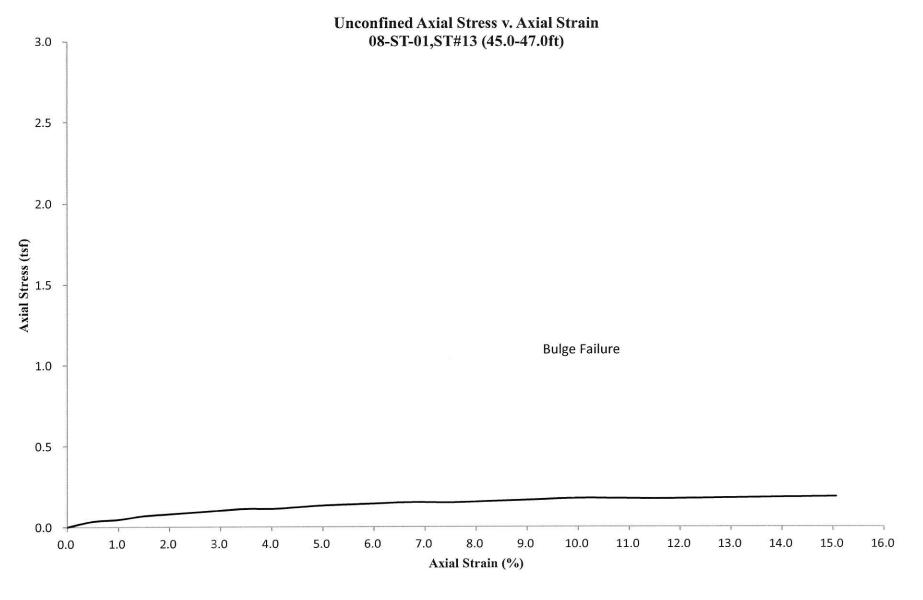

Project: Circle Interchange Client: AECOM WEI Job No.: 1100-04-01 Soil Sample ID: 08-ST-01, ST#13 (45.0-47.0ft) Type/Condition: ST/Undisturbed Liquid Limit (%): NA Plastic Limit (%): NA

Average initial height $h_0 = 5.97$	in
Average initial diameter $d_0 = 2.87$	in
Height to diameter ratio= 2.08	
Mass of wet sample = 1285.70	g
Mass of dry sample and tare = 1039.10	g
Mass of tare $= 13.75$	g
Specific gravity $= 2.76$	(estimated)

Displacement (in)	Force (lbs)	Strain (%)	Stress (tsf)
Δh	F	е	s
0.00	0.00	0.00	0.00
0.03	3.11	0.50	0.03
0.06	4.15	1.00	0.05
0.09	6.22	1.51	0.07
0.12	7.26	2.01	0.08
0.15	8.30	2.51	0.09
0.18	9.33	3.01	0.10
0.21	10.37	3.51	0.11
0.24	10.37	4.02	0.11
0.27	11.41	4.52	0.12
0.30	12.44	5.02	0.13
0.35	13.48	5.86	0.14
0.40	14.52	6.69	0.15
0.45	14.52	7.53	0.15
0.50	15.56	8.37	0.16
0.55	16.59	9.21	0.17
0.60	17.63	10.04	0.18
0.65	17.63	10.88	0.18
0.70	17.63	11.72	0.17
0.80	18.67	13.39	0.18
0.90	19.70	15.06	0.19

Sample description: Gray Silty ClaySand(%): NA
Silt(%): NA
Clay(%): NAInitial water content w = 25.39%Initial water content w = 25.39%Initial unit weight g = 126.90
Initial dry unit weight $g_d = 101.20$
Pcf
Initial void ratio $e_0 = 0.70$ Initial degree of saturation $S_r = 100\%$

Initial degree of saturation $S_r = 100\%$ Average Rate of Strain= 1%/min Unconfined compressive strength $q_u = 0.19$ tsf Shear Strength= 0.09 tsf


NOTES:

Prepared by: Checked by:

Date: 12.16.14 12/16/14 Date:

UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL

(AASHTO T 208 / ASTM D 2166)

Analyst name: A. Mohammed

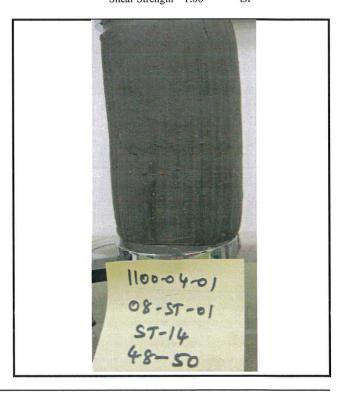
Test date: 12/11/2014

Date received: 11/3/2014

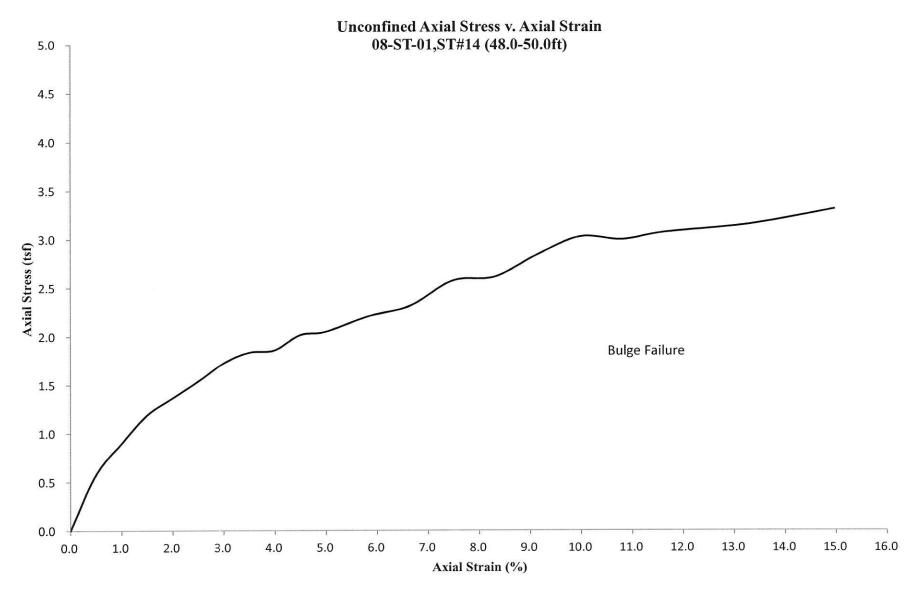
Project: Circle Interchange Client: AECOM WEI Job No.: 1100-04-01 Soil Sample ID: 08-ST-01, ST#14 (48.0-50.0ft) Type/Condition: ST/Undisturbed Liquid Limit (%): NA Plastic Limit (%): NA

Average initial height $h_0 = 6.01$	in
Average initial diameter $d_0 = 2.86$	in
Height to diameter ratio= 2.10	
Mass of wet sample = 1358.00	g
Mass of dry sample and tare = 1153.70	g
Mass of tare $= 13.58$	g
Specific gravity $= 2.76$	(estimated)

Displacement (in)	Force (lbs)	Strain (%)	Stress (tsf)
Δh	F	e	S
0.00	0.00	0.00	0.00
0.03	51.85	0.50	0.58
0.06	80.89	1.00	0.89
0.09	107.85	1.50	1.19
0.12	124.44	2.00	1.36
0.15	141.03	2.49	1.54
0.18	158.87	2.99	1.72
0.21	170.07	3.49	1.83
0.24	173.18	3.99	1.86
0.27	188.73	4.49	2.01
0.30	192.88	4.99	2.05
0.35	209.47	5.82	2.20
0.40	221.92	6.65	2.31
0.45	248.88	7.48	2.57
0.50	255.10	8.32	2.61
0.55	279.99	9.15	2.84
0.60	300.73	9.98	3.02
0.65	300.73	10.81	3.00
0.70	311.10	11.64	3.07
0.80	325.62	13.31	3.15
0.90	348.43	14.97	3.31
NOTES:		l	


Prepared by:

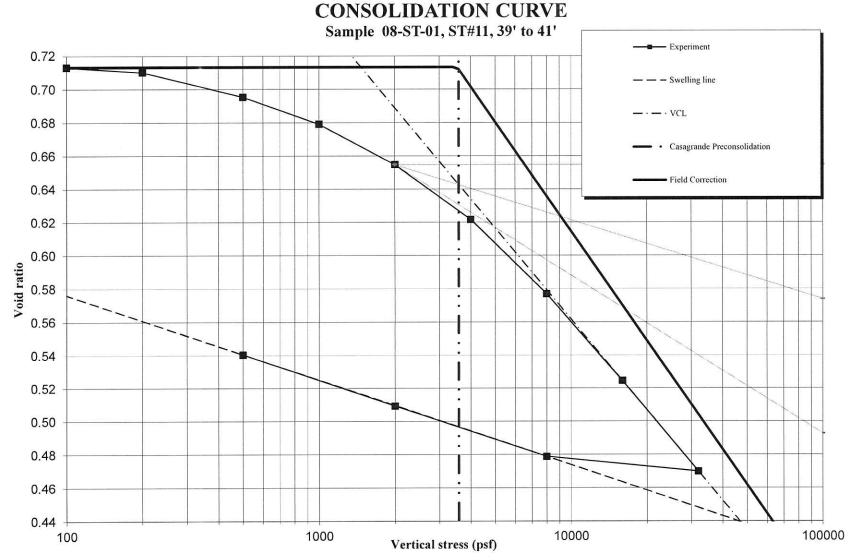
Checked by:


Date: 12.16.14 Date: 12/16/14

Sample description:	Gray Silty Clay		
Sand(%): Silt(%): Clay(%):	NA		
	Initial water content w = Initial unit weight g = Initial dry unit weight g _d = Initial void ratio e ₀ = I degree of saturation S _r = Average Rate of Strain=	133.54 112.11 0.54 98%	(specimen) pcf pcf
Unconfined	compressive strength $q_u =$ Shear Strength=	3.31	tsf tsf

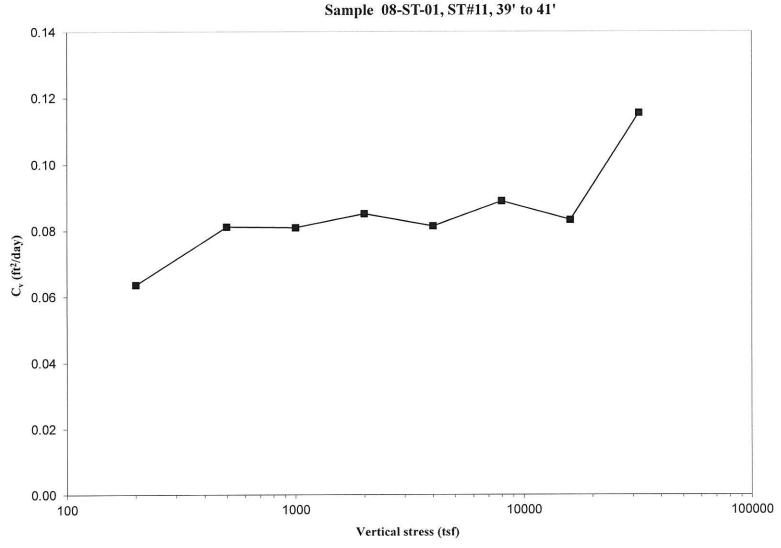
ONE-DIMENSIONAL CONSOLIDATION TEST AASHTO T 216 / ASTM D 2435

Project: Circle Interchange		Tested by: M. Snider	
Client: AECOM		Prepared by: M. Snider	
Soil Sample ID: Boring 08-ST		Test date: 1/8/2015	
Sample Description: Gray CLAY	with trace gravel (CL)	WEI: 1100-04-01	
Initial sample height =	1.002 in	Ring diameter =	2.495 in
Initial sample mass =	163.22 g	Ring mass =	109.57 g
Initial water content =	25.37%	Initial sample and ring mass =	272.79 g
Initial dry unit weight =	101.26 pcf	Tare mass =	71.58 g
Initial void ratio =	0.713	Final ring and sample mass =	267.91 g
Initial degree of saturation =	98.90%	Mass of wet sample and tare =	229.44 g
		Mass of dry sample and tare =	201.77 g
Final sample mass =	157.86 g	Initial dial reading =	0.01000 in
Final dry sample mass =	130.19 g	Final dial reading =	0.10757 in
Final water content =	21.25%	LL=	n.a. %
Final dry unit weight =	112.18 pcf	PL=	n.a. %
Final void ratio =	0.546	% Sand=	n.a. %
Final degree of saturation =	100.00%	% Silt=	n.a. %
Estimated specific gravity =	2.78	% Clay=	n.a. %
		In-Situ Vertical Effective Stress =	3400 psf

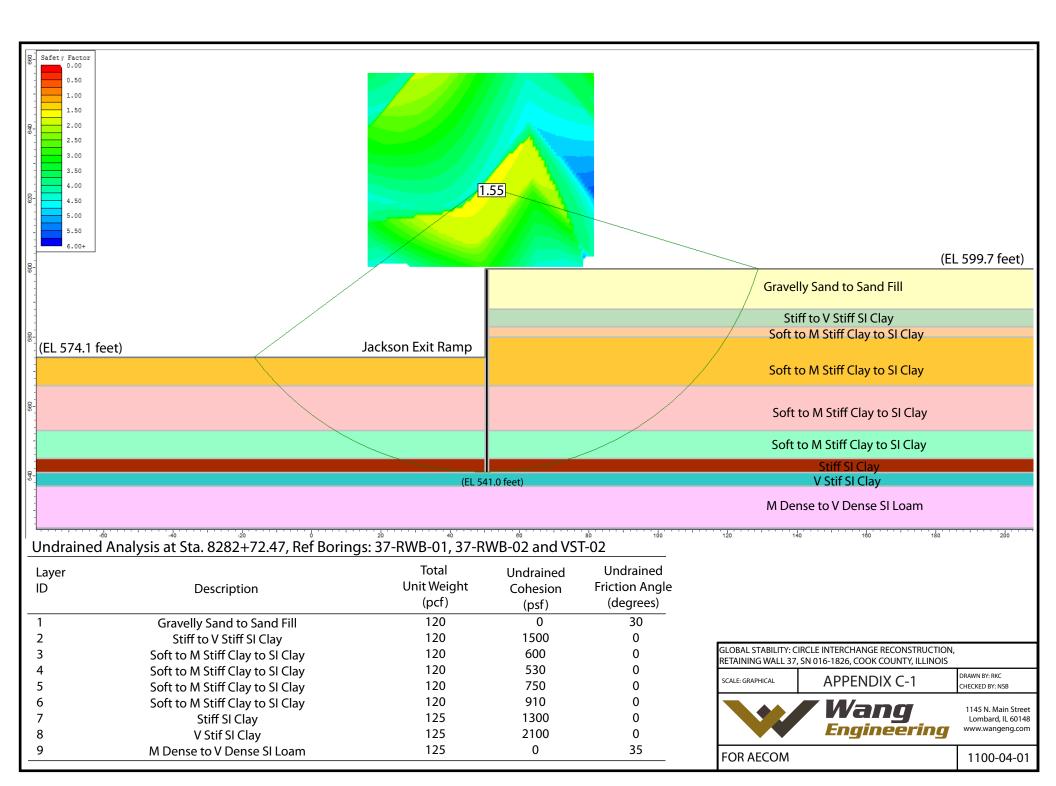

Compression and Swelling Indices

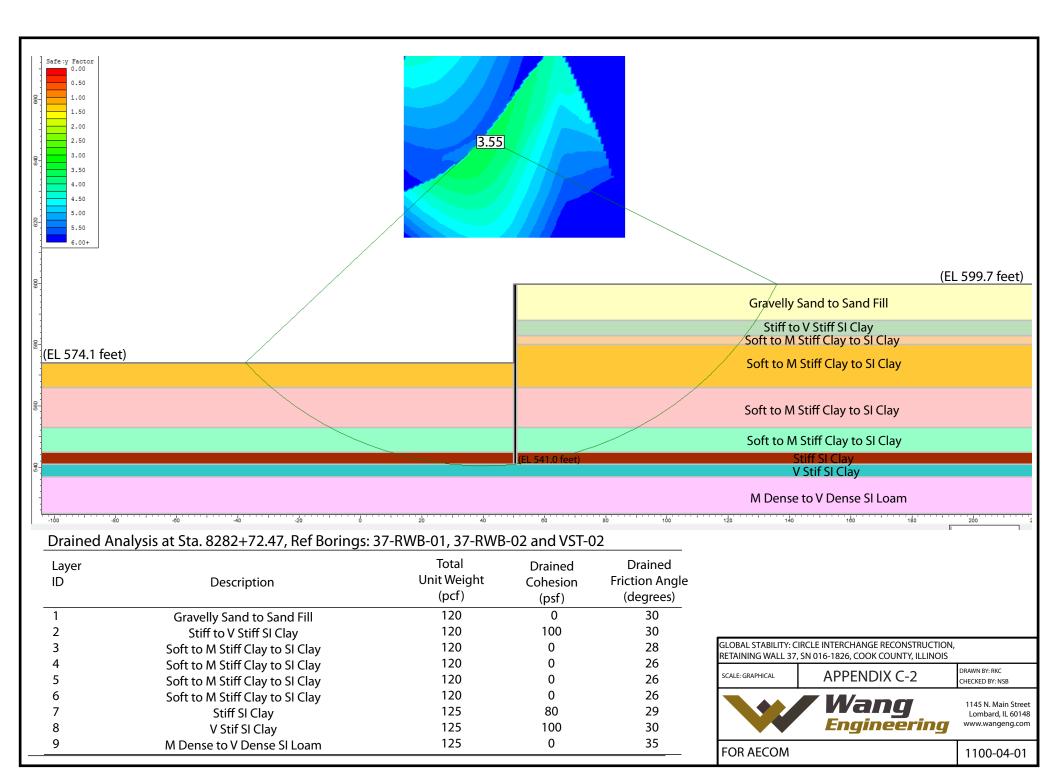
	Compres	ssion and Sw	elling Indices					
	Compressio	n index C _c =	0.182			Prec	onsolidation	pressure,s _C
	Field co	orrected C _c =	0.219			Casagrand	de Method =	3586 p
	Swellin	ig index C _s =	0.051		Over-Conse	olidation Ra	tio (OCR) =	1.05
Load number	Vertical stress	Dial reading	System deflection	Vertical strain	Void ratio	C _v	Cae	Elapsed time
	psf	in	in	%		ft²/day	%	min
1	100.0	0.00988	0.00010	0.00	0.713	N/A	N/A	1245
2	200.0	0.01152	0.00023	0.17	0.710	0.0635	0.07	2775
3	500.0	0.01982	0.00058	1.04	0.695	0.0811	0.10	1788
4	1000.0	0.02901	0.00090	1.99	0.679	0.0809	0.10	1410
5	2000.0	0.04280	0.00135	3.41	0.655	0.0851	0.16	1440
6	4000.0	0.06159	0.00193	5.34	0.622	0.0814	0.26	1344
7	8000.0	0.08722	0.00253	7.96	0.577	0.0889	0.32	3270
8	16000.0	0.11708	0.00324	11.01	0.525	0.0832	0.43	1944
9	32000.0	0.14821	0.00413	14.21	0.470	0.1154	0.37	1440
10	8000.0	0.14412	0.00295	13.68	0.479	N/A	N/A	1440
11	2000.0	0.12727	0.00198	11.90	0.509	N/A	N/A	1440
11	500.0	0.10982	0.00123	10.08	0.540	N/A	N/A	3240

'ny Date: 01.07.15Date: 1/2/15C Prepared by: L 1º Checked by:



s:\netprojects\1870701\consolidation\ch13\lws_wang_mls_1870701consol_40to42feet_120910.xls




CONSOLIDATION COEFFICIENT (Cv) vs. VERTICAL STRESS Sample 08-ST-01, ST#11, 39' to 41'


APPENDIX C

APPENDIX D

HIGHWAY CLASSIFICATION

Jackson Exit Ramp Functional Class: Interstate ADT: 2,900 (2012); 4,000 (2040) ADTT: 0 (2012); 0 (2040) DHV: 410 (2040) Design Speed: 30 m.p.h. Posted Speed: 30 m.p.h. One-Way Traffic Directional Distribution: 100%

DESIGN SPECIFICATIONS

2014 AASHTO LRFD Bridge Design Specifications 7th Edition with 2015 and 2016 Interim Specifications

DESIGN STRESSES

FIELD UNITS

f'c = 7.000 psi (Drilled Shafts)** f'c = 3,500 psi (All other concrete) fy = 60,000 psi (Reinforcement)

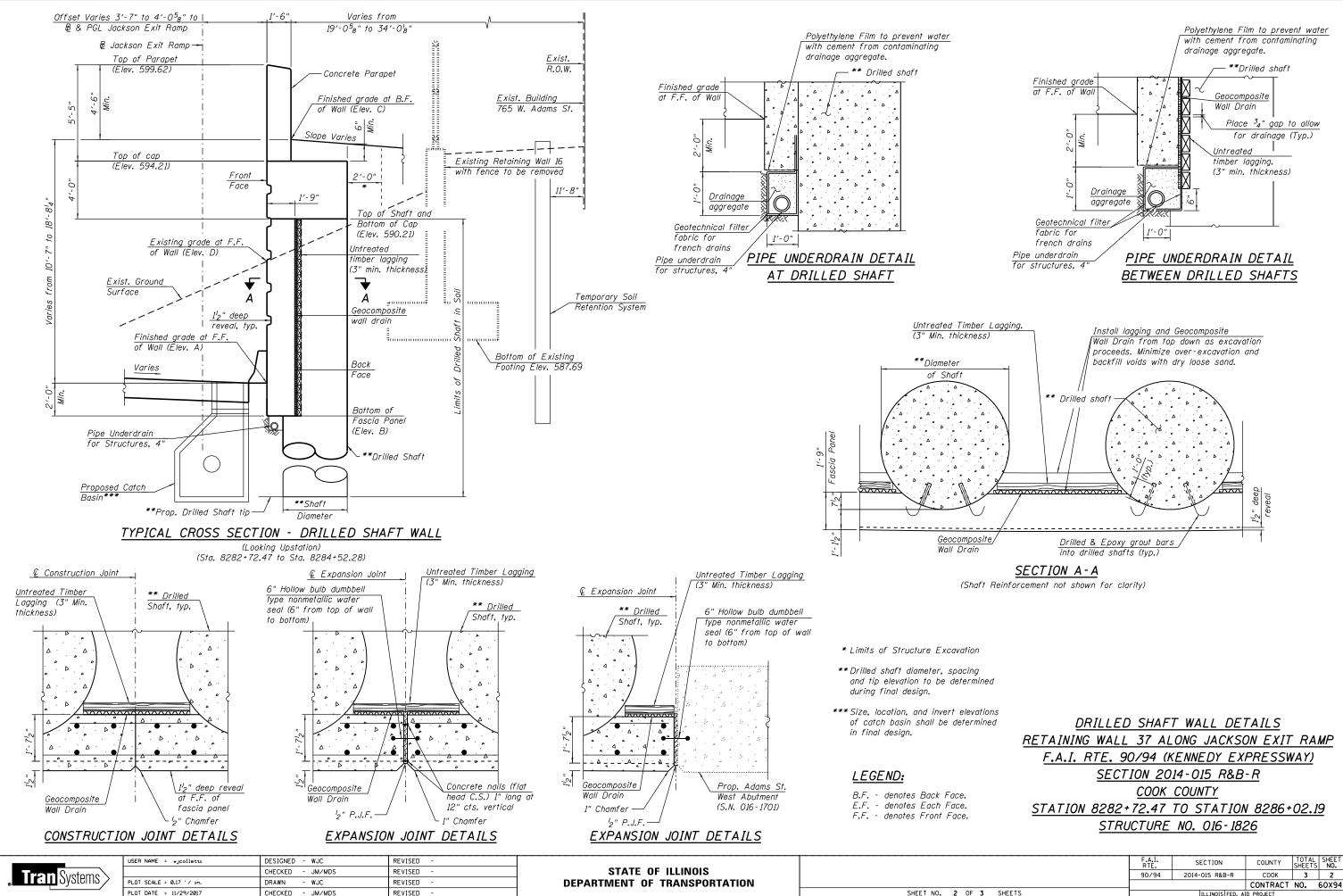
SOLDIER PILES

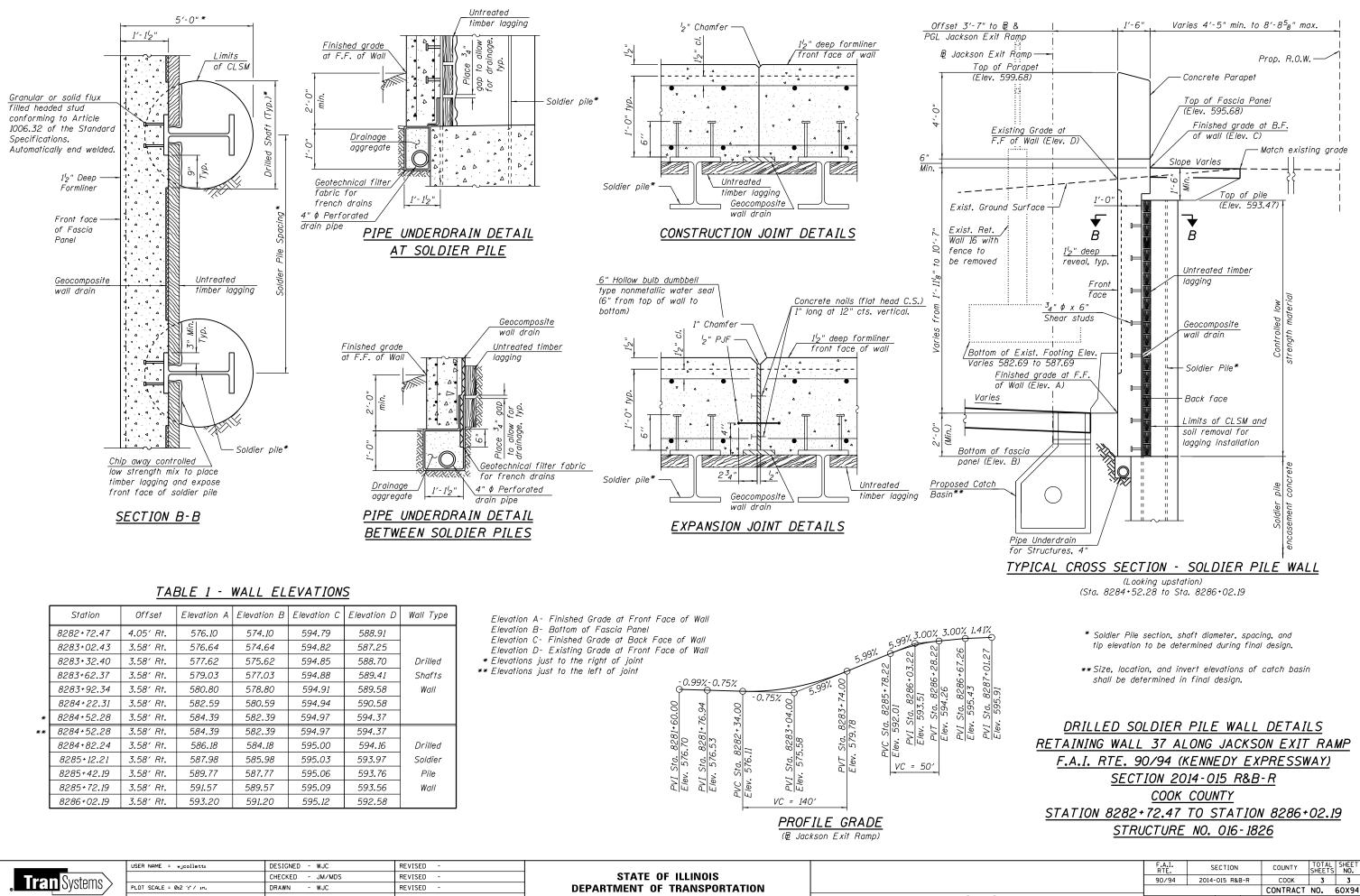
fy = 50,000 psi (AASHTO M270 Gr. 50)

** Final concrete strength will be determined during final design

WALL DEFLECTION CRITERIA:

Maximum total lateral wall deflection at top of wall: 1 inch.


SUGGESTED SEQUENCE OF CONSTRUCTION


- 1.) Install temporary soil retention system along alley.
- 2.) Remove portion of Existing Retaining Wall 16 that is in conflict with the proposed drilled shafts.
- 3.) Drill shafts and install soldier piles.
- 4.) Remove portion of Existing Retaining Wall 16 in front of the proposed wall and excavate to install timber lagging.
- 5.) Construct concrete fascia panels, cap, and parapet.

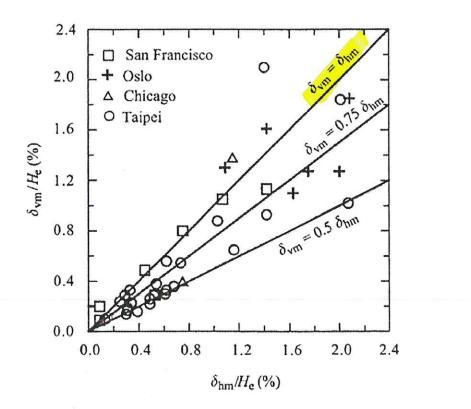
Ex. Chain Link Fence	— x — x —	Soil Boring	•
Combined Sewer	\rightarrow	Existing Catch Basin	\bigcirc
Electric	———Е———	Proposed Catch Basin	\bullet
Ex. Storm Sewer		Existing Manhole	\bigcirc
Prop. Storm Sewer		Proposed Manhole	\bigcirc
Ex. ITS Cable		Proposed Inlet	
Ex. Gas Line	ш <u></u> с		
Fx. Fiber Optic	F0		

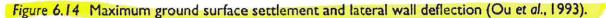
GENERAL PLAN RETAINING WALL 37 ALONG JACKSON EXIT RAMP F.A.I. RTE. 90/94 (KENNEDY EXPRESSWAY) SECTION 2014-015 R&B-R COOK COUNTY STATION 8282+72.47 TO STATION 8286+02.19 STRUCTURE NO. 016-1826

	F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
	90/94	2014-015 R&B-R	СООК	3	1
			CONTRACT	NO.	60X94
3 SHEETS		ILLINOIS FED. AI	D PROJECT		

	Station	Offset	Elevation A	Elevation B	Elevation C	Elevation D	Wall Type
	8282+72.47	4.05′ Rt.	576.10	574.10	594.79	588.91	
	8283+02.43	3.58′ Rt.	576.64	574.64	594.82	587.25	
	8283+32.40	3.58′ Rt.	577.62	575.62	594.85	588.70	Drilled
	8283+62.37	3.58′ Rt.	579.03	577.03	594.88	589.41	Shafts
	8283+92.34	3.58′ Rt.	580.80	578.80	594.91	589.58	Wall
	8284+22.31	3.58′ Rt.	582.59	580.59	594.94	590.58	
*	8284+52.28	3.58′ Rt.	584.39	582.39	594.97	594.37	
**	8284+52.28	3.58′ Rt.	584.39	582.39	594.97	594.37	
	8284+82.24	3.58′ Rt.	586.18	584.18	595.00	594.16	Drilled
	8285+12.21	3.58′ Rt.	587.98	585.98	595.03	593.97	Soldier
	8285+42.19	3.58′ Rt.	589.77	587.77	595.06	593.76	Pile
	8285+72.19	3.58′ Rt.	591.57	589.57	595.09	593.56	Wall
	8286+02.19	3.58' Rt.	593.20	591.20	595 . 12	592.58	

	USER NAME = wjcollett	DESIGNED - WJC	REVISED -		
Trop Systems		CHECKED - JM/MDS	REVISED -	STATE OF ILLINOIS	
• Lifein Systems >	PLOT SCALE = 0:2 ':" / in.	DRAWN - WJC	REVISED -	DEPARTMENT OF TRANSPORTATION	
	PLOT DATE = 11/29/2017	CHECKED - JM/MDS	REVISED -		SHEET NO. 3 OF 3


APPENDIX E


Wang Enginee	ring Calculation By: <u>NSB</u> Approved By: <u>M. Serhon</u> M Project Number: <u>100-04-01</u> Client Name: <u>AECOM</u>
1145 North Main Street Lombard, Illinois 60148 Phone: (630)-953-9928	Project Name: <u>Circle Interchange</u> Relaining Wall 37 3NO16-1826
	Ground Movement Estimates
Purpose:	To estimate the surface ground movement at Arkadia Tover (765W Adams Street) located West of Wall 37.
Reference ' (1) Clough, W and O'Rowrke T (1990) Construction induced movement of in-site walls 2) Ou, C. Y. H sich, pt, and ChevD.C C1993) & Characteritics of ground
	Scrface settlements during Excavaling "Canadian Gestechnical Journal" V.30, P758-767
	(3) Wang, J-HI XU Z-H and Wang W.D(2010) Wall and Ground movements due to Deep excavations in Shanghae Soft Soils" Journal of Geotech & Geoenvironmental Engmeering P983-994
Assumpti	ons: Arkardia Fower (Based on 5/18/12017
Staltion 8282773	Away from Wall (Fect) Height of Wall 30 18.65 (Feel)
8283100	, 20 (5-8) -
8284-55	2 ~ 13'7578 · 10.54 - (13.64 Ject)
Geotechnical	ere is an existing wall and will - Construction Environmental
Goodenned	Quality Engineering Services Since 1982

1145 North Main Street Lombard, Illinois 60148 Phone: (630)-953-9928	Revised 11 [7[201] Date: 10 [7]2017 Calculation By: NSB Project Number: 1100-04- Project Name: Circle	Sheet: 2 of 6 Approved By:
Notations:	Shim = Max	lateral displacement
	Sr = ground	Surface settlement
		ground surface settlement.
Design Crit	reria. Max Shim Wall heig	is 1=0% of the
Stations	(TSE) MaxShm.	
8282473	(2 inches)	Max Shim (1%) Max Shim 2.24 1.12
8283-160	1.0	1-90 0.95
8284452	l·Φ	1.27 0.63
Evaluations:		
From Fig	gure 6º14, Usin	ng a raho svm_1.0 Shim
Stalion	Max Max SymCil	and a second
8282773	inches 1.0 224	1.12 1.1.1.61 -
8283760	1.0 1.90	0.95 1.27.
8284 + 52	1.0 1.27	0.63 1.29
Staton	(ditt) Mel	thed 1 (Stim) Method Zum) ough and ago) (Kung et al
8282773	1.61	0.30 0.32 -
8283+60	1-27	0.56 0.58-
Sector Seatton 2	· Construction	Cost Cost - 59-

Quality Engineering Services Since 1982

1145 North Main Street	Project Number: $100-84-6$ Client Name: AE	20
Lombard, Illinois 60148 Phone: (630)-953-9928	Project Name: <u>Circle Interchang</u> SP016-	1826
For De	effection Criteria Linch.	
Stalion	Method I Method I (Clough and o Rurlee) (Leung	2 J)
8282+73	$3 \qquad 0.3 \times 1 = 0.31 \qquad 0.32 \times 1$	= 0.32
8282-160	0 0.56×1=0.56 0.58×	(=0.5
8284 +5	52 0.57×1=0.57 0.99;	X(=0.5
Conclusions	u	
Based on	our evaluations, the marin	NUM
ground	settlement of the Arkardia 7	Tower
Varge E	rom D.3 to O.6 inches Using	7
bom me	ethods (clough and O'Rurie	ce,
Kung e	et al, 2007). Since the Ark	ardia
Tower	is supported on deep found	alion
	nay not be a damaging e	201ect-
on the	general structure. However,	any
other :	smithere walls, buried while	ities
and si	lab-on-grades should be	
Considere	id in design to ensure s.	Decihic
deformas	sions limits are not exce	eded.

OU, C.-Y., HSIEH, P.-G., AND CHIOU, D.-C., 1993, Characteristics of ground surface settlement during excavation: Canadian Geotechnical Journal, v. 30, p. 758-767.

4/6

G

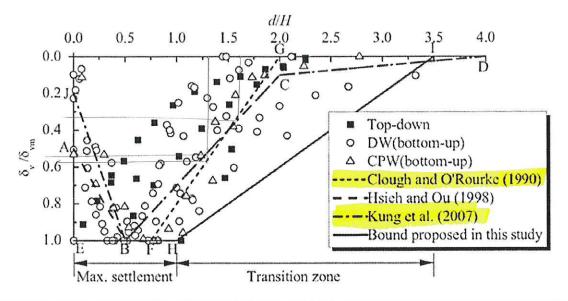
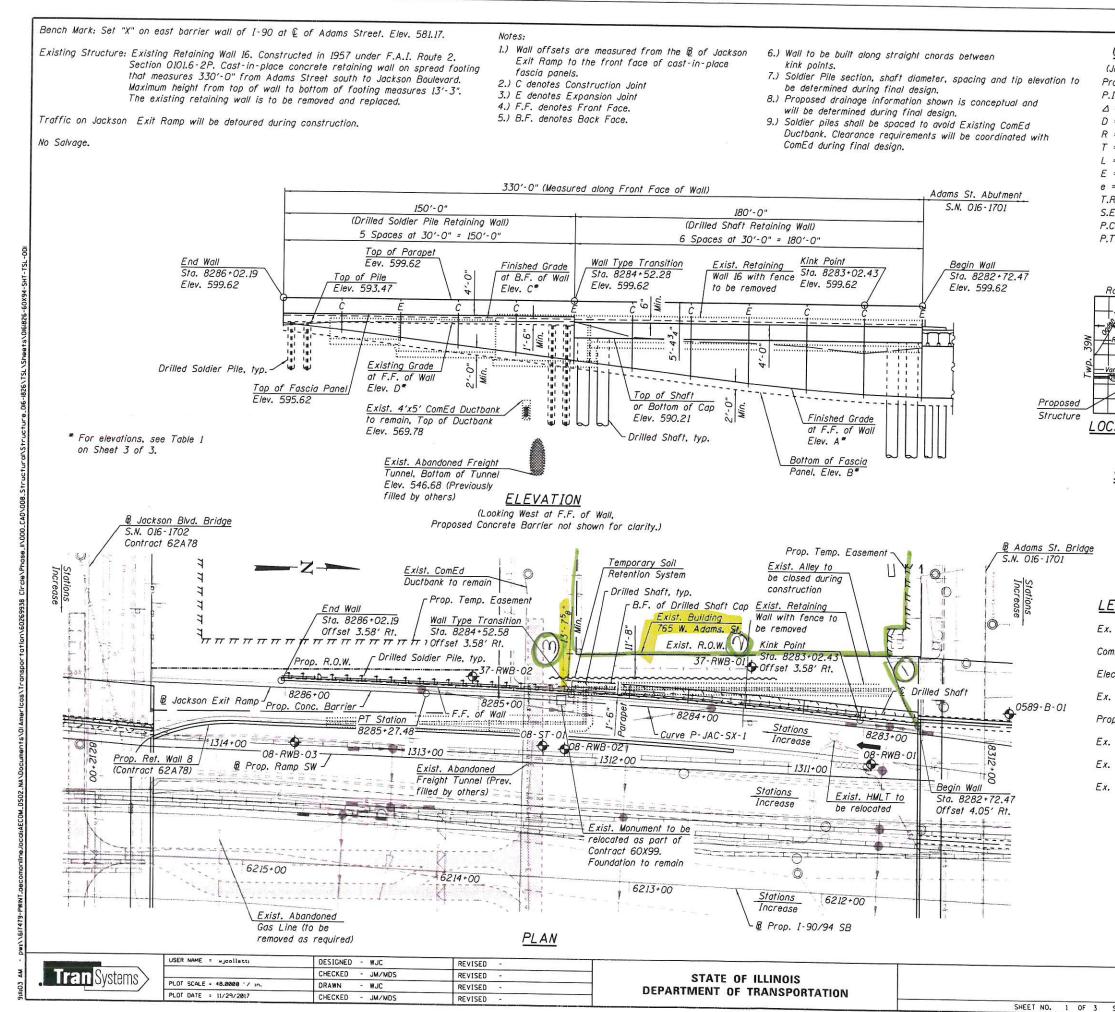



Fig. 11. Relationship between ground settlement normalized by maximum settlement and normalized distance from wall

WANG, J., XU, Z., AND WANG, W., 2009, Wall and ground movements due to deep excavations in Shanghai soft soils Journal of Geotechnical and Geoenvironmental Engineering, v. 136, p. 985-994.

-16

<u>CURVE DATA</u> (Jackson Exit Ramp) Prop. Curve P-JAC-SX- P.I. Sta. = $8283+78.27$ $\Delta = 5^{\circ} 01' 56"$ $D = 1^{\circ} 41' 07"$ R = 3,400.00' T = 149.40' L = 298.61' E = 3.28' e = 2.00% T.R. = NA S.E. Run = NA P.C. Sta. = $8282+28.87$ P.T. Sta. = $8285+27.48$	I C C A Design	GHWAY CLASSIFIC Jackson Exit Ramp Functional Class: Intersto ADT: 2,900 (2012); 4,000 (ADTT: 0 (2012); 0 (204 DHV: 410 (2040) Design Speed: 30 m.p.h Posted Speed: 30 m.p.h One-Way Traffic Directional Distribution: 10 ESIGN SPECIFICAT 2014 AASHTO LRFD Bride Specifications 7th Edition and 2016 Interim Specificat. DESIGN STRESSE	nte 2040) 0) no: no: TONS ge with 2015 ions	
		Constanting of the second s	<u> </u>	
Range 14E, 3rd P.M.	f	FIELD UNITS 'c = 7,000 psi (Drilled Shat 'c = 3,500 psi (All other cd ' = 60,000 psi (Reinforcem	oncrete)	
Randolph St.		SOLDIER PILES		
	f fy = .	50,000 psi (AASHTO M270	Gr. 50)	
Van Buren Sta		Final concrete strength wi determined during final des		
	WALL	DEFLECTION CRI	TERIA:	
OCATION SKETCH		cimum total lateral wall defle at top of wall: 1 inch.		
the proposed drill 3.) Drill shafts and i 4.) Remove portion o	soil retention system f Existing Retaining led shafts. nstall soldier piles. f Existing Retaining to install timber la	m along alley. Wall 16 that is in conflict Wall 16 in front of the pro gaing.		
LEGEND:				
Ex. Chain Link Fence	— x — x —	Soil Boring	•	
Combined Sewer	*	Existing Catch Basin	$\hat{\mathbf{O}}$	
Electric	E	Proposed Catch Basin	ĕ	
Ex. Storm Sewer		Existing Manhole	\bigcirc	
Prop. Storm Sewer		Proposed Manhole		
Ex. ITS Cable		Proposed Inlet		
Ex. Gas Line				
Ex. Fiber Optic	F0			
	GENER	AL PLAN		
RETAINING		ONG JACKSON EXI	TRAMP	
		ENNEDY EXPRESSI		-
		14-015 R&B-R		
		0011171		

<u>COOK COUNTY</u> <u>STATION 8282+72.47 TO STATION 8286+02.19</u> <u>STRUCTURE NO. 016-1826</u>

	F.A.I. RTE.	SECTION	COUNTY	SHEETS	
	90/94	2014-015 R&B-R	COOK	3	1
CUCCT0			CONTRACT	NO.	60X94
SHEETS		ILLINOIS FED	. AID PROJECT		