

Abbreviated Structure Geotechnical Report

Original Report Date: 02-15-2022	Proposed SN:	046-0162	Route:	FAP 41 (IL 17)
Revised Date: 09-15-2023	Existing SN:	046-0031	Section:	(13)BR-2
Geotechnical Engineer: Rubino Engir	neering, Inc. (G2 ⁻	1.171)	County:	Kankakee
Structural Engineer: DLZ Corporation	1		Contract:	#66L10

Indicate the proposed structure type, substructure types, and foundation locations (attach plan and elevation drawing): The proposed bridge configuration consists of a 100-foot, single-span, PPC I Beam bridge structure. The new bridge will utilize IL36-3838 PPC I Beams on integral abutments. The current TSL drawing is attached.

Discuss the existing boring data, existing plans foundation information, new subsurface exploration and need for any additional exploration to be provided with SGR Technical Memo (attach all data and subsurface profile plot): The plans indicate that the existing structure consists of a three-span concrete superstructure supported by stub concrete abutments and concrete wall piers. In September of 2021, two soil borings were taken at the abutments. The native soils encountered in the borings beneath the topsoil and undocumented fill are generally very soft to hard, black and gray silty clay, silt, and silty clay loam. Copies of these logs are attached. Need for additional exploration is not anticipated.

Provide the location and maximum height of any new soil fill or magnitude of footing bearing pressure. Estimate the amount and time of the expected settlement. Indicate if further testing, analysis, and/or ground improvement/treatment is necessary: There is no fill proposed for this profile and, therefore, minimal settlement is anticipated under the proposed embankments. No additional testing or treatment for settlement is anticipated.

Identify any new cuts or fill slope angles and heights. Estimate the factor of safety against slope failure. Indicate if further testing, analysis or ground improvement/treatment is necessary: The new profile of the bridge has approximately a 4.5-foot cut to accommodate the proposed Stone Riprap slope design beneath the bridge span. The proposed embankment slope below the bridge will be 1:2. In the slope stability analyses, the drained (longterm construction) conditions control over the undrained (short-term construction) conditions. Rubino used the slope stability program Stedwin Version 2.90 to run the Modified Bishop Method. A factor of safety of 2.20 was achieved in the drained condition and a factor of safety of 4.51 was achieved in the undrained condition. No additional analyses or treatment is recommended.

Indicate at each substructure, the 100-year and 200-year total scour depths in the Hydraulics report, the nongranular scour depth reduction, the proposed ground surface, and the recommended foundation design scour elevations: The 100-year and 200-year scour depths are 0 feet for the W. Abutment and the E. Abutment. The proposed ground surface elevations at the West and East Abutments are approximately 609.9 feet and 609.4 feet, respectively. The recommended foundation design scour elevation at the West and East Abutments are 609.9 feet and 609.4 feet, respectively. The countermeasure for scour proposed in this design is Stone RipRap for embankment protection.

Determining the seismic soil site class, the seismic performance zone, the 0.2 and 1.0 second design spectral accelerations and indicate if that the soils are liquefiable: The seismic data is as follows: Seismic Soil Site Class = C; Seismic Performance Zone = SPZ 1; Design Spectral Acceleration at 0.2 sec. (SDS) = 0.129; Design Specteral Acceleration at 1.0 sec. (SD1) = 0.074. Liquefaction is not applicable because the SPZ =1.

Confirm feasibility of the proposed foundation or wall type and provide design parameters. Attach a pile design table indicating feasible pile types, various nominal required bearings, factored resistances available and corresponding estimated lengths at locations where piles will be used. Provide factored bearing resistance and unit sliding resistance at various elevations and confirm no ground improvement/treatment is necessary where spread footings are proposed. Estimated top of rock elevations as well as preliminary factored unit side and tip resistance values shall be indicated when drilled shafts are proposed: The proposed foundation type (driven piles) is feasible. IDOT Static Method of Estimating Pile Length spreadsheet was used to calculate estimated pile lengths. The refusal was defined as apparent bedrock and projected deeper in the pile spreadsheets in order to obtain the capacities listed herein. Revised loads were provided by Quigg Engineering on September 13, 2023. Quigg Engineering requested Pile Type & Lengths for 100% of Strength-I and Extreme Event-I loads and also 120% of Strength-I and Extreme Event-I loads. Ground surface elevations, 611.9 feet (W. Abutment) and 609.4 feet (E. Abutment), and the pile cut off elevations, 611.9 feet (W. Abutment) and 611.4 feet (E. Abutment), were obtained from the TS&L dated December 12, 2022. Pile Design Tables are included in the attached supplemental information. Integral abutments are feasible for this project. See the attached supplemental information for details

Hard driving is expected due to very stiff soil layers and possible limestone bedrock was encountered at an estimated elevation of 565 feet, therefore H-piles with pile shoes are recommended. Please reference the included pile tables for recommended pile sizes and estimated lengths.

Rubino recommends the utilization of at least one test pile in either abutment in order to obtain site specific pile bearing and length data. This data can be used, in addition to the boring information, to supplement the estimated plan length. This recommendation has been made in accordance with the 2012 IDOT Bridge Manual Section 3.10.1.7.

Calculate the estimated water surface elevation and determine the need for cofferdams (type 1 or 2), and seal coat: The estimated water surface elevation (E.W.S.E.) is 602.6 feet. The bottom elevation of the proposed slope embankment is approximately 598.3 feet. Therefore, a Type 1 cofferdam will be needed for this project. This needs to be checked and confirmed by the designer.

Assess the need for sheeting or soil retention or temporary construction slope and provide recommendation for other construction concerns: The proposed plans indicate that traffic will be maintained utilizing staged construction by removing the existing bridge and constructing the proposed bridge in two stages. Stage I will be the South side of the bridge and Stage II will be the North side of the bridge. Temporary sheet piling is proposed along the Stage Construction/Removal lines in the TSL.

Rubino Report No: G21.171 REV1

Evont / Limit	Decian S	COUR ELON	(ations (ft)
LVent / Linnt	Design	EUUI LIEV	
State	W. Abut.	E. Abut.	Item 113
Q100	±609.9	±609.4	
Q200	±609.9	±609.4	0
Design	± 609.9	±609.4	0
Check	±609.9	±609.4	

WATERWAY INFORMATION

			Еx	isting 0	vertoppi	ng Elev.	616.49	@ Sta. 8	50+43
Drainage Are	ea = 26	.7 sq. n	ni. Pr	oposed	Overtopp	oing Elev	. 617.09	@ Sta.	850+44
Flood	Freq.	Q	Openi	ng Ft²	Nat.	Head	– Ft.	Headwa	ter El.
11000	Yr.	C.F.S.	Exist.	Prop.	H.W.E.	Exist.	Prop.	Exist.	Prop.
	10	1,230	269	439	608.3	0.0	0.0	608.3	608.3
Design	50	1,820	353	565	609.9	0.0	0.0	609.9	609.9
Base	100	2,090	376	608	610.3	0.2	0.1	610.5	610.4
Overtopping	200	2,350	394	633	610.6	0.3	0.2	610.9	610.8
Max. Calc.	500	2,700	413	659	610.9	0.4	0.3	611.3	611.2

10-Year Velocity through Existing Structure = 4.6 fps 10-Year Velocity through Proposed Structure = 2.8 fps

									,
	USER NAME = rwhiteside	DESIGNED - RPW	REVISED -		DETAILS	F.A.P. RTE	SECTION	COUNTY	TOTAL SHEET
	0460162-66L10-TSL-002.dgn	CHECKED - ZLD	REVISED -	STATE OF ILLINOIS		41	13(BR)-2	KANKAKEE	
	PLOT SCALE = 20:0.0000 ':" / in.	DRAWN - ZLD	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 046-0162			CONTRA	ACT NO. 66L10
QUIGG ENGINEERING INC	PLOT DATE = 12/12/2022	CHECKED - MDC	REVISED -		SHEET 2 OF 2 SHEETS		ILLINOIS FED. A	D PROJECT	
/12/2022 8:25:21 AM									

Page 5 of 20

Rubino Report No: G21.171 REV1

62	520	
	BSB-02 (SE) 850+73	Quad.) 3
61	515 w=25%	2,3,6
	Qu=0.8 tsf	N=9
	w=21% Qu=2.0 tsf	3.4.6 N=10
61	510 w=23%	11,13,13
	Qu=2.3 tsf	N=26
	w=22%	13,7,7 N=14
60	605	2,3,4
	Qu=1.6 tsf	N=7
	w=15% Qu=3.6 tsf	3,5,8 N=13
60	\$600 w=12%	11,12,21
	Qu=2.5 tst	N=33
	w=9% Qu=7.9 tsf	13,14,17 N=31
59	595 	7,10,13 N=23
	W=13% Qu=10.5 tsf	6,12,16 N=28
55	w=11% Qu=6.2 tsf	13.20.22 N=42
	w=12%	15.16.25
58	585	N=41
eva	Qu=3.0 tsf	33,28,20
山 58	580	N=48
	w=15%	9,14,20
57	575	N=34
	w=13%	34,30,38
57	570	N-00
	w=12%	20,14,31 N=45
56	565	

Rubino Engineering, Inc. 425 Shepard Drive Elgin, IL 60123 Telephone: 847-931-1555 Fax: 847-931-1560

Page <u>1</u> of <u>2</u>

Date 9/29/21

ROUTE FAP 41 (IL 17) DESCRIPTION IL 17 over Horse Creek, 0.7 mi. E of Union Hill Rd LOGGED BY M.K.

SECTION ________ (13)BR-2 ______ LOCATION _______ SW 1/4

COUNTY Kankakee	DRILLING	6 MET	HOD		Но	llow Stem Auger		TYPE		Auto	omatic	
STRUCT. NO. 046-0031 Station 849-	Existing +99	D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	602.60 598.30	_ ft _ ft	D E P	B L O	U C S	M O I
BORING NO. BSB-01 (N) Station 849+ Offset 27.7	<u>W Quad.)</u> · <u>29</u> /I t	T H	W S	Qu	S T	Groundwater Elev.: First Encounter	<u>N/A</u>	_ ft ft	T H	W S	Qu	S T
Ground Surface Elev.	<u>615.88</u> ft	(ft)	(/6'')	(tsf)	(%)	After <u>18</u> Hrs.	13.5	_ft ⊻	(ft)	(/6'')	(tsf)	(%)
Approximately 8 inches of TOPS	OIL 615.22					Very stiff to hard, gray SI trace to little sand and gr	LTY CLAY, avel (continued)					
FILL: dark brown to black SILTY to SILTY CLAY LOAM	CLAY		2	2.5						12	4.5	
			3	2.5 P	12				_	13	4.5 P	15
			2						_	17		
								502 38				
	611.88		1			Very stiff, SILTY LOAM,	trace sand and	002.00		10	4.5	10
FILL: black SANDY LOAM			2		20	gravei			_	13	Р	10
		5	1						<u>-25</u>	15		
	609.88							589.88				
Very soft to soft, black SILTY CL trace sand and gravel	LAY,		0	0.3	33	Very stiff to hard, gray SI trace sand and gravel	LTY CLAY,		_	10	5.5	10
A-7-6			0	В						13 21	В	
11 - 52												
PL = 27			0	0.3 P	30					12 13	4.5 P	9
PI = 26		-10	1	·					-30	16		
									_			
			3									
			2		14							
			1						_			
	602.38	$\overline{\nabla}$										
Stiff, gray SILTY CLAY, trace to	little	- <u>+</u>	3	2.0	14					12		15
			4	В						13		10
		- <u>15</u>	0						- <u>35</u>	15		
	599.88											
Very stiff to hard, gray SILTY CL trace to little sand and gravel	LAY,		7	1.3	14				_			
			20									
			19	4.5						10	15	
			20	P	10					13	ч.5 Р	13
		-20	23						-40	17		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page <u>2</u> of <u>2</u>

Date 9/29/21

ROUTE	FAP 41 (IL 17)	DE:	SCRI	PTION	<u>IL 1</u>	7 over	Horse Creek, 0.7 mi. E	of Union Hill F	<u>Rd</u> LOG	GED BY	M.K.
SECTION	(13)BR-2		_ L	OCAT		SW 1/	4				
COUNTY	Kankakee D	RILLING	MET	HOD		Hol	low Stem Auger	HAMMER 1	YPE	Automa	ıtic
STRUCT. NO. Station	046-0031 Existin 849+99	ug	D E P T	B L O W	U C S	M O I S	Surface Water Elev. Stream Bed Elev.	602.60 598.30	_ft _ft		
Station	849+29		н	S	Qu	Т	First Encounter	N/A	ft		
Offset Ground Surfa	<u>27.7Lt</u> ace Flev. 615.88	3 ft	(ft)	(/6'')	(tsf)	(%)	Upon Completion	<u>N/A</u> 13.5	_ft ff ⊽		
Very stiff to hard trace sand and g	, gray SILTY CLAY, ravel (continued)	<u> </u>						10.0	<u> </u>		
				48 31 22	4.5 P						
			<u>45</u> 	22							
			-50	8 9 16	1.6 B						
Possible WEATH Auger and spor approximately e existing grade bedrock. End of boring at inches below exis	IERED LIMESTONE on refusal at 50 feet 10 inches belo due to possible limest approximately 50 feet 10 sting grade.			50/2" /							

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page <u>1</u> of <u>2</u>

ENGINEERING INC. Date 9/30/21 ROUTE FAP 41 (IL 17) DESCRIPTION IL 17 over Horse Creek, 0.7 mi. E of Union Hill Rd LOGGED BY M.K. (13)BR-2 **LOCATION** SW 1/4 SECTION COUNTY Kankakee **DRILLING METHOD** Hollow Stem Auger HAMMER TYPE Automatic D В U Μ D В U Μ STRUCT. NO. 046-0031 Existing Surface Water Elev. 602.60 ft Ε L С 0 Е L С Ο 849+99 Station Stream Bed Elev. 598.30 ft Ρ S Ρ S Ο L Ο L Т W S т W S BORING NO. BSB-02 (SE Quad.) Groundwater Elev.: н S т т Qu н S Qu Station _____ 850+73 First Encounter <u>16</u> ft **T** 24.5Rt Upon Completion <u>22.5_</u> ft ∑ Offset (%) (ft) (/6") (%) (ft) (/6") (tsf) (tsf) Ground Surface Elev. 615.27 ft After Hrs. N/A ft Approximately 8 inches of TOPSOIL Very stiff to hard, gray CLAY, trace to 614.61 little sand and gravel (continued) FILL: dark brown silty clay to silty clay loam, trace to little sand and gravel 0.8 2 7 5.8 25 12 В S 3 10 6 13 3 2.0 6 10.5 21 13 В S 4 12 6 16 -5 -25 609.27 Stiff to very stiff, dark brown to black SILTY CLAY LOAM 11 2.3 6.2 13 23 11 Р s 13 20 13 22 586.77 Hard, gray SILTY CLAY, little sand and 15 13 22 gravel 12 7 16 7 25 -10 -30 604.27 Medium stiff, brown and gray SILTY 2 1.6 CLAY, trace sand and gravel 23 3 в 4 601.77 Stiff, gray SILT, trace sand and gravel 601.27 3 3.6 33 3.0 15 Stiff, gray CLAY, trace sand and gravel 5 В 28 В 8 20 -15 -35 599.27 🔻 Hard, gray SILTY CLAY LOAM, little 11 2.5 sand and gravel 12 s 12 21 596.77 576.77 Very stiff to hard, gray CLAY, trace to Very stiff to very hard, gray CLAY LOAM, 7.9 13 9 9 15 trace gravel and rock chips little sand and gravel s 14 14 -20 17 -40 20

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page <u>2</u> of <u>2</u>

Date 9/30/21

ROUTE	FAP 41 (IL 17)	DE	SCRI	PTION	<u>IL 1</u>	7 over	Horse Creek, 0.7 mi. E	of Union Hill F	<u>log</u>	GED BY	M.K.
SECTION	(13)BR-2		_ L	OCAT	ION _	SW 1/	4				
	Kankakee DI	RILLING	MET	HOD		Ho	low Stem Auger	_ HAMMER 1	YPE	Automa	ıtic
STRUCT. NO. Station	046-0031 Existing 849+99	<u>g</u>	D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	602.60 598.30	ft ft		
BORING NO Station Offset Ground Surface	BSB-02 (SE Quad 850+73 24.5Rt 24.5Rt 615.27	<u>.)</u> ff	H (ft)	W S (/6'')	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter Upon Completion	16 22.5 N/A	ft ⊻ ft ⊻		
Very stiff to very h trace gravel and ro	ard, gray CLAY LOAM, ock chips (<i>continued</i>)	II			((0))	(70)		N/A	<u>. II.</u>		
			45	34 30 38		13					
Dense, light gray gravel and rock ch	SANDY LOAM, some iips	566.77		20 14 31		12					
Auger and spoor approximately 50 grade due to pos bedrock. End of boring at a below existing gra	n refusal at D feet below existing sible limestone pproximately 50 feet de.			50/0"							

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

G21.171 IDOT WO#8

y:\rubino eng projects\2021 geo projects\g21.171 ptb 197-022 wo 8 il 17 over horse creek sgr for district 3\report\slope stability\g21.171 slope stability\g21.171 slope stability\g21.171 slope stability\g21.171 slope stability \g21.171 slope stab

G21.171 IDOT WO#8

y:\rubino eng projects\2021 geo projects\221.171 ptb 197-022 wo 8 ii 17 over horse creek sgr for district 3\report\slope stability\g21.171 slope stability mk.pl2 Run By: Rubino Engineering, Inc. 1/25/2022 11:28AM

SEISMIC SITE CLASS DETERMINATION

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified on 12/10/10

PROJECT TITLE==== G21.171 REV 1 IL17 over Horse Creek

Substructu	re 1						Substru
Base of Subst	ruct. Elev. (or ground s	urf for	bents	609.9	ft.	Base of S
Pile or Shaft D)ia.				12	inches	Pile or Sh
Boring Numbe	er				BSB-01		Boring Nu
Top of Boring	Elev.				615.88	ft.	Top of Bo
Approximate F	ixity Elev.				603.9	ft.	Approxim
Individual Sit	e Class Def	inition:					Individua
N (bar):	40	(Blows/ft.)	Soil	Site Cl	ass D		N (I
N _{ch} (bar):	NA	(Blows/ft.)	NA	014			N _{ch} (t
s _u (bar).	4.36	(KST)	501	Site Ci	ass C <c< td=""><td>ontrois</td><td>S_u (I</td></c<>	ontrois	S _u (I
Seismic	Bot. Of				Layer		Seism
Soil Column	Sample	Sample			Description		Soil Colu
Depth	Elevation	Thick.	Ν	Qu	Boundary	_	Depth
(ft)		(ft.)		(tsf)		, I	(ft)
	611.9	4.00	5	2.50	В		
	609.9	2.00	3		В		
	607.4	2.50	1	0.25			
	604.9	2.50	1	0.25	В		
1.5	602.4 500.0	2.50	10	2.00	В		
4.0	599.9	2.50	10	2.00			
0.5	597.4	2.50	20 /3	1.20			
11.5	592.4	2.50	30	4.50	B		
14.0	589.9	2.50	28	4.50	B		
16.5	587.4	2.50	34	5.50			
21.5	582.4	5.00	29	4.50			
26.5	577.4	5.00	28				
31.5	572.4	5.00	30	4.50			
36.5	567.4	5.00	54	4.50			
38.7	565.2	2.20	25	1.60	В		
88.0	515.9	49.30	100	5.00	R		:
						1	
							B

ostructu	re 2					
e of Subst	ruct. Elev. (or ground s	urf for	bents	609.4	ft.
or Shaft D)ia.				12	inches
ng Numbe	r				BSB-02	
of Boring	Elev.				615.27	ft.
roximate F	ixity Elev.				603.4	ft.
vidual Sit	e Class Def	inition:				
N (bar):	50	(Blows/ft.)	Soil	Site Cl	ass D	
N _{ch} (bar):	83	(Blows/ft.)	Soil	Site Cl	ass C <co< td=""><td>ontrols</td></co<>	ontrols
s _u (bar):	4.25	(ksf)	Soil	Site Cl	ass C	
eismic	Bot Of				laver	
Column	Sample	Sample			Description	
Jonth	Elevation	Thick	N	0	Boundary	
/f+\	Lievation	/#+)		(tof)	Doundary	
(11)		(11.)		(151)		1
	611.8	3.50	9	0.80		
	609.3	2.50	10	2.00	В	
	606.8	2.50	26	2.30		
1.0	604.3	2.50	14	1.00	В	
1.0	601.8	2.50	12	1.60	В	
2.1	601.3	0.50	13	0.00	В	
4.1	599.3	2.00	13	3.60	В	
0.0	590.0	2.50	33	2.50	D	
9.1	594.3	2.50	31	7.90		
11.0	591.0	2.50	20	0.00		
14.1	509.5	2.50	42	9.90	P	
10.0	581.8	2.50	42	0.20	D	
21.0	576.0	5.00	41	2 00	P	
20.0	571.8	5.00	40	3.00	D	
26.6	571.0	5.00	60		P	
38.1	565.3	1.50	45		B	
88.1	515.3	50.00	100	5.00	P	
00.1	010.0	30.00	100	5.00	IX.	
				_		

Substructu	ire 3					1	Substructu	re 4
Base of Subst	ruct Elev (or around s	urf for	bents		ft	Base of Subst	ruct Ele
Pile or Shaft)ia.	9.0und a		20110		inches	Pile or Shaft)ia.
Boring Numbe	er						Boring Numbe	er
Top of Borina	Elev.					ft.	Top of Borina	Elev.
Annewimeta	Tarita Class						Annevimete [
Approximate r		Inition					Approximate P	
Individual Sit	e Class Dei	inition:					Individual Sit	e Class
N (bar):		(Blows/ft.)	NA				N (bar):	
N _{ch} (bar):		(Blows/ft.)	NA				N _{ch} (bar):	
s _u (bar):		(KST)	NA				s _u (bar).	
Seismic	Bot. Of				Layer		Seismic	Bot.
Soil Column	Sample	Sample			Description		Soil Column	Samp
Depth	Elevation	Thick.	Ν	Qu	Boundary		Depth	Elevat
(ft)		(ft.)		(tsf)			(ft)	
			_					
			_					
				-				

Substructu	re 4					_
Base of Subst	ruct. Elev. (or ground s	urf for	bents)	ft.
Pile or Shaft D)ia.					inch
Boring Numbe	r					
Top of Boring	Elev.					ft.
rop or boning	21011					
Approximate F	ixity Elev.					ft.
Individual Site	e Class Def	inition:				
N (bar):		(Blows/ft)	NΛ			
N (bar):		(Diows/it.)				
N _{ch} (bar).		(BIOWS/IL.)	IN/A			
s _u (bar):		(KST)	NA			
.						
Seismic	Bot. Of				Layer	
Soil Column	Sample	Sample			Description	
Depth	Elevation	Thick.	Ν	Qu	Boundary	
(ft)		(ft.)		(tsf)		
		. ,				1
			_			

Global Site Class Definition: Substructures 1 through 2

N (bar):	45 ((Blows/ft.)	Soil Site Class D
N _{ch} (bar):	69 ((Blows/ft.)	Soil Site Class C <controls< td=""></controls<>
s _u (bar):	4.31 ((ksf)	Soil Site Class C

Integral Abutment Feasibility

Integral abutments are the preferred end bent type due to elimination of the joints in the bridge decks, decreasing maintenance costs and increasing service life. The proposed structure length typically fits in the range of applicability for integral abutments; the soil at critical depth of 10 feet below the abutments is very soft to stiff. The bottom abutment elevation is 609.9 feet at the West abutment and 609.4 feet at the East abutment. Critical depth for integral abutment analysis is 10 feet below the bottom of the abutment elevation.

Abutment	Soil Strengths at Critical Depth	Estimated Expansion Length*
West Abutment	Qu between 0.3 – 2.0 tsf	62 feet
East Abutment	Qu between 1.6 – 3.6 tsf	38 feet

*Piles with an expansion length greater than this are suitable for consideration

The IDOT BBS 145 spreadsheet for Integral Abutment Feasibility Analysis shows that the integral abutment option is feasible for both abutments. See the attached spreadsheet for more details.

Abutment Pile Discussion

Metal shell piles and H-piles were both considered for integral abutment applications; however, H-piles are recommended over metal shell piles due to possible bedrock encountered in both borings near elevation 565 feet. Tables of estimated pile lengths are attached for 100% proposed loading and 120% of proposed loading for the Strength I case and the Extreme Event I case at each abutment. If the anticipated load per pile in the 100% cases was acceptable but the 120% loads exceeded the maximum factored resistance available for a particular pile type, the pile was still included as an option and is noted on the attached Pile Design Tables. Pile shoes are recommended for H-piles in very stiff or dense soils. The proposed pile locations need to be checked for conflict with the existing piling. Existing piles should be cut off to an appropriate elevation to not interfere with the new abutment and pile system.

Laboratory Testing

An Atterberg Limit test (AASHTO T89/AASHTO T90) was run on boring BSB-01 at approximately 8 $\frac{1}{2}$ feet below existing grade (607.38 feet) where very soft black silty clay was observed. The result of the Atterberg showed that the soil at this depth is classified as an A-7-6 material. Two Hydrometer tests (AASHTO T88) were run on boring BSB-01. One hydrometer was done at 6 feet below existing grade (609.88, near scour depth) and one at approximately 23 $\frac{1}{2}$ below existing grade (592.38). See the attached lab results and boring logs for more details.

Modified 10/30/17

GENERAL DATA									
STRUCTURE NUME	BER=======		PTB 197-022		TOTAL STRUCTUR	E LENGTH=====		99.92	FT
STRUCTURE TYPE			SIMPLE-SPAN						
STRUCTURE SKEW	/=========		0	DEGREES					
SUPER. DATA IN R	EFERENCE TO SU	B. DATA ====	ABUT 1	1					
	SUPERSTRUC	TURE DATA (END	OR MAIN SPAN)			SUPERSTRU	JCTURE DATA (AD	JACENT SPAN)	
BEAM TYPE ====			CONCRETE BEAM						
CONCRETE BEAM			IL36-3838						
			0.5	KCI					KCI
BEAM FC =====			8.5	KSI					K51
BEAM SPACING PE	RP. TO CL ====		6.50	FT	BEAM SPACING PE	RP. TO CL ====		•	FT
SLAB THICKNESS			8.00	IN					
SLAB FC =====			4.00	K51					
		ABUTMENT #1 DA	TA				ABUTMENT #2 DA	TA	
ABUTMENT NAME			N.W. Quad	_	ABUTMENT NAME			S.E. Quad	
ABUTMENT REFER	ENCE BORING ==		BSB-1	ET	ABUTMENT REFER	ENCE BORING==:	=======	BSB-2	ET.
ESTIMATED NUMB	ER OF PILES AT A	BUT. ======	14		ESTIMATED NUME	BER OF PILES AT A	BUT.======	14	
PILE SPACING PER	P. TO CL =====		: 3	FT	PILE SPACING PER	RP. TO CL =====		:3	FT
501	L DATA FOR 10	FT RENEATH BOT	TOM OF ABUTMENT	<i>#</i> 1	50	TI DATA FOR 10	FT BENEATH BOT	TOM OF ABUTMENT	#2
BOT. OF	DATA TON 10	UNCONFINED	N	" - Qu	BOT. OF		UNCONFINED	N	" Qu
LAYER	LAYER	COMPRESSIVE	S.P.T.	EQUIV. FOR	LAYER	LAYER	COMPRESSIVE	S.P.T.	EQUIV. FOR
ELEV.	THICKNESS	STRENGTH	VALUE	N VALUE	ELEV.	THICKNESS	STRENGTH	VALUE	N VALUE
(FT)	(FT)	(TSF)	(BLOWS/12 IN.)	(TSF)	(FT)	(FT)	(TSF)	(BLOWS/12 IN.)	(TSF)
607.40	2.50	0.3			606.90	2.50	2.3		
604.90	2.50	0.3			604.40	2.50		14	2.7
602.40	2.50	2.0	3	1.5	601.90	2.50	1.6		
599.90	2.50	2.0			599.40	2.50	3.0		
	10.00	FT = TOTAL DEPTH	I ENTERED			10.00	FT = TOTAL DEPTH	ENTERED	
WEIGHTED AVERA	GE Ou FOR ABUT	MENT #1======	1.03	TSF	WEIGHTED AVERA	AGE Ou FOR ABUT	MENT #2======	- 2.54	TSF
PILE STIFFNESS M		ITMENT #1			PILE STIFFNESS M	10DIFIER FOR ABI	ITMENT #2		
= 1/(1.45-[0.3*	1.03])======	=============	.88		= 1/(1.45 - [0.3])	*2.54])======	=============	1.46	
DISTANCE TO C		FNESS FROM ABUIT	MENI #1 = $[0.88*14]$	*0+1.46*14*99.92]	/[0.88*14+1.46*14]=		62.38	FI	
DISTANCE TO C	ENTROID OF STIF	FNESS FROM ABUIT	MENT #2 = [1.46*14'	*0+0.88*14*99.92]	/[1.46*14+0.88*14]=		37.54	FI	
		ABUT 1 (N	.W. Ouad) - E	XPANSION	LENGTH LIM	IT CHART -	0 DEG. SKE	w	
MS 16y0 375					1	1		_	
MS 16x0 312									
UD 14X102									
HP 14X102									
HP 12X84									
HP 14X89									
HP 12X74									
MS 14x0.312		•							
HP 14X73									
MS 14x0.25		i							
HP 12X63									
HP 10X57									

 Estimated expansion length for the indicated abutment. Piles with an expansion length greater than this are suitable for consideration. (Note: The same size pile should be used at both abutments.)

100

. . .

HP 12X53 MS 12x0.25 HP 10X42 HP 8X36

0

50

150

Expansion Length (ft)

200

300

250

Modified 10/30/17

GENERAL DATA STRUCTURE NUME STRUCTURE TYPE STRUCTURE SKEW SUPER. DATA IN R	BER====================================	B. DATA ====	PTB 197-022 SIMPLE-SPAN 0 ABUT 2	DEGREES	TOTAL STRUCTUF	Re Length=====		99.92	FT
	SUPERSTRUC	TURE DATA (END	OR MAIN SPAN)			SUPERSTRU	JCTURE DATA (AD	JACENT SPAN)	
BEAM TYPE ====			CONCRETE BEAM						
CONCRETE BEAM			IL36-3838						
BEAM F'C =====			8.5	KSI					KSI
BEAM SPACING PE	RP. TO CL ====:		6.50	FT	BEAM SPACING P	FRP. TO CL ====:			FT
SLAB THICKNESS	===========		8.00	IN	52, 61, 16111611				
SLAB F'C =====			4.00	KSI					
		ABUTMENT #1 DA	TA				ABUTMENT #2 DA	ТА	
ABUTMENT NAME		===========	N.W. Quad		ABUTMENT NAME		===========	S.E. Quad	
ABUTMENT REFER BOTTOM OF ABUT ESTIMATED NUMB PILE SPACING PER	ENCE BORING == MENT ELEVATION ER OF PILES AT A P. TO CL =====	======================================	BSB-1 609.9 14 3	FT FT	ABUTMENT REFER BOTTOM OF ABUT ESTIMATED NUME PILE SPACING PEI	RENCE BORING==: IMENT ELEVATION BER OF PILES AT A RP. TO CL =====	====== BUT.====================================	BSB-2 609.4 14 3	FT FT
BOT OF	L DATA FOR 10	FI BENEATH BOT		#1 <i>O</i> //	BOT OF	IL DATA FOR 10	FI BENEATH BOTT		#2 0//
LAYER	LAYER	COMPRESSIVE	S.P.T.	EQUIV. FOR	LAYER	LAYER	COMPRESSIVE	S.P.T.	EQUIV. FOR
ELEV.	THICKNESS	STRENGTH	VALUE	N VALUE	ELEV.	THICKNESS	STRENGTH	VALUE	N VALUE
(FT)	(FT)	(TSF)	(BLOWS/12 IN.)	(TSF)	(FT)	(FT)	(TSF)	(BLOWS/12 IN.)	(TSF)
607.40	2.50	0.3			606.90	2.50	2.3	14	2.7
602.40	2.50	0.3	3	15	604.40	2.50	1.6	14	2.7
599.90	2.50	2.0		1.5	599.40	2.50	3.6		
					-				
	10.00					10.00			
WEIGHTED AVERA PILE STIFFNESS M = 1/(1.45-[0.3* DISTANCE TO C DISTANCE TO C	GE Qu FOR ABUTI IODIFIER FOR ABU (1.03])====== ENTROID OF STIF ENTROID OF STIF	MENT #1====== JTMENT #1 =========================== FNESS FROM ABUTI FNESS FROM ABUTI ABUT 2 (S	: <u>1.03</u> : 0.88 MENT #1 = [0.88*14* MENT #2 = [1.46*14* 5.E. Quad) - E 2	TSF [*] 0+1.46*14*99.92] *0+0.88*14*99.92] XPANSION	WEIGHTED AVER/ PILE STIFFNESS N = 1/(1.45-[0.3 /[0.88*14+1.46*14] /[1.46*14+0.88*14] LENGTH LIM	AGE Qu FOR ABUTI 40DIFIER FOR ABU *2.54])====== ========== IT CHART -	MENT #2====== JTMENT #2 62.38 37.54 0 DEG. SKEV	= <u>2.54</u> = 1.46 FT FT	TSF
MS 16x0.375		•	1						
MS 16x0.312									
HP 14X117									
HP 14X102									
HP 12X84		•							
HP 14X89									
HP 12X74					-				
MS 14x0 312									
HD 14Y72									
MC 1400 2									
LD 13V23									
HP 12X53									

¹⁵⁰ Expansion Length (ft) - - -= Estimated expansion length for the indicated abutment. Piles with an expansion length greater than this are suitable for consideration. (Note: The same size pile should be used at both abutments.)

100

. .

MS 12x0.25 HP 10X42 HP 8X36

0

50

200

300

250

West Abutment Pile Design Table - Boring BSB-01

100% Extreme Event: 179 kips/pile 100% Strength: 267 kips/pile 120% Extreme Event: 215 kips/pile 120% Strength: 321 kips/pile

	Maximum Nominal Required Bearing (kips)	Factored Resistance Available (kips)	Estimated Pile Length (kips)
Steel HP 12 x 63	497	273*	49
Steel HP 12 x 84	664	365	50
Steel HP 14 x 89	705	388	49
Steel HP 14 x 102	810	445	50
Steel HP 14 x 117	929	511	50

*120% Strength case exceeds factored resistance available, however 100% Strength case does not

	East Abutment Pile Design	Table - Boring BSB-02	
100% Extreme Event:	179 kips/pile	120% Extreme Event:	215 kips/pile
100% Strength:	267 kips/pile	120% Strength:	321 kips/pile
]	Maximum Nominal	Factored	Estimated
	Required	Resistance	Pile
	Bearing	Available	Length
	(kips)	(kips)	(kips)
Steel HP 12 x 63	497	273*	48
Steel HP 12 x 84	664	365	49
Steel HP 14 x 89	705	388	49
Steel HP 14 x 102	810	445	49
Steel HP 14 x 117	929	511	50

*120% Strength case exceeds factored resistance available, however 100% Strength case does not

Note: The Longitudinal and T	Fransverse Loads shown below do not act
concurrently.	

Job No.:	21IL082-08
SN:	046-0162
Designed:	KWB
Date:	9/12/2023
Checked:	CFS
Date:	9/12/2023
Page:	1 of 1

INITIAL ESTIMATED PILE LOADS: (AASHTO LRFD)

Total Load per Abutmen	t:		Impact =	1.33		
· · · ·	SERVICE LOA	DS:	STRENGTH-I LO	ADS:	<u>EXT. EVENT-I LO</u>	DADS:
Abutment DL =	128.3	k	160.3	k	160.3	k
Approach Slab =	125.0	k	156.2	k	156.2	k
DC =	504.7	k	630.8	k	630.8	k
DW =	86.4	k	129.6	k	129.6	k
LL Lane =	78.3	k	137.1	k	0.0	k
LL Vehicle =	165.8	k	385.8	k	0.0	k
Long. Lat. Load =		k		k		k
Trans. Lat. Load =		k		k		k
Total Axial Load =	1088.4	k	1599.8	k	1077.0	k
Est. # Piles/Abut. =	6	piles				
Axial Load/Pile =	181	k/pile	267	k/pile	179	k/pile
Total Load per Pier:			Impact =	1.00		
	SERVICE LOA	DS:	STRENGTH-I LO	ADS:	EXT. EVENT-I LO	DADS:
Pier DL =		k	0.0	k	0.0	k
DC =		k	0.0	k	0.0	k
DW =		k	0.0	k	0.0	k
LL Lane =		k	0.0	k	0.0	k
LL Vehicle =		k	0.0	k	0.0	k
Long. Lat. Load =		k		k		k
Trans. Lat. Load =		k		k		k
Total Axial Load =	0.0	k	0.0	k	0.0	k
Est. # Piles/Abut. =	0	piles				
Axial Load/Pile =	#DIV/0!	k/pile	#DIV/0!	k/pile	#DIV/0!	k/pile
Total Load per Pier:			Impact =	1 00		
<u></u> .	SERVICE LOA	DS:	STRENGTH-I LO	ADS:	EXT. EVENT-I LO	DADS:
Pier DL =		k	0.0	k	0.0	k
DC =		k	0.0	k	0.0	k
DW =		k	0.0	k	0.0	k
LL Lane =		k	0.0	k	0.0	k
LL Vehicle =		k	0.0	k	0.0	k
Long. Lat. Load =		k		k		k
Trans. Lat. Load =		k		k		k
Total Axial Load =	0.0	k	0.0	k	0.0	k
Est. # Piles/Abut. =	0	piles				
Axial Load/Pile =	#DIV/0!	k/pile	#DIV/0!	k/pile	#DIV/0!	k/pile

In the SGR provide at each substructure location the Pile Type & Lengths for the following loads:

+/- 100% of Strength-I & Extreme Event-I Loads shown above

+/- 120% of Strength-I & Extreme Event-I Loads shown above

