

STAGE 1B CONSTRUCTION

Varies 2'-7" (min.)

3'-6¾" (max.)

Varies

2'-7" (min.)

3'-7" (max.)

*** From S. Abut. to Pier 2.

6'-6" = 19'-6"

 $\pm 1' - 4\frac{3}{8}''$ (min.)

±3'-21/8" (max.)

**** From Pier 2 to N. Abut.

3'-3" (min.)

5'-10½" (max.)

**** Varies 7'-0" (min.)

8'-3" (max.)

* Prior to grinding

Varies

2'-11¾" (min.)

4'-3" (max.)

** After grinding

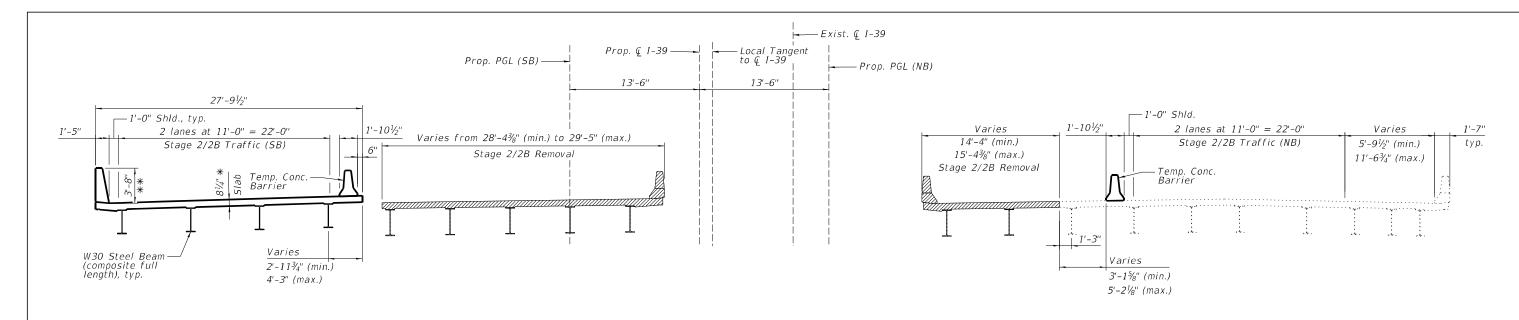
NOTES:

- 1. All dimensions shown are radial except those to existing/proposed beams or Stage Removal Lines, which are normal to the existing/proposed local tangents.

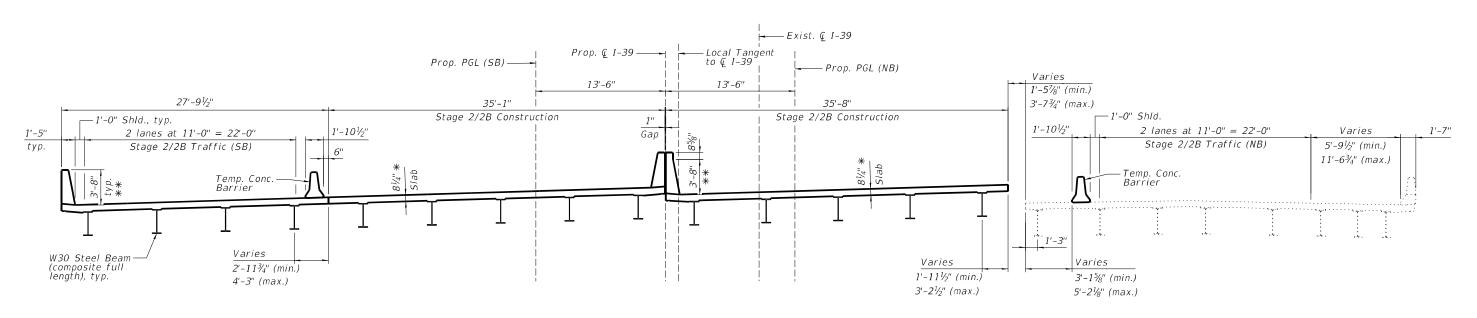
 2. See Sheets 11 and 12 of 81 for substructure removal lines.

 3. For quantity of Temporary Concrete Barrier, see Roadway
- 4. Hatched area indicates Removal of Existing Structures No. 5
- 5. See Sheet 10 of 81 for Temporary Concrete Barrier details.

benesch


USER NAME = DESIGNED - JPM REVISED CHECKED - JLS REVISED -DRAWN KMS REVISED PLOT DATE = CHECKED - JLS REVISED -

-Varies 1'-8½" (min.) $4'-7\frac{1}{2}''$ (max).


> STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

STAGING DETAILS (1 OF 4) STRUCTURE NO. 101-0213 & 101-0214 SHEET 6 OF 81 SHEETS

SECTION COUNTY (201-3)R & (4-1, 5)R WINNEBAGO 1685 701 CONTRACT NO. 64C24

STAGE 2/2B REMOVAL (Looking north)

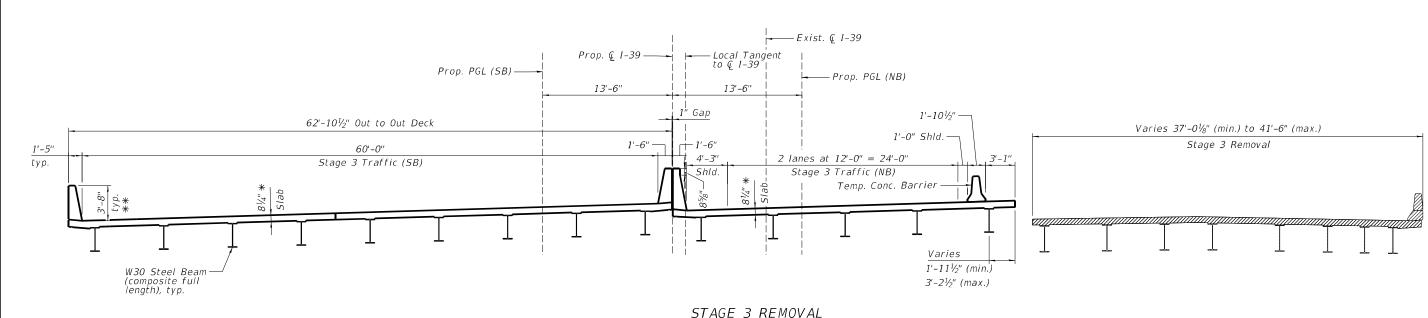
STAGE 2/2B CONSTRUCTION (Looking north)

* Prior to grinding

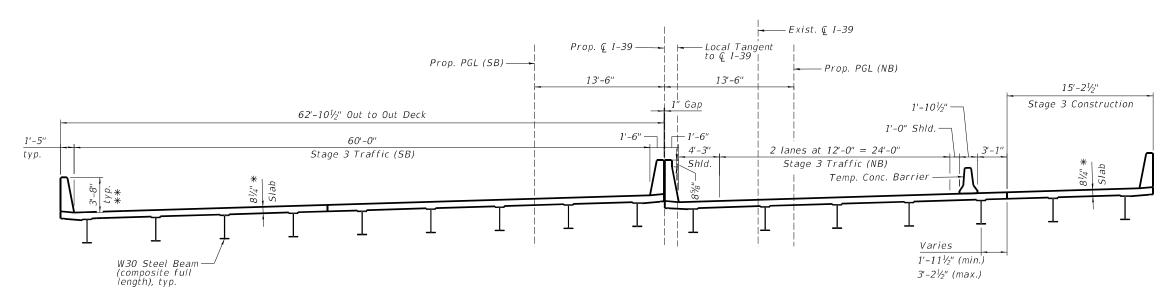
** After grinding

NOTES:

- 1. All dimensions shown are radial except those to existing/proposed beams or Stage Removal Lines, which are normal to the existing/proposed local tangents.


 2. See Sheets 11 and 12 of 81 for substructure removal lines.

 3. For quantity of Temporary Concrete Barrier, see Roadway


- 4. Hatched area indicates Removal of Existing Structures No. 5
- 5. See Sheet 10 of 81 for Temporary Concrete Barrier details.

ben	esch
Alfred Benesch & C	Company
35 W Wacker Drive	, Sulte 3300
Chicago, Illinois 60	601
312-565-0450	Job No. 10800

USER NAME =	DESIGNED - JPM	REVISED -	
	CHECKED - JLS	REVISED -	
PLOT SCALE =	DRAWN - KMS	REVISED -	
PLOT DATE =	CHECKED - JLS	REVISED -	

STAGE 3 REMOVAL (Looking north)

STAGE 3 CONSTRUCTION (Looking north)

* Prior to grinding

** After grinding

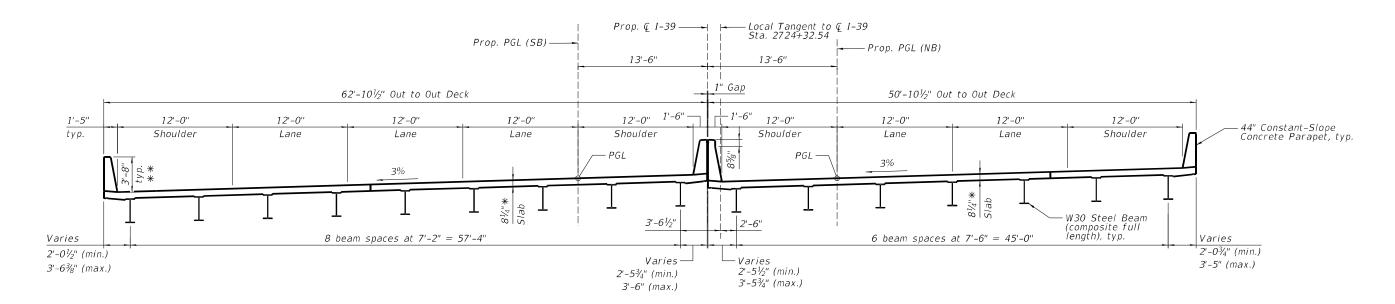
NOTES:

- 1. All dimensions shown are radial except those to existing/proposed beams or Stage Removal Lines, which are normal to the existing/proposed local tangents.

 2. See Sheets 11 and 12 of 81 for substructure removal lines.

 3. For quantity of Temporary Concrete Barrier, see Roadway Plans.

 4. Hatched area indicates Removal of Existing Structures No. 5.
- 4. Hatched area indicates Removal of Existing Structures No. 5
- 5. See Sheet 10 of 81 for Temporary Concrete Barrier details.


benesch

USER NAME = DESIGNED - JPM REVISED -CHECKED - JLS REVISED -DRAWN KMS REVISED PLOT DATE = CHECKED - JLS REVISED -

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

STAGING DETAILS (3 OF 4) STRUCTURE NO. 101-0213 & 101-0214 SHEET 8 OF 81 SHEETS

SECTION COUNTY (201-3)R & (4-1, 5)R WINNEBAGO 1685 703 CONTRACT NO. 64C24

CROSS SECTION (FINAL CONDITION) (Looking north)

* Prior to grinding

** After grinding

NOTES:

- 1. All dimensions shown are radial except those to existing/proposed beams or Stage Removal Lines, which are normal to the existing/proposed local tangents.

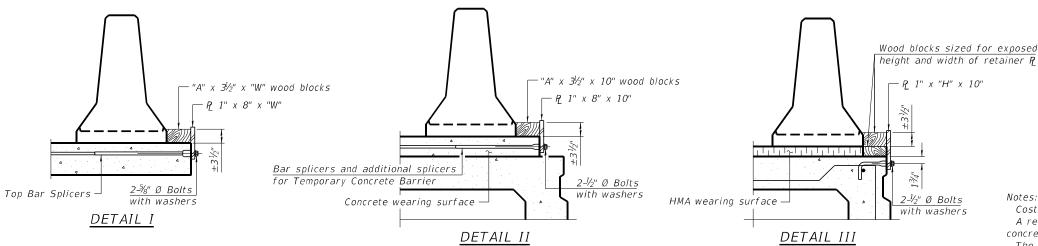
 2. See Sheets 11 and 12 of 81 for substructure removal lines.

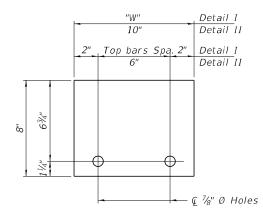
bene	esch
Alfred Benesch & C	company
35 W Wacker Drive	, Sulte 3300
Chicago, Illinois 606	501
312-565-0450	Job No. 10800

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - JLS	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - JLS	REVISED -

When "A" is 3'-1" or less, the temporary concrete – See Detail I, II or III barrier shall be restrained to the new slab according to Detail I, II or III. No restraint is required when "A" is greater than 3'-1".

NEW SLAB OR NEW DECK BEAM

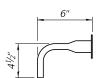

← Stage removal line — Stage removal line Temporary Concrete Barrier See Standard 704001 6" min. min. Drill 3-11/4" Ø Holes in existing slab for 1" Ø restraining pins. Traffic side only. Cost of restraining pins are included with Temporary Concrete Barrier. No restraint * When hot-mix asphalt wearing surface is present, embedment is required when "A" is greater than 3'-1".


shall be 3" plus the wearing surface depth.

EXISTING DECK BEAM

SECTIONS THRU SLAB OR DECK BEAM

EXISTING SLAB



RAILING CRITERIA NCHRP 350 Test Level

Railing Weight (plf) 440 5-15-2023 STEEL RETAINER P 1" x 8" x "W"

10" — Ç %" Ø Holes

STEEL RETAINER P 1" x "H" x 10"

RESTRAINING PIN

BAR SPLICER FOR #4 BAR - DETAIL III

Notes:

Cost of retainer assembly is included with Temporary Concrete Barrier. A retainer assembly shall be located at the approximate © of each temporary

1x8 UNC

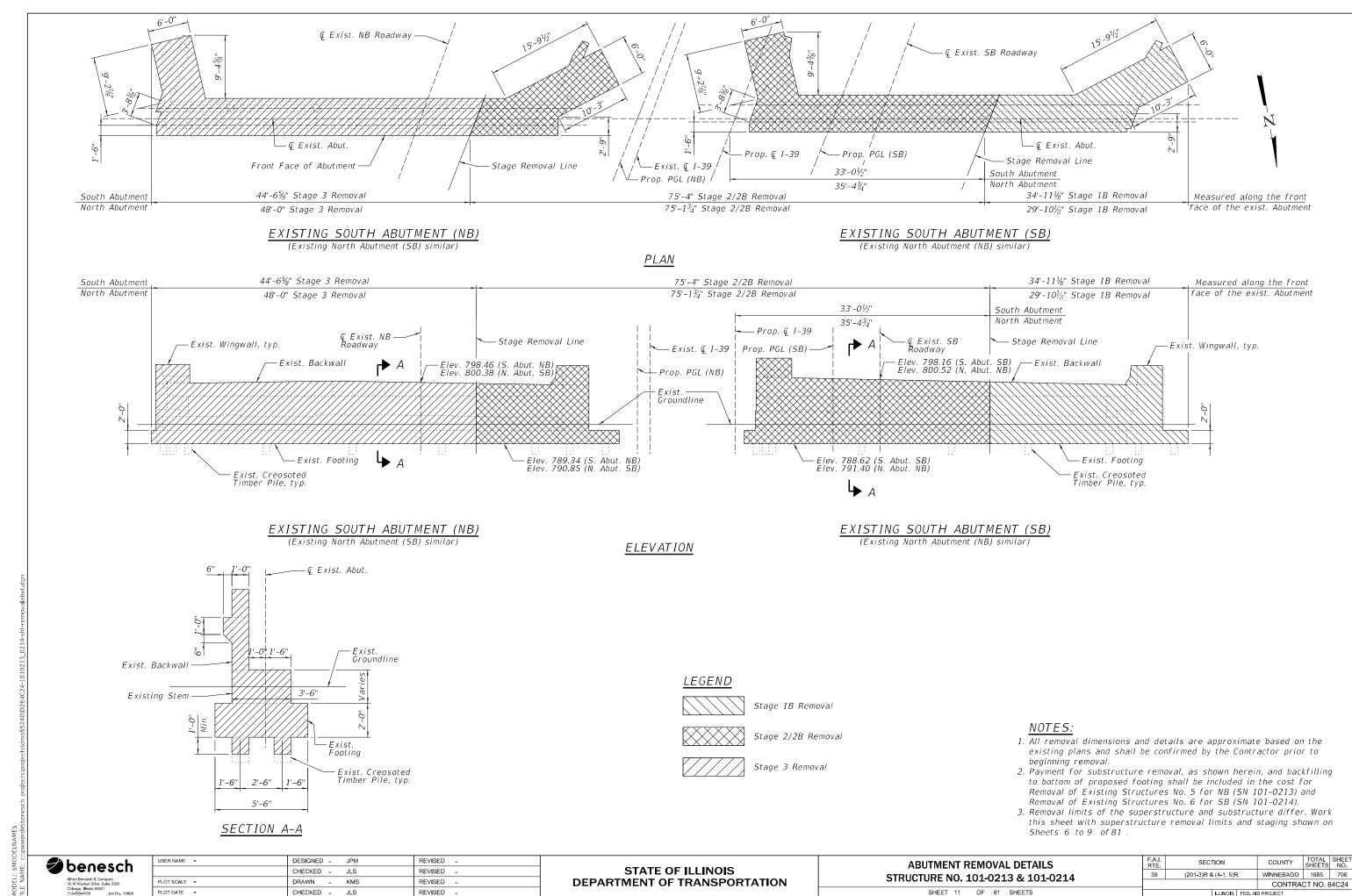
1" Ø pin-

US Std. $1\frac{1}{16}$ " I.D. \times $2\frac{1}{2}$ " O.D. x approx. 8 gauge thick washer

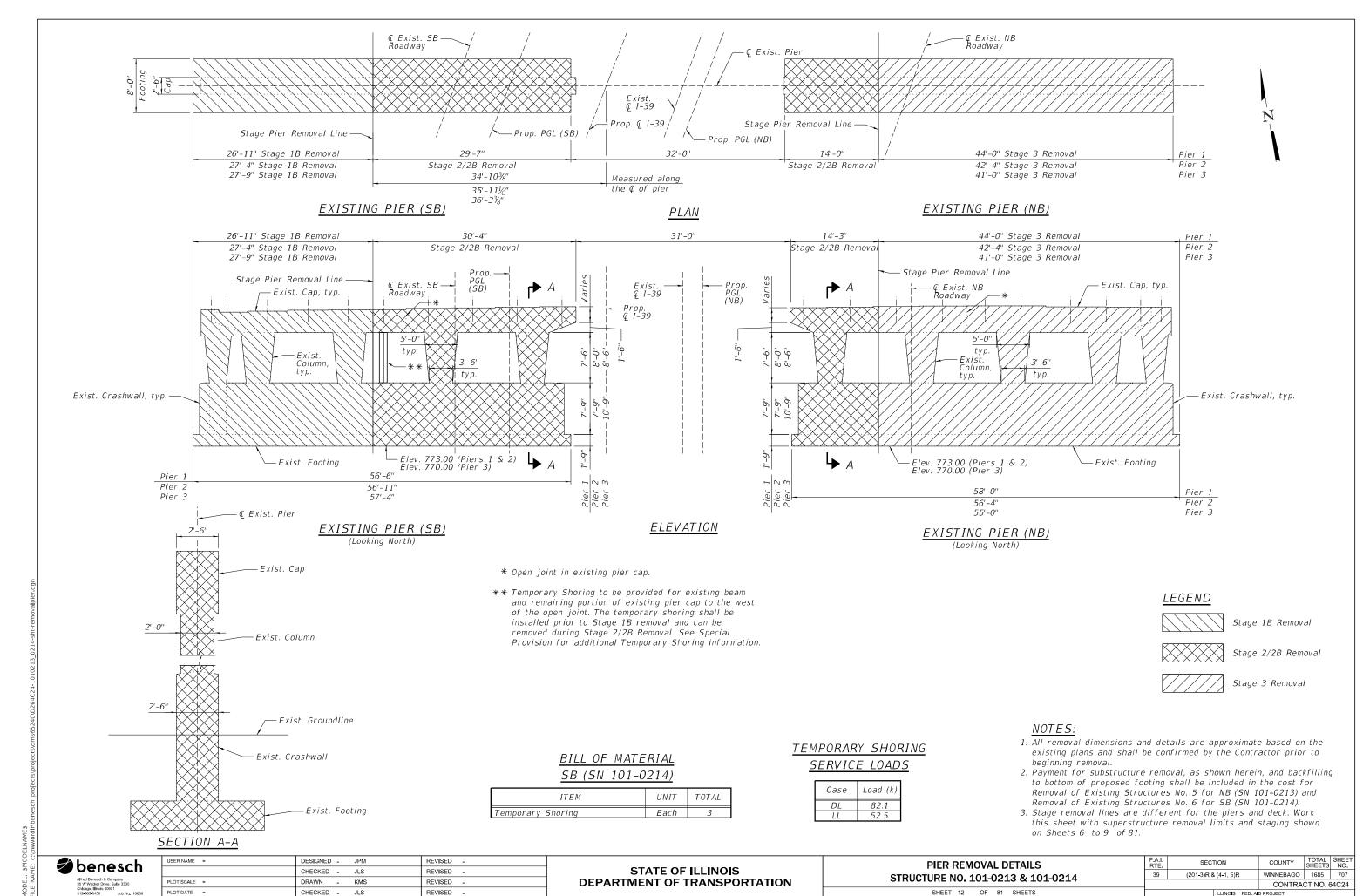
The retainer plate shall not be removed until the concrete on the adjacent stage is ready to be poured. For Detail III applications the retainer plate shall not be removed until just prior to placing the adjacent beam.

When the 'A' dimension is less than $1\frac{1}{2}$ ", the wood block shall be omitted and the barrier shall be placed in direct contact with the steel retainer plate. For deck beam applications the minimum required 'A' distance is 6" to accommodate the shear key clamping device.

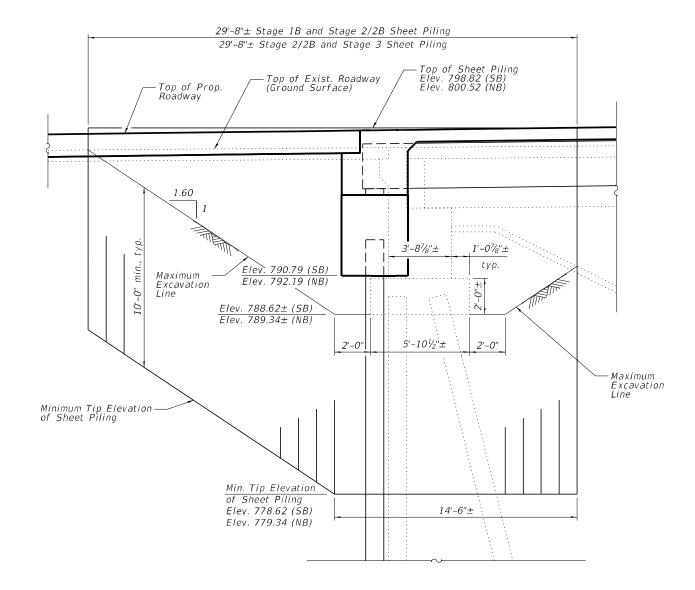
- Detail I Installation for a new bridge deck or bridge slab.
- Detail II Installation for a new deck beam with an initial concrete wearing surface. Additional bar splicers shall be provided at 6'-0" centers and paired with the bar splicers of the concrete wearing surface reinforcement to accommodate the installation of the retainer assemblies. The cost of the additional bar splicers is included with the concrete wearing surface.
- Detail III Installation for a new deck beam with no initial wearing surface or with an initial hot-mix asphalt (HMA) wearing surface present. The deck beam directly beneath the temporary concrete barrier shall be fabricated with bar splicer inserts in the side of the beam, as detailed, to accommodate the installation of the retainer assemblies. A pair of bar splicers, 6" apart, shall be placed at 6'-0" centers along the length of the beam. The cost of the bar splicers is included with the deck beam.


benesch

JSER NAME = DESIGNED - JPM REVISED CHECKED - JLS REVISED -REVISED CHECKED - JLS REVISED -


STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

TEMPORARY CONCRETE BARRIER STRUCTURE NO. 101-0213 & 101-0214 SHEET 10 OF 81 SHEETS


SECTION COUNTY (201-3)R & (4-1, 5)R WINNEBAGO | 1685 | 705 CONTRACT NO. 64C24

4/22/2025 12:39:07 PM

4/22/2025 12:39:12 PM

TEMPORARY SHEET PILING - SOUTH ABUTMENT

(Looking west) (Horizontal dimensions given along the skew)

BILL OF MATERIAL SB (SN 101-0214)

ITEM	UNIT	TOTAL
Temporary Sheet Piling	Sq. Ft.	1,052

BILL OF MATERIAL NB (SN 101-0213)

ITEM	UNIT	TOTAL
Temporary Sheet Piling	Sq. Ft.	1,110

REVISED -USER NAME = DESIGNED - JPM benesch CHECKED - JLS REVISED -DRAWN REVISED PLOT DATE = CHECKED -REVISED . JLS

STATE OF ILLINOIS

SECTION COUNTY **TEMPORARY SHEET PILING DETAILS** (201-3)R & (4-1, 5)R WINNEBAGO 1685 708 STRUCTURE NO. 101-0213 & 101-0214

TEMPORARY SHEET PILING - NORTH ABUTMENT

29'-8"± Stage 1B and Shage 2/2B Sheet Piling

29'-8"± Stage 2/2B and Stage 3 Sheet Piling

Top of Sheet Piling Elev. 800.90 (SB) Elev. 802.38 (NB)

3'-81/8"±

5'-10½"±

. 1'-07/8"±

typ.

2'-0"

14'-6"±

Maximum Excavation Line -Top of Prop. Roadway

-Top of Exist. Roadway (Ground Surface)

Elev. 792.96 (SB)

Elev. 794.17 (NB)

Elev. 790.85± (SB)

Elev. 791.40± (NB)

Min. Ti<u>p Elevation</u> of Sheet Piling

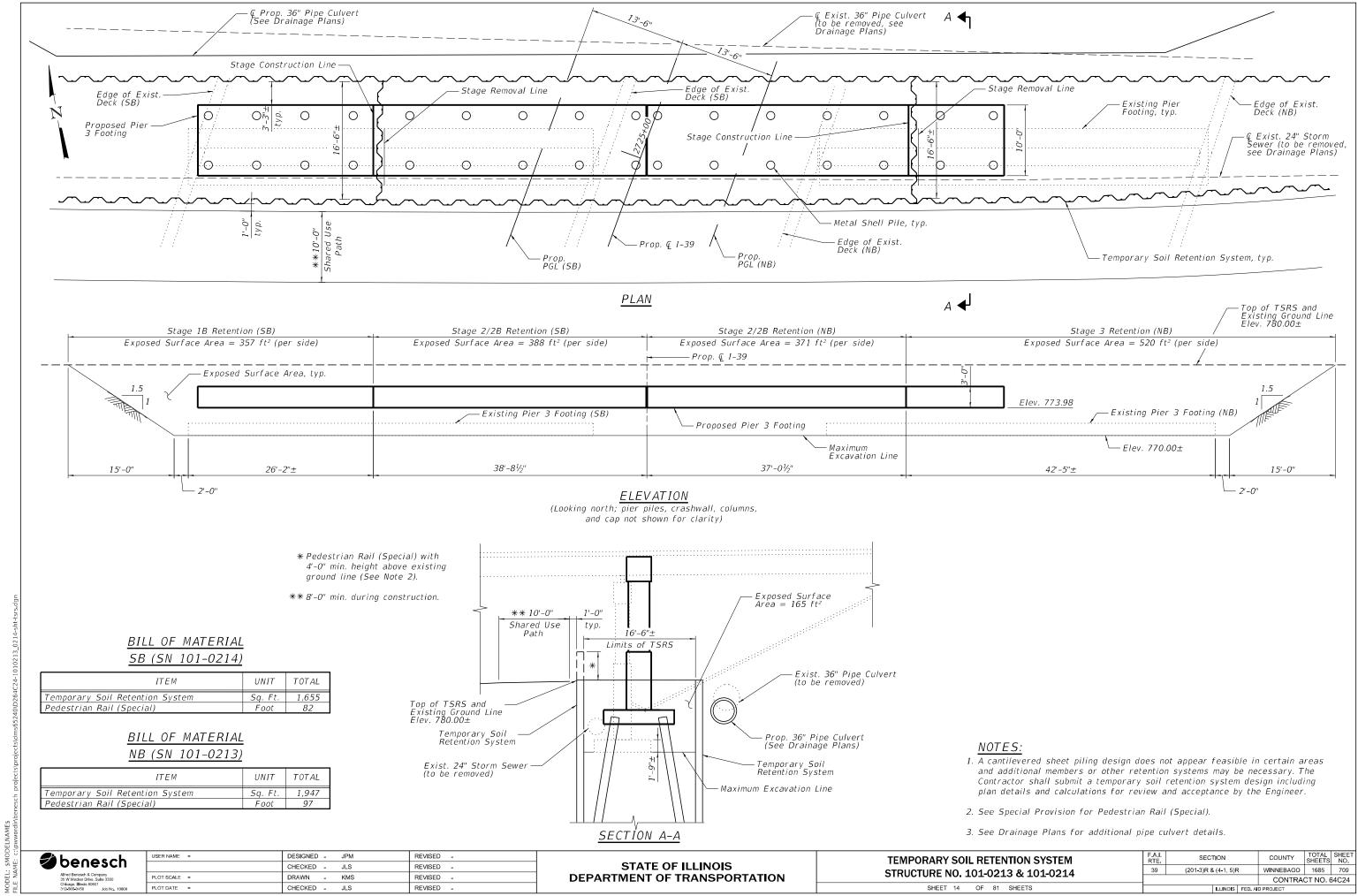
Elev. 780.85 (SB)

Elev. 781.40 (NB)

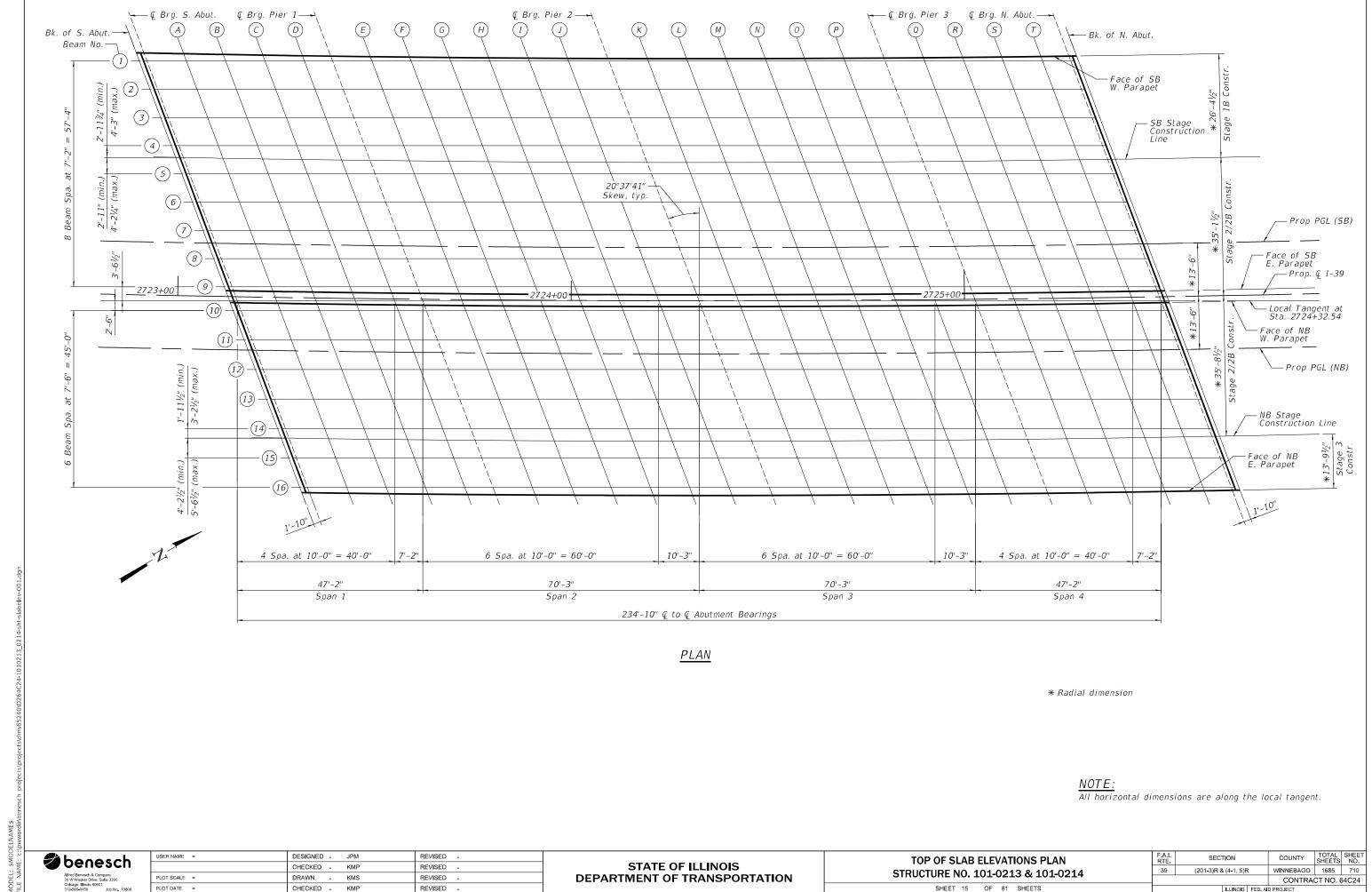
1.60

Excavation 701 Line

-Minimum Tip Elevation of Sheet Piling

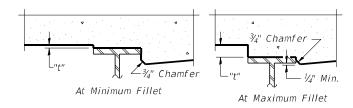

CONTRACT NO. 64C24

(Looking west) (Horizontal dimensions given along the skew)


- 1. See Sheet 1 of 81 for plan view of Temporary Sheet Piling.
- 2. Temporary Sheet Piling left in place for re-use in later stages will only be measured for payment once.
- 3. If the Contractor chooses to alter the temporary cantilevered sheet piling design requirements shown on the plans, a design submittal including plan details and calculations will be required for review and acceptance by the Engineer.
- 4. The Contractor shall connect the first sheet sheet to the existing abutment wall to ensure stability of sheets driven to the top of the existing footing. This connection shall be reviewed and accepted by the Engineer and included in the cost for Temporary Sheet Piling.
- 5. The minimum section modulus for the Temporary Sheet Piling shall be 18.1 in. 3/ft.

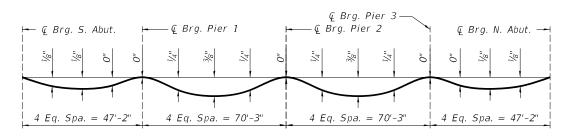
DEPARTMENT OF TRANSPORTATION

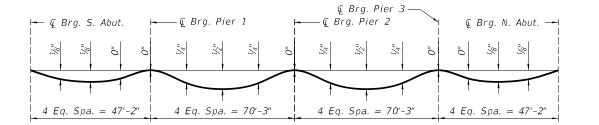
SHEET 13 OF 81 SHEETS


4/22/2025 12:39:26 PM

4/22/2025 12:39:30 PM

	TACE OF SI	J W. 1 AI	'' '' ' ' '	
Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2722+88.14	-61.50	797.69	797.71
CL. BRG. S. ABUT.	2722+90.14	-61.50	797.72	797.74
A B C	2723+00.31 2723+10.47 2723+20.62	-61.50 -61.50 -61.50	797.85 797.98 798.11	797.88 798.01 798.14
D	2723+30.78	-61.50	798.24	798.26
CL. BRG. PIER 1	2723+38.05	-61.50	798.32	798.34
E F G H I J CL. BRG. PIER 2 K L M N O P	2723+48.19 2723+58.32 2723+68.45 2723+78.57 2723+88.69 2723+98.80 2724+09.16 2724+19.26 2724+29.36 2724+39.45 2724+49.53 2724+59.61 2724+69.68	-61.50 -61.50 -61.50 -61.50 -61.50 -61.50 -61.50 -61.50 -61.50 -61.50	798.44 798.56 798.67 798.77 798.88 798.98 799.07 799.17 799.25 799.34 799.42 799.50 799.57	798.47 798.60 798.72 798.83 798.92 799.01 799.10 799.30 799.39 799.48 799.54 799.60
CL. BRG. PIER 3 Q R S T CL. BRG. N. ABUT.	2724+80.00 2724+90.06 2725+00.12 2725+10.17 2725+20.22 2725+27.41	-61.50 -61.50 -61.50 -61.50 -61.50	799.64 799.71 799.77 799.83 799.88	799.66 799.73 799.80 799.86 799.91
BK. N. ABUT.	2725+29.38	-61.50	799.93	799.95


Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2722+89.00	-59.39	797.76	797.78
CL. BRG. S. ABUT.	2722+90.97	-59.43	797.79	797.81
A	2723+01.06	-59.63	797.92	797.94
B	2723+11.14	-59.81	798.04	798.07
C	2723+21.23	-59.98	798.17	798.19
D	2723+31.32	-60.14	798.28	798.30
	2/25/51.52	-00.14	7 90.20	7 90.50
CL. BRG. PIER 1	2723+38.55	-60.24	798.37	798.39
E	2723+48.63	-60.37	798.48	798.51
F	2723+58.72	-60.48	798.59	798.64
G	2723+68.81	-60.58	798.70	798.75
l ü	2723+78.90	-60.67	798.80	798.86
1	2723+88.99	-60.74	798.90	798.95
j j	2723+99.08	-60.79	799.00	799.03
	2723133.00	-00.79	7 99.00	7 9 9 .0 3
CL. BRG. PIER 2	2724+09.42	-60.84	799.10	799.12
K	2724+19.51	-60.86	799.19	799.22
	2724+29.60	-60.87	799.28	799.32
Ī	2724+39.69	-60.87	799.36	799.41
l "N	2724+49.77	-60.85	799.44	799.50
0	2724+59.86	-60.82	799.52	799.57
P	2724+69.95	-60.77	799.59	799.63
 	2724703.33	00.77	7 33.33	7 33.03
CL. BRG. PIER 3	2724+80.29	-60.71	799.67	799.69
Q	2724+90.38	-60.63	799.74	799.76
l R	2725+00.47	-60.54	799.80	799.83
5	2725+10.56	-60.44	799.86	799.89
T	2725+20.65	-60.32	799.92	799.95
	_			
CL. BRG. N. ABUT.	2725+27.88	-60.22	799.96	799.98
BK. N. ABUT.	2725+29.85	-60.19	799.97	799.99



To determine "t": After all structural steel has been erected, elevations of the top flanges of the beams shall be taken at intervals shown on Sheet 15 of 81. These elevations subtracted from the "Theoretical Grade Elevations Adjusted for Dead Load Deflection and Grinding" as shown on Sheets 16 to 24 of 81, minus the initial slab thickness prior to grinding, equals the fillet heights "t" above top flange of beams.

The slab is to be ground after curing to achieve smoothness, but the slab is not to be ground to elevations below the "Theoretical Grade Elevations" shown on Sheets 16 to 24 of 81. For grinding the deck, see Special Provisions.

FILLET HEIGHTS

DEAD LOAD DEFLECTION DIAGRAM - SB (SN 101-0214)

(Includes weight of concrete only.)

DEAD LOAD DEFLECTION DIAGRAM - NB (SN 101-0213)

(Includes weight of concrete only.)

NOTF

The above deflections are not to be used in the field if the Engineer is working from the grade elevations adjusted for dead load deflections and grinding as shown on Sheets 16 to 24 of 81.

2	bene	sch
	Alfred Benesch & Com 35 W Wecker Drive, St Chicago, Illinois 60601 312-565-0450	

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - KMP	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - KMP	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

TOP OF SLAB ELEVATIONS (1 OF 9)	
STRUCTURE NO. 101-0213 & 101-0214	

A.I. RTE	SECTION	1		COUNTY	TOTAL SHEETS	SHEET NO.
39	(201-3)R & (4-1, 5)R		WINNEBAGO	1685	711	
			CONTRA	CT NO. 6	64C24	
	ILLINOIS FED AID PROJECT					

FILE NAME: c:\p

4/22/2025 12:39:35 PM

rojects\dms65240\D264C

JEL: \$MODELNAME NAME: c:\pwwordi

SHEET 16 OF 81 SHEETS

<u>BEAM 2</u>

2724+22.24

2724+32.32

2724+42.40

2724+52.48

2724+62.55

2724+72.63

2724+82.96

2724+93.04

2725+03.12

2725+13.20

2725+23.27

2725+30.50

2725+32.47

CL. BRG. PIER 3

CL. BRG. N. ABUT.

BK. N. ABUT.

Theoretical Grade heoretica Elevations Location Station Offset Grade Adjusted For Dead Elevations Load Deflection & Grinding 2722+91.87 BK. S. ABUT. -52.28 798.02 798.04 -52.32 CL. BRG. S. ABUT. 2722+93.84 798.04 798.06 798.17 798.20 2723+03.91 -52.51 В 2723+13.99 -52.69 798.29 *798.32* 2723+24.07 -52.86 798.41 798.44 2723+34.14 -53.01 798.53 798.55 D CL. BRG. PIER 1 798.61 2723+41.36 -53.11 798.64 2723+51.44 -53.23 798.73 798.76 2723+61.52 798.84 798.88 -53.34 2723+71.60 -53.44 798.94 799.00 -53.52 799.05 799.10 2723+81.67 2723+91.75 -53.59 799.14 799.19 2724+01.83 -53.64 799.24 799.27 CL. BRG. PIER 2 2724+12.16 -53.68 799.34 799.36

-53.70

-53.71

-53.70

-53.68

-53.64

-53.59

-53.53

-53.44

-53.35

-53.24

-53.11

-53.02

-52.99

799.51

799.60

799.68

799.75

799.83

799.90

799.97

800.03

800.09

800.15

800.19

800.20

799.46

799.56

799.65

799.73

799.80

799.86

799.92

799.99

800.06

800.12

800.18

800.21

800.22

<u>BEAM 3</u>

BK. S. ABUT. 2722+94.73 -45.17 798.27 798.31 CL. BRG. S. ABUT. 2722+96.70 -45.21 798.29 798.31 A 2723+06.76 -45.40 798.42 798.57 B 2723+26.89 -45.74 798.66 798.69 D 2723+36.96 -45.88 798.78 798.80 CL. BRG. PIER 1 2723+44.17 -45.98 798.86 798.88 E 2723+54.24 -46.10 798.97 799.01 F 2723+64.31 -46.21 799.08 799.13 G 2723+74.38 -46.30 799.19 799.24 H 2723+94.51 -46.44 799.39 799.34 I 2723+94.51 -46.44 799.39 799.43 J 2724+04.58 -46.49 799.48 799.51 CL. BRG. PIER 2 2724+14.90 -46.52 799.58 799.60 K 2724+24.97 -46.54 799.75 799.80 N 2724+55.17 -46.51 799.91 799.89 N 2724+65.24 <	Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
A 2723+06.76	BK. S. ABUT.	2722+94.73	-45.17	798.27	798.29
B 2723+16.83 -45.58 798.54 798.57 C 2723+26.89 -45.74 798.66 798.69 CL. BRG. PIER 1 2723+44.17 -45.98 798.86 798.88 E 2723+54.24 -46.10 798.97 799.01 F 2723+64.31 -46.21 799.08 799.13 G 2723+74.38 -46.30 799.19 799.24 H 2723+84.44 -46.38 799.29 799.34 I 2723+94.51 -46.44 799.39 799.43 J 2724+04.58 -46.49 799.48 799.51 CL. BRG. PIER 2 2724+14.90 -46.52 799.58 799.60 K 2724+35.03 -46.54 799.75 799.80 M 2724+45.10 -46.54 799.75 799.80 N 2724+45.10 -46.53 799.83 799.89 N 2724+55.17 -46.51 799.99 800.04 P 2724+75.31 -46.41 800.06 800.10 CL. BRG. PIER 3 2724+85.63 -46.25 <td>CL. BRG. S. ABUT.</td> <td>2722+96.70</td> <td>-45.21</td> <td>798.29</td> <td>798.31</td>	CL. BRG. S. ABUT.	2722+96.70	-45.21	798.29	798.31
F 2723+64.31	В	2723+16.83	-45.58	798.54	798.57
	С	2723+26.89	-45.74	798.66	798.69
	D	2723+36.96	-45.88	798.78	798.80
K 2724+24.97 -46.54 799.67 799.69 L 2724+35.03 -46.54 799.75 799.80 M 2724+45.10 -46.53 799.83 799.89 N 2724+55.17 -46.51 799.91 799.97 0 2724+65.24 -46.46 799.99 800.04 P 2724+75.31 -46.41 800.06 800.10 CL. BRG. PIER 3 Q 2724+95.69 -46.25 800.20 800.22 R 2725+05.76 -46.15 800.26 800.29 S 2725+15.83 -46.04 800.32 800.35 T 2725+25.89 -45.91 800.38 800.41 CL. BRG. N. ABUT. 2725+33.11 -45.81 800.42 800.44	F	2723+64.31	-46.21	799.08	799.13
	G	2723+74.38	-46.30	799.19	799.24
	H	2723+84.44	-46.38	799.29	799.34
	I	2723+94.51	-46.44	799.39	799.43
L 2724+35.03	CL. BRG. PIER 2	2724+14.90	-46.52	799.58	799.60
Q 2724+95.69	L	2724+35.03	-46.54	799.75	799.80
	M	2724+45.10	-46.53	799.83	799.89
	N	2724+55.17	-46.51	799.91	799.97
	O	2724+65.24	-46.46	799.99	800.04
R 2725+05.76					
	R	2725+05.76	-46.15	800.26	800.29
	S	2725+15.83	-46.04	800.32	800.35
DK. N. ADOT. 2723133.00 -43.70 800.43	CL. BRG. N. ABUT.	2725+33.11	-45.81	800.42	800.44
	BK. N. ABUT.	2725+35.08	-45.78	800.43	800.45

BEAM 4

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2722+97.58	-38.06	798.52	798.54
CL. BRG. S. ABUT.	2722+99.55	-38.10	798.54	798.57
A B C D	2723+09.61 2723+19.66 2723+29.72 2723+39.77 2723+46.98	-38.28 -38.45 -38.61 -38.75	798.67 798.79 798.91 799.03	798.70 798.82 798.94 799.05
E F G H I J	2723+57.04 2723+67.09 2723+77.15 2723+87.21 2723+97.26 2724+07.32	-38.96 -39.07 -39.15 -39.23 -39.29 -39.33	799.22 799.33 799.43 799.53 799.63 799.72	799.25 799.37 799.49 799.58 799.67 799.75
CL. BRG. PIER 2	2724+17.63	-39.36	799.82	799.84
K L M N O P	2724+27.69 2724+37.75 2724+47.80 2724+57.86 2724+67.92 2724+77.98	-39.37 -39.37 -39.36 -39.33 -39.28 -39.23	799.90 799.99 800.07 800.15 800.22 800.30	799.93 800.03 800.12 800.20 800.27 800.33
CL. BRG. PIER 3	2724+88.28	-39.15	800.37	800.39
Q R S T	2724+98.34 2725+08.40 2725+18.45 2725+28.51	-39.06 -38.96 -38.84 -38.71	800.43 800.50 800.55 800.61	800.45 800.52 800.58 800.64
CL. BRG. N. ABUT.	2725+35.72	-38.61	800.65	800.67
BK. N. ABUT.	2725+37.69	-38.58	800.66	800.68

benesch
Alfred Bensach & Company
3's Wivester Drive, Suba 3300
Cheano Illiniols 650311

 USER NAME
 =
 DESIGNED
 JPM
 REVISED

 CHECKED
 KMP
 REVISED

 PLOT SCALE
 =
 DRAWN
 KMS
 REVISED

 PLOT DATE
 =
 CHECKED
 KMP
 REVISED

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

TOP OF SLAB ELEVATIONS (2 OF 9)
STRUCTURE NO. 101-0213 & 101-0214

SHEET 17 OF 81 SHEETS

 F.A.I. RTE.
 SECTION
 COUNTY SHEETS
 TOTAL SHEETS
 SHEET NO.

 39
 (201-3)R & (4-1, 5)R
 WINNEBAGO
 1885
 712

 CONTRACT NO. 64C24

SB STAGE CONSTRUCTION LINE

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2722+98.76	-35.13	798.62	798.64
CL. BRG. S. ABUT.	2723+00.74	-35.13	798.65	798.67
A B C D	2723+10.87 2723+20.99 2723+31.10 2723+41.20 2723+48.44	-35.13 -35.13 -35.13 -35.13	798.78 798.91 799.03 799.15	798.81 798.94 799.06 799.17
E F G H I J	2723+58.54 2723+68.63 2723+78.71 2723+88.79 2723+98.86 2724+08.93	-35.13 -35.13 -35.13 -35.13 -35.13	799.35 799.46 799.57 799.67 799.77 799.86	799.38 799.51 799.62 799.72 799.81 799.89
CL. BRG. PIER 2 K	2724+19.24 2724+29.30	-35.13 -35.13	799.96 800.05	799.98 800.07
L M N O P	2724+39.35 2724+49.39 2724+59.43 2724+69.47 2724+79.50	-35.13 -35.13 -35.13 -35.13 -35.13	800.13 800.21 800.29 800.36 800.43	800.17 800.26 800.34 800.41 800.46
CL. BRG. PIER 3	2724+89.77	-35.13	800.50	800.52
Q R S T	2724+99.79 2725+09.80 2725+19.81 2725+29.81	-35.13 -35.13 -35.13 -35.13	800.56 800.62 800.67 800.72	800.58 800.65 800.70 800.75
CL. BRG. N. ABUT.	2725+36.97	-35.13	800.76	800.78
BK. N. ABUT.	2725+38.93	-35.13	800.77	800.79

<u>BEAM 5</u>

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+00.44	-30.95	798.77	798.79
CL. BRG. S. ABUT.	2723+02.40	-30.98	798.80	798.82
A B C D CL. BRG. PIER 1	2723+12.45 2723+22.49 2723+32.54 2723+42.58 2723+49.78	-31.16 -31.33 -31.48 -31.62	798.92 799.04 799.16 799.27 799.35	798.95 799.07 799.18 799.29 799.37
E	2723+59.83	-31.83	799.46	799.50
F	2723+69.87	-31.92	799.57	799.62
G	2723+79.92	-32.01	799.67	799.73
H	2723+89.96	-32.08	799.77	799.83
I	2724+00.01	-32.13	799.87	799.91
J	2724+10.06	-32.17	799.96	799.99
CL. BRG. PIER 2	2724+20.36	-32.20	800.06	800.08
K	2724+30.40	-32.21	800.14	800.17
L	2724+40.45	-32.20	800.23	800.27
M	2724+50.50	-32.19	800.31	800.36
N	2724+60.54	-32.15	800.38	800.44
O	2724+70.59	-32.10	800.46	800.51
P	2724+80.64	-32.04	800.53	800.56
CL. BRG. PIER 3	2724+90.94	-31.96	800.60	800.62
Q	2725+00.98	-31.87	800.66	800.69
R	2725+11.03	-31.76	800.73	800.75
S	2725+21.07	-31.64	800.78	800.81
T	2725+31.12	-31.51	800.84	800.87
CL. BRG. N. ABUT.	2725+38.32	-31.40	800.88	800.90
BK. N. ABUT.	2725+40.29	-31.37	800.89	800.91

<u>BEAM 6</u>

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+03.28	-23.83	799.02	799.04
CL. BRG. S. ABUT.	2723+05.25	-23.87	799.05	799.07
A B C D	2723+15.28 2723+25.31 2723+35.35 2723+45.38	-24.05 -24.21 -24.36 -24.49	799.17 799.29 799.41 799.52	799.20 799.32 799.43 799.54
CL. BRG. PIER 1	2723+52.57	-24.58	799.60	799.62
E F G H I J	2723+62.61 2723+72.64 2723+82.68 2723+92.72 2724+02.75 2724+12.79	-24.69 -24.78 -24.86 -24.93 -24.98 -25.01	799.71 799.81 799.92 800.01 800.11 800.20	799.74 799.86 799.97 800.07 800.15 800.23
CL. BRG. PIER 2	2724+23.08	-25.04	800.29	800.31
K L M N O P	2724+33.11 2724+43.15 2724+53.19 2724+63.22 2724+73.26 2724+83.30	-25.04 -25.03 -25.01 -24.97 -24.92 -24.86	800.38 800.46 800.54 800.62 800.69 800.76	800.41 800.51 800.60 800.68 800.74 800.80
CL. BRG. PIER 3	2724+93.58	-24.77	800.83	800.85
Q R S T	2725+03.62 2725+13.65 2725+23.69 2725+33.72	-24.68 -24.57 -24.44 -24.30	800.90 800.96 801.01 801.07	800.92 800.98 801.04 801.09
CL. BRG. N. ABUT.	2725+40.91	-24.19	801.11	801.13
BK. N. ABUT.	2725+42.88	-24.16	801.12	801.14

benesch
Alfred Benesch & Company
35 W Wecker Ohre, Salie 3300

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - KMP	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - KMP	REVISED -

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

TOP OF SLAB ELEVATIONS (3 OF 9)
STRUCTURE NO. 101-0213 & 101-0214

SHEET 18 OF 81 SHEETS

F.A.I. RTE.	SECTI	ON		COUNTY	TOTAL SHEETS	SHE
39	(201-3)R & (4-1, 5)R		WINNEBAGO	1685	713	
				CONTRA	CT NO. 6	34C24
	l i	LLINOIS	FED. A	D PROJECT		

BEAM 7

Off set

-16.72

-16.75

Station

2723+06.12

2723+08.08

2724+65.90

2724+75.92

2724+85.95

2724+96.22

2725+06.25

2725+16.27

2725+26.30

2725+36.32

2725+43.50

2725+45.47

Location

BK. S. ABUT.

В

D

Μ

S

CL. BRG. S. ABUT.

CL. BRG. PIER 1

CL. BRG. PIER 2

CL. BRG. PIER 3

CL. BRG. N. ABUT.

BK. N. ABUT.

Theoretical Grade Elevations Adjusted For Dead

Load Deflection &

Grinding 799.27 799.29 799.30 799.32 799.42 799.45

2723+18.11 -16.93 2723+28.13 -17.08 799.54 799.57 2723+38.15 -17.23 799.65 799.68 2723+48.18 -17.36 799.77 799.79 -17.44 799.85

heoretica

Grade

Elevations

2723+55.36 799.87 799.95 799.98 2723+65.39 -17.55 2723+75.41 -17.64 800.06 800.10 2723+85.44 -17.71 800.16 800.21 2723+95.46 -17.78 800.26 800.31

2724+05.49 -17.82 800.35 800.39 -17.85 2724+15.51 800.44 800.47 2724+25.79 -17.87 800.53 800.55 2724+35.82 -17.87 800.62 800.65 -17.86 2724+45.84 800.70 800.74 2724+55.87

-17.84 800.78 800.83 -17.79 800.85 800.91 -17.74 800.93 800.97 -17.67 801.00 801.03 -17.58 801.06 801.09 801.13 -17.48 801.15 -17.37 801.19 801.21 -17.24 801.24 801.27 -17.09 801.30 801.32

801.33

801.34

801.35

801.36

-16.98

-16.95

PROP. PGL (SB)

Theoretical Grade

heoretica. Elevations Location Station Offset Grade Adjusted For Dead Elevations Load Deflection & Grinding BK. S. ABUT. 2723+07.40 -13.50 799.38 799.41 2723+09.38 CL. BRG. S. ABUT. -13.50 799.41 799.43 799.57 2723+19.46 -13.50 799.54 В 2723+29.54 -13.50 799.66 799.69 2723+39.62 -13.50 799.78 799.81 D 2723+49.69 -13.50 799.90 799.92 CL. BRG. PIER 1 2723+56.90 -13.50 799.98 800.00 2723+66.96 -13.50 800 09 800.12 2723+77.01 -13.50 800.20 800.24 2723+87.06 -13.50 800.30 800.36 G 2723+97.10 -13.50 800.40 800.45 2724+07.14 -13.50 800.50 800.54 2724+17.17 800.59 -13.50 800.62 CL. BRG. PIER 2 2724+27.45 -13.50 800.68 800.70 2724+37.46 -13.50 800.76 800.79 -13.50 800.84 800.89 2724+47.48 2724+57.49 -13.50 800.92 800.98 2724+67.49 -13.50 800.99 801.05 2724+77.49 -13.50 801.07 801.11 2724+87.48 -13.50 801.13 801.16 CL. BRG. PIER 3 2724+97.72 -13.50 801.20 801.22 801.28 2725+07.70 -13.50 801.26 2725+17.68 -13.50 801.31 801.34 R 2725+27.65 -13.50 801.36 801.39 2725+37.61 -13.50 801.41 801.44 2725+44.75 CL. BRG. N. ABUT. -13.50 801.44 801.46 2725+46.70 -13.50 BK. N. ABUT. 801.45 801.47

BEAM₈

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+08.95	-9.60	799.52	799.54
CL. BRG. S. ABUT.	2723+10.91	-9.63	799.55	799.57
A B C D	2723+20.93 2723+30.94 2723+40.95 2723+50.97	-9.80 -9.96 -10.10 -10.23	799.67 799.79 799.90 800.01	799.69 799.81 799.93 800.03
CL. BRG. PIER 1	2723+58.14	-10.31	800.09	800.11
E F G H I J	2723+68.16 2723+78.17 2723+88.19 2723+98.20 2724+08.22 2724+18.23	-10.41 -10.49 -10.57 -10.62 -10.67 -10.69	800.20 800.30 800.40 800.50 800.59 800.68	800.23 800.35 800.46 800.55 800.63 800.71
CL. BRG. PIER 2	2724+28.50	-10.71	800.77	800.79
K L M N O P	2724+38.52 2724+48.53 2724+58.55 2724+68.56 2724+78.58 2724+88.59	-10.71 -10.69 -10.66 -10.61 -10.55 -10.48	800.86 800.94 801.01 801.09 801.16 801.23	800.88 800.98 801.07 801.14 801.21
CL. BRG. PIER 3	2724+98.86	-10.39	801.30	801.32
Q R S T	2725+08.87 2725+18.89 2725+28.90 2725+38.91	-10.29 -10.17 -10.03 -9.89	801.36 801.42 801.47 801.53	801.38 801.44 801.50 801.55
CL. BRG. N. ABUT.	2725+46.09	-9.77	801.56	801.58
BK. N. ABUT.	2725+48.05	-9.74	801.57	801.59

benesch

DESIGNED - JPM USER NAME = REVISED CHECKED - KMP REVISED -DRAWN - KMS REVISED -PLOT DATE = CHECKED - KMP REVISED -

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

TOP OF SLAB ELEVATIONS (4 OF 9) STRUCTURE NO. 101-0213 & 101-0214 SHEET 19 OF 81 SHEETS

SECTION COUNTY 39 (201-3)R & (4-1, 5)R WINNEBAGO 1685 714 CONTRACT NO. 64C24

FACE OF SB E. PARAPET

FACE OF NB W. PARAPET

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+11.78	-2.48	799.77	799.79
CL. BRG. S. ABUT.	2723+13.74	-2.52	799.80	799.82
A B C D CL. BRG. PIER 1 E	2723+23.74 2723+33.74 2723+43.75 2723+53.75 2723+60.92 2723+70.92	-2.68 -2.83 -2.97 -3.09 -3.17	799.92 800.03 800.15 800.26 800.34	799.94 800.06 800.17 800.28 800.36
F G H I J	2723+80.93 2723+90.93 2724+00.94 2724+10.94 2724+20.95	-3.35 -3.42 -3.47 -3.51 -3.53	800.54 800.64 800.74 800.83 800.92	800.59 800.70 800.79 800.87 800.95
CL. BRG. PIER 2 K L M N O P	2724+31.20 2724+41.21 2724+51.21 2724+61.22 2724+71.22 2724+81.23 2724+91.23	-3.54 -3.54 -3.52 -3.48 -3.43 -3.37 -3.29	801.01 801.09 801.17 801.25 801.32 801.39 801.46	801.03 801.12 801.22 801.30 801.38 801.44 801.49
CL. BRG. PIER 3 Q R S T	2725+01.49 2725+11.49 2725+21.50 2725+31.50 2725+41.50	-3.20 -3.09 -2.97 -2.83 -2.68	801.53 801.59 801.65 801.70 801.75	801.55 801.61 801.67 801.73 801.78
CL. BRG. N. ABUT. BK. N. ABUT.	2725+48.67 2725+50.63	-2.56 -2.53	801.79 801.80	801.81 801.82

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+12.17	-1.50	799.81	799.83
CL. BRG. S. ABUT.	2723+14.14	-1.50	799.83	799.85
A B C D	2723+24.21 2723+34.27 2723+44.32 2723+54.37	-1.50 -1.50 -1.50 -1.50	799.96 800.08 800.20 800.31	799.98 800.11 800.22 800.33
CL. BRG. PIER 1	2723+61.57	-1.50	800.39	800.41
E F G H I J	2723+71.61 2723+81.64 2723+91.67 2724+01.69 2724+11.71 2724+21.72	-1.50 -1.50 -1.50 -1.50 -1.50 -1.50	800.50 800.61 800.71 800.80 800.90 800.99	800.53 800.65 800.76 800.86 800.94 801.02
CL. BRG. PIER 2	2724+31.97	-1.50	801.08	801.10
K L M N O P	2724+41.97 2724+51.97 2724+61.96 2724+71.94 2724+81.92 2724+91.89	-1.50 -1.50 -1.50 -1.50 -1.50 -1.50	801.16 801.24 801.31 801.39 801.46 801.52	801.19 801.28 801.37 801.44 801.50 801.55
CL. BRG. PIER 3	2725+02.11	-1.50	801.58	801.60
Q R S T	2725+12.07 2725+22.03 2725+31.98 2725+41.92	-1.50 -1.50 -1.50 -1.50	801.64 801.69 801.74 801.79	801.66 801.72 801.77 801.82
CL. BRG. N. ABUT. BK. N. ABUT.	2725+49.05 2725+51.00	-1.50 -1.50	801.82 801.83	801.84 801.85

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+13.36	1.50	799.10	799.12
CL. BRG. S. ABUT.	2723+15.33	1.50	799.13	799.15
A	2723+25.39	1.50	799.25	799.28
B	2723+35.45	1.50	799.37	799.40
C	2723+45.50	1.50	799.49	799.52
D	2723+55.54	1.50	799.61	799.63
D	2723733.34	1.50	799.01	799.03
CL. BRG. PIER 1	2723+62.73	1.50	799.69	799.71
Е	2723+72.77	1.50	799.79	799.83
F	2723+82.80	1.50	799.90	799.95
G	2723+92.82	1.50	800.00	800.06
H	2724+02.83	1.50	800.10	800.15
1	2724+12.85	1.50	800.19	800.23
j J	2724+22.85	1.50	800.28	800.31
J	2724122.03	1.50	000.20	000.51
CL. BRG. PIER 2	2724+33.10	1.50	800.37	800.39
К	2724+43.10	1.50	800.45	800.48
L	2724+53.09	1.50	800.53	800.57
M	2724+63.07	1.50	800.60	800.66
N	2724+73.05	1.50	800.67	800.73
0	2724+83.02	1.50	800.74	800.79
e P	2724+92.99	1.50	800.81	800.84
,	2,21,32.33	1.50	000.01	000.07
CL. BRG. PIER 3	2725+03.20	1.50	800.87	800.89
Q	2725+13.16	1.50	800.93	800.95
R	2725+23.11	1.50	800.98	801.01
S	2725+33.06	1.50	801.03	801.06
T	2725+43.00	1.50	801.08	801.10
'	2,23,13.00	1.50	001.00]
CL. BRG. N. ABUT.	2725+50.12	1.50	801.11	801.13
BK. N. ABUT.	2725+52.07	1.50	801.12	801.14

*	benesch
	Alfred Benesch & Company
	35 W Wacker Drive, Suite 3300
	Chicago, Illinois 80601

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - KMP	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - KMP	REVISED -

<u>BEAM 11</u>

PROP. PGL (NB)

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+14.16	3.52	799.17	799.19
CL. BRG. S. ABUT.	2723+16.12	3.49	799.20	799.22
А В С D	2723+26.11 2723+36.10 2723+46.10 2723+56.09	3.32 3.18 3.04 2.93	799.31 799.43 799.54 799.65	799.34 799.46 799.57 799.67
CL. BRG. PIER 1	2723+63.26	2.85	799.73	799.75
E F G H I J	2723+73.25 2723+83.25 2723+93.24 2724+03.24 2724+13.24 2724+23.23	2.76 2.68 2.61 2.56 2.53 2.51	799.84 799.94 800.04 800.13 800.22 800.31	799.87 799.99 800.09 800.19 800.27 800.34
CL. BRG. PIER 2	2724+33.48	2.50	800.40	800.42
K L M N O P	2724+43.47 2724+53.47 2724+63.47 2724+73.46 2724+83.46 2724+93.45	2.51 2.53 2.57 2.62 2.69 2.77	800.48 800.56 800.64 800.71 800.78 800.85	800.51 800.61 800.69 800.77 800.83 800.88
CL. BRG. PIER 3	2725+03.70	2.87	800.91	800.93
Q R S T CL. BRG. N. ABUT.	2725+13.70 2725+23.69 2725+33.68 2725+43.68 2725+50.84	2.98 3.10 3.24 3.40 3.52	800.97 801.03 801.09 801.14	800.99 801.06 801.11 801.16
BK. N. ABUT.	2725+52.80	3.55	801.18	801.20

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+17.10	10.97	799.43	799.45
CL. BRG. S. ABUT.	2723+19.06	10.94	799.46	799.48
A	2723+29.04	10.78	799.57	799.60
B	2723+39.03	10.64	799.69	799.72
C	2723+49.01	10.51	799.80	799.83
D	2723+58.99	10.39	799.91	799.93
CL. BRG. PIER 1	2723+66.15	10.32	799.99	800.01
E	2723+76.14	10.23	800.09	800.12
F	2723+86.12	10.16	800.19	800.24
G	2723+96.11	10.10	800.29	800.35
H	2724+06.09	10.05	800.38	800.44
I	2724+16.08	10.02	800.47	800.52
J	2724+26.06	10.00	800.56	800.59
CL. BRG. PIER 2	2724+36.30	10.00	800.65	800.67
K	2724+46.28	10.01	800.73	800.76
L	2724+56.27	10.04	800.81	800.85
M	2724+66.25	10.08	800.88	800.94
N	2724+76.24	10.14	800.96	801.01
O	2724+86.22	10.21	801.02	801.07
P	2724+96.21	10.30	801.09	801.12
CL. BRG. PIER 3	2725+06.44	10.40	801.15	801.18
Q	2725+16.43	10.51	801.21	801.24
R	2725+26.41	10.64	801.27	801.30
S	2725+36.39	10.79	801.32	801.35
T	2725+46.38	10.94	801.37	801.40
CL. BRG. N. ABUT.	2725+53.53	11.07	801.41	801.43
BK. N. ABUT.	2725+55.49	11.10	801.42	801.44

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+18.10	13.50	799.52	799.54
CL. BRG. S. ABUT.	2723+20.07	13.50	799.55	799.57
A	2723+30.11	13.50	799.67	799.70
В	2723+40.15	13.50	799.79	799.82
C	2723+50.18	13.50	799.90	799.93
D	2723+60.20	13.50	800.02	800.04
	2723700.20	15.50	000.02	000.04
CL. BRG. PIER 1	2723+67.38	13.50	800.10	800.12
E	2723+77.39	13.50	800.20	800.23
F	2723+87.40	13.50	800.30	800.35
G	2723+97.40	13.50	800.40	800.46
l й	2724+07.40	13.50	800.50	800.55
l 'i	2724+17.39	13.50	800.59	800.64
j j	2724+27.38	13.50	800.68	800.71
J	2/24+2/.30	13.30	000.00	000.7 I
CL. BRG. PIER 2	2724+37.61	13.50	800.76	800.78
K	2724+47.58	13.50	800.84	800.87
l î	2724+57.55	13.50	800.92	800.97
M M	2724+67.52	13.50	801.00	801.05
l "N	2724+77.48	13.50	801.07	801.12
0	2724+77.43	13.50	801.07	801.12 801.18
P		13.50	801.13 801.19	801.16 801.23
۲	2724+97.38	13.50	801.19	801.23
CL. BRG. PIER 3	2725+07.57	13.50	801.25	801.28
Q	2725+17.51	13.50	801.31	801.33
l R	2725+17.51 2725+27.44	13.50	801.36	801.39
S	2725+37.37	13.50	801.41	801.44
T 3	2725+47.29	13.50	801.45	801.48
'	2/2574/.23	15.50	001.45	001.40
CL. BRG. N. ABUT.	2725+54.40	13.50	801.48	801.51
BK. N. ABUT.	2725+56.34	13.50	801.49	801.51

2	bene	sch
	Alfred Benesch & Con 35 W Wacker Drive, S Chicago, Illinois 8060	ulte 3300

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - KMP	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - KMP	REVISED -

DDEL: \$MODELNAME\$
F NAMF: c'\pww.ordir\be

<u>BEAM 12</u>

<u>BEAM 13</u>

<u>BEAM 14</u>

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+20.05	18.42	799.69	799.71
CL. BRG. S. ABUT.	2723+22.00	18.39	799.72	799.74
A B	2723+31.97 2723+41.94	18.24 18.10	799.83 799.95	799.86 799.98
C	2723+41.94	17.97	800.06	800.08
D	2723+31.92 2723+61.89	17.86	800.00	800.19
	2723+01.89	17.80	800.17	800.19
CL. BRG. PIER 1	2723+69.04	17.79	800.24	800.26
l E	2723+79.01	17.71	800.34	800.38
F	2723+88.99	17.64	800.44	800.49
G	2723+98.96	17.58	800.54	800.60
l	2724+08.94	17.54	800.63	800.69
I	2724+18.91	17.51	800.72	800.77
J	2724+28.88	17.50	800.81	800.84
CL. BRG. PIER 2	2724+39.11	17.50	800.90	800.92
K	2724+49.08	17.52	800.98	801.01
L	2724+59.06	17.55	801.05	801.10
М	2724+69.03	17.60	801.13	801.19
N	2724+79.01	17.66	801.20	801.26
0	2724+88.98	17.73	801.27	801.32
Р	2724+98.95	17.82	801.33	801.37
CL. BRG. PIER 3	2725+09.18	17.93	801.40	801.42
Q	2725+19.15	18.05	801.46	801.48
R	2725+29.12	18.18	801.51	801.54
S	<i>2725+39.10</i>	18.33	801.56	801.59
T	2725+49.07	18.49	801.61	801.64
CL. BRG. N. ABUT.	2725+56.21	18.62	801.65	801.67
BK. N. ABUT.	2725+58.17	18.65	801.65	801.68

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+22.98	25.88	799.95	799.97
CL. BRG. S. ABUT.	2723+24.93	25.85	799.98	800.00
A B C D CL. BRG. PIER 1 E F G H I	2723+34.89 2723+44.86 2723+54.82 2723+64.78 2723+71.92 2723+81.88 2723+91.85 2724+01.81 2724+11.77 2724+21.74	25.70 25.56 25.44 25.34 25.27 25.19 25.12 25.07 25.03 25.01	800.09 800.21 800.32 800.42 800.50 800.60 800.70 800.79 800.88 800.97	800.12 800.24 800.34 800.44 800.52 800.63 800.75 800.85 800.94 801.02
CL. BRG. PIER 2	2724+31.70	25.00	801.06	801.09
CL. BRG. PIER 2 K L M N O P	2724+41.91 2724+51.88 2724+61.84 2724+71.81 2724+81.77 2724+91.73 2725+01.69	25.01 25.03 25.06 25.11 25.18 25.26 25.35	801.14 801.22 801.30 801.37 801.44 801.51 801.58	801.17 801.25 801.35 801.43 801.50 801.56 801.61
CL. BRG. PIER 3 Q R S T CL. BRG. N. ABUT.	2725+11.91 2725+21.87 2725+31.83 2725+41.79 2725+51.75 2725+58.89	25.46 25.58 25.72 25.87 26.04 26.17	801.64 801.70 801.75 801.80 801.85	801.66 801.72 801.78 801.83 801.88
BK. N. ABUT.	2725+60.84	26.20	801.89	801.91

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+25.91	33,33	800.21	800.23
CL. BRG. S. ABUT.	2723+27.86	33.30	800.24	800.26
A	2723+37.81	33.16	800.35	800.38
B	2723+47.76	33.03	800.46	800.49
C	2723+57.71	32.91	800.57	800.60
D D	2723+67.66	32.81	800.68	800.70
D	2723 + 07.00	52.01	800.00	800.70
CL. BRG. PIER 1	2723+74.80	32.74	800.75	800.77
E	2723+84.75	32.67	800.85	800.89
– F	2723+94.70	32.60	800.95	801.00
G	2724+04.65	32.56	801.04	801.10
H	2724+14.61	32.52	801.14	801.19
Ï	2724+24.56	32.50	801.22	801.27
j	2724+34.51	32.50	801.31	801.34
J	2/24734.31	32.30	001.51	001.54
CL. BRG. PIER 2	2724+44.71	32.51	801.39	801.41
К	2724+54.67	32.54	801.47	801.50
Ĺ	2724+64.62	32.58	801.55	801.59
_ M	2724+74.57	32.63	801.62	801.68
N	2724+84.52	32.70	801.69	801.75
0	2724+94.48	32.78	801.75	801.80
P	2725+04.43	32.88	801.82	801.85
,	2/23/04.43	32.00	001.02	001.05
CL. BRG. PIER 3	2725+14.63	32.99	801.88	801.90
Q	2725+24.58	33.12	801.94	801.96
R R	2725+34.53	33.26	801.99	802.02
S	2725+44.48	33.42	802.04	802.07
T 7	2725+54.43	33.59	802.09	802.11
,	2723734.43	33.39	002.09	002.11
CL. BRG. N. ABUT.	2725+61.56	33.72	802.12	802.14
BK. N. ABUT.	2725+63.51	33.75	802.13	802.15

benesch
Alfred Benesch & Company
35 W Wecker Drive, Sulte 3300
Chaogo, Illinoie 660611

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - KMP	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - KMP	REVISED -

MODEL: \$MODELNAME\$

4/22/2025 12:40:01 PM

NB STAGE CONSTRUCTION LINE

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+26.84	35.71	800.30	800.32
CL. BRG. S. ABUT.	2723+28.80	35.71	800.32	800.34
A B C D	2723+38.80 2723+48.80 2723+58.79 2723+68.78 2723+75.93	35.71 35.71 35.71 35.71 35.71	800.44 800.56 800.67 800.78	800.47 800.59 800.69 800.80
E F G H I J	2723+85.91 2723+95.88 2724+05.85 2724+15.81 2724+25.76 2724+35.71	35.71 35.71 35.71 35.71 35.71 35.71	800.96 801.05 801.15 801.24 801.33 801.41	800.99 801.10 801.21 801.30 801.38 801.44
CL. BRG. PIER 2	2724+45.91	35.71	801.50	801.52
K L M N O P	2724+55.84 2724+65.78 2724+75.70 2724+85.63 2724+95.54 2725+05.46	35.71 35.71 35.71 35.71 35.71 35.71	801.58 801.65 801.72 801.79 801.85 801.91	801.60 801.69 801.78 801.84 801.90 801.94
CL. BRG. PIER 3	2725+15.61	35.71	801.97	801.99
Q R S T	2725+25.51 2725+35.41 2725+45.30 2725+55.19	35.71 35.71 35.71 35.71	802.02 802.07 802.11 802.15	802.04 802.09 802.14 802.18
CL. BRG. N. ABUT.	2725+62.27	35.71	802.18	802.20
BK. N. ABUT.	2725+64.20	35.71	802.19	802.21

<u>BEAM 15</u>

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
BK. S. ABUT.	2723+28.83	40.79	800.47	800.49
CL. BRG. S. ABUT.	2723+30.78	40.76	800.49	800.52
А	2723+40.72	40.62	800.61	800.64
В	<i>2723+50.66</i>	40.49	800.72	800.75
С	2723+60.60	40.38	800.83	800.85
D	2723+70.54	40.28	800.93	800.95
CL. BRG. PIER 1	2723+77.67	40.22	801.01	801.03
Ε	2723+87.61	40.15	801.11	801.14
F	2723+97.55	40.09	801.20	801.25
G	2724+07.49	40.05	801.30	801.35
Н	2724+17.43	40.02	801.39	801.44
I	2724+27.37	40.00	801.47	801.52
J	2724+37.32	40.00	801.56	801.59
CL. BRG. PIER 2	2724+47.51	40.02	801.64	801.66
К	2724+57.45	40.05	801.72	801.75
L	2724+67.39	40.09	801.79	801.84
М	2724+77.33	40.15	801.86	801.92
N	2724+87.28	40.22	801.93	801.99
0	2724+97.22	40.31	802.00	802.05
Р	2725+07.16	40.41	802.06	802.09
CL. BRG. PIER 3	2725+17.35	40.53	802.12	802.14
Q	2725+27.29	40.66	802.18	802.20
R	2725+37.23	40.80	802.23	802.26
S	2725+47.17	40.96	802.28	802.31
T	2725+57.11	41.14	802.32	802.35
CL. BRG. N. ABUT.	2725+64.23	41.27	802.36	802.38
BK. N. ABUT.	2725+66.18	41.31	802.36	802.39

<u>BEAM 16</u>

L	_ocation	Station	Theoret Offset Grad Elevatio		Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
В	K. S. ABUT.	2723+31.75	48.24	800.73	800.75
CL. BR	G. S. ABUT.	2723+33.69	48.22	800.75	800.77
	А	2723+43.62	48.08	800.87	800.89
	В	2723+53.55	47.96	800.98	801.01
	С	2723+63.48	47.85	801.08	801.11
	D	2723+73.41	47.76	801.19	801.21
CL. E	BRG. PIER 1	2723+80.53	47.70	801.26	801.28
	Е	2723+90.46	47.63	801.36	801.39
	F	2724+00.39	47.58	801.45	801.50
	G	2724+10.32	47.54	801.55	801.60
	Н	2724+20.25	47.51	801.64	801.69
	I	2724+30.18	47.50	801.72	801.77
	J	2724+40.12	47.50	801.80	801.83
CL. B	RG. PIER 2	2724+50.30	47.52	801.89	801.91
	Κ	2724+60.23	47.56	801.96	801.99
	L	2724+70.16	47.60	802.04	802.08
	М	2724+80.09	47.67	802.11	802.16
	N	2724+90.02	47.74	802.18	802.23
	0	2724+99.95	47.83	802.24	802.29
	P	2725+09.88	47.94	802.30	802.33
CL. B	RG. PIER 3	2725+20.06	48.06	802.36	802.38
	Q	2725+29.99	48.20	802.42	802.44
	R	2725+39.92	48.34	802.47	802.49
	S	2725+49.85	48.51	802.52	802.54
	T	2725+59.77	48.69	802.56	802.59
CL. BR	G. N. ABUT.	2725+66.89	48.82	802.59	802.61
В	K. N. ABUT.	2725+68.83	48.86	802.60	802.62

benesch

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - KMP	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - KMP	REVISED -

FACE OF NB E. PARAPET

	Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection & Grinding
	BK. S. ABUT.	2723+32.24	49.50	800.77	800.80
	CL. BRG. S. ABUT.	2723+34.19	49.50	800.80	800.82
	А В С D	2723+44.17 2723+54.15 2723+64.12 2723+74.08	49.50 49.50 49.50 49.50	800.92 801.03 801.14 801.25	800.94 801.06 801.16 801.27
	CL. BRG. PIER 1	2723+81.22	49.50	801.32	801.34
	E F G H I J	2723+91.17 2724+01.12 2724+11.06 2724+21.00 2724+30.93 2724+40.86	49.50 49.50 49.50 49.50 49.50	801.42 801.52 801.61 801.70 801.79 801.87	801.45 801.57 801.67 801.76 801.83 801.90
	CL. BRG. PIER 2	2724+51.03	49.50	801.95	801.97
	K L M N O P	2724+60.94 2724+70.86 2724+80.76 2724+90.66 2725+00.56 2725+10.44	49.50 49.50 49.50 49.50 49.50	802.03 802.10 802.17 802.23 802.29 802.35	802.06 802.14 802.22 802.29 802.34 802.38
	CL. BRG. PIER 3	2725+20.58	49.50	802.41	802.43
	Q R S T	2725+30.46 2725+40.33 2725+50.20 2725+60.06	49.50 49.50 49.50 49.50	802.46 802.50 802.55 802.59	802.48 802.53 802.58 802.61
	CL. BRG. N. ABUT.	2725+67.13	49.50	802.61	802.63
	BK. N. ABUT.	2725+69.06	49.50	802.62	802.64
-1					

	s\projects\dms65240\D264C24-1010213_
MODELNAMES	c:\pwwordir\benesch projects\projects\dms
JEL: SN	NAME:

2	bene	esch
	Alfred Benesch & Co	ompany
	35 W Wacker Drive,	Sulte 3300
	Chicago, Illinois 606	01

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - KMP	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - KMP	REVISED -

TOP OF SLAB ELEVATIONS (9 OF 9) STRUCTURE NO. 101-0213 & 101-0214						
SHEET	24	OF	81	SHEETS		

F.A.I. RTE	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
39	(201-3)R & (4-1, 5)R		WINNEBAGO	1685	719
			CONTRA	CT NO. 6	64C24
	ILLINOIS E	ED AL	D PRO IECT		

4/22/2025 12:40:08 PM

- Face of SB W. Parapet — Stage Construction Line -North End of South Approach Slab South End of -South Approach Slab Bk. S. Abut. € Brg. S. Abut. Prop. PGL (SB) – 20°37'41" Skew, typ. Face of SB-E. Parapet *2723+00* (51) (52) — Prop. € I-39 3 Spa. at 10'-0" 30'-0" - Local Tangnent to Ç 1-39 at Station 2724+32.54 Along Prop. © 1-39 PLAN - SOUTHBOUND TOP OF SOUTH APPROACH SLAB ELEVATIONS

FACE OF SB W. PARAPET

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF S. APPR. SLAB	2722+58.92	-61.50	797.28	797.30
51 52	2722+69.02 2722+79.12	-61.50 -61.50	797.42 797.56	797.44 797.59
N. END OF S. APPR. SLAB	2722+89.23	-61.50	797.70	797.72

SB STAGE CONSTRUCTION LINE

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF S. APPR. SLAB	2722+69.66	-35.13	798.22	798.24
51 52	2722+79.72 2722+89.78	-35.13 -35.13	798.36 798.50	798.39 798.52
N. END OF S. APPR. SLAB	2722+99.84	-35.13	798.64	798.66

PROP. PGL (SB)

Location	Station	0ffset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF S. APPR. SLAB	2722+78.41	-13.50	798.99	799.02
S1 S2	2722+88.43 2722+98.45	-13.50 -13.50	799.13 799.27	799.15 799.29
N. END OF S. APPR. SLAB	2723+08.48	-13.50	799.40	799.42

FACE OF SB E. PARAPET

Location	Station	Offset	Theoretical Grade Elevations	Elevations
S. END OF S. APPR. SLAB	2722+83.24	-1.50	799.42	799.44
51 52	2722+93.24 2723+03.24	-1.50 -1.50	799.56 799.69	799.58 799.71
N. END OF S. APPR. SLAB	2723+13.25	-1.50	799.82	799.84

* Radial dimension

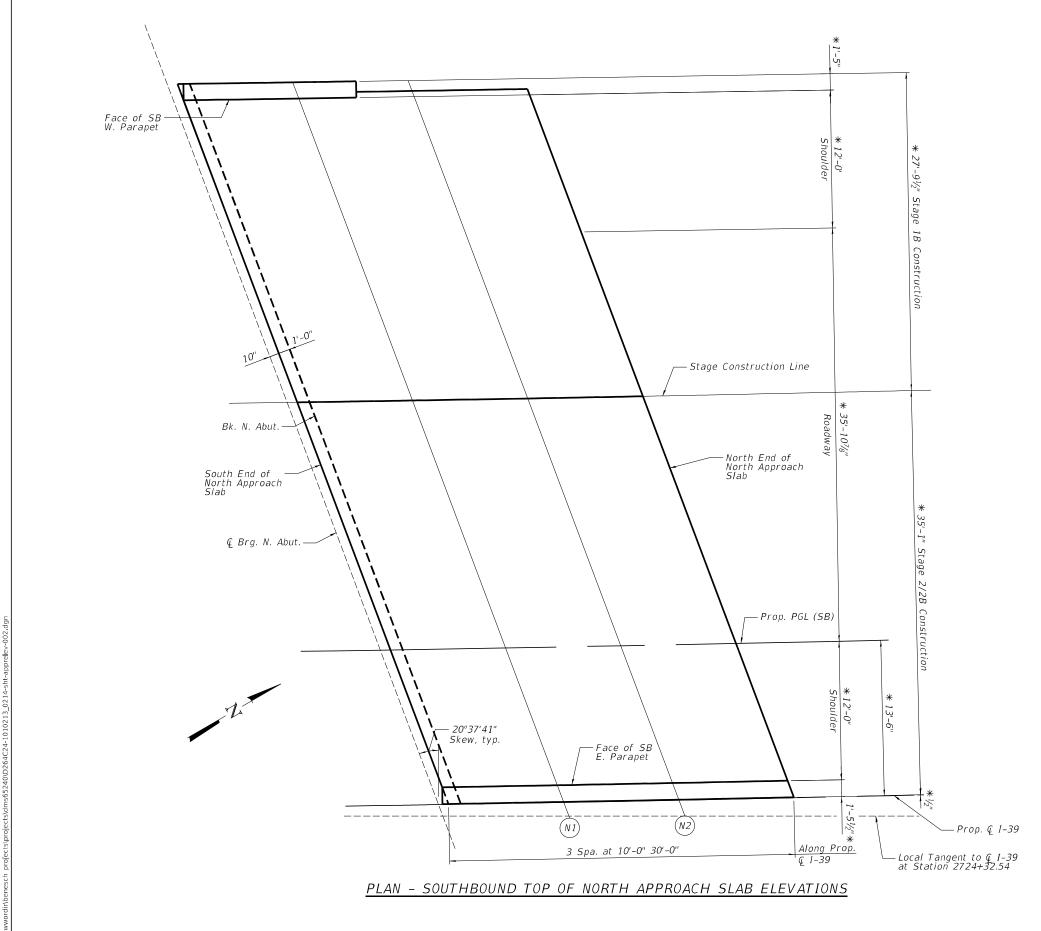
benesch
Alfred Benesch & Company
35 W Wecker Drive, Sulie 3000
Orleago, Blimbo & 50001
Orleago, Blimb

 USER NAME
 =
 DESIGNED
 JPM
 REVISED

 CHECKED
 KMP
 REVISED

 PLOT SCALE
 =
 DRAWN
 KMS
 REVISED

 PLOT DATE
 =
 CHECKED
 KMP
 REVISED


STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

SOUTHBOUND TOP OF SOUTH APPROACH SLAB ELEVATIONS
STRUCTURE NO. 101-0213 & 101-0214

 F.A.I. RTE.
 SECTION
 COUNTY SHEETS
 TOTAL SHEETS
 SHEET NO.

 39
 (201-3)R & (4-1, 5)R
 WINNEBAGO
 1685
 720

 CONTRACT NO. 64C24

FACE OF SB W. PARAPET

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF N. APPR. SLAB	2725+28.30	-61.50	799.93	799.95
N 1 N 2	2725+38.41 2725+48.51	-61.50 -61.50	799.98 800.02	800.00 800.04
N. END OF N. APPR. SLAB	2725+58.61	-61.50	800.06	800.08

SB STAGE CONSTRUCTION LINE

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF N. APPR. SLAB	2725+37.86	-35.13	800.76	800.78
N 1 N 2	2725+47.92 2725+57.98	-35.13 -35.13	800.81 800.85	800.83 800.87
N. END OF N. APPR. SLAB	2725+68.04	-35.13	800.89	800.91

PROP. PGL (SB)

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF N. APPR. SLAB	2725+45.64	-13.50	801.45	801.47
N 1 N 2	2725+55.66 2725+65.68	-13.50 -13.50	801.49 801.53	801.51 801.55
N. END OF N. APPR. SLAB	2725+75.71	-13.50	801.56	801.58

FACE OF SB E. PARAPET

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF N. APPR. SLAB	2725+49.93	-1.50	801.83	801.85
N 1 N 2	2725+59.94 2725+69.94	-1.50 -1.50	801.87 801.90	801.89 801.92
N. END OF N. APPR. SLAB	2725+79.94	-1.50	801.94	801.96

* Radial dimension

benesch
Alfred Benesch & Company
35 W Wecker Drive, Sule 3000
College, Blinde Section 1, No. 19801

 USER NAME
 =
 DESIGNED
 JPM
 REVISED

 CHECKED
 KMP
 REVISED

 PLOT SCALE
 =
 DRAWN
 KMS
 REVISED

 PLOT DATE
 =
 CHECKED
 KMP
 REVISED

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

SOUTHBOUND TOP OF NORTH APPROACH SLAB ELEVATIONS
STRUCTURE NO. 101-0213 & 101-0214

SHEET 26 OF 81 SHEETS

 F.A.I. RTE.
 SECTION
 COUNTY SHEETS
 TOTAL SHEETS NO.
 SHEET NO.

 39
 (201-3)R & (4-1, 5)R
 WINNEBAGO
 1885
 721

 CONTRACT NO. 64C24

Along Prop. @ 1-39 3 Spa. at 10'-0" 30'-0" – 20°37'41" Skew, typ. — Prop. ℚ I-39 2723+00 -Face of NB W. Parapet – Local Tangent to © 1-39 at Station 2724+32.54 *13'-6" * 35'-8" Stage 2/2B Construction -Prop. PGL (NB) -North End of South Approach Slab & Brg. S. Abut. South End of -South Approach Slab Bk. S. Abut. Stage Construction Line — * 15'-2½" Stage 3 Construction -Face of NB E. Parapet PLAN - NORTHBOUND TOP OF SOUTH APPROACH SLAB ELEVATIONS

FACE OF NB W. PARAPET

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF S. APPR. SLAB	2722+84.44	1.50	798.72	798.74
51 52	2722+94.44 2723+04.43	1.50 1.50	798.85 798.99	798.87 799.01
N. END OF S. APPR. SLAB	2723+14.43	1.50	799.11	799.14

PROP. PGL (NB)

Location	Station	Offset	Theoretical Grade Elevations	Elevations
S. END OF S. APPR. SLAB	2722+89.25	13.50	799.14	799.16
51 52	2722+99.22 2723+09.20	13.50 13.50	799.28 799.41	799.30 799.43
N. END OF S. APPR. SLAB	2723+19.18	13.50	799.53	799.56

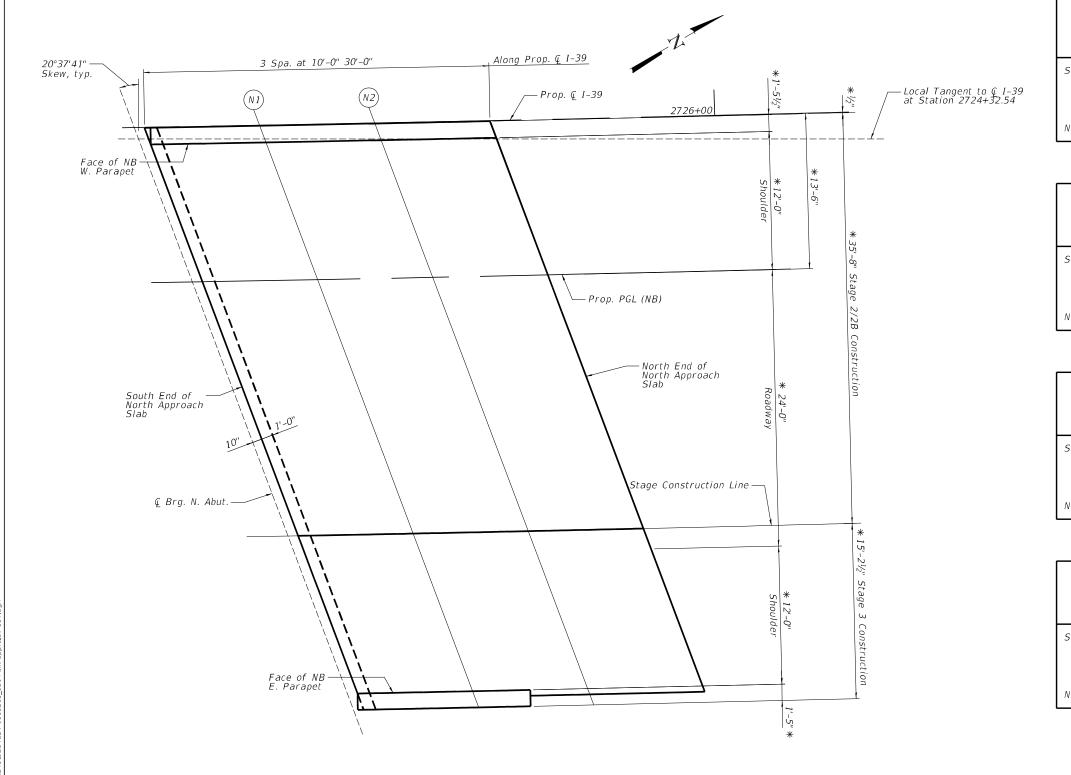
NB STAGE CONSTRUCTION LINE

Location	Station	Offset	Theoretical Grade Elevations	Elevations
S. END OF S. APPR. SLAB	2722+98.09	35.71	799.93	799.95
S1 S2	2723+08.03 2723+17.97	35.71 35.71	800.06 800.19	800.08 800.21
N. END OF S. APPR. SLAB	2723+27.91	35.71	800.31	800.33

FACE OF NB E. PARAPET

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF S. APPR. SLAB	2723+03.55	49.50	800.41	800.44
51 52	2723+13.47 2723+23.38	49.50 49.50	800.54 800.67	800.56 800.69
N. END OF S. APPR. SLAB	2723+33.30	49.50	800.79	800.81

* Radial dimension


benesch

Alfred Benesch & Company
35 W Wicker Drive, Sulie 2030
Chleago, Blincie 50001

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - KMP	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - KMP	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

NORTHBOUND TOP OF SOUTH APPROACH SLAB ELEVATIONS STRUCTURE NO. 101-0213 & 101-0214

FACE OF NB W. PARAPET

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF N. APPR. SLAB	2725+51.00	1.50	801.11	801.13
N 1 N 2	2725+61.00 2725+71.00	1.50 1.50	801.15 801.19	801.17 801.21
N. END OF N. APPR. SLAB	2725+81.00	1.50	801.22	801.24

PROP. PGL (NB)

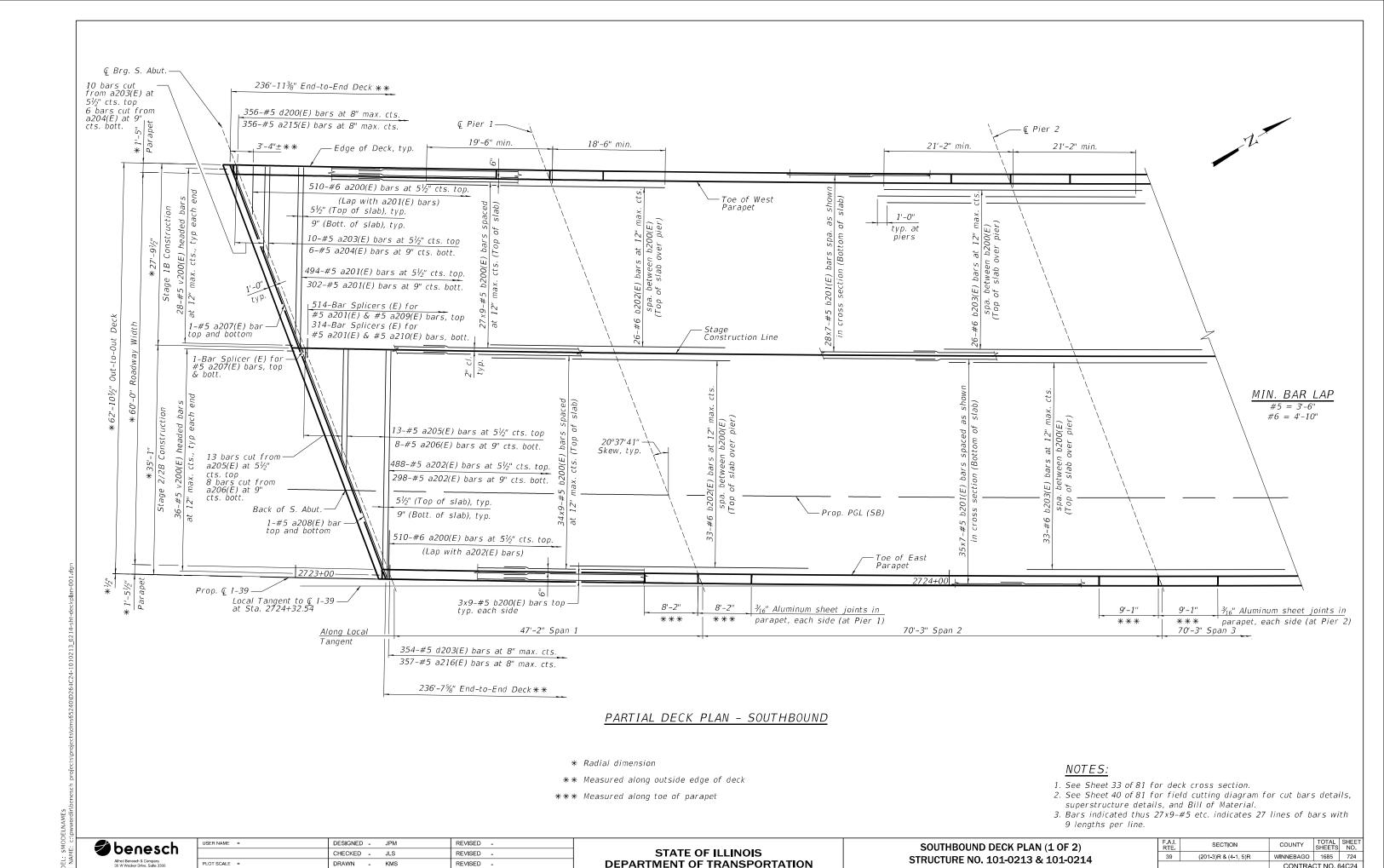
Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF N. APPR. SLAB	2725+55.28	13.50	801.49	801.51
N 1 N 2	2725+65.26 2725+75.23	13.50 13.50	801.53 801.56	801.55 801.58
N. END OF N. APPR. SLAB	2725+85.21	13.50	801.59	801.61

NB STAGE CONSTRUCTION LINE

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted for Grinding
S. END OF N. APPR. SLAB	2725+63.15	35.71	802.19	802.21
N 1 N 2	2725+73.09 2725+83.03	35.71 35.71	802.22 802.25	802.24 802.27
N. END OF N. APPR. SLAB	2725+92.97	35.71	802.28	802.30

FACE OF NB E. PARAPET

Location	Station	Offset	Theoretical Grade Elevations	Elevations
S. END OF N. APPR. SLAB	2725+68.01	49.50	802.62	802.64
N1 N2	2725+77.93 2725+87.84	49.50 49.50	802.65 802.68	802.67 802.70
N. END OF N. APPR. SLAB	2725+97.76	49.50	802.71	802.73

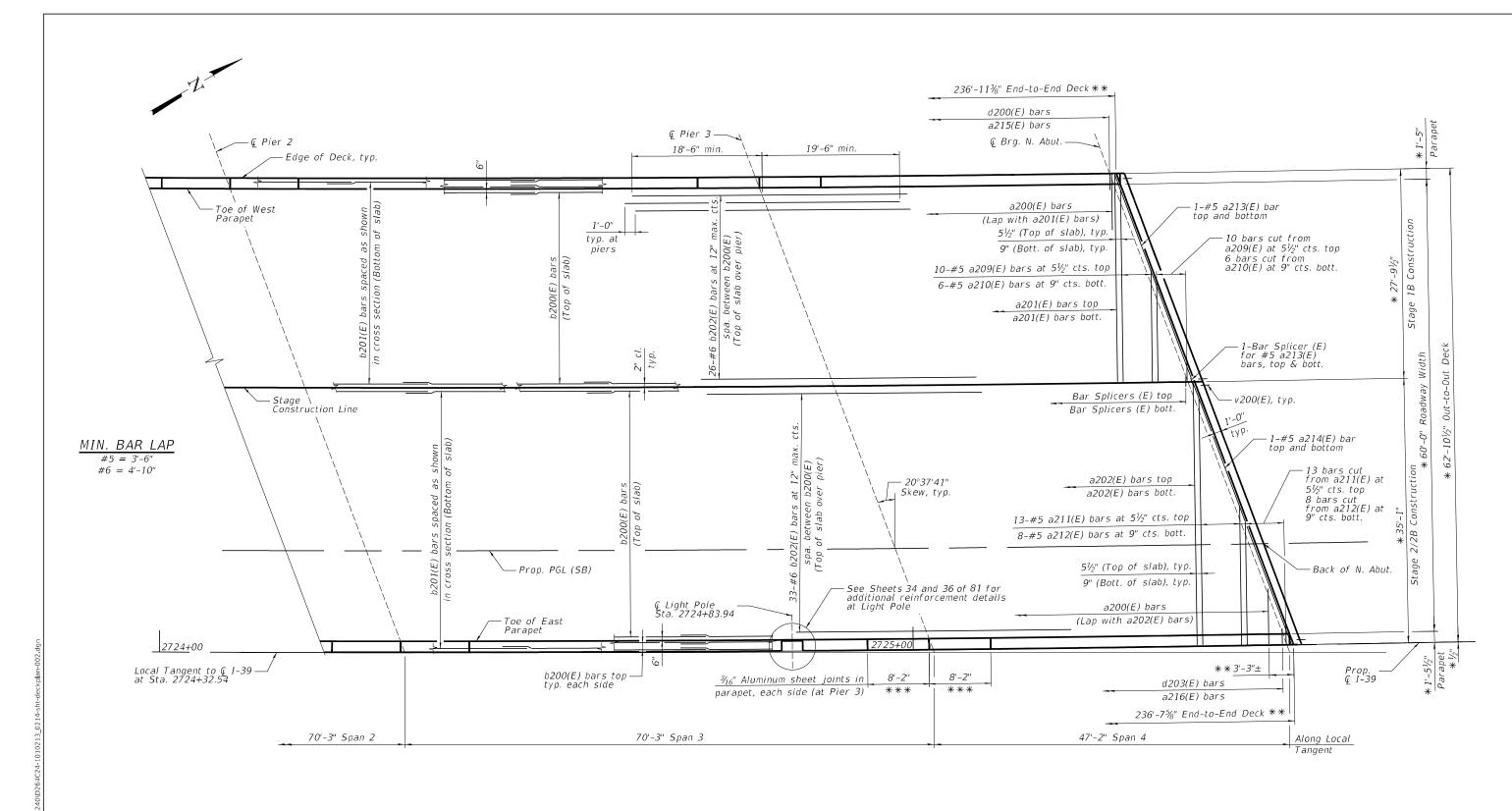

* Radial dimension

PLAN - NORTHBOUND TOP OF NORTH APPROACH SLAB ELEVATIONS

benesch

Alfred Benesch & Company
35 W Wesker Drive, Suke 3300
Chizogo Blinds (1900) ech bis 19900

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - KMP	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - KMP	REVISED -



CONTRACT NO. 64C24

SHEET 29 OF 81 SHEETS

CHECKED -

REVISED .

PARTIAL DECK PLAN - SOUTHBOUND

- * Radial dimension
- ** Measured along outside edge of deck
- *** Measured along toe of parapet

NOTES:

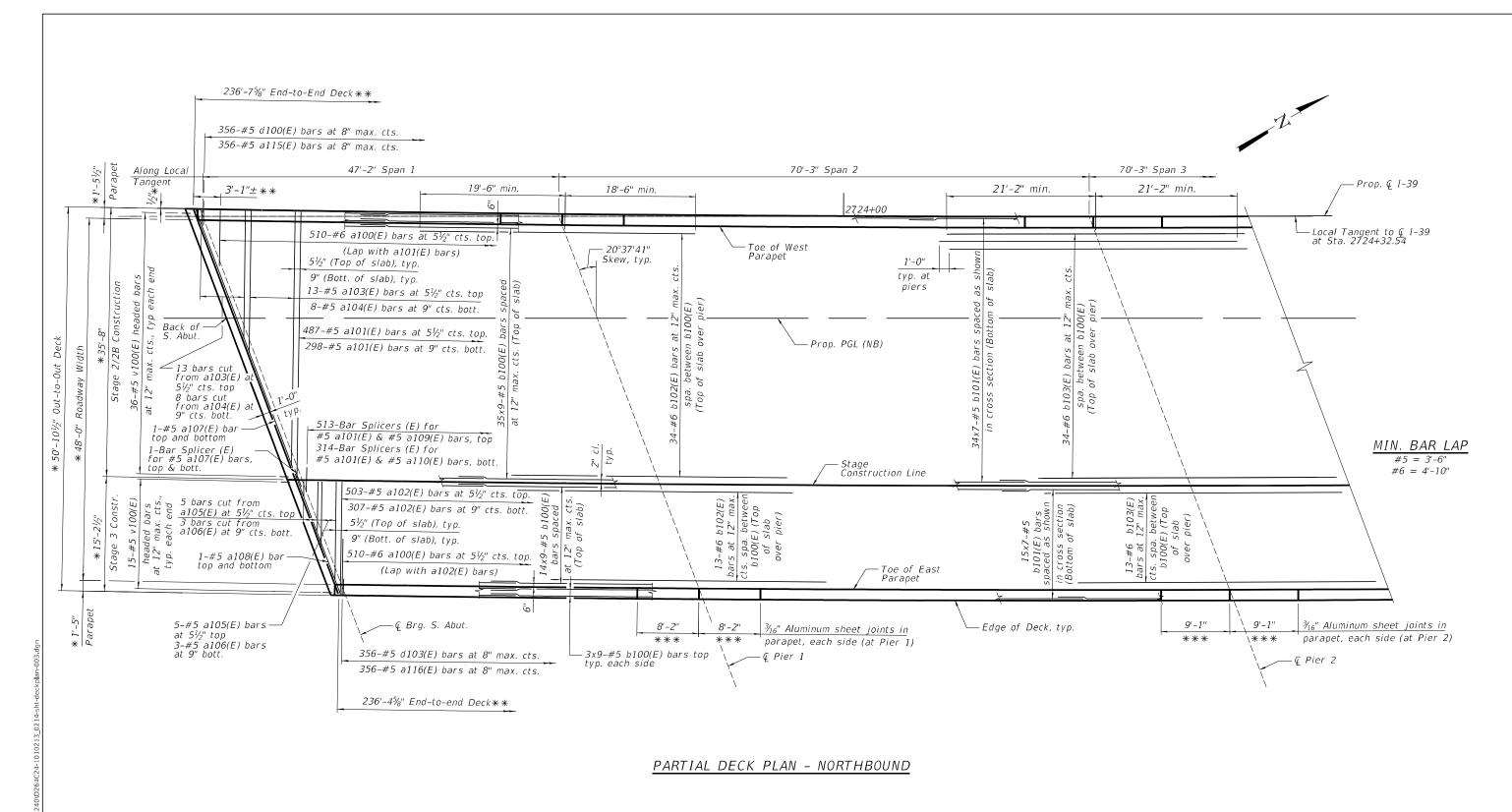
- 1. See Sheet 33 of 81 for deck cross section.
- 2. See Sheet 40 of 81 for field cutting diagram for cut bars details, superstructure details, and Bill of Material.
- 3. Bars indicated thus 27x9-#5 etc. indicates 27 lines of bars with 9 lengths per line.

3	oene	sch
3 C	lfred Benesch & Com 5 W Wacker Drive, Si hicago, Illinois 60601 12-565-0450	ulte 3300

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

SOUTHBOUND DECK PLAN (2 OF 2)
STRUCTURE NO. 101-0213 & 101-0214

SHEET 30 OF 81 SHEETS



 F.A.I. RTE.
 SECTION
 COUNTY SHEETS NO.
 TOTAL SHEETS NO.
 SHEETS NO.

 39
 (201-3)R & (4-1, 5)R
 WINNEBAGO
 1685
 725

 CONTRACT NO. 64C24

 ILLINOIS FED. AID PROJECT

4/22/2025 12:40:36 PM

- * Radial dimension
- ** Measured along outside edge of deck
- *** Measured along toe of parapet

NOTES:

- 1. See Sheet 33 of 81 for deck cross section.
- 2. See Sheet 40 of 81 for field cutting diagram for cut bars details, superstructure details, and Bill of Material.
- 3. Bars indicated thus 27x9-#5 etc. indicates 27 lines of bars with 9 lengths per line.

3	bene	esch
	Alfred Benesch & Co 35 W Wacker Drive, Chicago, Illinois 606 312-565-0450	Sulte 3300

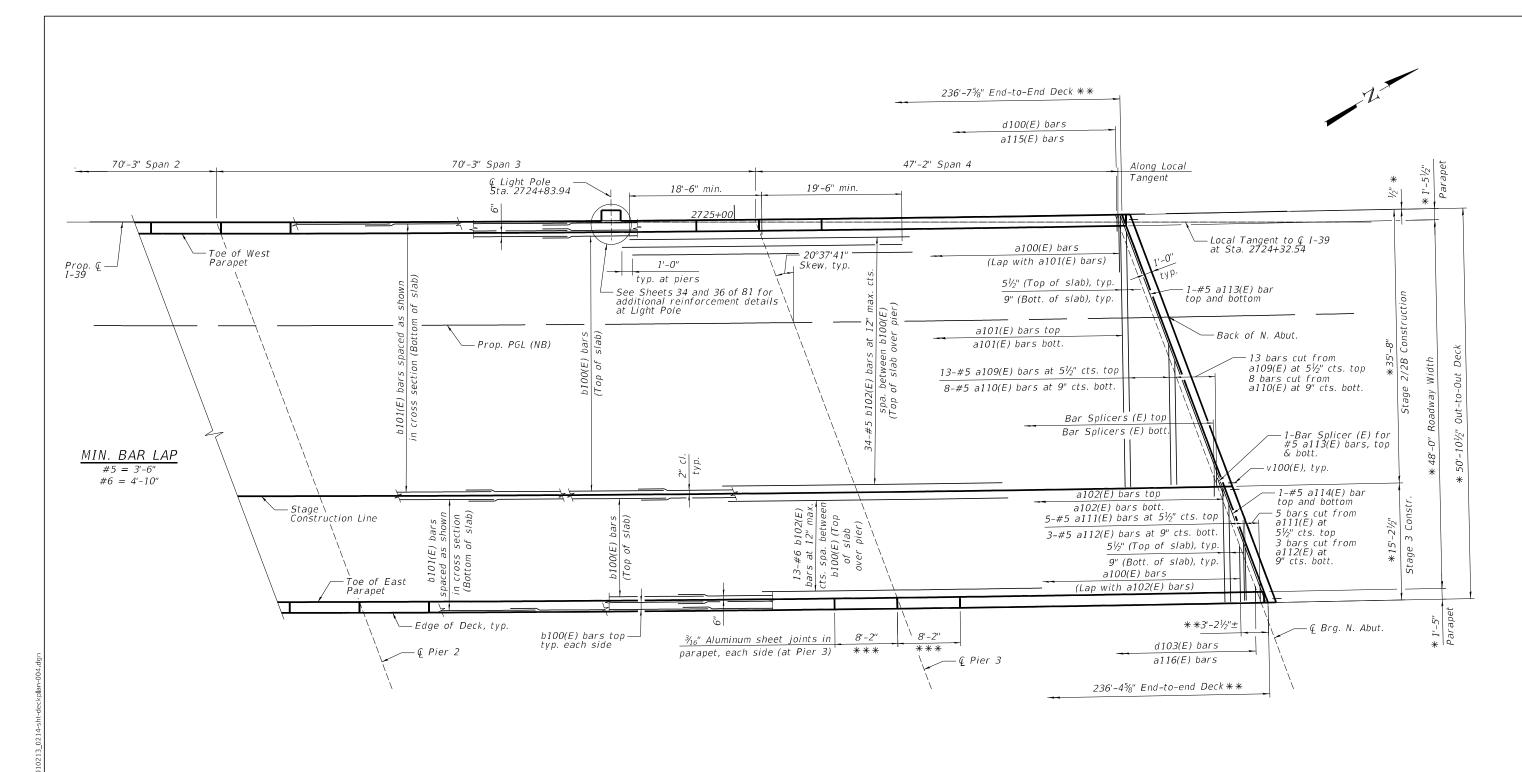
 USER NAME
 =
 DESIGNED
 JPM
 REVISED

 CHECKED
 JLS
 REVISED

 PLOT SCALE
 =
 DRAWN
 KMS
 REVISED

 PLOT DATE
 =
 CHECKED
 JLS
 REVISED

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION


NORTHBOUND DECK PLAN (1 OF 2)
STRUCTURE NO. 101-0213 & 101-0214

SHEET 31 OF 81 SHEETS

F.A.I. SECTION COUNTY TOTAL SHEETS NO.

39 (201-3)R & (4-1, 5)R WINNEBAGO 1685 726

CONTRACT NO. 64C24

PARTIAL DECK PLAN - NORTHBOUND

- * Radial dimension
- ** Measured along outside edge of deck
- *** Measured along toe of parapet

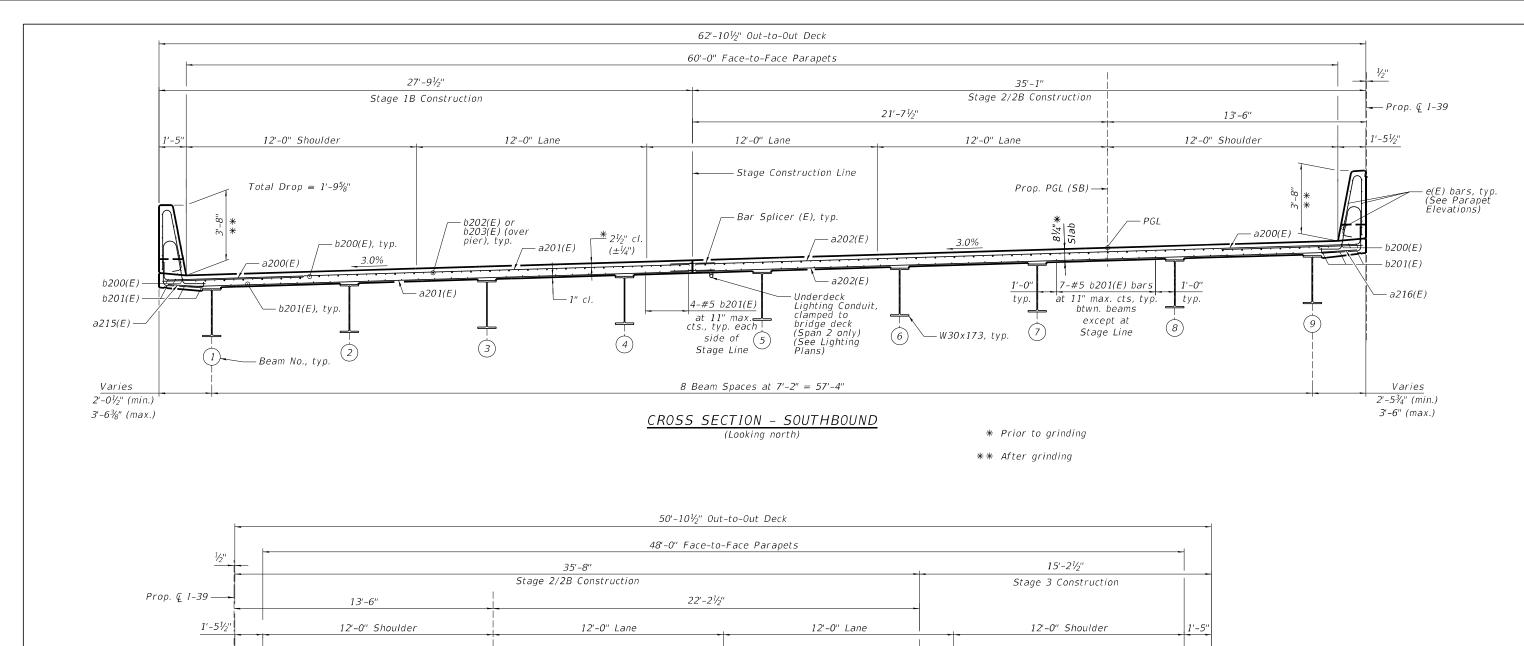
NOTES:

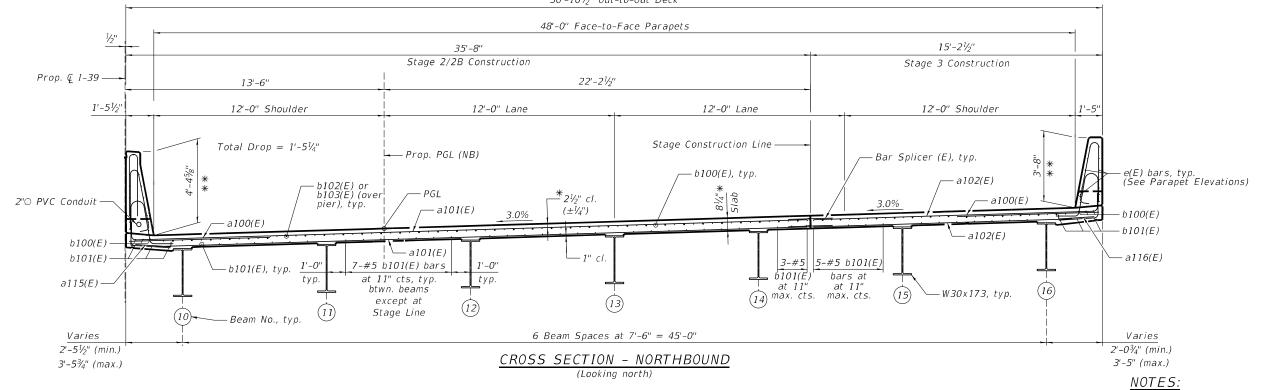
- 1. See Sheet 33 of 81 for deck cross section.
- 2. See Sheet 40 of 81 for field cutting diagram for cut bars details, superstructure details, and Bill of Material.
- 3. Bars indicated thus 27x9-#5 etc. indicates 27 lines of bars with 9 lengths per line.

benesch
Alfred Benesch & Company
35 WWeder Drives, Subr 3300
Chicago, Illinoids 05001
312-0650-0450 Job No. 10000

USER NAME =	DESIGNED - JPM	REVISED -	
	CHECKED - JLS	REVISED -	
PLOT SCALE =	DRAWN - KMS	REVISED -	
PLOT DATE =	CHECKED - JLS	REVISED -	

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION


NORTHBOUND DECK PLAN (2 OF 2)
STRUCTURE NO. 101-0213 & 101-0214


SHEET 32 OF 81 SHEETS

 F.A.I. RTE.
 SECTION
 COUNTY VINNEBAGO
 TOTAL SHEETS NO.
 SHEETS NO.

 39
 (201-3)R & (4-1, 5)R
 WINNEBAGO
 1685
 727

 CONTRACT NO. 64C24

Shenesch Alred Benesch & Company 33 Y Wester Drive: Sale 3300 on 12-265-2610 Sind Leo No. 1 18800

 USER NAME
 =
 DESIGNED
 JPM
 REVISED

 CHECKED
 JLS
 REVISED

 PLOT SCALE
 =
 DRAWN
 KMS
 REVISED

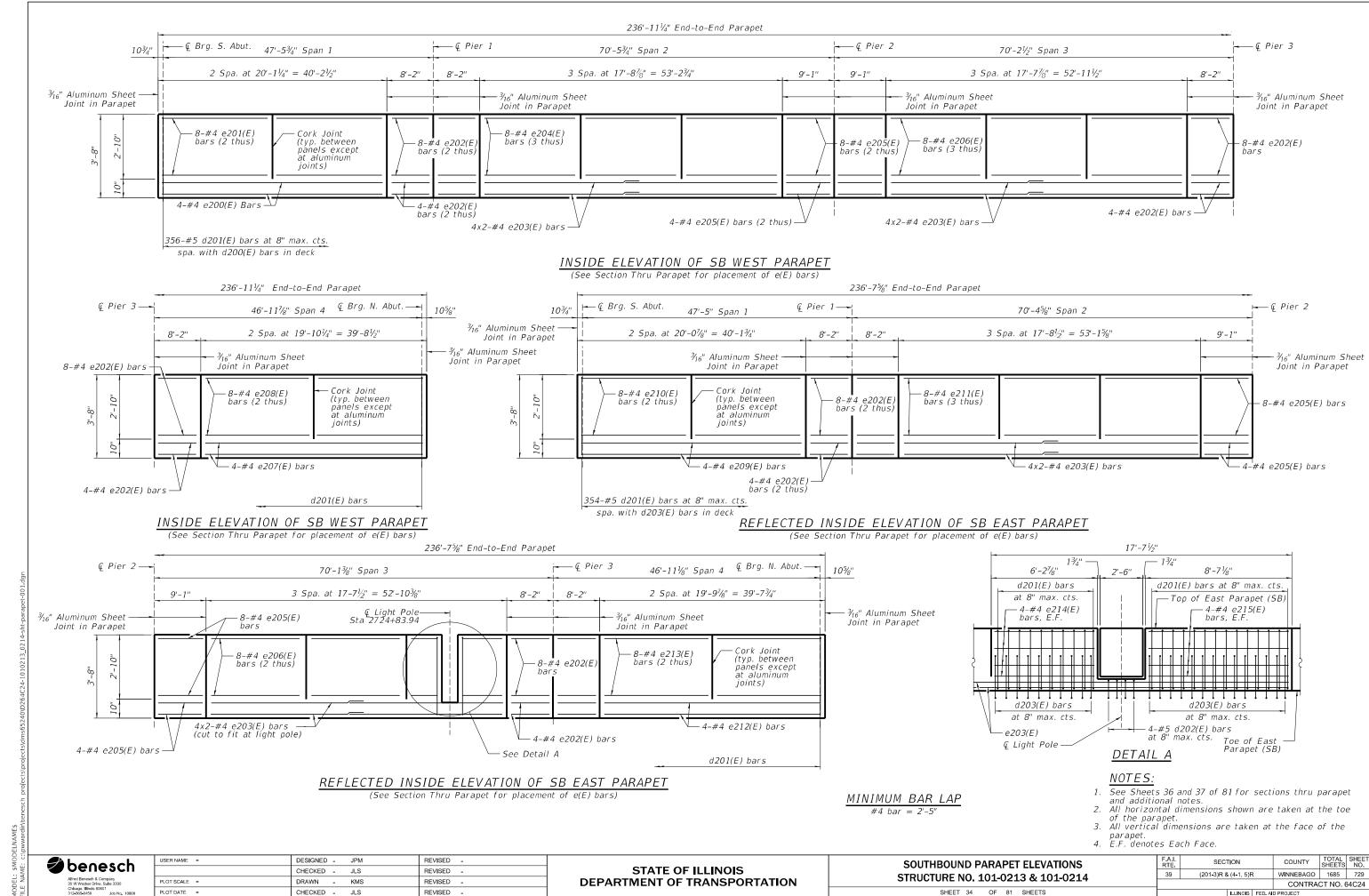
 PLOT DATE
 =
 CHECKED
 JLS
 REVISED

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION DECK CROSS SECTION

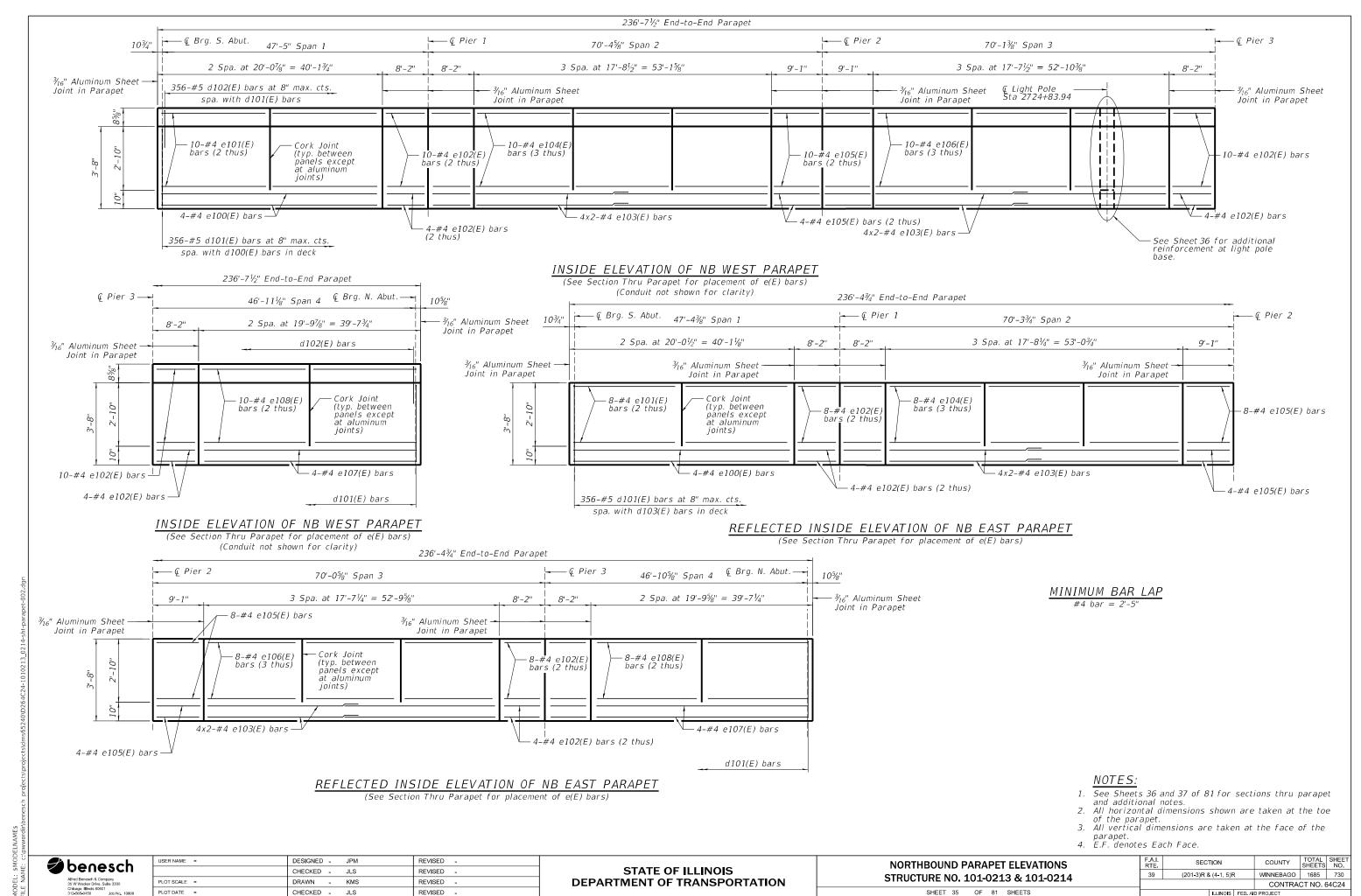
STRUCTURE NO. 101-0213 & 101-0214

SHEET 33 OF 81 SHEETS

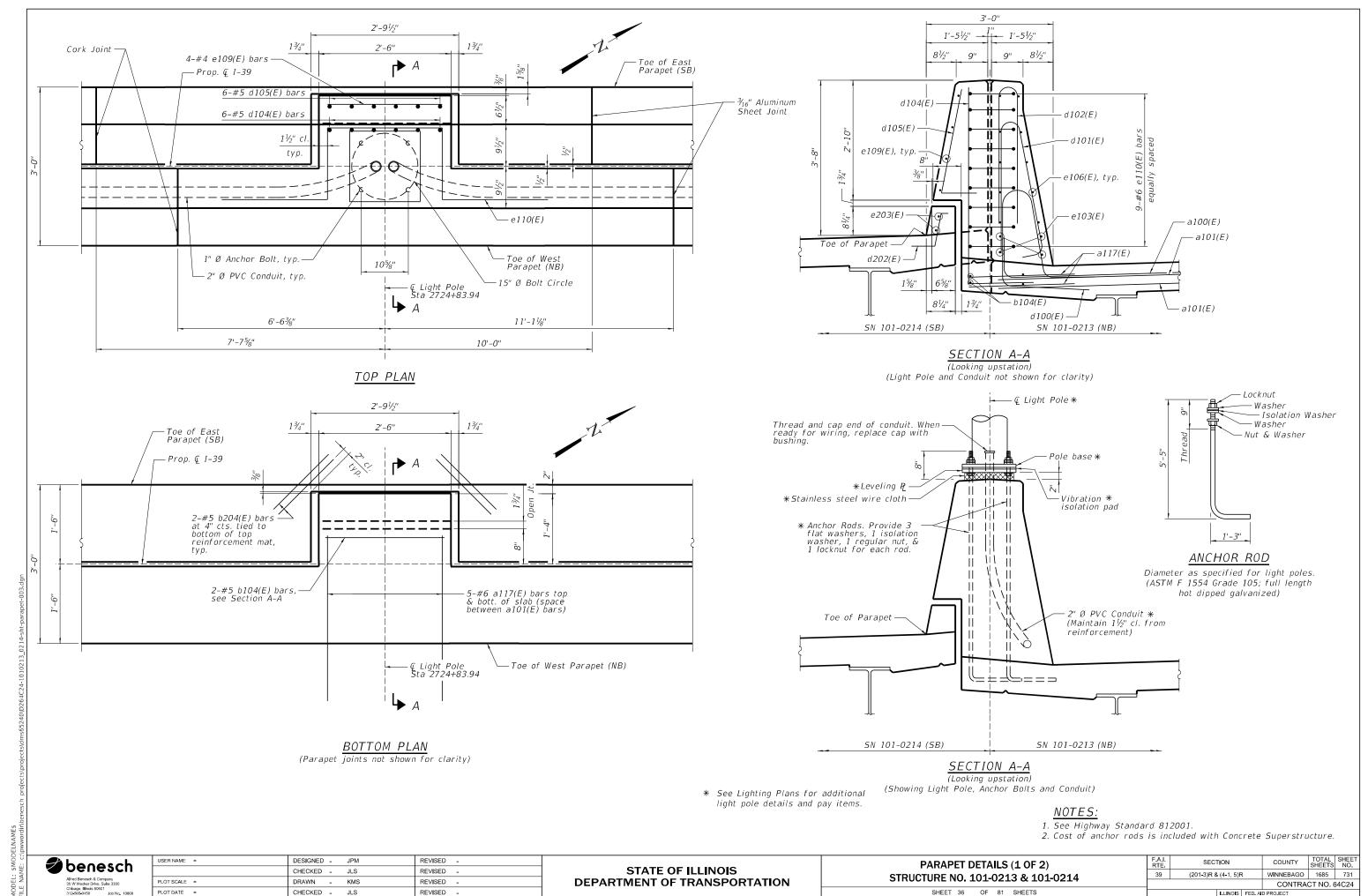
 F.A.I. RTE.
 SECTION
 COUNTY
 TOTAL SHEETS
 SHEET NO.

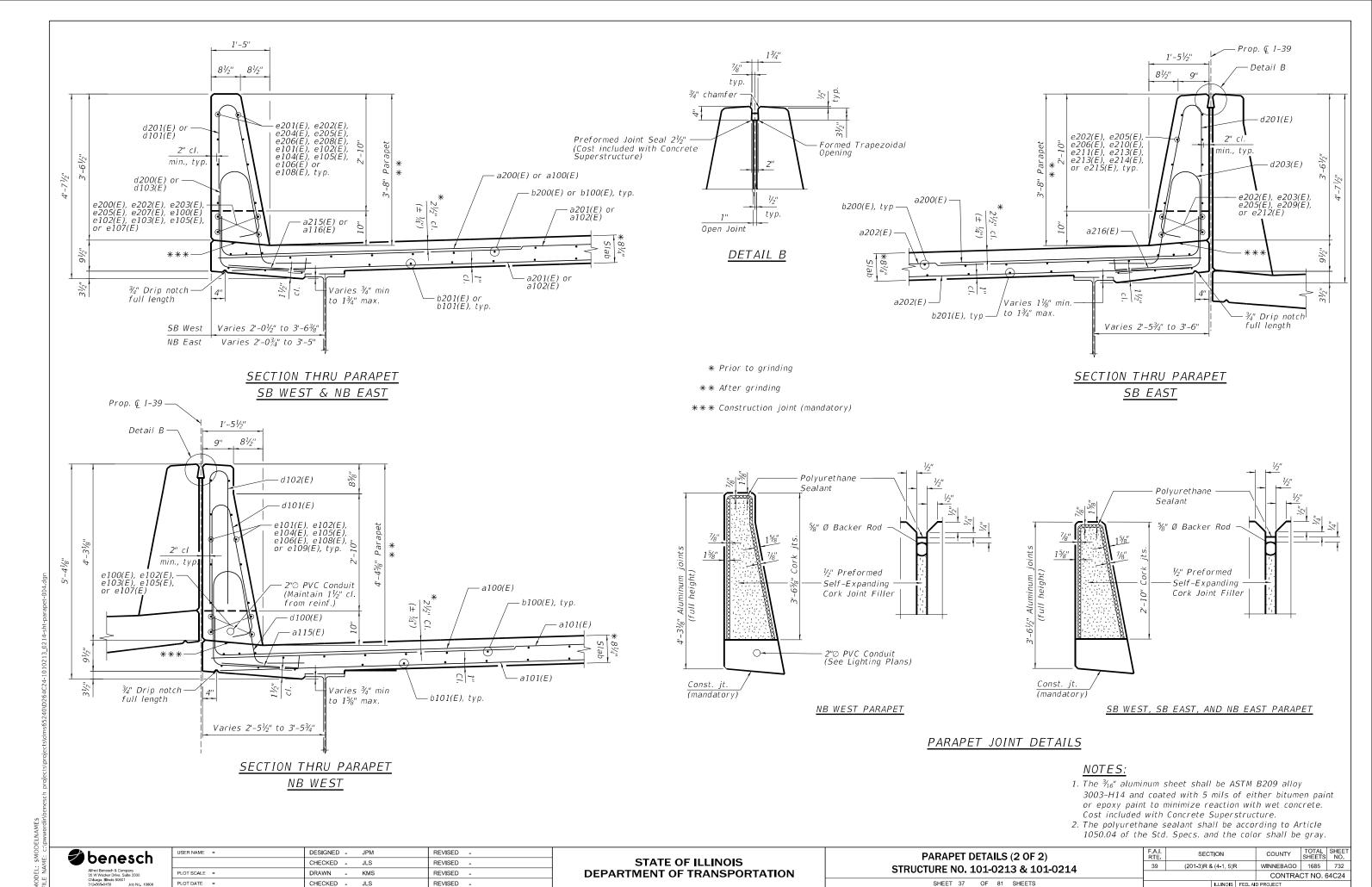

 39
 (201-3)R & (4-1, 5)R
 WINNEBAGO
 1685
 728

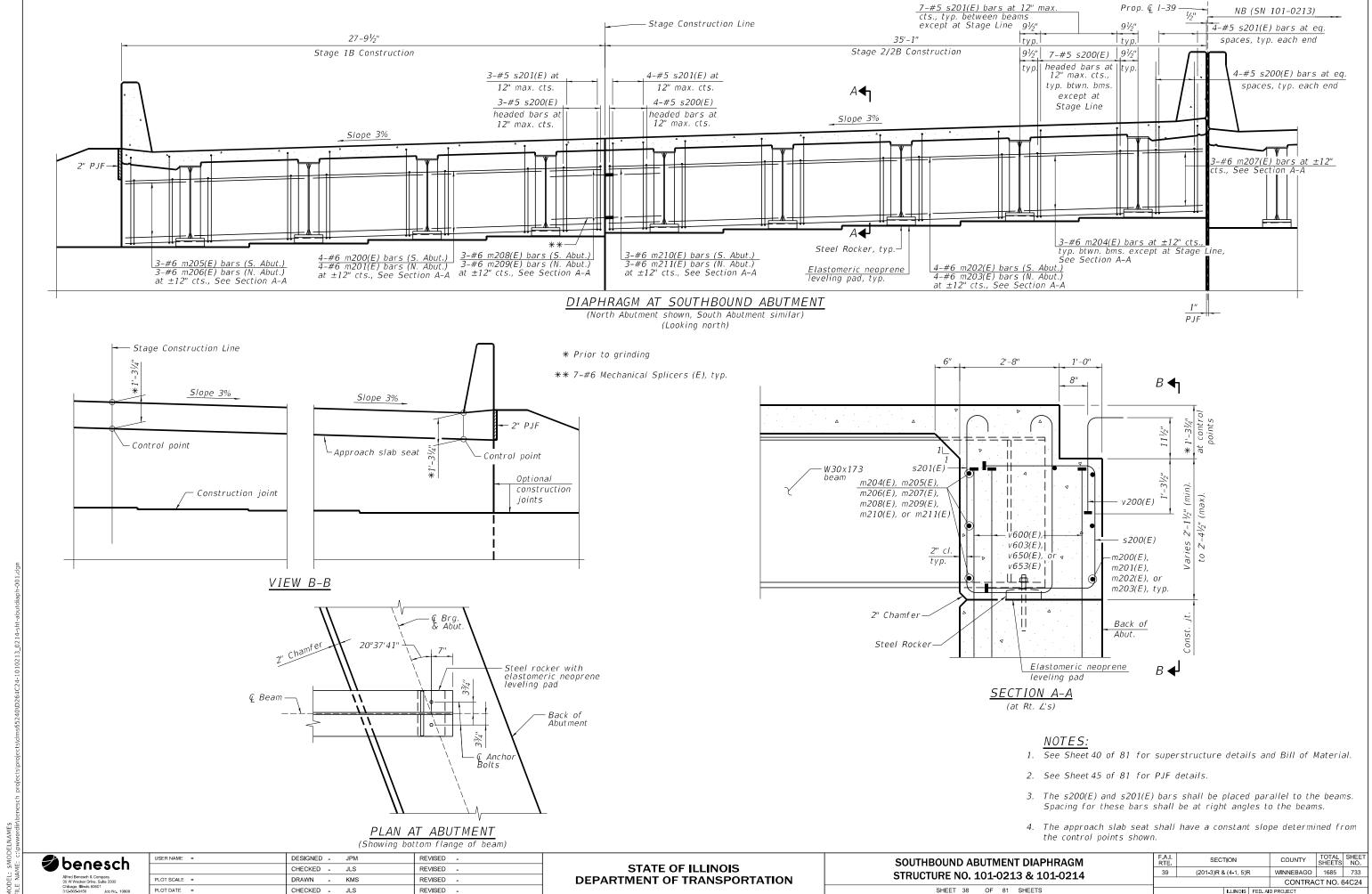
 CONTRACT NO. 64C24

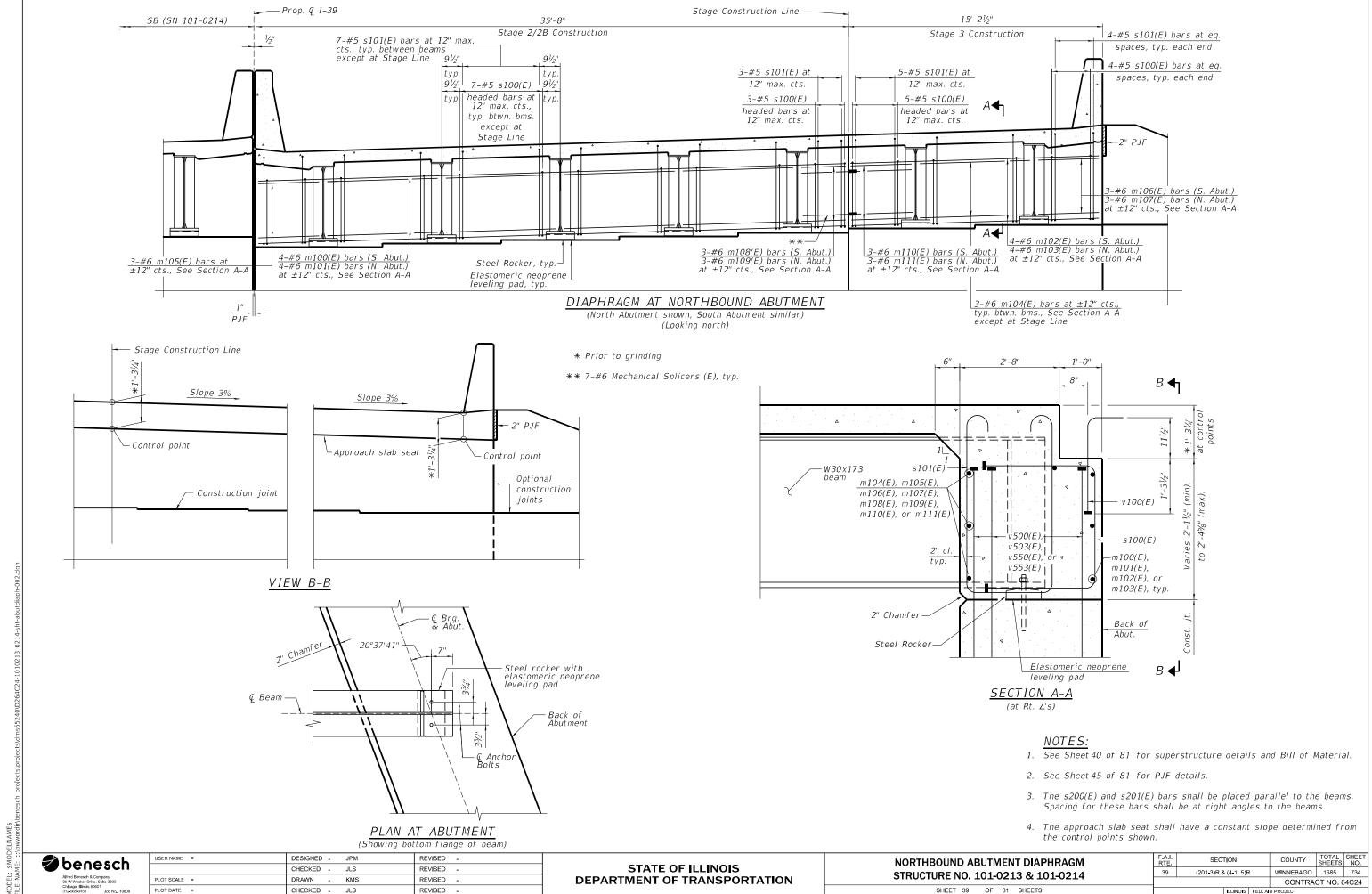

1. All dimensions shown are radial except those to proposed beams, which are normal to the proposed

2. Flare longitudinal bars at stage lines as required to maintain 2" clear cover along the length of stage line.


local tangent.

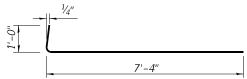

4/22/2025 12:40:57 PM


4/22/2025 12:41:01 PM

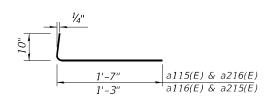

4/22/2025 12:41:06 PM

4/22/2025 12:41:12 PM

4/22/2025 12:41:15 PM


4/22/2025 12:41:19 PM

SUPERSTRUCTURE BILL OF MATERIAL SB (SN 101-0214)


Bar	No.	Size	Length	Shape
a200(E)	1020	#6	8'-4"	L
a201(E)	796	#5	27'-6"	
a202(E)	786	#5	34'-9"	
a203(E)	10	#5	29'-7"	
a204(E)	6	#5	29'-3"	
a205(E)	13	#5	36'-11"	
a206(E)	8	#5	37'-0"	
a207(E)	2	#5	29'-7"	
a208(E)	2	#5	37'-5"	
a209(E)	10	#5	30'-3"	
a210(E)	6	#5	31'-0"	
a211(E)	13	#5	36'-8"	
a212(E)	8	#5	36'-11"	
a213(E)	2	#5	29'-2"	
a214(E)	2	#5	36'-11"	
a215(E)	356	#5	2'-1"	L
a216(E)	357	#5	2'-5"	L
b200(E)	603	#5	30'-0"	
b201(E)	441	#5	37'-6"	
b202(E)	118	#6	39'-6"	
b203(E)	59	#6	43'-10"	
b204(E)	4	#5	2'-0"	
				_
d200(E)	356	#5	7'-5"	
d201(E)	710	#5	7'-0"	17
d202(E)	4	#5	1'-10"	
d203(E)	354	#5	7'-9"	
e200(E)	4	#4	39'-11"	
e201(E)	16	#4	19'-9"	
e202(E)	96	#4	7'-10"	
e203(E)	32	#4	27'-9"	
e204(E)	24	#4	17'-5"	
e205(E)	48	#4	8'-9"	
e206(E)	40	#4	17'-4"	
e207(E)	4	#4	39'-5"	
e208(E)	16	#4	19'-6"	
e209(E)	4	#4	39'-10"	
e210(E)	16	#4	19'-9"	
e211(E)	24	#4	17'-5"	
e212(E)	4	#4	39'-4"	
e213(E)	16	#4	19'-6"	
e214(E)	8	#4	5'-11"	
e215(E)	8	#4	8'-3"	

SUPERSTRUCTURE BILL OF MATERIAL SB (SN 101-0214) (CONT.)

Bar	Bar No. Size		Length	Shape	
m200(E)	4	#6	30'-0"		
m201(E)	4	#6	29'-7"		
m202(E)	4	#6	37'-4"		
m203(E)	4	#6	36'-10"		
m204(E)	42	#6	7'-2"		
m205(E)	3	#6	3'-3"		
m206(E)	3	#6	2'-5"		
m207(E)	6	#6	2'-3"		
m208(E)	3	#6	3'-3"		
m209(E)	3	#6	3'-9"		
m210(E)	3	#6	3'-11"		
m211(E)	3	#6	3'-5"		
s200(E)	128	#5	6'-10"	Π	
s201(E)	128) 128 #5	#5	9'-4"	П
v200(E)	128	#5	3'-1"	Ц.,	
Concrete .	Superstru	cture	Cu. Yd.	497.6	
Protective	Coat		Sq. Yd.	1,810	
Reinforce	ment Bars	Pound	134,150		
Ероху Соа	ated	1 ound	154,150		
Bridge De		Sg. Yd.	948		
Grooving (<i>Longitudii</i>	Jy. ru.	340		
Diamond (Sq. Yd.	1,474	
(Bridge S	ection)		Jy. 14.	1,4/4	

BARS a100(E) AND a200(E)

BARS a115(E), a116(E), a215(E), AND a216(E)

FIELD CUTTING DIAGRAM TABLE

SUPERSTRUCTURE BILL OF MATERIAL NB (SN 101-0213)

#6

#5

#5

#5

#5

#5

#5

#5 #5

#5

#5

#5

#5

#5

#5

#5

#5

#6

#5

#5

#6

#6

#5

#5

#5

#5

#5

#5

#5

#4

#4

#4

#4

#4

#4

#4

#4

#4

#4

#6

No.

1020

785

810

13

8

13

356

356

10

495

343

94

47

356

712

356

356

36

104

32

54

52

54

36

4

Size | Length | Shape

8'-4"

35'-4"

14'-11"

38'-1"

37'-0"

17'-7"

17'-3" 38'-0"

16'-0"

38'-2" 37'-3"

17'-0"

19'-5" 37'-6"

15'-10"

2'-5"

2'-1"

5'-6" 30'-0"

37'-6"

39'-6"

43'-10" 2'-2"

7'-9"

7'-0"

6'-8"

7'-5"

6'-7"

3'-4"

39'-10"

19'-9"

7'-10" 27'-9"

17'-5"

8'-9"

17'-4"

39'-4" 19'-6"

2'-2"

8'-11"

Bar

a100(E)

a101(E)

a102(E)

a103(E)

a104(E)

a105(E)

a106(E)

a107(E)

a108(E) a109(E)

a110(E)

a111(E)

a112(E)

a113(E)

a114(E) a115(E)

a116(E)

a117(E)

b100(E)

b101(E)

b102(E)

b103(E)

b104(E)

d100(E)

d101(E)

d102(E)

d103(E)

d104(E)

d105(E)

e100(E)

e101(E)

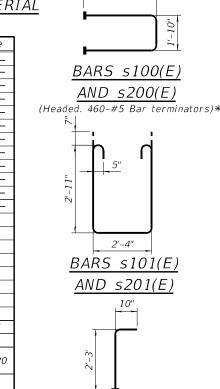
e102(E)

e103(E)

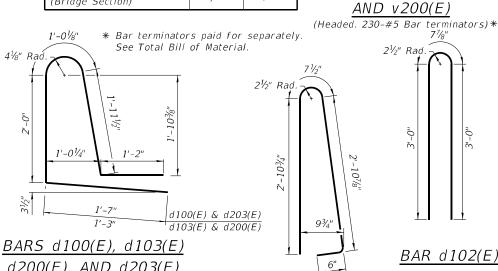
e104(E) e105(E)

e106(E)

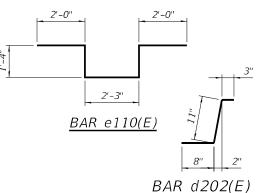
e107(E)

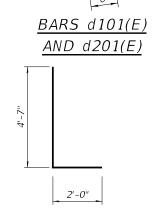

e108(E)

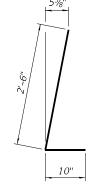
e109(E)


e110(E)

SUPERSTRUCTURE BILL OF MATERIAL NB (SN 101-0213) (CONT.)


Bar	No. Size		Length	Shape
m100(E)	4	#6	38'-5"	
m101(E)	4	#6	37'-11"	
m102(E)	4	#6	15'-11"	
m103(E)	4	#6	15'-9"	
m104(E)	30	#6	7'-6"	
m105(E)	6	#6	3'-3"	
m106(E)	3	#6	2'-6"	
m107(E)	3	#6	1'-10"	
m108(E)	3	#6	2'-8"	
m109(E)	3	#6	2'-2"	
m110(E)	<i>3</i>	#6	4'-11"	
m111(E)	3	#6	5'-5"	
s100(E)	102	#5	6'-10"	Π
s101(E)	102	#5	9'-4"	U
v 100(E)	102	#5	3'-1"	<u></u>
Concrete .	Superstru	cture	Cu. Yd.	430.6
Protective	Coat		Sq. Yd.	1,511
Reinforce Epoxy Coa		Pound	116,520	
Bridge De Grooving (Sq. Yd.	631	
Diamond ((Bridge S		Sq. Yd.	1,157	




BARS v100(E)

d200(E), AND d203(E) 2'-0"

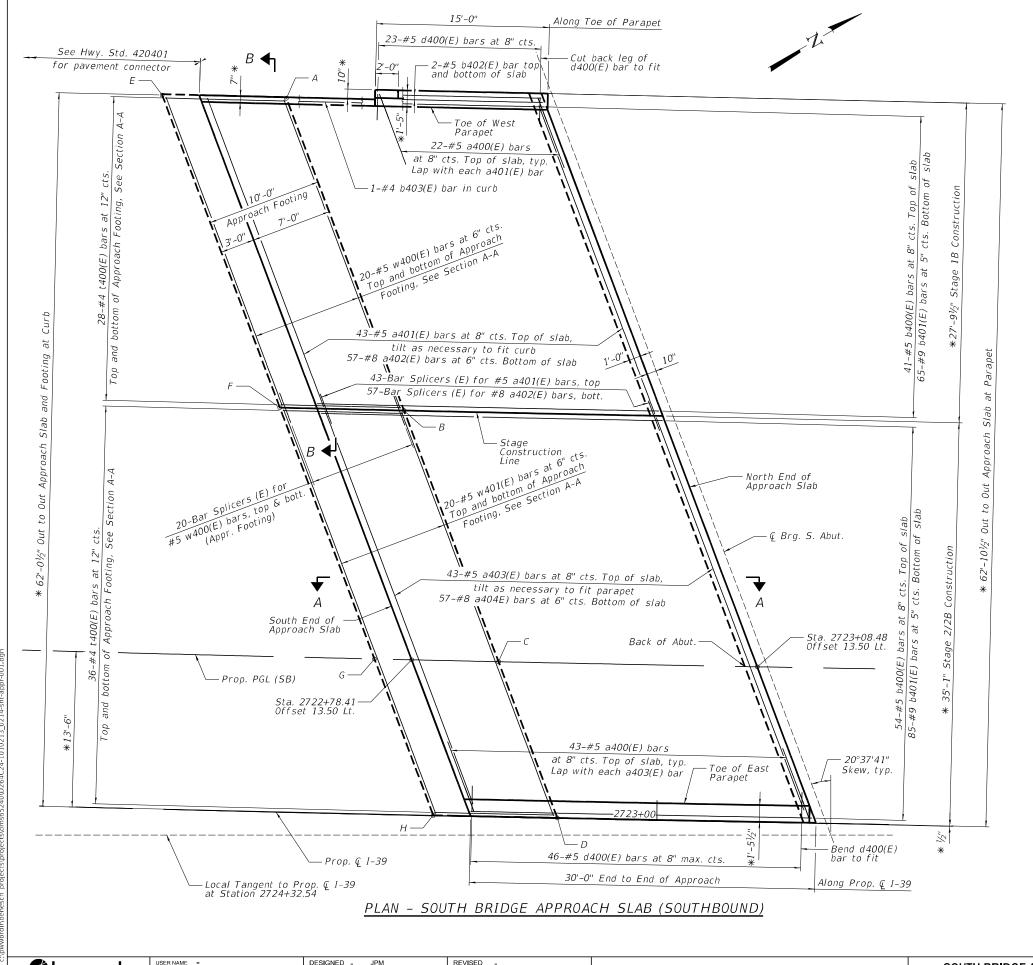
BAR d104(E)

BAR d105(E)

FIELD CUTTING DIAGRAM (See table for designation)

No. Size В D Bar Α С a103(E) 13 #5 3'-11" 34'-2" 18'-5" 19'-8" 33'-4" a104(E) 8 #5 3'-8" 17'-6" 19'-6" 3'-4" 14'-3" 9'-5" #5 8'-2" a105(E) a106(E) #5 3'-8" 13'-7" 7'-8" 9'-7" 13 3'-9" 34'-5" 18'-6" 19'-8" a109(E) #5 a110(E) #5 3'-7" 33'-8" 17'-7" 19'-8" 8 a111(E) #5 3'-0" 14'-0" 7'-11" 9'-1" a112(E) #5 4'-8" 14'-9" 8'-8"

Bar	No.	Size	Α	В	С	D
a203(E)	10	#5	3'-4"	26'-3"	14'-2"	15'-5"
a204(E)	6	#5	3'-9"	25'-6"	13'-8"	15'-7"
a205(E)	13	#5	3'-4"	33'-7"	17'-10"	19'-1"
a206(E)	8	#5	3'-8"	33'-4"	17'-6"	19'-6"
a209(E)	10	#5	3'-6"	26'-9"	14'-6"	15'-9"
a210(E)	6	#5	4'-6"	26'-6"	14'-6"	16'-6"
a211(E)	13	#5	3'-0"	33'-8"	17'-9"	18'-11"
a212(E)	8	#5	3'-5"	33'-6"	17'-5"	19'-6"


benesch

USER NAME =	DESIGNED -	JPM	REVISED	-
	CHECKED -	JLS	REVISED	-
PLOT SCALE =	DRAWN -	KMS	REVISED	-
PLOT DATE =	CHECKED -	JLS	REVISED	-

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

				DETAILS L3 & 101-0214	_
SHEET	40	OF	81	SHEETS	

F.A.I. RTE	SECTIO	N		COUNTY	TOTAL SHEETS	SHEET NO.
39	(201-3)R & (4-1, 5)R			WINNEBAGO	1685	735
				CONTRA	CT NO. 6	34C24
ILLINOIS FED. AI				D PROJECT		

TOP AND BOTTOM ELEVATIONS FOR APPROACH FOOTING

S. Approach (SB)				
Point/ Location	Station	0ff set	Тор	Bottom
Α	2722+66.30	-62.08	796.12	795.28
В	2722+77.25	-35.13	797.08	796.25
С	2722+85.97	-13.50	797.85	797.02
D	2722+91.36	-0.04	798.33	797.49
E	2722+55.41	-62.08	795.96	795.12
F	2722+66.41	-35.13	796.93	796.09
G	2722+75.17	-13.50	797.70	796.87
Н	2722+80.59	-0.04	798.18	797.35

* Radial dimension

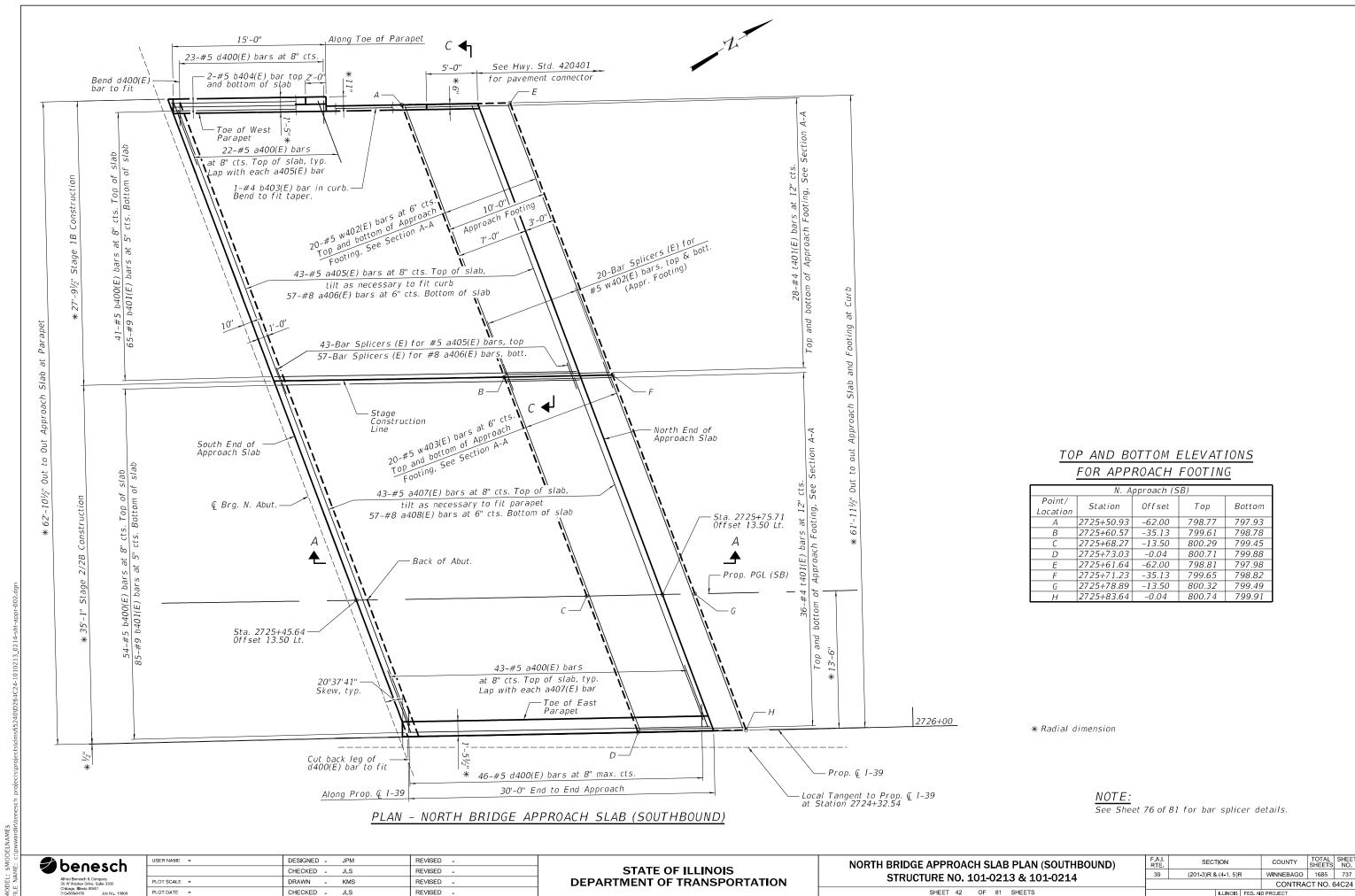
NOTF

See Sheet 76 of 81 for bar splicer details.

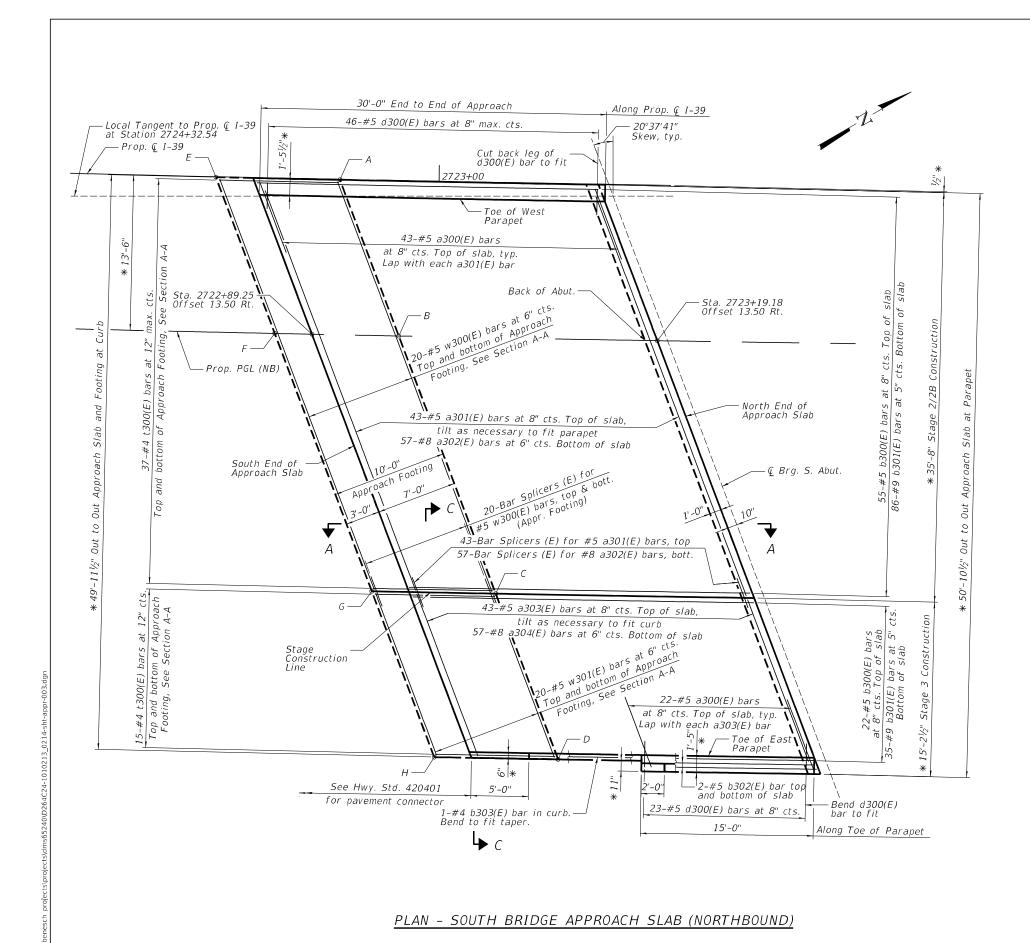
 USER NAME
 =
 DESIGNED
 JPM
 REVISED

 CHECKED
 JLS
 REVISED

 PLOT SCALE
 =
 DRAWN
 KMS
 REVISED


 PLOT DATE
 =
 CHECKED
 JLS
 REVISED

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION


SOUTH BRIDGE APPROACH SLAB PLAN (SOUTHBOUND)
STRUCTURE NO. 101-0213 & 101-0214

F.A.I.	SECTION	COUNTY	TOTAL SHEETS	NO.
39	(201-3)R & (4-1, 5)R	WINNEBAGO	1685	736
CONTRACT NO. 64C24		ILLINOIS	FED. AID PROJECT	

4/22/2025 12:41:26 PM

TOTAL SHEET NO.

TOP AND BOTTOM ELEVATIONS FOR APPROACH FOOTING

S. Approach (NB)					
Point/	Station	Offset	Тор	Bottom	
Location					
Α	2722+91.40	0.04	797.52	796.69	
В	2722+96.77	13.50	798.00	797.16	
С	2723+05.59	35.71	798.78	797.94	
D	2723+11.23	50.00	799.28	798.45	
Ε	2722+80.62	0.04	797.37	796.54	
F	2722+86.02	13.50	797.85	797.02	
G	2722+94.88	35.7 1	798.64	797.80	
Н	2723+00.54	50.00	799.14	798.31	

* Radial dimension

NOTF:

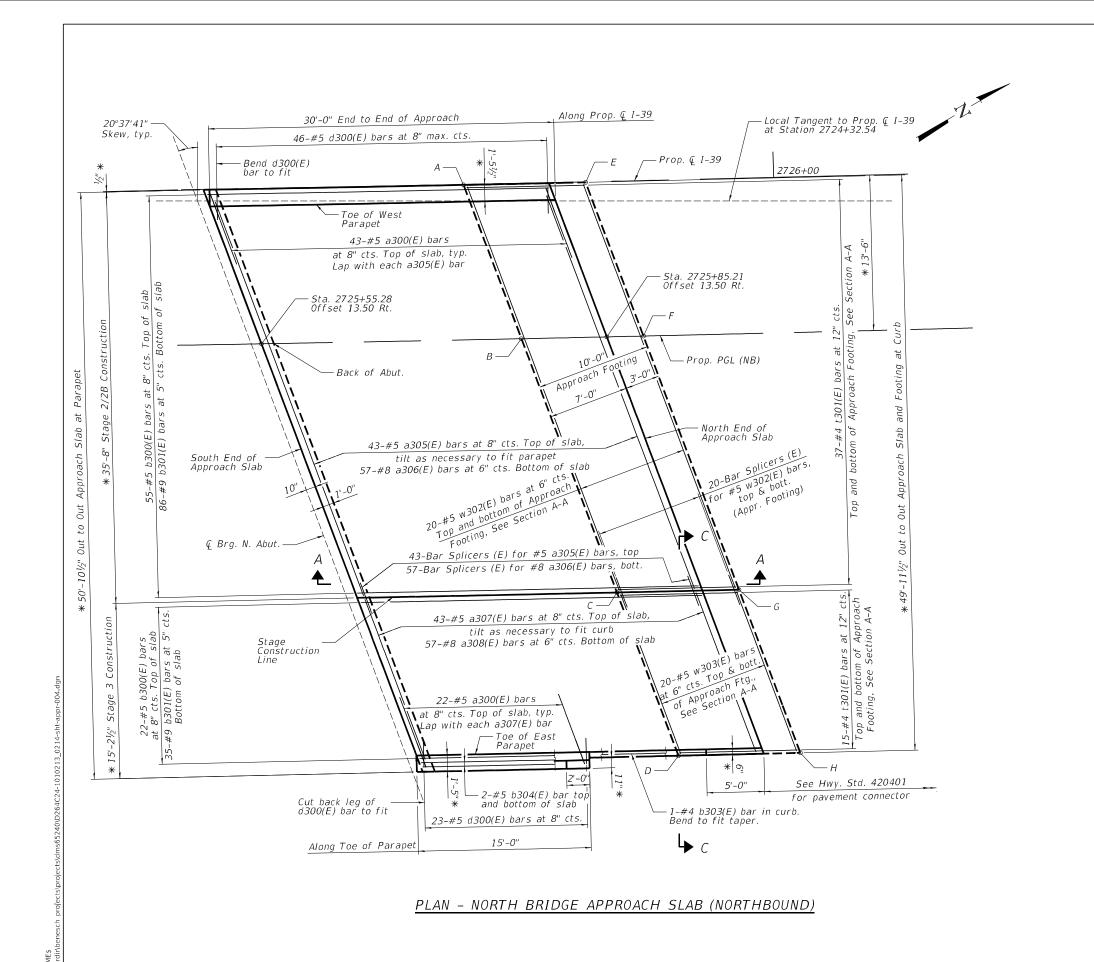
See Sheet 76 of 81 for bar splicer details.

benesch

Alfred Benesch & Company
39 W Wecker Drive, 2440 3300
Chicago, Illinois 68601
312-685-6460 Job No. 10800

 USER NAME
 =
 DESIGNED
 JPM
 REVISED

 CHECKED
 JLS
 REVISED


 PLOT SCALE
 =
 DRAWN
 KMS
 REVISED

 PLOT DATE
 =
 CHECKED
 JLS
 REVISED

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

SOUTH BRIDGE APPROACH SLAB PLAN (NORTHBOUND)
STRUCTURE NO. 101-0213 & 101-0214

SHEET 43 OF 81 SHEETS

TOP AND BOTTOM ELEVATIONS FOR APPROACH FOOTING

				_		
	N. Approach (NB)					
Point/ Location	Station	Offset	Тор	Bottom		
Α	2725+73.06	0.04	799.90	799.07		
В	2725+77.81	13.50	800.32	799.49		
С	2725+85.59	35.71	801.01	800.18		
D	2725+90.58	50.00	801.45	800.62		
Ε	2725+83.66	0.04	799.94	799.10		
F	2725+88.39	13.50	800.35	799.52		
G	2725+96.13	35.71	801.04	800.21		
Н	2726+01.09	50.00	801.48	800.65		

* Radial dimension

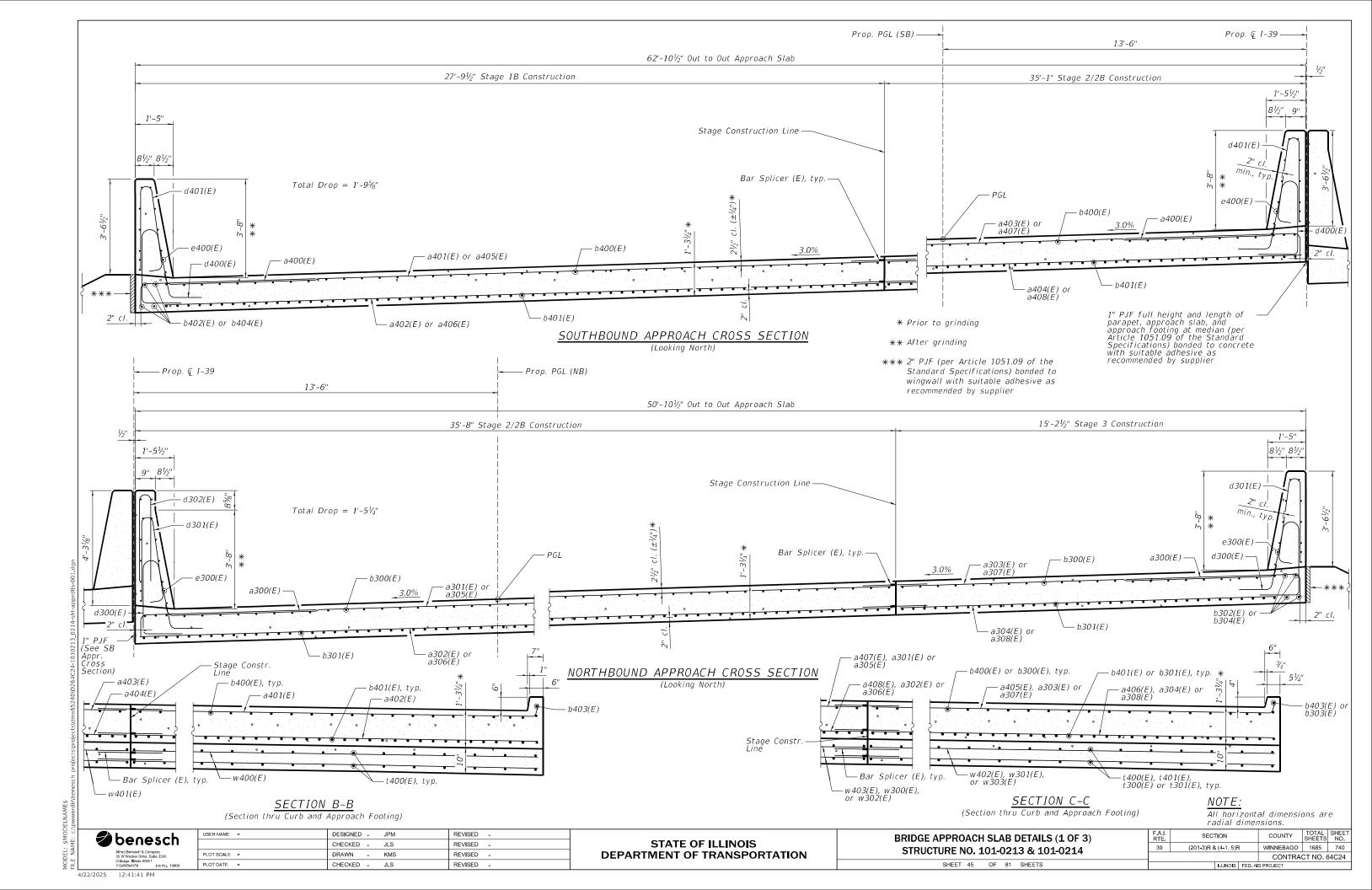
NOTF:

See Sheet 76 of 81 for bar splicer details.

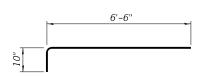
benesch
Alfred Benesch & Company
39 W Wucker Driv. Salter 3300
Chicago. Illinois 60801
312-656-0460 Job No. 10800

 USER NAME
 =
 DESIGNED
 JPM
 REVISED

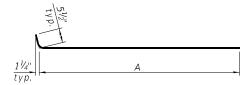
 CHECKED
 JLS
 REVISED

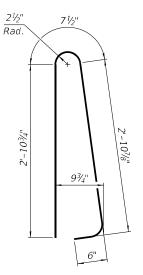

 PLOT SCALE
 =
 DRAWN
 KMS
 REVISED

 PLOT DATE
 =
 CHECKED
 JLS
 REVISED


STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

NORTH BRIDGE APPROACH SLAB PLAN (NORTHBOUND)
STRUCTURE NO. 101-0213 & 101-0214


SHEET 44 OF 81 SHEETS



BARS a400(E) AND a300(E)

BARS a401(E), a403(E), a405(E), a407(E), a301(E), a303(E), a305(E), AND a307(E)

Bar	Α
a401(E)	28'-6"
a403(E)	36'-4"
a405(E)	28'-1"
a407(E)	35'-8"
a301(E)	36'-11"
a303(E)	14'-11"
a305(E)	36'-5"
a307(F)	14'-8"

BARS d401(E) AND d301(E)

1'-0'''

1'-0'''

1'-0'''

1'-2''

1'-6''

BARS d400(E) AND d300(E)

BILL OF MATERIAL SOUTH APPROACH SB (SN 101-0214)

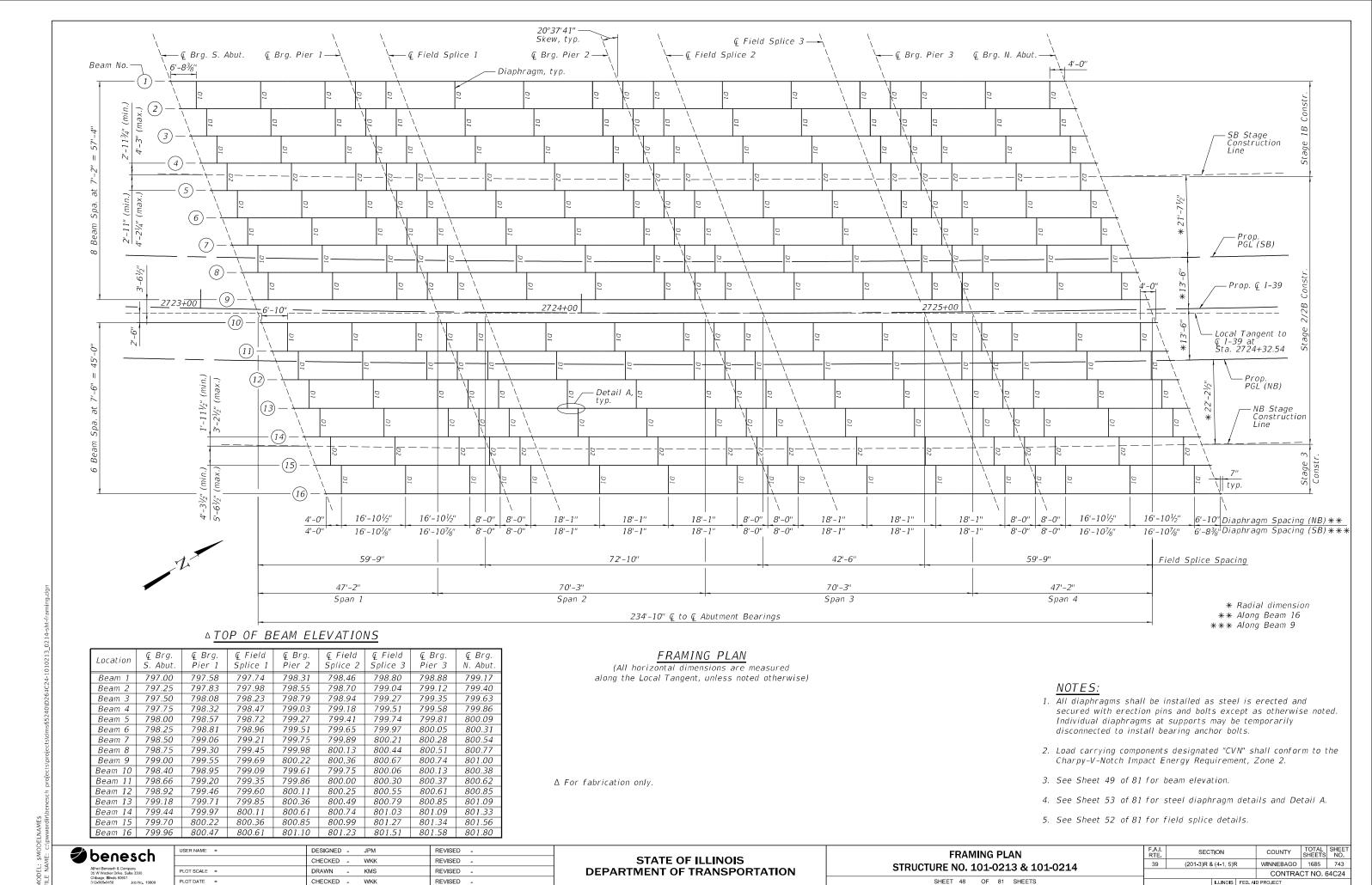
Bar	No.	Size	Length	Shape
a400(E)	65	#5	7'-4"	
a401(E)	43	#5	29'-0"	
a402(E)	57	#8	28'-8"	
a403(E)	43	#5	36'-10"	
a404(E)	57	#8	37'-5"	
b400(E)	95	#5	29'-8"	
b401(E)	150	#9	29'-8"	
b402(E)	4	#5	14'-2"	
b403(E)	1	#4	14'-8"	
d400(E)	69	#5	8'-6"	
d401(E)	69	#5	7'-0"	Ŋ
e400(E)	e400(E) 36 #4		14'-8"	
t400(E)	128	#4	10'-5"	
w400(E)	40	#5	28'-9"	
w401(E)	40	#5	37'-6"	
Cancrata	Cuparetr	ucturo	Cu. Yd.	6.4
Concrete Protective		ucture		222
Concrete		usturo	Sq. Yd.	222
		ucture	Cu. Yd.	89.0
(Approach Concrete		0.0	Cu. Yd.	20.7
Reinforce			Cu. ru.	20.7
		5,	Pound	36,770
Epoxy Co Bridge De				
Grooving		linal)	Sq. Yd.	120
Diamond		mar)		
(Bridge S			Sq. Yd.	361
Juliuye 3	CCLIUII)			

BILL OF MATERIAL NORTH APPROACH SB (SN 101-0214)

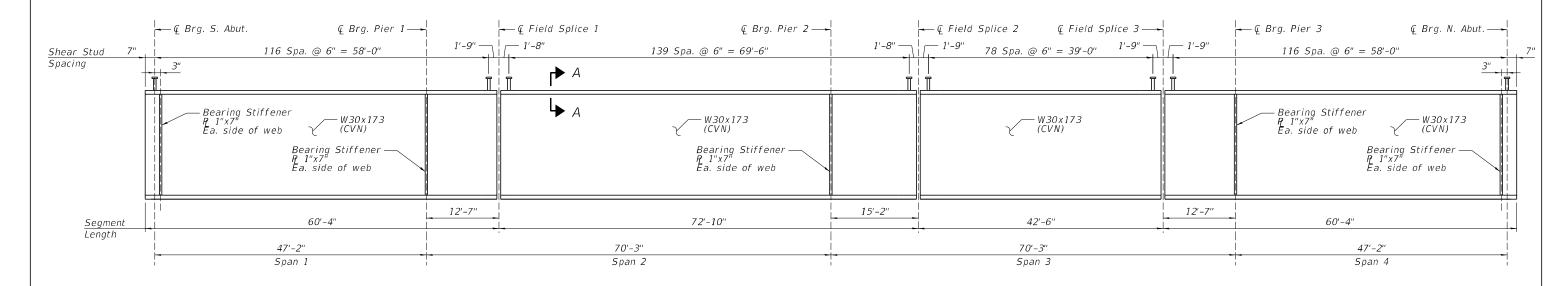
Bar	No.	Size	Length	Shape
a400(E)	65	#5	7'-4"	Strape
a400(E)	43	#5		
a405(E)	57	#8	28'-2"	
a400(E)	43	#5	36'-2"	
a407(E)	57	#8	36'-10"	
u+00(L)	- 37	", 0	30 10	
b400(E)	95	#5	29'-8"	
b401(E)	150	#9	29'-8"	
b403(E)	1	#4	14'-8"	
b404(E)	4	#5	14'-8"	
d400(E)	69	#5	8'-6"	
d401(E)	69	#5	7'-0"	<u> </u>
100(5)	26		1 41 011	
e400(E)	36	#4	14'-8"	
t401(E)	128	#4	10'-3"	
1401(L)	120	77 -7	10-5	
w402(E)	40	#5	28'-2"	
w403(E)	40	#5	36'-10"	
Concrete		ucture	Cu. Yd.	6.4
Protective			Sq. Yd.	222
Concrete		ucture	Cu. Yd.	88.9
(Approach				
Concrete			Cu. Yd.	20.3
Reinforce		5,	Pound	36,500
Epoxy Co. Bridae De				
Grooving		inal)	Sq. Yd.	120
Diamond (,,,,,,,		
			Sq. Yd.	350

BILL OF MATERIAL SOUTH APPROACH NB (SN 101-0213)

	Bar	No.	Size	Length	Shape			
	a300(E)	65	#5	7'-4"				
	a300(E)	43	#5	37'-5"				
	a301(E)	57	#8	38'-0"				
	a303(E)	43	#5	15'-5"				
	a304(E)	57	#8	15'-0"				
	0.00 1(2)		,, 0					
	b300(E)	77	#5	29'-8"				
	b301(E)	121	#9	29'-8"				
	b302(E)	4	#5	14'-8"				
	b303(E)	1	#4	14'-8"				
	d300(E)	69	#5	8'-6"				
	d301(E)	69	#5	7'-0"	Ŋ			
	d302(E)	46	#5	6'-9"	Ñ			
	e300(E)	40	#4	14'-8"				
	t300(E)	104	#4	10'-5"				
	w300(E)	40	#5	38'-0"				
	w301(E)	40	#5	15'-0"				
	Concrete	Superstr	ucture	Cu. Yd.	7.0			
	Protective	e Coat		Sq. Yd.	185			
	Concrete	Superstr	ucture	Cu. Yd.	72.0			
	(Approach Slab)			Cu. Tu.	72.0			
	Concrete Structures			Cu. Yd.	16.7			
	Reinforcement Bars,			Pound	30,360			
	Epoxy Coated			Found	30,300			
	Bridge Deck			Sq. Yd.	80			
	Grooving		3q. ru.	00				
*	Diamond			Sq. Yd.	270			
	(Bridge S	ection)		Jq. 14.	270			

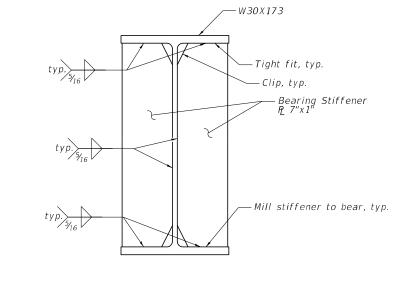

BILL OF MATERIAL NORTH APPROACH NB (SN 101-0213)

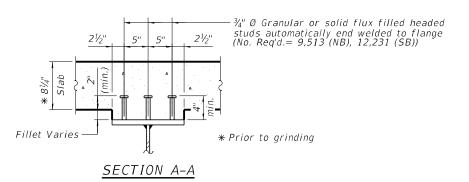
Bar	No.	Size	Length	Shape
a300(E)	65	#5	7'-4"	
a305(E)	43	#5	36'-11"	
a306(E)	57	#8	37'-6"	
a307(E)	43	#5	15'-2"	
a308(E)	57	#8	14'-10"	
b300(E)	77	#5	29'-8"	
b301(E)	121	#9	29'-8"	
b303(E)	1	#4	14'-8"	
b304(E)	4	#5	14'-2"	
d300(E)	69	#5	8'-6"	
d301(E)	69	#5	7'-0"	Ŋ
d302(E)	46	#5	6'-9"	Ñ
e300(E)	40	#4	14'-8"	
t301(E)	104	#4	10'-3"	
w302(E)	40	#5	37'-6"	
w303(E)	40	#5	14'-10"	
Concrete	Superstr	ucture	Cu. Yd.	7.0
Protective	e Coat		Sq. Yd.	185
Concrete		ucture	Cu. Yd.	72.0
(Approach	Slab)		Cu. Tu.	72.0
Concrete	Structur	es	Cu. Yd.	16.4
Reinforce	ment Bai	´S,	Davisal	20.100
Ероху Со			Pound	30,190
Bridge De			Sg. Yd.	80
Grooving		inal)	Jq. 14.	
Diamond	_		Sq. Yd.	265
(Bridge S	ection)		Jq. 14.	205
		·		



USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - JLS	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - JLS	REVISED -

^{*} Includes quantity for approach slab and pavement connector.


4/22/2025 12:41:53 PM



BEAM ELEVATION

(Looking west)

(Diaphragm connections plates not shown for clarity)

BEARING STIFFENER

(See Sheet 53 of 81 for weld limits and clip details)

NOTES:

- 1. Structural steel for the rolled W beams and bearing stiffeners shall be AASHTO M270 Grade 50.
- 2. Load carrying components designated "CVN" shall conform to the Charpy-V-Notch Impact Energy Requirement, Zone 2.
- 3. See Sheet 48 of 81 for framing plan.
- 4. See Sheet 53 of 81 for steel diaphragm details.
- 5. See Sheet 52 of 81 for field splice details.

9	benesch
	001100011
	Alfred Benesch & Company
	35 W Wacker Drive, Suite 3300
	Chicago, Illinois 80601

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - WKK	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - WKK	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

BEAM ELEVATION						
STRUCTURE NO. 101-0213 & 101-0214						
SHEET 4	19 OF	81	SHEETS			

A.I. RTE	SECTION	SECTION		TOTAL SHEETS	SHEET NO.
39	(201-3)R & (4-1, 5)R		WINNEBAGO	1685	744
•			CONTRA	CT NO. 6	64C24
ILLINOIS FED. AID PROJECT					

4/22/2025 12:41:57 PM

ts/projects/dms65240\D264C24-1010213_0214-sht-beamelev.d

INTERIOR GIRDER MOMENT TABLE (SOUTHBOUND)								
		0.4 Sp. 1	Pier 1	0.5 Sp. 2	Pier 2	0.5 Sp. 3	Pier 3	0.6 Sp. 4
Is	(in⁴)	8,230	8,230	8,230	8,230	8,230	8,230	8,230
Ic(n)	(in⁴)	20,425		20,425		20,425		20,425
Ic(3n)	(in⁴)	15,159		15,159		15,159		15,159
Ic(cr)	(in⁴)		10,863		10,863		10,863	
Ss	(in³)	541	541	541	541	541	541	541
Sc(n)	(in³)	749		749		749		749
Sc(3n)	(in³)	684		684		684		684
Sc(cr)	(in³)		611		611		611	
Sx	(in³)	733	598	721	595	721	598	733
DC1	(k/')	0.917	0.917	0.917	0.917	0.917	0.917	0.917
MDC1	('k)	122	326	212	414	212	326	122
DC2	(k/')	0.127	0.127	0.127	0.127	0.127	0.127	0.127
MDC2	('k)	16	44	28	56	28	44	16
	(k/')	0.358	0.358	0.358	0.358	0.358	0.358	0.358
MDW	('k)	46	125	79	158	79	125	46
LLDF		0.666	0.641	0.621	0.621	0.621	0.641	0.666
M4 + IM	('k)	526	547	639	664	639	547	526
((ksi)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mu + ⅓fl Sxc	('k)	1,161	1,607	1,538	1,987	1,538	1,607	1,161
	('k)	3,667		3,667		3,667		3,667
	(ksi)	2.7	7.2	4.7	9.2	4.7	7.2	2.7
	(ksi)	0.3	0.9	0.5	1.1	0.5	0.9	0.3
	(ksi)	0.8	2.5	1.4	3.1	1.4	2.5	0.8
. 0 (2.1)	(ksi)	8.4	10.7	10.2	13.0	10.2	10.7	8.4
	(ksi)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
/2 (/	(ksi)	14.8	24.5	19.9	30.3	19.9	24.5	14.8
Service II Resistance	(ksi)	47.5	47.5	47.5	47.5	47.5	47.5	47.5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(ksi)	19.7	32.6	26.5	40.3	26.5	32.6	19.7
	(ksi)		50.0		50.0		50.0	
Vf	(k)	55.1	219.9	63.3	227.2	64.9	219.8	60.7

DER REACTION S. Abut.	ON TABLE (S Pier 1	OUTHBOUND, Pier 2		
	Pier 1	Dior 2	D'	
		F 101 Z	Pier 3	N. Abut.
0.813	0.813	0.813	0.813	0.813
1.075	1.075	1.075	1.075	1.075
() 15.9	61.3	69.0	61.3	15.9
() 2.1	8.2	9.3	8.2	2.1
() 5.8	23.2	26.1	23.2	5.8
() 56.7	93.4	97.1	93.4	56.6
() 14.8	18.7	18.6	18.7	14.8
() 156.3	317.8	339.5	317.8	156.2
() 130.3	285.2	307.0	285.2	130.2
kkk	k) 15.9 k) 2.1 k) 5.8 k) 56.7 k) 14.8 k) 156.3	1.075 1.075 k) 15.9 61.3 k) 2.1 8.2 k) 5.8 23.2 k) 56.7 93.4 k) 14.8 18.7 k) 156.3 317.8	1.075 1.075 1.075 k) 15.9 61.3 69.0 k) 2.1 8.2 9.3 k) 5.8 23.2 26.1 k) 56.7 93.4 97.1 k) 14.8 18.7 18.6 k) 156.3 317.8 339.5	1.075 1.075 1.075 1.075 k) 15.9 61.3 69.0 61.3 k) 2.1 8.2 9.3 8.2 k) 5.8 23.2 26.1 23.2 k) 56.7 93.4 97.1 93.4 k) 14.8 18.7 18.6 18.7 k) 156.3 317.8 339.5 317.8

		EXTER10	R GIRDER M	OMENT TAB	LE (SOUTHB	OUND)		
		0.4 Sp. 1	Pier 1	0.5 Sp. 2	Pier 2	0.5 Sp. 3	Pier 3	0.6 Sp. 4
Is	(in⁴)	8,230	8,230	8,230	8,230	8,230	8,230	8,230
Ic(n)	(in⁴)	19,852		20,304		20,313		19,880
Ic(3n)	(in⁴)	14,636		15,046		15,055		14,661
Ic(cr)	(in⁴)		10,545		10,647		10,553	
Ss	(in³)	541	541	541	541	541	541	541
Sc(n)	(in³)	742		747		747		743
Sc(3n)	(in³)	676		682		682		676
Sc(cr)	(in³)		603		605		603	
Sx	(in³)	729	<i>592</i>	720	591	720	<i>592</i>	729
DC1	(k/')	0.834	0.870	0.899	0.909	0.900	0.873	0.838
MDC1	('k)	106	308	208	406	208	309	106
DC2	(k/')	0.127	0.127	0.127	0.127	0.127	0.127	0.127
MDC2	('k)	16	44	28	56	28	44	16
DW	(k/')	0.334	0.334	0.334	0.334	0.334	0.334	0.334
MDW	('k)	43	116	74	149	74	116	43
LLDF		0.666	0.641	0.621	0.621	0.621	0.641	0.666
M4 + IM	('k)	525	544	640	666	641	544	525
fl (Strength I)	(ksi)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mu + ⅓fl Sxc	('k)	1,136	1,567	1,526	1,966	1,527	1,569	1,136
Øf Mn	('k)	3,573		3,646		3,648		3,578
fs DC1	(ksi)	2.3	6.8	4.6	9.0	4.6	6.8	2.3
fs DC2	(ksi)	0.3	0.9	0.5	1.1	0.5	0.9	0.3
fs DW	(ksi)	0.8	2.3	1.3	3.0	1.3	2.3	0.8
fs (½+IM)	(ksi)	8.5	10.8	10.3	13.2	10.3	10.8	8.5
fl (Service II)	(ksi)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
fs+ ^{fl} / ₂ (Service II)	(ksi)	14.4	24.1	19.8	30.2	19.8	24.1	14.4
Service II Resistanc		47.5	47.5	47.5	47.5	47.5	47.5	47.5
fs + fl/3 (Strength I)	(ksi)	19.3	32.0	26.3	40.2	26.3	32.1	19.3
Øf Fn	(ksi)		50.0		50.0		50.0	
Vf	(k)	41.4	180.1	50.9	194.1	52.1	181.0	45.6

EXTERIOR GIRDER REACTION TABLE (SOUTHBOUND)						
S. Abut.	Pier 1	Pier 2	Pier 3	N. Abut.		
0.570	0.623	0.654	0.626	0.574		
1.075	1.075	1.075	1.075	1.075		
() 14.0	57.7	67.6	57.9	14.0		
() 2.1	8.2	9.3	8.2	2.1		
() 5.4	21.6	24.4	21.6	5.4		
() 39.7	71.6	78.2	71.9	40.0		
() 10.4	14.3	14.9	14.4	10.5		
() 115.8	265.0	295.6	265.9	116.5		
() 97.6	240.0	269.5	240.8	98.2		
	S. Abut. 0.570 1.075 k) 14.0 k) 2.1 k) 5.4 k) 5.4 k) 39.7 k) 10.4 k) 115.8	S. Abut. Pier 1 0.570 0.623 1.075 1.075 k) 14.0 57.7 k) 2.1 8.2 k) 5.4 21.6 k) 39.7 71.6 k) 10.4 14.3 k) 115.8 265.0	S. Abut. Pier 1 Pier 2 0.570 0.623 0.654 1.075 1.075 1.075 (x) 14.0 57.7 67.6 (x) 2.1 8.2 9.3 (x) 5.4 21.6 24.4 (x) 39.7 71.6 78.2 (x) 10.4 14.3 14.9 (x) 115.8 265.0 295.6	S. Abut. Pier 1 Pier 2 Pier 3 0.570 0.623 0.654 0.626 1.075 1.075 1.075 1.075 (x) 14.0 57.7 67.6 57.9 (x) 2.1 8.2 9.3 8.2 (x) 55.4 21.6 24.4 21.6 (x) 39.7 71.6 78.2 71.9 (x) 10.4 14.3 14.9 14.4 (x) 115.8 265.0 295.6 265.9		

OCF: Obtuse Correction Factor according to Article 4.6.2.2.3c or as

further simplified by IDOT provisions. $R_{\text{\tiny DCI}}$: Un-factored reaction due to non-composite dead load (kip). R_{DC2}: Un-factored reaction due to long-term composite (superimposed

excluding future wearing surface) dead load (kip).

 R_{DW} : Un-factored reaction due to long-term composite (superimposed

future wearing surface only) dead load (kip).

Un-factored live load reaction (kip).

 R_{IM} : Un-factored dynamic load allowance (impact) (kip).

 R_{TOTAL} (Strength I) (Impact): Strength I load combination of factored design reactions (kip).

 $1.25 (R_{DCI} + R_{DCZ}) + 1.5 R_{DW} + 1.75 (R_{4} + R_{IM})$

R_{TOTAL} (Strength I) (No Impact) : Strength I load combination of factored design reactions, not

including dynamic load allowance (Impact) (kip). $1.25 (R_{DCI} + R_{DC2}) + 1.5 R_{DW} + 1.75 (R_{4})$

- Is, Ss: Non-composite moment of inertia and section modulus of the steel section used for computing fs (Total-Strength I, and Service II) due to non-composite dead loads (in.⁴ and in.³).
- Ic(n), Sc(n): Composite moment of inertia and section modulus of the steel and deck based upon the modular ratio, "n", used for computing fs (Total-Strength I. and Service II) in uncracked sections due to short term composite live loads (in.4 and in.3).
- Ic(3n), Sc(3n): Composite moment of inertia and section modulus of the steel and deck based upon 3 times the modular ratio, "3n", used for computing fs (Total-Strength I, and Service II) in uncracked sections due to long-term composite (superimposed) dead loads (in.4 and in.3).
- Ic(cr), Sc(cr): Composite moment of inertia and section modulus of the steel and longitudinal deck reinforcement, used for computing fs (Total-Strength I and Service II) in cracked sections, due to both short-term composite live loads and long-term composite (superimposed) dead loads (in.⁴ and in.³).
 - Sx: Section modulus about the major axis of section to the controlling flange, tension or compression, taken as yield moment with respect to the controlling flange over the yield strength of the controlling flange (in.3).
 - DC1: Un-factored non-composite dead load (kips/ft.).
 - MDC1: Un-factored moment due to non-composite dead load (kip-ft.).
 - DC2: Un-factored long-term composite (superimposed excluding future wearing surface) dead load (kips/ft.).
 - MDC2: Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead load (kip-ft.).
 - DW: Un-factored long-term composite (superimposed future wearing surface only) dead load (kips/ft.). MDW: Un-factored moment due to long-term composite (superimposed
 - future wearing surface only) dead load (kip-ft.). LLDF: Live Load Distribution Factor for moment and shear computed
 - according to Article 4.6.2.2 and other IDOT provisions. M4 + IM: Un-factored live load moment plus dynamic load allowance
 - (impact) (kip-ft.). Mu: Strength I load combination of factored design moments (kip-ft.). $1.25 (MDC1 + MDC2) + 1.5 MDW + 1.75 M_{++IM}$
 - fl: Factored calculated flange lateral bending stress as calculated using Article 6.10.1.6 and as further simplified by IDOT provisions (ksi).
 - Of Mn: Factored nominal flexural resistance of the section determined as specified in Article 6.10.7.1 or A6 as applicable (kip-ft)
 - fs DC1: Un-factored stress at edge of flange for controlling steel flange due to vertical non-composite dead loads as calculated below (ksi). MDC1 / Ss
 - fs DC2: Un-factored stress at edge of flange for controlling steel flange due to vertical composite dead loads as calculated
 - MDC2 / Sc(3n) or MDC2 / Sc(cr) as applicable.
 - fs DW: Un-factored stress at edge of flange for controlling steel flange due to vertical composite future wearing surface loads as calculated below (ksi). MDW / Sc(3n) or MDW / Sc(cr) as applicable.
 - fs (½+IM): Un-factored stress at edge of flange for controlling steel flange due to vertical composite live load plus impact loads as calculated below (ksi).
 - $M_{\frac{L}{2}+IM}$ / Sc(n) or $M_{\frac{L}{2}+IM}$ / Sc(cr) as applicable.
- $fs + \frac{f\ell}{2}$ (Service II): Sum of stresses as computed below (ksi). $fsDC1 + fsDC2 + fsDW + 1.3 fs(4+ IM) + f /_{2}$
- Service II Resistance: Composite (0.95RhFyf) or noncomposite (0.80RhFyf) stress capacity according to Article 6.10.4.2 (ksi).
- fs + fl/3 (Strength I): Sum of stresses as computed below on non-compact section (ksi).
 - $1.25 (fsDC1 + fsDC2) + 1.5 fsDW + 1.75 fs(+ im) + f^{\ell}/3$
 - Of Fn: Factored nominal flexural resistance of the section a specified in Article 6.10.7.2 or 6.10.8 as applicable (ksi).
 - Vf: Maximum factored shear range in span computed according to Article 6.10.10.

USER NAME =	DESIGNED -	JPM	REVISED -
	CHECKED -	WKK	REVISED -
PLOT SCALE =	DRAWN -	KMS	REVISED -
PLOT DATE =	CHECKED -	WKK	REVISED -

A.I. TE	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.	
39	(201-3)R & (4-1, 5)R		WINNEBAGO 1685		745	
			CONTRACT NO. 64C24			
	ILLINOIS FED. AID PROJECT					

SHEET 50 OF 81 SHEETS

INTERIOR GIRDER MOMENT TABLE (NORTHBOUND)								
		0.4 Sp. 1	Pier 1	0.5 Sp. 2	Pier 2	0.5 Sp. 3	Pier 3	0.6 Sp. 4
Is	(in⁴)	8,230	8,230	8,230	8,230	8,230	8,230	8,230
Ic(n)	(in⁴)	20,640		20,640		20,640		20,640
Ic(3n)	(in ⁴)	15,362		15,362		15,362		15,362
Ic(cr)	(in⁴)		11,027		11,027		11,027	
Ss	(in³)	541	541	541	541	541	541	541
Sc(n)	(in³)	751		751		751		751
Sc(3n)	(in³)	687		687		687		687
Sc(cr)	(in³)		614		614		614	
Sx	(in³)	734	601	722	597	722	601	734
DC1	(k/')	0.952	0.952	0.952	0.952	0.952	0.952	0.952
MDC1	('k)	126	337	220	428	220	337	126
DC2	(k/')	0.174	0.174	0.174	0.174	0.174	0.174	0.174
MDC2	('k)	22	61	39	77	39	61	22
DW	(k/')	0.375	0.375	0.375	0.375	0.375	0.375	0.375
MDW	('k)	48	131	83	166	83	131	48
LLDF		0.688	0.662	0.641	0.641	0.641	0.662	0.688
M& + IM	('k)	543	565	660	685	660	565	543
fl (Strength I)	(ksi)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mu + ⅓fl Sxc	('k)	1,208	1,683	1,602	2,080	1,602	1,683	1,208
Øf Mn	('k)	3,705		3,705		3,705		3,705
fs DC1	(ksi)	2.8	7.5	4.9	9.5	4.9	7.5	2.8
	(ksi)	0.4	1.2	0.7	1.5	0.7	1.2	0.4
fs DW	(ksi)	0.8	2.6	1.5	3.2	1.5	2.6	0.8
. 0 (2.1.1)	(ksi)	8.7	11.0	10.5	13.4	10.5	11.0	8.7
	(ksi)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
/2 (/	(ksi)	15.3	25.6	20.7	31.6	20.7	25.6	15.3
Service II Resistance		47.5	47.5	47.5	47.5	47.5	47.5	47.5
- / / / / /	(ksi)	20.4	34.0	27.6	42.0	27.6	34.0	20.4
	(ksi)		50.0		50.0		50.0	
Vf	(k)	56.9	229.0	65.3	236.7	67.0	229.0	62.8

INTERIOR GIRDER REACTION TABLE (NORTHBOUND)							
	S. Abut.	Pier 1	Pier 2	Pier 3	N. Abut.		
LLDF	0.838	0.838	0.838	0.838	0.838		
OCF	1.075	1.075	1.075	1.075	1.075		
RDC1 ()	() 16.5	63.5	71.5	63.5	16.5		
RDC2	() 2.8	11.3	12.7	11.3	2.8		
RDW ()	() 6.1	24.3	27.4	24.3	6.1		
R \pounds	() 58.4	96.3	100.1	96.3	58.4		
R IM	() 15.3	19.2	19.2	19.2	15.3		
RTotal (Strength 1) (Impact) (() 162.2	332.1	355.0	332.1	162.1		
RTotal (Strength I) (No Impact) (() 135.5	298.4	321.5	298.5	135.4		
RTotal (Strength I) (Impact)	() 162.2	332.1	355.0	332.1	162		

		EXTER10	R GIRDER M	10MENT TAB	LE (NORTHB	OUND)		
		0.4 Sp. 1	Pier 1	0.5 Sp. 2	Pier 2	0.5 Sp. 3	Pier 3	0.6 Sp. 4
Is	(in⁴)	8,230	8,230	8,230	8,230	8,230	8,230	8,230
Ic(n)	(in⁴)	20,102		20,411		20,288		19,721
Ic(3n)	(in⁴)	14,860		15,145		15,032		14,520
Ic(cr)	(in⁴)		10,625		10,672		10,526	
Ss	(in³)	541	541	541	541	541	541	541
Sc(n)	(in³)	745		748		747		741
Sc(3n)	(in³)	680		683		682		674
Sc(cr)	(in³)		605		606		602	
Sx	(in³)	730	594	721	591	720	<i>592</i>	727
DC1	(k/')	0.869	0.897	0.915	0.915	0.896	0.859	0.816
MDC1	('k)	111	317	212	409	207	305	103
DC2	(k/')	0.174	0.174	0.174	0.174	0.174	0.174	0.174
MDC2	('k)	22	60	38	77	39	60	22
DW	(k/')	0.337	0.337	0.337	0.337	0.337	0.337	0.337
MDW	('k)	43	117	74	150	75	117	43
LLDF		0.688	0.662	0.641	0.641	0.641	0.662	0.688
M4 + IM	('k)	542	563	661	687	661	<i>562</i>	542
fl (Strength I)	(ksi)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mu + ⅓fl Sxc	('k)	1,181	1,633	1,581	2,035	1,575	1,615	1,170
Øf Mn	('k)	3,613		3,664		3,644		3,553
fs DC1	(ksi)	2.5	7.0	4.7	9.1	4.6	6.8	2.3
fs DC2	(ksi)	0.4	1.2	0.7	1.5	0.7	1.2	0.4
fs DW	(ksi)	0.8	2.3	1.3	3.0	1.3	2.3	0.8
fs (4+IM)	(ksi)	8.7	11.2	10.6	13.6	10.6	11.2	8.8
fl (Service II)	(ksi)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
fs+ ^{fl} / ₂ (Service II)	(ksi)	15.0	25.1	20.4	31.3	20.4	24.8	14.9
Service II Resistance	e(ksi)	47.5	47.5	47.5	47.5	47.5	47.5	47.5
$fs + f^{\ell}/_{3}$ (Strength I)	(ksi)	20.0	33.3	27.2	41.5	27.1	33.0	19.9
Øf Fn	(ksi)		50.0		50.0		50.0	
Vf	(k)	43.9	189.2	52.6	199.5	52.7	182.1	45.0

EXTERIOR GIRDER REACTION TABLE (NORTHBOUND)						
	S. Abut.	Pier 1	Pier 2	Pier 3	N. Abut.	
LLDF	0.610	0.654	0.668	0.623	0.560	
OCF	1.075	1.075	1.075	1.075	1.075	
RDC1 (F	() 14.6	59.4	68.1	57.1	13.6	
RDC2 (F	() 2.8	11.3	12.7	11.3	2.8	
RDW (A	() 5.5	21.8	24.6	21.8	5.5	
R Ł	() 42.5	75.1	79.9	71.5	39.0	
R IM	() 11.1	15.0	15.3	14.3	10.2	
RTotal (Strength I) (Impact) (A	() 123.8	278.7	304.3	268.2	114.8	
RTotal (Strength I) (No Impact) (A	104.4	252.5	277.6	243.3	96.9	

OCF: Obtuse Correction Factor according to Article 4.6.2.2.3c or as further simplified by IDOT provisions.

 $R_{\text{\tiny DCI}}$: Un-factored reaction due to non-composite dead load (kip). R_{DC2}: Un-factored reaction due to long-term composite (superimposed

excluding future wearing surface) dead load (kip).

 R_{DW} : Un-factored reaction due to long-term composite (superimposed

future wearing surface only) dead load (kip).

Un-factored live load reaction (kip).

 R_{IM} : Un-factored dynamic load allowance (impact) (kip).

 R_{TOTAL} (Strength I) (Impact): Strength I load combination of factored design reactions (kip).

 $1.25 (R_{DCI} + R_{DCZ}) + 1.5 R_{DW} + 1.75 (R_{4} + R_{IM})$

R_{TOTAL} (Strength I) (No Impact) : Strength I load combination of factored design reactions, not including dynamic load allowance (Impact) (kip).

 $1.25 (R_{DCI} + R_{DC2}) + 1.5 R_{DW} + 1.75 (R_{4})$

Is, Ss: Non-composite moment of inertia and section modulus of the steel section used for computing fs (Total-Strength I, and Service II) due to non-composite dead loads (in.⁴ and in.³).

Ic(n), Sc(n): Composite moment of inertia and section modulus of the steel and deck based upon the modular ratio, "n", used for computing fs (Total-Strength I. and Service II) in uncracked sections due to short term composite live loads (in.4 and in.3).

Ic(3n), Sc(3n): Composite moment of inertia and section modulus of the steel and deck based upon 3 times the modular ratio, "3n", used for computing fs (Total-Strength I, and Service II) in uncracked sections due to long-term composite (superimposed) dead loads (in.4 and in.3).

Ic(cr), Sc(cr): Composite moment of inertia and section modulus of the steel and longitudinal deck reinforcement, used for computing fs (Total-Strength I and Service II) in cracked sections, due to both short-term composite live loads and long-term composite (superimposed) dead loads (in.⁴ and in.³).

Sx: Section modulus about the major axis of section to the controlling flange, tension or compression, taken as yield moment with respect to the controlling flange over the yield strength of the controlling flange (in.3).

DC1: Un-factored non-composite dead load (kips/ft.).

MDC1: Un-factored moment due to non-composite dead load (kip-ft.).

DC2: Un-factored long-term composite (superimposed excluding future wearing surface) dead load (kips/ft.).

MDC2: Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead load (kip-ft.).

DW: Un-factored long-term composite (superimposed future wearing surface only) dead load (kips/ft.). MDW: Un-factored moment due to long-term composite (superimposed

future wearing surface only) dead load (kip-ft.). LLDF: Live Load Distribution Factor for moment and shear computed

according to Article 4.6.2.2 and other IDOT provisions. M4 + IM: Un-factored live load moment plus dynamic load allowance (impact) (kip-ft.).

Mu: Strength I load combination of factored design moments (kip-ft.). $1.25 (MDC1 + MDC2) + 1.5 MDW + 1.75 M_{++IM}$

fl: Factored calculated flange lateral bending stress as calculated using Article 6.10.1.6 and as further simplified by IDOT provisions (ksi).

Of Mn: Factored nominal flexural resistance of the section determined as specified in Article 6.10.7.1 or A6 as applicable (kip-ft)

fs DC1: Un-factored stress at edge of flange for controlling steel flange due to vertical non-composite dead loads as calculated below (ksi). MDC1 / Ss

fs DC2: Un-factored stress at edge of flange for controlling steel flange due to vertical composite dead loads as calculated

MDC2 / Sc(3n) or MDC2 / Sc(cr) as applicable.

fs DW: Un-factored stress at edge of flange for controlling steel flange due to vertical composite future wearing surface loads as calculated below (ksi).

MDW / Sc(3n) or MDW / Sc(cr) as applicable.

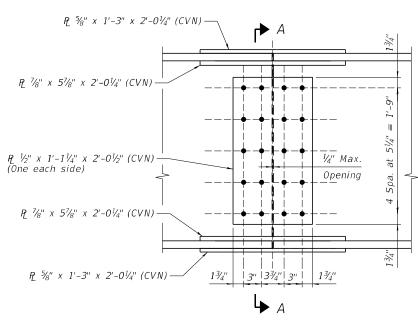
fs (½+IM): Un-factored stress at edge of flange for controlling steel flange due to vertical composite live load plus impact loads as calculated below (ksi).

 $M_{\frac{L}{2}+IM}$ / Sc(n) or $M_{\frac{L}{2}+IM}$ / Sc(cr) as applicable.

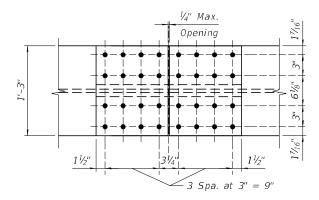
 $fs + \frac{f\ell}{2}$ (Service II): Sum of stresses as computed below (ksi). $fsDC1 + fsDC2 + fsDW + 1.3 fs(+ M) + f\ell_2$

Service II Resistance: Composite (0.95RhFyf) or noncomposite (0.80RhFyf) stress capacity according to Article 6.10.4.2 (ksi).

fs + fl/3 (Strength I): Sum of stresses as computed below on non-compact section (ksi).

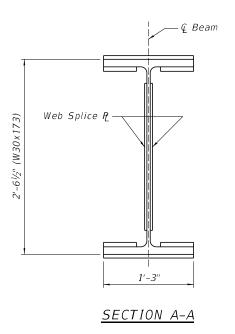

 $1.25 (fsDC1 + fsDC2) + 1.5 fsDW + 1.75 fs(+ im) + f^{\ell}/3$

Of Fn: Factored nominal flexural resistance of the section a specified in Article 6.10.7.2 or 6.10.8 as applicable (ksi).


Vf: Maximum factored shear range in span computed according to Article 6.10.10.

USER NAME =	DESIGNED -	JPM	REVISED -
	CHECKED -	WKK	REVISED -
PLOT SCALE =	DRAWN -	KMS	REVISED -
PLOT DATE =	CHECKED -	WKK	REVISED -

A.I. E.	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
9	(201-3)R & (4-1, 5)R		WINNEBAGO	1685	746
	CONTRACT NO. 64C				
ILLINOIS FED AID PROJECT					



ELEVATION

BOTTOM FLANGE SPLICE

FIELD SPLICE 1, 2 & 3 (No. Req'd. = 21 (NB), 27 (SB))

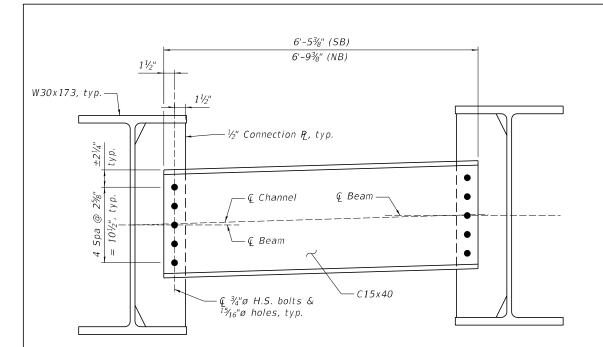
NOTES:

- 1. All splice plates shall be AASHTO M270 Grade 50.
- 2. Load carrying components designated "CVN" shall conform to the Charpy-V-Notch Impact Energy Requirement, Zone 2.
- 3. Fasteners shall be ASTM F3125 Grade A325 Type 1, hot dipped galvanized bolts. Bolts $\frac{7}{6}$ " diameter, holes $\frac{15}{16}$ " diameter. See Special Provision for "Metallizing of Structural Steel".

benesch
Alfred Benesch & Company
36 W Wecker Drive, Sulfe 3300
Chicago, Illino 68001

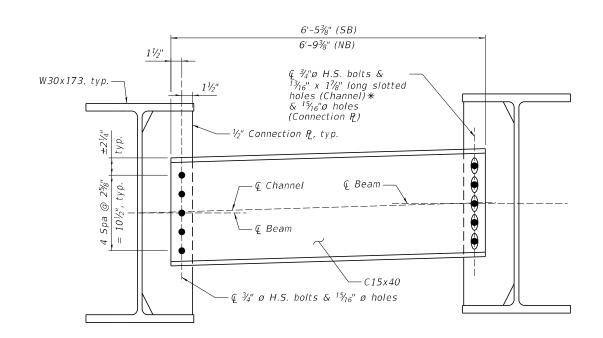
STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

SPLICE DETAILS


STRUCTURE NO. 101-0213 & 101-0214

SHEET 52 OF 81 SHEETS

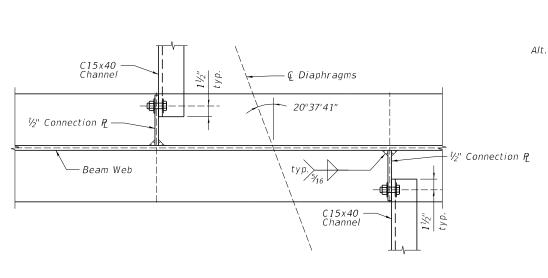
 F.A.I. RTE.
 SECTION
 COUNTY
 TOTAL SHEETS
 SHEETS NO.


 39
 (201-3)R & (4-1, 5)R
 WINNEBAGO
 1685
 747

 CONTRACT NO. 64C24

DIAPHRAGM D1

(Looking north) (No. Req'd. = 85 (NB), 119 (SB))

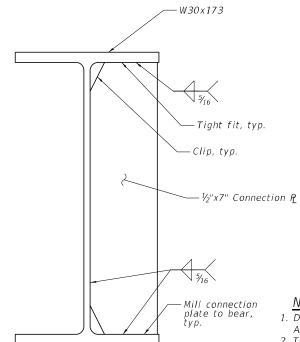


DIAPHRAGM D2

AT STAGE CONSTRUCTION LINE

(Looking north) (No. Req'd. = 17 (NB), 17 (SB))

* Long slotted holes shall be at Beam 5 (SB Stage Line) and Beam 15 (NB Stage Line).



DETAIL A (Bearing stiffener not shown for Pier locations)

Alt. clip -— Std. clip 1" Rad. 11/2"

WELD LIMITS AND CLIP DETAILS

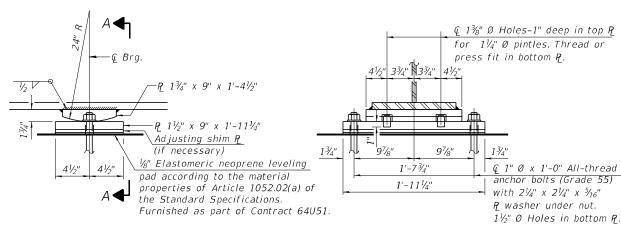
** Stop welds $\frac{1}{4}$ " ($\pm \frac{1}{8}$ ") from edges as shown, typ.

CONNECTION PLATE

(Plate on east side shown, plate on west side opposite hand) (No. Req'd. = 204 (NB), 272 (SB))

NOTES:

- 1. Diaphragm channels and connection plates shall be AASHTO M270 Grade 36 minimum.
- 2. Two hardened washers required for each set of oversized and slotted holes.
- 3. Alternate channels of equal depth and larger weight are permitted to facilitate material acquisition. Alternate channels, if utilized, shall be
- provided at no additional cost to the Department.
 4. Bolts in long-slots shall be finger tight until the subsequent stage pour for the adjacent beams is
- 5. See Sheet 48 of 81 for location of diaphragms.

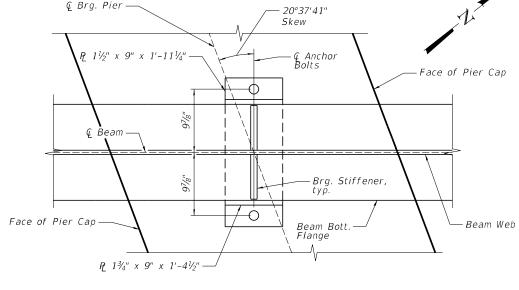


USER NAME =	DESIGNED -	JPM	REVISED	-
	CHECKED -	WKK	REVISED	-
PLOT SCALE =	DRAWN -	KMS	REVISED	-
PLOT DATE =	CHECKED -	WKK	REVISED	-

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

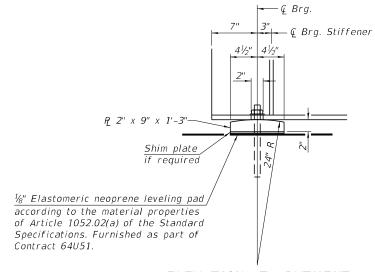
STEEL DIAPHRAGM DETAILS STRUCTURE NO. 101-0213 & 101-0214 SHEET 53 OF 81 SHEETS

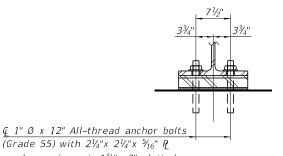
	F.A.I. RTE	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
39 (201-3)R & (4-1, 5)R		WINNEBAGO	1685	748	
			CONTRA	CT NO. 6	34C24
ILLINOIS FED AID		ID PROJECT			



ELEVATION AT PIER

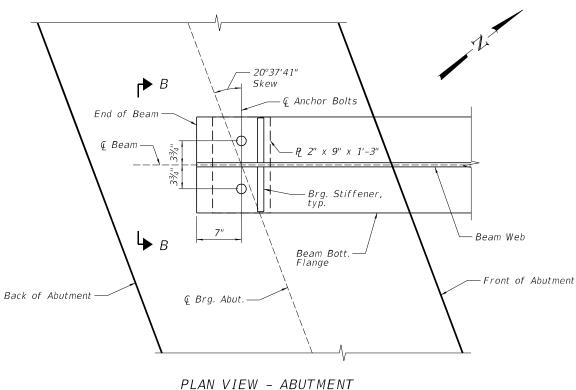
SECTION A-A


FIXED BEARING - PIER 2



PLAN VIEW - PIER 2

(Diaphragms and Connection Plates not shown for clarity)


ELEVATION AT ABUTMENT (S. Abut. looking west, N. Abut. opposite hand)

(Grade 55) with 21/4"x 21/4"x 5/16" FL washer under nut. 13/8" x 2" slotted hole in flange. $1\frac{1}{2}$ " Ø Holes in bearing plate.

SECTION B-B

FIXED BEARING - ABUTMENT

(S. Abut. shown, N. Abut. opposite hand)

BILL OF MATERIAL NB (SN 101-0213)

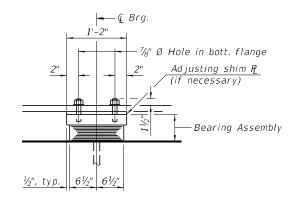
Ittill	UTITE	rotar
Anchor Bolts, 1"	Each	42

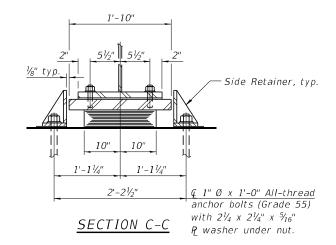
BILL OF MATERIAL SB (SN 101-0214)

Item	Unit	Total
Anchor Bolts, 1"	Each	54

NOTES:

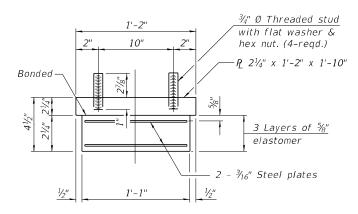
- 1. Installation of all bearing plates, shims, leveling pads, and pintles shall be included in the cost of Erecting Structural Steel.
- 2. The structural steel plates of the bearing and the pintles shall conform to the requirements of AASHTO M270 Grade 50.
- 3. Two $\frac{1}{8}$ " adjusting shims shall be furnished as part of Contract 64U51 for each bearing in addition to all other plates or shims and placed as shown on bearing details.
- 4. All (embedded and separate) bearing plates, side retainers, anchor bolts, nuts, washers, and pintles shall be galvanized according to AASHTO M111 or M232 as applicable.
- 5. Anchor bolts at all supports shall be installed as each member is erected unless an equivalent temporary means of lateral restraint is used.

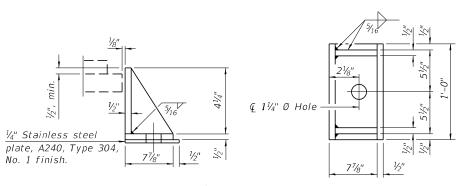

benesch


USER NAME = DESIGNED - JPM REVISED -CHECKED - JHG REVISED -DRAWN REVISED PLOT DATE = CHECKED - JHG REVISED -

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

FIXED BEARING DETAILS STRUCTURE NO. 101-0213 & 101-0214 SHEET 54 OF 81 SHEETS


SECTION COUNTY (201-3)R & (4-1, 5)R WINNEBAGO 1685 749 CONTRACT NO. 64C24


ELEVATION AT PIER

TYPE I ELASTOMERIC EXP. BRG. - PIER 1 & 3

BEARING ASSEMBLY

Shim plates shall not be placed under bearing assembly.

SIDE RETAINER

Equivalent rolled angle with stiffeners will be allowed in lieu of welded plates.

BILL OF MATERIAL NB (SN 101-0213)

Item	Unit	Total
Erecting Elastomeric Bearing Assembly, Type I	Each	14
Anchor Bolts, 1"	Each	28

BILL OF MATERIAL SB (SN 101-0214)

Item	Unit	Total
Erecting Elastomeric Bearing Assembly, Type I	Each	18
Anchor Bolts, 1"	Each	36

← Anchor Bolts - P₂ 2½" × 1'-2" × 1'-10" -Threaded Stud, typ. - Elastomeric ⊈ Beam – - Brg. Stiffene Beam Bott. Flange Side Retainer, 10" -Face of Pier Cap Face of Pier Cap- \downarrow C€ Pier -

- 20°37'41' Skew

PLAN VIEW - PIER 1 & 3 (Diaphragms and Connection Plates not shown for clarity)

NOTES:

- 1. Installation of side retainers, shims, and stainless steel plates shall be included in the cost of Erecting Elastomeric Bearing Assembly, Type I.
- 2. The structural steel plates of the bearing assembly shall conform to the requirements of AASHTO M270 Grade 50.
- 3. Two $\frac{1}{8}$ " in. adjusting shims shall be furnished as part of Contract 64U51 for each bearing in addition to all other plates or shims and placed as shown on bearing details.
- 4. All (embedded and separate) bearing plates, side retainers, anchor bolts, nuts, washers and pintles shall be galvanized according to AASHTO M111 or M232 as applicable.
- 5. Anchor bolts and side retainers at all supports shall be installed as each member is erected unless an equivalent temporary means of lateral restraint is used.

Ø ben	esch
Alfred Benesch & 0	Company
35 W Wacker Drive	e, Sulte 3300
Chicago, Illinois 60	601
312-565-0450	Job No. 10800

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - JHG	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - JHG	REVISED -

F.A.I. RTE.	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
39	(201-3)R & (4-1, 5)F	1	WINNEBAGO	1685	750
			CONTRA	CT NO. 6	64C24
ILLINOIS FED. A			D PROJECT		

5/20/2025 8:32:51 AM

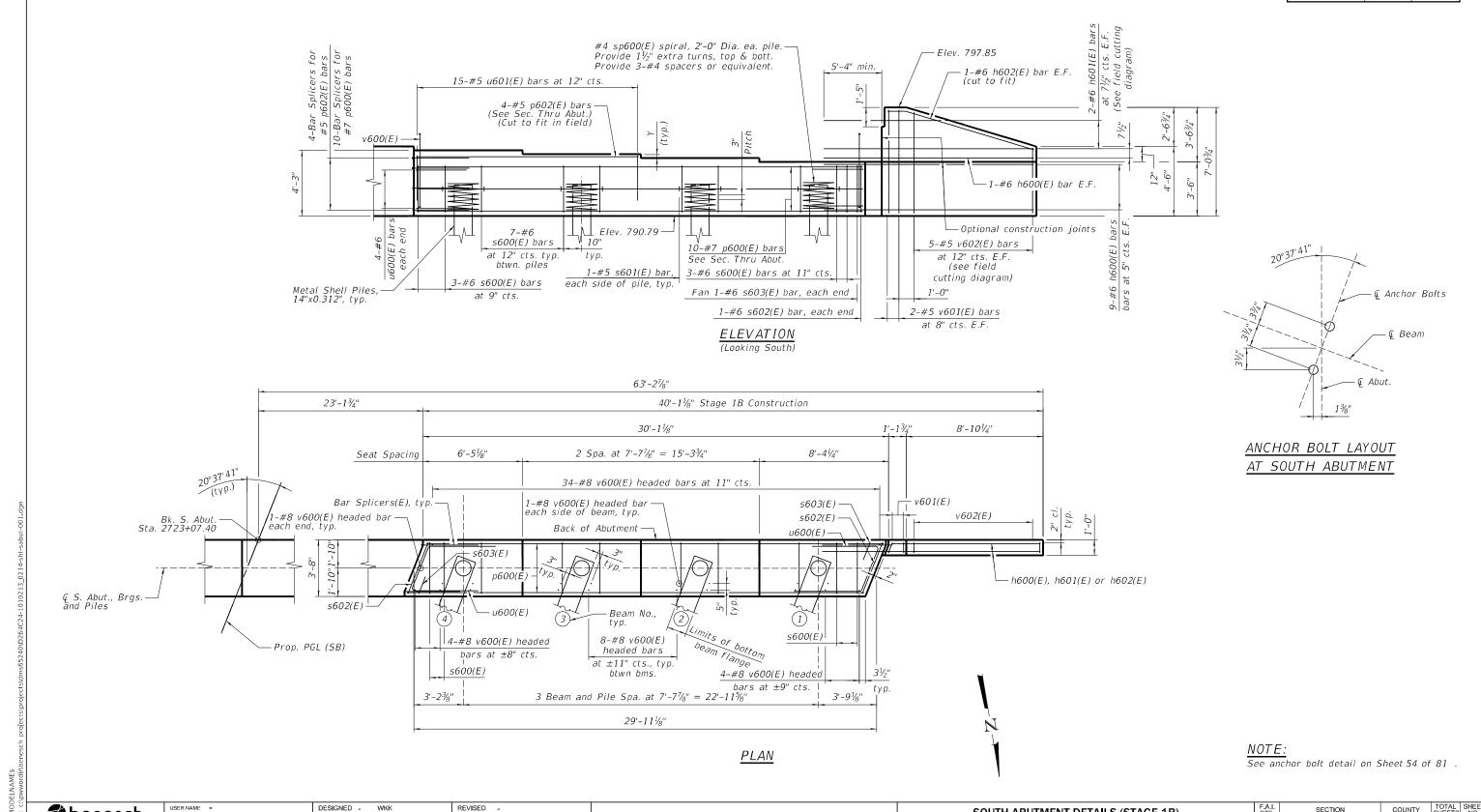
SEAT ELEVATIONS & STEP HEIGHTS

Beam	Elev.	Υ
1	794.29	
2	794.54	3"
3	794.79	3"
4	795.04	3"

SECTION

(201-3)R & (4-1, 5)R

SOUTH ABUTMENT DETAILS (STAGE 1B)


STRUCTURE NO. 101-0213 & 101-0214

SHEET 56 OF 81 SHEETS

COUNTY

WINNEBAGO 1685 751

CONTRACT NO. 64C24

STATE OF ILLINOIS

DEPARTMENT OF TRANSPORTATION

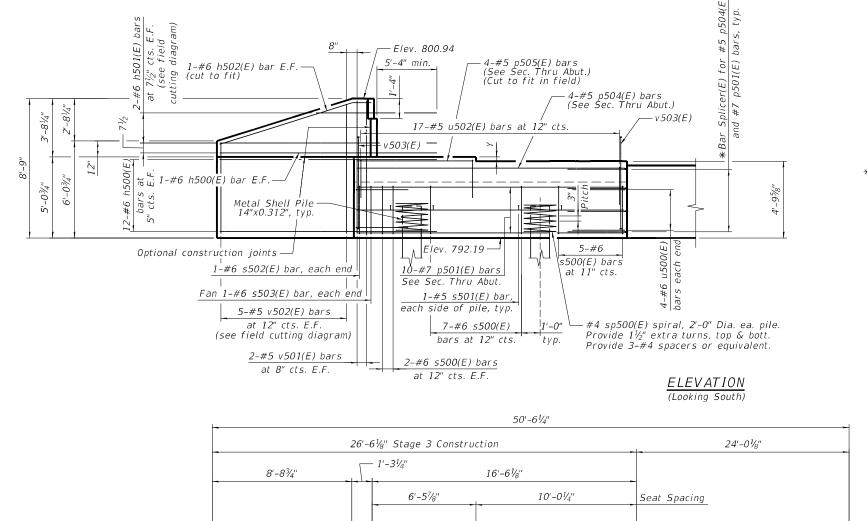
benesch

CHECKED - MFH

DRAWN

CHECKED -

REVISED -


REVISED

REVISED -

<u>SEAT ELEVATIONS</u> <u>& STEP HEIGHTS</u>

Beam	Elev.	Υ
15	796.99	31/8"
16	797.25	31/8"

* Non-contact lap splice.

20°37'41" (typ.) 19-#8 v503(E) headed bars at 11" cts. s503(E) -s502(E) -1-#8 v503(E) -headed bar each end, typ. v501(E) v502(E) -Bar Splicers(E), typ. - Bk. S. Abut. Sta. 2723+18.10 – u500(E) s502(E p501(E h500(E), h501(E) or h502(E)-ℚ S. Abut., Brgs. and Piles u500(E) G S. Abut. Brgs. and Piles 1-#8 v503(E) -headed bar each side of beam, typ. s500(E) Beam No., typ Prop. PGL (NB) 3-#8 v503(E) headed typ. bars at ±10" cts. s500(E) 8-#8 v503(E) 6-#8 v503(E) headed headed bars at bars at ±10" cts. ±11" cts. 2'-107/8" 8'-01/8" 5'-51/8" Beam and Pile Spacing 16'-41/8"

PLAN

<u>NOTE:</u> See anchor bolt detail on Sheet 54 of 81

Sbenesch
Alfred Benesch & Company
38 W Wester Drive, Subs 3303
Chicago Blinds 66801
312-2666-0450
Jdo No. 10800

 USER NAME
 =
 DESIGNED
 WKK
 REVISED

 CHECKED
 MFH
 REVISED

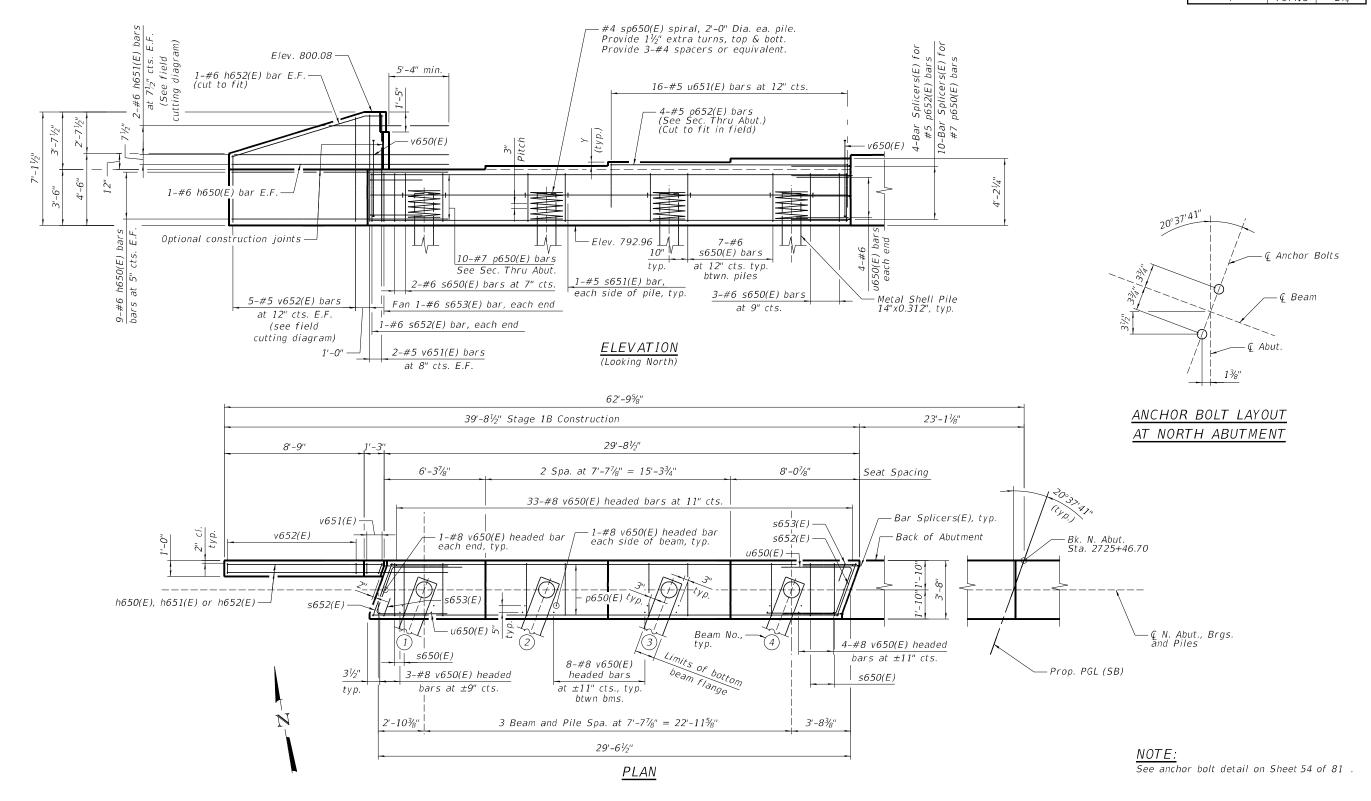
 PLOT SCALE
 =
 DRAWN
 KMS
 REVISED

 PLOT DATE
 =
 CHECKED
 JHG
 REVISED

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

SOUTH ABUTMENT DETAILS (STAGE 3)
STRUCTURE NO. 101-0213 & 101-0214

SHEET 58 OF 81 SHEETS


A.I. SECTION COUNTY TOTAL SHEETS NO.

199 (201-3)R & (4-1, 5)R WINNEBAGO 1685 753

CONTRACT NO. 64C24

<u>SEAT ELEVATIONS</u> <u>& STEP HEIGHTS</u>

Beam	Elev.	Υ
1	796.46	
2	796.69	23/4"
3	796.92	23/4"
4	797.15	23/1"

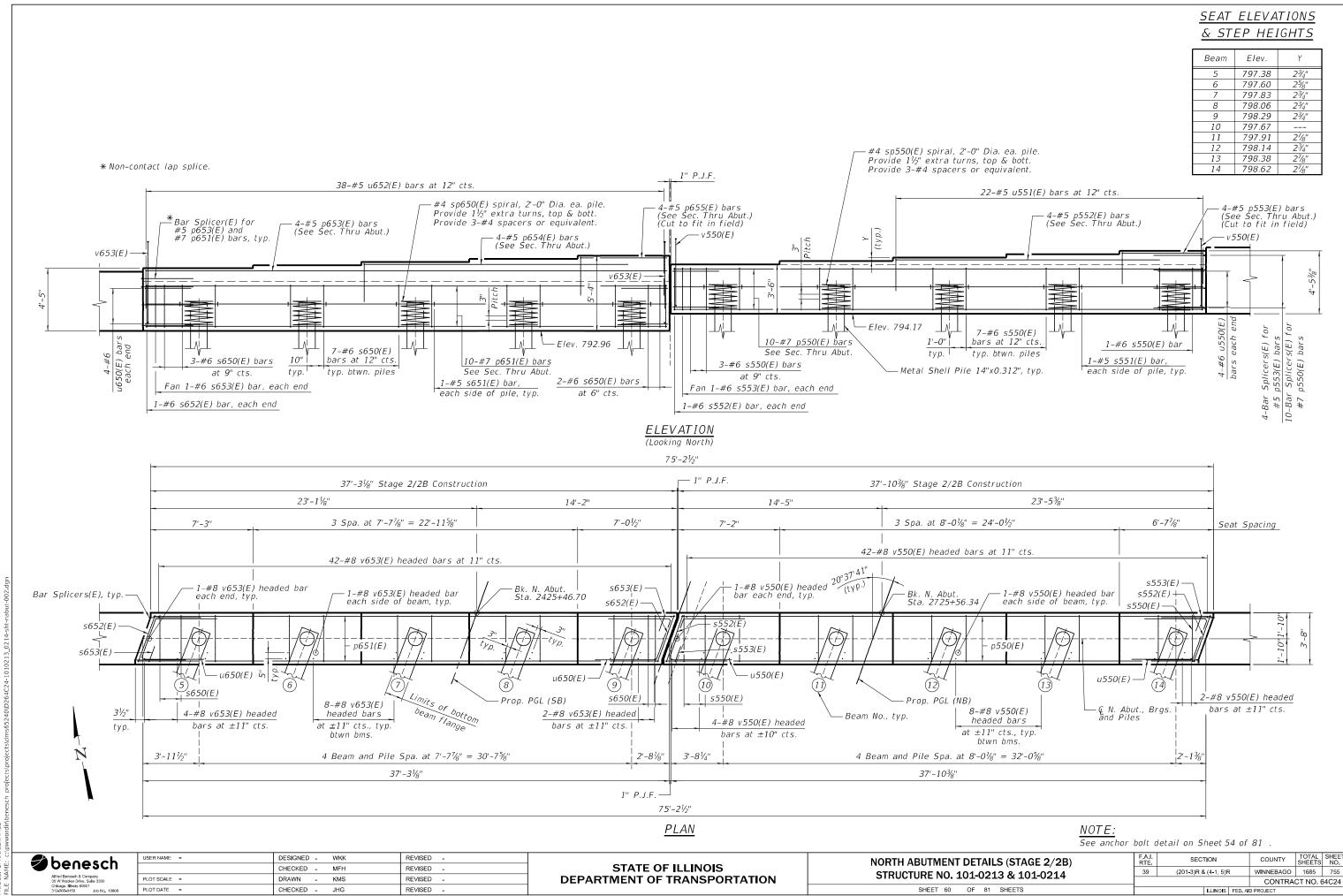
benesch

Alfred Benesch & Company
35 W Wocker Orlve, Sudie 3300
Orleago Billiode 50001 och No. 19900

 USER NAME
 =
 DESIGNED - WKK
 REVISED

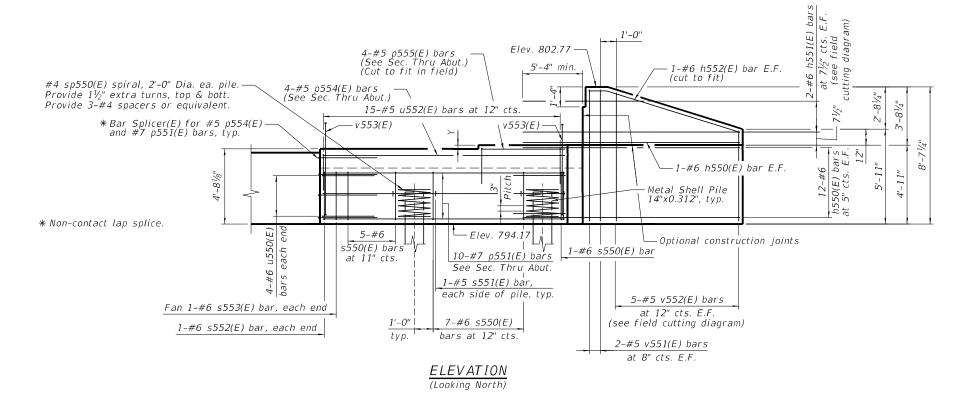
 CHECKED - MFH
 REVISED

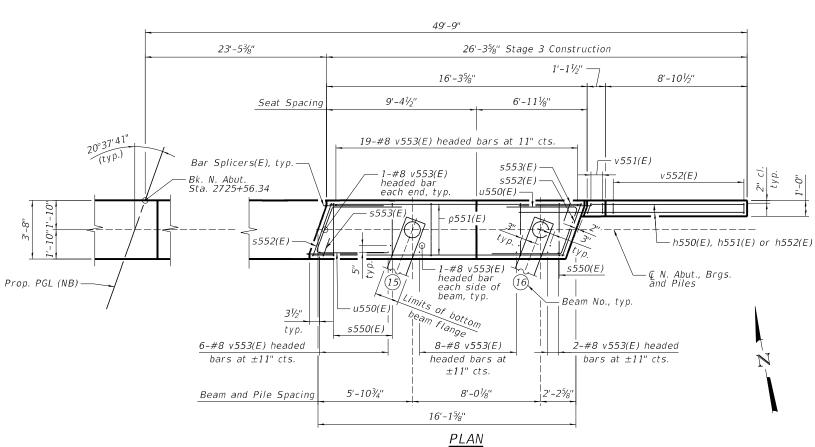
 PLOT SCALE =
 DRAWN - KMS
 REVISED


 PLOT DATE =
 CHECKED - JHG
 REVISED

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

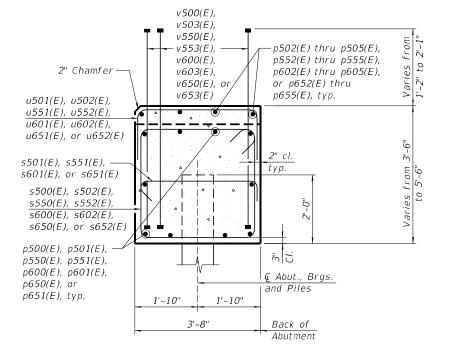
NORTH ABUTMENT DETAILS (STAGE 1B)
STRUCTURE NO. 101-0213 & 101-0214


SHEET 59 OF 81 SHEETS


F.A.I.	SECTION	COUNTY	TOTAL SHEETS	NO.
39	(201-3)R & (4-1, 5)R	WINNEBAGO	1685	754
CONTRACT NO. 64C24		LLINOIS	FED. AID PROJECT	

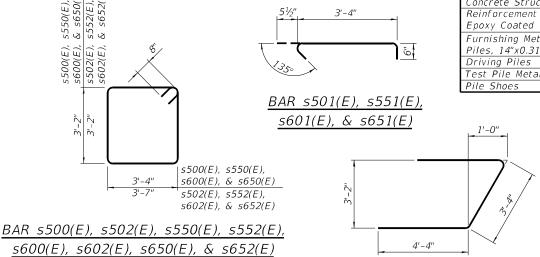
<u>SEAT ELEVATIONS</u> <u>& STEP HEIGHTS</u>

Beam	Elev.	Y
15	798.85	23/4"
16	799.09	2 ⁷ / ₈ "


NOTE:

See anchor bolt detail on Sheet 54 of 81 .

benesch
Alred Benesch & Company
35 W Wecker Drive, Sules 3333
Chlaspa Minde Soffer Les No. 19990


USER NAME =	DESIGNED -	WKK	REVISED -
	CHECKED -	MFH	REVISED -
PLOT SCALE =	DRAWN -	KMS	REVISED -
PLOT DATE =	CHECKED -	JHG	REVISED -

A.I. TE.	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
39	(201-3)R & (4-1, 5)R		WINNEBAGO	1685	756
·			CONTRA	CT NO. 6	64C24
	ILLINOIS FI	ED. All	D PROJECT		

SEC. THRU ABUT.

(Dimensions at right angles to abutment.)

BAR u500(E), u550(E), u600(E), & u650(E)

No. Size Α h501(E) #6 9'-2" | 15'-2" 15'-2" 9'-2" 24'-4" 4 h551(E) 4 #6 15'-2" 9'-2" 24'-4" 9'-2" 15'-2" 15'-2" 9'-2" 24'-4" 4 #6 h601(F) h651(E) 4 #6 9'-2" 15'-2" 15'-2" 9'-2" 24'-4" 10 #5 5'-9" 8'-2" 5'-9" | 13'-11 v502(E) 8'-2" v552(E) 10 #5 5'-8" 8'-0" 8'-0" 5'-8" 13'-8" 10 #5 4'-2" 6'-7" 6'-7" 4'-2" 10'-9" v602(E) #5 4'-2" 6'-7" 6'-7" 4'-2" 10'-9" v652(E)

Order h501(E), h551(E), h601(E), h651(E), v502(E), v552(E), v602(E), and v652(E) full length. Cut as face of the wingwall.

SOUTH ABUTMENT BILL OF MATERIAL SB (SN 101-0214)

	00 10	,, 101	0211,	<u>-</u>
Bar	No.	Size	Length	Shape
h600(E)	20	#6	15'-4"	
h601(E)	4	#6	24'-4"	
h602(E)	2	#6	9'-10"	
p600(E)	10	#7	29'-9"	
p601(E)	10	#7	37'-5"	
p602(E)	4	#5	14'-11"	
p603(E)	4	#5	37'-5"	
p604(E)	4	#5	18'-11"	
p605(E)	4	#5	6'-9"	
600/51	6.1	".0	2 41 411	
5600(E)	61	#6	14'-4"	<u> </u>
5601(E)	18	#5	4'-4"	
s602(E)	4	#6	14'-10"	<u> </u>
s603(E)	4	#6	7'-2"	
sp600(E)	9	#4	2'-0"	www
600/51	1.0	".	1 21 011	
u600(E)	16	#6	12'-0"	$\vdash = \leftarrow$
u601(E)	15	#5	6'-4"	
u602(E)	39	#5	9'-4"	
v600(E)	76	#8	5'-4"	
v601(E)	4	#5	6'-7"	
v602(E)	10	#5	10'-9"	
v603(E)	94	#8	6'-4"	
Structur	e Exca	ation	Cu. Yd.	159
Concret	e Struct	tures	Cu. Yd.	43.6
Reinford Epoxy C		Bars,	Pound	7,890
Furnish	Furnishing Metal Shell Piles, 14"x0.312"			160
Driving			Foot	160
Test Pil	e Metal	Shells	Each	1
Pile Sho	100		Each	9

SOUTH ABUTMENT BILL OF MATERIAL NB (SN 101-0213)

				_
Bar	No.	Size	Length	Shape
0(E)	26	#6	15'-4"	
1(E)	4	#6	24'-4"	
2(E)	2	#6	9'-10"	
0(E)	10	#7	38'-0"	
1(E)	10	#7		
2(E)	4	#5		
3(E)	4	#5		
4(E)	4	#5		
5(E)	4	#5	7'-2"	
0(E)				
, ,				
3(E)	4	#6	7'-2"	
00(E)	7	#4	2'-0"	WWW
				├ <u></u>
2(E)	17	#5	8'-6"	
0/5)	0.4	"0	F1 411	
				-
3(E)	42	#8	6'-8"	_
	- <i>-</i>	- 6 /	Cu Vd	102
				34.6
			Cu. Tu.	34.0
		vai S,	Pound	6,530
		I Shall		
			Foot	126
			Foot	126
Driving Piles				
	Metal	Shells	l Fach	1 1
	e Metal es	Shells	Each Each	7
	0(E) 11(E) 2(E) 0(E) 11(E) 2(E) 11(E) 2(E) 11(E)	0(E) 26 11(E) 4 2(E) 2 0(E) 10 11(E) 10 2(E) 4 3(E) 4 4(E) 4 5(E) 4 0(E) 17 1(E) 14 2(E) 4 3(E) 4 0(E) 17 0(E) 16 11(E) 23 2(E) 17 0(E) 94 11(E) 4 2(E) 10 3(E) 42 ucture Excav icrete Struct inforcement Expxy Coated inishing Meta	O(E) 26 #6 1(E) 4 #6 2(E) 2 #6 O(E) 10 #7 1(E) 10 #7 1(E) 10 #7 2(E) 4 #5 3(E) 4 #5 5(E) 4 #5 O(E) 47 #6 1(E) 14 #5 2(E) 4 #6 O(E) 16 #6 1(E) 17 #4 O(E) 16 #6 1(E) 23 #5 2(E) 17 #5 O(E) 94 #8 1(E) 4 #5 2(E) 17 #5 O(E) 94 #8 1(E) 4 #5 2(E) 10 #5 3(E) 42 #8 Uncture Excavation increte Structures Inforcement Bars,	0(E) 26 #6 15'-4" 1(E) 4 #6 24'-4" 2(E) 2 #6 9'-10" 0(E) 10 #7 38'-0" 1(E) 10 #7 16'-0" 2(E) 4 #5 19'-7" 3(E) 4 #5 6'-10" 4(E) 4 #5 16'-0" 5(E) 4 #5 7'-2" 0(E) 47 #6 14'-4" 1(E) 14 #5 4'-4" 1(E) 14 #6 7'-2" 0(E) 4 #6 12'-0" 0(E) 7 #4 2'-0" 0(E) 16 #6 12'-0" 1(E) 23 #5 7'-6" 2(E) 17 #5 8'-6" 0(E) 94 #8 5'-4" 1(E) 4 #5 8'-3" 2(E) 10 #5 13'-11" 3(E) 42 #8 6'-8" ucture Excavation Cu. Yd. cerete Structures Cu. Yd. for company of the power of the p

* Length is height of spiral

NORTH ABUTMENT BILL OF MATERIAL SB (SN 101-0214)

	Bar	No.	Size	Length	Shape
					o marp c
	h650(E)	20	#6	15'-4"	
	h651(E)	4	#6	24'-4"	
	h652(E)	2	#6	9'-10"	
	p650(E)	10	#7	29'-2"	
	p651(E)	10	#7	36'-11"	
	p652(E)	4	#5	15'-4"	
	p653(E)	4	#5	36'-11"	
	p654(E)	4	#5	18'-11"	
	p655(E)	4	#5	6'-8"	
	s650(E)	59	#6	14'-4"	
	s651(E)	18	#5	4'-4"	
	s652(E)	4	#6	14'-10"	
	s653(E)	4	#6	7'-2"	
*	sp650(E)	9	#4	2'-0"	www
	u650(E)	16	#6	12'-0"	7
	u651(E)	16	#5	6'-4"	
	u652(E)	38	#5	9'-0"	
	. ,				
	v650(E)	74	#8	5'-4"	
	v651(E)	4	#5	6'-7"	
	v652(E)	10	#5	10'-9"	
	v653(E)	92	#8	6'-3"	
	Structure	Excav	ation	Cu. Yd.	159
	Concrete			Cu. Yd.	42.2
		ement Bars, pated ng Metal Shell			
	Ероху Сс			Pound	7,730
	Piles, 14			Foot	224
	Driving F			Foot	224
	Test Pile		Shells	Each	1
	Pile Shoe		JHEHS	Each	9
	THE SHOE			Lacii	9

NORTH ABUTMENT BILL OF MATERIAL NB (SN 101-0213)

ĺ	Bar	No.	Size	Length	Shape
	h550(E)	26	#6	15'-4"	
	h551(E)	4	#6	24'-4"	
	h552(E)	2	#6	9'-10"	
	p550(E)	10	#7	37'-6"	
	p551(E)	10	#7	15'-11"	
	p552(E)	4	#5	19'-7"	
	p553(E)	4	#5	6'-3"	
	p554(E)	4	#5	15'-11"	
	p555(E)	4	#5	6'-5"	
	s550(E)	45	#6	14'-4"	
	s551(E)	14	#5	4'-4"	
	s552(E)	4	#6	14'-10"	<u> </u>
	s553(E)	4	#6	7'-2"	
	550/51			21 211	
*	sp550(E)	7	#4	2'-0"	MWM
		1.0	".	1 21 011	
	u550(E)	16 22	#6 #5	12'-0'' 7'-4''	$\vdash = \vdash$
	u551(E) u552(E)	15	#5	7 -4 8'-4"	_=
	u332(E)	13	#3	0 -4	
	v550(E)	92	#8	5'-4"	
	v551(E)	4	#5	8'-1"	
	v552(E)	10	#5	13'-8"	
	v553(E)	41	#8	6'-6"	
	Structure	Excav	ation	Cu. Yd.	103
	Concrete			Cu. Yd.	33.6
	Reinforce Epoxy Co	ement Bars, Pated		Pound	6,370
		ng Metal Shell		Foot	174
	Driving F			Foot	174
	Test Pile		Shells	Each	1
	Pile Shoe	25		Each	7
•					

PILE DATA - S. ABUT. - NORTHBOUND

Type: Metal Shell Piles 14"x0.312" w/ Pile Shoes Nominal Required Bearing: 513 kips Factored Resistance Available: 282 kips Est. Length: 21 feet No. Production Piles: 6 No. Test Piles: 1

PILE DATA - S. ABUT. - SOUTHBOUND

Type: Metal Shell Piles 14"x0.312" w/ Pile Shoes

Nominal Required Bearing: 513 kips

Factored Resistance Available: 282 kips Est. Length: 20 feet No. Production Piles: 8 No. Test Piles: 1 5.-4" 6.-8" 6.-6" 6.-6" 6.-4" 6.-3"

BAR v500(E), v503(E), v550(E), v553(E) v600(E), v603(E), v650(E) & v653(E)

(Headed. 1210-#8 Bar Terminators)

BAR h502(E), h552(E), h602(E), & h652(E)

No. Production Piles: 8 No. Test Piles: 1

NOTES:

1. Pour steps monolithically with cap.

PILE DATA - N. ABUT. - NORTHBOUND

PILE DATA - N. ABUT. - SOUTHBOUND

Type: Metal Shell Piles 14"x0.312" w/ Pile Shoes

Type: Metal Shell Piles 14"x0.312" w/ Pile Shoes

Nominal Required Bearing: 513 kips

Nominal Required Bearing: 513 kips

Factored Resistance Available: 282 kips

Est. Length: 29 feet

Est. Length: 28 feet

No. Test Piles: 1

No. Production Piles: 6

Factored Resistance Available: 282 kips

- 2. Bar terminators, paid for separately. See Total Bill of Materials.
- 3. For details of piles see Sheet 74 of 81

benesch

USER NAME =	DESIGNED -	WKK	REVISED	-
	CHECKED -	MFH	REVISED	-
PLOT SCALE =	DRAWN -	KMS	REVISED	-
PLOT DATE =	CHECKED -	JHG	REVISED	-

STATE OF ILLINOIS

BAR s503(E), s553(E), s603(E), s653(E)

u501(E), u502(E), u551(E), u552(E)

u601(E), u602(E), u651(E), or u652(E)

2'-0"

2'-0"

2'-0"

1'-6"

3'-0"

Bar

s603(E)

s503(E) 3'-2"

s553(E) 3'-2"

s653(E) 3'-2"

u501(E) 3'-4"

u502(E) 3'-4"

u551(E) 3'-4" u552(E) 3'-4"

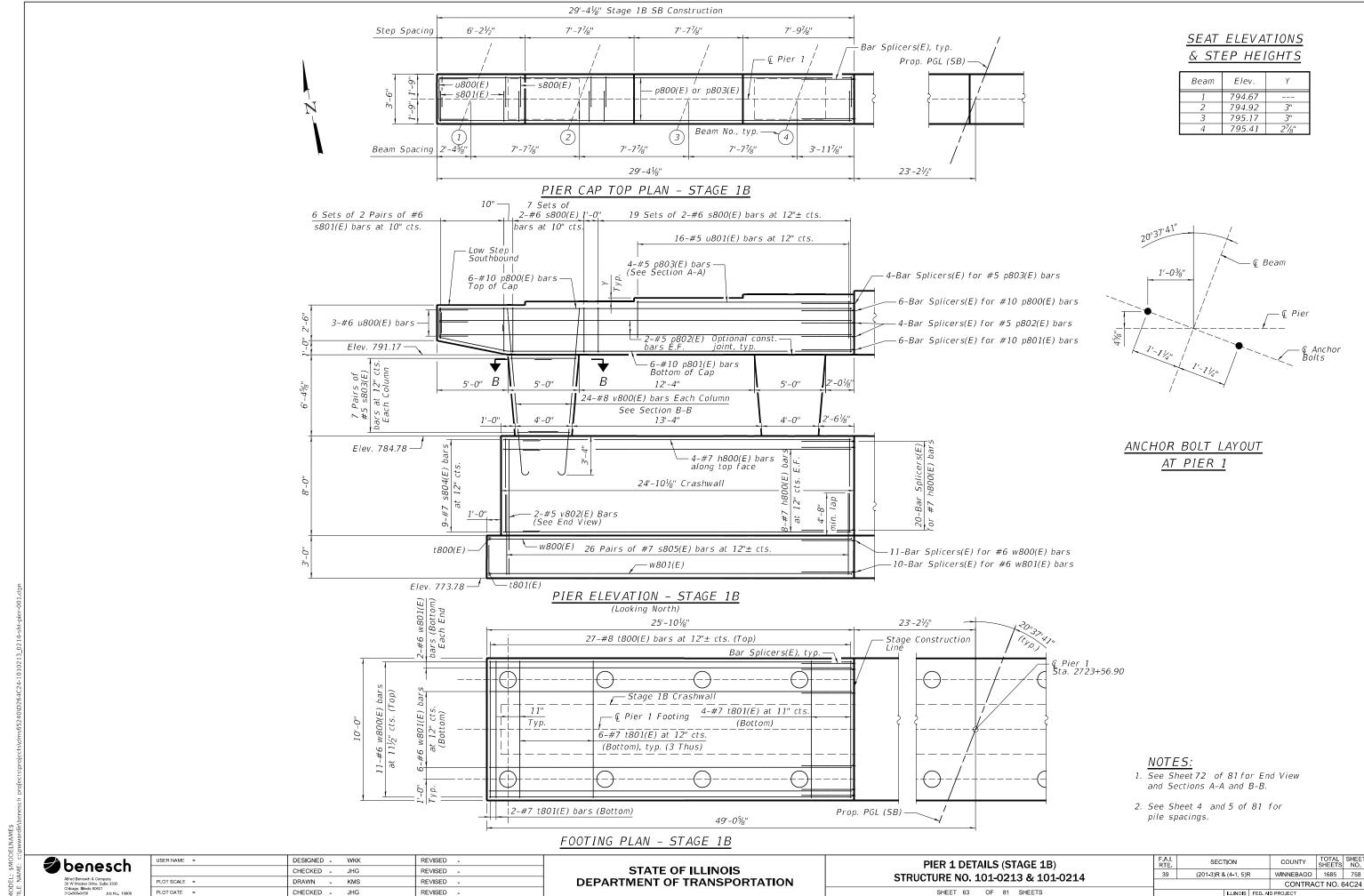
u601(E) 3'-4"

u602(E) 3'-4"

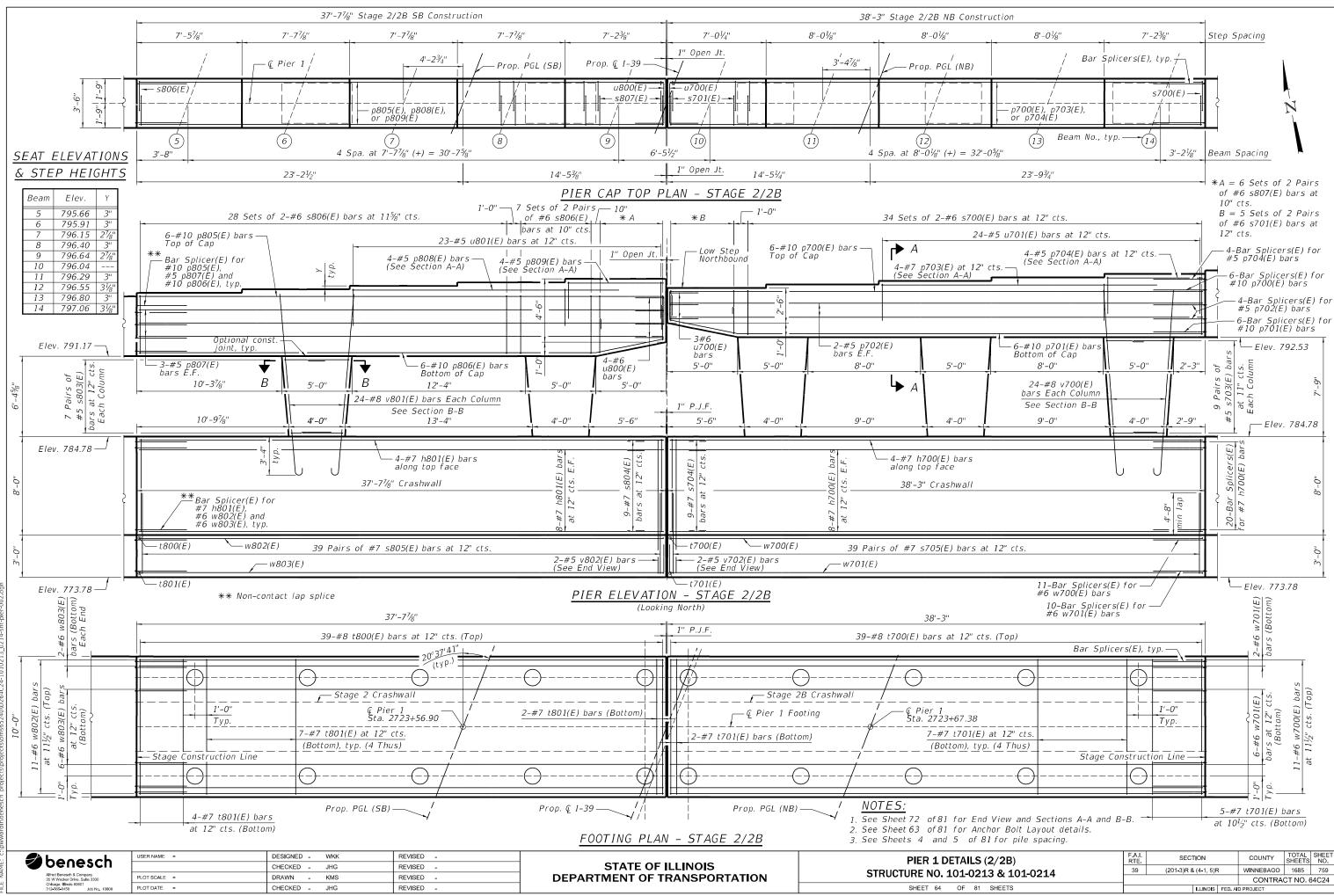
u651(E) 3'-4" 1'-6"

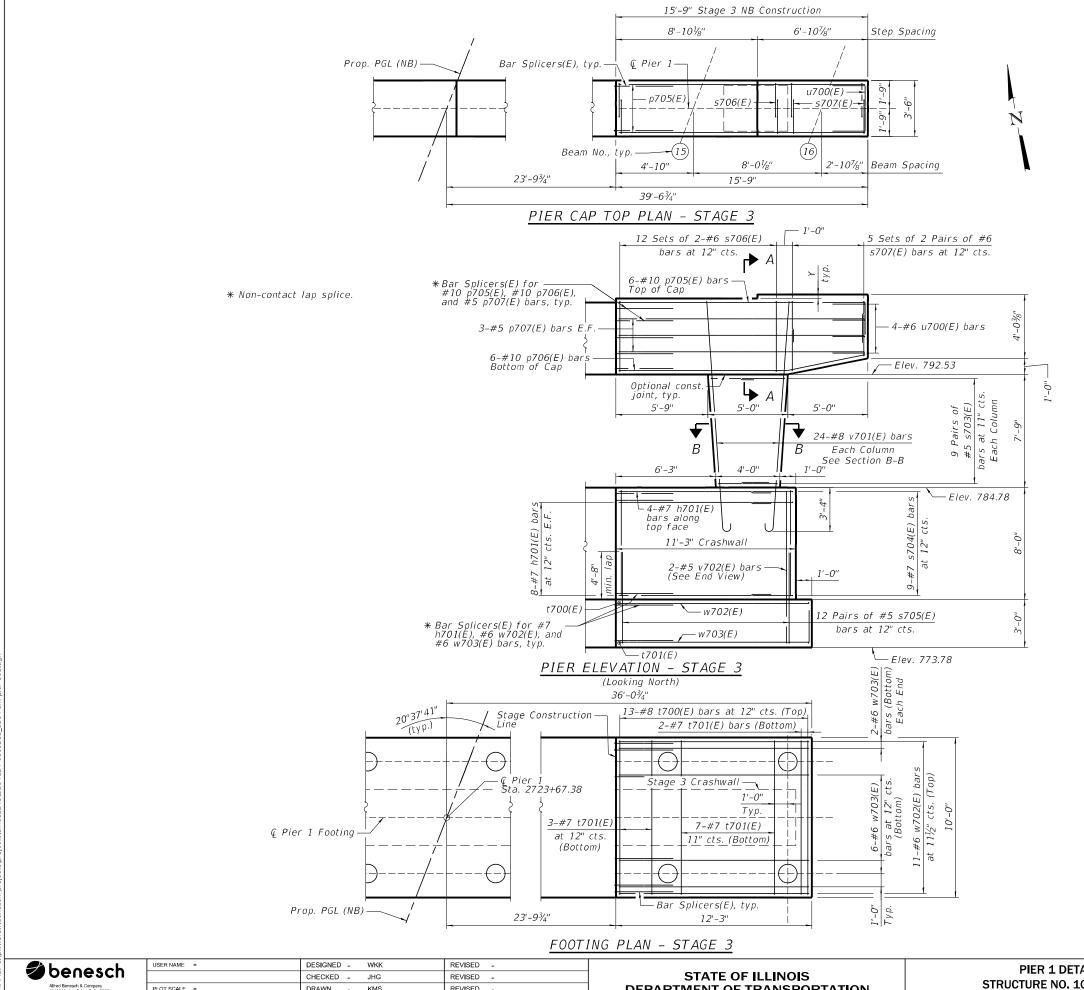
u652(E) | 3'-4" | 2'-10"

3'-2"


ABUTMENT DETAILS STRUCTURE NO. 101-0213 & 101-0214 SHEET 62 OF 81 SHEETS

SECTION COUNTY 39 (201-3)R & (4-1, 5)R WINNEBAGO | 1685 | 757 CONTRACT NO. 64C24


FIELD CUTTING DIAGRAM


shown and use remainder of bars on the opposite

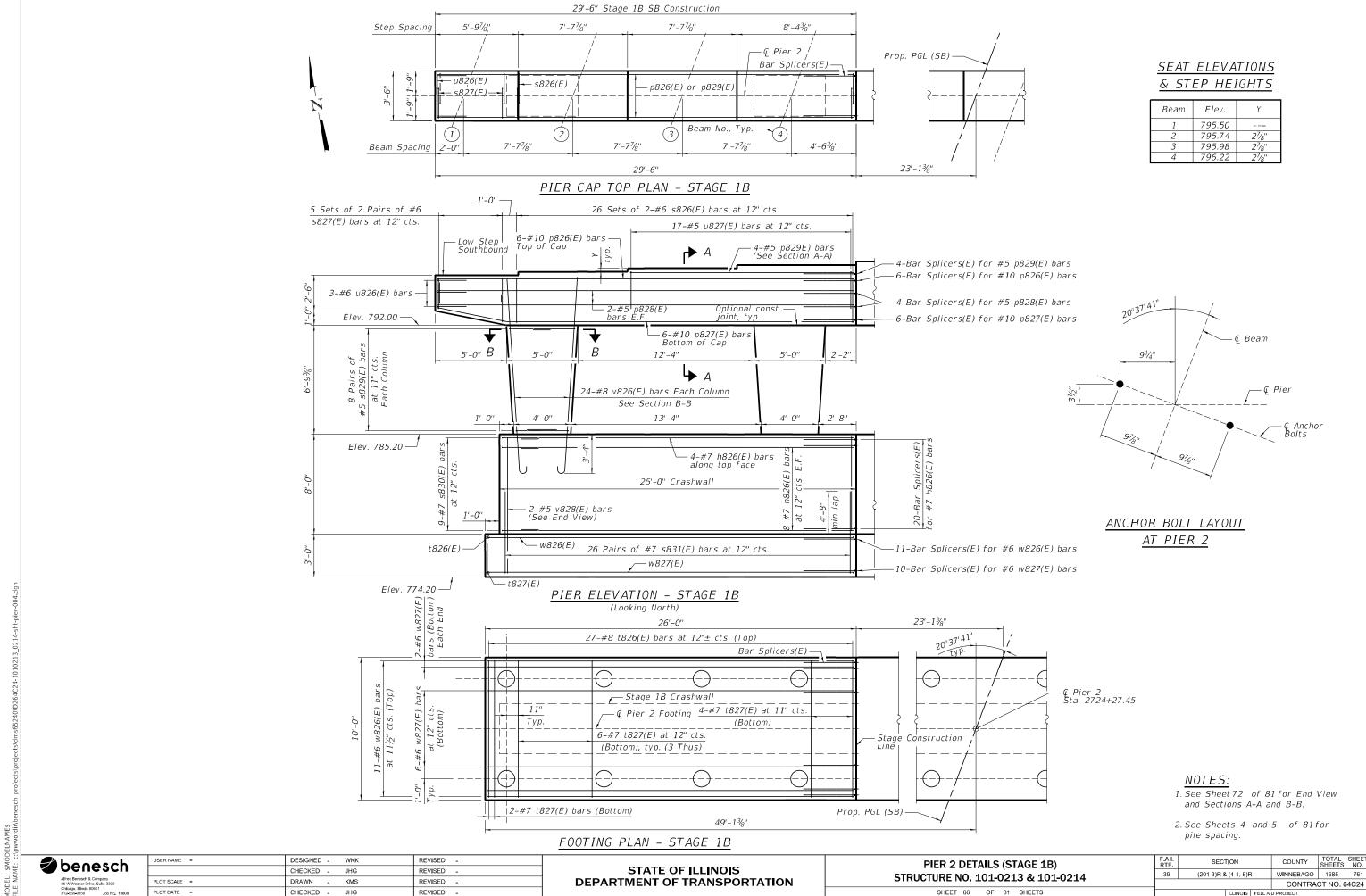
DEPARTMENT OF TRANSPORTATION

4/22/2025 12:42:51 PM

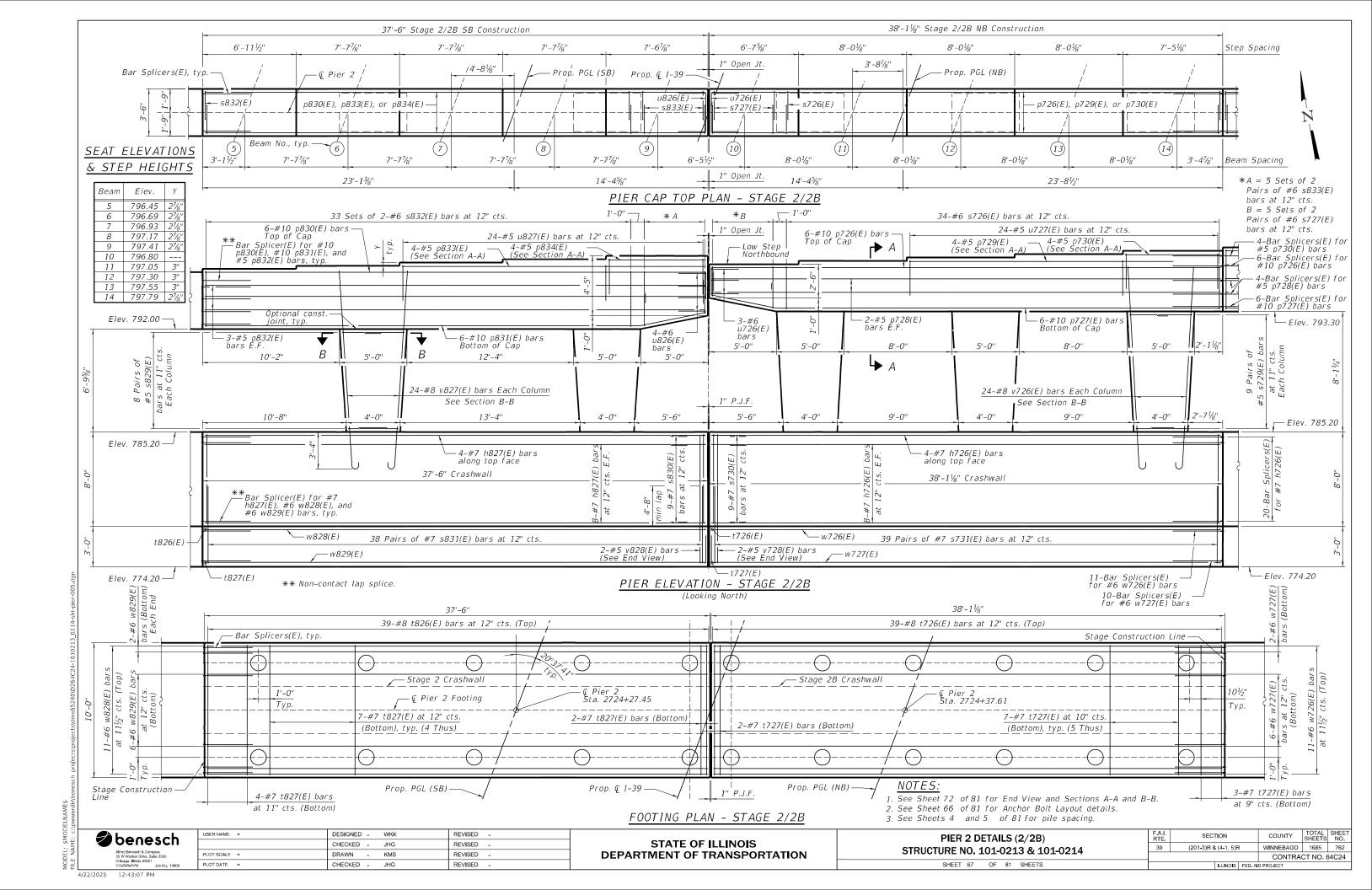
SEAT ELEVATIONS & STEP HEIGHTS

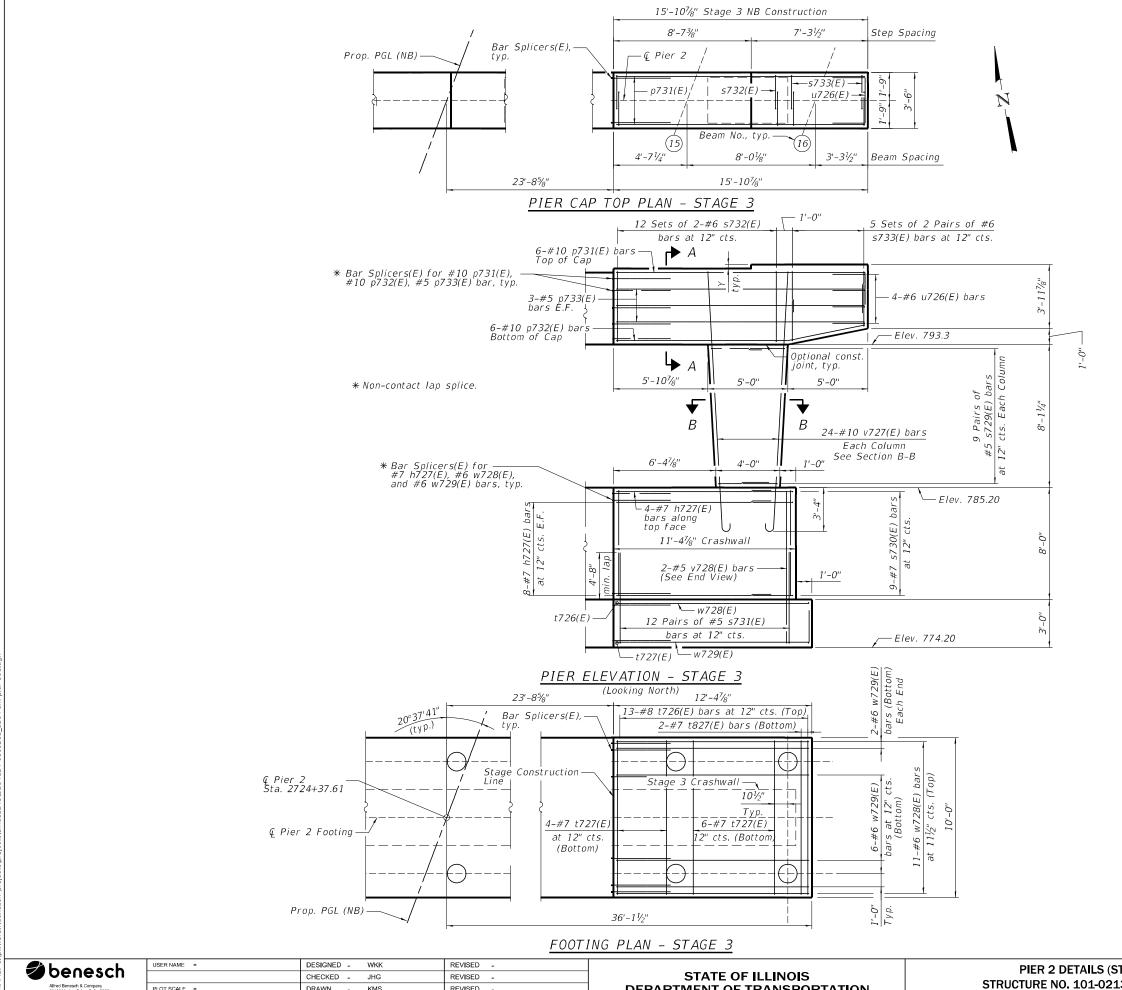
Beam	Elev.	Y
15	797.31	3"
16	797.57	31//3"

NOTES:


- 1. See Sheet 72 of 81 for End View and Sections A-A and B-B.
- 2. See Sheet 63 of 81 for Anchor Bolt Layout details.
- 3. See Sheets 4 and 5 of 81 for pile spacing.

PLOT SCALE = DRAWN REVISED PLOT DATE = CHECKED -REVISED .


DEPARTMENT OF TRANSPORTATION

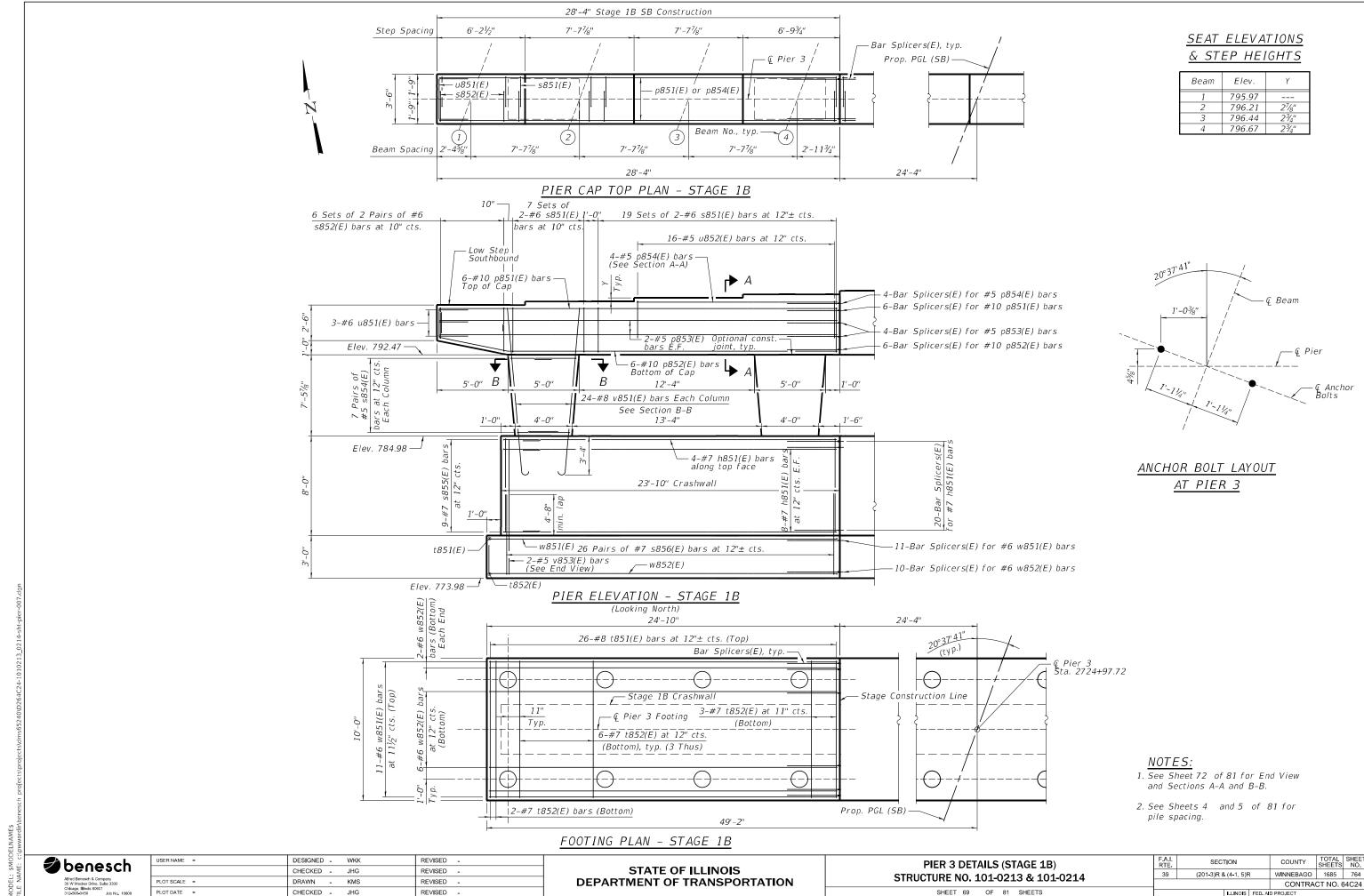

PIER 1 DETAILS (STAGE 3) STRUCTURE NO. 101-0213 & 101-0214 SHEET 65 OF 81 SHEETS

TOTAL SHEET NO. SECTION COUNTY 39 (201-3)R & (4-1, 5)R WINNEBAGO 1685 760 CONTRACT NO. 64C24

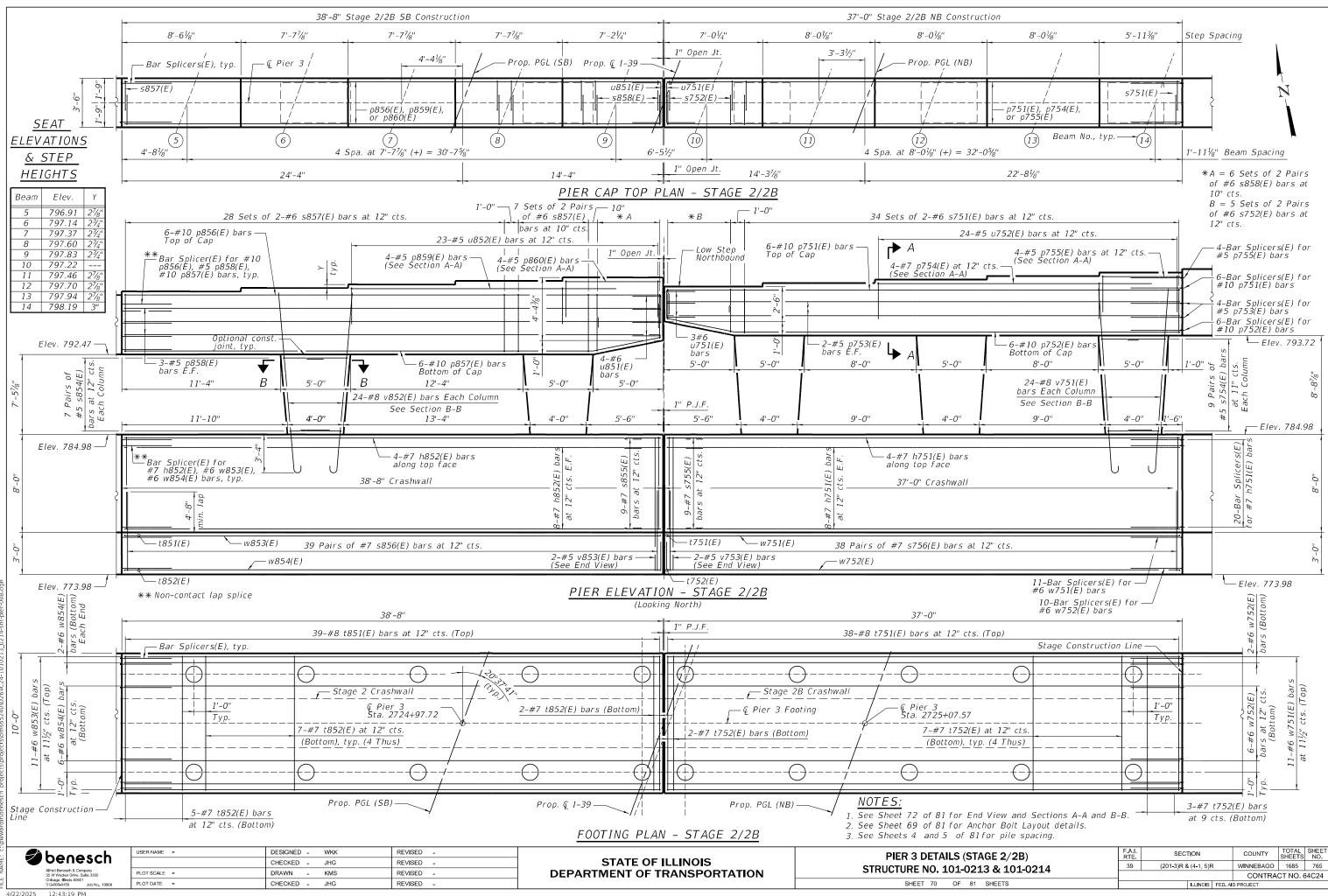
4/22/2025 12:43:03 PM

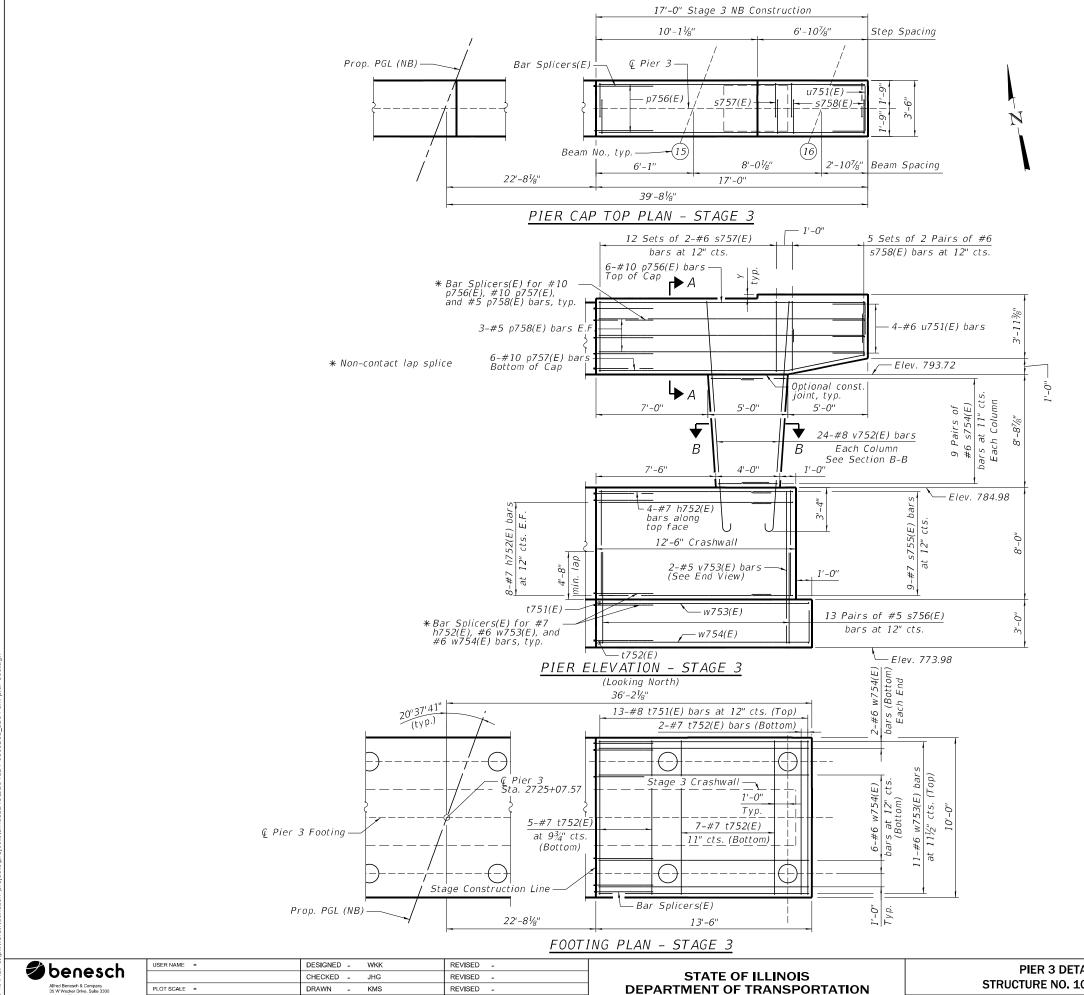
SEAT ELEVATIONS & STEP HEIGHTS

Be	эт	Elev.	Y
1.	5	798.04	3"
1	6	798 29	3"


- 1. See Sheet 72 of 81 for End View and Sections A-A and B-B.
- 2. See Sheet 66 of 81 for Anchor Bolt Layout details.
- 3. See Sheets 4 and 5 of 81 for pile spacing.

REVISED -PLOT DATE = REVISED . CHECKED -


DEPARTMENT OF TRANSPORTATION


PIER 2 DETAILS (STAGE 3) STRUCTURE NO. 101-0213 & 101-0214 SHEET 68 OF 81 SHEETS

SECTION COUNTY (201-3)R & (4-1, 5)R WINNEBAGO 1685 763 CONTRACT NO. 64C24

4/22/2025 12:43:15 PM

REVISED .

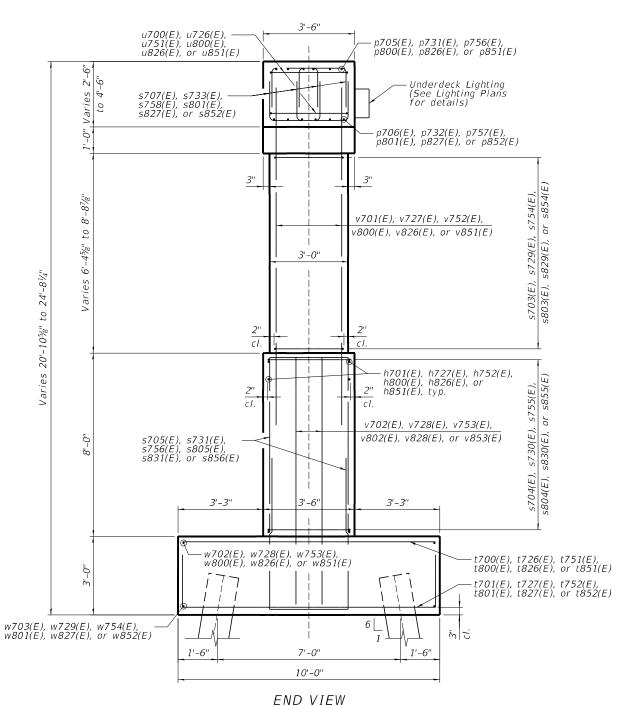
CHECKED -

SEAT ELEVATIONS & STEP HEIGHTS

Beam	Elev.	Υ
15	798.43	2 ⁷ /8"
16	798.67	2 ⁷ / ₈ "

NOTES:

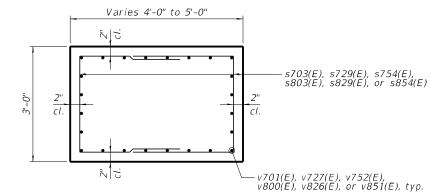
- 1. See Sheet 72 of 81 for End View and Sections A-A and B-B.
- 2. See Sheet 69 of 81 for Anchor Bolt Layout details.
- 3. See Sheets 4 and 5 of 81 for pile spacing.


TOTAL SHEET NO. SECTION COUNTY 39 (201-3)R & (4-1, 5)R WINNEBAGO 1685 766

CONTRACT NO. 64C24

PIER 3 DETAILS (STAGE 3) STRUCTURE NO. 101-0213 & 101-0214

SHEET 71 OF 81 SHEETS


PLOT DATE =

3'-6" u701(E), u727(E), u752(E), u801(E), u827(E), or u852(E) p703(E), p704(E), p729(E), p730(E), p754(E), p755(E), p803(E), p808(E), p809(E), p829(E), p833(E), p834(E), p854(E), p859(E), or p860(E) p700(E), p705(E), p726(E), p731(E), p751(E), p756(E), p800(E), p805(E), p826(E), p830(E), p851(E), or p856(E) s700(E), s706(E), s726(E), s732(E), s751(E), s757(E), s800(E), s806(E), s826(E), s832(E), s851(E), or s857(E) p702(E), p707(E), p728(E), p733(E), p753(E), p758(E), p802(E), p807(E), p828(E), p832(E), p853(E), or p858(E) cI. p701(E), p706(E), p727(E), p732(E), p752(E), p757(E), p801(E), p806(E), p827(E), p831(E), p852(E), or p857(E)

SECTION A-A

SECTION B-B

BAR p700(E), p705(E), p726(E), p731(E), p751(E), p756(E), p800(E), p805(E), p826(E), p830(E), p851(E), or p856(E)

J DIMENSIONS

0 211121101011	<u>~</u>
5	
Bar	J
p700(E)	37'-11"
p705(E)	15'-5"
p726(E)	37'-9"
p731(E)	15'-7"
p751(E)	36'-8"
p756(E)	16'-8"
p800(E)	29'-0"
p805(E)	37'-4"
p826(E)	29'-2"
p830(E)	37'-2"
p851(E)	28'-0"
p856(E)	38'-4"

Bar	J
p700(E)	37'-11"
p705(E)	15'-5"
p726(E)	37'-9"
p731(E)	15'-7"
p751(E)	36'-8"
p756(E)	16'-8"
p800(E)	29'-0"
p805(E)	37'-4"
p826(E)	29'-2"
p830(E)	37'-2"
p851(E)	28'-0"
p856(E)	38'-4"

NOTES:

- 1. Space Reinforcement in cap to miss anchor bolts.
- 2. Pour steps monolithically with cap.
- 3. For details of metal shell piles, see Sheet 74 of 81.
- 4. Concrete Sealer shall be applied to the exposed surface areas of Pier 2.
- 5. See Sheet 73 of 81 for bar lists.

PILE DATA - PIER 1 - NORTHBOUND

Type: Metal Shell Piles 14"x0.312" w/ Pile Shoes Nominal Required Bearing: 513 kips Factored Resistance Available: 282 kips Est. Length: 20 feet No. Production Piles: 13 No. Test Piles: 1

PILE DATA - PIER 1 - SOUTHBOUND

Type: Metal Shell Piles 14"x0.312" w/ Pile Shoes Nominal Required Bearing: 513 kips Factored Resistance Available: 282 kips Est. Length: 11 feet No. Production Piles: 17 No. Test Piles: 1

PILE DATA - PIER 2 - NORTHBOUND

Type: Metal Shell Piles 14"x0.312" w/ Pile Shoes Nominal Required Bearing: 513 kips Factored Resistance Available: 282 kips Est. Length: 12 feet No. Production Piles: 15 No. Test Piles: 1

PILE DATA - PIER 2 - SOUTHBOUND

Type: Metal Shell Piles 14"x0.312" w/ Pile Shoes Nominal Required Bearing: 513 kips Factored Resistance Available: 282 kips Est. Length: 12 feet No. Production Piles: 17 No. Test Piles: 1

PILE DATA - PIER 3 - NORTHBOUND

Type: Metal Shell Piles 14"x0.312" w/ Pile Shoes Nominal Required Bearing: 513 kips Factored Resistance Available: 282 kips Est. Length: 41 feet No. Production Piles: 13 No. Test Piles: 1

PILE DATA - PIER 3 - SOUTHBOUND

Type: Metal Shell Piles 14"x0.312" w/ Pile Shoes Nominal Required Bearing: 513 kips Factored Resistance Available: 282 kips Est. Length: 41 feet No. Production Piles: 17 No. Test Piles: 1

USER NAME =	DESIGNED -	WKK	REVISED -
	CHECKED -	JHG	REVISED -
PLOT SCALE =	DRAWN -	KMS	REVISED -
PLOT DATE =	CHECKED -	JHG	REVISED -

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

PIER DETAILS (1 OF 2) STRUCTURE NO. 101-0213 & 101-0214 SHEET 72 OF 81 SHEETS

A.I. TE	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.			
39	(201-3)R & (4-1, 5)R	WINNEBAGO	1685	767			
CONTRACT NO. 64C24							
· · · · · · · · · · · · · · · · · · ·							

PIER 1 BILL OF MATERIAL SB (SN 101-0213)

Bar	No.	Size	Length	Shape
				Зпаре
h800(E)	20	#7	24'-6"	
h801(E)	20	#7	37'-4"	
p800(E)	6	#10	31'-0"	<u> </u>
p801(E)	6	#10	29'-1"	
p802(E)	4	#5	29'-0"	
p803(E)	4	#5	15'-1"	
p805(E)	6	#10	39'-4"	<u> </u>
p806(E)	6	#10	37'-5"	
p807(E)	6	#5	37'-4"	
p808(E)	4	#5	18'-11"	
p809(E)	4	#5	6'-10"	
s800(E)	52	#6	11'-5"	
s801(E)	24	#6	6'-5"	П
s803(E)	56	#5	10'-0"	П
s804(E)	18	#7	13'-2"	
s805(E)	130	#7	18'-6"	
s806(E)	70	#6	13'-5"	
5807(E)	24	#6	8'-5"	
t800(E)	66	#8	9'-8"	
t801(E)	58	#7	13'-8"	
u800(E)	7	#6	13'-2"	
u801(E)	39	#5	7'-2"	
v800(E)	48	#8	14'-0"	
v801(E)	48	#8	14'-10"	
v802(E)	4	#5	10'-8"	
w800(E)	11	#6	25'-6"	
w801(E)	10	#6	27'-6"	
w802(E)	11	#6	37'-3"	
w803(E)	10	#6	39'-3"	
Structure	e Excav	ation	Cu. Yd.	175
Concrete			Cu. Yd.	186.6
	Reinforcement Bars,			24.040
Ероху С	Epoxy Coated			24,940
Furnishi		al Shell	Foot	107
	Piles, 14"x0.312"			187
Driving I			Foot	187
Test Pile		Shells	Each	1
Pile Sho			Each	18
FILE SHOES				

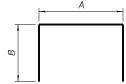
PIER 2 BILL OF MATERIAL SB (SN 101-0213)

Bar	No.	Size	Length	Shape
h826(E)	20	#7	24'-8"	
h827(E)	20	#7	37'-2"	
p826(E)	6	#10	31'-2"	
p827(E)	6	#10	29'-3"	
p828(E)	4	#5	29'-2"	
p829(E)	4	#5	15'-8"	
p830(E)	6	#10	39'-2"	
p831(E)	6	#10	37'-3"	
p832(E)	6	#5	37'-2"	
p833(E)	4	#5	18'-11"	
p834(E)	4	#5	7'-3"	
J (-)				
s826(E)	52	#6	11'-5"	
s827(E)	20	#6	6'-5"	
5829(E)	64	#5	10'-0"	
s830(E)	18	#7	13'-2"	
s831(E)	128	#7	18'-6"	
s832(E)	66	#6	13'-4"	٦
s833(E)	20	#6	8'-4"	
, ,				
t826(E)	66	#8	9'-8"	
t827(E)	58	#7	13'-8"	
u826(E)	7	#6	13'-2"	
u827(E)	41	#5	7'-1"	
v826(E)	48	#8	14'-5"	
v827(E)	48	#8	15'-4"	
v828(E)	4	#5	10'-8"	
w826(E)	11	#6	25'-8"	
w827(E)	10	#6	27'-8"	
w828(E)	11	#6	37'-2"	
w829(E)	10	#6	39'-2"	L
Structure	Excav	ation	Cu. Yd.	206
Concrete	Struct	ures	Cu. Yd.	187.1
Reinforc	ement l	Bars,	Pound	24,910
Ероху С			Found	24,310
Furnishi	ng Meta	al Shell	Foot	204
Piles, 14	"x0.312	2"	Foot	204
Driving I	Piles		Foot	204
Test Pile	Metal	Shells	Each	1
Pile Sho	e <i>s</i>		Each	18
Concrete	Sealer		Sq. Ft.	2,392

PIER 3 BILL OF MATERIAL SB (SN 101-0213)

Bar	No.	Size	Length	Shape	
h851(E)	20	#7	23'-6"		
h852(E)	20	#7	38'-4"		
p851(E)	6	#10	30'-0"		
p852(E)	6	#10	28'-1"		
p853(E)	4	#5	28'-0"		
p854(E)	4	#5	14'-1"		
p856(E)	6	#10	40'-4"		
p857(E)	6	#10	38'-5"	_	
p858(E)	6	#5	38'-4"		
p859(E)	4	#5	18'-11"		
p860(E)	4	#5	6'-10"		
s851(E)	52	#6	11'-5"		
s852(E)	24	#6	6'-5"		
s854(E)	56	#5	10'-0"		
s855(E)	18	#7	13'-2"		
s856(E)	130	#7	18'-6"		
s857(E)	70	#6	13'-3"		
s858(E)	24	#6	10'-2"		
t851(E)	65	#8	9'-8"		
t852(E)	58	#7	13'-8"		
u851(E)	7	#6	13'-2"		
u852(E)	39	#5	7'-0"		
v851(E)	48	#8	15'-1"		
v852(E)	48	#8	16'-0"		
v853(E)	4	#5	10'-8"		
w851(E)	11	#6	24'-6"		
w852(E)	10	#6	26'-6"		
w853(E)	11	#6	38'-4"		
w854(E)	10	#6	40'-4"		
<i>C.</i> .			Cu. Yd.	175	
	Structure Excavation			175 188.2	
Concrete Structures			Cu. Yd.	100.2	
	Reinforcement Bars, Epoxy Coated			25,250	
Furnishii	Furnishing Metal Shell			697	
Piles, 14			Foot		
Driving F			Foot	697	
Test Pile		Shells	Each	1	
Pile Shoes			Each	18	

PIER 1 BILL OF MATERIAL NB (SN 101-0214)


Bar	No.	Size	Length	Shape
h700(E)	20	#7	37'-11"	
h701(E)	20	#7	10'-11"	
p700(E)	6	#10	39'-11"	L
p701(E)	6	#10	38'-0"	
p702(E)	4	#5	37'-11"	
p703(E)	4	#5	19'-7"	
p704(E)	4	#5	6'-10"	
p705(E)	6	#10	17'-5"	L
p706(E)	6	#10	15'-6"	
p707(E)	6	#5	15'-5"	-
700(5)				
s700(E)	68	#6	11'-5"	<u> </u>
s701(E)	20	#6	6'-5"	
s703(E)	72	#5	10'-0"	
s704(E)	18	#7	13'-2"	
s705(E)	102	#7	18'-6"	
s706(E)	24	#6	13'-11"	
s707(E)	20	#6	9'-5"	
t700(E)	52	#8	9'-8"	
t701(E)	47	#7	13'-8"	1
(/ O1(L)	77	" '	15 0	
u700(E)	7	#6	13'-2"	
u701(E)	24	#5	7'-3"	
,				
v700(E)	72	#8	15'-4"	
v701(E)	24	#8	16'-7"	
v702(E)	4	#5	10'-8"	
w700(E)	11	#6	37'-11"	
w701(E)	10	#6	39'-11"	L
w702(E)	11	#6	11'-11"	
w703(E)	10	#6	13'-11"	L
C1		. ,	Cu. Yd.	170
Structure Excavation Concrete Structures			Cu. Yd. Cu. Yd.	152.2
			Cu. Tu.	152.2
	Reinforcement Bars, Epoxy Coated			21,130
Furnishii	Furnishing Metal Shell Piles, 14"x0.312"			260
Driving F			Foot	260
Test Pile		Shells	Each	1
Pile Shoe	25		Each 14	

PIER 2 BILL OF MATERIAL NB (SN 101-0214)

Bar	No.	Size	Length	Shape	
h726(E)	20	#7	37'-9"		
h727(E)	20	#7	11'-1"		
` '					
p726(E)	6	#10	39'-9"		
p727(E)	6	#10	37'-10"		
p728(E)	4	#5	37'-9"		
p729(E)	4	#5	19'-7"		
p730(E)	4	#5	7'-1"		
p731(E)	6	#10	17'-7"		
p732(E)	6	#10	15'-8"		
p733(E)	6	#5	15'-7"		
5726(E)	68	#6	11'-5"		
s727(E)	20	#6	6'-5"	П	
5729(E)	72	#5	10'-0"	П	
s730(E)	18	#7	13'-2"	П	
s731(E)	102	#7	18'-6"	П	
s732(E)	24	#6	13'-11"		
s733(E)	20	#6	9'-5"		
t726(E)	52	#8	9'-8"		
t727(E)	47	#7	13'-8"		
726/51	7	".	1 21 211		
u726(E)	7 24	#6 #5	13'-2" 7'-2"		
u727(E)	24	#3	7 -2	<u> </u>	
v726(E)	72	#8	15'-8"		
v727(E)	24	#8	16'-11"		
v728(E)	4	#5	10'-8"		
w726(E)	11	#6	37'-9"		
w727(E)	10	#6	39'-9"	L	
w728(E)	11	#6	12'-1"		
w729(E)	10	#6	14'-1"	Ц	
Structure			Cu. Yd.	184	
Concrete			Cu. Yd.	152.8	
	Reinforcement Bars,		Pound	21,210	
Epoxy Coated		7 00770	21,210		
Furnishing Metal Shell			Foot	180	
Piles, 14"x0.312" Driving Piles			Foot		
		Challa	Each	180	
Test Pile Metal Shells Pile Shoes			Each		
				16	
Concrete Sealer			Sq. Ft.	2,015	

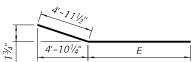
PIER 3 BILL OF MATERIAL NB (SN 101-0214)

Bar	No.	Size	Length	Shape
h751(E)	20	#7	36'-8"	
h752(E)	20	#7	12'-2"	
p751(E)	6	#10	38'-8"	
p752(E)	6	#10	36'-9"	
p753(E)	4	#5	36'-8"	
p754(E)	4	#5	19'-7"	
p755(E)	4	#5	5'-7"	
p756(E)	6	#10	18'-8"	
p757(E)	6	#10	16'-9"	
p758(E)	6	#5	16'-8"	
, , ,				
s751(E)	68	#6	11'-5"	
s752(E)	20	#6	6'-5"	
s754(E)	72	#5	10'-0"	П
s755(E)	18	#7	13'-2"	П
s756(E)	102	#7	18'-6"	П
s757(E)	24	#6	13'-10"	٦
s758(E)	20	#6	8'-10"	П
t751(E)	51	#8	9'-8"	
t752(E)	47	#7	13'-8"	
u751(E)	7	#6	13'-2"	
u752(E)	24	#5	7'-2"	
v751(E)	72	#8	16'-4"	
v752(E)	24	#8	17'-6"	
v753(E)	4	#5	10'-8"	
w751(E)	11	#6	36'-8"	
w752(E)	10	#6	38'-8"	
w753(E)	11	#6	13'-2"	
w754(E)	10	#6	15'-2"	
Structure	Excav	ation	Cu. Yd.	156
Concrete	Struct	ures	Cu. Yd.	153.9
Reinforc			Dound	21 220
Epoxy Co	pated		Pound	21,320
Furnishii	ng Meta	al Shell	F +	522
Piles, 14"x0.312"			Foot	533
Driving Piles			Foot	533
Test Pile Metal Shells			Each	1
Pile Shoes			Each	14

BAR s701(E), s703(E)-s705(E), s707(E), s727(E), s729(E)-s731(E) s733(E), s752(E), s754(E)-s756(E) s758(E), s801(E), s803(E)-s805(E) s807(E), s827(E), s829(E)-s831(E) s833(E), s852(E), s854(E)-s856(E) s858(E), u700(E), u701(E), u726(E) u727(E), u751(E), u752(E), u800(E) u801(E), u826(E), u827(E), u851(E)

or u852(E)

See Sheet 72 of 81 for additional bar bend details.



701(E), s727(E), s752(E) 5703(E), 5729(E), 5754(E) 2'-8" 3'-8" 704(E), s730(E), s755(E) 3'-2" 5'-0" 705(E), s731(E), s756(E) 3'-2 s707(E) s733(E) 2'-1" 3'-8" s758(E) 3'-41/2 801(E), s827(E), s852(E) 2'-1" 803(E), s829(E), s854(E) 2'-8" 3'-8" 804(E), s830(E), s855(E) 3'-2" 5'-0" 7'-8" 5805(E), s831(E), s856(E) 3'-2" s807(E) 2'-1" 3'-2" s833(E) 2'-1" 3'-11/2 s858(E, 700(E), u726(E), u751(E) 3'-2" 5'-0' u701(E) 3'-2" 2'-01/2 3'-2" 2'-0" 3'-2" 2'-0" u727(E) u752(E) 800(E), u826(E), u851(E) 3'-2" 5'-0" 3'-2" 2'-0" u801(E) u827(E) 3'-2"

A & B DIMENSIONS

BAR s700(E), s726(E), s751(E), s706(E), s732(E), s757(E) s800(E), s806(E), s826(E), s832(E), s851(E), or s857(E) C & D DIMENSIONS

		_
Bar	С	D
s700(E), s726(E), s751(E)	3'-2"	2'-1"
s706(E)	4'-5"	2'-1"
s732(E)	4'-5"	2'-1"
s757(E)	4'-41/2"	2'-1"
s800(E), s826(E), s851(E)	3'-2"	2'-1"
s806(E)	4'-2"	2'-1"
s832(E)	$4'-1\frac{1}{2}''$	2'-1"
s857(E)	4'-1"	2'-1"

BAR p701(E), p706(E), p727(E), BAR v700(E), v701(E), v726(E) p732(E), p752(E), p757(E) p801(E), p806(E), p827(E), p831(E), p852(E), or p857(E)

E DIMENSIONS

Bar E

p701(E) 33'-0½

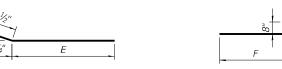
p706(E) 10'-6½

p727(E) 32'-101

p732(E) 10'-81/2

p752(E) 31'-91

p757(E) 11'-91/


p801(E) | 24'-1½

p806(E) 32'-51/

p827(E) 24'-31/3

p831(E) | 32'-3½

p852(E) $23'-1\frac{1}{2}$ p857(E) $33'-5\frac{1}{2}$

v727(E), v751(E), v752(E), v800(E), v801(E), v826(E), v827(E), v851(E), or v852(E)

F DIMENSIONS

Bar F

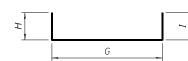
v700(E) 14'-5"

v701(E) 15'-8"

v726(E) 14'-9"

v727(E) 16'-0"

v751(E) 15'-5'


v752(E) 16'-7'

v801(E) 13'-11

v826(E) 13'-6"

v827(E) 14'-5"

v851(E) 14'-2" v852(E) 15'-1"

BAR t701(E), t727(E), t752(E), t801(E), t827(E) t852(E), w701(E), w703(E), w727(E), w729(E) w752(E), w754(E), w801(E), w803(E), w827(E), w829(E), w852(E), or w854(E)

G, H, & I DIMENSIONS

Bar	G	Н	I
t701(E), t727(E), t752(E)	9'-8"	2'-0"	2'-0'
t801(E), t827(E), t852(E)	9'-8"	2'-0"	2'-0"
w701(E)	37'-11"	2'-0"	0'-0"
w703(E)	11'-11"	2'-0"	0'-0"
w727(E)	37'-9"	2'-0"	0'-0"
w729(E)	12'-1"	2'-0"	0'-0"
w752(E)	36'-8"	2'-0"	0'-0"
w754(E)	13'-2"	2'-0"	0'-0"
w801(E)	25'-6"	2'-0"	0'-0"
w803(E)	37'-3"	2'-0"	0'-0"
w827(E)	25'-8"	2'-0"	0'-0"
w829(E)	37'-2"	2'-0"	0'-0"
w852(E)	24'-6"	2'-0"	0'-0"
w854(E)	38'-4"	2'-0"	0'-0"

benesch

USER NAME =	DESIGNED -	WKK	REVISED -
	CHECKED -	JHG	REVISED -
PLOT SCALE =	DRAWN -	KMS	REVISED -
PLOT DATE =	CHECKED -	JHG	REVISED -

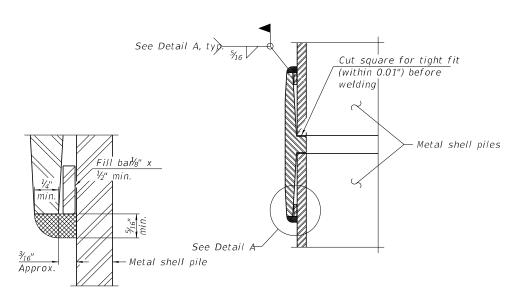
3'-2" 1'-11"

u852(E)

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

PIER DETAILS (2 OF 2) STRUCTURE NO. 101-0213 & 101-0214 SHEET 73 OF 81 SHEETS

554(L	/ .	<i>30</i> -4	- 4	2 -0	0 -	U	
F.A.I. RTE	SECTIO	ОИ		COUNTY		TOTAL SHEETS	SHEE NO.
39	(201-3)R & (-	4-1, 5)R		WINNEBAGO 1685			768
				CO	NTRA	CT NO.	64C24
	IL	LINOIS	FED. All	D PROJECT			



METAL SHELL PILE TABLE

Designation and outside diameter	Wall thickness t	Weight per foot (Lbs./ft.)	Inside volume (yd.³/ft.)
PP12	0.250"	31.40	0.0267
PP14	0.250"	36.75	0.0368
PP14	0.312"	45.65	0.0361
PP16	0.312"	52.32	0.0478
PP16	0.375"	62.64	0.0470

¾" End plate

END PLATE ATTACHMENT

2'-6" Welded wire fabric 6 x 6-Bottom of W4.0 x W4.0 weighing 58#/100 sq. ft. Forms for concrete encasement may be omitted when soil conditions permit. Metal shell pile SECTION A-A ELEVATION

DETAIL A

Shop or

field weld

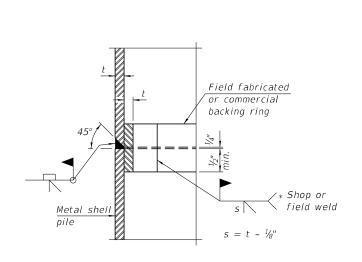
WELDED COMMERCIAL SPLICE

Notes:

The $\frac{1}{8}$ " x $\frac{1}{2}$ " min. fill bar may be constructed of 2 bars with a 1/8" max. gap between them. Pile segments shall be driven to solid contact with splicer before welding.

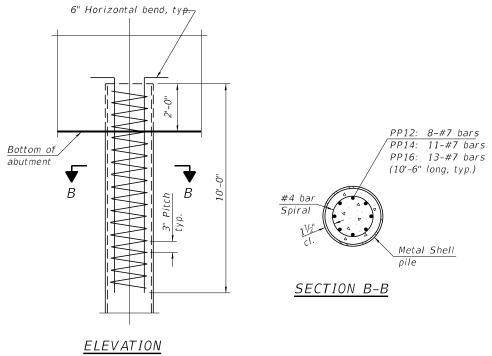
INDIVIDUAL PILE CONCRETE ENCASEMENT (When specified)

Metal shell Shop or ∖ field weld Pile shoe shape may vary. Shallower pile shoes are allowed provided that the driving surface has an angle of inclination of 60°.


 $s = t - \frac{1}{8}$ "

60° Angle of inclination

PILE SHOE ATTACHMENT


(When called for on the plans, the Contractor shall furnish metal shell pile shoes consisting of a single piece conical pile point as shown. The pile shoes shall be cast in one piece steel according to either ASTM A 148 Grade 80-50 or AASHTO M 103 Grade 65-35 and shall provide full bearing over the full circumference of the metal shell pile. The pile shoe shall have tapered leads to assure proper alignment and fitting and shall be secured to the pile with a circumferential weld).

5-15-2023

COMPLETE PENETRATION WELD SPLICE

Field fabricated backing ring may be made from pile shell by removing segment to allow reducing circumference and vertically rejoin with partial joint penetration weld.

REINFORCEMENT AT ABUTMENTS

(Omit when concrete encasement is specified)

Note:

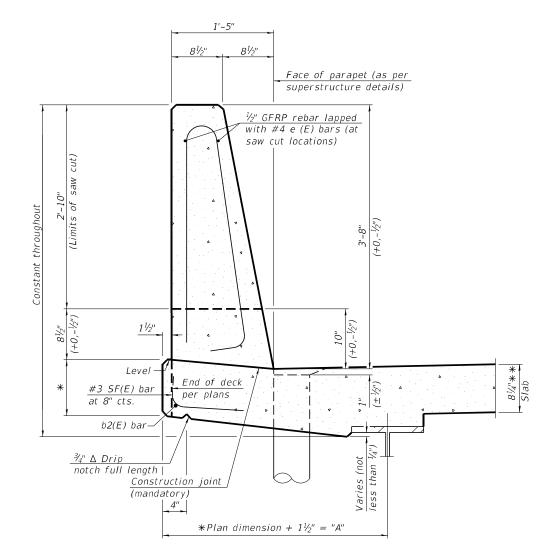
The metal shell piles shall be according to Article 1006.05 of the Standard Specifications.

pile cap

F-MS

benesch

Metal shell

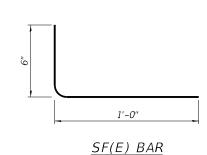

pile

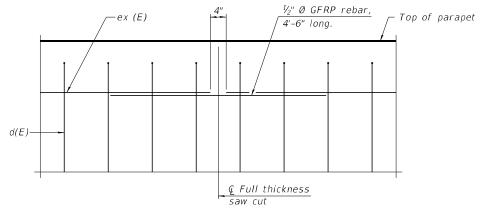
JSER NAME = DESIGNED - WKK REVISED -CHECKED - JHG REVISED -REVISED PLOT DATE = CHECKED - JHG REVISED -

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

METAL SHELL PILE DETAILS STRUCTURE NO. 101-0213 & 101-0214 SHEET 74 OF 81 SHEETS

TOTAL SHEE SHEETS NO. SECTION COUNTY (201-3)R & (4-1, 5)R WINNEBAGO 1685 769 CONTRACT NO. 64C24




* See Superstructure Details

** Prior to grinding

44" CONSTANT-SLOPE PARAPET SECTION

(Showing dimensions, d(E), and $\frac{1}{2}$ " Ø GFRP rebar)

GFRP REBAR STIFFENING DETAIL

(Place as shown in parapet section at each parapet joint location.)

Ž	ben	esch
	Alfred Benesch & C	Company
	35 W Wacker Drive	Sulte 3300
	Chicago, Illinois 60	801
	242 505 0450	

CHECKED - JLS REVISED -	
PLOT SCALE = DRAWN - KMS REVISED -	
PLOT DATE = CHECKED - JLS REVISED -	

	F.A.I. RTE	SECTION	COUNTY	SH
STRUCTURE NO. 101-0213 & 101-0214	39	(201-3)R & (4-1, 5)R	WINNEBAGO	1
3111001011c 1101-0213 & 101-0214			CONTRA	СТ
SHEET 75 OF 81 SHEETS		ILLINOIS EED	UD BBO JECT	

4/22/2025 12:43:38 PM

thickness saw cut.

superstructure details.

All dimensions shall remain the same as shown on superstructure details, except dimension "A" which is

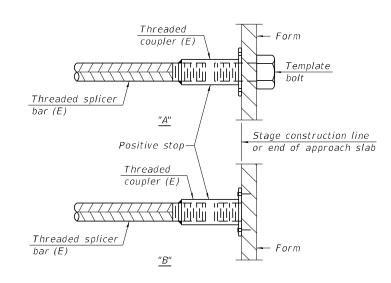
needed to revise dimension "A" = 0.00348 cu. yds./ft. Place full depth aluminum sheets as shown on

Replace all cork joint filler locations with a full

to be revised as shown. Additional concrete

Notes:

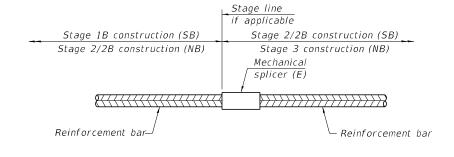
TOTAL SHEET NO. 1685 770 T NO. 64C24


STANDARD BAR SPLICER ASSEMBLY PLAN

Only bar splicer assemblies as presented on the approved QPL list may be used.

Threaded splicer bar length = min. lap length + $1\frac{1}{2}$ " + thread length

* Epoxy not required on Bar Splicer Assembly components used in conjunction with black bars.


Location	Bar	No. assemblies	Minimum
	size	required	lap length
SB Deck	#5	832	3'-6"
NB Deck	#5	831	3'-6"
SB S. Approach	#5	83	3'-4"
SB S. Approach	#8	57	4'-9"
SB N. Approach	#5	83	3'-4"
SB N. Approach	#8	57	4'-9"
NB S. Approach	#5	83	3'-4"
NB S. Approach	#8	57	4'-9"
NB N. Approach	#5	83	3'-4"
NB N. Approach	#8	57	4'-9"
CD C Abut	#5	4	3'-7"
SB S. Abut. SB S. Abut.	#5 #7	10	5'-0"
NB S. Abut.	#7 #5	4	3'-7"
NB S. Abut.	#3 #7	10	5'-0"
	# / # 5	4	3'-7"
SB N. Abut.			5'-0"
SB N. Abut.	#7	10	3'-7"
NB N. Abut.	#5	10	5'-0"
NB N. Abut.	#7	10	5'-0"
NB Pier 1 Cap	#5	8	3'-7"
NB Pier 1 Cap	#10	12	8'-9"
NB Pier 1 Crashwall	# 10 #7	20	5'-0"
NB Pier 1 Footing	#6	21	<u> </u>
NB Pier 2 Cap	#5 #5	8	3'-7"
NB Pier 2 Cap	#10	12	8'-9"
NB Pier 2 Crashwall	#10 #7	20	5'-0"
NB Pier 2 Footing	# <i>7</i> #6	21	<u> </u>
NB Pier 3 Cap	#5 #5	8	3'-7"
NB Pier 3 Cap	#10	12	8'-9"
NB Pier 3 Crashwall	#10 #7	20	5'-0"
NB Pier 3 Footing	#6	21	4'-4"
NB FIEL 3 FUULTING	#0	21	4 -4
SB Pier 1 Cap	#5	8	3'-7"
SB Pier 1 Cap	#10	12	8'-9"
SB Pier 1 Crashwall	#7	20	5'-0"
SB Pier 1 Footing	#6	21	4'-4"
SB Pier 2 Cap	#5	8	3'-7"
SB Pier 2 Cap	#10	12	8'-9"
SB Pier 2 Crashwall	#7	20	5'-0"
SB Pier 2 Footing		21	4'-4"
	#h		
SR Pier 3 Can	#6 #5		
SB Pier 3 Cap	#5	8	3'-7"
SB Pier 3 Cap SB Pier 3 Cap SB Pier 3 Crashwall			

INSTALLATION AND SETTING METHODS

"A" : Set bar splicer assembly by means of a template bolt "B": Set bar splicer assembly by nailing to wood forms or cementing to steel forms.

(E): Indicates epoxy coating.

STANDARD MECHANICAL SPLICER

Location	Bar	No. assemblies
Location	size	required
SB S. Abut. Diaphragm	#6	7
SB N. Abut. Diaphragm	#6	7
NB S. Abut. Diaphragm	#6	7
NB N. Abut. Diaphragm	#6	7

Notes:

Splicer bars shall be deformed with threaded ends and have a minimum 60 ksi yield strength.

All reinforcement shall be lapped and tied to the splicer bars. Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars. See Section 508 of the Standard Specifications.

See approved list of bar splicer assemblies and mechanical splicers for alternatives.

BSD-1 5-15-2023

benesch

JSER NAME = DESIGNED - JPM/WKK REVISED -CHECKED - JLS/JHG REVISED -DRAWN REVISED PLOT DATE = CHECKED - JLS/JHG REVISED -

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION** BAR SPLICER ASSEMBLY AND MECHANICAL SPLICER DETAILS STRUCTURE NO. 101-0213 & 101-0214 SHEET 76 OF 81 SHEETS

SECTION COUNTY 39 (201-3)R & (4-1, 5)R WINNEBAGO 1685 771 CONTRACT NO. 64C24

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

	Division of Highways Hilinios Department of Transp	ortation/D	-2							Date	1/2	4/12
ROUTE	FAP 301	DE	SCR	PTION	101	1-0071	0072 I-39 Bridge over Harrison Ro .6 miles west of Mill Road	ad, L(oggi	ED BY	W. 0	Garza
SECTION _	(201-3) K (4-1, 5) K	[.OCA1	TION .	Rockf	ord Twp 35SE, SEC. , TWP. 44N,	RNG. 21	<u> </u>			
COUNTY _	Winnebago DF	RILLIN	G ME	THOD	-	Hol	llow Stem Auger HAMMER	TYPE	B-53	Diedri	ch Aut	omatio
Station BORING NO Station	D101-0071/0072 DB-1 50+92 - Harrison Ave 88.00ft Rt CL		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter	_ ft _ ft	DEPTH	B L O W S	O C S	M O I S T
Ground Su	rface Elev775.81	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs.	_ ft	(ft)	(/6")	(tsf)	(%)
MEDIUM tar	SANDY LOAM	773.81			0.9 P	9.0	DENSE tan clean medium coarse dry SAND	754.31		10 16 22		
MEDIUM tar	n fine dry SAND	771.81		8 11 14			DENSE tan clean medium coarse SAND with GRAVEL	754.04	_	15 21 26		
VERY DENS GRAVEL	SE tan fine SAND with		-5	9 30 35			VERY DENSE tan clean medium coarse SAND with GRAVEL	751.81 748.81	-25	26 23 32		
DENSE tan	SANDY LOAM TILL	766.81		17 14 19		9.0	STIFF tan SANDY LOAM TILL with SAND lens	740.01		10 8 31	1.7 B	17.0
DENSE tan	SANDY LOAM TILL	764.31	-10 	13 14 20		9.0	VERY DENSE tan dry SANDY GRAVEL	746.31	-30	33 34 38		
VERY STIFF TILL	tan SANDY LOAM	761.81		10 14 18	2.4 S	9.0	HARD tan LOAM TILL with SAND lens	743.81 741.81		13 17 20	4.3 P	11.0
DENSE tan	SANDY LOAM TILL	758.81	-15	13 13 17	4.0 P	13.0	VERY STIFF tan LOAM TILL with dirty SANDY GRAVEL	739.31	-35	19 19 17	3.1 P	13.0
DENSE tan		750.01		12			VERY DENSE tan dirty SANDY GRAVEL			24		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

756.81

BBS, from 137 (Rev. 8-99)

SOIL BORING LOG

Page 2 of 2

Date 1/24/12

101-0071 0072 I-39 Bridge over Harrison Road, .6 miles west of Mill Road ROUTE FAP 301 DESCRIPTION LOGGED BY W. Garza LOCATION Rockford Twp. - 35SE, SEC., TWP. 44N, RNG. 2E (201-3) K (4-1, 5) K COUNTY Winnebago DRILLING METHOD HAMMER TYPE B-53 Diedrich Automatic Hollow Stem Auger

STRUCT. NO. ____101-0071/0072 C S Stream Bed Elev. 0 BORING NO. W Groundwater Elev.: Qu Station 50+92 - Harrison Avenue First Encounter
 Offset
 88.00ft Rt CL

 Ground Surface Elev.
 775.81
 Upon Completion (ft) (/6") (tsf) (%) After ___ DENSE tan moist SANDY GRAVEL 23

27 734.31 End of Boring

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, from 137 (Rev. 8-99)

Along Prop. © I-39, Boring B-1 is located at Sta. 2723+87.66, 127.19' Rt.

benesch

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - JHG	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - JHG	REVISED -

FAP 301

DESCRIPTION

SOIL BORING LOG

Page 1 of 1

Date 1/26/12 101-0071 0072 I-39 Bridge over Harrison Road, .6 miles west of Mill Road LOGGED BY W. Garza

SECTION (201-3) K (4-1, 5	5) K	ι	OCAT	TION _	Rockf	ord Twp 35SE, SEC. , TWP. 44N,	RNG, 21	E			
COUNTY Winnebago D	RILLING	ME	THOD		Ho	llow Stem Auger HAMMER	TYPE	B-53	Diedri	ch Aut	tomatic
STRUCT. NO101-0071/0072 Station	<u> </u>	D E P	B L O	U C S	M 0 1	Surface Water Elev. Stream Bed Elev.	_ ft _ ft	D E P	B L O	U C S	M 0
BORING NO. B-2 Station 871+05 - I-39 Offset 5.00ft Rt CL		H	s	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	_ ft _ ft	H	S	Qu	S T
Ground Surface Elev. 797.00)ft	(ft)	(/6")	(tsf)	(%)	After Hrs	_ ft	(ft)	(/6")	(tsf)	(%)
MEDIUM brown SILTY CLAY LOAM				0.6	15.0	VERY DENSE tan LOAM TILL			27		7.0
20				0.6 P	15.0		775.50		32		7.0
				'			775.50		02		
	794.50										
SOFT tan SANDY LOAM			6		10.0	VERY DENSE tan SANDY LOAM TILL with GRAVEL			22		
			6	0.3 B	13.0	TILL WITH GRAVEL			25 30		7.0
	793.00		0	B			773.00		30		
		-5						-25			
STIFF tan SANDY LOAM with			4			VERY DENSE tan SANDY LOAM			19		
GRAVEL			5	1.5	10.0	TILL with GRAVEL			28		
	790.50	_	8	Р			770.50	_	43		
STIFF gray LOAM with GRAVEL			4			VERY DENSE tan SANDY LOAM			100/6"		
			4	1.1	17.0	TILL with big GRAVEL					
	788.00		5	Р			768.00				
STIFF gray SILTY CLAY LOAM		-10	4			Same as above		-30	100/1		
with medium GRAVEL		_	3	1.7	15.0			-			
			4	В			765.50				
	785.00										
No Recovery			6			VERY DENSE tan SANDY LOAM		_	100/4"		
The Reservery			8	 		TILL			100/4		
	783.00		8				763.00				
STIFF gray LOAM with GRAVEL		-15	6			VERY DENSE tan SANDY LOAM		-35	00/5.5	,,	
STIFF GIAY LOAN WILL GRAVEL			6	1.1	14.0	TILL		_	UU/5.5		
	780.50		7	В	17.0		760.50				
	. 00.00					End of Boring	.00.00				
		_	_								
STIFF gray LOAM with GRAVEL			8	1.9	11.0		8				
	778.00	-	12	S	11.0			-			
	770.00						14				
								-			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, from 137 (Rev. 8-99)

SOIL BORING LOG

Page 1 of 2

Date 1/27/12

Illinios Department of Transp	ortation/D-	2							Date	1/2	7/12
ROUTE FAP 301	DE	SCR	IPTION	101	-0071	0072 I-39 Bridge over Harrison Ro .6 miles west of Mill Road	ad, L(oggi	ED BY	W. 0	3arza_
SECTION (201-3) K (4-1, 5) K	1	LOCAT	TION	Rockfo	ord Twp 35SE, SEC. , TWP. 44N,	RNG. 28	<u> </u>			
COUNTY Winnebago DI	RILLING	ME	THOD		Hol	low Stem Auger HAMMER	TYPE	3-53	Diedri	ch Aut	omatic
STRUCT. NO. 101-0071/0072 Station BORING NO. B-3		D E P T	B L O W	U C S	M O I S	Surface Water Elev. Stream Bed Elev. Groundwater Elev.:		D E P T	B L O W	U C S	M O I S
Station 49+03 - Harrison Ave Offset 98.00ft Lt CL Ground Surface Elev. 775.00	enue	H (ft)		Qu (tsf)	(%)	First Encounter 757.5 Upon Completion 734.0 After Hrs.	_ ft 💟	H (ft)	S (/6")	Qu (tsf)	(%)
MEDIUM brown SILTY CLAY		1 2 22				VERY DENSE tan SANDY LOAM		L	33		
LOAIVI				0.6 P	35.0	TILL with GRAVEL Hard Drilling	753.50		32 39		8.0
							753.50				
MEDIUM light brown SILTY CLAY	772.50	_	3			DENSE gray SANDY LOAM TILL			17		
LOAM			4	0.7	27.0	J = 1.0= 3.0, 0.1.2 / 201111 / 122			19		8.0
	770 FO		5	В	-		751.00		17		
	770.50							-25			
MEDIUM tan dirty SAND with medium GRAVEL			6		14.0	VERY STIFF gray SANDY LOAM		_	14 16	3.8	8.0
		***************************************	10		14.0		748.50		17	P	0.0
	768.00										
SOFT tan SANDY LOAM TILL			4			VERY STIFF gray SANDY LOAM		-	11		
			5	0.4	10.0	TILL			12	3.4	7.0
	766.00		7	В			746.00		19	Р	
OTIES IN CAMPUIL CAMPUIL		10						-30			
STIFF tan SANDY LOAM TILL			5 8	1.4	10.0	HARD gray SANDY LOAM TILL		-	5 10	4.5	8.0
	763.50		8	Р			743.50		15	В	
MEDIUM tan SANDY LOAM TILL			3			HARD gray SANDY LOAM TILL			6		
	704.00		5 8	0.6 B	10.0		741.00	_	12 13	4.5 P	8.0
	761.00						741.00		-10	·	
SOFT tan SANDY LOAM TILL		-15	3			DENSE gray SANDY LOAM TILL		-35	13		
SOLI MILL SANDI LOAM HEL			7	0.4	10.0	DENSE gray SANDY LOAM TILL			18		
	758.50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	S			738.50		22		
		_									
VERY DENSE tan SANDY LOAM		<u>-</u>	38			VERY STIFF gray SANDY LOAM			2		
TILL with GRAVEL	750.00		40 35	4.5 P	8.0	TILL	700.00		7	3.5 B	9.0
	756.00		- 00	<u>'</u>			736.00			- 3	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, from 137 (Rev. 8-99)

NOTES:

- 1. Along Prop. © I-39, Boring B-2 is located at Sta. 2723+04.77, 15.95' Rt. 2. Along Prop. © I-39, Boring B-3 is located at Sta. 2724+94.26, 115.81' Lt.

benesch

USER NAME = DESIGNED - JPM REVISED -CHECKED - JHG REVISED -DRAWN - KMS REVISED -CHECKED - JHG REVISED -

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

SOIL BORING LOGS (2 OF 5) STRUCTURE NO. 101-0213 & 101-0214 SHEET 78 OF 81 SHEETS

SECTION (201-3)R & (4-1, 5)R WINNEBAGO 1685 773 CONTRACT NO. 64C24

(P)	Illinois Department of Transportation
/ (4)	
	Division of Highways

Page 2 of 2

Division of Highways Illinios Department of Transp	ntatio	1		30	JIL BOKIN	IG LOG	Date 1/27/12
ROUTEFAP 301		RIPTION	101	-0071	0072 I-39 Bridge ove .6 miles west of Mill I		OGGED BY W. Garza
SECTION (201-3) K (4-1, 5	6) K	LOCA	TION _	Rockfe	ord Twp 35SE, SEC.	, TWP. 44N, RNG. 2	<u>?E</u>
COUNTY Winnebago D	RILLING M	THOD		Ho	llow Stem Auger	HAMMER TYPE	B-53 Diedrich Automatic
STRUCT. NO.	E P T H H	L O W S (/6") 6	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	ftftft	
VERY DENSE tan SANDY GRAVEL	733.00	38 31 60	В				
VERY DENSE tan/gray SANDY GRAVEL	728.50	19 43 33					
End of Boring		0					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, from 137 (Rev. 8-99)

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

Date 1/30/12

	Illinios Department of Transp	portation/D-	2		101	0071	0072 20 Pridge over Harrison De			Date	1/3	0/12
	ROUTE FAP 301	DE	SCR	PTION	u	-0071	0072 I-39 Bridge over Harrison Ro .6 miles west of Mill Road	ao, L(OGG	ED BY	W. 0	Garza
	SECTION (201-3) K (4-1, 5	5) K	ا	LOCAT	TION .	Rockf	ord Twp 35SE, SEC. , TWP. 44N,	RNG. 26	=			
	COUNTY Winnebago D	RILLING	ME	THOD		Но	llow Stem Auger HAMMER	TYPE	B-53	Diedri	ch Aut	omatic
	STRUCT. NO. 101-0071/0072 Station	-	D E P	B L O	U C S	M 0	Surface Water Elev. Stream Bed Elev.	_ ft _ ft	D E P	B L O	U C S	M O I
	BORING NO. B-4 Station 873+74 - I-39 Offset 1.00ft Rt CL		H		Qu	S T	Groundwater Elev.: First Encounter Upon Completion	ft	H	w s	Qu	S T
	Ground Surface Elev. 799.60	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	_ ft	(ft)	(/6")	(tsf)	(%)
	MEDIUM brown SILTY CLAY						VERY STIFF gray SILTY CLAY			4		
	LOAM				0.6	18.0				5	2.9	25.0
					P					7	S	
								777.60				
		797.10										
	MEDIUM light brown SANDY LOAM			4			MEDIUM tan SAND			6		
	LOAM			6	0.9	14.0				8		
		795.60		7	Р					9		
			_					775.10				
	MEDILIM light brown the CANDY		-5	_			07/55 - 044/54/ 044/54/		-25	_		
	MEDIUM light brown/tan SANDY LOAM		-	2	0.5	45.0	STIFF tan SANDY LOAM TILL with GRAVEL		-	6		
	207111			3	0.5 P	12.0	WILLIGRAVEL			10	1.5	8.0
		793.10		6	Р			773.10		9	Р	
	MEDIUM brown LOAM		-				OTIES 1 - CANDY CAN THE			_		
	MEDION BIOWII LOAM			5	0.0	100	STIFF tan SANDY LOAM TILL			5		
				9	0.8 B	16.0	Added water, hard drilling		_	8	1.2	8.0
		790.60		9	В		The state of the s	770.60		8	S	
									_			
	STIFF gray SILTY CLAY LOAM		-10	3			STIES CANDY LOAM TILL		-30	_		
	OTHE GIAY SIETE CEAT ECAN		-	4	1.5	17.0	STIFF tan SANDY LOAM TILL		-	5	10	9.0
				6	P	17.0				-	1.6	9.0
		788.10		U				768.10	-	14	S	
									\longrightarrow			
	STIFF gray SANDY LOAM		-	5			VERY DENSE tan SANDY LOAM		-	17		
	2			7	1.5	10.0				30		8.0
-		785.60		8	В	10.0		705.00	-	54		0.0
		705.00						765.60				
									-	1		
	STIFF gray LOAM		-15	4			VERY DENSE tan SANDY LOAM		-35	29		
-	resonant di di en en el		*****	7	1.7	13.0			-	36		
		783.10		14	В	10.5		763.10		41		
-		703.10	-					703.10	-			
-									\dashv			
	VERY STIFF light brown SILTY		-	4			VERY DENSE tan SANDY LOAM		\dashv	25		
-	CLAY LOAM			6	2.0	24.0	TILL with medium GRAVEL		-+	28		8.0
-		780.60	-	9	В			760.60	-	30		
-		,00.00						700.00		-	+	
1			-				l .			- 1	- 3	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, from 137 (Rev. 8-99)

- 1. Along Prop. & I-39, Boring B-3 is located at Sta. 2724+94.26, 115.81' Lt. 2. Along Prop. & I-39, Boring B-4 is located at Sta. 2725+73.34, 9.47' Rt.

benesch

USER NAME = DESIGNED - JPM REVISED -CHECKED - JHG REVISED -DRAWN - KMS REVISED -CHECKED - JHG REVISED -

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

SOIL BORING LOGS (3 OF 5) STRUCTURE NO. 101-0213 & 101-0214 SHEET 79 OF 81 SHEETS

SECTION (201-3)R & (4-1, 5)R WINNEBAGO 1685 774 CONTRACT NO. 64C24

(A)	Illinois Department of Transportation
	Division of Highways

Page $\underline{2}$ of $\underline{2}$

Division of Highways Illinios Department of Trans			ı		30	JIL BOKIN	IG LOG	Date	1/30/12
ROUTE FAP 301	DE	SCR	IPTION	101	-0071	0072 I-39 Bridge ove 6 miles west of Mill F	r Harrison Road, Road	LOGGED BY	W. Garza
SECTION(201-3) K (4-1, 5	5) K	1	OCAT	ION _	Rockfe	ord Twp 35SE, SEC.	, TWP. 44N, RNG	3. 2E	
COUNTY Winnebago D	RILLING	ME	THOD	***************************************	Hol	llow Stem Auger	HAMMER TYP	PE B-53 Diedric	h Automatic
STRUCT. NO101-0071/0072 Station		D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	ft		The second secon
BORING NO. B-4		H (ft)	W S (/6")	Qu (tsf)	S T (%)	Upon Completion			and a free control of the control of
VERY DENSE tan SANDY LOAM		(11)	25	(131)	(70)	After Hrs.	ft		
TILL with medium GRAVEL	758.10		25 32	4.6 S	8.0				
VERY DENSE tan SANDY LOAM			25						
TILL with medium GRAVEL	755.60		34 52	3.5 S	8.0				AND DESCRIPTION OF THE PERSON
VERY DENSE tan SANDY LOAM TILL with GRAVEL		45	32 36	4.4	7.0				
DENSE tan SANDY LOAM TILL with GRAVEL	753.10 750.60		21 21 23	S					
DENSE tan SANDY LOAM TLIL with SAND lens	748.10	-50	15 19 25	5.5 S	9.0				
VERY STIFF gray SANDY CLAY LOAM TILL	745.60		8 12 16	3.9 B	9.0				
VERY STIFF gray SANDY CLAY LOAM TILL	743.10	-55	23 16 20	3.5 S	9.0				
VERY STIFF gray SANDY CLAY TILL	740.60		10 13 20	3.9 B	9.0				

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, from 137 (Rev. 8-99)

SOIL BORING LOG

Page $\underline{1}$ of $\underline{2}$

Date 8/2/16

ROUTE	DESC	CRIP	TION	P92-	-111-06	NB & SB Bridge - I-39 Avenue	over Harrison	n LO	GGE	D BY	W. G	arza
SECTION (201-3)K & 4-1,5)K	3	LC	CATIC	N <u>F</u>	Rockfor	rd N.E. Twp SE, SEC	. 35, TWP. 44	N, RNG	6. 2E			
COUNTY Winnebago DRIL	LING N	METI-	OD .		Holle	ow Stem Auger	HAMMER T	YPE _		CMF	-55	
STRUCT. NO. 101-0213	L	.atitu .ongi	de tude		14' 23. 57' 58		Northing Easting	2,032 2,621				-
Station 153+19 Elevation Conversion: 99.80 = El. 780		D E	B L	U	M O	Surface Water Elev Stream Bed Elev		ft ft	D E	B L	U	M O
BORING NO. B-5J	- 4	P T H (ft)	O W S (/6")	S Qu (tsf)	I S T (%)	Groundwater Elev.: First Encounter Upon Completion After Hrs.	62.3 59.8		P T H (ft)	O W S (/6")	Qu (tsf)	I S T (%)
9" Asphalt Shoulder	L	1						79.30		53		
VERY STIFF gray CLAY LOAM	98.30 - -		2 3 4	2.7 B	18.0	VERY DENSE tan SAI	NDYLOAM			22 33 29		
	96.80 _	_	4	В				76.30				
MEDIUM brown SANDY LOAM	94.30	-5	2 4 5	0.5 S	12.0	VERY STIFF tan SAN TILL	DYLOAM		-25	7 13 14	2.1 P	10.0
MEDIUM tan SANDY LOAM TILL	91.80		3 3 4	0.9 P	9.0	VERY DENSE light gr LOAM TILL	ay SANDY	73.80		14 35 38		8.0
No Recovery	89.30		6 8 9			DENSE light gray SAN TILL	NDY LOAM	69.30		11 17 22	4.5 P	7.0
MEDIUM tan SANDY GRAY TILL	86.80		0 3 5	0.8 B	11.0	VERY DENSE light gr LOAM TILL	ray SANDY			18 28 33		
STIFF tan SANDY LOAM TILL	00.00	-15	4 11	1.6	9.0	VERY STIFF light gra	y SANDY	66.30	<u> </u>		2.9	9.0
VEDVDENCE to CANDVI CAM	83.80	_	20	S		VERY STIFF light ara	av SANDY	64.30) 	13	S	
VERY DENSE tan SANDY LOAM TILL	81.80	_	100/8'			LOAM TILL with SAN		61.80	o	15 29	3.4 P	9.0
VERY DENSE tan SANDY LOAM	or	-20	30 39			VERY STIFF light gra	ay SANDY		<u></u>	5 7	3.5	9.0

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, from 137 (Rev. 8-99)

- 1. Along Prop. & 1-39, Boring B-4 is located at Sta. 2725+73.34, 9.47' Rt. 2. Along Prop. & 1-39, Boring B-5j is located at Sta. 2724+29.64, 21.80 Rt.

End of Boring

USER NAME = DESIGNED - JPM REVISED -CHECKED - JHG REVISED -DRAWN - KMS REVISED -CHECKED - JHG REVISED -

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

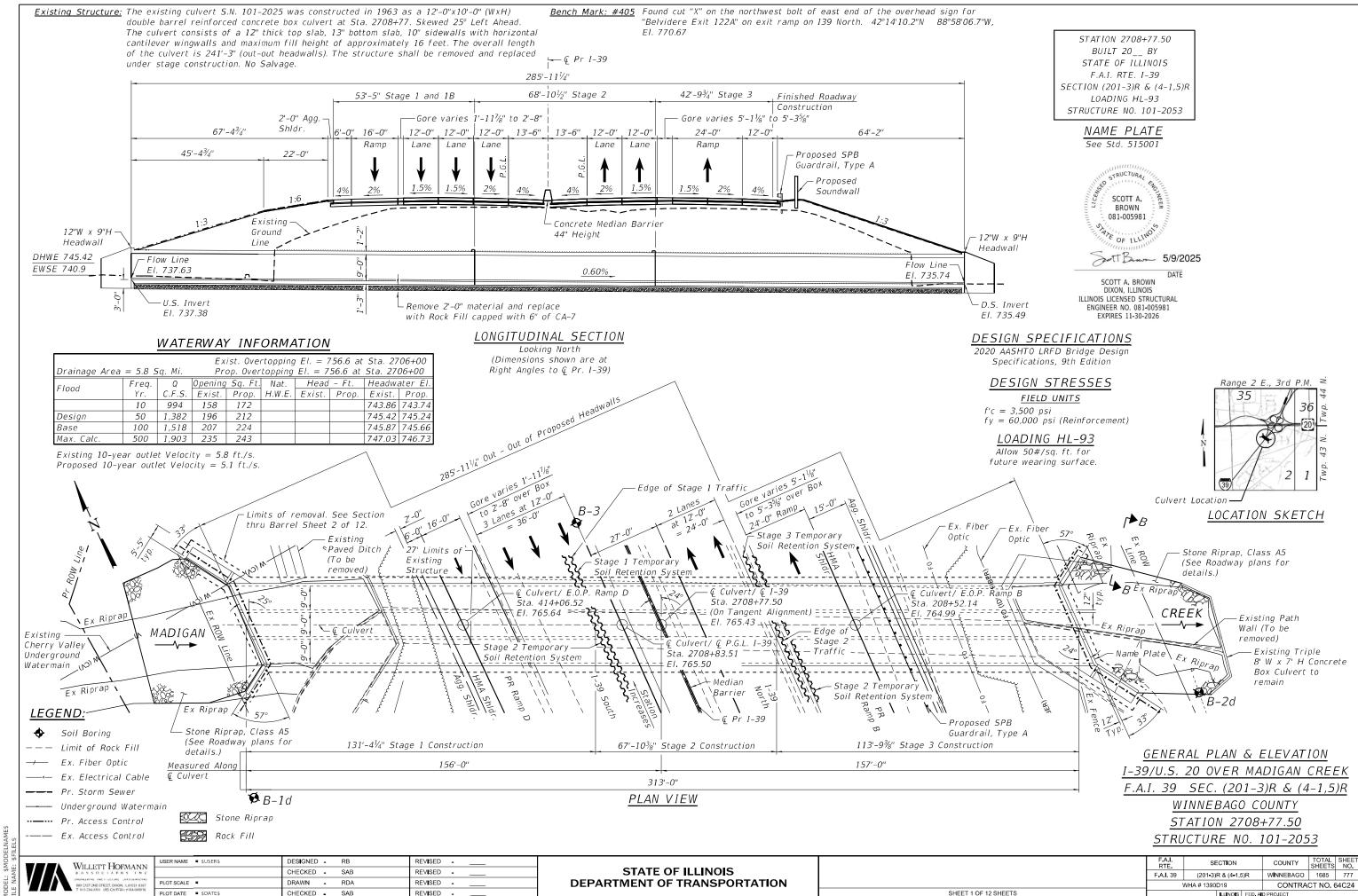
SOIL BORING LOGS (4 OF 5) STRUCTURE NO. 101-0213 & 101-0214 SHEET 80 OF 81 SHEETS

COUNTY TOTAL SHEET NO. SECTION (201-3)R & (4-1, 5)R WINNEBAGO 1685 775 CONTRACT NO. 64C24

P	Illinois Department of Transportation
---	---------------------------------------

Page <u>2</u> of <u>2</u>

P92-111-06 NB & SB Bridge - 1-39 over Harrison LOGGED BY W_Garz	of Transpo Division of Highways	rtati	on			50	DIL BORIN	G LOC	J		Date	8/2	2/16
COUNTY Winnebago DRILLING METHOD Hollow Stem Auger HAMMER TYPE CME-55 STRUCT. NO. 101-0213 Latitude 142* 14* 23.03* Northing 2.032,170.6978 Easting 2.621,808.6896 Northing 2.032,170.6978	1501	_ DES	SCRI	PTION	P92	2-111-0	06 NB & SB Bridge - I-3 Avenue	39 over Harriso	on LC	OGGE			
COUNTY Winnebago DRILLING METHOD Hollow Stem Auger HAMMER TYPE CME-55 STRUCT. NO. 101-0213 Latitude 142* 14* 23.03* Northing 2.032,170.6978 Easting 2.621,808.6896 Northing 2.032,170.6978	SECTION (201-3)K & 4-1,5)K	L	_OCAT	ION _	Rockfo	orrd N.E. Twp SE, SE	C. 35, TWP. 44	1N, RN (3. 2E			
Station 153+19						Но	llow Stem Auger						
Station 153+19			Latit	ude	42°	14' 23	3.03"	Northing	2,032	2,170	.6978		_
BORING NO. 8-5-J	STRUCT. NO. 101-0213		Long	gitude	-88	° 57' 5	Π			1,608	.6896		-
Station 153+28 T W S Care T W T W T W T W T W T W T W T W T W T W T W T W T W T W T W T W T W	Station 133119		Ε	L	С	0				E	L	С	0
Offset 10.00R Rt Median Ct. H K Uton Completion S9.8 Rt V (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	BORING NO. B-5J Station 153+28				S		Groundwater Elev.:			1	500000	S	
STIFF/VERY STIFF light gray SANDY LOAM TILL with SAND SANDY LOAM TILL with SANDY LOAM TILL	Offset 10.00ft Rt Median C	L					Upon Completion	59.8	ft 🔽				Т
STIFF/VERY STIFF light gray SANDY LOAM TILL with SAND leins 56.80 56.80 16 8 8 10 10 13 14 13 14 15 16 17 2.0 10.0 18 18 19 10 10 10 10 10 10 10 10 10	Ground Surface Liev		(ft)			(%)	After Hrs.			(ft)		(tsf)	(%
SANDY LOAM TILL with SAND 7 2.0 10.0 36.80 14		59.30		12					39.30				
See			-				MEDIUM tan SANDY	GRAVEL			20120000		
No Recovery 13		EE 90	_			10.0			36.80				
VERY STIFF light gray SANDY LOAM TILL 10 9 3.6 26.0 51.80 12 P No Recovery 6 9 49.30 13 No Recovery 6 10 49.30 13 No Recovery 8 10 40.30 MEDIUM tan fine SAND 8 10 40.30 MEDIUM tan fine SAND 8 10 40.30 STIFF light gray LOAM TILL 8 10 40.30 MEDIUM tan fine SAND 8 10 40.30 MEDIUM tan fine SAND 8 10 40.30 MEDIUM tan fine SAND 10 10 10 10 10 10 10 10 10 10 10 10 10		30.00	****				End of Boring		30.00				
VERY STIFF light gray SANDY LOAM TILL 10 9 3.6 26.0 51.80 12 P 51.80 12 P No Recovery 6 6 -50 9 49.30 13 No Recovery 6 6 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	No Recovery	19		1									5
VERY STIFF light gray SANDY LOAM TILL 51.80 10 9 3.6 12 P No Recovery 49.30 13 No Recovery SANDY LOAM TILL 8 10 46.30 MEDIUM tan fine SAND 8 55 9 58 18 43.80 STIFF light gray LOAM TILL 8 6 1.2 15.0 15.		54 30	-45			9				-65			
## DENSE light gray fine SAND with ## 12 P ## 26.0 P ##		01.00											
St.80	VERY STIFF light gray SANDY												
No Recovery 49.30 49.30 13 No Recovery SANDY LOAM TILL 8 10 46.30 MEDIUM tan fine SAND 8 -55 9 18 43.80 STIFF light gray LOAM TILL 8 6 1.2 15.0 10 B MEDIUM tan fine SAND Additional tan fine SAND B Additional tan fine SAND Additional tan fine SAND Additional tan fine SAND B Additional tan fine SAND A	LOAM LILL	51.80	_	10000		26.0				-			
No Recovery		01.00											
MEDIUM tan fine SAND	No Recovery					<u> </u>							
MEDIUM tan fine SAND		49.30	-50	4						-70			
MEDIUM tan fine SAND													
MEDIUM tan fine SAND													
MEDIUM tan fine SAND	SANDI LOAM TILL		-	1									
MEDIUM tan fine SAND		46.30								_			
18 43.80 STIFF light gray LOAM TILL 8 6 1.2 15.0 10 B	MEDIUM tan fine SAND												
STIFF light gray LOAM TILL			<u>-55</u>	1000						-75			
6 1.2 15.0 10 B		43.80											
	STIFF light gray LOAM TILL			-	4.0	45.0							
DENSE light gray fine SAND with 7			-	-		15.0							
DENSE light gray fine SAND with 7		41.30	_							_			
medium GRAVEL -50 14 80	DENSE light gray fine SAND with		_				,						


The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

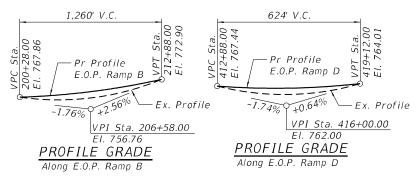
BBS, from 137 (Rev. 8-99)

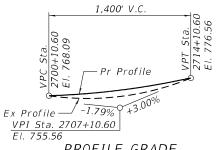
<u>NOTE:</u> Along Prop. & 1-39, Boring B-5j is located at Sta. 2724+29.64, 21.80 Rt.

benesch

USER NAME =	DESIGNED - JPM	REVISED -
	CHECKED - JHG	REVISED -
PLOT SCALE =	DRAWN - KMS	REVISED -
PLOT DATE =	CHECKED - JHG	REVISED -

GENERAL NOTES


- 1.) A distance of half the length of the wingwall but not less than 6'-0" of the barrel shall be poured monolithically with the wingwalls.
- 2.) It will be the responsibility of the Contractor to direct the stream flow during construction in order to keep the construction areas free of water. The method of water diversion shall be subject to the approval of the Engineer and cost shall be included with the cost of the Concrete Box Culverts.
- 3.) Layout of the slope protection system may be varied to suit ground conditions in the field as directed by the Engineer.
- 4.) The limits and quantities of removal and replacement shown are based on the boring data and may be modified by the District Geotechnical and Field Engineers for variable subsurface conditions encountered in the field.
- 5.) The Rock Fill shall be capped with 6" of CA-7 and satisfy the Standard Specifications unless otherwise indicated in the Special Provisions. The cost and quantity of the capping material shall be included in the pay item for Rock Fill. See Special Provisions.
- 6.) Precast culvert alternate is not allowed.
- 7.) Reinforcement bars designated (E) shall be epoxy coated.
- 8.) See drainage sheets for riprap details and quantities.
- 9.) Removal of Existing Structures No. 7 shall include removal and disposal of the box culvert, wingwalls, path inside the box, and the modular block retaining wall extension on the southeast wing.
- 10.) Confined space access and protective measures between stages shall be included in the Contractor's design of the temporary soil retention system. The cost shall be included with the Temporary Soil Retention System.
- 11.) The Contractor shall block the ends of the existing and proposed culverts to prevent unauthorized access during construction stages. The cost shall be included with the cost of the Concrete Box Culvert.

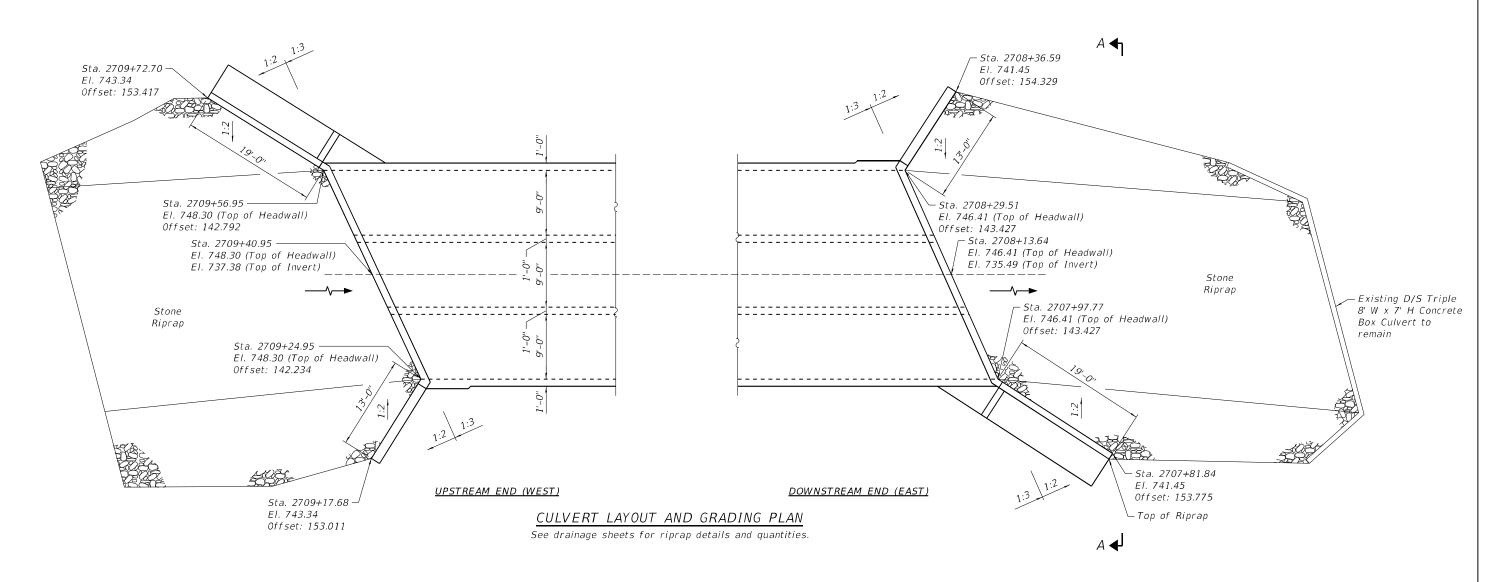

INDEX OF SHEETS

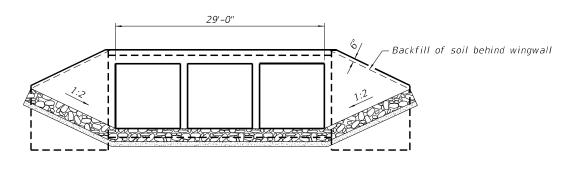
- 1 General Plan and Elevation
- 2 General Data
- 3 Culvert Layout and Grading Plan
- 4 Stage Removal and Construction Details
- 5 Stage Removal and Construction Details
- 6 Culvert Stage I Details
- 7 Culvert Stage II Details
- 8 Culvert Stage III Details
- 9 Culvert Details Cross Section and Details
- 10 Bar Splicer Assembly and Mechanical Splicer Details
- 11-12 Soil Boring Logs

TOTAL BILL OF MATERIAL

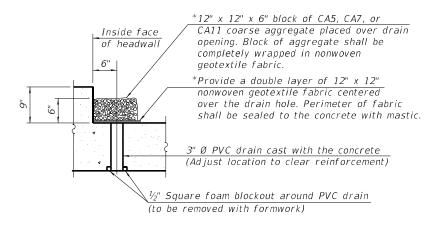
ITEM	UNIT	TOTAL
Porous Granular Embankment	Cu. Yd.	2,771
Removal of Existing Structures No. 7	Each	1
Structure Excavation	Cu. Yd.	7,868
Reinforcement Bars	Pound	400,470
Reinforcement Bars, Epoxy Coated	Pound	1,980
Bar Splicers	Each	412
Name Plates	Each	1
Temporary Soil Retention System	Sq. Ft.	7,216
Concrete Box Culverts	Cu. Yd.	1,332.7
Rock Fill	Ton	1,339
Temporary Support System	Each	2

PROFILE GRADE
Along Pr I-39 NB & Pr I-39 SB, PGL


*The Structure Excavation plan quantity is based on the limits shown minus the volume of the existing culvert and the soil directly above the existing culvert.


WILLETT HOFMANN
BASSOCIATES INC.
GROWNELWY ARE CLIMAL AND REVIEWED
BBOTT MOTRET, DOON, LEGIS AND

ς,	USER NAME = \$USER\$	DESIGNED -	RB	REVISED -
N c		CHECKED -	SAB	REVISED -
67	PLOT SCALE =	DRAWN -	RDA	REVISED -
18	PLOT DATE = \$DATE\$	CHECKED -	SAB	REVISED -

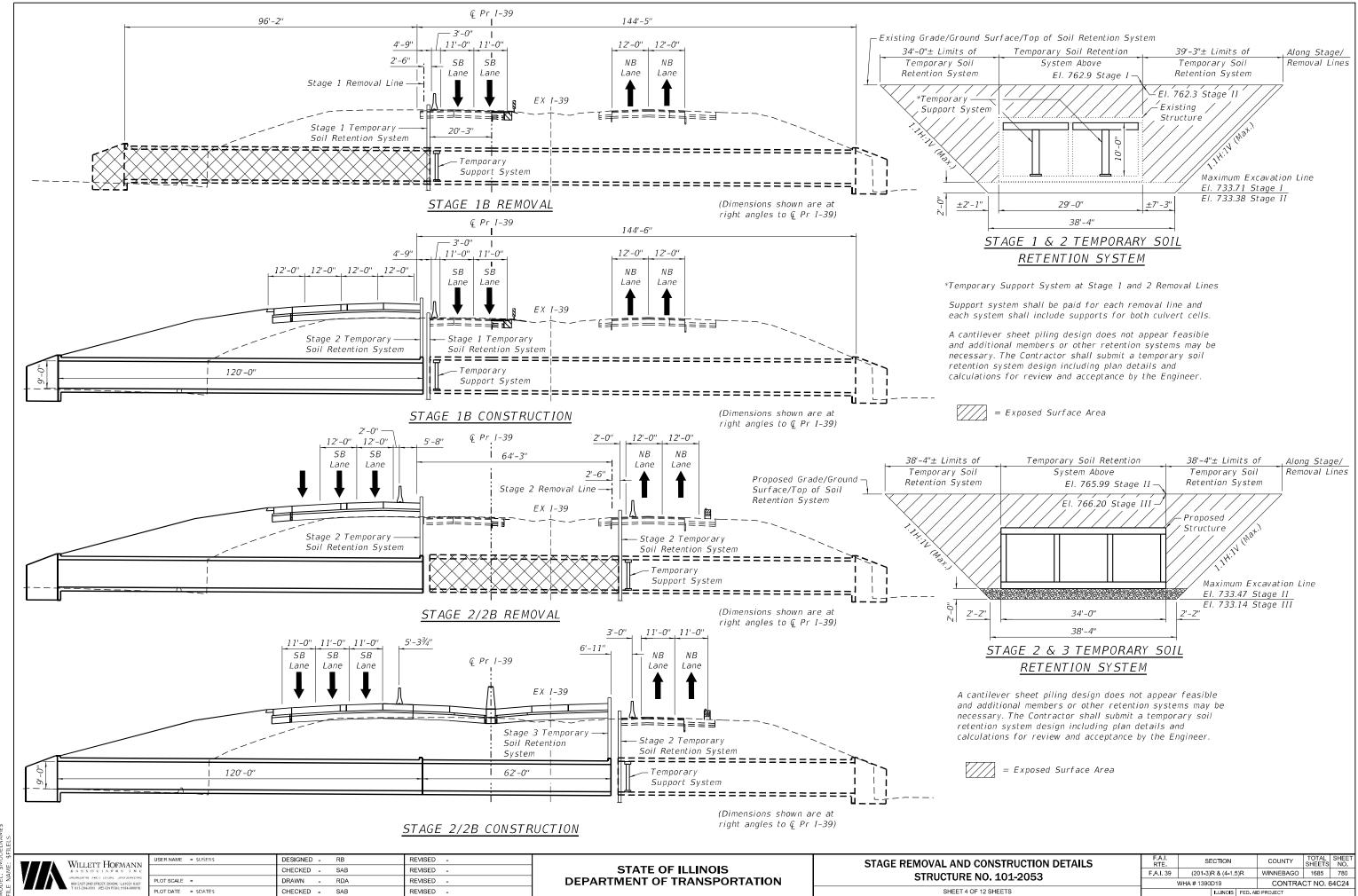

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

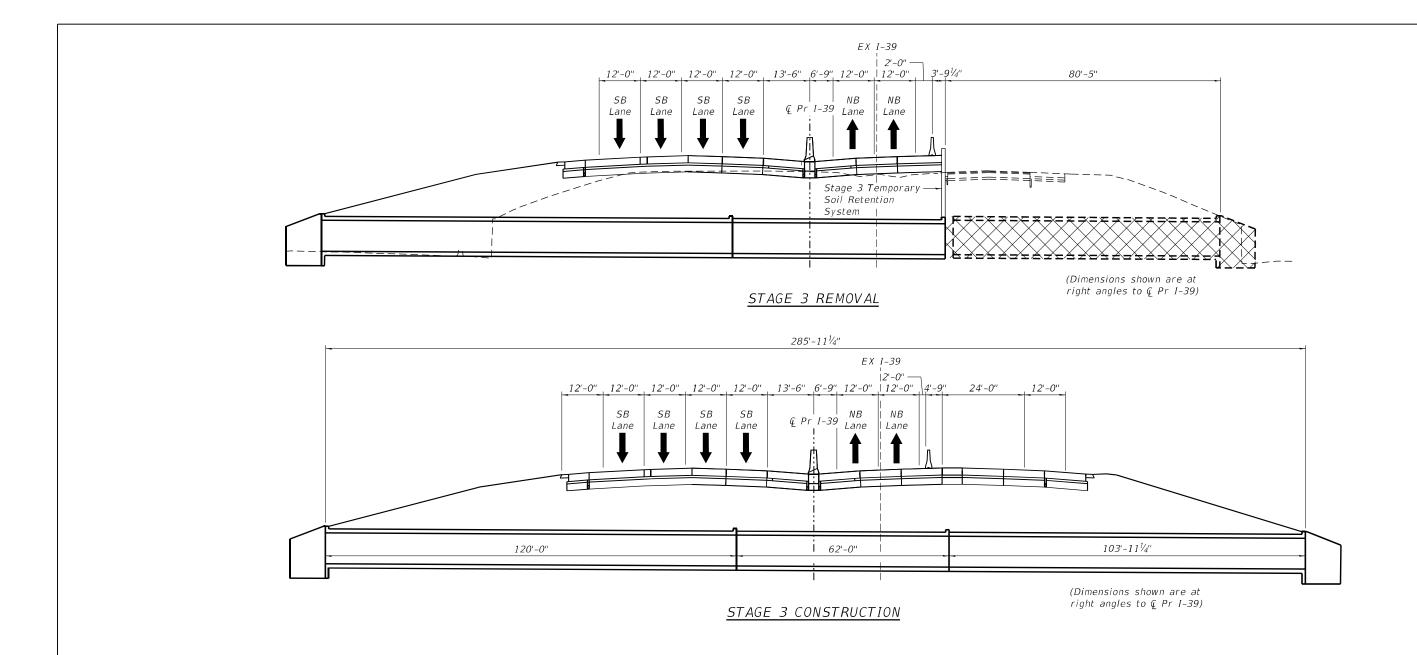
OFNEDAL DATA	F.A.I. RTE	SECTION	COUNTY	TOTAL SHEETS	SHE
GENERAL DATA	F.A.I. 39	(201-3)R & (4-1,5)R	WINNEBAGO	1685	778
	,	WHA # 1390D19	CONTRA	CT NO. 6	34C2
SHEET 2 OF 12 SHEETS		ILLINOIS FED. A	D PROJECT		

*Nonwoven geotextile fabric shall conform to the requirements of Article 1080.01 of the Standard Specifications. The minimum weight of the fabric shall be 6 ounces per square yard.

DRAIN DETAIL - CENTER OF EACH CELL

(All costs associated with furnishing and constructing the above drain detail will not be measured for payment but shall be included in the contract unit price for the associated work.)

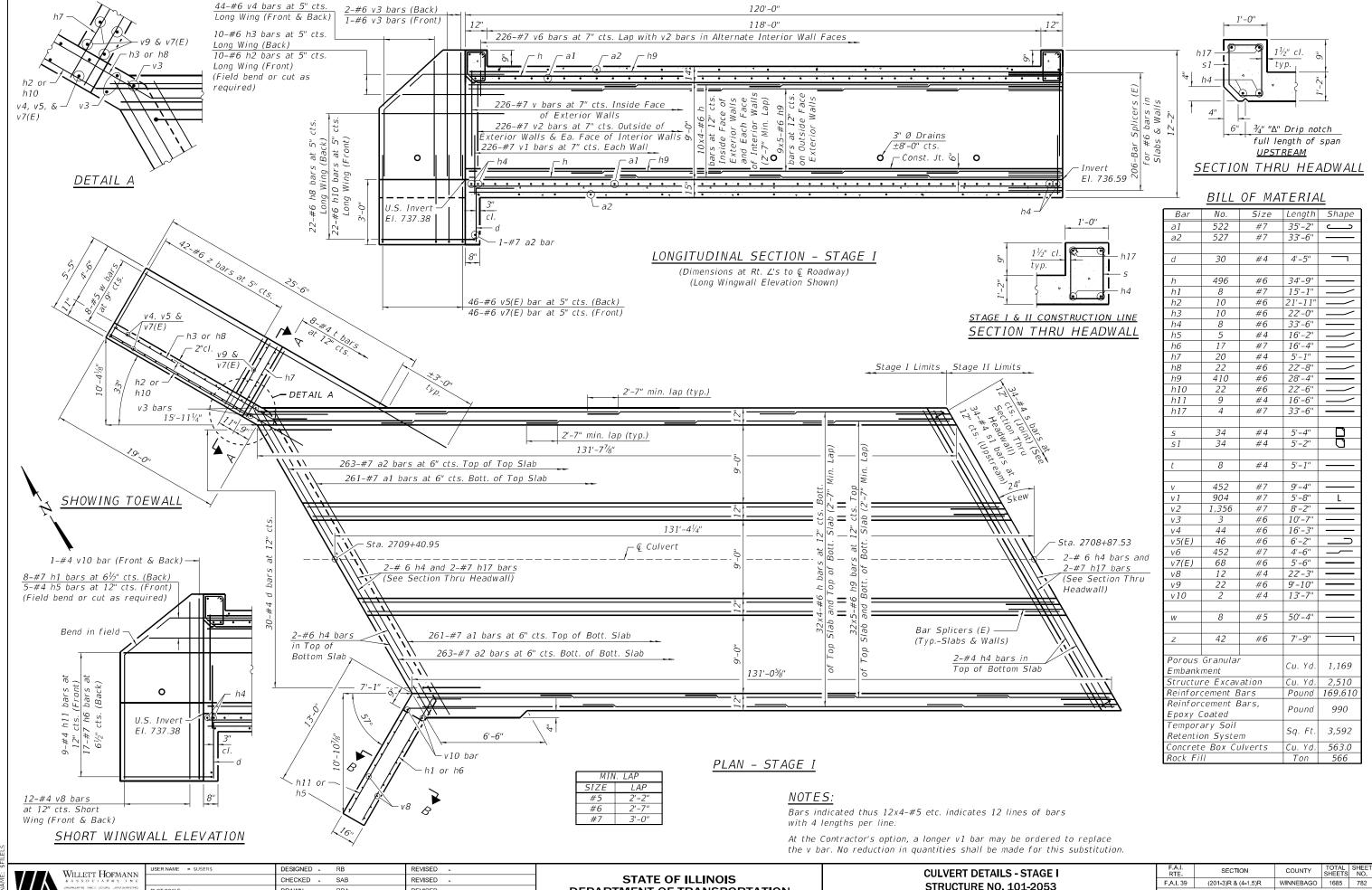

(6 Required)



.1	USER NAME = \$USER\$	DESIGNED - RB	REVISED -
c c		CHECKED - SAB	REVISED -
7	PLOT SCALE =	DRAWN - RDA	REVISED -
3	PLOT DATE = \$DATE\$	CHECKED - SAB	REVISED -
			·

SECTION A-A

CULVERT LAYOUT AND GRADING PLAN		SE	CTION		COUNTY	TOTAL SHEETS	SHEET NO.
STRUCTURE NO. 101-2053	F.A.I. 39	(201-3)	R & (4-1,5	i)R	WINNEBAGO	1685	779
311(00101)L 1(01-2033		WHA # 1390D19 CONTRA		CT NO. 6	64C24		
SHEET 3 OF 12 SHEETS			ILLINOIS	FED. All	D PROJECT		

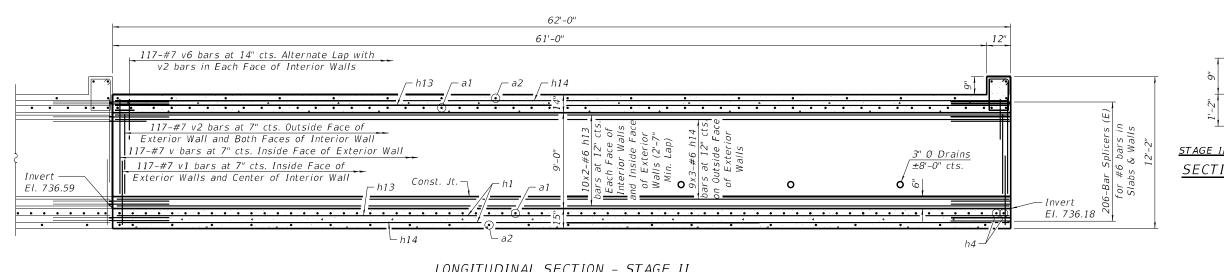

WILLETT HOFMANN

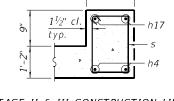
DESIGNED - RB REVISED -CHECKED - SAB REVISED -DRAWN -REVISED -CHECKED - SAB REVISED -

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

F.A.I. SECTION F.A.I. 39 (201-3)R & (4-1,5)R STAGE REMOVAL AND CONSTRUCTION DETAILS **STRUCTURE NO. 101-2053** WHA # 1390D19 SHEET 5 OF 12 SHEETS

COUNTY TOTAL SHEET NO.
WINNEBAGO 1685 781 CONTRACT NO. 64C24

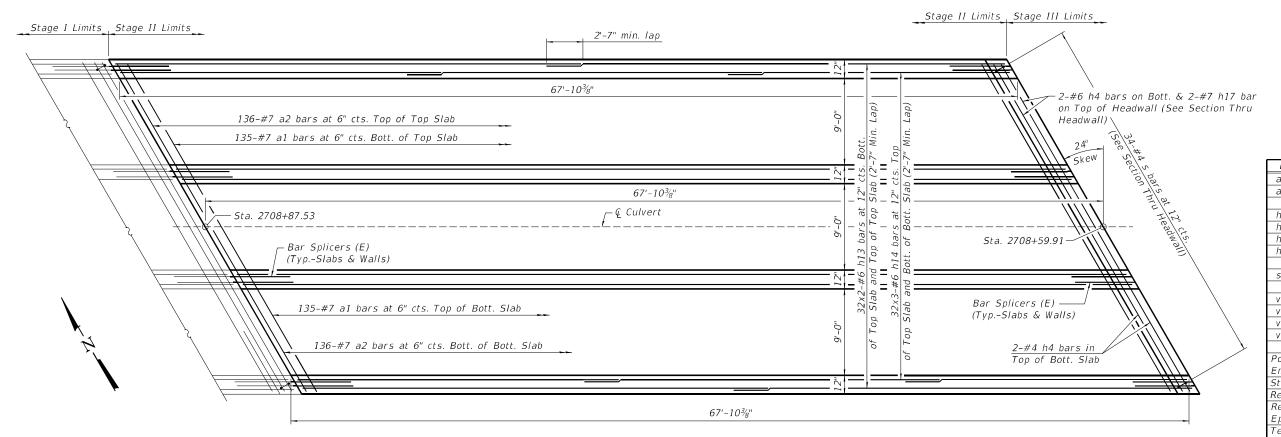



DRAWN RDA REVISED -PLOT DATE = SDATES CHECKED -REVISED SAB

DEPARTMENT OF TRANSPORTATION

STRUCTURE NO. 101-2053 SHEET 6 OF 12 SHEETS

CONTRACT NO. 64C24 WHA # 1390D19



STAGE II & III CONSTRUCTION LINE SECTION THRU HEADWALL

LONGITUDINAL SECTION - STAGE II

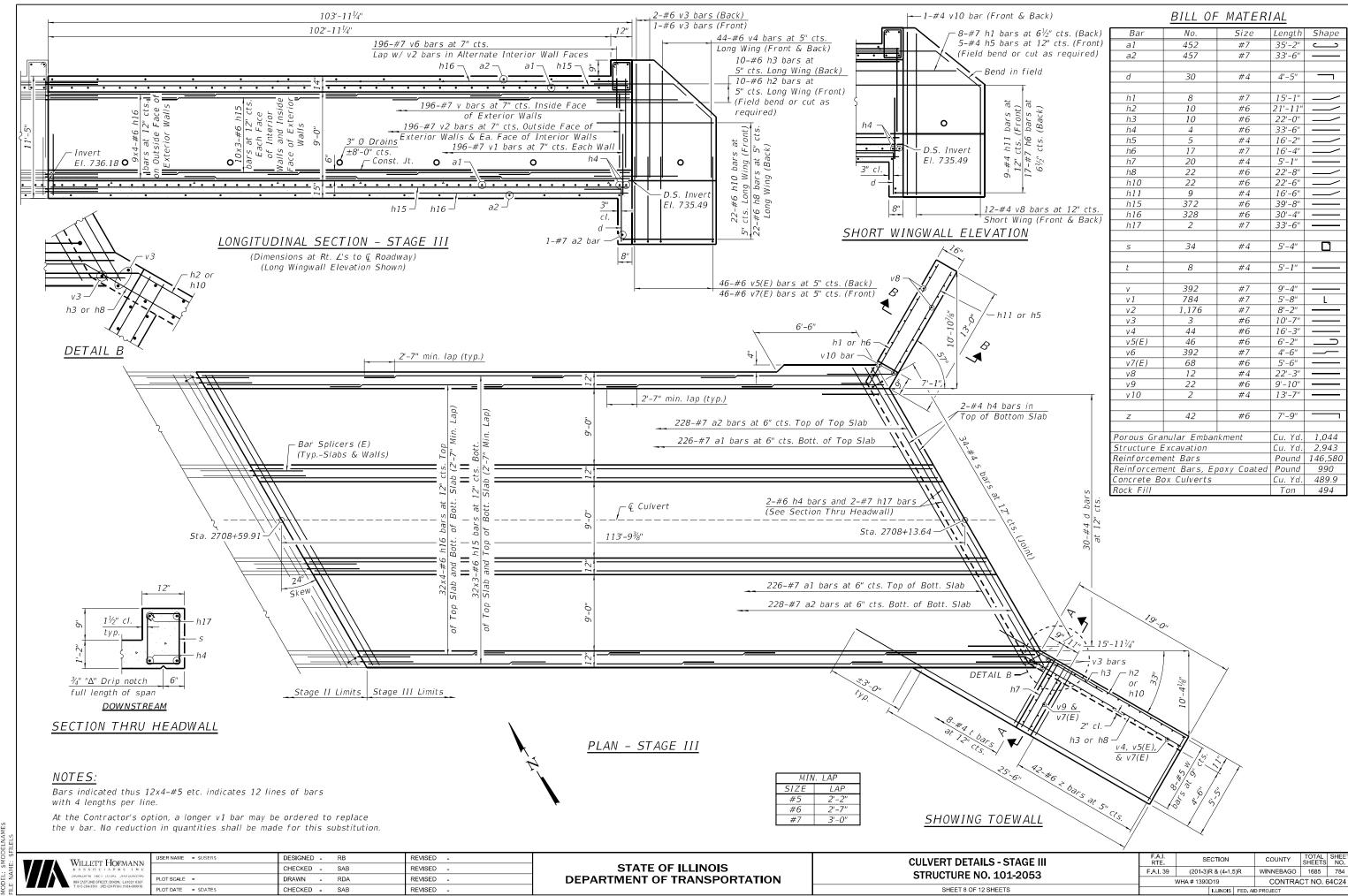
(Dimensions at Rt. ∠'s to ﴿ Roadway)

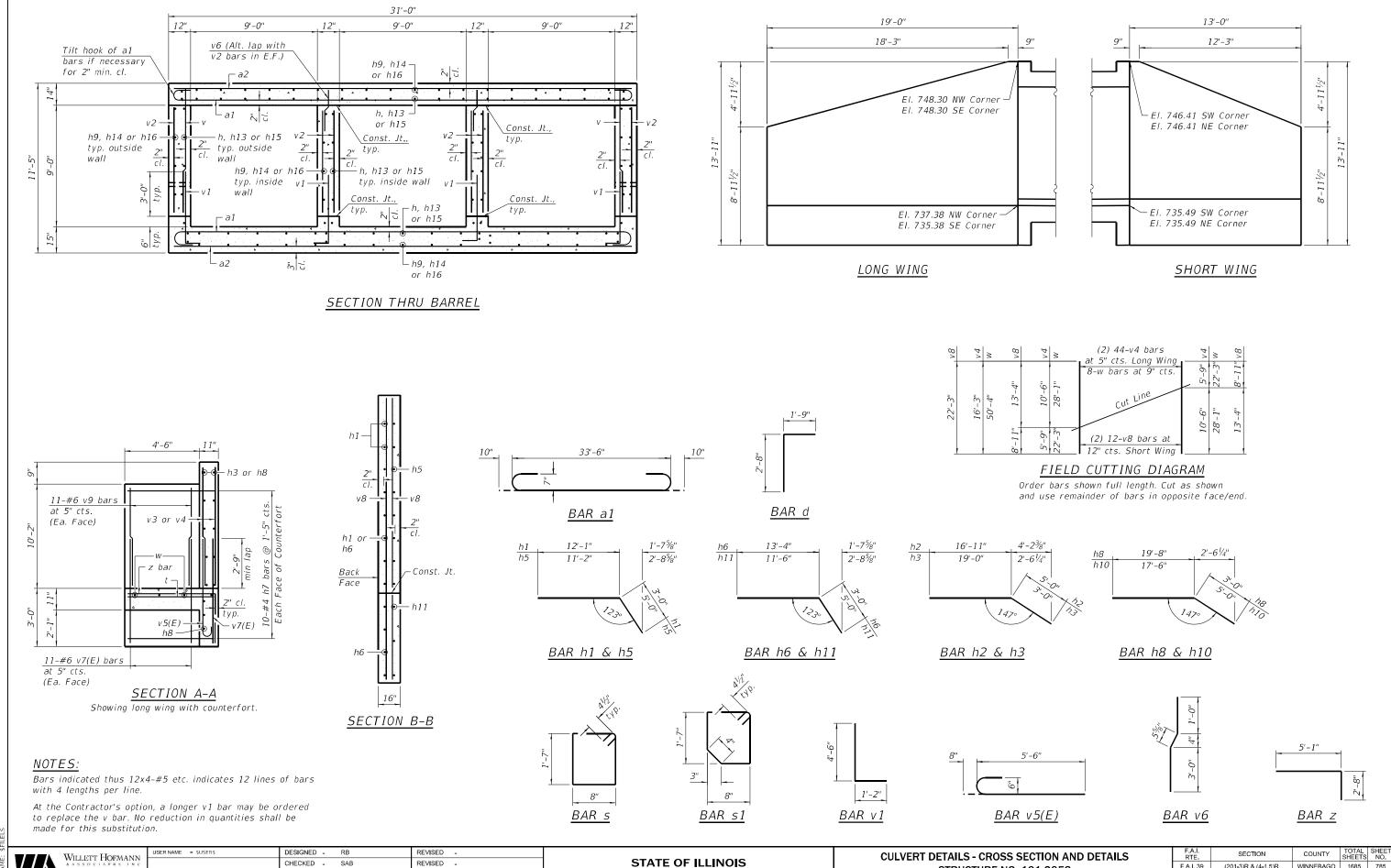
BILL OF MATERIAL

Bar	No.	Size	Length	Shape
a1	270	#7	35'-2"	Ĵ
a2	272	#7	33'-6"	
h4	4	#6	33'-6"	
h13	248	#6	35'-1"	
h14	246	#6	24'-3"	
h17	2	#7	33'-6"	
5	34	#4	5'-4"	
V	234	#7	9'-4"	
v 1	468	#7	5'-8"	L
v2	702	#7	8'-2"	
v6	234	#7	4'-6"	
Porous Embank	Granulaı ment	-	Cu. Yd.	558
Structu	re Excav	ation	Cu. Yd.	2,415
Reinford	cement E	Bars	Pound	84,280
Reinforcement Bars,			Pound	0
Epoxy Coated			Found	
Temporary Soil			Sq. Ft.	3,624
Retention System			39.11.	3,024
	е Вох Сі	ılverts	Cu. Yd.	279.8
Rock Fi	11		Ton	279

PLAN - STAGE II

NOTES:


Bars indicated thus 12x4-#5 etc. indicates 12 lines of bars with 4 lengths per line.


At the Contractor's option, a longer v1 bar may be ordered to replace the v bar. No reduction in quantities shall be made for this substitution.

ONT	USER NAME = \$USER\$	DESIGNED - RB	REVISED -
IN c		CHECKED - SAB	REVISED -
367	PLOT SCALE =	DRAWN - RDA	REVISED -
918	PLOT DATE = \$DATE\$	CHECKED - SAB	REVISED -

F.A.I. RTE	SECTION		COUNTY	TOTAL SHEETS	SHE
F.A.I. 39	(201-3)R & (4-1	,5)R	WINNEBAGO	1685	783
,	WHA # 1390D19			CT NO. 6	64C2
	ILLINOI	FED. A	D PROJECT		

DEPARTMENT OF TRANSPORTATION

F.A.I. 39 (201-3)R & (4-1,5)R

WHA # 1390D19

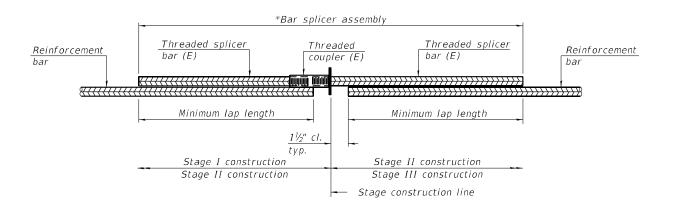
STRUCTURE NO. 101-2053

SHEET 9 OF 12 SHEETS

WINNEBAGO

1685 785

CONTRACT NO. 64C24


DRAWN

CHECKED - SAB

PLOT DATE = SDATES

REVISED -

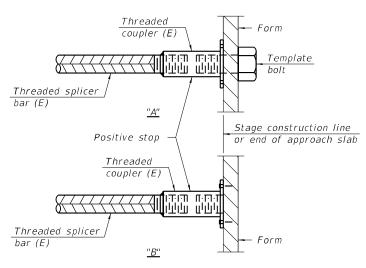
REVISED -

STANDARD BAR SPLICER ASSEMBLY PLAN

Only bar splicer assemblies as presented on the approved QPL list may be used.

Threaded splicer bar length = min. lap length + $1\frac{1}{2}$ " + thread length

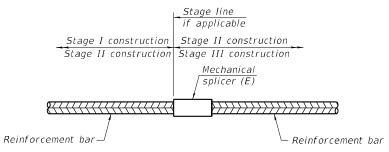
* Epoxy not required on Bar Splicer Assembly components used in conjunction with black bars.


STAGE 1

Location	Bar	No. assemblies	Minimum
Location	size	required	lap length
Top Slab	#6	64	3'-10"
Bottom Slab	#6	64	3'-10"
Side Walls	#6	38	3'-10"
Center Walls	#6	40	3'-10"
SUBTOTAL		206	

STAGE 2

Location	Bar	No. assemblies	Minimum
Location	size	required	lap length
Top Slab	#6	64	3'-10"
Bottom Slab	#6	64	3'-10"
Side Walls	#6	38	3'-10"
Center Walls	#6	40	3'-10"
SUBTOTAL		206	


TOTAL	412

INSTALLATION AND SETTING METHODS

"A": Set bar splicer assembly by means of a template bolt.
"B": Set bar splicer assembly by nailing to wood forms or cementing to steel forms.

(E): Indicates epoxy coating.

STANDARD MECHANICAL SPLICER

Locatio	on	Bar size	No. assemblies required

NOTES:

Splicer bars shall be deformed with threaded ends and have a minimum 60 ksi yield strength.

All reinforcement shall be lapped and tied to the splicer bars.

Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars. See Section 508 of the Standard Specifications.

See approved list of bar splicer assemblies and mechanical splicers for alternatives.

BSD-1

2-1-2023

USER NAME = \$USER\$	DESIGNED - RB	REVISED -
	CHECKED - SAB	REVISED -
PLOT SCALE =	DRAWN - RDA	REVISED -
PLOT DATE = \$DATE\$	CHECKED - SAB	REVISED -

F.A.I. RTE.	SECT	ΠON		COUNTY	TOTAL SHEETS	SHEET NO.
F.A.I. 39	(201-3)	R & (4-1,5	5)R	WINNEBAGO	1685	786
١	NHA # 1390	D19		CONTRA	CT NO. 6	64C24
		ILLINOIS	FED. All	D PROJECT		

Page $\underline{1}$ of $\underline{1}$

Date <u>4/23</u>/08 P-92-111-06 Box Culvert over Madigan Creek on DESCRIPTION Bypass 20/I-39 Bypass 20 LOGGED BY W. Garza (201-3)K &(4-1,5)R LOCATION Cherry Valley, 2 NW. SEC., TWP. 43N RNG. 2E SECTION COUNTY Winnebago DRILLING METHOD Hollow Stem Auger HAMMER TYPE CME-45 Automatic D E P STRUCT. NO. Surface Water Elev. 2.50 ft Ε 0 L C С 0 Stream Bed Elev. Station 4.00 ft 0 S - 1 S Т W W BORING NO. Groundwater Elev.: Qu Qu S 2708+81 Т 735.0 **ft**▼ S First Encounter Station **Upon Completion** Wash ft Ground Surface Elev. 739.49 ft (ft) (/6") (tsf) (%) (ft) (/6") (tsf) (%) After ____ Hrs. 0.8 19 SOFT dark gray LOAM MEDIUM gray SILT with fine SAND lens (continued) 4 718.5 0.4 STIFF gray SILTY CLAY TILL 737.5 13 MEDIUM dark gray SANDY LOAM 0.6 20 2 1.1 18 4 Р Р 735.5 715.5 MEDIUM tan SAND with medium VERY DENSE tan weathered GRAVEL 5 LIMESTONE 21 25 8 22 733.5 LOOSE/MEDIUM tan SAND Wash VERY DENSE tan 100/5' weathered LIMESTONE 4 711.0 731.0 Wash End of Boring LOOSE tan dirty SAND 8 728.0 STIFF tan/gray SILT 1.4 21 7 S 726.0 MEDIUM gray SILT 0.7 6 В MEDIUM gray SILT 0.6 5 В 721.0 MEDIUM gray SILT with fine SAND

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 4/23/08

				Date	1/20/00
ROUTE _	Bypass 20/I-39	DESCRIPTION _	P-92-111-06 Box Culvert over Madigan Creek on Bypass 20	LOGGED BY	W. Garza
SECTION	(201-3)K &(4-1,5)R	LOCATION	Cherry Valley, 2 NW. SEC., TWP. 43N RNG. 2	≣	

SECTION (201-3)K &(4-	1,5)R LO (CATION	Cherry	Valley, 2 NW. SEC., TWI	P. 43N RNG. 2E			
COUNTY Winnebago	DRILLING METHO	OD	Но	llow Stem Auger	HAMMER TYPE	CME	-45 Auto	omatic
STRUCT. NO. Station 857+18 BORING NO. B-2d Station 2707+71 Offset 175.5 ft RT Ground Surface Elev. 737.	E P (B U L C O S W S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.		E P T H	B U L C O S W S Qu	O I S T
MEDIUM dark gray LOAM	-			MEDIUM gray clean med coarse SAND (continued	dium d)		10 12	
MEDIUM dark gray dirt SAND & GRAVEL	1	0.5 P 2 13	13	HARD gray LOAM TILL	716		12 17 4.6	
STIFF tan SANDY LOAM TILL	733.6	2 9 1.4 6 P	10	HARD gray LOAM TILL		-25	18 S 11 8 6.3	
STIFF tan SANDY LOAM TILL		6			711		19 S	
STIFF tan SANDY LOAM TILL	729.1	11 1.0 15 S	9	End of Boring				
VERY STIFF gray LOAM TILL	726.6	7 1.7 8 S	8					
STIFF gray LOAM TILL	724.1	5 2.7 9 B	8					
HARD gray LOAM TILL	-13	5 9 1.8 11 S	8			35		
	1	8 10 4.6 17 S	8					
MEDIUM gray clean medium coarse SAND	718.6	4				-40		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

(SHEET 1 OF 2 SHEETS)

USER NAME = \$USER\$	DESIGNED - RB	REVISED -
	CHECKED - SAB	REVISED -
PLOT SCALE =	DRAWN - RDA	REVISED -
PLOT DATE = \$DATE\$	CHECKED - SAB	REVISED -

Page $\underline{1}$ of $\underline{2}$

Date 8/3/20

P-92-111-06- Box Culvert carrying US Bypass 20 Bypass 20/I-39 DESCRIPTION over Madigan Creek LOGGED BY W. Garza LOCATION Cherry Valley, 2 NW. SEC., TWP. 43N RNG. 2E SECTION (201-3)K &(4-1,5)R COUNTY Winnebago DRILLING METHOD Hollow Stem Auger HAMMER TYPE CME-45 Automatic D STRUCT. NO. Surface Water Elev. E P E P L С 0 0 C Stream Bed Elev. 0 S S T W BORING NO. Groundwater Elev.: S Qu Qu 2709+25 733.1 **ft**▼ S First Encounter Station 722.6 **ft**∑ Upon Completion Ground Surface Elev. 762.62 ft (ft) (/6") (tsf) (/6") (tsf) (%) After ____ Hrs. MEDIUM gray LOAM DENSE tan FINE SAND 0.8 (continued) 16 760.6 740.6 21 HARD tan SANDY LOAM VERY DENSE tan moist SANDY 10 GRAVEL 4.5 30 9 Р 46 758.1 738.1 9 13 VERY STIFF tan SANDY LOAM DENSE tan moist SANDY **GRAVEL** 22 2.8 5 Р 21 5' Run 755.6 HARD tan SANDY LOAM 4.5 9 Р 753.1 733.1 ▼_ VERY STIFF tan SANDY LOAM HARD tan SANDY LOAM 2.3 4.5 10 TILL top 6" SANDY GRAVEL 10 9 14 В Ρ 5' Run 750.6 10 HARD tan SANDY LOAM 4.0 8 Ρ 748.1 728.1 VERY STIFF light brown CLAY STIFF light gray SANDY LOAM 3.5 23 LOAM TILL 1.4 26 9 В 14 S 5' Run 745.6 MEDIUM gray SILTY CLAY LOAM with GRAVEL 8.0 23 9 Ρ 723.1 743.1 15 26 DENSE tan FINE SAND

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

SOIL BORING LOG

P-92-111-06- Box Culvert carrying US Bypass 20

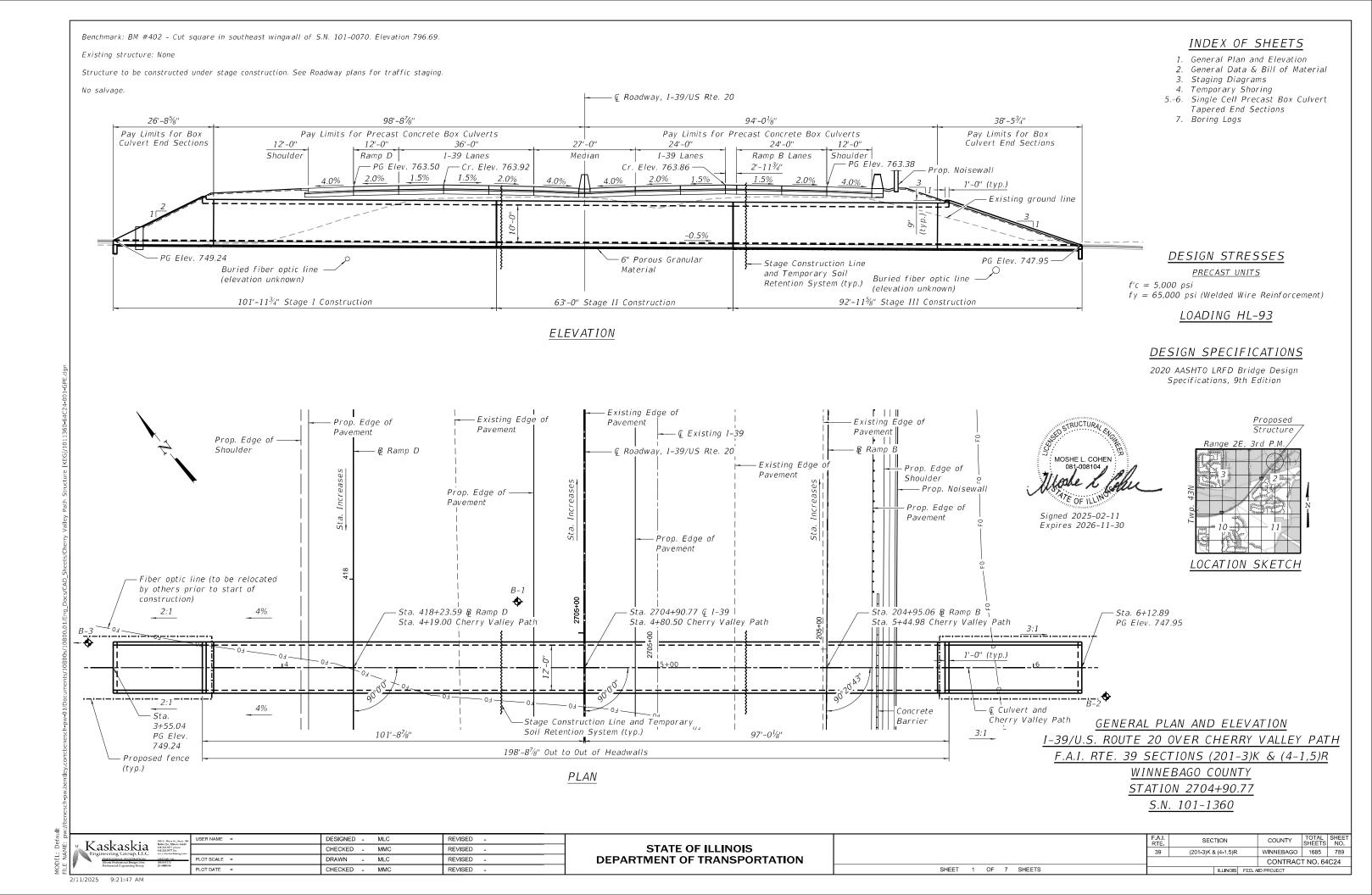
Page $\underline{2}$ of $\underline{2}$

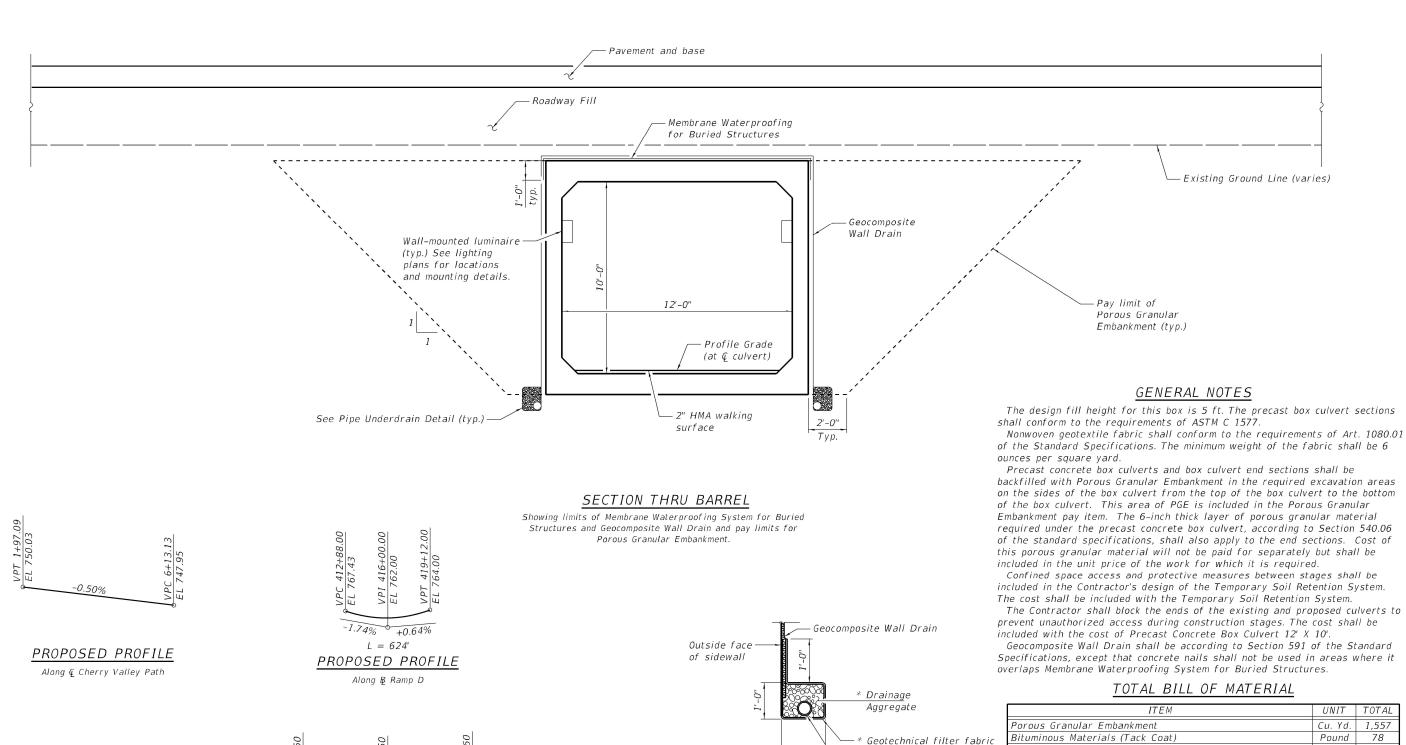
Date 8/3/20

ROUTE Bypass 20/I-39 DESCRIPTION over Madigan Creek LOGGED BY W. Garza

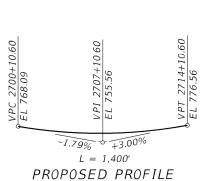
SECTION (201-3)K &(4-1,5)R LOCATION Cherry Valley, 2 NW. SEC., TWP. 43N RNG. 2E

SECTION Winnebago DRILLING METHOD Hollow Stem Auger HAMMER TYPE STRUCT. NO. D В Surface Water Elev. Ε L C 0 Station Stream Bed Elev. Ρ 0 S W BORING NO. Groundwater Elev.: S Qu 2709+25 First Encounter 733.1 ft ▼ Station 14.0 ft LT **Upon Completion** 722.6 ft ∇ (/6") (tsf) Ground Surface Elev. 762.62 After 27 VERY STIFF gray SANDY LOAM 24 5' Run (continued) 718.1 VERY STIFF light gray SANDY 10 2.1 LOAM TILL 9 13 Р 716.6 End of Boring


The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)


BBS, form 137 (Rev. 8-99)

(SHEET 2 OF 2 SHEETS)


N	USER NAME = \$USER\$	DESIGNED - RB	REVISED -
c		CHECKED - SAB	REVISED -
67	PLOT SCALE =	DRAWN - RDA	REVISED -
18	PLOT DATE = \$DATE\$	CHECKED - SAB	REVISED -

-1.76% +2.56% L = 1,260'PROPOSED PROFILE

Along & Ramp B

Along I-39/U.S. Route 20

STATION 2704+90.77 BUILT 202_ BY STATE OF ILLINOIS F.A.I. RT. 39 SEC. (201-3)K & (4-1,5)R LOADING HL-93 STR. NO. 101-1360

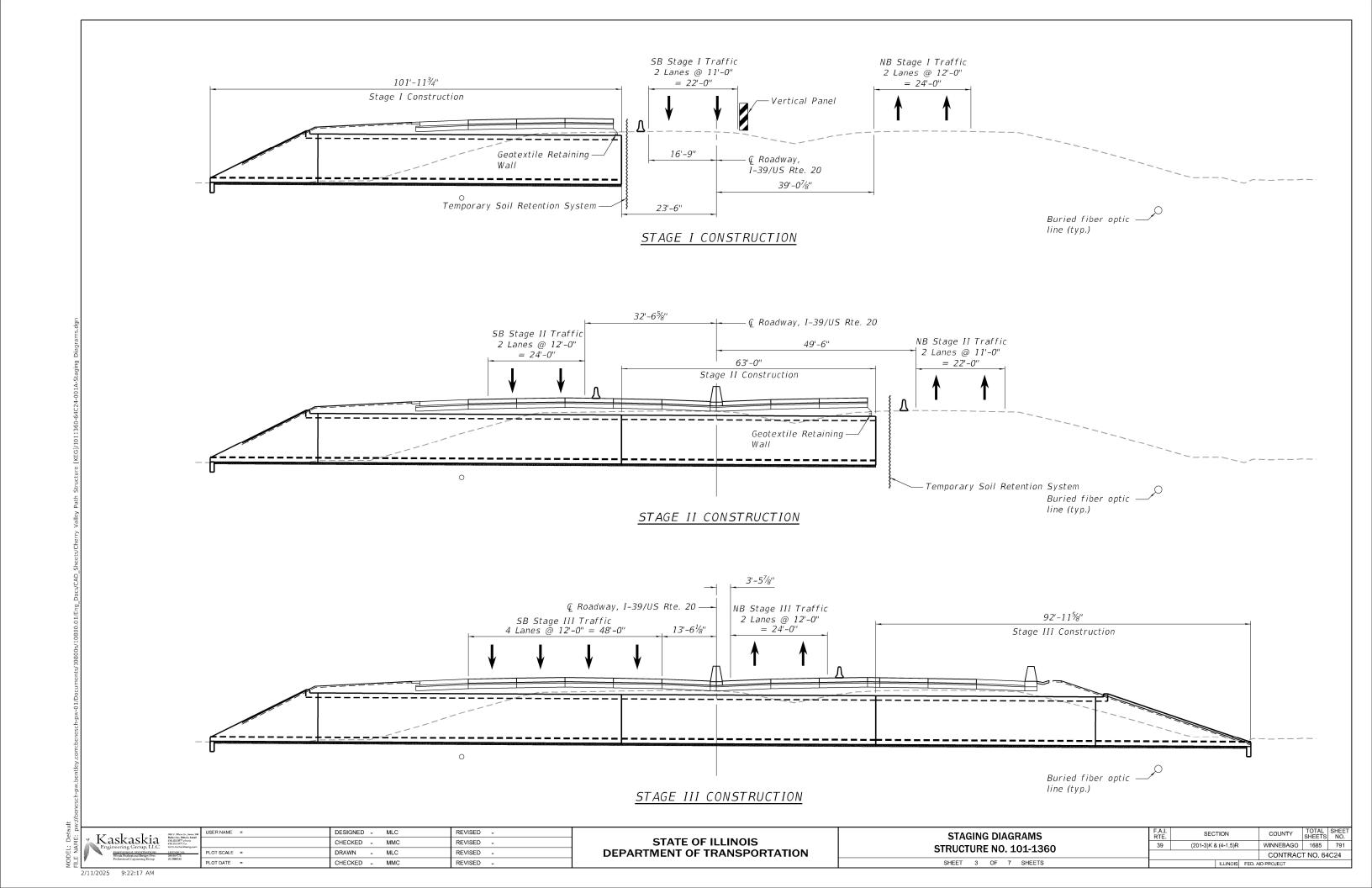
> NAME PLATE See Std. 515001

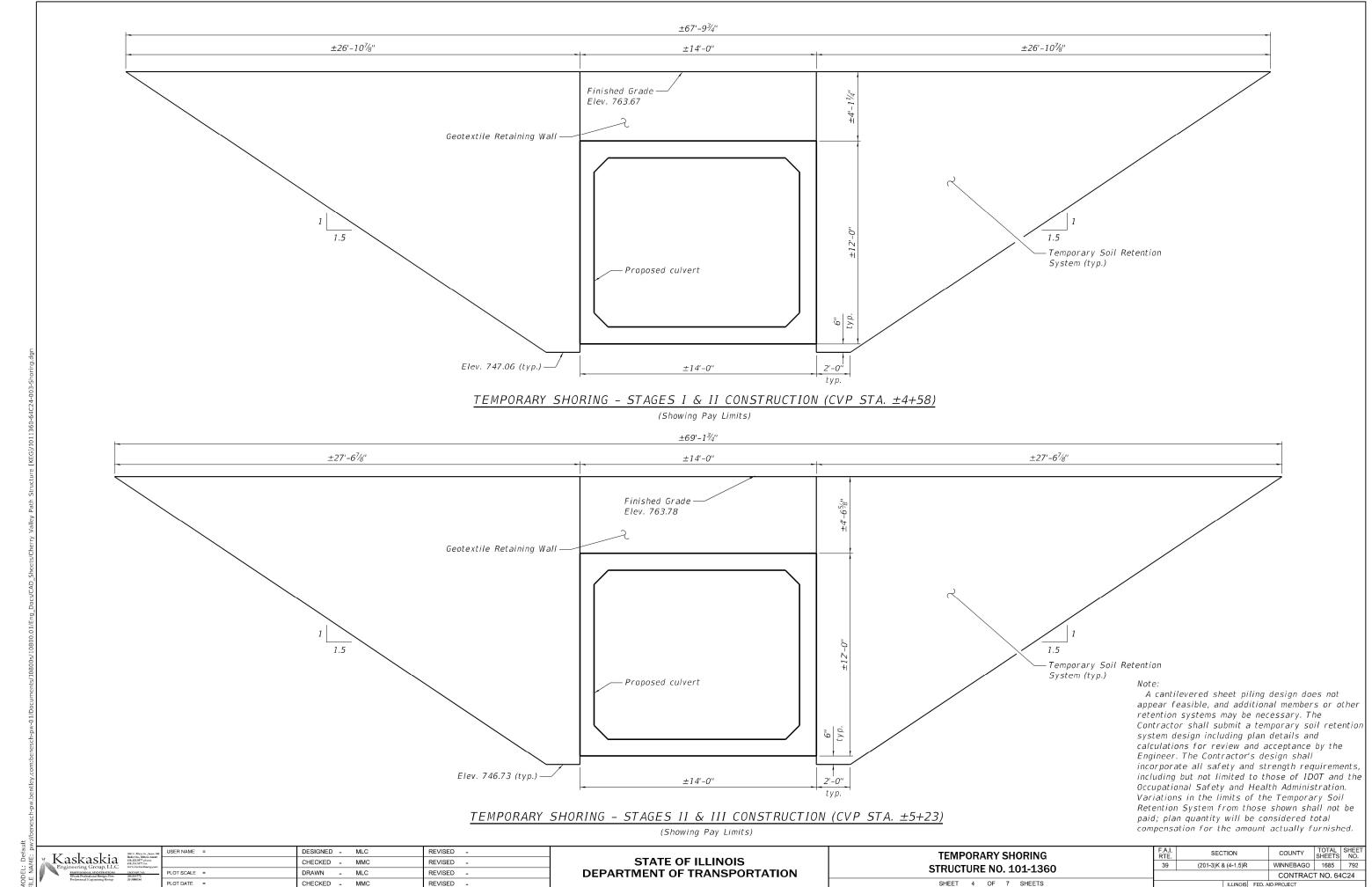
1'-0" PIPE UNDERDRAIN DETAIL

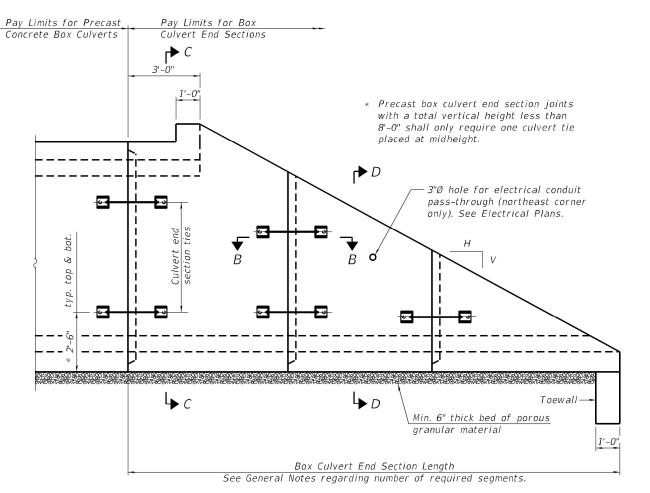
Cost Included with Pipe Underdrains for Structures 4". All draiange components shall extend to 2'-0" from the end of each wingwall, except an outlet pipe shall extend until interesecting with side slopes. The pipes shall drain into concrete headwalls. See Highway Standard 601101.

for french drains

Drain Pipe

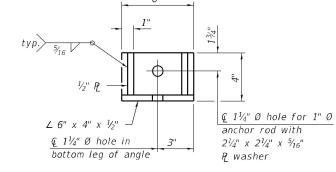

4" Ø Perforated


ITEM	UNIT	TOTAL
Porous Granular Embankment	Cu. Yd.	1,557
Bituminous Materials (Tack Coat)	Pound	78
Hot-Mix Asphalt Surface Course, IL-9.5FG, N50	Ton	41
Structure Excavation	Cu. Yd.	1,440
Name Plates	Each	1
Temporary Soil Retention System	Sq. Ft.	990
Geotextile Retaining Wall	Sq. Ft.	125
Box Culvert End Sections, Culvert No. 1	Each	2
Precast Concrete Box Culverts 12' X 10'	Foot	193
Geocomposite Wall Drain	Sq. Yd.	910
Pipe Underdrains for Structures 4"	Foot	536
Membrane Waterproofing System for Buried Structures	Sq. Yd.	349


DESIGNED - MLC REVISED -Kaskaskia CHECKED - MMC REVISED -DRAWN REVISED PLOT DATE = CHECKED - MMC REVISED -

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION** **GENERAL DATA & BILL OF MATERIAL STRUCTURE NO. 101-1360** SHEET 2 OF 7 SHEETS

SECTION COUNTY (201-3)K & (4-1,5)R WINNEBAGO 1685 790 CONTRACT NO. 64C24



ELEVATION

PLAN

Headwall -2'-0" typ. Span ∖Porous granular material

END VIEW

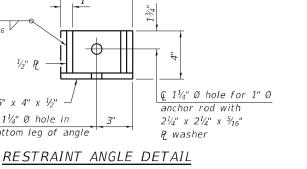
GENERAL NOTES

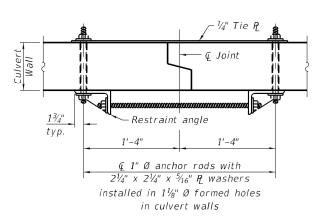
Box Culvert End Sections shall be constructed according to the requirements of Section 540 of the Standard Specifications except as modified herein. This work will be measured for payment as each, with each end of each culvert being one each. End sections will be paid for at the contract unit price per each for Box Culvert End Sections of the culvert number specified.

Typical box section dimensions, materials, and reinforcement details for Box Culvert End Sections shall be according to the requirements of ASTM C 1577 as required for the design of the portion of the culvert within the limits of Precast Concrete Box Culverts except as modified herein.

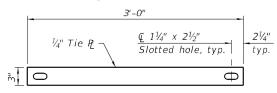
Number of segments shown in Elevation is for example only. Length and number of precast box sections required to construct Box Culvert End Sections shall be determined by the Contractor.

See roadway plans for embankment slope (V:H).


1" Ø anchor rods for the culvert ties shall conform to the requirements of ASTM F1554, Grade 105. Structural steel for tie plate and restraint angle shall conform to the requirements of Article 1006.04 of the Standard Specifications. All components of the culvert tie detail shall be galvanized according to the requirements of AASHTO M 111 or M 232 as applicable. $2\frac{1}{4}$ " x $2\frac{1}{4}$ " x $\frac{5}{16}$ " plate washers shall be provided under each nut required for the anchor rods. Anchor rods connecting precast sections shall be brought to a snug tight condition followed by an additional $\frac{1}{2}$ turn on one of the nuts for anchor rods installed in the walls. Match marks shall be provided on the bolt and nut to verify relative rotation between the bolt and the nut. Holes in the walls for the culvert tie assembly may be drilled using core bits in lieu of using formed holes.


All costs associated with furnishing and installing or constructing the toewall and culvert ties will not be measured for payment but shall be included in the contract unit price for Box Culvert End Sections of the culvert number specified.

Drain holes shall conform to the requirements of Article 503.11 of the Standard Specifications unless noted otherwise.

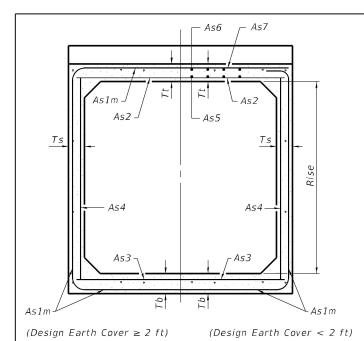

Nonwoven geotextile fabric shall conform to the requirements of Article 1080.01. The minimum weight of the fabric shall be 6 oz. / sq. yd..

For end sections with traversable pipe grate systems, see grate detail sheet for required modifications.

SECTION B-B (Showing end section tie details)

TIE PLATE DETAIL

DESIGNED - MLC REVISED -Kaskaskia CHECKED - MMC REVISED -DRAWN MLC REVISED PLOT DATE = CHECKED - MMC REVISED -


STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

E ♠

(Sheet 1 of 2) SINGLE CELL PRECAST BOX CULVERT TAPERED END SECTIONS **STRUCTURE NO. 101-1360** SHEET 5 OF 7 SHEETS

SECTION COUNTY (201-3)K & (4-1.5)R WINNEBAGO 1685 793 CONTRACT NO. 64C24

2/11/2025 9:22:37 AM

SECTION C-C

3" Ø corrugated PE pipe

Standard Specifications.

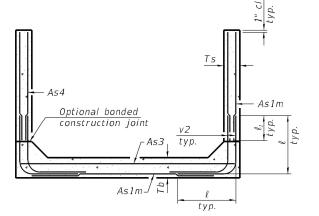
Fill with non-shrink grout

#4 v1 bars drilled and grouted into toewall in 9" min.

deep holes at 1'-6" cts., max.

per Article 1040.04 of the

6-#5 h1 bars


placed as shown

#4 s1 bars at

1'-0" cts., max.

SECTION E-E

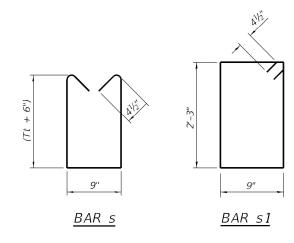
SECTION D-D

ALTERNATE SECTION D-D

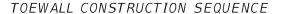
	As1m REINFORCEMENT										
				(in.	²/ ft)						
Ts (in.)	2	3	4	5	6	7	8	9	10	11	12
4	0.19	0.17									
5	0.26	0.21	0.18								
6	0.22	0.26	0.23	0.22							
7	0.25	0.33	0.59	0.27	0.28						
8	0.40	0.35	0.43	0.39	0.36	0.34	0.40				
9	0.44	0.39	0.35	0.43	0.40	0.37	0.36	0.48			
10	0.48	0.42	0.38	0.47	0.44	0.41	0.38	0.42	0.56		
11	0.52	0.45	0.54	0.50	0.46	0.44	0.41	0.46	0.50	0.65	
12	0.55	0.49	0.58	0.54	0.50	0.48	0.45	0.46	0.46	0.61	0.75
	,								ACUTA		14.0

(As1m reinforcement based upon welded wire reinforcement conforming to AASHTO M 55 or M 221).

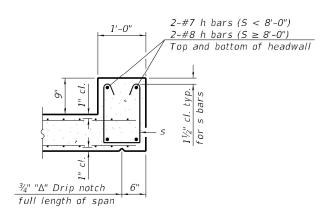
l, DIMENSION


 $#3 \ bar = 2'-0''$ $#4 \ bar = 2'-8''$

 $#5 \ bar = 3'-4"$ $#6 \ bar = 3'-11''$


Alternate Section D-D is provided to allow the Contractor the option of casting the bottom slab of the end section first followed by construction of the sidewalls using conventional forming methods. Shop drawings that detail slab thickness and reinforcement layout shall be submitted to the Engineer for review and approval when using Alternate Section D-D.

The size and spacing of the v2 bars shall provide a minimum reinforcement area along each face of the walls (in.2/ft.) equal to 1.10*(As1m). v2 bars may consist of #3 thru #6 size reinforcement bars and the longitudinal spacing shall not exceed the lesser of the wall thickness or 8 inches.


Bonded construction joints shall be prepared according to Article 503.09 of the Standard Specifications.

#4 s bars at spacing = Tt (Spacing need not be less than 8") 4-h bars (See Section F-F) HEADWALL ELEVATION (Allow sidewall reinforcement to extend into end of headwall.)

- 1. Perform excavation and construct toewall.
- 2. Backfill according to the applicable paragraphs of Article 502.10 of the Standard Specifications and place bedding for precast box culvert end sections.
- 3. Set precast box culvert end section.
- 4. Drill and epoxy grout reinforcement in toewall in accordance with Section 584 of the Standard Specifications.
- 5. Pressure grout voids using non-shrink grout conforming to Section 1024 of the Standard Specifications.
- The Contractor may furnish a precast or cast-in-place toewall. The Contractor shall be responsible for the strength and stability of the precast toewall during handling. Additional lifting points may be required depending upon the length of the toewall or the Contractor may need to modify the design of the toewall for the proposed handling the method.
- ** If soil conditions permit, the sides of the toewall may be poured directly against the soil. The clear cover on the sides of the toewall shall be increased to 3" by increasing the thickness of the toewall.

SECTION F-F

SCB-TES

2-17-2017

1'-0"

	208 E. Main St., Suite 100 Belleville, Elinois 62220	USER NAME =	DESIGNED - MLC	REVISED -
Caskaskia Engineering Group, LLC	618.233.5877 phune 618.233.9977 fax www.katkaskiaene.com		CHECKED - MMC	REVISED -
FROFESSIONAL RECISTRATIONS Illinois Professional Design Firm	LICENSE NO. 184,004773	PLOT SCALE =	DRAWN - MLC	REVISED -
Professional Engineering Group	20-5080586	PLOT DATE =	CHECKED - MMC	REVISED -

1½" <u>c1</u>.

typ.

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

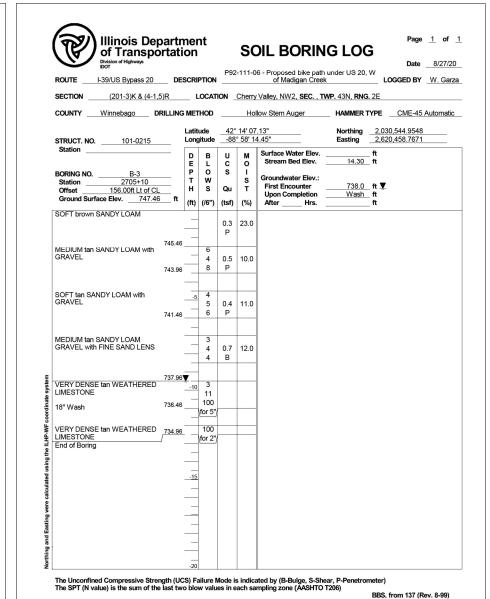
(Sheet 2 of 2)					
SINGLE CELL PRECAST BOX CULVERT TAPERED END SECTIONS	F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
STRUCTURE NO. 101-1360	39	(201-3)K & (4-1,5)R	WINNEBAGO	1685	794
311001011 No. 101-1300			CONTRAC	T NO. 64	C24
SHEET 6 OF 7 SHEETS		ILLINOIS FED. A	ID PROJECT		

9:22:38 AM

Page <u>1</u> of <u>1</u>

Date 8/4/20

SOIL BORING LOG

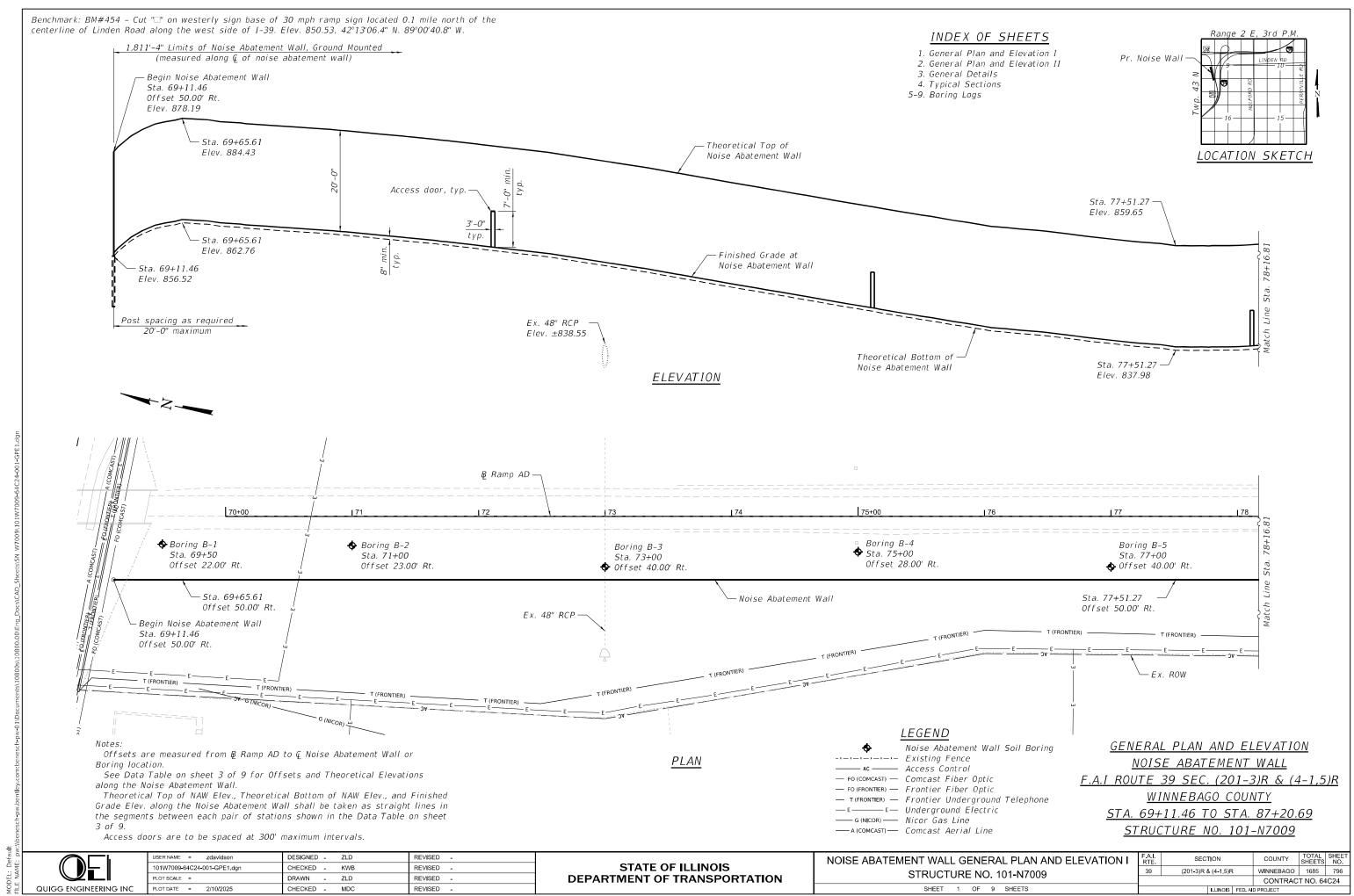

ROUTE 1-39/US Bypass 20 DESCRIPTION P92-111-06 - Proposed bike path under US 20, W of Madigan Creek LOGGED BY W. Garza

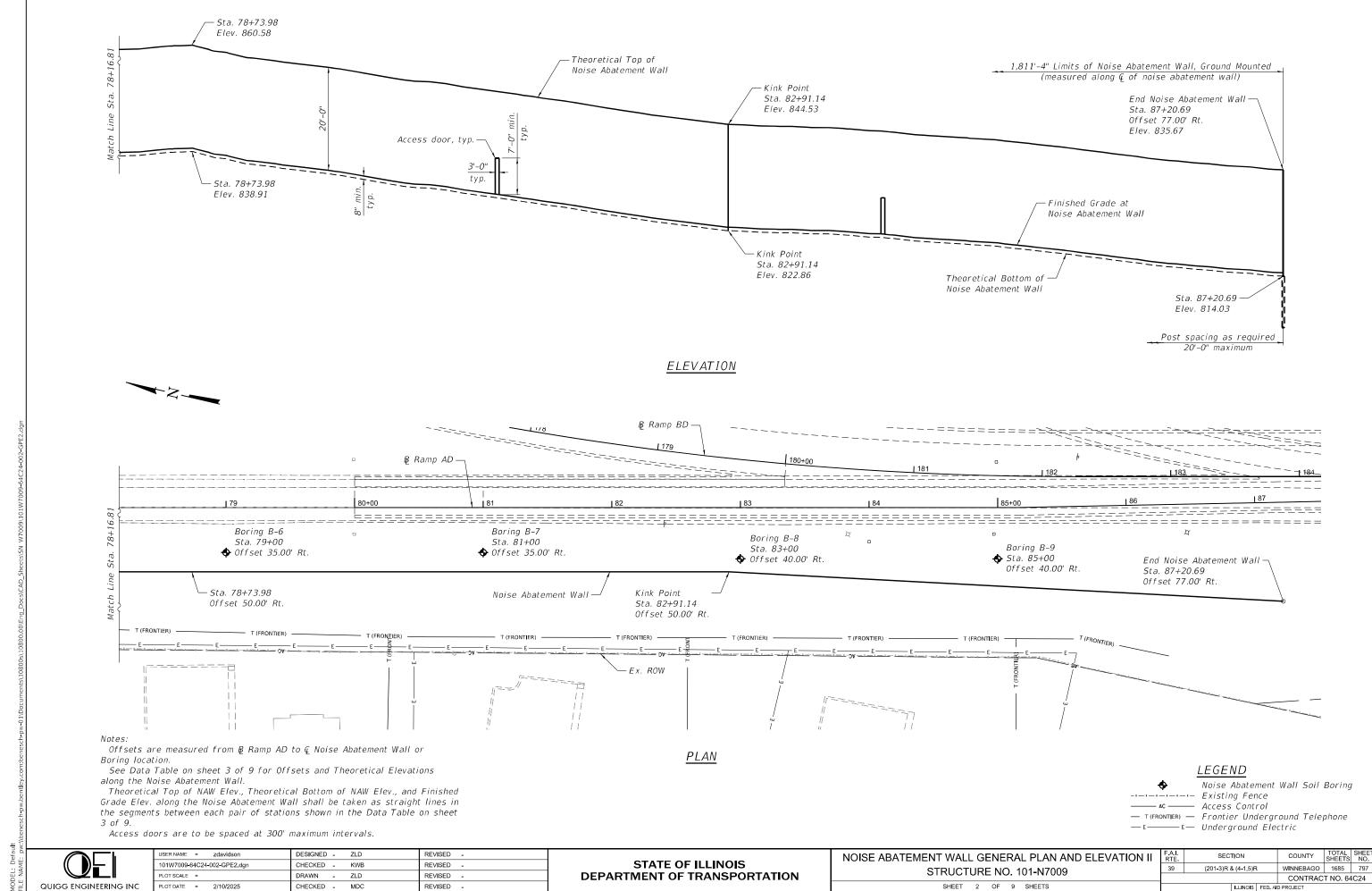
COUNTY Winnebago DRILLING METHOD Hollow Stem Auger HAMMER TYPE CME-45 Automatic

 SECTION
 (201-3)K & (4-1,5)R
 LOCATION
 Cherry Valley, NW2, SEC. , TWP. 43N, RNG. 2E

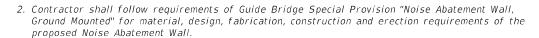
Illinois Department of Transportation

of Transpoi	tati	011			0	OIL BORING		•		Date	8/1	3/2
ROUTEI-39/US Bypass 20	DES	SCRI	PTION	P92	-111-0	6 - Proposed bike path u of Madigan Creek	nder US 20,		OGGE	D BY	_W. 0	Зar
SECTION (201-3)K & (4-1,5)	R	_ ι	OCAT	ION _	Cherry	Valley, NW2, SEC., TW	P. 43N, RNG	. 2E				_
COUNTY Winnebago DR	ILLING	MET	HOD		Но	llow Stem Auger	HAMMER 1	YPE	CN	/IE-45	Auton	natio
STRUCT. NO101-0215 Station		Latit Lonç	ude gitude		14' 05 ° 58' 1	1.63"	Northing Easting	2,620		.7913 .5201		_
BORING NO. B-2	ft	D E P T H (ft)	B L O W S	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	739.5	.ft .ft .ft ▼ .ft .ft	DEPTH (ft)	B L O W S	U C S Qu (tsf)	(9)
HARD light brown SANDY LOAM		_		4.0	9.0	DENSE tan SAND with GRAVEL	MEDIUM	728.04	_	15 16		
	747.04	_		Р		5' Run (continued)			_			
HARD light brown SANDY LOAM		_	6 5 7	4.0 P	12.0				_			
MEDIUM tan dirty MEDIUM SAND MEDIUM GRAVEL	744.54 743.04	-5	5 5 14			MEDIUM tan SANDY G	GRAVEL	723.04	-25	15 14 15		
MEDIUM tan SAND with MEDIUM GRAVEL	740.54	_ _ _	4 7 10			End of Borning			_			
MEDIUM tan SANDY GRAVEL	738.04	<u>-10</u>	7 11 12						-30			
MEDIUM tan SANDY GRAVEL	735.54		9 11 16									
VERY DENSE tan SANDY GRAVEL		- <u>15</u>	21 21						-35			
5' Run	733.04	_	32						_			
		_							_			
		-20	18						-40			



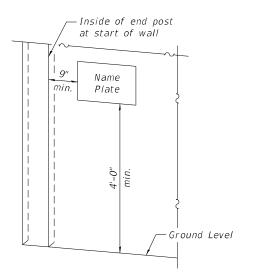

N = 4 = .

For location of soil borings, see Sheet 1 of 7.


TZ 1 1 •	208 E. Main St., Snite 100 Belleville, Ellipois 62220	USER NAME =	DESIGNED - MLC	REVISED -
Kaskaskia Engineering Group, LLC	618,233,5877 physic 618,233,9977 fex prove, karbacklaene, cum		CHECKED - MMC	REVISED -
PROFESSIONAL REGISTRATIONS Illinois Professional Design Firm	LICENSE NO. 184,004773	PLOT SCALE =	DRAWN - MLC	REVISED -
Professional Engineering Group	20-5080386	PLOT DATE =	CHECKED - MMC	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

2/7/2025 3:18:49 PN


- 3. The Contractor shall field verify location of the existing utilities prior to construction. The Contractor shall take precautions not to damage existing utilities. Any such damage shall be repaired by the Contractor at no additional cost. All adjacent utilities shall be shown on the shop
- 4. Noise Abatement Wall drilled shaft foundation diameter, depth and spacing to be determined by the Contractor
- 5. Precast panels for the Ground Mounted Noise Abatement Walls shall be cast using form liners with a simlulated limestone surface. Form liners shall be used on both faces of the panels. The form liner shall match the exact size of each panel such that there are no joints crossing the stone modules. The relief shall be an average of $1\frac{1}{2}$ " deep and no greater than $2\frac{1}{2}$ " deep at any point. The desired appearance is as follows:

- 6. Form liners shall be made from high-strength elastomeric urethane and be removable without causing concrete surface damage or weakness in the substrate. Form release agents shall be non-staining, non-residual, non-reactive, and shall not contribute to the degradation of the form liner material
- 7. The following form liner manufacturers have been pre-approved to provide the listed pattern for the simulated limestone surface:
 - a. Custom Rock International, St. Paul, MN (Jim Rogers; 800-637-2447) #1104-R2 143/4" Random Cut Stone or #11016 16" Random Cut Stone
 - b. Milestones Incorporated, Hudson, WI (Paul Nasvik; 715-381-9660) #MS-1018 16" Weathered Limestone
 - c. Architectural Polymers, New Ringgold, PA (Rick Fasching; 610-824-3322) #893 14" Quarry Stone or #894 16" Quarry Stone

Other products will be considered, provided sufficient information is submitted 30-days prior to use to allow the Engineer to determine that products proposed are equivalent to those named.

- 8. Form liners shall be used in accordance with the manufacturer's recommendations, including, but not limited to, installation and removal methods, form release agents, cleaning procedures, inspection procedures, repair procedures, curing methods, concrete slump requirements, and consolidation methods to achieve the highest quality concrete appearance possible. Manufacturer recommendations shall not supplant requirements listed elsewhere in the Contract Documents without prior approval from the Engineer.
- 9. The finished exposed formed concrete surfaces shall be free of visible vertical seams, horizontal seams, and butt joint marks after removing the form liners. Grinding and chipping of finished formed surfaces shall be avoided.
- 10. The Contractor shall provide a full-size precast panel mockup containing the form liner surface. Upon receipt of comments from inspection of the mockup, adjustments or corrections shall be made where imperfections are found. If required, additional mockups shall be prepared when the initial mockup is found to be unsatisfactory.
- 11. All work and materials associated with form liners and mockups, including adjustments or corrections needed to address mockup comments and additional mockups, if required, will not be paid for separately but shall be included in the cost of Noise Abatement Wall, Ground Mounted.

NAME PLATE LOCATION

NOISE ABATEMENT WALL BUILT 202 BY STATE OF ILLINOIS F.A.I. RT. 39 SEC. (201-3)R & (4-1,5)R FROM STA. 69+11.46 TO STA. 87+20.69 STR. NO. 101-N7009

> NAME PLATE See Std. 515001

DESIGN SPECIFICATIONS

2020 AASHTO LRFD Bridge Design Specifications, 9th Edition

DESIGN LOADS

Wind Loads: Strength III or V: 35 psf Service I: 15 psf

350.0' VC Retained Earth: Equivalent Fluid Pressure: 55 pcf Sta. 81+05.00 . 831.88 Live Load Surcharge: 2 ft of additional fill Sta. 72+00.00 Elev. 865.63 Sta. 74+00.00 Elev. 858.39 ta. 76+00.00 lev. 850.89 ta. 78+00.00 80+00.00 . 836.12 VPI Sta. 82+80.00 Elev. 825.31

(Along & Ramp AD)

PROFILE GRADE

DESIGN STRESSES

FIELD UNITS

f'c = 4,000 psi

DATA TABLE

Face of NAW

858.19

863.79

864.43

864.04

863.13

862.20

861.01

859.65

858.20

856 31

854.26

852.06

849.93

847.74

845.65

843.61

842.37

840.91

83965

839.65

839.77

840 47

840.58

839.54

837.51

835.85

831.96

830.32

828.57

826.59

824.79

823.53

823.47

823.03

822.33

821.29

820.01

818.60

817.52

816.16

815.10

814.70

Offset to

î Wall (ft.)

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50.00

50 47

53.12

55.78

58.43

61.09

64.52

68.17

71.83

75.48

77.00

Station

69+11.46

69+50.00

69+65.61

70+00.00

70+50.00

71+00.00

71+50.00

72+00.00

72+50.00

73+00.00

73+50.00

74+00.00

74+50.00

75+00.00

75+50.00

76+00.00

76+50.00

77+00.00

77+50.00

77+51.27

78+00.00

78+50.00

78+73.98

79+00.00

79+50.00

80+00.00

80+50.00

81+00.00

81+50.00

82+00.00

82+50.00

82+91.14

83+00.00

83+50.00

84+00.00

84+50.00

85+00.00

85+50.00

86+00.00

86+50.00

87+00.00

87+20.69

Theor. Top

of NAW Elev

878.19

883.79

884.43

884.04

883.13

882.20

881.01

879.65

878.20

876.31

874.26

872.06

869.93

867.74

865.65

863.61

862.37

860.91

859.65

859.65

859.77

860 47

860.58

859.54

857 51

855.85

852.96

851.32

849.57

847.59

845.79

844.53

844.47

844.03

843.33

842.29

841.51

840.10

838.52

837.16

836.10

835.67

Finished Grade Finished Grade Elev. at Front Elev. at Back

857.19

862.78

863.43

863.04

862.13

861.20

860.01

858.65

857.20

855.31

853.26

851.06

848 93

846.74

844.65

842.61

841.37

839.91

838 65

838.65

838.77

839 47

839.58

838.54

836 51

834.85

832.96

831.32

829.57

827.59

825.79

824.53

824.47

824.03

823.33

822.29

821.51

820.10

818.52

817.16

816.10

815.67

Bottom of

NAW Elev.

856.52

862.11

862.76

862.37

861.46

860.53

859.34

857.98

856.53

85464

852.59

850.39

848.26

846.07

843.98

841.94

840.70

839.24

837 98

837.98

838.10

838 80

838.91

837.87

835.84

834.18

831.29

829.65

827.90

825.92

824.12

822.86

822.80

822.36

821.66

820.62

819.34

817.93

816.85

815.49

814.43

814.03

Retained

Height (ft.)

1.67 1.68

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1 67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1 67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

1.67

2.17

2.17

1.67

1.67

1.67

1.64

fy = 60,000 psi (Reinforcement) fy = 50,000 psi (Struct. Steel, M270 Grade 50, posts)

fy = 36,000 psi (Struct. Steel, M270 Grade 36, all

other structural steel)

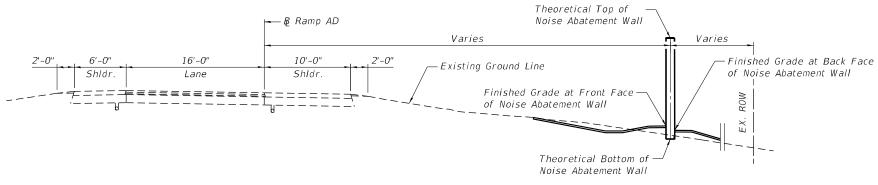
PRECAST UNITS

 $f'c = 4,500 \ psi$

fy = 60,000 psi (Reinforcement)

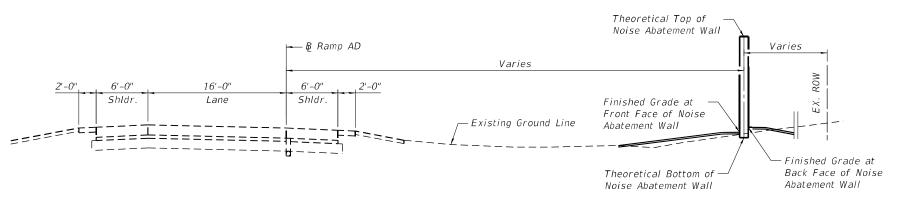
fy = 65,000 psi (Welded Wire Reinforcement)

TOTAL BILL OF MATERIAL

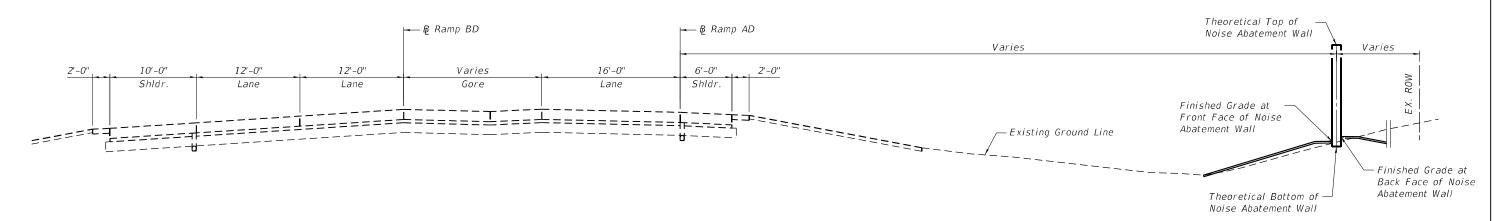

ITEM	UNIT	TOTAL
Name Plates	Each	1
Noise Abatement Wall, Ground Mounted	Sq. Ft.	37,435

NOISE REDUCTION DATA TABLE

	Noise Wall Structure Number	Face	From Sta.	To Sta.	Noise Reduction Coefficient	Comments
	101 N7000	Ramp AD Face	69+11.46	87+20.69	Reflective	-
١	101-11/009	Residential Face	69+11.46	87+20.69	Reflective	-


QUIGG ENGINEERING INC

F.A.I. RTE	SEC.	TION		COUNTY	TOTAL SHEETS	SHEE NO.			
39	(201-3)R 8	₹ (4 - 1,5)F	₹	WINNEBAGO	1685 798				
				CONTRAC	T NO. 64	IC24			
		ILLINOIS	D PROJECT						


TYPICAL SECTION THRU WALL

(Sta. 69+11.46 to Sta. 80+00.00) (Wall stations are measured along ₧ Ramp AD)

TYPICAL SECTION THRU WALL

(Sta. 80+00.00 to Sta. 83+34.57) (Wall stations are measured along № Ramp AD)

TYPICAL SECTION THRU WALL

(Sta. 83+34.57 to Sta. 87+20.69) (Wall stations are measured along ₯ Ramp AD)

SUICC ENGINEEDING I	

	USER NAME = zdavidson	DESIGNED - ZLD	REVISED -
	101W7009-64C24-004-Typical Sections.dgn	CHECKED - KWB	REVISED -
	PLOT SCALE =	DRAWN - ZLD	REVISED -
С	PLOT DATE = 2/10/2025	CHECKED - MDC	REVISED -

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

TYPICAL SECTIONS		SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
STRUCTURE NO. 101-N7009	F.A.I. RTE. 39	(201-3)R & (4-1,5)F	₹	WINNEBAGO	1685	799
3110C101C NO. 101-11/009		CONTRACT N				
SHEET 4 OF 9 SHEETS		ILLINOIS	FED. All	D PROJECT		

Page <u>1</u> of <u>1</u>

P92-111-06 - Noise Wall from Linden Road S, 0.35

ROUTE FAI 39	_ DE	SCRI	PTION			o - Noise Wall from Eir mi.	ideli Noad 5, 0.		OGGI	ED BY	W. (Sarza
SECTION(201-3)K		_ ı	OCAT	ION .	Chemy	Valley, NE 1/4 9						
COUNTY Winnabago DRILLING METHOD Hollow Stem Auger HAMMER TYPE CME-45 Automatic												
STRUCT. NO. Station B-1	<u> </u>	D E P T H	B L O W s	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.		ft	D E P T H	B L O W s	Grand (Fig.)	M 0 I s I
MEDIUM brown SILTY CLAY	_ "	(,	(-)	,,		STIFF light brown C	LAY LOAM		17	7	1.9	18
LOAM		_		0.8 P	18	TILL (continued) End of Boring		848.6		11	В	
VERY STFF light brown SITLY CLAY LOAM	887.6		2 3 7	2.3 B	15	End of Borng						
STIFF light brown CLAY LOAM	865.1	5	3 3 5	1.3 P	16				-25			
STIFF light brown CLAY LOAM with SAND	862.6	_	2 5 6	1.7 B	19							
STIFF light brown SANDY LOAM with GRAVEL	860.1	-10	2 10 9	1.7 B	16				-30			
STIFF light brown SANDY LOAM	857.6		3 10 12	1.4 B	16							
STIFF light brown SANDY CLAY LOAM with DRY SANDY GRAVEL LENS	855.1	-15	4 8 7	1.2 B	16							
VERY STIFF gray CLAY LOAM	852.6	_	3 6 10	2.7 B	18				_			
	850.1	-20	4						-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

STIFF brown SANDY CLAY LOAM

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 5/22/23

	District of regimeyo										Date	5/2	2/23			
ROUTE	FAI 39	_ DESC	CRII	PTION	P92	-111-0	8 - Noise Wall from Lind mi.	ien Road S, U.	LC	OGGE	D BY	W. 0	sarza .			
SECTION _	(201-3)K		L	OCAT	ION _	Cherry	Valley, NE 1/4 9									
COUNTY	Winnabago DR	ULLING N	MET	HOD	-	Hollow Stem Auger HAMMER TYP					CME-45 Automatic					
Station)		D E P T	В L О W	U C S	M 0 - s	Surface Water Elev. Stream Bed Elev.		ft ft	D E P T	ВГОМ	U C S	M O I S			
Station	. B-2 71+00 23.0 ft RT		нΙ	s	Qu	T	Groundwater Elev.: First Encounter		ft	н	s	Qu	T			
Offset Ground Su	23.0 ft R1 rface Elev. 866.57	_ ft ((ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs.		ft ft	(ft)	(/6")	(tsf)	(%)			
MEDIUM bro	own LOAM	_			0.8 P	15	VERY STIFF gray SA LOAM with FINE SAN (continued)	NDY CLAY ID LENS	845.6		10 16	2.3 S	11			
MEDILIM top	WEATHERED	864.6	4	15			End of Boring			\dashv						
LIMESTONE		_	4	11												
MEDIUM tar LIMESTONE	n WEATHERED E FILL	862.1	-5	6 7		6				-25 -25 -						
STIFF light to	prown SANDY CLAY	859.6 _		6 5 6	1.3 B	12										
VERY STIFF CLAY LOAM	Flight brown SANDY	857.1	-10	6 9 14	2.7 B	15				-30						
VERY STIFF CLAY LOAM	Flight brown SANDY	854.6 _ _		5 7 10	3.9 B	13										
VERY STIFF CLAY LOAM	Flight brown SANDY	852.1 _	-15	5 8 13	2.9 B	14				-35						
		849.6	\dashv							\dashv						

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

QUIGG ENGINEERING INC

 USER NAME
 =
 zdavidson
 DESIGNED
 ZLD
 REVISED

 101W7009-64C24-005-Boring Logs.dgn
 CHECKED
 KWB
 REVISED

 PLOT SCALE
 =
 DRAWN
 ZLD
 REVISED

 PLOT DATE
 =
 2/10/2025
 CHECKED
 MDC
 REVISED

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION