

€ IL Route 83

WB Thru

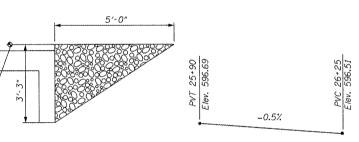
LONGITUDINAL SECTION

EB Thru

GENERAL NOTES:

Layout of slope protection system may be varied in the field to suit ground conditions as directed by the Engineer.

Plan dimensions and details relative to existing structure have been taken from existing plans and are subject to nominal construction variations. It shall be the Contractor's responsibility to verify such dimensions and details in the field and make necessary approved adjustments prior to construction or ordering of materials. Such variations shall not be cause for additional compensation for a change in the scope of the work. however, the Contractor will be paid for the quantity actually furnished at the unit price bid for the work.


BOX CULVERT END SECTIONS, Culvert No. 1 shall be paid for as noted in Article 540.08, and The Contract Unit Price for BOX CULVERT END SECTIONS, Culvert No. 1 shall include all porous granular bedding material, cast in place wingwalls, headwalls, and aprons, cast in place portions between cells, reinforcement, excavation, backfill, and preformed joint filler.

TOTAL BILL OF MATERIAL

ITEM	UNIT	TOTAL
Stone Dumped Riprap, Class A4	Sq. Yd.	65
Removal of Existing Structures	Each	1
Name Plates	Each	1
Box Culvert End Sections, Culvert No. 1	Each	2
Precast Box Culvert 12' X 10'	Foot	155
Approach Slab Removal	Sq. Yd.	185
Porous Granular Embankment, Subgrade	Cu. Yd.	1.035

DESIGN SCOUR ELEVATION TABLE

Design Scour	D.S. INVERT	U.S. INVERT
Elevation (ft.)	579.45	579.70

SECTION A-A

PROFILE GRADE (along € roadway)

WATERWAY INFORMATION

Drainage Area = 11.1 Sq. Mi Low Grade Elev. 596.11 © Sta. 21+50								
Freq.	Q	Opening Sq. Ft.		Nat.	Head - Ft.		Headwater El.	
Yr.	C.F.S.	Exist.	Prop.	H.W.E.	Exist.	Prop.	Exist.	Prop.
10	684	94	137	588.6	1.1	1.1	589.7	589.7
50	1470	168	211	591.8	2.3	1.0	594.1	592.8
100	1870	201	216	593.6	1.9	1.5	595.5	595.1
250	2130	201	216	594.0	2.0	2.0	596.0	596.0
500	2555	201	216	594.7	2.2	2.4	596.9	597.1
	Freq. Yr. 10 50 100 250	Freq. 0 Yr. C.F.S. 10 684 50 1470 100 1870 250 2130	Freq. 0 Opening Yr. C.F.S. Exist. 10 684 94 50 1470 168 100 1870 201 250 2130 201	Freq. 0 Opening Sq. Ft. Yr. C.F.S. Exist. Prop. 10 684 94 137 50 1470 168 211 100 1870 201 216 250 2130 201 216	Freq. O Opening Sq. Ft. Nat. Yr. C.F.S. Exist. Prop. H.W.E. 10 684 94 137 588.6 50 1470 168 211 591.8 100 1870 201 216 593.6 250 2130 201 216 594.0	Freq. O Opening Sq. Ft. Nat. Head Yr. C.F.S. Exist. Prop. H.W.E. Exist. 10 684 94 137 588.6 1.1 50 1470 168 211 591.8 2.3 100 1870 201 216 593.6 1.9 250 2130 201 216 594.0 2.0	Freq. O Opening Sq. Ft. Nat. Head Ft. Yr. C.F.S. Exist. Prop. H.W.E. Exist. Prop. 10 684 94 137 588.6 1.1 1.1 50 1470 168 211 591.8 2.3 1.0 100 1870 201 216 593.6 1.9 1.5 250 2130 201 216 594.0 2.0 2.0	Freq. O Opening Sq. Ft. Not. Head Ft. Headwig Yr. C.F.S. Exist. Prop. H.W.E. Exist. Prop. Exist. 10 684 94 137 588.6 1.1 1.1 589.7 50 1470 168 211 591.8 2.3 1.0 594.1 100 1870 201 216 593.6 1.9 1.5 595.5 250 2130 201 216 594.0 2.0 2.0 596.0

To the best of my knowledge, information and belief, this retaining wall design is structurally adequate for the design loading shown on the plans. The design is an economical one for the style of structure and complies with requirements of the current "AASHTO Standard

HIGHWAY CLASSIFICATION

F.A.P. Rte. 344 - IL. Rte 83 ADT: 11.200 (2001): 13.500 (2020) ADTT: 923 (2021) Functional class: Other Principal Arterial (Rural)

Design Speed: 55 mph

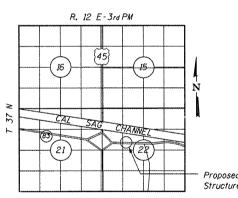
DESIGN SPECIFICATIONS

2010 AASHTO LRFD Bridge Design Specifications

LOADING HS-20-44

Allow 50#/Sq.ft. for Future Wearing Surface

DESIGN STRESSES


Field Units f'c = 3,500 psi fy = 60,000 psi (Reinforcement) Precast Units

 $f'c \approx 5.000$ psi $fy \approx 65,000$ psi (Welded Wire Fabric)

Maximum Soil Pressure under culvert = 1950 psf

STATION 26+08 BUILT 2012 BY STATE OF ILLINOIS F.A.P. RT. 344 SEC. 102Y-A-B F.A. PROJ. LOADING HL93 STR. NO. 016-2826

> NAME PLATE See Std. 515001

LOCATION SKETCH

Structural Enginee Expires 11/30/2012 HR Green, Inc.

GENERAL PLAN AND ELEVATION IL ROUTE 83 OVER MILL CREEK F.A.P. ROUTE 344 - SECTION 102Y-A-B COOK COUNTY STATION 26+07.50 EXISTING STRUCTURE NO. 016-0430 PROPOSED STRUCTURE NO. 016-2826

T = 359.90'

L = 719.46' E = 6.79' R = 9,539.37' P.C. = Sta. 25+02.32

P.T. = Sto. 32+21.77

P.I. = Sta. 28+62.22

US Flow Line

El. 584.0

	USER NAME =	DESIGNED -	JPG	REVISED
		CHECKED -	JPG	REVISED
'	PLOT SCALE =	DRAWN -	JPG	REVISED
	PLOT DATE =	CHECKED -	RGD	REVISED

Shoulder

STATE OF ILLINOIS **DEPARTMENT OF TRANSPORTATION**

-DS Flow Line

El. 583.7

Invert U El. 582.45

GENERAL PLAN AND ELEVATION STRUCTURE NO. 016-2826 SHEET NO. 1 OF 8 SHEETS

344	102Y-A-B	CONTRAC*	31 F NO. 6	12
TE.	SECTION	COUNTY	SHEETS	SHEE.