FINAL Preliminary Site Investigation Report FAI 74 (Interstate 74) Moline, Rock Island County, Illinois

Contract No.: PTB 172-027 Work Order No. 46 IDOT Job No.: P-93-032-01 BDE Sequence No.: 9724A Section No.: 81B

Route: FAI 74 ISGS Report No.: 1314V3 Bid Letting Date: June 16, 2017 Contract No.: 64C08

March 17, 2017

Prepared for:

ILLINOIS DEPARTMENT OF TRANSPORTATION Bureau of Design and Environment

2300 South Dirksen Parkway Springfield, IL 62764

Prepared by:

ecology and environment, inc.

able of Contents

Section Page 1				
1	Intro	ductio	on	1-1
2	Site	Backg	round	2-1
3	Field	d Inves	stigation Procedures	3-1
	3.1		oring and Sampling Procedures	
	3.2		lwater Sampling Procedures	
4	Field	d Inves	stigation Results	4-1
	4.1		Area Geology and Topography	
	4.2		1314V3-1 (IDOT ROW)	
		4.2.1	Field Observations at ISGS #1314V3-1	4-4
		4.2.2	Analytical Results for ISGS #1314V3-1	4-4
			4.2.2.1 Soil	
			4.2.2.2 Groundwater	4-5
		4.2.3	Nature and Extent of Contamination above Applicable Criteria at	
			ISGS #1314V3-1	4-5
			4.2.3.1 Soil	
			4.2.3.2 Groundwater	
		4.2.4	IDOT Construction Activities at ISGS #1314V3-1	
			4.2.4.1 Soil	
			4.2.4.2 Groundwater	
	4.3		1314V3-2 (Mississippi River)	
		4.3.1	Field Observations at ISGS #1314V3-2	
		4.3.2	Analytical Results for ISGS #1314V3-2	
			4.3.2.1 Soil	
			4.3.2.2 Groundwater	4-7
		4.3.3	Nature and Extent of Contamination above Applicable Criteria at	
			ISGS #1314V3-2	
			4.3.3.1 Soil	
		4.0.4	4.3.3.2 Groundwater	
		4.3.4	IDOT Construction Activities at ISGS #1314V3-2	
			4.3.4.1 Soil	
	1 1	ICCC #	4.3.4.2 Groundwater	
	4.4		#1314V3-4 (City of Moline, Water Department)	
		4.4.1	Field Observations at ISGS #1314V3-4	4-9

Section			Page
	4.4.2	Analytical Results for ISGS #1314V3-4	4-9
		4.4.2.1 Soil	
		4.4.2.2 Groundwater	4-9
	4.4.3	Nature and Extent of Contamination above Applicable Criteria at	
		ISGS #1314V3-4	
		4.4.3.1 Soil	4-10
		4.4.3.2 Groundwater	4-10
	4.4.4	IDOT Construction Activities at ISGS #1314V3-4	4-10
		4.4.4.1 Soil	4-10
		4.4.4.2 Groundwater	4-11
4.5	ISGS #	#1314V3-5 (Industrial Building)	4-11
	4.5.1	Field Observations at ISGS #1314V3-5	4-11
	4.5.2	Analytical Results for ISGS #1314V3-5	4-11
	4.5.3	Nature and Extent of Contamination above Applicable Criteria at	
		ISGS #1314V3-5	4-11
	4.5.4	IDOT Construction Activities at ISGS #1314V3-5	4-12
		4.5.4.1 Soil	4-12
4.6	ISGS #	#1314V3-6 (Vacant Land)	4-12
	4.6.1	Field Observations at ISGS #1314V3-6	4-12
	4.6.2	Analytical Results for ISGS #1314V3-6	4-13
		4.6.2.1 Soil	
		4.6.2.2 Groundwater	4-13
	4.6.3	Nature and Extent of Contamination above Applicable Criteria at	
		ISGS #1314V3-6	4-13
		4.6.3.1 Soil	4-13
		4.6.3.2 Groundwater	4-15
	4.6.4	IDOT Construction Activities at ISGS #1314V3-6	4-15
		4.6.4.1 Soil	4-15
		4.6.4.2 Groundwater	4-16
4.7	ISGS #	‡1314V3-7 (River Stone Moline Yard)	4-16
	4.7.1	Field Observations at ISGS #1314V3-7	4-16
	4.7.2	Analytical Results for ISGS #1314V3-7	4-16
		4.7.2.1 Soil	4-16
		4.7.2.2 Groundwater	4-17
	4.7.3	Nature and Extent of Contamination above Applicable Criteria at	
		ISGS #1314V3-7	4-17
		4.7.3.1 Soil	4-17
		4.7.3.2 Groundwater	
	4.7.4	IDOT Construction Activities at ISGS #1314V3-7	4-18
		4.7.4.1 Soil	4-18
		4.7.4.2 Groundwater	4-18
4.8	ISGS #	#1314V3-8 (Commercial Building)	4-19
	4.8.1	Field Observations at ISGS #1314V3-8	4-19
	4.8.2	Analytical Results for ISGS #1314V3-8	4-19

Section			Page
	4.8.3	Nature and Extent of Contamination above Applicable Criteria at	
		ISGS #1314V3-8	
	4.8.4	IDOT Construction Activities at ISGS #1314V3-8	
		4.8.4.1 Soil	
4.9		1314V3-11 (Vacant Land)	
	4.9.1	Field Observations at ISGS #1314V3-11	
	4.9.2	Analytical Results for ISGS #1314V3-11	4-20
	4.9.3	Nature and Extent of Contamination above Applicable Criteria at	
		ISGS #1314V3-11	
	4.9.4	IDOT Construction Activities at ISGS #1314V3-11	
		4.9.4.1 Soil	
4.10		1314V3-17 (Parking Lot)	
	4.10.1	Field Observations at ISGS #1314V3-17	
	4.10.2	Analytical Results for ISGS #1314V3-17	4-21
	4.10.3	Nature and Extent of Contamination above Applicable Criteria at	4 00
		ISGS #1314V3-17	
	4.10.4	IDOT Construction Activities at ISGS #1314V3-17	
4.11	TO CO II	4.10.4.1 Soil	
4.11		1314V3-18 (Vacant Land)	
	4.11.1	Field Observations at ISGS #1314V3-18	
	4.11.2	Analytical Results for ISGS #1314V3-18	4-23
	4.11.3	Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-18	4-23
	4.11.4	IDOT Construction Activities at ISGS #1314V3-18	
		4.11.4.1 Soil	
4.12		1314V3-21 (BNSF Railroad)	
	4.12.1	Field Observations at ISGS #1314V3-21	
	4.12.2	Analytical Results for ISGS #1314V3-21	4-25
	4.12.3	Nature and Extent of Contamination above Applicable Criteria at	
		ISGS #1314V3-21	
	4.12.4	IDOT Construction Activities at ISGS #1314V3-21	4-26
		4.12.4.1 Soil	
4.13		1314V3-24 (John Deere)	
	4.13.1	Field Observations at ISGS #1314V3-24	
	4.13.2	Analytical Results for ISGS #1314V3-24	4-26
	4.13.3	Nature and Extent of Contamination above Applicable Criteria at	
		ISGS #1314V3-24	
	4.13.4	IDOT Construction Activities at ISGS #1314V3-24	
		4.13.4.1 Soil	
4.14		1314V3-25 (Sivyer Steel Corp.)	
	4.14.1	Field Observations at ISGS #1314V3-25	
	4.14.2	Analytical Results for ISGS #1314V3-25	4-29
	4.14.3	Nature and Extent of Contamination above Applicable Criteria at	4.50
		ISGS #1314V3-25	4-29

Section			Page
	4.14.4	IDOT Construction Activities at ISGS #1314V3-25	4-31
		4.14.4.1 Soil	4-31
4.15	ISGS#	1314V3-26 (Commercial Building)	4-31
	4.15.1	Field Observations at ISGS #1314V3-26	
	4.15.2	Analytical Results for ISGS #1314V3-26	4-31
	4.15.3	Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-26	
	4.15.4	IDOT Construction Activities at ISGS #1314V3-26	
		4.15.4.1 Soil	
4.16	ISGS #	1314V3-32 (Commercial Buildings)	
	4.16.1	Field Observations at ISGS #1314V3-32	
	4.16.2	Analytical Results for ISGS #1314V3-32	
	4.16.3	Nature and Extent of Contamination above Applicable Criteria at	52
		ISGS #1314V3-32	4-32
	4.16.4	IDOT Construction Activities at ISGS #1314V3-32	
	1.10.1	4.16.4.1 Soil	
4.17	ISGS #	1314V3-33 (Parking Lot)	
1.17	4.17.1	Field Observations at ISGS #1314V3-33	
	4.17.2	Analytical Results for ISGS #1314V3-33	
	4.17.3	Nature and Extent of Contamination above Applicable Criteria at	1 3 1
		ISGS #1314V3-33	
	4.17.4	IDOT Construction Activities at ISGS #1314V3-33	
		4.17.4.1 Soil	
4.18		1314V3-56 (Commercial Building)	
	4.18.1	Field Observations at ISGS #1314V3-56	
	4.18.2	Analytical Results for ISGS #1314V3-56	4-36
	4.18.3	Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-56	4-36
	4.18.4	IDOT Construction Activities at ISGS #1314V3-56	4-36
		4.18.4.1 Soil	4-36
4.19	ISGS#	1314V3-57 (Old Chamber Building)	4-36
	4.19.1	Field Observations at ISGS #1314V3-57	
	4.19.2	Analytical Results for ISGS #1314V3-57	4-37
	4.19.3	Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-57	
	4.19.4	IDOT Construction Activities at ISGS #1314V3-57	4-37
4.20	ISGS #	1314V3-59 (Residence)	4-37
	4.20.1	Field Observations at ISGS #1314V3-59	
	4.20.2	Analytical Results for ISGS #1314V3-59	
	4.20.3	Nature and Extent of Contamination above Applicable Criteria at	- 0
		ISGS #1314V3-59	4-38
	4.20.4	IDOT Construction Activities at ISGS #1314V3-59	
4.21		1314V3-60 (Vacant Lot)	
		Field Observations at ISGS #1314V3-60	

Sect	ion			Page
	4	.21.2	Analytical Results for ISGS #1314V3-60	4-38
	4	.21.3	Nature and Extent of Contamination above Applicable Criteria at	
			ISGS #1314V3-60	
	4	.21.4	IDOT Construction Activities at ISGS #1314V3-60	
			4.21.4.1 Soil	4-39
5	Conclu	usions	s and Recommendations	5-1
	5.1 E	Estimate	d Soil Management Volumes and Costs	5-1
	5	.1.1	ISGS #1314V3-1 (IDOT ROW)	5-1
	5	.1.2	ISGS #1314V3-2 (Mississippi River)	5-2
	5	.1.3	ISGS #1314V3-4 (City of Moline, Water Department)	5-3
	5	.1.4	ISGS #1314V3-5 (Industrial Building)	5-3
	5	.1.5	ISGS #1314V3-6 (Vacant Land)	5-4
	5	.1.6	ISGS #1314V3-7 (River Stone Moline Yard)	5-6
	5	.1.7	ISGS #1314V3-8 (Commercial Building)	
	5	.1.8	ISGS #1314V3-11 (Vacant Land)	5-7
	5	.1.9	ISGS #1314V3-17 (Parking Lot)	5-8
	5	.1.10	ISGS #1314V3-18 (Vacant Land)	5-9
	5	.1.11	ISGS #1314V3-21 (BNSF Railroad)	5-10
	5	.1.12	ISGS #1314V3-24 (John Deere)	5-11
	5	.1.13	ISGS #1314V3-25 (Sivyer Steel Corp.)	5-12
	5	.1.14	ISGS #1314V3-26 (Commercial Building)	
	5	.1.15	ISGS #1314V3-32 (Commercial Buildings)	
	5	.1.16	ISGS #1314V3-33 (Parking Lot)	
	5	.1.17	ISGS #1314V3-56 (Commercial Building)	
	5	.1.18	ISGS #1314V3-57 (Old Chamber Building)	
	5	.1.19	ISGS #1314V3-59 (Residence)	
		.1.20	ISGS #1314V3-60 (Vacant Lot)	
			agement Areas and Applicable Regulations	
		.2.1	ISGS #1314V3-1 (IDOT ROW)	
	5	.2.2	ISGS #1314V3-2 (Mississippi River)	
		.2.3	ISGS #1314V3-4 (City of Moline, Water Department)	
		.2.4	ISGS #1314V3-5 (Industrial Building)	
		.2.5	ISGS #1314V3-6 (Vacant Land)	
		.2.6	ISGS #1314V3-7 (River Stone Moline Yard)	
		.2.7	ISGS #1314V3-8 (Commercial Building)	
	5	.2.8	ISGS #1314V3-11 (Vacant Land)	
		.2.9	ISGS #1314V3-17 (Parking Lot)	
		.2.10	ISGS #1314V3-18 (Vacant Land)	
		.2.11	ISGS #1314V3-21 (BNSF Railroad)	
		.2.12	ISGS #1314V3-24 (John Deere)	
		.2.13	ISGS #1314V3-25 (Sivyer Steel Corp.)	
		.2.14	ISGS #1314V3-32 (Commercial Buildings)	
		.2.15	ISGS #1314V3-33 (Parking Lot)	
	U			

Section	on			Page
		5.2.16	ISGS #1314V3-56 (Commercial Building)	5-29
		5.2.17	ISGS #1314V3-57 (Old Chamber Building)	
		5.2.18	ISGS #1314V3-59 (Residence)	
		5.2.19	ISGS #1314V3-60 (Vacant Lot)	5-30
	5.3	Estimat	ted Groundwater Management Volumes and Costs	5-30
		5.3.1	ISGS #1314V3-1 (IDOT ROW)	5-30
		5.3.2	ISGS #1314V3-2 (Mississippi River)	
		5.3.3	ISGS #1314V3-4 (City of Moline, Water Department)	5-31
		5.3.4	ISGS #1314V3-6 (Vacant Land)	
		5.3.5	ISGS #1314V3-7 (River Stone Moline Yard)	
	5.4		mendations	
		5.4.1	Additional Investigations	
		5.4.2	Prevention of Accelerated Contaminant Migration	5-32
		5.4.3	Comparison of Detected Soil Concentrations with TACO Tier 1	
			Remediation Objectives for Construction Worker Exposure	5-32
6	Refe	erences	S	6-1
Appe	ndix			
Α	ISGS	S PESA	A Excerpts	A-1
В	Bori	ng Log	js	B-1
С	Sum	mary o	of Analytical Results	C-1
D	Laboratory Data Package and Site Photographs (on CD-ROM)			
E	Analytical Summary Tables from Weston WO40			E-1
F	Unc	ontami	nated Soil Certification Forms (on CD-ROM)	F-1

ist of Tables

Table		Page
2-1	Summary of Sites and Proposed Construction Activities	2-2
3-1	Summary of Sampling and Analysis Program	3-4
4-1	Field Observations and Sampling Rationale	4-40
4-2	Detected Soil Analytes and Comparison with Applicable Criteria	4-47
4-3	Detected Water Analytes and Comparison to TACO Tier 1 Criteria	4-73
4-4	Summary of Soil Impacts	4-77
4-5	Estimate of Impacted Soil within IDOT Construction Areas	4-88
4-6	Estimates of Impacted Groundwater within IDOT Construction Areas	. 4-100
5-1	Estimated Disposal Costs for Impacted Soil within IDOT Construction Areas, General Cost Breakdown for Construction Activities	5-34
5-2	Contaminants of Concern Above TACO Tier 1 Remediation Objectives for Construction Worker Exposure	5-35

ist of Figures

Figure		Page
2-1	Site Area - Contract 64C08	2-6
4-1	Investigation Data Summary, FAI 74 - Interstate 74 (Contract # 64C08), Sta. 23+07 to Sta. 29+50	4-101
4-2	Investigation Data Summary, FAI 74 - Interstate 74 (Contract # 64C08), Sta. 29+50 to Sta. 37+00	4-102
4-3	Investigation Data Summary, FAI 74 - Interstate 74 (Contract # 64C08), Sta. 37+00 to Sta. 44+67	4-103
4-4	Investigation Data Summary, FAI 74 – Interstate 74 (Contract # 64C08), Sta. 44+67 to Sta. 50+00	4-104
4-5	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-01 and 1314V3-02	4-105
4-6	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-02, -04, -05, and -06	4-106
4-7	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-06, -07, and -08	4-107
4-8	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-01, -05, and -06	4-108
4-9	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-11, -17, and -18	4-109
4-10	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-18 and ISGS 1314V3-21	4-110
4-11	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-24 and ISGS 1314V3-25	4-111
4-12	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-24	4-112

List of Figures (Cont.)

Figure		Page
4-13	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-24 and ISGS 1314V3-25	4-113
4-14	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-26, -32 and -33	4-114
4-15	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-33 and ISGS 1314V3-60	4-115
4-16	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-01, -32, -56 and -57	4-116
4-17	Contaminants of Concern, FAI 74 – Interstate 74 (Contract # 64C08), ISGS 1314V3-59 and ISGS 1314V3-60	4-117

ist of Acronyms

bgs below ground surface

CCDD clean construction or demolition debris

COC contaminant of concern

E & E Ecology and Environment, Inc.

GCGIER groundwater component of the groundwater ingestion exposure route

GPS global positioning system

I-74 Interstate 74

IAC Illinois Administrative Code

IDOT Illinois Department of Transportation

ISGS Illinois State Geological Survey

MACs Maximum Allowable Concentrations of Chemical Constituents in

Uncontaminated Soil Used as Fill Material at Regulated Fill Opera-

tions

MBK methyl butyl ketone
MEK methyl-ethyl ketone

MSA metropolitan statistical area

MU meter unit

NELAP National Environmental Laboratory Accreditation Program

NRCS Natural Resources Conservation Service

OSHA Occupational Safety and Health Administration

PCBs polychlorinated biphenyls

PCE Tetrachloroethene (perchloroethylene)

PESA Preliminary Environmental Site Assessment

PID photoionization detector

PSI preliminary site investigation

List of Acronyms (Cont.)

QC quality control

RECs recognized environmental conditions

ROs remediation objectives

ROW right-of-way

SCGIER soil component of the groundwater ingestion exposure route

SOPs standard operating procedures

SPLP synthetic precipitation leaching procedure

SU standard unit

SVOCs semi-volatile organic compounds

TACO Tiered Approach to Corrective Action Objectives

TCLP toxicity characteristic leaching procedure

USFO uncontaminated soil fill operation

VOCs volatile organic compounds

1

Introduction

This preliminary site investigation (PSI) report was prepared for the Illinois Department of Transportation (IDOT) pursuant to Work Order 046 issued to Ecology and Environment, Inc., (E & E) under the IDOT Work Order Agreement for Consultant Services, PTB No. 172-027— Various Statewide Waste Assessments, Studies and Designs. E & E was tasked by IDOT to conduct the PSI for proposed construction adjacent to IDOT right-of-way (ROW) along Interstate 74 (I-74) in Moline, Rock Island County, Illinois.

This report addresses proposed construction activities to be conducted along the northern portion of the project area from the Mississippi River south to 7th Avenue under contract number 64C08. Construction activities along the southern portion of the project area were conducted under contract number 64E26 and have been addressed in a separate report.

Field investigation activities were conducted by E & E in November and December 2016. The objectives of the investigation as defined in the IDOT-approved work plan dated November 11, 2016 (E & E 2016) are as follows:

- Determine the magnitude and the lateral and vertical extent of potential soil contamination within existing and proposed IDOT ROW in the proposed construction area. The impact of possible contamination on the uppermost groundwater unit will also be evaluated if groundwater is encountered within the proposed construction zone during the investigation.
- Prepare a site investigation report with findings, conclusions, and recommendations as well as a remediation scope of work, based upon the results of chemical analysis of soil and groundwater samples. The remediation scope of work will include an estimate of contaminated soil excavation quantities and an associated estimated cost for remediation. If groundwater has been affected and sufficient data on the extent and source of contamination is available, remedial alternatives will be provided to implement cleanup.
- Assess the potential for surrounding IDOT property within the project area to be affected by contaminants migrating from affected areas and present recommendations to mitigate contaminant migration when the potential for migration is determined to be high.

This report presents the findings of E & E's investigation and consists of six sections. Section 2 provides pertinent site background information. Section 3 describes the procedures and sampling rationale used during the field investigation. Section 4 summarizes E & E's field investigation results, including observations, field measurements, sampling rationale, analytical results, and comparisons of the analytical results with regulatory standards. Section 5 provides conclusions of the investigation and recommendations for further investigation and contaminant migration reduction techniques, if necessary. Section 6 lists the references cited in this report.

2

Site Background

IDOT construction plans provided to E & E indicate that soil excavation is anticipated for this project for roadway construction, including ramps, bridges, storm sewers, and grading. Excavations associated with the improvements are estimated to extend to a maximum depth of 22.8 feet below ground surface (bgs). A summary of the proposed construction activities is presented by site in Table 1-1. IDOT has indicated to E & E that property acquisition shown on project construction plans was completed for this project prior to the PSI.

The Illinois State Geological Survey (ISGS) conducted a Preliminary Environmental Site Assessment (PESA) of the project area to identify sites with recognized environmental conditions (RECs) that may potentially affect the project. Table 2-1 presents the sites identified by ISGS, along with the identified RECs and the proposed IDOT construction activities at each site. Applicable background information about the sites, taken directly from ISGS PESA report number 1314V3, is included as Appendix A. The site investigation area is shown on Figure 2-1.

Table 2-1 Summary of Sites and Proposed Construction Activities FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

	inie, Rock Island County, Illin		
	Recognized	Planned	Planned
	Environmental	Construction	Property
Site	Conditions (RECs)	Activities	Acquisition ^a
ISGS #1314V3-1 (ROW)	Spills; former ASTs; evidence of chemical use. De minimis conditions include natural gas pipeline; potential	Removal and construction of I-74. Construction of ramps, bridges, and storm sewer. Maximum proposed excavation depth is 16.2 feet bgs.	None
	ACM.		
ISGS #1314V3-2 (Mississippi River)	Non-attainment of water quality; spills; potentially impacted surface water.	Construction of storm sewer at edge of river. Maximum proposed excavation depth is 11.8 feet bgs.	None
	No <i>de minimis</i> conditions identified.		
ISGS #1314V3-4 (City of Moline, Water Division)	USTs; former UST; potential USTs; ASTs; former monitoring wells; evidence of chemical use; impacted soil and groundwater; VOCs previously detected. De minimis conditions include	Storm sewer construction and grading. Maximum proposed excavation is 1.3 feet bgs.	None
ISGS #1314V3-5	transformers; potential ACM and lead paint. Potential UST; evidence of	Storm sewer construction and	ROW
(Industrial Building)	former chemical use; VOCs and metals previously detected. De minimis conditions include natural gas pipeline; transformers; potential ACM and lead paint.	grading. Maximum proposed excavation is 7.5 feet bgs.	(partial take)
ISGS #1314V3-6 (Vacant Land)	Former USTs w/documented releases; monitoring well; potential monitoring wells; former drums; evidence of former chemical use; air releases; VOCs, metals, and PCBs previously detected. De minimis conditions include soil mounds, natural gas pipeline; transformer.	Construction of I-74 roadway, ramps, bridges, and storm sewers. Maximum excavation depth is 22.4 feet bgs.	ROW (full take)

Table 2-1 Summary of Sites and Proposed Construction Activities FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

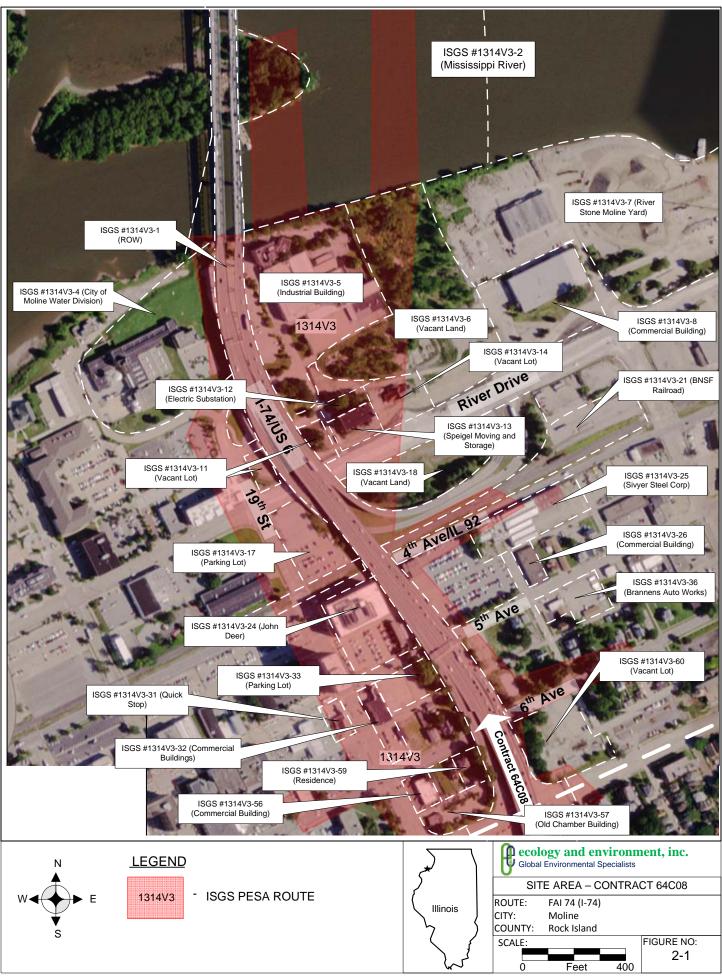
IVIOI	ine, Rock Island County, Illin		Diannad
	Recognized	Planned	Planned
0'4-	Environmental	Construction	Property
Site	Conditions (RECs)	Activities	Acquisition ^a
ISGS #1314V3-7	Potential monitoring wells; evi-	Construction of I-74 roadway,	ROW
(River Stone Moline	dence of chemical use; poten-	ramps, bridges, and storm sewers.	(partial take)
Yard)	tially impacted groundwater;	Maximum excavation depth is	
	HAA; VOCs and metals pre-	21.6 feet bgs.	
	viously detected.		
	D 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	De minimis conditions include		
	mounding; transformers; poten-		
ISGS #1314V3-8	tial ACM and lead paint.	Construction of TA and 1	ROW
(Commercial	Former UST; potential chemical use; VOCs and metals previously	Construction of I-74 roadway, ramps, bridges, and storm sewers.	
Building)	detected.	Maximum excavation depth is 3.8	(partial take)
Dullullig)	detected.	feet bgs.	
	De minimis conditions include	icci ogs.	
	transformers; potential ACM and		
	lead paint.		
ISGS #1314V3-11	Potential former chemical use;	Storm sewer construction and	None
(Vacant Lot)	VOCs, SVOCs and metals pre-	grading. Maximum proposed	1,0110
(viously detected.	excavation is 0.4 feet bgs.	
	<i>De minimis</i> condition is soil pile.		
ISGS #1314V3-17	Potential former chemical use;	Regrading of existing embank-	None
(Parking Lot)	VOCs, SVOCs and metals pre-	ment. Maximum proposed exca-	
	viously detected.	vation depth is 7.0 feet bgs.	
	De minimis condition is likely		
	natural gas pipeline.		
ISGS #1314V3-18	Potential USTs; potential former	Removal and construction of I-74.	None
(Vacant Land)	chemical use; VOCs, SVOCs,	Construction of ramps, bridges,	
	and metals previously detected.	and storm sewer. Maximum pro-	
	D 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	posed excavation depth is 12.5	
	De minimis condition is natural	feet bgs.	
ISGS #1314V3-21	gas pipeline. Railroad signal and battery	Storm sawar instead and hared :-	Permanent
(BNSF Railroad)	boxes; potentially impacted	Storm sewer jacked and bored in place under railroad. Maximum	Permanent Easement
(DIADI, Kaliload)	groundwater; PCBs previously	proposed excavation depth is 8.3	Lasement
	detected.	feet bgs.	
	dotottou.	1001 050.	
	No de minimis conditions		
	identified.		
		I .	

Table 2-1 Summary of Sites and Proposed Construction Activities FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

IVIO	inie, Rock Island County, Illii		
Site	Recognized Environmental Conditions (RECs)	Planned Construction Activities	Planned Property Acquisition ^a
ISGS #1314V3-24 (John Deere)	Former USTs w/documented release; potential USTs; AST; former ASTs; former monitoring wells; evidence of chemical use; chemical containers; air release; impacted soil and groundwater; HAA; VOCs and metals previously detected. De minimis conditions include transformers; potential ACM and lead paint.	Removal of part of I-74. Construction of roadway, ramps, bridges, and storm sewer. Maximum proposed excavation depth is 11.5 feet bgs.	ROW (partial take)
ISGS #1314V3-25 (Sivyer Steel Corp.)	Drums; former drums; evidence of chemical use; VOCs previously detected. De minimis conditions include transformer; potential ACM and lead paint.	Removal of part of I-74. Construction of roadway, ramps, bridges, and storm sewer. Maximum proposed excavation depth is 8.6 feet bgs.	ROW (full take)
ISGS #1314V3-26 (Commercial Building)	Former UST; potential USTs; potential former chemical use. De minimis conditions include transformer; potential ACM and lead paint.	Grading of proposed ditch for Ramp D and alley work. Maximum proposed excavation depth is 7.4 feet bgs.	ROW (partial take)
ISGS #1314V3-32 (Commercial Buildings)	Former USTs; potential USTs; potential ASTs; evidence of former chemical use; protruding pipes; HAA. De minimis conditions include transformer; potential ACM and lead paint.	Roadway construction and grading. Maximum proposed excavation depth is 2.1 feet bgs.	ROW (full take)
ISGS #1314V3-33 (Parking Lot)	Potential USTs; potential former chemical use; presence on LUST and BOL lists; impacted soil and groundwater; HAA; VOCs previously detected. De minimis condition is transformers.	Roadway construction and grading. Maximum proposed excavation depth is 10.1 feet bgs.	ROW (full take)
ISGS #1314V3-56 (Commercial Building)	Former USTs; potential USTs; potential former chemical use; VOCs previously detected. De minimis conditions include potential ACM and lead paint.	Roadway construction and grading. Maximum proposed excavation depth is 1.1 feet bgs.	None

Table 2-1 Summary of Sites and Proposed Construction Activities FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

Site	Recognized Environmental Conditions (RECs)	Planned Construction Activities	Planned Property Acquisition ^a
ISGS #1314V3-57 (Old Chamber Building)	Potential former chemical use. De minimis conditions include transformers, potential ACM and lead paint.	Roadway construction and grading. Maximum proposed excavation depth is 2.5 feet bgs.	None
ISGS #1314V3-59 (Residence)	Potential UST. De minimis conditions include potential ACM and lead paint.	Removal of part of I-74. Construction of roadway and bridges and grading. Maximum proposed excavation depth is 8.9 feet bgs.	None
ISGS #1314V3-60 (Vacant Lot)	Potential former chemical use. No <i>de minimis</i> conditions identified.	Construction of I-74 roadway, bridge, and storm sewers and local road construction. Maximum pro- posed excavation depth is 12.1 feet bgs.	ROW (full take)


Note:

 $^{\rm a}$ Property acquisition shown in the table was completed prior to the PSI.

Key:

ACM = Asbestos-containing material. bgs = Below ground surface.

IDOT = Illinois Department of Transportation. ISGS = Illinois State Geological Survey.

3

Field Investigation Procedures

E & E followed a project-specific investigative work plan (E & E 2016) in accordance with IDOT-approved standard operating procedures (SOPs) to achieve the objectives stated in Section 1 for the project area. The field investigation for this project included screening and sampling soil and groundwater at the site identified in Section 2. This section describes the procedures used for screening, sample collection, equipment decontamination, quality assurance, and sample custody.

3.1 Soil Boring and Sampling Procedures

E & E advanced 101 borings in the proposed construction area. E & E's truck-mounted Geoprobe® was used to advance 97 of the borings, and four borings were advanced using a stainless steel hand auger. A summary of the sampling and analysis program for this PSI is presented in Table 3-1.

Individual boring locations are identified with a unique alpha-numeric identification code. The first part of the boring identification is the site number designated by ISGS in the PESA (e.g., 1314V3-01 for ISGS site #1314V3-1 [IDOT ROW]). Following the ISGS site number is the boring identification number. Borings are numbered sequentially, with the initial boring at each site designated -B01 (e.g., for ISGS site #1314V3-1, the initial boring is designated 1314V3-01-B01).

Before advancing the borings, E & E personnel marked the proposed boring locations at the site and completed utility clearance. Five of the 101 borings were offset greater than 10 feet of their proposed locations to obtain Geoprobe access or to avoid underground utilities. E & E used a global positioning system (GPS) receiver to record the actual location of each boring upon its completion.

Based on information presented in PESA 1314V3, E & E conducted magnetometer surveys at 10 sites (ISGS #s 1314V3-4, -5, -17, -18, -24, -26, -32, -33, -56, and -59) in an attempt to identify possible USTs within the project construction area. After conducting visual surveys of the areas for fill pipes or other indicators of potential USTs, E & E screened the existing IDOT ROW at each site using a Schonstedt Instrument Co. Model GA-52B Magnetic Locator. The survey was conducted by walking across the ROW in transects and sweeping the instrument from side to side with the small end of the instrument kept close to the ground. If a higher frequency tone was detected (indicative of buried metal), E & E

attempted to further delineate the anomaly to determine if it could potentially be an UST or associated piping. Survey findings are discussed in Section 4.

E & E's Geoprobe® was equipped with 2-inch diameter Macro-Core® samplers. E & E used either a 4-foot-long or a 5-foot-long Macro-Core®, depending on the proposed boring depth. At locations sampled by the Geoprobe®, soil cores were collected from each boring by hydraulically pushing the Macro-Core® in 4- or 5-foot increments. E & E used a new PVC Macro-Core® liner for each sample interval and decontaminated the Macro-Core® sampler with an Alconox® and potable water solution between borings. A stainless steel hand auger was used to advance borings inaccessible with the Geoprobe® or with proposed maximum excavation depths of 2 feet or less in order to collect enough sample volume. Borings inaccessible to the Geoprobe were advanced with a stainless steel hand auger to proposed depth, refusal, or 6 feet BGS, whichever was encountered first. The hand auger was decontaminated between boring locations using an Alconox® and water solution.

E & E used a calibrated photoionization detector (PID) to conduct headspace screening for volatile organic compounds (VOCs) on an aliquot of soil from each core in 2-foot intervals. The depth interval, recovery, soil description, headspace screening results, and any observations of staining and/or odors indicative of contamination were recorded for each Macro-Core® sample. Boring logs for this project are presented in Appendix B.

E & E collected 164 soil samples from the project area for laboratory analysis, including nine duplicate samples. E & E transferred samples to TestAmerica Laboratories in University Park, Illinois (National Environmental Laboratory Accreditation Program [NELAP] number 100201) via FedEx priority overnight delivery and by transfer of samples to a lab courier. Sample identification, documentation, and chain-of-custody were conducted in accordance with the approved SOPs during collection, transportation, storage, and analysis of samples.

3.2 Groundwater Sampling Procedures

E & E encountered groundwater during the investigation in a sufficient volume to collect a sample at the following sites:

- ISGS #1314V3-1 (IDOT ROW)
- ISGS #1314V3-2 (Mississippi River)
- ISGS #1314V3-4 (City of Moline, Water Department)
- ISGS #1314V3-6 (Vacant Land)
- ISGS #1314V3-7 (River Stone Moline Yard)

In accordance with the approved work plan, E & E installed a temporary ground-water sampling device and collected a groundwater sample from each of the sites

3 Field Investigation Procedures

for laboratory analysis. A duplicate sample was collected at ISGS #1314V3-2 (Mississippi River).

The temporary groundwater sampling device consisted of a 24-inch-long, 1.5-inch outside diameter mill-slotted well point attached to steel riser pipe. This temporary well point was lowered into the open auger hole from the ground surface to a point beyond the water table. Polyethylene tubing was then placed inside the probe rods from the surface and lowered to the mill-slotted screen to provide access to groundwater. Groundwater was pumped to the surface using a peristaltic pump, collected in laboratory-grade sample bottles, packaged, and submitted to the laboratory according to E & E SOPs. The device was removed from the probe hole, and the open hole was filled with soil cuttings at the completion of sample collection activities.

Table 3-1 Summary of Sampling and Analysis Program FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

					Parameters (Method) ^b					
Boring ID	Offset from Proposed Location ^a	Boring Depth (feet)	Matrix	Sample(s)	VOCs (8260B)	SVOCs (8270D)	PCBs (8082A)	Total Metals (6010B/7471A)	TCLP Metals (1311/6010B/ 6020A/7470A)	SPLP Metals (1312/6010B/ 6020A/7470A)
ISGS #1314V3-1 (ID	DOT ROW)			101.1770.01.700.00						
12147/2 01 701		C	Soil	1314V3-01-B01(0-6)	•	•		•	•	•
1314V3-01-B01		12 ^c	Soil	1314V3-01-B01 (6-11)	•	•		•	•	•
1011770 01 700		C	Water	1314V3-01-G01	•	•		•		
1314V3-01-B02		12 ^c	Soil	1314V3-01-B02 (0-8)	•	•		•	•	•
1314V3-01-B03		8.4 ^d	Soil	1314V3-01-B03 (0-8)	•	•		•	•	•
1314V3-01-B04		11.2 ^d	Soil	1314V3-01-B04 (0-6)	•	•		•	•	•
			Soil	1314V3-01-B04 (6-11.2)	٠	٠		•	•	•
1314V3-01-B05		12 ^d	Soil	1314V3-01-B05 (0-6)	٠	•		•	٠	•
			Soil	1314V3-01-B05 (6-12)	•	•		•	•	•
		15	Soil	1314V3-01-B06 (0-8)	•	•		•	•	•
1314V3-01-B06			Soil	1314V3-01-B06 (8-15)	٠	٠		•	٠	
			Soil	1314V3-01-B06 (8-15)D	•	•		•	•	
1314V3-01-B07		12	Soil	1314V3-01-B07 (0-6)	٠	•		•	•	•
			Soil	1314V3-01-B07 (6-12)	•	•		•	•	
1314V3-01-B08		9	Soil	1314V3-01-B08 (0-4)	•	•		•	•	•
151115 01 200			Soil	1314V3-01-B08 (4-9)	•	•		•	•	
1314V3-01-B09		11.6	Soil	1314V3-01-B09 (0-6)	•	•		•	•	•
131113 01 20		11.0	Soil	1314V3-01-B09 (6-11.6)	•	•		•	•	•
1314V3-01-B10 ^e		6	Soil	1314V3-01-B10 (0-6)	•	•		•	•	•
1314V3-01-B11		15	Soil	1314V3-01-B11 (0-8)	•	•		•	•	
1314 V 3-01-B11		13	Soil	1314V3-01-B11 (8-15)	•	•		•	•	•
ISGS #1314V3-2 (M	lississippi River)									
			Soil	1314V3-02-B01 (0-5)	•	•		•	•	
1314V3-02-B01		12	Soil	1314V3-02-B01 (5-10)	•	•		•	•	•
1314V 3-UZ-BUI		13	Water	1314V3-02-G01	•	•		•		
			Water	1314V3-02-G01D	•	•		•		
	Offset 13.6 feet south-southwest due		Soil	1314V3-02-B02 (0-6)	•	•		•	•	•
1314V3-02-B02 to river embankment and Geoprobe	12	Soil	1314V3-02-B02 (6-12)	•	•		•	•	•	
	access.		Soil	1314V3-02-B02 (6-12)D	٠	•		•	•	•
ISGS #1314V3-4 (C	ity of Moline, Water Department)									
			Soil	1314V3-04-B01 (0-6)	•	•		•	•	•
1314V3-04-B01		12 ^c	Soil	1314V3-04-B01 (6-11)	•	•		•	•	•
			Water	1314V3-04-G01	•	•		•		

Table 3-1 Summary of Sampling and Analysis Program FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

Boring ID	Offset from Proposed Location ^a	Boring Depth (feet)	Matrix	Sample(s)	VOCs (8260B)	SVOCs (8270D)	PCBs (8082A)	Total Metals (6010B/7471A)	TCLP Metals (1311/6010B/ 6020A/7470A)	SPLP Metals (1312/6010B/ 6020A/7470A)
ISGS #1314V3-5 (II	ndustrial Building)									
1314V3-05-B01		5 ^d	Soil	1314V3-05-B01 (0-5)	•	٠		•	•	•
1314V3-05-B02		10.6 ^d	Soil	1314V3-05-B02 (0-6)	•	•		•	•	•
1314 v 3-03-B02	_	10.0	Soil	1314V3-05-B02 (6-10.6)	•	•		•	•	•
1314V3-05-B03		5.9	Soil	1314V3-05-B03 (0-5.9)	•	•		•	•	•
ISGS #1314V3-6 (V	/acant Land)									
1314V3-06-B01		8	Soil	1314V3-06-B01 (0-8)	•	•	•	•	•	•
1314V3-06-B02		8	Soil	1314V3-06-B02 (0-8)	•	•		•	•	•
1314V3-06-B03	Offset 12.3 feet northeast due to Geoprobe access.	4 ^d	Soil	1314V3-06-B03 (0-4)	•	•		•	•	•
1314V3-06-B04		5.2 ^d	Soil	1314V3-06-B04 (0-5.2)	•	•	•	•	•	•
1314V3-06-B05		8	Soil	1314V3-06-B05 (0-8)	•	•	•	•	•	•
1314V3-06-B06		4 ^d	Soil	1314V3-06-B06 (0-4)	•	•		•	•	•
1314V3-06-B07		4.3 ^d	Soil	1314V3-06-B07 (0-4.3)	•	•		•	•	•
1314V3-06-B08		10	Soil	1314V3-06-B08 (0-5)	•	•		•	•	•
1314 V 3-00-B08	_	10	Soil	1314V3-06-B08 (5-10)	•	•		•	•	•
1314V3-06-B09		2	Soil	1314V3-06-B09 (0-2)	•	•		•	•	•
			Soil	1314V3-06-B10 (0-6)	•	•		•	•	•
1314V3-06-B10		12	Soil	1314V3-06-B10 (6-11)	•	•		•	•	•
			Water	1314V3-06-G01	•	•		•		
1314V3-06-B11		10.7 ^d	Soil	1314V3-06-B11 (0-6)	•	•		•	•	
101110 00 211		10.7	Soil	1314V3-06-B11 (6-10.7)	•	•		•	•	•
ISGS #1314V3-7 (F	River Stone Moline Yard)									
1314V3-07-B01		10 ^c	Soil	1314V3-07-B01 (0-6)	•	٠		•	•	
1011110 07 201		10	Water	1314V3-07-G01	•	٠		•		
1314V3-07-B02		10 ^c	Soil	1314V3-07-B02 (0-5)	•	٠		•	•	•
1314V3-07-B03		5.5 ^d	Soil	1314V3-07-B03 (0-5.5)	•	•		•	•	•
1314V3-07-B04		11	Soil	1314V3-07-B04 (0-5)	٠	٠		٠	٠	٠
			Soil	1314V3-07-B04 (5-11)	•	•		•	•	•
ISGS #1314V3-8 (C	Commercial Building)									
1314V3-08-B01		12	Soil Soil	1314V3-08-B01 (0-6) 1314V3-08-B01 (6-12)	•	•		•	•	•
ISGS #1314V3-11 ((Vacant Land)		2011	2372 33 B01 (0 12)						
1314V3-11-B01 ^e		1	Soil	1314V3-11-B01 (0-1)	•			•		
1314V3-11-B01		1	Soil	1314V3-11-B02 (0-1)	•	•		•	•	•
1314 v 3-11-D02	<u> </u>		2011	1010 11 B02 (0 1)						

Table 3-1 Summary of Sampling and Analysis Program FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

					Parameters (Method) ^b								
											(11001110		>
Boring ID	Offset from Proposed Location ^a	Boring Depth (feet)	Matrix	Sample(s)	VOCs (8260B)	SVOCs (8270D)	PCBs (8082A)	Total Metals (6010B/7471A)	TCLP Metals (1311/6010B/ 6020A/7470A)	SPLP Metals (1312/6010B/ 6020A/7470A)			
1314V3-11-B03 ^e		1	Soil	1314V3-11-B03 (0-1)	•	•		•	•	•			
1314 V 3-11-B03		,	Soil	1314V3-11-B03 (0-1)D	•	•		•	•	•			
ISGS #1314V3-17 (Parking Lot)												
1314V3-17-B01		7	Soil	1314V3-17-B01 (0-7)	•	•		•	•	•			
1314V3-17-B02		7	Soil	1314V3-17-B02 (0-7)	•	•		•	•	•			
1314V3-17-B03		7	Soil	1314V3-17-B03 (0-7)	•	•		•	•	•			
1314 V 3-17-1003	-	,	Soil	1314V3-17-B03 (0-7)D	•	•		•	•	•			
ISGS #1314V3-18 (Vacant Land)												
			Soil	1314V3-18-B01 (0-6)	•	•		•	•	•			
1314V3-18-B01		18	Soil	1314V3-18-B01 (6-12)	•	•		•	•	•			
			Soil	1314V3-18-B01 (12-18)	•	•		•	•	•			
		13	Soil	1314V3-18-B02 (0-7)	•	•		•	•	•			
1314V3-18-B02			Soil	1314V3-18-B02 (0-7)D	•	•		•	•	•			
			Soil	1314V3-18-B02 (7-13)	•	•		•	•	•			
1214W2 19 D02		12 ^d	Soil	1314V3-18-B03 (0-6)	•	•		•	•	•			
1314V3-18-B03		12	Soil	1314V3-18-B03 (6-12)	•	•		•	•	•			
1314V3-18-B04		5.3 ^d	Soil	1314V3-18-B04 (0-5.3)	•	•		•	•	•			
1214V2 10 D05		12.2 ^d	Soil	1314V3-18-B05 (0-8)	•	•		•	•	•			
1314V3-18-B05		12.2 ^d	Soil	1314V3-18-B05 (8-12)	•	•		•	•	•			
			Soil	1314V3-18-B06 (0-6)	•	•		•	•	•			
1314V3-18-B06		17	Soil	1314V3-18-B06 (6-12)	•	•		•	•	•			
			Soil	1314V3-18-B06 (12-17)	•	•		•	•	•			
1314V3-18-B07		8	Soil	1314V3-18-B07 (0-8)	•	•		•	•	•			
1314V3-18-B08		4.4 ^d	Soil	1314V3-18-B08 (0-4.4)	•	•		•	•	•			
1314V3-18-B09		8	Soil	1314V3-18-B09 (0-8)	•	•		•	•	•			
ISGS #1314V3-21 (BNSF Railroad)												
10141/2 21 701		10	Soil	1314V3-21-B01 (0-5)	•	•	•	•	•	•			
1314V3-21-B01		10	Soil	1314V3-21-B01 (5-10)	•	•	•	•	•				
1014770 01 700		6	Soil	1314V3-21-B02 (0-6)	•	•	•	•	•	•			
1314V3-21-B02		6	Soil	1314V3-21-B02 (0-6) D	•	•	•	•	•	•			
ISGS #1314V3-24 (John Deere)												
1314V3-24-B01		5.8 ^d	Soil	1314V3-24-B01 (0-5.8)	•	•		•	•	•			
101400 04 000		10	Soil	1314V3-24-B02 (0-5)	•	•		•	•	•			
1314V3-24-B02		10	Soil	1314V3-24-B02 (5-10)	•	•		•	•	•			

Table 3-1 Summary of Sampling and Analysis Program FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

					Parameters (Method) ^b							
Boring ID	Offset from Proposed Location ^a	Boring Depth (feet)	Matrix	Sample(s)	VOCs (8260B)	SVOCs (8270D)	PCBs (8082A)	Total Metals (6010B/7471A)	TCLP Metals (1311/6010B/ 6020A/7470A)	SPLP Metals (1312/6010B/ 6020 <i>A/</i> 7470A)		
1314V3-24-B03		10	Soil	1314V3-24-B03 (0-5)	•	•		•	•	•		
1314 V 3-24-B03		10	Soil	1314V3-24-B03 (5-10)	•	•		•	•	•		
			Soil	1314V3-24-B04 (0-5)	•	•		•	•	•		
1314V3-24-B04		10	Soil	1314V3-24-B04 (5-10)	•	•		•	•	•		
			Soil	1314V3-24-B04 (5-10)D	•	•		•	•	•		
1314V3-24-B05		10	Soil	1314V3-24-B05 (0-5)	•	•		•	•	•		
1314 V 3-24-BU3		10	Soil	1314V3-24-B05 (5-10)	•	•		•	•			
1314V3-24-B06		4	Soil	1314V3-24-B06 (0-4)	•	•		•	•	•		
1314V3-24-B07		5	Soil	1314V3-24-B07 (0-5)	•	•		•	•	•		
1314V3-24-B08		8	Soil	1314V3-24-B08 (0-8)	•	•		•	•			
1314V3-24-B09 ^e		4	Soil	1314V3-24-B09 (0-4)	•	•		•	•	•		
1314V3-24-B10		5	Soil	1314V3-24-B10 (0-5)	•	•		•	•	•		
1314V3-24-B11		12	Soil	1314V3-24-B11 (0-6)	٠	•		٠	٠	•		
					Soil	1314V3-24-B11 (6-12)	•	•		•	•	•
1314V3-24-B12		12	Soil	1314V3-24-B12 (0-6)	•	•		•	•	•		
			Soil	1314V3-24-B12 (6-12)	•	•		•	•	٠		
1314V3-24-B13		12	Soil	1314V3-24-B13 (0-6)	•	•		•	•	٠		
			Soil	1314V3-24-B13 (6-12)	•	•		•	•			
1314V3-24-B14		12	Soil	1314V3-24-B14 (0-6)	•	•		•	•	٠		
			Soil	1314V3-24-B14 (6-12)	٠	•		•	•	•		
ISGS #1314V3-25	(Sivyer Steel Corp.)		ı									
1314V3-25-B01		12	Soil	1314V3-25-B01 (0-6)	•	•		•	•	•		
			Soil	1314V3-25-B01 (6-12)	•	•		•	•	•		
1314V3-25-B02	Offset 14.2 feet southwest to move	12	Soil	1314V3-25-B02 (0-6)	•	•		•	•	•		
	boring out of street.		Soil	1314V3-25-B02 (6-12)	•	•		•	•	٠		
1314V3-25-B03		8	Soil	1314V3-25-B03 (0-8)	٠	٠		•	•	٠		
1314V3-25-B04		12	Soil	1314V3-25-B04 (0-6)	٠	٠		•	•			
			Soil	1314V3-25-B04 (6-12)	٠	٠		•	•	•		
1314V3-25-B05		12	Soil	1314V3-25-B05 (0-6)	٠	٠		•	•	•		
			Soil	1314V3-25-B05 (6-12)	٠	٠		•	•			
1314V3-25-B06	Offset 32.5 feet west to obtain	12	Soil	1314V3-25-B06 (0-6)	•	٠		•	•	٠		
	Geoprobe access.		Soil	1314V3-25-B06 (6-12)	٠	٠		•	•	•		
1314V3-25-B07	Offset 10.3 feet south to move boring	12	Soil	1314V3-25-B07 (0-6)	٠	٠		٠	٠	•		
	out of street.		Soil	1314V3-25-B07 (6-12)	•	•		•	•	•		

Table 3-1 Summary of Sampling and Analysis Program FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

					Parameters (Method) ^b					
Boring ID	Offset from Proposed Location ^a	Boring Depth (feet)	Matrix	Sample(s)	VOCs (8260B)	SVOCs (8270D)	PCBs (8082A)	Total Metals (6010B/7471A)	TCLP Metals (1311/6010B/ 6020A/7470A)	SPLP Metals (1312/6010B/ 6020A/7470A)
ISGS #1314V3-26 (Commercial Building)									
1314V3-26-B01		8	Soil	1314V3-26-B01 (0-8)	•	•		٠	•	•
1314V3-26-B02		8	Soil	1314V3-26-B02 (0-8)	•	•		•	•	
ISGS #1314V3-32 (Commercial Building)									
1314V3-32-B01		12	Soil	1314V3-32-B01 (0-6)	•	•		•	•	•
1314 (3 32 B01		12	Soil	1314V3-32-B01 (6-12)	•	•		•	•	•
1314V3-32-B02		12	Soil	1314V3-32-B02 (0-6)	•	•		•	•	٠
1314 v 3-32- B 02		12	Soil	1314V3-32-B02 (6-12)	•	•		•	•	•
1314V3-32-B03		12	Soil	1314V3-32-B03 (0-6)	•	•		•	•	•
1314 V 3-32-B03			Soil	1314V3-32-B03 (6-12)	•	•		•	•	•
1314V3-32-B04		12	Soil	1314V3-32-B04 (0-6)	•	•		•	•	•
1314 V 3-32-B04			Soil	1314V3-32-B04 (6-12)	•	•		•	•	
1314V3-32-B05		3	Soil	1314V3-32-B05 (0-3)	•	•		•	•	•
1314V3-32-B06		3	Soil	1314V3-32-B06 (0-3)	•	•		•	•	•
1314V3-32-B07		3	Soil	1314V3-32-B07 (0-3)	•	•		•	•	
1314V3-32-B08		3	Soil	1314V3-32-B08 (0-3)	•	•		•	•	
ISGS #1314V3-33 (Parking Lot)									
1214V2 22 P01		12	Soil	1314V3-33-B01 (0-6)	•	•		•	•	•
1314V3-33-B01		12	Soil	1314V3-33-B01 (6-12)	•	•		•	•	•
1214V2 22 D02		9.4 ^d	Soil	1314V3-33-B02 (0-5)	•	•		•	•	•
1314V3-33-B02		9.4	Soil	1314V3-33-B02 (5-9.4)	•	•		•	•	•
1214V2 22 D02		10	Soil	1314V3-33-B03 (0-6)	•	•		•	•	
1314V3-33-B03		12	Soil	1314V3-33-B03 (6-12)	•	•		•	•	
1214W2 22 DO4		10	Soil	1314V3-33-B04 (0-6)	•	•		•	•	•
1314V3-33-B04		12	Soil	1314V3-33-B04 (6-12)	•	•		•	•	•
1214W2 22 D05		12	Soil	1314V3-33-B05 (0-6)	•	•		•	•	٠
1314V3-33-B05		12	Soil	1314V3-33-B05 (6-12)	•	•		•	•	٠
1214W2 22 DOC		10	Soil	1314V3-33-B06 (0-6)	•	•		•	•	•
1314V3-33-B06		12	Soil	1314V3-33-B06 (6-12)	•	•		•	•	٠
12141/2 22 107		o	Soil	1314V3-33-B07 (0-8)	•	•		•	•	•
1314V3-33-B07		8	Soil	1314V3-33-B07 (0-8)D	•	•		•	•	•

Table 3-1 Summary of Sampling and Analysis Program FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

					Parameters (Method) ^b							
Boring ID	Offset from Proposed Location ^a	Boring Depth (feet)	Matrix	Sample(s)	VOCs (8260B)	SVOCs (8270D)	PCBs (8082A)	Total Metals (6010B/7471A)	TCLP Metals (1311/6010B/ 6020A/7470A)	SPLP Metals (1312/6010B/ 6020A/7470A)		
ISGS #1314V3-56 (Commercial Building)											
1314V3-56-B01		3	Soil	1314V3-56-B01 (0-3)	•	٠		٠	•	•		
1314V3-56-B02		3	Soil	1314V3-56-B02 (0-3)	•	•		•	•	•		
1314 V 3 30 B02		3	Soil	1314V3-56-B02 (0-3)D	•	•		•	•	•		
1314V3-56-B03		3	Soil	1314V3-56-B03 (0-3)	•	•		•	•	٠		
ISGS #1314V3-57 (Old Chamber Building)											
1314V3-57-B01		3	Soil	1314V3-57-B01 (0-3)	•	•		•	•			
1314V3-57-B02		3	Soil	1314V3-57-B02 (0-3)	•	•		•	•	٠		
1314V3-57-B03		5	Soil	1314V3-57-B03 (0-5)	•	•		•	•	٠		
ISGS #1314V3-59 (Residence)											
1314V3-59-B01		10	Soil	1314V3-59-B01 (0-5)	•	•		•	•	•		
1314 V 3-37-B01	-	10	Soil	1314V3-59-B01 (5-10)	•	•		•	•	٠		
ISGS #1314V3-60 (Vacant Lot)											
1314V3-60-B01		11	Soil	1314V3-60-B01 (0-6)	•	•		•	•			
1314 V 3 00 B01		11	Soil	1314V3-60-B01 (6-11)	•	•		•	•			
1314V3-60-B02		7	Soil	1314V3-60-B02 (0-7)	•	٠		•	•	•		
1314V3-60-B03		9	Soil	1314V3-60-B03 (0-4)	•	•		•	•			
1314 V 3 00 B03			Soil	1314V3-60-B03 (4-9)	•	•		•	•			
1314V3-60-B04		5	Soil	1314V3-60-B04 (0-5)	•	•		•	•	•		
1314V3-60-B05		12	Soil	1314V3-60-B05 (0-6)	•	•		•	•			
131113 00 203		12	Soil	1314V3-60-B05 (6-12)	•	•		•	•			
1314V3-60-B06		12	Soil	1314V3-60-B06 (0-6)	•	٠		•	•			
1314 (3 - 00 - 100		12	Soil	1314V3-60-B06 (6-12)	•	•		•	•			

Notes:

Key:

ISGS = Illinois State Geological Survey.

TCLP = Toxicity characteristic leaching procedure.

SPLP = Synthetic precipitation leaching procedure.

VOCs = Volatile organic compounds.

SVOCs = Semivolatile organic compounds.

^a Offsets are shown for borings moved a distance of 10 feet or greater from the proposed location.

^b All of the samples were analyzed for pH and percent solids.

 $^{^{\}rm c}$ Boring advanced to depth due to encounter with groundwater.

 $^{^{\}rm d}$ Boring advanced to depth due to refusal.

^e Boring advanced with stainless steel hand auger.

4

Field Investigation Results

This section presents the results of E & E's field investigation and includes a discussion of project area geology and topography, significant field observations, sampling rationale, and laboratory analytical results relative to applicable criteria.

E & E's field observations and sample selection rationale are summarized by site and boring in Table 4-1. Soil samples collected for laboratory analysis were analyzed for VOCs, semi-volatile organic compounds (SVOCs), and total and toxicity characteristic leaching procedure (TCLP) metals listed in 35 Illinois Administrative Code (IAC) 1100, Subpart F. Selected samples were analyzed for individual metals by synthetic precipitation leaching procedure (SPLP) analysis, based on TCLP analysis results, as discussed below. Samples collected at ISGS #1314V3-6 (Vacant Land) from borings 1314V3-06-B01, 1314V3-06-B04, and 1314V3-06-B05 and from both borings at ISGS #1314V3-21 (BNSF Railroad) were also analyzed for polychlorinated biphenyls (PCBs) based on PESA information indicating PCBs were detected in a previous PSI near the location of these borings.

Laboratory results were reviewed by E & E for field and laboratory precision, accuracy, and completeness in accordance with procedures and quality control (QC) limits. The maximum detected concentrations of analytes in soil and groundwater and a comparison with applicable reference concentrations are presented by site in Tables 4-2 and 4-3. Analytes detected at concentrations above applicable reference concentrations are considered contaminants of concern (COCs). A discussion of the analytical results is presented below, and a summary of detected analytes is presented in Appendix C. Laboratory data packages, including E & E's data review, are included as Appendix D.

The detected analyte concentrations in soil are compared with the Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations (MACs) presented in 35 IAC 1100, Subpart F and TACO Tier 1 Remediation Objectives (ROs) for residential ingestion and inhalation exposure presented in 35 IAC 742, Appendix B, Table A. When the MAC for an inorganic analyte is based on the Tiered Approach to Corrective Action Objectives (TACO) Class I soil component of the groundwater ingestion exposure route (SCGIER) presented in 35 IAC 742, Appendix B, Table C, the total concentration for the analyte is compared with the MAC, and the results of TCLP and SPLP analyses are independently compared with the TACO Class I SCGIER for the analyte found in 35 IAC 742, Appendix B, Table A. The

analyte is considered to exceed the MAC if the total, TCLP, and SPLP results all exceed the applicable criteria.

When the MAC for a constituent is location-specific, the detected constituent concentration is also compared with the MAC for a metropolitan statistical area (MSA). Location-specific MACs have been established for arsenic, iron, manganese, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)-anthracene, and indeno(1,2,3-cd)pyrene. Analytes detected at concentrations above applicable reference criteria in project area soil are considered COCs and are presented in Table 4-3.

E & E also evaluated sample pH levels and the results of PID headspace screening pursuant to 35 IAC 1100.201(g) and 205(b)(1), respectively. Soil pH must be between 6.25 and 9.0 standard units (SU) in order for the soil to be accepted at a clean construction or demolition debris (CCDD) facility or an uncontaminated soil fill operation (USFO). In addition, loads of soil exhibiting PID readings above background cannot be accepted by a CCDD facility or USFO. Table 4-4 presents a summary of COCs identified by boring and sample for each site.

When one or more COCs are detected in a boring, aggregate areas of impacted soil are delineated without regard for property boundaries or planned excavation activities. The areal extent of impacted soil at an individual boring is represented by a rectangle centered on the boring and extending from the centerline of the roadway to the construction limit. The rectangle will extend laterally one-half the distance between the affected boring and the next adjacent boring that does not contain a COC. If no adjacent borings are present, the impacted area will extend laterally 50 feet in each direction.

When the estimated impacted area at a boring extends to an adjacent site, the impacts are also assumed for the applicable area of the adjacent site in the calculation of impacted construction quantities. The impacted soil excavation quantities for construction are calculated based on the assumption that the impacted soil extends from the ground surface to the proposed excavation depth for the construction feature within the impacted area.

The detected analyte concentrations in groundwater are compared with the TACO Tier 1 groundwater component of the groundwater ingestion exposure route (GCGIER) for Class I and Class II groundwater, presented in 35 IAC 742, Appendix B, Table E. When impacted groundwater is identified within the proposed construction excavation depth, E & E assumes that one excavation volume of groundwater will require removal and off-site disposal.

E & E's field investigation was designed to provide an initial characterization of site conditions at pre-designated boring locations. The investigation was limited in terms of analytical parameters and the number of samples collected, based on the site information presented in ISGS PESA #1314V3. Consequently, the find-

ings and conclusions of this investigation are subject to revision if more site data become available.

Portions of the site area were previously investigated by Weston Solutions, Inc. (Weston) under PTB No. 167-034, Work Order No. 040. Where applicable, E & E has incorporated the findings of Weston's investigation in the estimates of impacted soil. Excerpts from the PSI report, dated May 30, 2014, are included for reference as Appendix E.

4.1 Project Area Geology and Topography

E & E advanced 101 soil borings for this project to depths ranging from approximately two to 18 feet bgs. Observations of subsurface materials in the project area are described for each of the soil borings in Appendix B. The following information was provided by ISGS PESA #1314V3:

The topmost bedrock unit in the project area from the Mississippi River to 14th Street has been mapped as rocks of the Muscatatuck Group of Devonian age, which consist primarily of limestones.

The total thickness of surficial deposits in the project area have been mapped as greater than 50 feet thick near the Mississippi River to less than 50 feet thick in the remainder of the project area. Surficial deposits from the Mississippi River to 6th Avenue have been mapped as silts and sands of the Cahokia Formation, greater than 20 feet in thickness overlying sand and gravel of the Henry Formation, greater than 20 feet in total thickness. Surficial deposits from 6th Avenue to 15th Avenue have been mapped as silts of the Peoria and Roxana Silt, less than 20 feet in thickness overlying silts and clays of the Glasford Formation, less than 20 feet in total thickness.

Along the project ROW, the Natural Resources Conservation Service (NRCS) has not classified any soils as containing 33 to 100 percent hydric components. The NRCS has classified the Orthents, loamy, undulating; Hickory-Sylvan silt loams, 35 to 60 percent slopes; Hickory-Sylvan-Fayette silt loams, 10 to 18 percent slopes, eroded; and Hickory-Sylvan-Fayette silt loams, 18 to 30 percent slopes as non-prime farmland.

Surficial drainage in the project area is generally toward the north in the direction of the Mississippi River. However, since the project area is urbanized and storm drains and sewers are present, most surficial runoff will be controlled by the storm sewer system; such systems typically are designed to follow natural drainage patterns. Neither the near-surface nor the shallow unconfined groundwater flow direction was specifically determined for this project, but they generally mimic local topography.

The stratigraphy of the boreholes advanced during E & E's investigation revealed fill material in all but eleven of the borings. The fill consisted of topsoil, sand/

gravel mixtures, reworked native material, slag, asphalt, concrete, and brick, and ranged in thickness from less than one foot to 12 feet. North of 4th Avenue, native materials encountered during this investigation were black to light brown silts, sands, and clays consistent with the Cahokia alluvium overlying light brown sands and gravels consistent with the Henry Formation. South of 4th Avenue, and in a few borings just north of 4th Avenue, native materials consisted of light brown to black silt and clay, pink to tan silt and very fine sand, and gray-brown to dark brown clay with little gravel, consistent with Peoria and Roxana loess and glacial till from the Glasford Formation. E & E encountered groundwater at sites 1314V3-01 (borings B01 and B02), 1314V3-02 (B01), 1314V3-04 (B01), 1314V3-06 (B10), and 1314V3-07 (B01 and B02) at depths ranging from five to 11 feet bgs.

4.2 ISGS #1314V3-1 (IDOT ROW)

4.2.1 Field Observations at ISGS #1314V3-1

E & E advanced eleven borings (1314V3-01-B01 through 1314V3-01-B11) at ISGS #1314V3-1 (IDOT ROW) under contract #64C08 (see Table 4-1 and Figures 4-1, 4-2, and 4-4). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination.

Borings 1314V3-01-B01 and 1314V3-01-B02 were proposed to a depth of 16 feet bgs; however, the borings were completed at depths of 11 and 8 feet bgs, respectively, due to the presence of groundwater. Consequently, only one soil sample was collected at 1314V3-01-B02. E & E encountered refusal at borings 1314V3-01-B03, -B04, -B05, and -B06 prior to the proposed completion depths. Boring 1314V3-01-B10 was advanced to a depth of 6 feet with a stainless steel hand auger, and only one soil sample was collected for laboratory analysis. A duplicate soil sample was collected from boring 1314V3-01-B06. E & E encountered groundwater in boring 1314V3-01-B01, and collected groundwater sample 1314V3-01-G01.

4.2.2 Analytical Results for ISGS #1314V3-1 4.2.2.1 Soil

Acetone and 2-butanone (methyl-ethyl ketone [MEK]) were the only VOCs detected in the samples (see Table 4-2). Twenty SVOCs, primarily PAHs, were detected in the site samples. Twenty-four metals were detected in the samples, and nine of the metals were detected by TCLP analysis. Based on the TCLP metals results, one sample was analyzed for cadmium, nine samples were analyzed for lead, and 15 samples were analyzed for manganese by SPLP. Cadmium was not detected by SPLP. SPLP lead was detected in eight of the nine samples analyzed, and SPLP manganese was detected in each of the 15 samples analyzed for SPLP manganese. The sample pHs ranged from 7.6 to 9.4 SU.

4.2.2.2 Groundwater

Analytes detected in groundwater at the site are presented in Table 4-3. Analysis of the groundwater sample did not reveal the presence of VOCs. One SVOC (diethyl phthalate) and fifteen metals were detected in the groundwater sample.

4.2.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-1

4.2.3.1 Soil

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead, and manganese were detected above reference criteria in site soil (see Table 4-4). Benzo(a)anthracene and benzo(b)fluoranthene were detected at concentrations above the most stringent MACs and Chicago MACs but below the MSA MACs in sample 1314V3-01-B04 (0-6).

Benzo(a)pyrene was detected in samples 1314V3-01-B04 (0-6), 1314V3-01-B05 (0-6), and 1314V3-01-B05 (6-12) at concentrations above the most stringent MAC, but below the Chicago and MSA MACs. Dibenzo(a,h)anthracene was also detected in sample 1314V3-01-B04 (0-6) at a concentration above the most stringent MAC, but below the Chicago and MSA MACs.

Manganese was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in sample 1314V3-01-B04 (6-12). The following samples contained TCLP and SPLP manganese above the TACO Class 1 SCGIER, but the total manganese concentrations detected in the samples were below the most stringent MAC:

- 1314V3-01-B02 (0-8)
- 1314V3-01-B04 (0-6)
- 1314V3-01-B05 (0-6)
- 1314V3-01-B05 (6-12)
- 1314V3-01-B06 (0-8)
- 1314V3-01-B08 (0-4)
- 1314V3-01-B09 (0-6)
- 1314V3-01-B09 (6-11.6)
- 1314V3-01-B10 (0-6)
- 1314V3-01-B11 (8-15)

The following samples contained TCLP and SPLP lead above the TACO Class 1 SCGIER, but the total lead concentrations detected in the samples were below the most MAC:

- 1314V3-01-B01 (0-6)
- 1314V3-01-B04 (0-6)

- 1314V3-01-B04 (6-12)
- 1314V3-01-B05 (0-6)
- 1314V3-01-B05 (6-12)
- 1314V3-01-B06 (0-8)
- 1314V3-01-B07 (0-6)
- 1314V3-01-B09 (6-11.6)

No other COCs were identified in site soil. Manganese was detected above applicable reference concentrations by total and TCLP analyses in sample 1314V3-01-B03 (0-8); however, SPLP manganese did not exceed the TACO Class 1 SCGIER. TCLP manganese was detected at concentrations above the TACO Class 1 SCGIER in samples 1314V3-01-B01 (6-11.6) and 1314V3-01-B07 (0-6); however, manganese was not detected above applicable reference concentrations by total and SPLP analyses. TCLP lead was detected in sample 1314V3-01-B03 (0-8) at a concentration above the TACO Class 1 SCGIER, but lead was not detected in the sample above applicable reference concentrations by total and SPLP analyses. TCLP cadmium was detected at a concentration above the TACO Class 1 SCGIER in sample 1314V3-01-B05 (0-6); however, cadmium was not detected above applicable reference concentrations by total and SPLP analyses. Iron was detected at concentrations above MACs in seven samples, but TCLP iron was not detected in any of the samples at concentrations above the TACO Class 1 SCGIER. Manganese was detected at a concentration above MACs in sample 1314V3-01-B08 (4-9), but manganese was not detected in the sample by TCLP analysis.

VOCs were not detected during headspace screening of site soil. The pH of 9.4 SU for sample 1314V3-01-B03 (0-8) and 9.3 SU for sample 1314V3-01-B04 (0-6) were above the acceptable range for management of the soil at a CCDD facility or USFO. The pH levels for the remaining samples were within the acceptable range.

4.2.3.2 Groundwater

Iron and manganese were detected at concentrations above their respective TACO Tier 1 ROs for Class 1 groundwater (see Table 4-3). The iron concentration also exceeded the TACO Tier 1 RO for Class 2 groundwater. The extent of the TACO exceedances in groundwater cannot be determined from existing information. The installation of permanent wells would be necessary to determine the nature and extent of the TACO exceedances in groundwater.

4.2.4 IDOT Construction Activities at ISGS #1314V3-1 4.2.4.1 Soil

Construction activities anticipated at this site include ramp and ditch construction; and installation of bridge piers and storm sewers. Excavations associated with the improvements are estimated to extend to a maximum depth of 17 feet bgs for bridge pier replacement.

The assumed areas of impact and COCs are depicted on Figures 4-1, 4-2, 4-4, 4-5, 4-8, and 4-16. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas that will require proper handling and disposal if removed from the site.

4.2.4.2 Groundwater

Groundwater was encountered at a depth of 11 feet bgs in boring 1314V3-01-B01 at the location of a proposed storm sewer. Excavation in the vicinity of the boring is proposed to an approximate depth of 16 feet bgs; consequently, it is anticipated that groundwater will be encountered during construction at the site.

Based on the COCs detected in groundwater (inorganics), and the type of construction activity (storm sewer), it is anticipated that any groundwater encountered during construction will be managed within the excavation. Consequently, E & E has not included an estimated cost for off-site management of impacted groundwater.

4.3 ISGS #1314V3-2 (Mississippi River)

4.3.1 Field Observations at ISGS #1314V3-2

E & E advanced two borings (1314V3-02-B01 and 1314V3-02-B02) at ISGS #1314V3-2 (Mississippi River) (see Table 4-1 and Figure 4-1). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected two samples from each boring for laboratory analysis. A duplicate soil sample was also collected from boring 1314V3-02-B02. E & E encountered groundwater at the site and collected groundwater sample 1314V3-02-G01 at boring 1314V3-02-B01. E & E also collected a duplicate groundwater sample at boring 1314V3-02-B01.

4.3.2 Analytical Results for ISGS #1314V3-2 4.3.2.1 Soil

Acetone was the only VOC detected in the samples (see Table 4-2). Sixteen SVOCs, all PAHs, were detected in the site samples. Twenty-two metals were detected in the samples, and nine of the metals were detected by TCLP analysis. Based on the TCLP metals results, one sample was analyzed for SPLP cadmium, four samples were analyzed for SPLP manganese, and one sample was analyzed for SPLP nickel. Cadmium was not detected by SPLP analysis. Manganese and nickel were detected in the respective samples by SPLP analysis. The sample pH levels ranged from 8.9 to 11.6 SU.

4.3.2.2 Groundwater

Analytes detected in groundwater at the site are presented in Table 4-3. Total xylenes were detected in the groundwater sample 1314V3-02-G01, but xylenes were not detected in duplicate sample 1314V3-02-G01D. No other VOCs were detected. Two SVOCs (diethyl phthalate and phenanthrene) and twenty metals were also detected in the groundwater samples.

4.3.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-2

4.3.3.1 Soil

Benzo(a)pyrene and manganese were detected above reference criteria in site soil (see Table 4-4). Benzo(a)pyrene was detected in sample 1314V3-02-B01 (5-10) at a concentration above the most stringent MAC, but below the Chicago and MSA MACs. TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in samples 1314V3-02-B01 (5-10), 1314V3-02-B02 (6-12), and duplicate sample 1314V3-02-B02 (6-12)D; however, the total manganese concentrations detected in the samples were below the most stringent MAC.

No other COCs were identified at the site. Manganese was detected at a concentration above MACs in sample 1314V3-02-B01 (0-5), but manganese was not detected in the sample by TCLP analysis. Chromium and iron were detected at concentrations above the respective MACs in sample 1314V3-02-B02 (0-6), but neither of the analytes was detected in the sample by TCLP analysis. TCLP manganese and nickel were detected at concentrations above the TACO Class 1 SCGIER in sample 1314V3-02-B02 (0-6); however, the analytes were not detected above applicable reference concentrations by total and SPLP analyses. TCLP cadmium was detected at a concentration above the TACO Class 1 SCGIER in sample 1314V3-02-B02 (6-12); however, cadmium was not detected above applicable reference concentrations by total and SPLP analyses.

VOCs were not detected during headspace screening of site soil. The pH of 11.6 SU for sample 1314V3-02-B01 (0-5), 9.8 SU for sample 1314V3-02-B01 (5-10), and 9.1 SU for samples 1314V3-02-B02 (0-6) and 1314V3-02-B02 (6-12) were above the acceptable range for management of the soil at a CCDD facility or USFO. Only duplicate sample 1314V3-02-B02 (6-12)D exhibited a pH within the acceptable range.

4.3.3.2 Groundwater

Iron, lead, and manganese were detected at concentrations above their respective TACO Tier 1 ROs for Class 1 groundwater in both the original and the duplicate groundwater samples (see Table 4-3). The detected iron and lead concentrations also exceeded the TACO Tier 1 ROs for Class 2 groundwater. The extent of the TACO exceedances in groundwater cannot be determined from existing information. The installation of permanent wells would be necessary to determine the nature and extent of the TACO exceedances in groundwater.

4.3.4 IDOT Construction Activities at ISGS #1314V3-2 4.3.4.1 Soil

Construction activities anticipated at this site include ramp and ditch construction, and storm sewer installation. Excavations associated with the improvements are estimated to extend to a maximum depth of 13 feet bgs for storm sewer.

The assumed areas of impact and COCs are depicted on Figures 4-1, 4-5, and 4-6. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas that will require proper handling and disposal if removed from the site.

4.3.4.2 Groundwater

Groundwater was encountered at a depth of 11 feet bgs in boring 1314V3-02-B01 at the location of a proposed storm sewer. Excavation in the vicinity of the boring is proposed to an approximate depth of 12 feet bgs; consequently, it is anticipated that groundwater will be encountered during construction at the site.

Based on the COCs detected in groundwater (inorganics), and the type of construction activity (storm sewer), it is anticipated that any groundwater encountered during construction will be managed within the excavation. Consequently, E & E has not included an estimated cost for off-site management of impacted groundwater.

4.4 ISGS #1314V3-4 (City of Moline, Water Department) 4.4.1 Field Observations at ISGS #1314V3-4

E & E advanced one boring (1314V3-4-B01) at ISGS #1314V3-4 (City of Moline, Water Department) (see Table 4-1 and Figure 4-1). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected two soil samples from the boring for laboratory analysis. E & E encountered groundwater in the boring and collected groundwater sample 1314V3-04-G01.

Prior to advancing the borings, E & E conducted a magnetometer survey at ISGS #1314V3-4 (City of Moline, Water Department) in an attempt to identify potential USTs within the project construction area. E & E surveyed the construction area surrounding boring 1314V3-04-B01. E & E did not observe an anomaly indicative of an UST during the survey.

4.4.2 Analytical Results for ISGS #1314V3-4 4.4.2.1 Soil

Acetone and MEK were the only VOCs detected in the samples (see Table 4-2). Seventeen SVOCs, all PAHs, were detected in the site samples. Twenty-three metals were detected in the samples, and eight of the metals were also detected by TCLP analysis. Based on the TCLP metals results, both of the samples were analyzed for SPLP lead and manganese, and both analytes were detected in each sample. The pH of both samples was 8 SU.

4.4.2.2 Groundwater

Analytes detected in groundwater at the site are presented in Table 4-3. Analysis of the groundwater sample did not reveal the presence of VOCs. Ten SVOCs and nineteen metals were detected in the groundwater sample.

4.4.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-4

4.4.3.1 Soil

Benzo(a)pyrene, lead, and manganese were detected above reference criteria in site soil (see Table 4-4). Benzo(a)pyrene was detected in both samples at concentrations above the most stringent MAC, but below the Chicago and MSA MACs.

Lead was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in sample 1314V3-04-B01 (6-11). TCLP and SPLP lead were detected above the TACO Class 1 SCGIER in sample 1314V3-04-B01 (0-6); however, the total lead concentration detected in the sample was below the MAC. TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in sample 1314V3-04-B01 (6-11); however, the total manganese concentration detected in the sample was below the most stringent MAC.

No other COCs were identified at the site. Boron was detected above the MAC in sample 1314V3-04-B01 (6-11); however, TCLP boron did not exceed the TACO Class 1 SCGIER. Iron was detected at concentrations above MACs in both samples but TCLP iron did not exceed the TACO Class 1 SCGIER. TCLP manganese was detected at a concentration above the TACO Class 1 SCGIER in sample 1314V3-04-B01 (0-6); however, manganese was not detected above applicable reference concentrations by total and SPLP analyses.

VOCs were not detected during headspace screening of site soil, and the sample pH levels were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.4.3.2 Groundwater

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, iron, lead, and manganese were detected in sample 1314V3-04-G01 at concentrations above the respective TACO Tier 1 ROs for Class 1 groundwater. The detected benzo(a)anthracene, benzo(b)fluoranthene, and iron concentrations also exceeded the TACO Tier 1 ROs for Class 2 groundwater. The extent of the TACO exceedances in groundwater cannot be determined from existing information. The installation of permanent wells would be necessary to determine the nature and extent of the TACO exceedances in groundwater.

4.4.4 IDOT Construction Activities at ISGS #1314V3-4 4.4.4.1 Soil

Construction activities anticipated at this site include grading and storm sewer installation. Excavations associated with the improvements are estimated to extend to a maximum depth of 12 feet bgs for storm sewer.

The assumed areas of impact and COCs are depicted on Figures 4-1 and 4-6. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas that will require proper handling and disposal if removed from the site.

4.4.4.2 Groundwater

Groundwater was encountered at a depth of 11 feet bgs in boring 1314V3-04-B01 at the location of a proposed storm sewer. Excavation in the vicinity of the boring is proposed to an approximate depth of 16 feet bgs; consequently, it is anticipated that groundwater will be encountered during construction at the site.

Based on the PAHs detected in groundwater, it is anticipated that groundwater encountered during construction will be managed off site. Table 4-6 presents an estimated volume of impacted water within proposed construction excavation areas that will require proper handling and disposal.

4.5 ISGS #1314V3-5 (Industrial Building)

4.5.1 Field Observations at ISGS #1314V3-5

E & E advanced three borings (1314V3-05-B01 through 1314V3-05-B03) at ISGS #1314V3-5 (Industrial Building) (see Table 4-1 and Figures 4-1 and 4-2). E & E encountered refusal in each of the three borings prior to their completion depths; as a result, E & E only collected one soil sample from boring 1314V3-05-B03. VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. A groundwater sample was not proposed for collection at this site, and E & E did not encounter groundwater in any of the site borings.

E & E conducted a magnetometer survey at ISGS #1314V3-5 (Industrial Building) and advanced borings 1314V3-05-B02 and 1314V3-05-B03, in an attempt to identify potential USTs within a portion of the property identified as being acquired by IDOT. E & E did not observe an anomaly indicative of an UST during the survey.

4.5.2 Analytical Results for ISGS #1314V3-5

VOCs were not detected in soil from this site (see Table 4-2). Nineteen SVOCs, primarily PAHs, were detected in the site samples. Twenty metals were detected in the site samples, and seven of the metals were detected by TCLP analysis. Based on the TCLP metals results, one sample was analyzed for SPLP lead, and all of the samples were analyzed for SPLP manganese. SPLP manganese was detected in three of the four samples, and SPLP lead was detected in the sample analyzed for lead. The sample pH levels ranged from 7 to 8.2 SU.

4.5.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-5

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead, and manganese were detected above reference concentrations in soil at

the site (see Table 4-4). Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene were detected in sample 1314V3-05-B03 (0-5.9) at concentrations above the most stringent MACs, but below the Chicago and MSA MACs.

Manganese was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in sample 1314V3-05-B03 (0-5.9). TCLP and SPLP lead were detected above the TACO Class 1 SCGIER in the sample; however, the total lead concentration detected in the sample was below the MAC.

TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in samples 1314V3-05-B02 (0-6) and 1314V3-05-B02 (6-10.6); however, the total manganese concentrations detected in the samples were below the most stringent MAC.

No other COCs were identified at the site. Manganese was detected above applicable reference concentrations by total and TCLP analyses in sample 1314V3-05-B01 (0-5); however, manganese was not detected by SPLP analysis. Iron was detected at concentrations above MACs in samples 1314V3-05-B01 (0-5), 1314V3-05-B02 (6-10.6), and 1314V3-05-B03 (0-5.9), but iron was not detected in the samples by TCLP analysis. VOCs were not detected during headspace screening of site soil, and the sample pH levels were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.5.4 IDOT Construction Activities at ISGS #1314V3-5 4.5.4.1 Soil

Construction activities anticipated at this site include ramp reconstruction and storm sewer installation in the vicinity of boring 1314V3-05-B01. Excavations associated with the improvements are estimated to extend to a maximum depth of 7.5 feet bgs. Borings 1314V1-05-B02 and 1314V1-05-B03 were advanced to assess an area of the site for the presence of an UST. Project plans do not indicate that excavation is planned in the vicinity of borings 1314V1-05-B02 and 1314V1-05-B03.

The assumed areas of impact and COCs are depicted on Figures 4-1, 4-2, 4-6, and 4-8. Based on the findings presented above, impacted soil is not anticipated within the proposed construction excavation area.

4.6 ISGS #1314V3-6 (Vacant Land)

4.6.1 Field Observations at ISGS #1314V3-6

E & E advanced 11 borings (1314V3-06-B01 through 1314V3-06-B11) at ISGS #1314V3-6 (Vacant Land) (see Table 4-1 and Figures 4-1 and 4-2). E & E encountered refusal in five of the site borings at depths ranging between four and 10.7 feet bgs (see Table 3-1). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of

potential chemical contamination. E & E encountered groundwater at boring 1314V3-06-B10, and collected groundwater sample 1314V3-06-G01.

4.6.2 Analytical Results for ISGS #1314V3-6 4.6.2.1 Soil

VOCs were not detected in soil from this site (see Table 4-2). Twenty-one SVOCs, primarily PAHs, were detected in the site samples. Three PCBS were detected in the samples. Twenty-four metals were detected in the samples, and ten of the metals were detected by TCLP analysis. Based on the TCLP metals results, all the samples were analyzed for SPLP manganese except for 1314V3-06-B11 (0-6), and manganese was detected in each samples. Samples 1314V3-06-B02 (0-8), 1314V3-06-B07 (0-4.3), 1314V3-06-B08 (0-5), and 1314V3-06-B08 (5-10) were analyzed for SPLP cadmium, and cadmium was detected in only 1314V3-06-B08 (5-10). Sample 1314V3-06-B01 (0-8) was also analyzed for SPLP iron and nickel and 1314V3-06-B08 (5-10) was analyzed for zinc; the analytes were detected in their respective samples. The sample pH levels ranged from 7.8 to 8.9 SU.

4.6.2.2 Groundwater

Analytes detected in groundwater at the site are presented in Table 4-3. Analysis of the groundwater sample did not reveal the presence of VOCs or SVOCs. Seventeen metals were detected in the groundwater sample.

4.6.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-6

4.6.3.1 Soil

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, carbazole, dibenzo-(a,h)anthracene, indeno(1,2,3-cd)pyrene, arsenic, lead, iron, and manganese were detected above reference criteria in site soil (see Table 4-4).

Benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene were detected at concentrations above all MACs and above TACO Tier 1 ROs for residential soil exposure in sample 1314V3-06-B07 (0-4.3). Carbazole was also detected in the sample above the MAC, and the detected dibenzo(a,h)anthracene and indeno-(1,2,3-cd)pyrene concentrations were above the most stringent MACs and the Chicago MACs, but below the MSA MACs.

Benzo(a)pyrene was detected at a concentration above the most stringent MAC, but below the Chicago and MSA MACs in the following samples:

- 1314V3-06-B01 (0-8)
- 1314V3-06-B02 (0-8)
- 1314V3-06-B04 (0-5.2)
- 1314V3-06-B06 (0-4)
- 1314V3-06-B08 (0-5)

- 1314V3-06-B08 (5-10)
- 1314V3-06-B09 (0-2)
- 1314V3-06-B10 (0-6)
- 1314V3-06-B10 (6-11)

Benzo(a)anthracene was detected in sample 1314V3-06-B02 (0-8) at a concentration above the most stringent MAC, but below the Chicago and MSA MACs. Benzo(b)fluoranthene was detected at a concentration above the most stringent MAC, but below the Chicago and MSA MACs in samples 1314V3-06-B02 (0-8), 1314V3-06-B08 (0-5), and 1314V3-06-B09 (0-2). Dibenzo(a,h)anthracene was detected at a concentration above the most stringent MAC In samples 1314V3-06-B02 (0-8) and 1314V3-06-B08 (0-5), but below the Chicago and MSA MACs.

Arsenic was detected in sample 1314V3-06-B01 (0-8) at a concentration above the MSA MAC and above the TACO Tier 1 RO for residential soil exposure. Lead was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in sample 1314V3-06-B08 (5-10), and the concentration also exceeded the TACO Tier 1 RO for residential soil exposure.

Iron was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in sample 1314V3-06-B01 (0-8). Manganese was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in sample 1314V3-06-B02 (0-8). TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in the following samples; however, the total manganese concentrations detected in the samples were below the most stringent MAC:

- 1314V3-06-B03 (0-4)
- 1314V3-06-B04 (0-5.2)
- 1314V3-06-B05 (0-8)
- 1314V3-06-B07 (0-4.3)
- 1314V3-06-B08 (0-5)
- 1314V3-06-B09 (0-2)
- 1314V3-06-B11 (6-10.7)

Weston advanced 20 borings (VL1-1 through VL1-19 and VB-5) at ISGS #1314V3-6 (Vacant Lot) under PTB No. 167-034, Work Order No. 040. Summary tables and figures from the Weston PSI are included as Appendix E.

No other COCs were identified at the site. Chromium was detected above the MAC in six of the samples, but TCLP chromium was only detected in one of the samples, and at a concentration below the TACO Class 1 SCGIER. Total iron was detected above the MAC in six samples in addition to sample 1314V3-06-B01 (0-8); however, TCLP iron was either not detected in the respective samples,

or the detected concentration did not exceed the TACO Class 1 SCGIER. Total lead was detected at concentrations above the MAC in samples 1314V3-06-B01 (0-8), 1314V3-06-B06 (0-4), and 1314V3-06-B08 (0-5), but TCLP lead was not detected above applicable reference concentrations in the samples. Selenium and thallium were detected at concentrations above the MACs in sample 1314V3-06-B01 (0-8), but neither analyte were detected by TCLP analysis.

Manganese and nickel were detected above applicable reference concentrations by total and TCLP analyses in sample 1314V3-06-B01 (0-8); however, SPLP manganese and nickel did not exceed the applicable reference concentrations. Cadmium was detected above applicable reference concentrations by total and TCLP analyses in sample 1314V3-06-B08 (5-10); however, the detected SPLP cadmium concentration was below the TACO Class 1 SCGIER.

TCLP cadmium was detected at concentrations above the TACO Class 1 SCGIER in samples 1314V3-06-B02 (0-8), 1314V3-06-B07 (0-4.3), 1314V3-06-B08 (0-5), and 1314V3-06-B08 (5-10); however, cadmium was not detected above applicable reference concentrations by total and SPLP analyses. TCLP manganese was detected at concentrations above the TACO Class 1 SCGIER in samples 1314V3-06-B06 (0-4), 1314V3-06-B08 (5-10), 1314V3-06-B10 (0-6), and 1314V3-06-B10 (6-11); however, manganese was not detected in the samples above applicable reference concentrations by total and SPLP analyses. TCLP zinc was detected at a concentration above the TACO Class 1 SCGIER in sample 1314V3-06-B08 (5-10); however, zinc was not detected above applicable reference concentrations by total and SPLP analyses. VOCs were not detected during head-space screening of site soil, and the sample pH levels were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.6.3.2 Groundwater

Iron, lead, and manganese were detected at concentrations above their respective TACO Tier 1 ROs for Class 1 groundwater in the groundwater sample (see Table 4-3). The iron concentration also exceeded the TACO Tier 1 RO for Class 2 groundwater. The extent of the TACO exceedances in groundwater cannot be determined from existing information. The installation of permanent wells would be necessary to determine the nature and extent of the TACO exceedances in groundwater.

4.6.4 IDOT Construction Activities at ISGS #1314V3-6 4.6.4.1 Soil

Construction activities anticipated at this site include ramp and ditch construction; bridge pier and storm sewer installation; and removal of unsuitable material. Excavations associated with the improvements are estimated to extend to a maximum depth of 20 feet bgs for removal of unsuitable material.

The assumed areas of impact and COCs are depicted on Figures 4-1, 4-2, 4-6, 4-7, and 4-8. Additional information from the Weston PSI is presented on Figures

4-1d, 4-1e, 4-3a and 4-3b in Appendix E. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas that will require proper handling and disposal if removed from the site.

4.6.4.2 Groundwater

Groundwater was encountered at a depth of 11 feet bgs in boring 1314V3-06-B10 at the location of a proposed bridge pier and storm sewer. Excavation in the vicinity of the boring is proposed to an approximate depth of 12 feet bgs; consequently, it is anticipated that groundwater will be encountered during construction at the site.

Based on the COCs detected in groundwater (inorganics), and the type of construction activity (bridge pier and storm sewer), it is anticipated that any groundwater encountered during construction will be managed within the excavation. Consequently, E & E has not included an estimated cost for off-site groundwater management.

4.7 ISGS #1314V3-7 (River Stone Moline Yard) 4.7.1 Field Observations at ISGS #1314V3-7

E & E advanced four borings (1314V3-07-B01 through 1314V3-07-B04) at ISGS #1314V3-7 (River Stone Moline Yard) (see Table 4-1 and Figure 4-1). Borings 1314V3-07-B01 and 1314V3-07-B02 were terminated before reaching the proposed completion depths of 15 and 13 feet bgs respectively; due to the presence of groundwater. E & E collected only one soil sample from each of the two borings. E & E encountered refusal at 5.5 feet in boring 1314V3-07-B03 and collected only one soil sample from the boring for laboratory analysis. E & E collected groundwater sample 1314V3-07-G01 at boring 1314V3-07-B01.

E & E detected VOCs during headspace screening of samples from boring 1314V3-07-B02. PID readings between 3.6 and 33.7 meter units (MU) were detected from the ground surface to 5 feet bgs in boring 1314V3-07-B02. A strong petroleum odor was noticed emanating from the soil samples, and E & E observed sheen on the groundwater encountered in this boring.

4.7.2 Analytical Results for ISGS #1314V3-7 4.7.2.1 Soil

Acetone, MEK, and 2-hexanone (methyl butyl ketone [MBK]) were detected in site samples (see Table 4-2). MBK was the only VOC detected in the sample from boring 1314V3-07-B02. Twenty SVOCs, primarily PAHs, were detected in the site samples. Twenty-two metals were detected in the samples, and ten of the metals were also detected by TCLP analysis. Based on the TCLP metals results, two samples were analyzed for SPLP cadmium, one sample was analyzed for SPLP iron and lead, and four of the samples were analyzed for SPLP manganese. Manganese was detected in three of the four samples by SPLP analysis. The other analytes were not detected by SPLP. The sample pH levels ranged from 8 to 9.6 SU.

4.7.2.2 Groundwater

Analytes detected in groundwater at the site are presented in Table 4-3. Analysis of the groundwater sample did not reveal the presence of VOCs. Twelve SVOCs and sixteen metals were detected in the groundwater sample.

4.7.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-7

4.7.3.1 Soil

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, arsenic, and manganese were detected above reference criteria in site soil (see Table 4-4).

The following borings contained one or more PAHs at concentrations above the respective MSA MAC, and above a TACO Tier 1 RO for residential soil exposure:

- 1314V3-07-B01 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene)
- 1314V3-07-B03 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene)
- 1314V3-07-B04 (benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)-anthracene, indeno(1,2,3-cd)pyrene)

Dibenzo(a,h)anthracene was detected at a concentration above the most stringent and Chicago MACs, but below the MSA MAC in sample 1314V3-07-B02 (0-5). Indeno(1,2,3-cd)pyrene was detected at a concentration above the most stringent and Chicago MACs, but below the MSA MAC in sample 1314V3-07-B03 (0-5.5).

Benzo(a)anthracene was detected in samples 1314V3-07-B02 (0-5) and 1314V3-07-B04 (0-5) at concentrations above the most stringent MAC, but below the Chicago and MSA MACs. Benzo(a)pyrene and benzo(b)fluoranthene were also detected in sample 1314V3-07-B02 (0-5) at concentrations above the most stringent MACs, but below the Chicago and MSA MACs.

Arsenic was detected at a concentration above the MSA MAC and the TACO Tier 1 RO for residential soil exposure in sample 1314V3-07-B03 (0-5.5). TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in sample 1314V3-07-B05 (5-11); however, the total manganese concentration detected in the sample was below the most stringent MAC.

No other COCs were identified at the site. Manganese was detected above applicable reference concentrations by total and TCLP analyses in samples 1314V3-07-B02 (0-5) and 1314V3-07-B03 (0-5.5); however, SPLP manganese was not detected above applicable reference concentrations in the samples. Iron and lead were detected above applicable reference concentrations by total and TCLP

analyses in sample 1314V3-07-B03 (0-5.5); however, the analytes were not detected in the sample by SPLP analysis.

Boron was detected above the MAC in samples 1314V3-07-B03 (0-5.5) and 1314V3-07-B04 (0-5); however, the detected TCLP boron concentrations were below the TACO Class 1 SCGIER. Chromium and selenium were detected at concentrations above the respective MACs in sample 1314V3-07-B03 (0-5.5), but neither analyte was detected in the sample by TCLP analysis. Iron was detected at concentrations above MACs in samples 1314V3-07-B02 (0-5) and 1314V3-07-B04 (0-5), but iron was not detected by TCLP analysis. TCLP manganese was detected at a concentration above the TACO Class 1 SCGIER in sample 1314V3-07-B04 (0-5); however, manganese was not detected above applicable reference concentrations by total or SPLP analyses.

VOCs were detected during PID headspace screening of soil from boring 1314V3-07-B02. The sample pH of 9.6 from sample 1314V3-07-B01 (0-6) was above the acceptable range for management of the soil at a CCDD facility or USFO. The remaining sample pH levels were within the acceptable range.

4.7.3.2 Groundwater

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, iron, lead and manganese were detected at concentrations above the respective TACO Tier 1 ROs for Class 1 groundwater in sample 1314V3-07-G01 (see Table 4-3). The detected iron concentration also exceeded the TACO Tier 1 RO for Class 2 groundwater. A groundwater sample was not collected at boring 1314V3-07-B02, but groundwater encountered in that boring exhibited sheen indicative of chemical contamination. The extent of the groundwater impacts cannot be determined from existing information. The installation of permanent wells would be necessary to determine the nature and extent of the TACO exceedances in groundwater.

4.7.4 IDOT Construction Activities at ISGS #1314V3-7 4.7.4.1 Soil

Construction activities anticipated at this site include ramp and ditch construction; retaining wall and storm sewer installation; and removal of unsuitable materials. Excavations associated with the improvements are estimated to extend to a maximum depth of 20 feet bgs for removal of unsuitable material.

The assumed areas of impact and COCs are depicted on Figures 4-1 and 4-7. Table 4-5 presents an estimated volume of impacted soil within proposed construction excavation areas that will require proper handling and disposal if removed from the site.

4.7.4.2 Groundwater

Groundwater was encountered at a depth of 6 feet bgs in boring 1314V3-07-B01 and 5 feet bgs in boring 1314V3-07-B02. Excavation in the vicinity of the bor-

ings is proposed to an approximate depth of 20 feet bgs; consequently, it is anticipated that groundwater will be encountered during construction at the site.

Based on the COCs detected in groundwater (PAHs and inorganics), it is anticipated that groundwater encountered during storm sewer installation will be managed off site. Table 4-6 presents estimated volumes of impacted water within proposed construction excavation areas that will require proper handling and disposal. Although groundwater from boring 1314V3-07-B02 was not sampled, water from the boring exhibited visible contamination.

4.8 ISGS #1314V3-8 (Commercial Building)

4.8.1 Field Observations at ISGS #1314V3-8

E & E advanced one boring (1314V3-08-B01) at ISGS #1314V3-8 (Commercial Building) (see Table 4-1 and Figure 4-1). VOCs were not detected during head-space screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected two samples from the boring for laboratory analysis.

4.8.2 Analytical Results for ISGS #1314V3-8

Acetone and MEK were the only VOCs detected in soil from the site (see Table 4-2). Eighteen SVOCs, primarily PAHs, were detected in the site samples. Twenty-two metals were detected in the site samples, and nine of the metals were detected by TCLP analysis. Based on the TCLP metals results, samples were analyzed for antimony, cadmium, lead, and manganese by SPLP. Cadmium, lead, and manganese were detected by SPLP. The sample pH levels were 7.8 and 7.7 SU.

4.8.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-8

Benzo(a)pyrene and lead were detected above reference concentrations in soil at the site (see Table 4-4). Benzo(a)pyrene was detected in sample 1314V3-08-B01 (0-6) at a concentration above the most stringent MAC, but below the Chicago and MSA MACs. TCLP and SPLP lead were detected above the TACO Class 1 SCGIER in sample 1314V3-08-B01 (0-6); however, the total lead concentration detected in the sample was below the MAC.

No other COCs were identified at the site. Iron was detected at a concentration above MACs in sample 1314V3-08-B01 (6-12), but iron was not detected in the sample by TCLP analysis. TCLP manganese was detected at concentrations above the TACO Class 1 SCGIER in both samples; however, manganese was not detected in either sample at concentrations above applicable reference concentrations by total and SPLP analyses. TCLP antimony and cadmium were detected at concentrations above the TACO Class 1 SCGIER in samples 1314V3-08-B01 (0-6) and 1314V3-08-B01 (6-12), respectively; however, the analytes were not detected in the respective samples at concentrations above applicable reference concentrations by total and SPLP analyses.

Weston advanced 1 boring (CB-8) within the current proposed construction area at ISGS #1314V3-8 (Commercial Building) under PTB No. 167-034, Work Order No. 040. Summary tables and figures from the Weston PSI are included as Appendix E.

VOCs were not detected during headspace screening of site soil, and the sample pH levels were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.8.4 IDOT Construction Activities at ISGS #1314V3-8 4.8.4.1 Soil

Construction activities anticipated at this site include ramp construction, ditch work, and retaining wall and storm sewer installation. Excavations associated with the improvements are estimated to extend to a maximum depth of 12 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-1 and 4-7. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

4.9 ISGS #1314V3-11 (Vacant Land)

4.9.1 Field Observations at ISGS #1314V3-11

E & E advanced three borings (1314V3-11-B01 through 1314V3-11-B03) at ISGS #1314V3-11 (Vacant Land) using a stainless steel hand auger (see Table 4-1 and Figure 4-2). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected one sample from each boring for laboratory analysis, and a duplicate sample from boring 1314V3-11-B03.

4.9.2 Analytical Results for ISGS #1314V3-11

VOCs were not detected in soil from the site (see Table 4-2). Seventeen SVOCs, all PAHs, were detected in the site samples. Twenty-two metals were detected in the site samples, and five of the metals were detected by TCLP analysis. Based on the TCLP metals results, all of the samples were analyzed for SPLP manganese, and SPLP manganese was detected in all the samples. The sample pHs ranged from 8.4 to 8.5 SU.

4.9.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-11

Benzo(a)pyrene and manganese were detected above reference concentrations in soil at the site (see Table 4-4). Benzo(a)pyrene was detected in samples 1314V3-11-B02 (0-1), 1314V3-11-B03 (0-1), and 1314V3-11-B03 (0-1)D at concentrations above the most stringent MAC, but below the Chicago and MSA MACs. TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in

all of the samples; however, the total manganese concentrations detected in the samples were below the most stringent MAC.

No other COCs were identified at the site. Lead was detected at a concentration above the MAC in sample 1314V3-11-B02 (0-1), but lead was not detected in the sample by TCLP analysis. VOCs were not detected during headspace screening of site soil, and the sample pHs were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.9.4 IDOT Construction Activities at ISGS #1314V3-11 4.9.4.1 Soil

Construction activities anticipated at this site include grading. Excavations associated with the improvements are estimated to extend to a maximum depth of 5 inches bgs.

The assumed areas of impact and COCs are depicted on Figures 4-2 and 4-9. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

4.10 ISGS #1314V3-17 (Parking Lot) 4.10.1 Field Observations at ISGS #1314V3-17

E & E advanced three borings (1314V3-17-B01 through 1314V3-17-B03) at ISGS #1314V3-17 (Parking Lot) (see Table 4-1 and Figure 4-2). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected one sample from each boring for laboratory analysis including a duplicate sample from 1314V3-17-B03.

E & E conducted a magnetometer survey at ISGS #1314V3-17 (Parking Lot) in an attempt to identify potential USTs within the project construction area. E & E surveyed the construction area surrounding borings 1314V3-17-B01, 1314V3-17-B02, and 1314V3-17-B03. E & E did not observe an anomaly indicative of an UST during the survey.

4.10.2 Analytical Results for ISGS #1314V3-17

VOCs were not detected in the samples from this site (see Table 4-2). Nineteen SVOCs, primarily PAHs, were detected in the site samples. Twenty metals were detected in the site samples, and nine of the metals were detected by TCLP analysis. Based on the TCLP metals results, all of the samples were analyzed for SPLP manganese, and manganese was detected in all the samples. Sample 1314V3-17-B02 (0-7) was also analyzed for SPLP lead, and lead was detected in the sample. The sample pH levels ranged from 7.1 to 7.9 SU.

4.10.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-17

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, arsenic, lead, and manganese were detected above reference concentrations in soil at the site (see Table 4-4). Benzo(b)fluoranthene was detected in sample 1314V3-17-B02 (0-7) at a concentration above the most stringent MAC and Chicago MACs, but below the MSA MAC. Benzo(a)anthracene and benzo(a)pyrene were detected in sample 1314V3-17-B02 (0-7) at concentrations above the most stringent MACs, but below the Chicago and MSA MACs.

Arsenic was detected in sample 1314V3-17-B02 (0-7) at a concentration above the MSA MAC and also above the TACO Tier 1 RO for residential soil exposure. Lead was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in sample 1314V3-17-B02 (0-7). TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in samples 1314V3-17-B02 (0-7), 1314V3-17-B03 (0-7), and 1314V3-17-B03 (0-7)D; however, the total manganese concentrations detected in the samples were below the most stringent MAC.

No other COCs were identified at the site. Iron and selenium were detected above MACs in sample 1314V3-17-B02 (0-7); however, neither analyte was detected above applicable reference concentrations by TCLP analysis. TCLP manganese was detected at a concentration above the TACO Class 1 SCGIER in sample 1314V3-17-B01 (0-7), but manganese was not detected in the sample above applicable reference concentrations by total and SPLP analyses.

VOCs were not detected during headspace screening of site soil, and the sample pH levels were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.10.4 IDOT Construction Activities at ISGS #1314V3-17 4.10.4.1 Soil

Construction activities anticipated at this site include grading. Excavations associated with the improvements are estimated to extend to a maximum depth of 7 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-2 and 4-9. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

4.11 ISGS #1314V3-18 (Vacant Land) 4.11.1 Field Observations at ISGS #1314V3-18

E & E advanced nine borings (1314V3-18-B01 through 1314V3-18-B09) at ISGS #1314V3-18 (Vacant Land) (see Table 4-1 and Figure 4-2). E & E encountered refusal prior to reaching the proposed completion depth in borings 1314V3-18-

B03, 1314V3-18-B04, and 1314V3-18-B05 (see Table 3-1). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination.

E & E conducted a magnetometer survey and advanced borings 1314V3-18-B04, 1314V3-18-B07, 1314V3-18-B08, and 1314V3-18-B09 at ISGS #1314V3-18 (Vacant Land) in an attempt to identify potential USTs within the project construction area. E & E did not observe an anomaly indicative of an UST during the survey.

4.11.2 Analytical Results for ISGS #1314V3-18

Acetone and MEK were the only VOCs detected in the samples from this site (see Table 4-2). Twenty SVOCs, primarily PAHs, were detected in the site samples. Twenty-two metals were detected in the site samples, and nine of the metals were detected by TCLP analysis. Based on the TCLP metals results, one sample was analyzed for SPLP cadmium, three samples were analyzed for SPLP lead, and all of the samples were analyzed for SPLP manganese. SPLP lead was detected in three samples, and SPLP manganese was detected in 16 of the 17 samples. The sample pH levels ranged from 7.6 to 8.7 SU.

4.11.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-18

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, arsenic, lead, manganese, and thallium were detected above reference concentrations in soil at the site (see Table 4-4). Benzo(a)pyrene was detected at concentrations above the most stringent MAC, but below the Chicago and MSA MACs, in samples 1314V3-18-B02 (7-13), 1314V3-18-B04 (0-5.3), 1314V3-18-B06 (0-6), and 1314V3-18-B08 (0-4.4). Benzo(a)anthracene and benzo(b)fluoranthene were also detected in sample 1314V3-18-B06 (0-6) at concentrations above the most stringent MACs, but below the Chicago and MSA MACs.

Arsenic and thallium were both detected in sample 1314V3-18-B09 (0-8) at concentrations above applicable MACs as well as TACO Tier 1 soil ROs for residential and construction worker exposure.

TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in the following samples; however, the total manganese concentrations detected in the samples were below the most stringent MAC:

- 1314V3-18-B01 (0-6)
- 1314V3-18-B01 (6-12)
- 1314V3-18-B01 (12-18)
- 1314V3-18-B03 (0-6)
- 1314V3-18-B03 (6-12)
- 1314V3-18-B04 (0-5.3)

- 1314V3-18-B05 (0-8)
- 1314V3-18-B06 (0-6)
- 1314V3-18-B06 (12-17)
- 1314V3-18-B08 (0-4.4)
- 1314V3-18-B09 (0-8)

TCLP and SPLP lead were detected above the TACO Class 1 SCGIER in samples 1314V3-18-B05 (0-8), 1314V3-18-B06 (6-12), and 1314V3-18-B08 (0-4.4); however, the total lead concentrations detected in the samples were below the MAC.

No other COCs were identified at the site. Iron was detected above MACs in samples 1314V3-18-B02 (0-7)D, 1314V3-18-B06 (6-12), and 1314V3-18-B09 (0-8); however, the TCLP iron was not detected in the samples at concentrations above the TACO Class 1 SCGIER. Beryllium, boron, and selenium were detected above MACs in sample 1314V3-18-B09 (0-8); however, the detected TCLP boron concentration did not exceed the TACO Class 1 SCGIER, and the other analytes were not detected by TCLP. TCLP manganese was detected at a concentration above the TACO Class 1 SCGIER in samples 1314V3-18-B02 (0-7), 1314V3-18-B02 (0-7)D, 1314V3-18-B02 (7-13), 1314V3-18-B05 (8-12), 1314V3-18-B06 (6-12), and 1314V3-18-B07 (0-8), but manganese was not detected in the samples above applicable reference concentration above the TACO Class 1 SCGIER in sample 1314V3-18-B06 (6-12), but cadmium was not detected above applicable reference concentrations by total and SPLP analyses.

Weston advanced 8 borings (VL2-2 through VL2-6 and VL2-8 through VL2-10) within the proposed construction at ISGS #1314V3-18 (Vacant Land) under PTB No. 167-034, Work Order No. 040. Summary tables and figures from the Weston PSI are included as Appendix E.

VOCs were not detected during headspace screening of site soil, and the sample pH levels were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.11.4 IDOT Construction Activities at ISGS #1314V3-18 4.11.4.1 Soil

Construction activities anticipated at this site include ramp construction; bridge pier, retention wall, and storm sewer installation; and grading. Excavations associated with the improvements are estimated to extend to a maximum depth of 18 feet bgs for pier installation.

The assumed areas of impact and COCs are depicted on Figures 4-2, 4-9 and 4-10. Table 4-5 presents an estimated volume of impacted soil within the pro-

posed construction excavation area that will require proper handling and disposal if removed from the site.

4.12 ISGS #1314V3-21 (BNSF Railroad)

4.12.1 Field Observations at ISGS #1314V3-21

E & E advanced two borings (1314V3-21-B01 and 1314V3-21-B02) at ISGS #1314V3-21 (BNSF Railroad) (see Table 4-1 and Figure 4-2). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected two samples from boring 1314V3-21-B01 and one sample from boring 1314V3-21-B02 for laboratory analysis. A duplicate sample was also collected at boring 1314V3-21-B02.

4.12.2 Analytical Results for ISGS #1314V3-21

Acetone and MEK were the only VOCs detected in the samples from this site (see Table 4-2). Both of the VOCs were detected in the original and duplicate sample from boring 1314V3-21-B02. Nineteen SVOCs, primarily PAHs, were detected in the site samples. PCB-1260 was detected in sample 1314V3-21-B01 (5-10).

Twenty-two metals were detected in the site samples, and nine of the metals were detected by TCLP analysis. Based on the TCLP metals results, sample 1314V3-21-B01 (0-5) was analyzed for SPLP manganese, and sample 1314V3-21-B02 (0-6) was analyzed for SPLP antimony, lead, and manganese. Duplicate sample 1314V3-21-B02 (0-6)D was analyzed for SPLP lead and manganese. Each of the analytes was detected in the respective sample. The sample pH levels ranged from 7.5 to 7.8 SU.

4.12.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-21

Benzo(a)pyrene, antimony, lead, and manganese were detected above reference concentrations in soil at the site (see Table 4-4). Benzo(a)pyrene was detected at concentrations above the most stringent MAC, but below the Chicago and MSA MACs, in samples 1314V3-21-B01 (0-5), 1314V3-21-B02 (0-6), and 1314V3-21-B02 (0-6)D. Lead was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in samples 1314V3-21-B02 (0-6) and 1314V3-21-B02 (0-6)D.

TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in samples 1314V3-21-B01 (0-5), 1314V3-21-B02 (0-6), and 1314V3-21-B02 (0-6)D; however, the total manganese concentrations detected in the samples were below the most stringent MAC. TCLP and SPLP antimony were detected above the TACO Class 1 SCGIER in sample 1314V3-21-B02 (0-6); however, the total antimony concentration detected in the sample was below the most MAC.

No other COCs were identified at the site. Boron, selenium, iron and thallium were detected in one or more samples at a concentration above the MAC; how-

ever none of the analytes were detected above applicable reference concentrations by TCLP analysis.

VOCs were not detected during headspace screening of site soil, and the sample pHs were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.12.4 IDOT Construction Activities at ISGS #1314V3-21 4.12.4.1 Soil

Construction activities anticipated at this site include ramp and storm sewer construction. Excavations associated with the improvements are estimated to extend to a maximum depth of 10 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-2 and 4-10. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

4.13 ISGS #1314V3-24 (John Deere)

4.13.1 Field Observations at ISGS #1314V3-24

E & E advanced 14 borings (1314V3-24-B01 through 1314V3-24-B14) at ISGS #1314V3-24 (John Deere) (see Table 4-1 and Figures 4-2 and 4-3). Boring 1314V3-24-B09 was advanced with a stainless steel hand auger. Boring 1314V3-24-B01 encountered refusal and only one soil sample was collected from this boring. VOCs were not detected during headspace screening of site soils, and the soils did not exhibit evidence of potential chemical contamination. E & E collected one sample from each boring for laboratory analysis. A duplicate sample was also collected from boring 1314V3-24-B04.

E & E conducted a magnetometer survey at ISGS #1314V3-24 (John Deere) and advanced borings 1314V3-24-B11, 1314V3-24-B12, 1314V3-24-B13, and 1314V3-24-B14 in an attempt to identify potential USTs within the project construction area. E & E detected a small rectangular anomaly measuring approximately 2 feet long and 3 feet wide in a parking lot north of 5th Avenue in the vicinity of the above-mentioned borings. The location of the anomaly is shown on Figure 4-3 and photographs of the area are included in Appendix D.

4.13.2 Analytical Results for ISGS #1314V3-24

Tetrachloroethene (perchloroethylene [PCE]) and total xylenes were detected in samples from this site (see Table 4-2). PCE was detected in sample 1314V3-24-B06 (0-4), and PCE and xylenes were detected in sample 1314V3-24-B13 (0-6).

Twenty SVOCs, primarily PAHs, were detected in the site samples. Twenty-three metals were detected in the site samples, and nine of the metals were detected by TCLP analysis. Based on the TCLP metals results, five samples were analyzed for SPLP antimony, 10 samples were analyzed for SPLP lead, and 20 samples

were analyzed for SPLP manganese. SPLP antimony and SPLP lead were detected in each of the respective samples analyzed for the metals. SPLP manganese was detected in 16 of the 20 samples analyzed. The sample pH levels ranged from 7.2 to 9 SU.

4.13.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-24

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, antimony, arsenic, lead, and manganese were detected above reference concentrations in soil at the site (see Table 4-4).

Benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene were detected in sample 1314V3-24-B10 (0-5) at concentrations above MSA MACs and above TACO Tier 1 ROs for residential soil exposure. Dibenzo(a,h)anthracene and indeno(1,2,3-cd)pyrene were also detected in the sample at concentrations above the most stringent MACs and Chicago MACs but below the MSA MACs.

Benzo(a)pyrene was detected in the following samples at concentrations above the most stringent MAC, but below the Chicago and MSA MACs:

- 1314V3-24-B01 (0-5.8)
- 1314V3-24-B02 (0-5)
- 1314V3-24-B04 (0-5)
- 1314V3-24-B05 (0-5)
- 1314V3-24-B11 (0-6)
- 1314V3-24-B12 (0-6)

Benzo(a)anthracene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene were also detected in sample 1314V3-24-B04 (0-5) at a concentration above the most stringent MAC, but below the Chicago and MSA MACs.

Arsenic was detected in samples 1314V3-24-B02 (0-5) and 1314V3-24-B08 (0-8) at concentrations above the MSA MAC and above the TACO Tier 1 soil ROs for residential and construction worker exposure. Antimony was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in samples 1314V3-24-B02 (0-5), 1314V3-24-B05 (0-5), 1314V3-24-B12 (0-6), and 1314V3-24-B13 (0-6).

Lead was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in the following samples:

- 1314V3-24-B02 (0-5)
- 1314V3-24-B03 (0-5)
- 1314V3-24-B04 (0-5)

- 1314V3-24-B05 (0-5)
- 1314V3-24-B07 (0-5)
- 1314V3-24-B10 (0-5)
- 1314V3-24-B11 (0-6)
- 1314V3-24-B12 (0-6)
- 1314V3-24-B13 (0-6)
- 1314V3-24-B14 (0-6)

The total lead concentration detected in sample 1314V3-24-B02 (0-5) also exceeded the TACO Tier 1 RO for the residential soil exposure route.

Manganese was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in samples 1314V3-24-B04 (5-10), 1314V3-24-B06 (0-4) and 1314V3-24-B12 (0-6). The total manganese concentration detected in sample 1314V3-24-B12 (0-6) also exceeded the TACO Tier 1 RO for the residential soil exposure route.

TCLP and SPLP antimony were detected above the TACO Class 1 SCGIER in sample 1314V3-24-B04 (0-5); however, the total antimony concentration detected in the sample was below the MAC. TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in the following samples, but the total manganese concentrations detected in the samples were below the most stringent MAC:

- 1314V3-24-B03 (0-5)
- 1314V3-24-B03 (5-10)
- 1314V3-24-B04 (0-5)
- 1314V3-24-B04 (5-10)D
- 1314V3-24-B05 (0-5)
- 1314V3-24-B07 (0-5)
- 1314V3-24-B09 (0-4)
- 1314V3-24-B11 (0-6)

No other COCs were identified at the site. Total concentrations of boron, chromium, iron, manganese, selenium, and thallium were detected in samples at concentrations above applicable reference concentrations; however, the analytes were not detected in the samples by TCLP analysis, or the detected concentrations were below applicable reference concentrations.

Manganese was detected above applicable reference concentrations by total and TCLP analyses in samples 1314V3-24-B02 (0-5), 1314V3-24-B10 (0-5), and 1314V3-24-B13 (0-6); however, manganese was not detected above applicable reference concentrations by SPLP analysis. TCLP manganese was detected at a

concentration above the TACO Class 1 SCGIER in samples 1314V3-24-B01 (0-5.8), 1314V3-24-B02 (5-10), 1314V3-24-B11 (6-12), 1314V3-24-B12 (6-12), and 1314V3-24-B14 (6-12), but manganese was not detected in the samples above applicable reference concentrations by total and SPLP analyses.

VOCs were not detected during headspace screening of site soil, and the sample pH levels were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.13.4 IDOT Construction Activities at ISGS #1314V3-24 4.13.4.1 Soil

Construction activities anticipated at this site include ramp construction, and installation of pier, retaining wall, and storm sewer. Excavations associated with the improvements are estimated to extend to a maximum depth of 10 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-2, 4-3, 4-11, 4-12 and 4-13. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site. E & E identified an anomaly that could possibly be an UST. Consequently, E & E has included an estimated cost for removal of one UST during construction activities.

4.14 ISGS #1314V3-25 (Sivyer Steel Corp.) 4.14.1 Field Observations at ISGS #1314V3-25

E & E advanced seven borings (1314V3-25-B01 through 1314V3-25-B07) at ISGS #1314V3-25 (Sivyer Steel Corp.) (see Table 4-1 and Figures 4-2 and 4-3). Four of the borings were advanced within the existing building on-site. VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected one sample from boring 1314V3-25-B03 for laboratory analysis, and two samples from each of the other borings.

4.14.2 Analytical Results for ISGS #1314V3-25

VOCs were not detected in soil from this site (see Table 4-2). Nineteen SVOCs, primarily PAHs, were detected in the site samples. Twenty-three metals were detected in the site samples, and ten of the metals were detected by TCLP analysis. Based on the TCLP metals results, SPLP analysis was conducted for antimony (two samples), cadmium (two samples), lead (four samples), and manganese (10 samples). Antimony, lead, and manganese were detected by SPLP analysis. The sample pH levels ranged from 7 to 8.5 SU.

4.14.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-25

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, antimony, arsenic, lead, and manganese were detected above reference concentrations in soil at the site (see Table 4-4).

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h)-anthracene were detected in sample 1314V3-25-B01 (0-6) at concentrations above the MSA MACs and also above the TACO Tier 1 ROs for residential soil exposure. Indeno(1,2,3-cd)pyrene was also detected in the sample at a concentration above the Chicago MAC, but below the MSA MAC.

Benzo(a)pyrene was detected in sample 1314V3-25-B05 (0-6) at a concentration above the most stringent MAC, but below the Chicago and MSA MACs.

Benzo(a)anthracene and benzo(b)fluoranthene were detected at concentrations above MSA MACs and above TACO Tier 1 ROs for residential soil exposure in sample 1314V3-25-B06 (0-6). Benzo(a)pyrene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were also detected in the sample at concentrations above Chicago MACs, but below the MSA MACs.

Arsenic was detected in sample 1314V3-25-B06 (0-6) at a concentration above the MSA MAC and the TACO Tier 1 RO for residential soil exposure. Antimony was also detected above applicable reference concentrations for total, TCLP, and SPLP analyses in the sample.

Lead was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in samples 1314V3-25-B01 (0-6), 1314V3-25-B02 (0-6), 1314V3-25-B05 (0-6), and 1314V3-25-B06 (0-6). The total lead concentrations detected in samples 1314V3-25-B05 (0-6) and 1314V3-25-B06 (0-6) also exceeded the TACO Tier 1 ROs for residential soil exposure and construction worker exposure. Although lead was not detected by TCLP analysis in sample 1314V3-25-B03 (0-8), the total lead concentration detected in sample exceeded the TACO Tier 1 RO for residential soil exposure.

Manganese was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in samples 1314V3-25-B01 (0-6) and 1314V3-25-B05 (0-6). TCLP and SPLP antimony were detected above the TACO Class 1 SCGIER in sample 1314V3-25-B05 (0-6); however, the total antimony concentration detected in the sample was below the MAC. TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in samples 1314V3-25-B01 (6-12), 1314V3-25-B02 (6-12), 1314V3-25-B03 (0-8), 1314V3-25-B04 (6-12), and 1314V3-25-B07 (0-6); however, the total manganese concentrations detected in the samples were below the most stringent MAC.

No other COCs were identified at the site. Total concentrations of antimony, boron, chromium, iron, manganese, and selenium were detected in samples at concentrations above applicable reference concentrations; however, the analytes were not detected in the samples by TCLP analysis, or the detected concentrations were below applicable reference concentrations.

VOCs were not detected during headspace screening of site soil, and the sample pHs were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.14.4 IDOT Construction Activities at ISGS #1314V3-25 4.14.4.1 Soil

Construction activities anticipated at this site include ramp construction, and bridge pier and storm sewer installation. Excavations associated with the improvements are estimated to extend to a maximum depth of 12 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-2, 4-3, 4-11, 4-and 13. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

4.15 ISGS #1314V3-26 (Commercial Building) 4.15.1 Field Observations at ISGS #1314V3-26

E & E advanced two borings (1314V3-26-B01 and 1314V3-26-B02) at ISGS #1314V3-26 (Commercial Building) (see Table 4-1 and Figure 4-3). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected one sample from each boring for laboratory analysis.

E & E conducted a magnetometer survey at ISGS #1314V3-26 (Commercial Building) in an attempt to identify potential USTs within the project construction area. E & E surveyed the construction area surrounding the existing building on the site. E & E did not observe an anomaly indicative of an UST during the survey.

4.15.2 Analytical Results for ISGS #1314V3-26

VOCs were not detected in soil from this site (see Table 4-2). Fourteen SVOCs, all PAHs, were detected in the site samples. Twenty-two metals were detected in the site samples, and six of the metals were detected by TCLP analysis. Based on the TCLP metals results, sample 1314V3-26-B01 (0-8) was analyzed for SPLP manganese, and manganese was detected in the sample. Both samples exhibited a pH of 8.2 SU.

4.15.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-26

COCs were not identified in soil at ISGS #1314V3-26 (see Table 4-4). TCLP manganese was detected at a concentration above the TACO Tier 1 SCGIER; however, the total and SPLP manganese concentrations detected in the sample were below applicable reference concentrations. VOCs were not detected during headspace screening of site soil, and the sample pH levels were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.15.4 IDOT Construction Activities at ISGS #1314V3-26 4.15.4.1 Soil

Construction activities anticipated at this site include ramp and retaining wall construction, and storm sewer installation. Excavations associated with the improvements are estimated to extend to a maximum depth of 8 feet bgs.

The site borings and detected analytes are depicted on Figures 4-3 and 4-14. COCs were not identified at the site; consequently, E & E has not estimated a volume of impacted soil associated with the proposed construction excavation.

4.16 ISGS #1314V3-32 (Commercial Buildings) 4.16.1 Field Observations at ISGS #1314V3-32

E & E advanced eight borings (1314V3-32-B01 through 1314V3-32-B08) at ISGS #1314V3-32 (Commercial Buildings) (see Table 4-1 and Figures 4-3 and 4-4). The boring was advanced with a stainless steel hand auger. VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected two samples each from borings 1314V3-32-B01 through 1314V3-32-B04, and one sample each from borings 1314V3-32-B05 through 1314V3-32-B08 for laboratory analysis.

E & E conducted a magnetometer survey and advanced borings 1314V3-32-B01, 1314V3-32-B02, 1314V3-32-B03, 1314V3-32-B04, and 1314V3-32-B05 at ISGS #1314V3-32 (Commercial Buildings) in an attempt to identify potential USTs within the project construction area. E & E did not observe an anomaly indicative of an UST during the survey. This site was under demolition during E & E's field sampling activities. The on-site demolition supervisor informed E & E that fill sand was present to a depth of 11 feet bgs in the area of the suspected tank, indicating that the UST had been removed.

4.16.2 Analytical Results for ISGS #1314V3-32

VOCs were not detected in soil from this site (see Table 4-2). Fourteen SVOCs, primarily PAHs, were detected in the site samples. Twenty-three metals were detected in the site samples, and seven of the metals were detected by TCLP analysis. Based on the TCLP metals results, SPLP analysis was conducted for manganese on nine of the 12 samples. SPLP manganese was detected in eight of the nine samples analyzed. The sample pH levels ranged from 7.6 to 8.9 SU.

4.16.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-32

Benzo(a)pyrene and manganese were detected above reference concentrations in soil at the site (see Table 4-4). Benzo(a)pyrene was detected in samples 1314V3-32-B05 (0-3) and 1314V3-32-B06 (0-3) at concentrations above the most stringent MAC, but below the Chicago and MSA MACs.

TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in the following samples; however, the total manganese concentrations detected in the samples were below the most stringent MAC:

- 1314V3-32-B01 (0-6)
- 1314V3-32-B01 (6-12)
- 1314V3-32-B02 (0-6)
- 1314V3-32-B02 (6-12)
- 1314V3-32-B03 (0-6)
- 1314V3-32-B03 (6-12)
- 1314V3-32-B04 (0-6)
- 1314V3-32-B06 (0-3)

No other COCs were identified at the site. Chromium, iron, lead, and mercury were detected at concentrations above MACs in soil samples, but none of the analytes were detected by TCLP analysis. VOCs were not detected during head-space screening of site soil, and the sample pH levels were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.16.4 IDOT Construction Activities at ISGS #1314V3-32 4.16.4.1 Soil

Construction activities anticipated at this site include road reconstruction. Excavations associated with the improvements are estimated to extend to a maximum depth of 3 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-3, 4-4, and 4-14. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

4.17 ISGS #1314V3-33 (Parking Lot) 4.17.1 Field Observations at ISGS #1314V3-33

E & E advanced seven borings (1314V3-33-B01 through 1314V3-33-B07) at ISGS #1314V3-33 (Parking Lot) (see Table 4-1 and Figure 4-3). E & E encountered refusal in boring 1314V3-33-B02 at 9.4 feet bgs. VOCs were detected in soil samples from boring 1314V3-33-B04 during sample headspace screening. A PID reading of 2.9 MU was detected from soil taken from the 10- to 12-foot depth interval of the boring. A petroleum odor was also noted from soil taken from the boring. E & E collected two samples from each boring for laboratory analysis.

E & E conducted a magnetometer survey and advanced borings 1314V3-33-B01, 1314V3-33-B03, 1314V3-33-B04, and 1314V3-33-B05 at ISGS #1314V3-33 (Parking Lot) in an attempt to identify potential USTs within the project construction area. This site was under demolition during a majority of E & E's field

activities, and the concrete parking lot had been removed prior to the magnetometer survey. E & E did not observe an anomaly indicative of an UST during the survey; however, the observations of petroleum odors and VOCs during headspace screening of soil from boring 1314V3-33-B04 indicate possible residual contamination from an UST.

4.17.2 Analytical Results for ISGS #1314V3-33

VOCs were not detected by laboratory analysis of soil from the site (see Table 4-2). Twenty SVOCs, primarily PAHs, were detected in the site samples. Twenty-one metals were detected in the site samples, and eight of the metals were detected by TCLP analysis. Based on the TCLP metals results, SPLP analysis was conducted for cadmium (one sample), lead (three samples) and manganese (12 samples). Each of the metals were detected in the respective samples. The sample pH levels ranged from 7.6 to 8.8 SU.

4.17.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-33

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, carbazole, dibenzo-(a,h)anthracene, indeno(1,2,3-cd)pyrene, lead, and manganese were detected above reference concentrations in soil at the site (see Table 4-4). Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno-(1,2,3-cd)pyrene were detected in sample 1314V3-33-B03 (0-6) at concentrations above MSA MACs and above TACO Tier 1 ROs for residential soil exposure. Carbazole was also detected above the MAC in the sample.

Benzo(a)pyrene was detected in samples 1314V3-33-B01 (0-6), 1314V3-33-B02 (0-5), and 1314V3-33-B04 (0-6) at concentrations above the most stringent MAC, but below the Chicago and MSA MACs.

Lead was detected above applicable reference concentrations by total, TCLP, and SPLP analyses in sample 1314V3-33-B04 (0-6). The total lead concentration detected in the sample exceeded TACO Tier 1 soil ROs for residential and construction worker exposure.

TCLP and SPLP manganese were detected in the following samples at concentrations above the TACO Class 1 SCGIER; however, the total manganese concentrations detected in the samples were below the most stringent MAC:

- 1314V3-33-B01 (0-6)
- 1314V3-33-B02 (0-5)
- 1314V3-33-B02 (5-9.4)
- 1314V3-33-B04 (0-6)
- 1314V3-33-B04 (6-12)
- 1314V3-33-B05 (0-6)

- 1314V3-33-B05 (6-12)
- 1314V3-33-B06 (0-6)
- 1314V3-33-B07 (0-8)
- 1314V3-33-B07 (0-8)D

TCLP and SPLP lead were detected above the TACO Class 1 SCGIER in samples 1314V3-33-B07 (0-8) and 1314V3-33-B07 (0-8)D; however, the total lead concentrations detected in the samples were below the MAC.

No other COCs were identified at the site. TCLP cadmium was detected in sample 1314V3-33-B04 (0-6) at a concentration above the TACO Class 1 SCGIER, but cadmium was not detected in the sample above applicable reference concentrations by total and SPLP analyses. TCLP manganese was detected at concentrations above the TACO Class 1 SCGIER in samples 1314V3-33-B01 (6-12) and 1314V3-33-B06 (6-12), but manganese was not detected above applicable reference concentrations by total and SPLP analyses.

The sample pH levels were within the acceptable range for management of the soil at a CCDD facility or USFO; however, VOCs were detected during PID headspace screening of soil from boring 1314V3-33-B04.

4.17.4 IDOT Construction Activities at ISGS #1314V3-33 4.17.4.1 Soil

Construction activities anticipated at this site include sidewalk and road reconstruction. Excavations associated with the improvements are estimated to extend to a maximum depth of 11 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-3, 4-14, and 4-15. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

4.18 ISGS #1314V3-56 (Commercial Building) 4.18.1 Field Observations at ISGS #1314V3-56

E & E advanced three borings (1314V3-56-B01 through 1314V3-56-B03) at ISGS #1314V3-56 (Commercial Building) (see Table 4-1 and Figure 4-4). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected one sample from each boring for laboratory analysis. A duplicate sample was collected at boring 1314V3-56-B02.

E & E conducted a magnetometer survey of existing IDOT ROW at ISGS #1314V3-56 (Commercial Buildings) in an attempt to identify potential USTs within the project construction area. E & E did not observe an anomaly indicative of an UST during the survey.

4.18.2 Analytical Results for ISGS #1314V3-56

VOCs were not detected in soil from this site (see Table 4-2). Eleven SVOCs, all PAHs, were detected in the site samples. Twenty-two metals were detected in the site samples, and four of the metals were detected by TCLP analysis. Based on the TCLP metals results, all of the samples were analyzed for SPLP manganese, and manganese was detected in all the samples. The sample pH levels ranged from 8 to 9.1 SU.

4.18.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-56

Manganese was detected above reference concentrations in soil at the site (see Table 4-4). TCLP and SPLP manganese were detected in each of the samples at concentrations above the TACO Class 1 SCGIER; however, the total manganese concentrations detected in the samples were below the most stringent MAC.

No other COCs were identified at the site. VOCs were not detected during head-space screening of site soil. The pH levels for three of the samples were within the acceptable range for management of the soil at a CCDD facility or USFO; however, the pH of 9.1 SU for duplicate sample 1314V3-56-B02 (0-3)D exceeded the acceptable range for management of the soil at a CCDD facility or USFO.

4.18.4 IDOT Construction Activities at ISGS #1314V3-56 4.18.4.1 Soil

Construction activities anticipated at this site include road reconstruction. Excavations associated with the improvements are estimated to extend to a maximum depth of 3 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-4 and 4-16. Table 4-4 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

4.19 ISGS #1314V3-57 (Old Chamber Building) 4.19.1 Field Observations at ISGS #1314V3-57

E & E advanced three borings (1314V3-57-B01 through 1314V3-57-B03) at ISGS #1314V3-57 (Old Chamber Building) (see Table 4-1 and Figure 4-4). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected one sample from each boring for laboratory analysis.

E & E conducted a magnetometer survey of existing ROW along 6^{th} Ave at ISGS #1314V3-57 (Old Chamber Building) in an attempt to identify potential USTs within the project construction area. E & E did not observe an anomaly indicative of an UST during the survey.

4.19.2 Analytical Results for ISGS #1314V3-57

VOCs were not detected in soil from this site (see Table 4-2). Seventeen SVOCs, all PAHs, were detected in the site samples. Twenty-two metals were detected in the site samples, and six of the metals were detected by TCLP analysis. Based on the TCLP metals results, SPLP analysis was conducted for lead (one sample) and manganese (two samples). Lead and manganese were detected in the respective samples by SPLP analysis. The sample pH levels ranged from 8.1 to 8.7 SU.

4.19.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-57

Benzo(a)pyrene, lead, and manganese were detected above reference concentrations in soil at the site (see Table 4-4). Benzo(a)pyrene was detected in samples 1314V3-57-B01 (0-3) and 1314V3-57-B02 (0-3) at concentrations above the most stringent MAC, but below the Chicago and MSA MACs.

TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in samples 1314V3-57-B02 (0-3) and 1314V3-57-B03 (0-5); however, the total manganese concentrations detected in the samples were below the most stringent MAC. TCLP and SPLP lead were detected above the TACO Class 1 SCGIER in sample 1314V3-57-B02 (0-3), but the total lead concentration detected in the sample was below the MAC.

No other COCs were identified at the site. VOCs were not detected during headspace screening of site soil, and the sample pHs were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.19.4 IDOT Construction Activities at ISGS #1314V3-57

Construction activities anticipated at this site include road reconstruction and storm sewer installation. Excavations associated with the improvements are estimated to extend to a maximum depth of 5 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-4 and 4-16. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

4.20 ISGS #1314V3-59 (Residence)

4.20.1 Field Observations at ISGS #1314V3-59

E & E advanced one boring (1314V3-59-B01) at ISGS #1314V3-59 (Residence) (see Table 4-1 and Figure 4-4). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected two samples from the boring for laboratory analysis.

4.20.2 Analytical Results for ISGS #1314V3-59

VOCs were not detected in soil from this site (see Table 4-2). Six SVOCs, all PAHs, were detected in the site samples. Twenty-two metals were detected in the site samples, and six of the metals were detected by TCLP analysis. Based on the TCLP metals results, both of the samples were analyzed for SPLP manganese, and manganese was detected in each sample. The sample pH levels were 8.2 and 8.3 SU.

4.20.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-59

Manganese was detected above reference concentrations in soil at the site (see Table 4-4). TCLP and SPLP manganese were detected above the TACO Class 1 SCGIER in both samples; however, the total manganese concentrations detected in the samples were below the most stringent MAC.

No other COCs were identified at the site. Selenium was detected above the MAC in sample 1314V3-59-B01 (5-10); however, the detected TCLP selenium concentration was below the TACO Class 1 SCGIER. VOCs were not detected during headspace screening of site soil, and the sample pHs were within the acceptable range for management of the soil at a CCDD facility or USFO.

4.20.4 IDOT Construction Activities at ISGS #1314V3-59

Construction activities anticipated at this site include road reconstruction and storm sewer installation. Excavations associated with the improvements are estimated to extend to a maximum depth of 10 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-4 and 4-17. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

4.21 ISGS #1314V3-60 (Vacant Lot)

4.21.1 Field Observations at ISGS #1314V3-60

E & E advanced six borings (1314V3-60-B01 through 1314V3-60-B06) at ISGS #1314V3-60 (Vacant Lot) (see Table 4-1 and Figures 4-3 and 4-4). VOCs were not detected during headspace screening of site soils, and the soils did not exhibit discoloration or odors indicative of potential chemical contamination. E & E collected one sample for laboratory analysis from boring 1314V3-60-B02, and two samples from each of the other borings.

4.21.2 Analytical Results for ISGS #1314V3-60

VOCs were not detected in soil from this site (see Table 4-2). Eighteen SVOCs, primarily PAHs, were detected in the site samples. Twenty-one metals were detected in the site samples, and seven of the metals were detected by TCLP analysis. Based on the TCLP metals results, SPLP analysis was conducted for lead (one sample) and manganese (one sample). Both of the analytes were

detected in the respective samples by SPLP analysis. The sample pH levels ranged from 7.5 to 11.8 SU.

4.21.3 Nature and Extent of Contamination above Applicable Criteria at ISGS #1314V3-60

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead, and manganese were detected above reference concentrations in soil at the site (see Table 4-4). Benzo(a)anthracene was detected in sample 1314V3-60-B06 (0-6) at a concentration above the Chicago MACs but below the MSA MAC. Benzo(a)pyrene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene were also detected in the sample at concentrations above the most stringent MACs but below the Chicago and MSA MACs

Benzo(a)pyrene was detected in sample 1314V3-60-B02 (0-7) at a concentration above the most stringent MAC, but below the Chicago and MSA MACs. TCLP and SPLP lead were also detected in the sample at concentrations above the TACO Class 1 SCGIER, but the total lead concentration detected in the sample was below the MAC.

TCLP and SPLP manganese were detected at concentrations above the TACO Class 1 SCGIER in sample 1314V3-60-B04 (0-5), but the total manganese concentration detected in the sample was below the most stringent MAC.

No other COCs were identified at the site. Iron was detected at a concentration above MACs in sample 1314V3-60-B06 (6-12), but iron was not detected by TCLP analysis. Manganese was detected above MACs in samples 1314V3-60-B06 (0-6) and 1314V3-60-B06 (6-12); however, TCLP manganese was not detected in sample 1314V3-60-B06 (0-6), and the detected concentration in sample 1314V3-60-B06 (6-12) was below the TACO Class 1 SCGIER.

VOCs were not detected during headspace screening of site soil. The pH of 11.8 SU for sample 1314V3-60-B06 (0-6) exceeded the acceptable range for management of the soil at a CCDD facility or USFO. The pHs for the remaining samples were within the acceptable range.

4.21.4 IDOT Construction Activities at ISGS #1314V3-60 4.21.4.1 Soil

Construction activities anticipated at this site include road reconstruction and storm sewer installation. Excavations associated with the improvements are estimated to extend to a maximum depth of 12 feet bgs.

The assumed areas of impact and COCs are depicted on Figures 4-3, 4-4, 4-15, and 4-17. Table 4-5 presents an estimated volume of impacted soil within the proposed construction excavation area that will require proper handling and disposal if removed from the site.

Table 4-1 Field Observations and Sampling Rationale FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

	monno, res	K ISIAIIU CO	unity, iiiiio				
Magnetometer Survey Conducted?	Evidence of UST?	Boring ID	Depth to Groundwater (feet)	Range of PID Readings (meter units)	Observed Evidence of Potential Contamination	Depth Interval(s) Sampled (feet)	Rationale
ISGS #1314V3-1 (P	arking Lot)						
		1314V3-01-B01	11	None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-11	Sampled within proposed construction excavation depth.
		1314V3-01-B02	8	None Detected	None	0-8	Sampled within proposed construction excavation depth.
		1314V3-01-B03		None Detected	None	0-8	Sampled within proposed construction excavation depth.
		1314V3-01-B04		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314V3-01-B04				6-11.2	Sampled within proposed construction excavation depth.
		1314V3-01-B05		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314 V 3-01-B03				6-12	Sampled within proposed construction excavation depth.
	NA	1314V3-01-B06		None Detected	None	0-8	Sampled within proposed construction excavation depth.
No						8-15	Sampled within proposed construction excavation depth.
		1314V3-01-B07		N. B. (1	None	0-6	Sampled within proposed construction excavation depth.
				None Detected		6-12	Sampled within proposed construction excavation depth.
		1314V3-01-B08		None Detected	None	0-4	Sampled within proposed construction excavation depth.
						4-9	Sampled within proposed construction excavation depth.
		1314V3-01-B09		None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-11.2	Sampled within proposed construction excavation depth.
		1314V3-01-B10		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314V3-01-B11		None Detected	None	0-8	Sampled within proposed construction excavation depth.
						8-15	Sampled within proposed construction excavation depth.
ISGS #1314V3-2 (N	Mississippi River)						
No	NA	1314V3-02-B01	11	None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-12	Sampled within proposed construction excavation depth.
		1314V3-02-B02		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314 (3 02 102		1 tone Beteeted	Hone	6-12	Sampled within proposed construction excavation depth.
ISGS #1314V3-4 (C	ity of Moline, Wat	er Department)					
Yes	No	1314V3-04-B01	11	None Detected	None	0-6	Sampled within proposed construction excavation depth.
168			11			6-11	Sampled within proposed construction excavation depth.

Table 4-1 Field Observations and Sampling Rationale FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

	monne, mo	sk islaliu Go	urity, illiiiOl	J			
Magnetometer Survey Conducted?	Evidence of UST?	Boring ID	Depth to Groundwater (feet)	Range of PID Readings (meter units)	Observed Evidence of Potential Contamination	Depth Interval(s) Sampled (feet)	Rationale
SGS #1314V3-5 (Ir	ndustrial Building))					
Yes		1314V3-05-B01		None Detected	None	0-5	Sampled within proposed construction excavation depth.
		1314V3-05-B02		None Detected	None	0-6	Sampled within proposed construction excavation depth.
	No					6-10.5	Sampled within proposed construction excavation depth.
		1314V3-05-B03		None Detected	None	0-5.9	Sampled within proposed construction excavation depth.
GS #1314V3-6 (V	acant Land)						
		1314V3-06-B01		None Detected	None	0-8	Sampled within proposed construction excavation depth.
		1314V3-06-B02		None Detected	None	0-8	Sampled within proposed construction excavation depth.
		1314V3-06-B03		None Detected	None	0-4	Sampled within proposed construction excavation depth.
	NA	1314V3-06-B04		None Detected	None	0-5.2	Sampled within proposed construction excavation depth.
		1314V3-06-B05		None Detected	None	0-8	Sampled within proposed construction excavation depth.
		1314V3-06-B06		None Detected	asphalt odor	0-4	Sampled within proposed construction excavation depth.
No		1314V3-06-B07		None Detected	None	0-4.3	Sampled within proposed construction excavation depth.
		1314V3-06-B08		None Detected	None	0-5	Sampled within proposed construction excavation depth.
						5-10	Sampled within proposed construction excavation depth.
		1314V3-06-B09		None Detected	None	0-2	Sampled within proposed construction excavation depth.
		1314V3-06-B10	11	None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-11	Sampled within proposed construction excavation depth.
		1314V3-06-B11		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1	1314 V 3-00-В11		None Detected	None	6-10.7
GS #1314V3-7 (R	River Stone Moline	Yard)					
No	NA	1314V3-07-B01	6	None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314V3-07-B02	5	3.6 - 33.7	Strong petroleum odor and sheen on groundwater at five feet bgs.	0-5	Sampled within proposed construction excavation depth.
		1314V3-07-B03		None Detected	None	0-5.5	Sampled within proposed construction excavation depth.
		1314V3-07-B04		None Detected	None	0-5	Sampled within proposed construction excavation depth.
						5-11	Sampled within proposed construction excavation depth.
GS #1314V3-8 (C	Commercial Buildin	ng)					
No	NA	A 1314V3-08-B01		None Detected	None	0-6	Sampled within proposed construction excavation depth.
				None Detected		6-12	Sampled within proposed construction excavation depth.

Table 4-1 Field Observations and Sampling Rationale FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

	WOILIE, INC	sk islaliu Co	urity, illillo	3			
Magnetometer Survey Conducted?	Evidence of UST?	Boring ID	Depth to Groundwater (feet)	Range of PID Readings (meter units)	Observed Evidence of Potential Contamination	Depth Interval(s) Sampled (feet)	Rationale
ISGS #1314V3-11 (Vacant Land)						
No	NA	1314V3-11-B01		None Detected	None	0-1	Sampled within proposed construction excavation depth.
		1314V3-11-B02		None Detected	None	0-1	Sampled within proposed construction excavation depth.
		1314V3-11-B03		None Detected	None	0-1	Sampled within proposed construction excavation depth.
SGS #1314V3-17 (Parking Lot)						
		1314V3-17-B01		None Detected	None	0-7	Sampled within proposed construction excavation depth.
Yes	No	1314V3-17-B02		None Detected	None	0-7	Sampled within proposed construction excavation depth.
		1314V3-17-B03		None Detected	None	0-7	Sampled within proposed construction excavation depth.
SGS #1314V3-18 (Vacant Land)						
		1314V3-18-B01		None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-12	Sampled within proposed construction excavation depth.
	No					12-18	Sampled within proposed construction excavation depth.
		1314V3-18-B02		None Detected	None	0-7	Sampled within proposed construction excavation depth.
						7-13	Sampled within proposed construction excavation depth.
		1314V3-18-B03		None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-12	Sampled within proposed construction excavation depth.
V		1314V3-18-B04		None Detected	None	0-5.3	Sampled within proposed construction excavation depth.
Yes		1314V3-18-B05		None Detected	None	0-8	Sampled within proposed construction excavation depth.
						8-12	Sampled within proposed construction excavation depth.
		1314V3-18-B06		None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-12	Sampled within proposed construction excavation depth.
						12-17	Sampled within proposed construction excavation depth.
		1314V3-18-B07		None Detected	None	0-8	Sampled within proposed construction excavation depth.
		1314V3-18-B08		None Detected	None	0-4.4	Sampled within proposed construction excavation depth.
		1314V3-18-B09		None Detected	None	0-8	Sampled within proposed construction excavation depth.
GS #1314V3-21 (BNSF Railroad)						
	NA	1314V3-21-B01		None Detected	None	0-5	Sampled within proposed construction excavation depth.
No						5-10	Sampled within proposed construction excavation depth.
		1314V3-21-B02		None Detected	None	0-6	Sampled within proposed construction excavation depth.
							•

Table 4-1 Field Observations and Sampling Rationale FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

	momio, itos	k island Co					·
Magnetometer Survey Conducted?	Evidence of UST?	Boring ID	Depth to Groundwater (feet)	Range of PID Readings (meter units)	Observed Evidence of Potential Contamination	Depth Interval(s) Sampled (feet)	Rationale
SGS #1314V3-24	(John Deere)						
		1314V3-24-B01		None Detected	None	0-5.8	Sampled within proposed construction excavation depth.
		1314V3-24-B02		None Detected	None	0-5	Sampled within proposed construction excavation depth.
						5-10	Sampled within proposed construction excavation depth.
		1214W2 24 D02		None Detected	None	0-5	Sampled within proposed construction excavation depth.
		1314V3-24-B03				5-10	Sampled within proposed construction excavation depth.
		1214V2 24 D04		None Detected	None	0-5	Sampled within proposed construction excavation depth.
		1314V3-24-B04				5-10	Sampled within proposed construction excavation depth.
		1214W2 24 D05		None Detected	None	0-5	Sampled within proposed construction excavation depth.
	Yes, a small (2 x 3-foot) anomaly was detected in an area with a previously reported UST between borings 1314V3-24-	1314V3-24-B05				5-10	Sampled within proposed construction excavation depth.
		1314V3-24-B06		None Detected	None	0-4	Sampled within proposed construction excavation depth.
Yes		1314V3-24-B07		None Detected	None	0-5	Sampled within proposed construction excavation depth.
res		1314V3-24-B08		None Detected	None	0-8	Sampled within proposed construction excavation depth.
		1314V3-24-B09		None Detected	None	0-4	Sampled within proposed construction excavation depth.
	B11, -B12, -B13, - B14.	1314V3-24-B10		None Detected	None	0-5	Sampled within proposed construction excavation depth.
		1314V3-24-B11		None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-12	Sampled within proposed construction excavation depth.
		1314V3-24-B12		None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-12	Sampled within proposed construction excavation depth.
		1314V3-24-B13		None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-12	Sampled within proposed construction excavation depth.
		1314V3-24-B14		None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-12	Sampled within proposed construction excavation depth.
SGS #1314V3-25	(Sivyer Steel Corp.)						
	NA	1314V3-25-B01		None Detected	None	0-6	Sampled within proposed construction excavation depth.
No						6-12	Sampled within proposed construction excavation depth.
		1314V3-25-B02		None Detected	None	0-6	Sampled within proposed construction excavation depth.
						6-12	Sampled within proposed construction excavation depth.
		1314V3-25-B03		None Detected	None	0-8	Sampled within proposed construction excavation depth.

Table 4-1 Field Observations and Sampling Rationale FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

memo, recent lolarid e							
Magnetometer Survey Conducted?	Evidence of UST?	Boring ID	Depth to Groundwater (feet)	Range of PID Readings (meter units)	Observed Evidence of Potential Contamination	Depth Interval(s) Sampled (feet)	Rationale
		1214W2 25 D04		None Detected	N	0-6	Sampled within proposed construction excavation depth.
		1314V3-25-B04		None Detected	None	6-12	Sampled within proposed construction excavation depth.
		1314V3-25-B05		None Detected	None	0-6	Sampled within proposed construction excavation depth.
No	NA	1314 V 3-23-B03			None	6-12	Sampled within proposed construction excavation depth.
NO	NA.	1214W2 25 D06		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314V3-25-B06		None Detected	None	6-12	Sampled within proposed construction excavation depth.
		1314V3-25-B07		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314 V 3-23-B07		None Detected	None	6-12	Sampled within proposed construction excavation depth.
ISGS #1314V3-26 (Commercial Build	ing)					
Yes	No	1314V3-26-B01		None Detected	None	0-8	Sampled within proposed construction excavation depth.
Tes	NO	1314V3-26-B02		None Detected	None	0-8	Sampled within proposed construction excavation depth.
ISGS #1314V3-32 (Commercial Build	ing)					
		1314V3-32-B01		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314 V 3-32-B01	Troile E	None Detected	None	6-12	Sampled within proposed construction excavation depth.
		1314V3-32-B02 None Detected	None	0-6	Sampled within proposed construction excavation depth.		
				Trone Beteeted	rvone	6-12	Sampled within proposed construction excavation depth.
		1314V3-32-B03		None Detected	None	0-6	Sampled within proposed construction excavation depth.
Yes	No	1314 V 3-32-B03		None Detected	None	6-12	Sampled within proposed construction excavation depth.
103	140	1314V3-32-B04		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314 V 3-32-1004		None Detected	None	6-12	Sampled within proposed construction excavation depth.
		1314V3-32-B05		None Detected	None	0-3	Sampled within proposed construction excavation depth.
		1314V3-32-B06		None Detected	None	0-3	Sampled within proposed construction excavation depth.
		1314V3-32-B07		None Detected	None	0-3	Sampled within proposed construction excavation depth.
		1314V3-32-B08		None Detected	None	0-3	Sampled within proposed construction excavation depth.
ISGS #1314V3-33 (Parking Lot)						
		1314V3-33-B01		None Detected	None	0-6	Sampled within proposed construction excavation depth.
Yes	No	1314 (3-33-101		Tione Detected	IVOIIC	6-12	Sampled within proposed construction excavation depth.
168	140	1314V3-33-B02		None Detected	None	0-5	Sampled within proposed construction excavation depth.
		1314 (3-33-102		Tione Detected	IVOIIC	5-9.4	Sampled within proposed construction excavation depth.

Table 4-1 Field Observations and Sampling Rationale FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

Monne, Nock Island County, Illinois							
Magnetometer Survey Conducted?	Evidence of UST?	Boring ID	Depth to Groundwater (feet)	Range of PID Readings (meter units)	Observed Evidence of Potential Contamination	Depth Interval(s) Sampled (feet)	Rationale
		1314V3-33-B03		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314 V 3-33-B03		None Detected	rvone	6-12	Sampled within proposed construction excavation depth.
		1314V3-33-B04		0.0 - 2.9	Petroleum odor noted in 10- to 12-	0-6	Sampled within proposed construction excavation depth.
		1314 ¥ 3-33-104		0.0 - 2.9	foot depth interval	6-12	Sampled within proposed construction excavation depth.
Yes	No	1314V3-33-B05		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314 V 3-33-B03		None Detected	rvone	6-11	Sampled within proposed construction excavation depth.
		1314V3-33-B06		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314 V 3-33-B00		None Detected	None	6-12	Sampled within proposed construction excavation depth.
		1314V3-33-B07		None Detected	None	0-8	Sampled within proposed construction excavation depth.
ISGS #1314V3-56 (Commercial Build	ing)					
		1314V3-56-B01		None Detected	None	0-3	Sampled within proposed construction excavation depth.
Yes	No	1314V3-56-B02		None Detected	None	0-3	Sampled within proposed construction excavation depth.
		1314V3-56-B03		None Detected	None	0-3	Sampled within proposed construction excavation depth.
ISGS #1314V3-57 (Old Chamber Buil	ding)					
		1314V3-57-B01		None Detected	None	0-3	Sampled within proposed construction excavation depth.
No	NA	1314V3-57-B02		None Detected	None	0-3	Sampled within proposed construction excavation depth.
		1314V3-57-B03		None Detected	None	0-3	Sampled within proposed construction excavation depth.
ISGS #1314V3-59 (Residence)						
Yes	No	1314V3-59-B01		None Detected	None	0-5	Sampled within proposed construction excavation depth.
res	NO	1314 V 3-39-B01		None Detected	rvone	5-10	Sampled within proposed construction excavation depth.
ISGS #1314V3-60 (Vacant Lot)						
		1314V3-60-B01		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314 V 3-00-B01		None Detected	None	6-11	Sampled within proposed construction excavation depth.
		1314V3-60-B02		None Detected	None	0-7	Sampled within proposed construction excavation depth.
No	NA	1314V3-60-B03		None Detected	None	0-5	Sampled within proposed construction excavation depth.
140	IVA	1314 (3-00-103		None Detected	one Detected None	5-9	Sampled within proposed construction excavation depth.
		1314V3-60-B04		None Detected	None	0-5	Sampled within proposed construction excavation depth.
		1314V3-60-B05		None Detected	None	0-6	Sampled within proposed construction excavation depth.
		1314 v 3-00-1003		None Detected	TYOHE	6-12	Sampled within proposed construction excavation depth.

Table 4-1 Field Observations and Sampling Rationale FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

Magnetometer Survey Conducted?	Evidence of UST?	Boring ID	Depth to Groundwater (feet)	Range of PID Readings (meter units)	Observed Evidence of Potential Contamination	Depth Interval(s) Sampled (feet)	Rationale
No	NA	1314V3-60-B06		None Detected	None	0-6	Sampled within proposed construction excavation depth.
No	NA	1314 V 3-00-В00		None Detected	None	6-12	Sampled within proposed construction excavation depth.

Key:

BGS = Below ground surface.

ISGS = Illinois State Geological Survey.

NA = Not applicable.

PID = Photoionization detector.

-- = Groundwater was not encountered in the boring.

UST = Underground storage tank.

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

		Maximum Allowab	la Concentrations	TACO Remediation Objectives	
	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-1 (IDOT I	ROW)				
VOCs (mg/Kg)					
2-Butanone (MEK)	0.02				
Acetone	0.097	25		100,000	
SVOCs (mg/Kg)					
2-Methylnaphthalene	0.1				
Acenaphthene	0.22	570		120,000	
Acenaphthylene	0.038				
Anthracene	0.65	12,000		610,000	
Benzo(a)anthracene	1.4	0.9	1.8	170	
Benzo(a)pyrene	1.2	0.09	2.1	17	
Benzo(b)fluoranthene	1.8	0.9	2.1	170	
Benzo(g,h,i)perylene	0.44				
Benzo(k)fluoranthene	0.68	9.0		1,700	
Carbazole	0.44	0.6		6,200	
Chrysene	1.4	88		17,000	
Dibenz(a,h)anthracene	0.14	0.09	0.42	17	
Dibenzofuran	0.1				
Diethyl phthalate	0.22	470		2,000	
Fluoranthene	4.1	3,100		82,000	
Fluorene	0.22	560		82,000	
Indeno(1,2,3-cd)pyrene	0.46	0.9	1.6	170	
Naphthalene	0.08	1.8		1.8	
Phenanthrene	2.3				
Pyrene	2.4	2,300		61,000	
Inorganics (mg/Kg)					
Antimony	4.7	5.0		82	
Arsenic	8.4	11.3	13	61	
Barium	120	1,500		14,000	
Beryllium	0.73	22		410	
Boron	15.0	40		41,000	
Cadmium	1.9	5.2		200	
Calcium	41,000				
Chromium	17.0	21		690	
Cobalt	8.5	20		12,000	
Copper	35.0	2,900		8,200	
Iron	33,000	15,000	15,900		
Lead	78.0	107		700	
Magnesium	19,000	325,000		730,000	
Manganese	770	630	636	4,100	
Mercury	0.47	0.89		0.1	
Nickel	30.0	100		4,100	
Potassium	610				
Potassium	1,600				
Selenium	0.76	1.3		1,000	
Silver	0.084	4.4		1,000	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

·					
		Maximum Allowab	la Concentrations	TACO Remediation Objectives	
Ol surfeed	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration	n Stringent	MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-1 (IDOT	ROW)				
Inorganics (mg/Kg)					
Sodium	1,600				
Thallium	1.4	2.6		160	
Vanadium	26.0	550		1,400	
Zinc	1,100	5,100		61,000	
TCLP Metals (mg/L)					
Barium	1.				2.0
Boron	0.27				2.0
Cadmium	0.0079				0.005
Cobalt	0.037				1.0
Iron	0.3				5.0
Lead	0.025				0.0075
Manganese	8.				0.15
Nickel	0.071				0.1
Zinc	0.87				5.0
SPLP Metals (mg/L)					
Lead	0.21				0.0075
Manganese	1.2				0.15
ISGS #1314V3-2 (Missi					3120
VOCs (mg/Kg)	oolppi kiroi,				
, , , ,	0.000		I	100.000	
Acetone	0.032	25		100,000	
SVOCs (mg/Kg)					
2-Methylnaphthalene	0.014				
Acenaphthene	0.039	570		120,000	
Acenaphthylene	0.007				
Anthracene	0.14	12,000		610,000	
Benzo(a)anthracene	0.3	0.9	1.8	170	
Benzo(a)pyrene	0.31	0.09	2.1	17	
Benzo(b)fluoranthene	0.39	0.9	2.1	170	
Benzo(g,h,i)perylene	0.17				
Benzo(k)fluoranthene	0.11	9.0		1,700	
Chrysene	0.39	88		17,000	
Fluoranthene	0.53	3,100		82,000	
Fluorene	0.055	560		82,000	
Indeno(1,2,3-cd)pyrene	0.1	0.9	1.6	170	
Naphthalene	0.02	1.8		1.8	
Phenanthrene	0.44				
Pyrene	0.82	2,300		61,000	
Inorganics (mg/Kg)					
Antimony	0.44	5.0		82	
Arsenic	6.7	11.3	13	61	
Barium	64.0	1,500		14,000	
Beryllium	0.59	22		410	
Boron	25.0	40		41,000	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

		Maximum Allowab	le Concentrations	TACO Remediati	on Objectives
	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration	n Stringent	MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-2 (Miss	sissippi River)				
Inorganics (mg/Kg)					
Cadmium	0.39	5.2		200	
Calcium	140,000				
Chromium	35.0	21		690	
Cobalt	8.6	20		12,000	
Copper	27.0	2,900		8,200	
Iron	21,000	15,000	15,900		
Lead	31.0	107		700	
Magnesium	12,000	325,000		730,000	
Manganese	830	630	636	4,100	
Mercury	0.12	0.89		0.1	
Nickel	61.0	100		4,100	
Potassium	1,300				
Silver	0.078	4.4		1,000	
Sodium	170				
Thallium	1.2	2.6		160	
Vanadium	25.0	550		1,400	
Zinc	39.0	5,100		61,000	
TCLP Metals (mg/L)		2,223		02,000	
Barium	0.96				2.0
Boron	0.12				2.0
Cadmium	0.0074				0.005
Chromium	0.099				0.1
Cobalt	0.033				1.0
Iron	2.				5.0
Manganese	9.6				0.15
Nickel	0.24				0.1
Zinc	0.38				5.0
SPLP Metals (mg/L)	I				
Manganese	0.45				0.15
Nickel	0.027				0.1
ISGS #1314V3-4 (City		Department)			
VOCs (mg/Kg)	,	,			
2-Butanone (MEK)	0.014				
Acetone (VIER)	0.076	25		100,000	
SVOCs (mg/Kg)	0.070	23		100,000	
, , ,	0.007				
2-Methylnaphthalene	0.027				
3 & 4 Methylphenol	0.17			120,000	
Acenaphthene	0.088	570		120,000	
Acenaphthylene	0.052				
Anthracene	0.11	12,000		610,000	
Benzo(a)anthracene	0.25	0.9	1.8	170	
Benzo(a)pyrene	0.23	0.09	2.1	17	
Benzo(b)fluoranthene	0.37	0.9	2.1	170	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

		Maximum Allowabl	e Concentrations	TACO Remediati	on Objectives
	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration		MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-4 (City of	of Moline, Water D	Department)			
SVOCs (mg/Kg)					
Benzo(g,h,i)perylene	0.053				
Benzo(k)fluoranthene	0.12	9.0		1,700	
Chrysene	0.23	88		17,000	
Fluoranthene	0.62	3,100		82,000	
Fluorene	0.092	560		82,000	
Indeno(1,2,3-cd)pyrene	0.059	0.9	1.6	170	
Naphthalene	0.042	1.8		1.8	
Phenanthrene	0.26				
Pyrene	0.58	2,300		61,000	
Inorganics (mg/Kg)	'			-	1
Antimony	0.87	5.0		82	
Arsenic	8.7	11.3	13	61	
Barium	120	1,500		14,000	
Beryllium	0.96	22		410	
Boron	43.0	40		41,000	
Cadmium	0.82	5.2		200	
Calcium	43,000				
Chromium	16.0	21		690	
Cobalt	5.3	20		12,000	
Copper	39.0	2,900		8,200	
Iron	27,000	15,000	15,900		
Lead	140	107		700	
Magnesium	8,300	325,000		730,000	
Manganese	580	630	636	4,100	
Mercury	0.44	0.89		0.1	
Nickel	16.0	100		4,100	
Potassium	1,000				
Selenium	0.93	1.3		1,000	
Silver	0.14	4.4		1,000	
Sodium	430				
Thallium	1.1	2.6		160	
Vanadium	19.0	550		1,400	
Zinc	730	5,100		61,000	
TCLP Metals (mg/L)					
Barium	0.84				2.0
Boron	0.43				2.0
Cobalt	0.013				1.0
Iron	1.4				5.0
Lead	0.017				0.0075
Manganese	4.3				0.15
Nickel	0.016				0.1
Zinc	0.86				5.0

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

, 		<u>, </u>			
		Maximum Allowat	ole Concentrations	TACO Remediation Objectives	
Chemical	Maximum Detected Concentration	Most	Within an MSA	Construction Worker Exposure	Groundwater Protection
ISGS #1314V3-4 (City			IVIOA	Worker Exposure	(TOLI75I LI7
	or wolline, water	Department)			
SPLP Metals (mg/L)					T
Lead	0.052				0.0075
Manganese	0.16				0.15
ISGS #1314V3-05 (Indi	ustrial Building)				
SVOCs (mg/Kg)					
2-Methylnaphthalene	0.025				
Acenaphthene	0.061	570		120,000	
Acenaphthylene	0.12				
Anthracene	0.25	12,000		610,000	
Benzo(a)anthracene	0.96	0.9	1.8	170	
Benzo(a)pyrene	0.92	0.09	2.1	17	
Benzo(b)fluoranthene	1.3	0.9	2.1	170	
Benzo(g,h,i)perylene	0.29				
Benzo(k)fluoranthene	0.56	9.0		1,700	
Carbazole	0.13	0.6		6,200	
Chrysene	0.94	88		17,000	
Dibenz(a,h)anthracene	0.1	0.09	0.42	17	
Dibenzofuran	0.06				
Fluoranthene	2.2	3,100		82,000	
Fluorene	0.065	560		82,000	
Indeno(1,2,3-cd)pyrene	0.3	0.9	1.6	170	
Naphthalene	0.046	1.8		1.8	
Phenanthrene	1.2				
Pyrene	2.	2,300		61,000	
Inorganics (mg/Kg)		7		- 7	
Antimony	0.37	5.0		82	
Arsenic	9.5	11.3	13	61	
Barium	110	1,500		14,000	
	0.61	1,300		410	
Beryllium				41,000	
Boron	4.7 0.46	40 5.2		·	
Cadmium				200	
Calcium	57,000 14.0	21		 690	
Cabalt					
Cobalt	9.9	20		12,000	
Copper		2,900	15,000	8,200	
Iron	19,000 100	15,000 107	15,900	700	
Lead					
Magnesium	14,000 650	325,000		730,000	
Manganese	0.44	630 0.89	636	4,100	
Mercury Niekal	20.0			0.1	
Nickel		100		4,100	
Potassium	990				
Sodium	140			1 400	
Vanadium	26.0	550		1,400	
Zinc	160	5,100		61,000	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

				TACO Remediation Objective	
		Maximum Allowabl	1	I ACO Remediati	
	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-05 (Indus	trial Building)				
TCLP Metals (mg/L)					
Barium	0.73				2.0
Boron	0.12				2.0
Cadmium	0.0022				0.005
Lead	0.013				0.0075
Manganese	3.				0.15
Nickel	0.019				0.1
Zinc	0.2				5.0
SPLP Metals (mg/L)	0.2				3.0
, , ,	0.12				0.0075
Lead	0.12				0.0075
Manganese	0.52				0.15
ISGS #1314V3-6 (Vacant	Land)				
SVOCs (mg/Kg)					
2-Methylnaphthalene	0.66				
3 & 4 Methylphenol	0.47				
4-Nitroaniline	0.27				
Acenaphthene	0.75	570		120,000	
Acenaphthylene	0.046				
Anthracene	1.1	12,000		610,000	
Benzo(a)anthracene	3.2	0.9	1.8	170	
Benzo(a)pyrene	3.5	0.09	2.1	17	
Benzo(b)fluoranthene	4.4	0.9	2.1	170	
Benzo(g,h,i)perylene	0.94				
Benzo(k)fluoranthene	1.8	9.0		1,700	
Carbazole	0.71	0.6		6,200	
Chrysene	2.9	88		17,000	
Dibenz(a,h)anthracene	0.36	0.09	0.42	17	
Dibenzofuran	0.42				
Fluoranthene	7.	3,100		82,000	
Fluorene	0.61	560		82,000	
Indeno(1,2,3-cd)pyrene	1.	0.9	1.6	170	
Naphthalene	0.95	1.8		1.8	
Phenanthrene	5.9				
Pyrene	6.7	2,300		61,000	
PCBs (mg/Kg)					
PCB-1254	0.039	1.0		1.0	
PCB-1260	0.021	1.0		1.0	
PCBs, total	0.06	1.0		1.0	
Inorganics (mg/Kg)					
Antimony	2.8	5.0		82	
Arsenic	14.0	11.3	13	61	
Barium	380	1,500		14,000	
Beryllium	0.8	22		410	
Boron	18.0	40		41,000	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

		Maximum Allowab	le Concentrations	TACO Remediati	TACO Remediation Objectives	
	Maximum Detected	Most	Within an	Construction	Groundwater Protection	
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)	
ISGS #1314V3-6 (Vaca	nt Land)					
Inorganics (mg/Kg)						
Cadmium	12.0	5.2		200		
Calcium	43,000					
Chromium	94.0	21		690		
Cobalt	10.0	20		12,000		
Copper	86.0	2,900		8,200		
Iron	95,000	15,000	15,900			
Lead	570	107		700		
Magnesium	17,000	325,000		730,000		
Manganese	850	630	636	4,100		
Mercury	0.43	0.89		0.1		
Nickel	310	100		4,100		
Potassium	600					
Potassium	1,200					
Selenium	2.2	1.3		1,000		
Silver	0.81	4.4		1,000		
Sodium	200					
Thallium	2.8	2.6		160		
Vanadium	45.0	550		1,400		
Zinc	2,100	5,100		61,000		
TCLP Metals (mg/L)						
Barium	0.98				2.0	
Boron	0.17				2.0	
Cadmium	0.1				0.005	
Chromium	0.014				0.1	
Cobalt	0.086				1.0	
Iron	86.0				5.0	
Lead	0.72				0.0075	
Manganese	10.0				0.15	
Nickel	1.2				0.1	
Zinc	12.0				5.0	
SPLP Metals (mg/L)						
Cadmium	0.0029				0.005	
Iron	11.0				5.0	
Lead	0.25				0.0075	
Manganese	0.57				0.15	
Nickel	0.079				0.1	
Zinc	0.52				5.0	
ISGS #1314V3-7 (Rive	r Stone Moline Ya	ard)				
VOCs (mg/Kg)						
2-Butanone (MEK)	0.0051					
2-Hexanone	12.0					
Acetone	0.048	25		100,000		
- 100.0110	3.0-0			100,000	1	

Maximum detected concentrations above the most stringent Maximum Allowable Concentration are shaded. See note at end of table. 05:90080046_CHI2155_T42_3/7/2017

4-53

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

	·					
		Maximum Allowab	le Concentrations	TACO Remediation Objectives		
	Maximum Detected	Most	Within an	Construction	Groundwater Protection	
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)	
ISGS #1314V3-7 (River	r Stone Moline Ya					
SVOCs (mg/Kg)		,				
2-Methylnaphthalene	4.9					
4-Nitroaniline	3.					
Acenaphthene	0.51	570		120,000		
Acenaphthylene	0.34					
Anthracene	0.63	12,000		610,000		
Benzo(a)anthracene	4.1	0.9	1.8	170		
Benzo(a)pyrene	5.	0.09	2.1	17		
Benzo(b)fluoranthene	7.5	0.9	2.1	170		
Benzo(g,h,i)perylene	3.6					
Benzo(k)fluoranthene	2.7	9.0		1,700		
Carbazole	0.48	0.6		6,200		
Chrysene	5.3	88		17,000		
Dibenz(a,h)anthracene	0.91	0.09	0.42	17		
Diethyl phthalate	0.45	470		2,000		
Fluoranthene	6.3	3,100		82,000		
Fluorene	0.065	560		82,000		
Indeno(1,2,3-cd)pyrene	3.5	0.9	1.6	170		
Naphthalene	1.3	1.8		1.8		
Phenanthrene	2.7					
Pyrene	5.8	2,300		61,000		
Inorganics (mg/Kg)	0.0	2,500		01,000		
	0.49	5.0		82		
Antimony Arsenic	28.0	11.3	13	61		
Barium						
	360 1.3	1,500		14,000 410		
Beryllium Boron	280	22 40		41,000		
Cadmium	2.4	5.2		200		
Calcium	110,000	J.2 		200		
Chromium		21		690		
	14.0	20		12,000		
Cobalt	14.0 77.0			8,200		
Copper	190,000	2,900 15,000	15,900	8,200		
Iron Lead	210	107	15,900	700		
Magnesium	6,300	325,000		730,000		
Manganese	1,300	630	636	4,100		
Mercury	0.12	0.89	030	0.1		
Nickel	25.0	100		4,100		
Potassium	860			4,100		
Selenium	4.9	1.3		1,000		
Silver	0.37	4.4		1,000		
Sodium	300	<u>4.4</u> 				
				1,400		
Vanadium	36.0	550				
Zinc	820	5,100		61,000		

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

		Maximum Allowab	le Concentrations	TACO Remediation Objectives		
Chemical	Maximum Detected Concentration	Most Stringent	Within an MSA	Construction Worker Exposure	Groundwater Protection (TCLP/SPLP)	
ISGS #1314V3-7 (Rive			IVISA	WOIKEI EXPOSUIE	(ICLF/SPLP)	
•	Stolle Wolline Ta	iuj				
TCLP Metals (mg/L)			T	T	1	
Barium	1.7				2.0	
Boron	0.65				2.0	
Cadmium	0.016				0.005	
Chromium	0.055				0.1	
Cobalt	0.048				1.0	
Iron	9.4				5.0	
Lead	0.13				0.0075	
Manganese	10.0				0.15	
Nickel	0.063				0.1	
Zinc	3.9				5.0	
SPLP Metals (mg/L)						
Manganese	0.82				0.15	
ISGS #1314V3-8 (Com	mercial Building)					
VOCs (mg/Kg)	<u> </u>					
2-Butanone (MEK)	0.022					
Acetone (VIER)	0.11	25		100,000		
SVOCs (mg/Kg)	0.11	23		100,000		
	0.04.5		T	<u> </u>	T	
2-Methylnaphthalene	0.016					
Acenaphthene	0.013	570		120,000		
Acenaphthylene	0.049					
Anthracene	0.072	12,000		610,000		
Benzo(a)anthracene	0.24	0.9	1.8	170		
Benzo(a)pyrene	0.24	0.09	2.1	17		
Benzo(b)fluoranthene	0.33	0.9	2.1	170		
Benzo(g,h,i)perylene	0.095					
Benzo(k)fluoranthene	0.15	9.0		1,700		
Chrysene	0.26	88		17,000		
Dibenz(a,h)anthracene	0.027	0.09	0.42	17		
Diethyl phthalate	0.29	470		2,000		
Fluoranthene	0.63	3,100		82,000		
Fluorene	0.03	560		82,000		
Indeno(1,2,3-cd)pyrene	0.094	0.9	1.6	170		
Naphthalene	0.03	1.8		1.8		
Phenanthrene	0.38					
Pyrene	0.48	2,300		61,000		
Inorganics (mg/Kg)			T	T	T	
Antimony	0.9	5.0		82		
Arsenic	11.0	11.3	13	61		
Barium	51.0	1,500		14,000		
Beryllium	0.6	22		410		
Boron	13.0	40		41,000		
Cadmium	0.89	5.2		200		
Calcium	37,000					

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

		Maximum Allowab	la Canaantrations	TACO Remediati	on Objectives
	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration		MSA	Worker Exposure	
ISGS #1314V3-8 (Com	mercial Building)				
Inorganics (mg/Kg)	. ,				
Chromium	12.0	21		600	
	12.0 6.8	21 20		690	
Cobalt	36.0	2,900		12,000	
Copper	17,000	15,000		8,200	
Iron Lead	38.0	107	15,900	700	
Magnesium	1,400	325,000		730,000	
	230			· ·	
Manganese		630	636	4,100	
Mercury	0.22	0.89		0.1	
Nickel	20.0	100		4,100	
Potassium	1,200			1,000	
Selenium	0.33	1.3		1,000	
Sodium	170				
Thallium	0.66	2.6		160	
Vanadium	55.0	550		1,400	
Zinc	100	5,100		61,000	
TCLP Metals (mg/L)					
Antimony	0.0083				0.006
Barium	0.47				2.0
Boron	0.3				2.0
Cadmium	0.01				0.005
Cobalt	0.025				1.0
Lead	0.016				0.0075
Manganese	2.4				0.15
Nickel	0.055				0.1
Zinc	0.62				5.0
SPLP Metals (mg/L)					
Cadmium	0.0034				0.005
Lead	0.038				0.0075
Manganese	0.13				0.15
ISGS #1314V3-11 (Vac					0.13
SVOCs (mg/Kg)	ant Land)				
2-Methylnaphthalene	0.02				
Acenaphthene	0.031	570		120,000	
Acenaphthylene	0.012				
Anthracene	0.092	12,000		610,000	
Benzo(a)anthracene	0.4	0.9	1.8	170	
Benzo(a)pyrene	0.51	0.09	2.1	170	
Benzo(b)fluoranthene	0.67	0.09	2.1	170	
Benzo(g,h,i)perylene	0.07				
Benzo(k)fluoranthene	0.78	9.0		1,700	
Chrysene	0.78	88		17,000	
Dibenz(a,h)anthracene	0.054	0.09	0.42	17,000	
Fluoranthene	0.79	3,100		82,000	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

		Maximum Allowab	ole Concentrations	TACO Remediati	on Objectives
Ol analosal	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-11 (Vaca	ant Land)				
SVOCs (mg/Kg)					
Fluorene	0.032	560		82,000	
Indeno(1,2,3-cd)pyrene	0.16	0.9	1.6	170	
Naphthalene	0.014	1.8		1.8	
Phenanthrene	0.4				
Pyrene	0.76	2,300		61,000	
Inorganics (mg/Kg)					
Antimony	0.47	5.0		82	
Arsenic	4.8	11.3	13	61	
Barium	87.0	1,500		14,000	
Beryllium	0.56	22		410	
Boron	5.6	40		41,000	
Cadmium	0.44	5.2		200	
Calcium	83,000				
Chromium	17.0	21		690	
Cobalt	5.2	20		12,000	
Copper	20.0	2,900		8,200	
Iron	15,000	15,000	15,900		
Lead	130	107		700	
Magnesium	4,500	325,000		730,000	
Manganese	580	630	636	4,100	
Mercury	0.13	0.89		0.1	
Nickel	14.0	100		4,100	
Potassium	650				
Selenium	0.3	1.3		1,000	
Sodium	290				
Thallium	0.93	2.6		160	
Vanadium	21.0	550		1,400	
Zinc	120	5,100		61,000	
TCLP Metals (mg/L)					
Barium	0.86				2.0
Boron	0.074				2.0
Cadmium	0.0037				0.005
Manganese	0.97				0.15
Zinc	0.25				5.0
SPLP Metals (mg/L)	0.20				
, , ,	0.20				0.15
Manganese	0.38				0.15
ISGS #1314V3-17 (Park	ing Lot)				
SVOCs (mg/Kg)					
2-Methylnaphthalene	0.5				
Acenaphthene	0.06	570		120,000	
Acenaphthylene	0.074				
Anthracene	0.3	12,000		610,000	
Benzo(a)anthracene	1.1	0.9	1.8	170	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

		Maximum Allowab	le Concentrations	TACO Remediati	on Objectives
<u>.</u>	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-17 (Par	king Lot)				
SVOCs (mg/Kg)					
Benzo(a)pyrene	1.1	0.09	2.1	17	
Benzo(b)fluoranthene	1.7	0.9	2.1	170	
Benzo(g,h,i)perylene	0.3				
Benzo(k)fluoranthene	0.96	9.0		1,700	
Carbazole	0.22	0.6		6,200	
Chrysene	1.5	88		17,000	
Dibenz(a,h)anthracene	0.087	0.09	0.42	17	
Dibenzofuran	0.16				
Fluoranthene	2.7	3,100		82,000	
Fluorene	0.074	560		82,000	
Indeno(1,2,3-cd)pyrene	0.31	0.9	1.6	170	
Naphthalene	0.25	1.8		1.8	
Phenanthrene	1.9				
Pyrene	2.6	2,300		61,000	
Inorganics (mg/Kg)		,	1		
Arsenic	15.0	11.3	13	61	
Barium	210	1,500		14,000	
Beryllium	1.1	22		410	
Boron	26.0	40		41,000	
Cadmium	1.5	5.2		200	
Calcium	19,000				
Chromium	16.0	21		690	
Cobalt	9.3	20		12,000	
Copper	120	2,900		8,200	
Iron	32,000	15,000	15,900		
Lead	360	107		700	
Magnesium	9,600	325,000		730,000	
Manganese	460	630	636	4,100	
Mercury	0.42	0.89		0.1	
Nickel	21.0	100		4,100	
Potassium	890				
Selenium	3.	1.3		1,000	
Sodium	1,100				
Vanadium	27.0	550		1,400	
Zinc	460	5,100		61,000	
TCLP Metals (mg/L)		- ,	1	. ,	ı
Barium	0.7				2.0
Boron	0.3				2.0
Cadmium	0.0026				0.005
Cobalt	0.019				1.0
Iron	1.2				5.0
Lead	0.072				0.0075
Manganese	5.4				0.15
Nickel	0.036				0.13
	0.050		1	1	U.1

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

		Maximum Allowah	ole Concentrations	TACO Remediati	on Ohjectives
	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-17 (Parki	ng Lot)				
TCLP Metals (mg/L)					
Zinc	1.3				5.0
SPLP Metals (mg/L)	1				
Lead	0.29				0.0075
Manganese	1.2				0.15
ISGS #1314V3-18 (Vaca					0.10
VOCs (mg/Kg)	<u>_</u> aa,				
		I		I	T
2-Butanone (MEK)	0.011				
Acetone	0.051	25		100,000	
SVOCs (mg/Kg)		ı		I	T
2-Methylnaphthalene	0.23				
3 & 4 Methylphenol	0.29				
Acenaphthene	0.041	570		120,000	
Acenaphthylene	0.19				
Anthracene	0.46	12,000		610,000	
Benzo(a)anthracene	0.91	0.9	1.8	170	
Benzo(a)pyrene	0.72	0.09	2.1	17	
Benzo(b)fluoranthene	0.94	0.9	2.1	170	
Benzo(g,h,i)perylene	0.25				
Benzo(k)fluoranthene	0.43	9.0		1,700	
Carbazole	0.19	0.6		6,200	
Chrysene	0.82	88		17,000	
Dibenz(a,h)anthracene	0.077	0.09	0.42	17	
Dibenzofuran	0.17				
Fluoranthene	1.9	3,100		82,000	
Fluorene	0.099	560		82,000	
Indeno(1,2,3-cd)pyrene	0.24	0.9	1.6	170	
Naphthalene	0.17	1.8		1.8	
Phenanthrene	1.6				
Pyrene	1.6	2,300		61,000	
Inorganics (mg/Kg)					
Antimony	0.62	5.0		82	
Arsenic	220	11.3	13	61	
Barium	78.0	1,500		14,000	
Beryllium	8.9	22		410	
Boron	140	40		41,000	
Cadmium	20.0	5.2		200	
Calcium	110,000				
Chromium	15.0	21		690	
Cobalt	6.6	20		12,000	
Copper	120	2,900		8,200	
Iron	20,000	15,000	15,900		
Lead	39.0	107		700	
Magnesium	30,000	325,000		730,000	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

	Maximum Detected	Maximum Allowab Most	le Concentrations Within an	TACO Remediati Construction	Groundwater Protection	
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)	
ISGS #1314V3-18 (Vaca	nt Land)					
Inorganics (mg/Kg)						
Manganese	390	630	636	4,100		
Mercury	0.19	0.89		0.1		
Nickel	15.0	100		4,100		
Potassium	1,000					
Selenium	33.0	1.3		1,000		
Sodium	710					
Thallium	300	2.6		160		
Vanadium	26.0	550		1,400		
Zinc	120	5,100		61,000		
TCLP Metals (mg/L)	120	3,100	1	01,000	I .	
	1.2				2.0	
Barium	1.3				2.0	
Boron	0.12				2.0	
Cadmium	0.0079				0.005	
Cobalt	0.048				1.0	
Iron	0.84				5.0	
Lead	0.015				0.0075	
Manganese	14.0				0.15	
Nickel	0.047				0.1	
Zinc	0.35				5.0	
SPLP Metals (mg/L)						
Lead	0.092				0.0075	
Manganese	0.83				0.15	
ISGS #1314V3-21 (BNSF	Railroad)					
VOCs (mg/Kg)	•					
2-Butanone (MEK)	0.0088					
Acetone (MEK)	0.008	25		100,000		
	0.03	23		100,000		
SVOCs (mg/Kg)				T	T	
2-Methylnaphthalene	0.19					
Acenaphthene	0.026	570		120,000		
Acenaphthylene	0.13					
Anthracene	0.15	12,000		610,000		
Benzo(a)anthracene	0.43	0.9	1.8	170		
Benzo(a)pyrene	0.5	0.09	2.1	17		
Benzo(b)fluoranthene	0.8	0.9	2.1	170		
Benzo(g,h,i)perylene	0.13					
Benzo(k)fluoranthene	0.27	9.0		1,700		
Bis(2-ethylhexyl) phthalate	0.07	46		4,100		
Chrysene	0.45	88		17,000		
Dibenz(a,h)anthracene	0.057	0.09	0.42	17		
Dibenzofuran	0.078					
Fluoranthene	0.77	3,100		82,000		
Fluorene	0.025	560		82,000		
Indeno(1,2,3-cd)pyrene	0.14	0.9	1.6	170		

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

·					
		Maximum Allowab	la Canaantrations	TACO Remediati	on Objectives
	Massimos	Maximum Anowabi		TACO Remedian	
	Maximum Detected	Most	Within	Construction	Groundwater Protection
Chemical	Concentration		an MSA	Worker Exposure	
ISGS #1314V3-21 (BNSF		ouringent	IVIOA	Worker Exposure	(ICLI/SI LI /
•	Rambauj				
SVOCs (mg/Kg)		T			I
Naphthalene	0.11	1.8		1.8	
Phenanthrene	0.49				
Pyrene	0.75	2,300		61,000	
PCBs (mg/Kg)					
PCB-1260	0.012	1.0		1.0	
PCBs, total	0.012	1.0		1.0	
Inorganics (mg/Kg)					
Antimony	4.2	5.0		82	
Arsenic	9.	11.3	13	61	
Barium	210	1,500		14,000	
Beryllium	1.8	22		410	
Boron	41.0	40		41,000	
Cadmium	1.4	5.2		200	
Calcium	10,000				
Chromium	15.0	21		690	
Cobalt	8.4	20		12,000	
Copper	70.0	2,900		8,200	
Iron	48,000	15,000	15,900		
Lead	150	107		700	
Magnesium	1,800	325,000		730,000	
Manganese	500	630	636	4,100	
Mercury	0.075	0.89		0.1	
Nickel	24.0	100		4,100	
Potassium	1,000				
Selenium	2.3	1.3		1,000	
Sodium	900				
Thallium	3.	2.6		160	
Vanadium	27.0	550		1,400	
Zinc	330	5,100		61,000	
TCLP Metals (mg/L)					
Antimony	0.0098				0.006
Barium	0.59				2.0
Cadmium	0.003				0.005
Cobalt	0.017				1.0
Iron	0.33				5.0
Lead	0.079				0.0075
Manganese	3.1				0.15
Nickel	0.017				0.1
Zinc	0.43				5.0
SPLP Metals (mg/L)					
Antimony	0.0063				0.006
Lead	0.097				0.0075
Manganese	0.32				0.15

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

		Maximum Allowab	le Concentrations	TACO Remediati	on Objectives
	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration		MSA	Worker Exposure	
ISGS #1314V3-24 (John		<u> </u>	IIIOA	TVOIROI EXPOGUIO	(1021701217
VOCs (mg/Kg)	. 200.0)				
	0.000	0.06		20	
Tetrachloroethene	0.0096	0.06		28	
Xylenes, Total	0.0025	5.6		5.6	
SVOCs (mg/Kg)					T
2-Methylnaphthalene	0.042				
Acenaphthene	0.21	570		120,000	
Acenaphthylene	0.082				
Anthracene	0.72	12,000		610,000	
Benzo(a)anthracene	4.3	0.9	1.8	170	
Benzo(a)pyrene	5.	0.09	2.1	17	
Benzo(b)fluoranthene	7.2	0.9	2.1	170	
Benzo(g,h,i)perylene	1.3				
Benzo(k)fluoranthene	2.3	9.0		1,700	
Bis(2-ethylhexyl) phthalate	0.091	46		4,100	
Carbazole	0.26	0.6		6,200	
Chrysene	3.9	88		17,000	
Dibenz(a,h)anthracene	0.42	0.09	0.42	17	
Dibenzofuran	0.058				
Fluoranthene	8.5	3,100		82,000	
Fluorene	0.18	560		82,000	
Indeno(1,2,3-cd)pyrene	1.5	0.9	1.6	170	
Naphthalene	0.058	1.8		1.8	
Phenanthrene	2.3				
Pyrene	9.2	2,300		61,000	
Inorganics (mg/Kg)					
Antimony	18.0	5.0		82	
Arsenic	32.0	11.3	13	61	
Barium	270	1,500		14,000	
Beryllium	2.9	22		410	
Boron	110	40		41,000	
Cadmium	1.5	5.2		200	
Calcium	86,000				
Chromium	26.0	21		690	
Cobalt	19.0	20		12,000	
Copper	1,000	2,900		8,200	
Iron	150,000	15,000	15,900		
Lead	690	107		700	
Magnesium	9,400	325,000		730,000	
Manganese	4,100	630	636	4,100	
Mercury	0.39	0.89		0.1	
Nickel	40.0	100		4,100	
Potassium	2,000				
Selenium	2.6	1.3		1,000	
Silver	0.65	4.4		1,000	
Sodium	2,200				

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

		Maximum Allawah	la Canaantrationa	TACO Domodiati	on Objectives
	Maximum Detected	Maximum Allowab	Within an	Construction	Groundwater Protection
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-24 (John	Deere)				
Inorganics (mg/Kg)					
Thallium	5.1	2.6		160	
Vanadium	74.0	550		1,400	
Zinc	700	5,100		61,000	
TCLP Metals (mg/L)					
Antimony	0.21				0.006
Barium	0.96				2.0
Boron	0.13				2.0
Cadmium	0.0048				0.005
Cobalt	0.03				1.0
Lead	1.8				0.0075
Manganese	3.9				0.15
Nickel	0.034				0.1
Zinc	0.54				5.0
SPLP Metals (mg/L)		I	1		I
Antimony	0.056				0.006
Lead	0.41				0.0075
Manganese	1.5				0.15
ISGS #1314V3-25 (Sivye					0.13
	or oteer oorp.,				
SVOCs (mg/Kg)		T		T	T
2-Methylnaphthalene	0.2				
Acenaphthene	0.21	570		120,000	
Acenaphthylene	0.45				
Anthracene	0.63	12,000		610,000	
Benzo(a)anthracene	2.2	0.9	1.8	170	
Benzo(a)pyrene	3.	0.09	2.1	17	
Benzo(b)fluoranthene	4.8	0.9	2.1	170	
Benzo(g,h,i)perylene	1.4				
Benzo(k)fluoranthene	1.8	9.0		1,700	
Carbazole	0.42	0.6		6,200	
Chrysene	2.8	88		17,000	
Dibenz(a,h)anthracene	0.47	0.09	0.42	17	
Dibenzofuran	0.25				
Fluoranthene	5.6	3,100		82,000	
Fluorene	0.28	560		82,000	
Indeno(1,2,3-cd)pyrene	1.6	0.9	1.6	170	
Naphthalene	0.22	1.8		1.8	
Phenanthrene	1.1	2 200		 (1 000	
Pyrene	4.9	2,300		61,000	
Inorganics (mg/Kg)			1		
Antimony	18.0	5.0		82	
Arsenic	19.0	11.3	13	61	
Barium	190	1,500		14,000	
Beryllium	1.9	22		410	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

		Maximum Allowab	le Concentrations	TACO Remediation Objectives	
Chemical	Maximum Detected Concentration	Most	Within an MSA	Construction Worker Exposure	Groundwater Protection
ISGS #1314V3-25 (Siv)		Stringent	WISA	Worker Exposure	(ICLP/SPLP)
	yer Steer Corp.)				
Inorganics (mg/Kg)					
Boron	61.0	40		41,000	
Cadmium	3.7	5.2		200	
Calcium	67,000				
Chromium	26.0	21		690	
Cobalt	12.0	20		12,000	
Copper	100	2,900		8,200	
Iron	61,000	15,000	15,900		
Lead	1,900	107		700	
Magnesium	9,300	325,000		730,000	
Manganese	870	630	636	4,100	
Mercury	0.25	0.89		0.1	
Nickel	30.0	100		4,100	
Potassium	1,600				
Selenium	4.3	1.3		1,000	
Silver	0.35	4.4		1,000	
Sodium	460				
Thallium	1.5	2.6		160	
Vanadium	34.0	550		1,400	
Zinc	980	5,100		61,000	
TCLP Metals (mg/L)					
Antimony	0.066				0.006
Barium	1.				2.0
Cadmium	0.0068				0.005
Cobalt	0.026				1.0
Iron	0.43				5.0
Lead	0.96				0.0075
Manganese	4.				0.15
Nickel	0.024				0.1
Selenium	0.021				0.05
Zinc	1.9				5.0
SPLP Metals (mg/L)					
Antimony	0.018				0.006
Lead	0.34				0.0075
Manganese	0.55				0.15
ISGS #1314V3-26 (Con					0.13
<u> </u>	oroiai bananig				
SVOCs (mg/Kg)	0.012				
2-Methylnaphthalene	0.013				
Anthracene	0.007	12,000		610,000	
Benzo(a)anthracene	0.04	0.9	1.8	170	
Benzo(a)pyrene	0.05	0.09	2.1	17	
Benzo(b)fluoranthene	0.091	0.9	2.1	170	
Benzo(g,h,i)perylene	0.02				
Benzo(k)fluoranthene	0.029	9.0		1,700	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

		Maximum Allowah	ole Concentrations	TACO Remediati	on Ohiectives
	Maximum Detected	Most	Within an	Construction	Groundwater Protection
Chemical	Concentration		MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-26 (Co	mmerciai Building)			
SVOCs (mg/Kg)					
Chrysene	0.045	88		17,000	
Dibenz(a,h)anthracene	0.012	0.09	0.42	17	
Fluoranthene	0.071	3,100		82,000	
Indeno(1,2,3-cd)pyrene	0.027	0.9	1.6	170	
Naphthalene	0.0078	1.8		1.8	
Phenanthrene	0.043				
Pyrene	0.069	2,300		61,000	
Inorganics (mg/Kg)					
Antimony	0.43	5.0		82	
Arsenic	2.7	11.3	13	61	
Barium	110	1,500		14,000	
Beryllium	0.56	22		410	
Boron	7.2	40		41,000	
Cadmium	0.31	5.2		200	
Calcium	7,700				
Chromium	13.0	21		690	
Cobalt	5.3	20		12,000	
Copper	19.0	2,900		8,200	
Iron	14,000	15,000	15,900		
Lead	21.0	107		700	
Magnesium	3,200	325,000		730,000	
Manganese	360	630	636	4,100	
Mercury	0.058	0.89		0.1	
Nickel	12.0	100		4,100	
Potassium	1,100				
Selenium	0.33	1.3		1,000	
Sodium	230				
Thallium	0.8	2.6		160	
Vanadium	17.0	550		1,400	
Zinc	58.0	5,100		61,000	
TCLP Metals (mg/L)	30.0	3,100		01,000	
, , ,	0.51				2.0
Barium	0.51				2.0
Boron	0.099				2.0
Cadmium	0.0023				0.005
Iron	0.26				5.0
Manganese	1.1				0.15
Selenium	0.02				0.05
SPLP Metals (mg/L)					
Manganese	0.05				0.15
ISGS #1314V3-32 (Co	mmercial Building	ıs)			
SVOCs (mg/Kg)					
Anthracene	0.046	12,000		610,000	
Benzo(a)anthracene	0.2	0.9	1.8	170	
	0.2	J.,	2.0	270	1

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

	Maximum Allowable Concentration		le Concentrations	TACO Remediati	on Ohjectives
Chemical	Maximum Detected Concentration	Most Stringent	Within an MSA	Construction Worker Exposure	Groundwater Protection
ISGS #1314V3-32 (Com			MOA	WORKET EXPOSUIC	(TOEI /OI EI /
SVOCs (mg/Kg)		-,			
, , ,	0.0	0.00	2.1	17	-
Benzo(a)pyrene Benzo(b)fluoranthene	0.2	0.09	2.1	17	
. ,	0.3	0.9	2.1	170	
Benzo(g,h,i)perylene	0.12	9.0		1,700	
Benzo(k)fluoranthene	0.11			,	
Bis(2-ethylhexyl) phthalate	0.49	46 88		4,100	
Chrysene	0.25		0.42	17,000	
Dibenz(a,h)anthracene	0.038	0.09	0.42	17	
Fluoranthene	0.51	3,100		82,000	
Fluorene	0.01	560	1.6	82,000	
Indeno(1,2,3-cd)pyrene	0.11	0.9	1.6	170	
Phenanthrene	0.23	2.200			
Pyrene	0.4	2,300		61,000	
Inorganics (mg/Kg)					
Antimony	0.51	5.0		82	
Arsenic	6.4	11.3	13	61	
Barium	99.0	1,500		14,000	
Beryllium	0.71	22		410	
Boron	6.2	40		41,000	
Cadmium	0.24	5.2		200	
Calcium	42,000				
Chromium	53.0	21		690	
Cobalt	7.8	20		12,000	
Copper	19.0	2,900		8,200	
Iron	19,000	15,000	15,900		
Lead	190	107		700	
Magnesium	14,000	325,000		730,000	
Manganese	470	630	636	4,100	
Mercury	2.	0.89		0.1	
Nickel	20.0	100		4,100	
Potassium	910				
Potassium	1,200				
Selenium	0.63	1.3		1,000	
Sodium	900				
Thallium	1.5	2.6		160	
Vanadium	32.0	550		1,400	
Zinc	76.0	5,100		61,000	
TCLP Metals (mg/L)		•	ı	,	1
Barium	0.82				2.0
Boron	0.081				2.0
Cadmium	0.0025				0.005
Iron	0.0025				5.0
	1.4				0.15
Manganese Niekol	0.013				
Nickel					0.1
Zinc	0.065				5.0

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

		Maximum Allowek	olo Conco ntrationa	TACO Remediation Objectives	
	Maximum Detected	Most	ole Concentrations Within an	Construction	Groundwater Protection
Chemical	Concentration		MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-32 (Com	mercial Building	s)			
SPLP Metals (mg/L)					
Manganese	0.67				0.15
ISGS #1314V3-33 (Parki					0.120
SVOCs (mg/Kg)	9,				
2-Methylnaphthalene	0.5				
Acenaphthene	2.5	570		120,000	
Acenaphthylene	0.03				
Anthracene	6.4	12,000		610,000	
Benzo(a)anthracene	14.0	0.9	1.8	170	
Benzo(a)pyrene	13.0	0.09	2.1	17	
Benzo(b)fluoranthene	18.0	0.9	2.1	170	
Benzo(g,h,i)perylene	6.5				
Benzo(k)fluoranthene	6.8	9.0		1,700	
Bis(2-ethylhexyl) phthalate	0.13	46		4,100	
Carbazole	3.8	0.6		6,200	
Chrysene	15.0	88		17,000	
Dibenz(a,h)anthracene	2.1	0.09	0.42	17	
Dibenzofuran	1.7				
Fluoranthene	34.0	3,100		82,000	
Fluorene	2.9	560		82,000	
Indeno(1,2,3-cd)pyrene	6.8	0.9	1.6	170	
Naphthalene	1.	1.8		1.8	
Phenanthrene	26.0				
Pyrene	28.0	2,300		61,000	
Inorganics (mg/Kg)		*		,	
Antimony	0.41	5.0		82	
Arsenic	6.8	11.3	13	61	
Barium	140	1,500		14,000	
Beryllium	0.54	22		410	
Boron	2.5	40		41,000	
Cadmium	2.9	5.2		200	
Calcium	29,000				
Chromium	14.0	21		690	
Cobalt	9.8	20		12,000	
Copper	18.0	2,900		8,200	
Iron	14,000	15,000	15,900		
Lead	890	107		700	
Magnesium	12,000	325,000		730,000	
Manganese	590	630	636	4,100	
Mercury	0.11	0.89		0.1	
Nickel	22.0	100		4,100	
Potassium	710				
Selenium	0.49	1.3		1,000	
Sodium	630				
Vanadium	22.0	550		1,400	

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

		Maximum Allowab	le Concentrations	TACO Remediation Objectives		
	Maximum Detected	Most	Within an	Construction	Groundwater Protection	
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)	
ISGS #1314V3-33 (Parl	king Lot)					
Inorganics (mg/Kg)						
Zinc	420	5,100		61,000		
TCLP Metals (mg/L)						
Barium	0.87				2.0	
Boron	0.084				2.0	
Cadmium	0.038				0.005	
Cobalt	0.019				1.0	
Lead	1.7				0.0075	
Manganese	4.1				0.15	
Nickel	0.046				0.1	
Zinc	3.1				5.0	
SPLP Metals (mg/L)	5.2		1	I.		
Cadmium	0.0039				0.005	
Lead	3.7				0.003	
Manganese	0.64				0.0073	
ISGS #1314V3-56 (Con					0.13	
•	ilinerciai bullulligi	5)				
SVOCs (mg/Kg)						
Anthracene	0.013	12,000		610,000		
Benzo(a)anthracene	0.048	0.9	1.8	170		
Benzo(a)pyrene	0.052	0.09	2.1	17		
Benzo(b)fluoranthene	0.071	0.9	2.1	170		
Benzo(g,h,i)perylene	0.02					
Benzo(k)fluoranthene	0.027	9.0		1,700		
Chrysene	0.047	88		17,000		
Fluoranthene	0.11	3,100		82,000		
Indeno(1,2,3-cd)pyrene	0.026	0.9	1.6	170		
Phenanthrene	0.056					
Pyrene	0.082	2,300		61,000		
Inorganics (mg/Kg)						
Antimony	0.28	5.0		82		
Arsenic	5.1	11.3	13	61		
Barium	80.0	1,500		14,000		
Beryllium	0.49	22		410		
Boron	2.7	40		41,000		
Cadmium	0.17	5.2		200		
Calcium	5,200					
Chromium	13.0	21		690		
Cobalt	6.1	20		12,000		
Copper	10.0	2,900		8,200		
Iron	14,000	15,000	15,900			
Lead	9.8	107		700		
Magnesium	2,700	325,000		730,000		
Manganese	620	630	636	4,100		
Mercury	0.024	0.89		0.1		

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

		Maximum Allowab	le Concentrations	TACO Remediation Objectives		
Chemical	Maximum Detected Concentration	Most Stringent	Within an	Construction	Groundwater Protection	
			MSA	Worker Exposure	(TCLP/SPLP)	
ISGS #1314V3-56 (Cor	nmerciai Bulldings	5)				
Inorganics (mg/Kg)						
Nickel	16.0	100		4,100		
Potassium	850					
Selenium	0.26	1.3		1,000		
Sodium	1,300					
Thallium	1.1	2.6		160		
Vanadium	21.0	550		1,400		
Zinc	28.0	5,100		61,000		
TCLP Metals (mg/L)						
Barium	0.58				2.0	
Boron	0.092				2.0	
Iron	0.34				5.0	
Manganese	1.7				0.15	
SPLP Metals (mg/L)			1			
Manganese	0.81				0.15	
ISGS #1314V3-57 (Old					0.13	
SVOCs (mg/Kg)	Chamber Building	9)				
			T			
2-Methylnaphthalene	0.0098					
Acenaphthene	0.016	570		120,000		
Acenaphthylene	0.006					
Anthracene	0.036	12,000		610,000		
Benzo(a)anthracene	0.18	0.9	1.8	170		
Benzo(a)pyrene	0.22	0.09	2.1	17		
Benzo(b)fluoranthene	0.33	0.9	2.1	170		
Benzo(g,h,i)perylene	0.078					
Benzo(k)fluoranthene	0.12	9.0		1,700		
Chrysene	0.21	88		17,000		
Dibenz(a,h)anthracene	0.034	0.09	0.42	17		
Fluoranthene	0.43	3,100		82,000		
Fluorene	0.014	560		82,000		
Indeno(1,2,3-cd)pyrene	0.094	0.9	1.6	170		
Naphthalene	0.023	1.8		1.8		
Phenanthrene	0.26					
Pyrene	0.36	2,300		61,000		
Inorganics (mg/Kg)						
Antimony	0.45	5.0		82		
Arsenic	5.	11.3	13	61		
Barium	91.0	1,500		14,000		
Beryllium	0.6	22		410		
Boron	5.1	40		41,000		
Cadmium	0.5	5.2		200		
Calcium	14,000					
Chromium	14.0	21		690		
Cobalt	5.5	20		12,000		

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

Maximum Within Groundwa			Maximum Allowal	ole Concentrations	TACO Remediation Objectives		
Inorganics (mg/Kg) 17.0	Chamiaal	Detected	Most	Within an	Construction	Groundwater Protection	
Inorganics (mg/Kg) Copper				IVISA	worker Exposure	(ICLP/SPLP)	
Copper	*	Chamber Bullum	9)				
Iron	- ' ' ' '						
Lead 66.0 107 700 Magnesium 7,800 325,000 730,000 Mercury 0.19 0.89 0.1 Mercury 0.19 0.89 0.1 Nickel 13.0 100 4,100 Potassium 910 Sclenium 0.38 1.3 1,000 Sodium 780 Sodium 780 1.60 Vanadium 2.0 550 1,400 Zine 85.0 5,100 61,000 Zine 85.0 5,100 61,000 Zine 85.0 5,100 2.0 Zamium 0.75 -			,				
Magnesium 7,800 325,000 730,000 Manganese 370 630 636 4,100 Nickel 13.0 100 4,100 Potassium 910 4,100 Selenium 0.38 1.3 1,000 Sodium 780 Thallium 0.78 2.6 160 Vanadium 20.0 550 1,400 Zinc 85.0 5,100 61,000 Zinc 85.0 5,100 61,000 Zinc 85.0 5,100 61,000 Zinc 85.0 5,100 2.0 Barium 0.75 2.0 Boron 0.11		,	· · · · · · · · · · · · · · · · · · ·	15,900			
Manganese 370 630 636 4,100 Mercury 0.19 0.89 0.1 Nickel 13.0 100 4,100 Potassium 910 Selenium 0.38 1.3 1,000 Sodium 780 Thallium 0.78 2.6 160 Vanadium 20.0 550 1,400 Zine 85.0 5,100 61,000 TCLP Metals (mg/L) 2.0 Barium 0.75 2.0 Cadmium 0.0022 2.0 Barium 0.0022 0.005 Lead 0.011							
Mercury 0.19 0.89 0.1 Nickel 13.0 100 4,100 Potassium 910 Sclenium 0.38 1.3 1,000 Sodium 780 Thallium 0.78 2.6 160 Vanadium 20.0 550 1,400 Zinc 85.0 5,100 61,000 Zinc 85.0 5,100 61,000 Zinc 85.0 5,100 61,000 Zinc 85.0 5,100 61,000 Zinc 85.0 5,100 2.0 Cadmium 0.75 0.00 2.0 Lead 0.011			·		· ·		
Nickel 13.0 100 4,100 Potassium 910 Selenium 0.38 1.3 1,000 Sodium 780 Thallium 0.78 2.6 160 Vanadium 20.0 550 1,400 Zine 85.0 5,100 61,000 Zine 85.0 5,100 2.0 Zine 2.0 Barium 0.75				636	· · · · · · · · · · · · · · · · · · ·		
Potassium		0.19	0.89		0.1		
Selenium			100		4,100		
Sodium 780		910					
Thallium 0.78 2.6 160 Vanadium 20.0 550 1,400 Zinc 85.0 5,100 61,000 TCLP Metals (mg/L) Barium 0.75 2.0 Boron 0.11 2.0 Cadmium 0.0022 0.005 Lead 0.011 0.0075 Manganese 1.9 0.15 SPLP Metals (mg/L) Lead 0.15 0.15 Lead 0.15 0.0075 Manganese 0.7 0.15 ISGS #1314V3-59 (Residence) SVOCs (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(bfluoranthene			1.3		1,000		
Vanadium 20.0 550 1,400 Zine 85.0 5,100 61,000 TCLP Metals (mg/L) Barium 0.75 2.0 Boron 0.11 2.0 Cadmium 0.0022 0.005 Lead 0.011 0.0075 Manganese 1.9 0.1 SPLP Metals (mg/L) 0.1 0.0 SPLP Metals (mg/L) 0.0 0.0 0.0 Lead 0.15 0.1 0.0075 Manganese 0.7 0.15 ISGS #1314V3-59 (Residence) SVOCs (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)anthracene 0.006							
Zinc 85.0 5,100 61,000 TCLP Metals (mg/L) Barium 0.75 2.0 Boron 0.11 2.0 Cadmium 0.0022 0.005 Lead 0.011 0.0075 Nickel 0.03 0.1 SPLP Metals (mg/L) Lead 0.15 0.15 SGS #1314V3-59 (Residence) SVOCs (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)pyrene 0.009 0.09 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Pluoranthene 0.014 3,100 82,000 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82		0.78					
TCLP Metals (mg/L)	Vanadium	20.0	550		1,400		
Barium 0.75	Zinc	85.0	5,100		61,000		
Boron 0.11	TCLP Metals (mg/L)						
Boron 0.11	Barium	0.75				2.0	
Cadmium 0.0022 0.0075 Manganese 1.9 0.15 Nickel 0.03 0.1 SPLP Metals (mg/L) Lead 0.15 0.0075 Manganese 0.7 0.15 ISGS #1314V3-59 (Residence) SVOCs (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)pyrene 0.009 0.09 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Fluoranthene 0.014 3,100 82,000 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82							
Lead 0.011							
Manganese 1.9 0.15 Nickel 0.03 0.1 SPLP Metals (mg/L) Lead 0.15 0.0075 Manganese 0.7 0.15 ISGS #1314V3-59 (Residence) SVOCS (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)pyrene 0.009 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Pluoranthene 0.014 3,100 82,000 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82							
Nickel 0.03 0.1 SPLP Metals (mg/L) Lead 0.15 0.0075 Manganese 0.7 0.15 ISGS #1314V3-59 (Residence) SVOCS (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)pyrene 0.009 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Fluoranthene 0.014 3,100 82,000 Phenanthrene 0.0056 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82							
SPLP Metals (mg/L) Lead 0.15 0.0075 Manganese 0.7 0.15 ISGS #1314V3-59 (Residence) SVOCs (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)pyrene 0.009 0.09 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Fluoranthene 0.014 3,100 82,000 Phenanthrene 0.0056 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82							
Lead 0.15 0.0075 Manganese 0.7 0.15 ISGS #1314V3-59 (Residence) SVOCs (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)pyrene 0.009 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Fluoranthene 0.014 3,100 82,000 Phenanthrene 0.0056 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82						1	
Manganese 0.7 0.15 ISGS #1314V3-59 (Residence) SVOCs (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)pyrene 0.009 0.09 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Fluoranthene 0.014 3,100 82,000 Phenanthrene 0.0056 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82		0.15				0.0075	
SGS #1314V3-59 (Residence) SVOCs (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)pyrene 0.009 0.09 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Fluoranthene 0.014 3,100 82,000 Phenanthrene 0.0056 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82							
SVOCs (mg/Kg) Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)pyrene 0.009 0.09 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Fluoranthene 0.014 3,100 82,000 Phenanthrene 0.0056 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82						0.13	
Benzo(a)anthracene 0.0075 0.9 1.8 170 Benzo(a)pyrene 0.009 0.09 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Fluoranthene 0.014 3,100 82,000 Phenanthrene 0.0056 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82	•	ideniec _j					
Benzo(a)pyrene 0.009 0.09 2.1 17 Benzo(b)fluoranthene 0.016 0.9 2.1 170 Fluoranthene 0.014 3,100 82,000 Phenanthrene 0.0056 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82						T	
Benzo(b)fluoranthene 0.016 0.9 2.1 170 Fluoranthene 0.014 3,100 82,000 Phenanthrene 0.0056 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82							
Fluoranthene 0.014 3,100 82,000 Phenanthrene 0.0056 61,000 Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82							
Phenanthrene 0.0056 61,000 Inorganics (mg/Kg) 82 Antimony 0.28 5.0 82	. ,			2.1			
Pyrene 0.011 2,300 61,000 Inorganics (mg/Kg) Antimony 0.28 5.0 82			3,100		82,000		
Inorganics (mg/Kg) Antimony 0.28 5.0 82							
Antimony 0.28 5.0 82	_	0.011	2,300		61,000		
·	Inorganics (mg/Kg)						
Arsenic 6.5 11.3 13 61	Antimony	0.28	5.0		82		
	Arsenic	6.5	11.3	13	61		
Barium 67.0 1,500 14,000					14,000		
Beryllium 0.49 22 410							
Boron 3.1 40 41,000							
Cadmium 0.29 5.2 200							
Calcium 23,000							
Chromium 14.0 21 690		· ·			690		
Cobalt 6.8 20 12,000							
Copper 11.0 2,900 8,200					· ·		
Iron 14,000 15,000 15,900			'				

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

		Maximum Allowab	le Concentrations	TACO Remediation Objectives		
a	Maximum Detected	Most	Within an	Construction	Groundwater Protection	
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)	
ISGS #1314V3-59 (Res	idence)					
Inorganics (mg/Kg)						
Lead	14.0	107		700		
Magnesium	15,000	325,000		730,000		
Manganese	460	630	636	4,100		
Mercury	0.013	0.89		0.1		
Nickel	15.0	100		4,100		
Potassium	870					
Selenium	1.6	1.3		1,000		
Sodium	180					
Thallium	1.	2.6		160		
Vanadium	27.0	550		1,400		
Zinc	36.0	5,100		61,000		
TCLP Metals (mg/L)						
Barium	0.57				2.0	
Boron	0.075				2.0	
Cobalt	0.035				1.0	
Manganese	2.4				0.15	
Nickel	0.034				0.13	
Selenium	0.025				0.05	
SPLP Metals (mg/L)	0.023				0.05	
Manganese	0.23				0.15	
ISGS #1314V3-60 (Vac					0.120	
SVOCs (mg/Kg)	u 201 ,					
, , ,	0.004					
2-Methylnaphthalene	0.094			120,000		
Acenaphthene	0.25	570		120,000		
Acenaphthylene	0.0049					
Anthracene	0.65	12,000		610,000		
Benzo(a)anthracene	1.2	0.9	1.8	170		
Benzo(a)pyrene	0.97	0.09	2.1	17		
Benzo(b)fluoranthene	1.5	0.9	2.1	170		
Benzo(g,h,i)perylene	0.32			1.700		
Benzo(k)fluoranthene	0.5	9.0		1,700		
Carbazole	0.43	0.6		6,200		
Chrysene	1.1	88	0.42	17,000		
Dibenz(a,h)anthracene	0.12	0.09	0.42	17		
Dibenzofuran	0.19	2.100				
Fluoranthene	3.1	3,100		82,000		
Fluorene	0.26	560		82,000		
Indeno(1,2,3-cd)pyrene	0.34	0.9	1.6	170		
Phenanthrene	2.5	2 200				
Pyrene	2.2	2,300		61,000		
Inorganics (mg/Kg)						
Antimony	0.62	5.0		82		
Arsenic	7.	11.3	13	61		

Table 4-2 Detected Soil Analytes and Comparison with Applicable Criteria FAI 74 (Interstate 74), Contract 64C08 Moline, Rock Island County, Illinois

		Maximum Allowab	le Concentrations	TACO Remediation Objectives	
	Maximum		Within		Groundwater
	Detected	Most	an	Construction	Protection
Chemical	Concentration	Stringent	MSA	Worker Exposure	(TCLP/SPLP)
ISGS #1314V3-60 (Vaca	ant Lot)				
Inorganics (mg/Kg)					
Barium	120	1,500		14,000	
Beryllium	0.56	22		410	
Boron	9.1	40		41,000	
Cadmium	0.44	5.2		200	
Calcium	220,000				
Chromium	16.0	21		690	
Cobalt	11.0	20		12,000	
Copper	14.0	2,900		8,200	
Iron	18,000	15,000	15,900		
Lead	72.0	107		700	
Magnesium	7,400	325,000		730,000	
Manganese	820	630	636	4,100	
Mercury	0.076	0.89		0.1	
Nickel	31.0	100		4,100	
Potassium	900				
Selenium	0.63	1.3		1,000	
Sodium	290				
Vanadium	25.0	550		1,400	
Zinc	110	5,100		61,000	
TCLP Metals (mg/L)					
Barium	0.74				2.0
Boron	0.15				2.0
Chromium	0.015				0.1
Iron	0.32				5.0
Lead	0.021				0.0075
Manganese	1.8				0.15
Zinc	0.092				5.0
SPLP Metals (mg/L)					
Lead	0.11				0.0075
Manganese	0.49				0.15

NOTE: Maximum Allowable Concentration refers to the values listed in the Summary of Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations, 35 Ill. Adm. Code 1100.Subpart F dated 8/27/12. Total COC concentrations exceeding a MAC are highlighted; however, further evaluation is required to determine if the detected metals concentrations exceed the applicable MAC. For metals, total, TCLP and SPLP results are evaluated collectively to determine compliance with MACs.

Key:

ISGS = Illinois State Geological Survey = Not applicable or not specified. MAC = Maximum Allowable Concentration SPLP = Synthetic precipitation leaching procedure.

of Chemical Constituents in Uncontaminated Soil SVOCs = Semivolatile organic compounds.

mg/L = Milligrams per liter. TACO = Tiered Approach to Corrective Action Objective mg/kg = Milligrams per kilogram.

TCLP = Toxicity characteristic leaching procedure.

VOCs = Volatile organic compounds.

MSA = Metropolitan Statistical Area.

Table 4-3 Detected Water Analytes and Comparison to TACO Tier 1 Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

	Maximum Concentration	TACO Tier 1 Remediation Objectives for Groundwater		
Chemical	Detected	Class I	Class II	
ISGS #1314V3-1 (IDOT I	ROW)			
SVOCs (mg/L)	, , , , , , , , , , , , , , , , , , ,			
Diethyl phthalate	0.00032	5.6	5.6	
Inorganics (mg/L)				
Arsenic	0.0015	0.05	0.2	
Barium	0.31	2.0	2.0	
Boron	1.5	2.0	2.0	
Calcium	230	NS	NS	
Chromium	0.00098	0.1	1.0	
Cobalt	0.0013	1.0	1.0	
Copper	0.0018	0.65	0.65	
Iron	29.0	5.0	5.0	
Lead	0.004	0.0075	0.1	
Magnesium	37.0	NS	NS	
Manganese	3.	0.15	10	
Nickel	0.0075	0.1	2.0	
Potassium	21.0	NS	NS	
Sodium	230	NS	NS	
Zinc	0.027	5.0	10	
ISGS #1314V3-2 (Missis	sippi River)			
VOCs (mg/L)	,			
Xylenes, Total	0.00067	10	10	
SVOCs (mg/L)	0.00007			
Diethyl phthalate	0.00048	5.6	5.6	
Phenanthrene	0.00032	NS	NS	
Inorganics (mg/L)	0.00032			
Arsenic (mg/L)	0.0074	0.05	0.2	
Barium	0.0074	2.0	2.0	
Beryllium	0.00072	0.004	0.5	
Boron	0.49	2.0	2.0	
Cadmium	0.0012	0.005	0.05	
Calcium	85.0	NS	NS	
Chromium	0.017	0.1	1.0	
Cobalt	0.0044	1.0	1.0	
Copper	0.029	0.65	0.65	
Iron	15.0	5.0	5.0	
Lead	0.51	0.0075	0.1	
Magnesium	11.0	NS	NS	
Manganese	0.39	0.15	10	
Mercury	0.00012	0.002	0.01	
Nickel	0.013	0.1	2.0	
Potassium	9.6	NS	NS	
Silver	0.00011	0.05	NS	
Sodium	21.0	NS	NS	
Vanadium	0.015	0.049	0.1	
Zinc	0.31	5.0	10	

Table 4-3 Detected Water Analytes and Comparison to TACO Tier 1 Criteria FAI 74 (Interstate 74), Contract 64C08
Moline, Rock Island County, Illinois

	Maximum Concentration		ediation Objectives undwater
Chemical	Detected	Class I	Class II
ISGS #1314V3-4 (City of Mo	oline, Water Depar	tment)	
SVOCs (mg/L)			
Benzo(a)anthracene	0.00076	0.0001	0.0007
Benzo(a)pyrene	0.00086	0.0002	0.002
Benzo(b)fluoranthene	0.0011	0.0002	0.0009
Benzo(g,h,i)perylene	0.00036	NS	NS
Benzo(k)fluoranthene	0.00042	0.0002	0.0009
Chrysene	0.00073	0.0015	0.0075
Dibenz(a,h)anthracene	0.00012	0.0003	0.0015
Fluoranthene	0.001	0.28	1.4
Indeno(1,2,3-cd)pyrene	0.00047	0.0004	0.0022
Pyrene	0.001	0.21	1.05
Inorganics (mg/L)			
Arsenic	0.011	0.05	0.2
Barium	0.25	2.0	2.0
Beryllium	0.00034	0.004	0.5
Boron	1.1	2.0	2.0
Cadmium	0.00024	0.005	0.05
Calcium	190	NS	NS
Chromium	0.012	0.1	1.0
Cobalt	0.0023	1.0	1.0
Copper	0.0054	0.65	0.65
Iron	28.0	5.0	5.0
Lead	0.06	0.0075	0.1
Magnesium	34.0	NS	NS
Manganese	2.	0.15	10
Nickel	0.01	0.1	2.0
Potassium	15.0	NS	NS
Selenium	0.002	0.05	0.05
Sodium	100	NS	NS
Vanadium	0.0081	0.049	0.1
Zinc	0.13	5.0	10

Table 4-3 Detected Water Analytes and Comparison to TACO Tier 1 Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

	Maximum Concentration	TACO Tier 1 Remediation Objectives for Groundwater		
Chemical	Detected	Class I	Class II	
ISGS #1314V3-6 (Vacan	t Land)			
Inorganics (mg/L)				
Arsenic	0.004	0.05	0.2	
Barium	0.18	2.0	2.0	
Boron	0.28	2.0	2.0	
Cadmium	0.00021	0.005	0.05	
Calcium	130	NS	NS	
Chromium	0.0024	0.1	1.0	
Cobalt	0.0033	1.0	1.0	
Copper	0.015	0.65	0.65	
Iron	6.3	5.0	5.0	
Lead	0.012	0.0075	0.1	
Magnesium	25.0	NS	NS	
Manganese	1.1	0.15	10	
Nickel	0.011	0.1	2.0	
Potassium	4.3	NS	NS	
Sodium	98.0	NS	NS	
Vanadium	0.0033	0.049	0.1	
Zinc	0.016	5.0	10	
ISGS #1314V3-7 (River \$	Stone Moline Yard)			
SVOCs (mg/L)				
Benzo(a)anthracene	0.00039	0.0001	0.0007	
Benzo(a)pyrene	0.00068	0.0002	0.002	
Benzo(b)fluoranthene	0.00078	0.0002	0.0009	
Benzo(g,h,i)perylene	0.00055	NS	NS	
Benzo(k)fluoranthene	0.00029	0.0002	0.0009	
Chrysene	0.00046	0.0015	0.0075	
Dibenz(a,h)anthracene	0.00014	0.0003	0.0015	
Diethyl phthalate	0.0011	5.6	5.6	
Fluoranthene	0.0007	0.28	1.4	
Indeno(1,2,3-cd)pyrene	0.00051	0.0004	0.0022	
Phenanthrene	0.0003	NS	NS	
Pyrene	0.00084	0.21	1.05	

Table 4-3 Detected Water Analytes and Comparison to TACO Tier 1 Criteria FAI 74 (Interstate 74), Contract 64C08

Moline, Rock Island County, Illinois

	Maximum Concentration	TACO Tier 1 Remediation Objectives for Groundwater								
Chemical	Detected	Class I	Class II							
SGS #1314V3-7 (River Stone Moline Yard)										
Inorganics (mg/L)										
Arsenic	0.0059	0.05	0.2							
Barium	0.59	2.0	2.0							
Boron	1.5	2.0	2.0							
Calcium	200	NS	NS							
Chromium	0.0022	0.1	1.0							
Cobalt	0.0027	1.0	1.0							
Copper	0.0067	0.65	0.65							
Iron	21.0	5.0	5.0							
Lead	0.011	0.0075	0.1							
Magnesium	23.0	NS	NS							
Manganese	0.55	0.15	10							
Nickel	0.0035	0.1	2.0							
Potassium	21.0	NS	NS							
Selenium	0.0015	0.05	0.05							
Sodium	36.0	NS	NS							
Zinc	0.015	5.0	10							

Key:

ISGS = Illinois State Geological Survey.

mg/L = Milligrams per liter.

NS = Not specified.

TACO = Tiered Approach to Corrective Action Objectives.

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

				Contamina	nts of Concern ^a	Off-Site Man	agement ^b
Boring ID	Range of Headspace Readings Above Background (meter units)	Sample	рН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification
ISGS #1314V3-1	(IDOT ROW)						
1314V3-01-B01	None detected	1314V3-01-B01(0-6)	8.2	None	Lead (T/S)	Yes	Uncontaminated Soil
1314 V 3-01-D01	None detected	1314V3-01-B01 (6-11)	7.7	None	None	105	Cheomanniated Son
1314V3-01-B02	None detected	1314V3-01-B02 (0-8)	7.7	None	Manganese (T/S)	Yes	Uncontaminated Soil
1314V3-01-B03	None detected	1314V3-01-B03 (0-8)	9.4	None	None	No (pH)	Restricted
1314V3-01-B04	None detected	1314V3-01-B04 (0-6)	9.3	None	Benzo(a)anthracene ^c , benzo(a)pyrene, benzo(b)fluoranthene ^c , dibenz(a,h)anthracene, lead (T/S), manganese (T/S)	No	Non-special Waste
		1314V3-01-B04 (6-11.2)	7.7	Manganese	Lead (T/S)		
1314V3-01-B05	None detected	1314V3-01-B05 (0-6)	8.5	None	Benzo(a)pyrene, lead (T/S), manganese (T/S)	Yes (within an MSA,	Uncontaminated Soil
1314 v 3-01-1003	None detected	1314V3-01-B05 (6-12)	8.2	None	Benzo(a)pyrene, lead (T/S), manganese (T/S)	including Chicago)	
		1314V3-01-B06 (0-8)	7.9	None	Lead (T/S), manganese (T/S)		
1314V3-01-B06	None detected	1314V3-01-B06 (8-15)	7.8	None	None	Yes	Uncontaminated Soil
		1314V3-01-B06 (8-15)D	7.9	None	None		
1314V3-01-B07	None detected	1314V3-01-B07 (0-6)	7.8	None	Lead (T/S)	Yes	Uncontaminated Soil
1314 V 3-01-1007	None detected	1314V3-01-B07 (6-12)	7.6	None	None	168	Oncontaminated Son
1314V3-01-B08	None detected	1314V3-01-B08 (0-4)	7.7	None	Manganese (T/S)	Yes	Uncontaminated Soil
1314 V 3-01-1008	None detected	1314V3-01-B08 (4-9)	7.7	None	None	168	Oncontaminated Son
1314V3-01-B09	None detected	1314V3-01-B09 (0-6)	8.6	None	Manganese (T/S)	Yes	Uncenteminated Soil
1314 V 3-01-B09	rione detected	1314V3-01-B09 (6-11.6)	8	None	Lead (T/S), manganese (T/S)	1 es	Uncontaminated Soil
1314V3-01-B10	None detected	1314V3-01-B10 (0-6)	8.6	None	Manganese (T/S)	Yes	Uncontaminated Soil
1314V3-01-B11	None detected	1314V3-01-B11 (0-8)	8.3	None	None	Yes	Uncontaminated Soil
1514 V 5-01-D11	rione detected	1314V3-01-B11 (8-15)	8.6	None	Manganese (T/S)	168	Oncomaninated Soil

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

	Danier of			Contaminants of Concern ^a		Off-Site Management ^b		
Boring ID	Range of Headspace Readings Above Background (meter units)	Sample	рН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification	
ISGS #1314V3-2	(Mississippi River)							
		1314V3-02-B01 (0-5)	11.6	None	None			
1314V3-02-B01	None detected	1314V3-02-B01 (5-10)	9.8	None	Benzo(a)pyrene, manganese (T/S)	No (pH)	Non-special Waste	
		1314V3-02-B02 (0-6)	9.1	None	None			
1314V3-02-B02	None detected	1314V3-02-B02 (6-12)	9.1	None	Manganese (T/S)	No (pH)	Non-special Waste	
		1314V3-02-B02 (6-12)D	8.9	None	Manganese (T/S)			
ISGS #1314V3-4	(City of Moline, Wa	ater Department)						
		1314V3-04-B01 (0-6)	8	None	Benzo(a)pyrene, lead (T/S)			
1314V3-04-B01	None detected	1314V3-04-B01 (6-11)	8	Lead	Benzo(a)pyrene, manganese (T/S)	No	Non-special Waste	
ISGS #1314V3-5	(Industrial Buildin	g)						
1314V3-05-B01	None detected	1314V3-05-B01 (0-5)	8.1	None	None	Yes	Unrestricted	
1314V3-05-B02	None detected	1314V3-05-B02 (0-6)	8.2	None	Manganese (T/S)	Yes	Uncontaminated Soil	
1314 V 3-03-B02	None detected	1314V3-05-B02 (6-10.6)	7	None	Manganese (T/S)	ies	Uncontaminated Son	
1314V3-05-B03	None detected	1314V3-05-B03 (0-5.9)	8.2	Manganese	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, lead (T/S)	No	Non-special Waste	
ISGS #1314V3-6	(Vacant Land)							
1314V3-06-B01	None detected	1314V3-06-B01 (0-8)	8.9	Arsenic ^d , iron	Benzo(a)pyrene	No	Non-special Waste	
1314V3-06-B02	None detected	1314V3-06-B02 (0-8)	8.6	Manganese	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene	No	Non-special Waste	
1314V3-06-B03	None detected	1314V3-06-B03 (0-4)	8.6	None	Manganese (T/S)	Yes	Uncontaminated Soil	
1314V3-06-B04	None detected	1314V3-06-B04 (0-5.2)	8.3	None	Benzo(a)pyrene, manganese (T/S)	Yes (within an MSA, including Chicago)	Uncontaminated Soil	
1314V3-06-B05	None detected	1314V3-06-B05 (0-8)	8	None	Manganese (T/S)	Yes	Uncontaminated Soil	

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

	Range of			Contaminant	ts of Concern ^a	Off-Site Man	agement ^b
Boring ID	Headspace Readings Above Background (meter units)	Sample	рН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification
1314V3-06-B06	None detected	1314V3-06-B06 (0-4)	8.3	None	Benzo(a)pyrene	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1314V3-06-B07	None detected	1314V3-06-B07 (0-4.3)	8	Benzo(a)anthracene ^d , benzo(a)pyrene ^d , benzo(b)fluoranthene ^d , carbazole	Dibenz(a,h)anthracene ^c , indeno(1,2,3-cd)pyrene ^c , manganese (T/S)	No	Non-special Waste
1314V3-06-B08	None detected	1314V3-06-B08 (0-5)	8.2	None	Benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, manganese (T/S)	No	Non-special Waste
		1314V3-06-B08 (5-10)	8	Lead ^d	Benzo(a)pyrene		
1314V3-06-B09	None detected	1314V3-06-B09 (0-2)	8	None	Benzo(a)pyrene, benzo(b)fluoranthene, manganese (T/S)	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1214W2 06 B10	Non-datastad	1314V3-06-B10 (0-6)	8.3	None	Benzo(a)pyrene	Yes (within an MSA,	Harris at a d Call
1314V3-06-B10	None detected	1314V3-06-B10 (6-11)	8.4	None	Benzo(a)pyrene	including Chicago)	Uncontaminated Soil
1314V3-06-B11	None detected	1314V3-06-B11 (0-6)	7.8	None	None	Yes	Uncontaminated Soil
1314 V 3-00-D11	Tvoic detected	1314V3-06-B11 (6-10.7)	8.2	None	Manganese (T/S)	103	Chechtammated Son
ISGS #1314V3-7	(River Stone Molin	ne Yard)					
1314V3-07-B01	None detected	1314V3-07-B01 (0-6)	9.6	Benzo(a)anthracene ^d , benzo(a)pyrene ^d , benzo(b)fluoranthene ^d , dibenzo(a,h)anthracene ^d , indeno(1,2,3- cd)pyrene ^d	None	No	Non-special Waste
1314V3-07-B02	3.6 - 33.7	1314V3-07-B02 (0-5)	8.2	None	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene ^c	No (TVOCs)	Non-special Waste

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

	Range of			Contaminant	s of Concern ^a	Off-Site Man	agement ^b
Boring ID	Headspace Readings Above Background (meter units)	Sample	рН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification
1314V3-07-B03	None detected	1314V3-07-B03 (0-5.5)	8	Benzo(a)anthracene ^d , benzo(a)pyrene ^d , benzo(b)fluoranthene ^d , dibenzo(a,h)anthracene ^d , arsenic ^d	Indeno(1,2,3-cd)pyrene ^c	No	Non-special Waste
1314V3-07-B04	None detected	1314V3-07-B04 (0-5)	8	Benzo(a)pyrene ^d , benzo(b)fluoranthene ^d , dibenzo(a,h)anthracene ^d , indeno(1,2,3- cd)pyrene ^d	Benzo(a)anthracene	No	Non-special Waste
		1314V3-07-B04 (5-11)	8.2	None	Manganese (T/S)		
ISGS #1314V3-8	(Commercial Build	ling)					
1314V3-08-B01	None detected	1314V3-08-B01 (0-6)	7.8	None	Benzo(a)pyrene, lead (T/S)	Yes (within an MSA,	Uncontaminated Soil
1314 (3-08-101	None detected	1314V3-08-B01 (6-12)	7.7	None	None	including Chicago)	Cheomanniated Son
ISGS #1314V3-11	(Vacant Land)						
1314V3-11-B01	None detected	1314V3-11-B01 (0-1)	8.4	None	Manganese (T/S)	Yes	
1314V3-11-B02	None detected	1314V3-11-B02 (0-1)	8.4	None	Benzo(a)pyrene, manganese (T/S)	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1314V3-11-B03	None detected	1314V3-11-B03 (0-1)	8.5	None	Benzo(a)pyrene, manganese (T/S)	Yes (within an MSA,	Uncontaminated Soil
1314 V 3-11-B03	None detected	1314V3-11-B03 (0-1)D	8.5	None	Benzo(a)pyrene, manganese (T/S)	including Chicago)	Uncontaminated Soil
ISGS #1314V3-17	(Parking Lot)						
1314V3-17-B01	None detected	1314V3-17-B01 (0-7)	7.9	None	None	Yes	Unrestricted
1314V3-17-B02	None detected	1314V3-17-B02 (0-7)	7.1	Arsenic ^d , lead	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene ^c , manganese (T/S)	No	Non-special Waste
1314V3-17-B03	None detected	1314V3-17-B03 (0-7)	7.6	None	Manganese (T/S)	Yes	Uncontaminated Soil
1514 V 5-17-BUS	None detected	1314V3-17-B03 (0-7)D	7.8	None	Manganese (T/S)	1 es	Oncomaninated Son

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

	Banan at			Contaminan	ts of Concern ^a	Off-Site Mana	agement ^b
Boring ID	Range of Headspace Readings Above Background (meter units)	Sample	pН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification
ISGS #1314V3-18	(Vacant Land)						
		1314V3-18-B01 (0-6)	8.7	None	Manganese (T/S)		
1314V3-18-B01	None detected	1314V3-18-B01 (6-12)	8.3	None	Manganese (T/S)	Yes	Uncontaminated Soil
		1314V3-18-B01 (12-18)	7.9	None	Manganese (T/S)		
		1314V3-18-B02 (0-7)	8	None	None		
1314V3-18-B02	None detected	1314V3-18-B02 (0-7)D	8	None	None	Yes (within an MSA, including Chicago)	Uncontaminated Soil
		1314V3-18-B02 (7-13)	7.7	None	Benzo(a)pyrene	merading emeago)	
1314V3-18-B03	None datastad	1314V3-18-B03 (0-6)	8.1	None	Manganese (T/S)	Yes	I In contouring to d Coil
1314V3-18-B03	None detected	1314V3-18-B03 (6-12)	7.6	None	Manganese (T/S)	res	Uncontaminated Soil
1314V3-18-B04	None detected	1314V3-18-B04 (0-5.3)	8.6	None	Benzo(a)pyrene, manganese (T/S)	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1314V3-18-B05	None detected	1314V3-18-B05 (0-8)	8.1	None	Lead (T/S), manganese (T/S)	Yes	Uncontaminated Soil
1314 V 3-16-B03	None detected	1314V3-18-B05 (8-12)	8	None	None	Tes	Oncomanimated Son
1314V3-18-B06	None detected	1314V3-18-B06 (0-6)	8.4	None	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, manganese (T/S)	Yes (within an MSA, excluding Chicago)	Uncontaminated Soil
		1314V3-18-B06 (6-12)	7.9	None	Lead (T/S)	,	
		1314V3-18-B06 (12-17)	8	None	Manganese (T/S)		
1314V3-18-B07	None detected	1314V3-18-B07 (0-8)	8.5	None	None	Yes	Unrestricted
1314V3-18-B08	None detected	1314V3-18-B08 (0-4.4)	8.4	None	Benzo(a)pyrene, lead (T/S), manganese (T/S)	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1314V3-18-B09	None detected	1314V3-18-B09 (0-8)	7.6	Arsenic ^{d,e} , thallium ^{d,e}	Manganese (T/S)	No	Non-special Waste
ISGS #1314V3-21	(BNSF Railroad)						
1314V3-21-B01	None detected	1314V3-21-B01 (0-5)	7.5	None	Benzo(a)pyrene, manganese (T/S)	Yes (within an MSA,	Uncontaminated Soil
		1314V3-21-B01 (5-10)	7.8	None	None	including Chicago)	

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

	Banani at			Contamina	nts of Concern ^a	Off-Site Mana	agement ^b
Boring ID	Range of Headspace Readings Above Background (meter units)	Sample	pН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification
1314V3-21-B02	None detected	1314V3-21-B02 (0-6)	7.7	Lead	Benzo(a)pyrene, antimony (T/S), manganese (T/S)	No	Non-special Waste
1314 (3 21 B02	Trone detected	1314V3-21-B02 (0-6) D	7.7	Lead	Benzo(a)pyrene, manganese (T/S)	110	Tron special waste
ISGS #1314V3-24	(John Deere)						
1314V3-24-B01	None detected	1314V3-24-B01 (0-5.8)	7.8	None	Benzo(a)pyrene	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1314V3-24-B02	None detected	1314V3-24-B02 (0-5)	8.1	Arsenic ^d , lead ^d , antimony	Benzo(a)pyrene	No	Non-special Waste
		1314V3-24-B02 (5-10)	7.9	None	None		
1314V3-24-B03	None detected	1314V3-24-B03 (0-5)	8.2	Lead	Manganese (T/S)	No	Non-special Waste
1314 V 3-24-B03	None detected	1314V3-24-B03 (5-10)	8.1	None	Manganese (T/S)	NO	Non-special waste
1314V3-24-B04	None detected	1314V3-24-B04 (0-5)	8.3	Lead	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, antimony (T/S), manganese (T/S)	No	Non-special Waste
		1314V3-24-B04 (5-10)	8.5	Manganese	None		
		1314V3-24-B04 (5-10)D	8.5	None	Manganese (T/S)		
1314V3-24-B05	None detected	1314V3-24-B05 (0-5)	8.3	Antimony, lead	Benzo(a)pyrene, manganese (T/S)	No	Non-special Waste
		1314V3-24-B05 (5-10)	7.6	None	None		-
1314V3-24-B06	None detected	1314V3-24-B06 (0-4)	9	Manganese	None No		Non-special Waste
1314V3-24-B07	None detected	1314V3-24-B07 (0-5)	8.9	Lead	Manganese (T/S)	No	Non-special Waste
1314V3-24-B08	None detected	1314V3-24-B08 (0-8)	7.9	Arsenic ^d	None	No	Non-special Waste
1314V3-24-B09	None detected	1314V3-24-B09 (0-4)	7.5	None	Manganese (T/S)	Yes	Uncontaminated Soil

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

		k island County,		Contaminant	s of Concern ^a	Off-Site Man	agement ^b
Boring ID	Range of Headspace Readings Above Background (meter units)	Sample	рН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification
1314V3-24-B10	None detected	1314V3-24-B10 (0-5)	8.5	Benzo(a)anthracene ^d , benzo(a)pyrene ^d , benzo(b)fluoranthene ^d , lead	Dibenz(a,h)anthracene ^c , indeno(1,2,3-cd)pyrene ^c	No	Non-special Waste
1314V3-24-B11	None detected	1314V3-24-B11 (0-6)	8.4	Lead	Benzo(a)pyrene, manganese (T/S)	No	Non-special Waste
		1314V3-24-B11 (6-12)	7.7	None	None		
1314V3-24-B12	None detected	1314V3-24-B12 (0-6)	8	Antimony, lead, manganese ^d	Benzo(a)pyrene	No	Non-special Waste
1314 V 3-24-B12	None detected	1314V3-24-B12 (6-12)	7.5	None	None	140	Non-special waste
1314V3-24-B13	None detected	1314V3-24-B13 (0-6)	7.6	Antimony, lead	None	No	Non-special Waste
1314 V 3-24-B13	None detected	1314V3-24-B13 (6-12)	7.2	None	None	NO	Non-special waste
1314V3-24-B14	None detected	1314V3-24-B14 (0-6)	8.2	Lead	None	No	Non-special Waste
1314 V 3-24-114	None detected	1314V3-24-B14 (6-12)	7.7	None	None	NO	Non-special waste
ISGS #1314V3-25	(Sivyer Steel Corp	o.)					
1314V3-25-B01	None detected	1314V3-25-B01 (0-6)	7.5	Benzo(a)anthracene ^d , benzo(a)pyrene ^d , benzo(b)fluoranthene ^d , dibenz(a,h)anthracene ^d , lead, manganese	Indeno(1,2,3-cd)pyrene ^c	No	Non-special Waste
		1314V3-25-B01 (6-12)	8.2	None	Manganese (T/S)		
1314V3-25-B02	None detected	1314V3-25-B02 (0-6)	8.5	Lead	None	No	Non angiel West
1514 V 5-25-BU2	None detected	1314V3-25-B02 (6-12)	8.1	None	Manganese (T/S)	INO	Non-special Waste
1314V3-25-B03	None detected	1314V3-25-B03 (0-8)	8.1	Lead ^d	Manganese (T/S)	No	Non-special Waste
1314V3-25-B04	None detected	1314V3-25-B04 (0-6)	8.1	None	None	Yes	Uncontaminated Soil
1314 V 3-23-DU4	None detected	1314V3-25-B04 (6-12)	8.1	None	Manganese (T/S)	168	Oncomaminated Soll

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

				Contaminant	ts of Concern ^a	Off-Site Man	agement ^b
Boring ID	Range of Headspace Readings Above Background (meter units)	Sample	рН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification
1314V3-25-B05	None detected	1314V3-25-B05 (0-6)	7	Lead ^{d,e} , manganese	Benzo(a)pyrene, antimony (T/S)	No	Non-special Waste
		1314V3-25-B05 (6-12)	7	None	None		
1314V3-25-B06	None detected	1314V3-25-B06 (0-6)	7.4	Benzo(a)anthracene ^d , benzo(b)fluoranthene ^d , antimony, arsenic ^d , lead ^{d,e}	Benzo(a)pyrene ^c , dibenz(a,h)anthracene ^c , indeno(1,2,3- cd)pyrene ^c	No	Non-special Waste
		1314V3-25-B06 (6-12)	8.3	None	None		
1314V3-25-B07	None detected	1314V3-25-B07 (0-6)	7.4	None	Manganese (T/S)	Yes	Uncontaminated Soil
1314 V 3-23-B07	None detected	1314V3-25-B07 (6-12)	8	None	None	168	Oncontaminated Son
ISGS #1314V3-26	(Commercial Buil	lding)					
1314V3-26-B01	None detected	1314V3-26-B01 (0-8)	8.2	None	None	Yes	Unrestricted
1314V3-26-B02	None detected	1314V3-26-B02 (0-8)	8.2	None	None	Yes	Unrestricted
ISGS #1314V3-32	(Commercial Buil	lding)					
1314V3-32-B01	None detected	1314V3-32-B01 (0-6)	8.9	None	Manganese (T/S)	Yes	Uncontaminated Soil
1314 v 3-32- B 01	None detected	1314V3-32-B01 (6-12)	7.9	None	Manganese (T/S)	105	Cheomanniaed Son
1314V3-32-B02	None detected	1314V3-32-B02 (0-6)	7.7	None	Manganese (T/S)	Yes	Uncontaminated Soil
131 4 v 3-32- D 02	Tvone detected	1314V3-32-B02 (6-12)	7.6	None	Manganese (T/S)	103	Cheomanniated 5011
1314V3-32-B03	None detected	1314V3-32-B03 (0-6)	8.8	None	Manganese (T/S)	Yes	Uncontaminated Soil
1314 V 3-32-B03	None detected	1314V3-32-B03 (6-12)	8.4	None	Manganese (T/S)	168	Oncontainmated Son
1314V3-32-B04	None detected	1314V3-32-B04 (0-6)	8.8	None	Manganese (T/S)	Yes	Uncontaminated Soil
1314 V 3-32- D 04	None detected	1314V3-32-B04 (6-12)	8.1	None	None	105	Cheomanniated Son
1314V3-32-B05	None detected	1314V3-32-B05 (0-3)	8.8	None	Benzo(a)pyrene	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1314V3-32-B06	None detected	1314V3-32-B06 (0-3)	8.8	None	Benzo(a)pyrene, manganese (T/S)	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1314V3-32-B07	None detected	1314V3-32-B07 (0-3)	8.5	None	None	Yes	Unrestricted

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

				Contaminant	s of Concern ^a	Off-Site Man	agement ^b
Boring ID	Range of Headspace Readings Above Background (meter units)	Sample	рН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification
1314V3-32-B08	None detected	1314V3-32-B08 (0-3)	8.9	None	None	Yes	Unrestricted
ISGS #1314V3-33	(Parking Lot)						
1314V3-33-B01	None detected	1314V3-33-B01 (0-6)	7.8	None	Benzo(a)pyrene, manganese (T/S)	Yes (within an MSA,	Uncontaminated Soi
		1314V3-33-B01 (6-12)	8.4	None	None	including Chicago)	
1314V3-33-B02	None detected	1314V3-33-B02 (0-5)	8.6	None	Benzo(a)pyrene, manganese (T/S)	Yes (within an MSA,	Uncontaminated Soil
1314 V 3-33-BU2	None detected	1314V3-33-B02 (5-9.4)	8.6	None	Manganese (T/S)	including Chicago)	Oncontaminated Soi
1314V3-33-B03	None detected	1314V3-33-B03 (0-6)	8.1	Benzo(a)anthracene ^d , benzo(a)pyrene ^d , benzo(b)fluoranthene ^d , carbazole, dibenz(a,h)anthracene ^d , indeno(1,2,3- cd)pyrene ^d	None	No	Non-special Waste
		1314V3-33-B03 (6-12)	7.7	None	None		
1314V3-33-B04	0.0 - 2.9	1314V3-33-B04 (0-6)	8.8	Lead ^{d,e}	Benzo(a)pyrene, manganese (T/S)	No	Non-special Waste
		1314V3-33-B04 (6-12)	8.4	None	Manganese (T/S)		
1314V3-33-B05	None detected	1314V3-33-B05 (0-6)	8.4	None	Manganese (T/S)	Yes	Uncontaminated Soi
1314 v 3-33- D 03	None detected	1314V3-33-B05 (6-12)	7.9	None	Manganese (T/S)	103	Oncontainmated Soi
1314V3-33-B06	None detected	1314V3-33-B06 (0-6)	8	None	Manganese (T/S)	Yes	Uncontaminated Soi
1314 v 3-33- B 00	None detected	1314V3-33-B06 (6-12)	7.6	None	None	168	Oncontainmated Soi
1314V3-33-B07	None detected	1314V3-33-B07 (0-8)	8.4	None	Lead (T/S), manganese (T/S)	Yes	Uncontaminated Soi
1314 v 3-33- B 07	None detected	1314V3-33-B07 (0-8)D	8.6	None	Lead (T/S), manganese (T/S)	168	Oncontainmated Soi
ISGS #1314V3-	56 (Commercial I	Building)					
1314V3-56-B01	None detected	1314V3-56-B01 (0-3)	8	None	Manganese (T/S)	Yes	Uncontaminated Soi
1314V3-56-B02	None detected	1314V3-56-B02 (0-3)	8.9	None	Manganese (T/S)	No (pH)	Non-special Waste
1314 V 3-30-DUZ	TNOTE detected	1314V3-56-B02 (0-3)D	9.1	None	Manganese (T/S)	No (pH)	14011-special waste
1314V3-56-B03	None detected	1314V3-56-B03 (0-3)	8.2	None	Manganese (T/S)	Yes	Uncontaminated Soil
			-	-		•	•

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

	Donne of			Contaminar	nts of Concern ^a	Off-Site Man	agement ^b
Boring ID	Range of Headspace Readings Above Background (meter units)	Sample	рН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification
ISGS #1314V3-57	7 (Old Chamber Bu	ilding)					
1314V3-57-B01	None detected	1314V3-57-B01 (0-3)	8.1	None	Benzo(a)pyrene	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1314V3-57-B02	None detected	1314V3-57-B02 (0-3)	8.4	None	benzo(a)pyrene, lead (T/S), manganese (T/S)	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1314V3-57-B03	None detected	1314V3-57-B03 (0-5)	8.7	None	Manganese (T/S)	Yes	Uncontaminated Soil
ISGS #1314V3-59	(Residence)						
1314V3-59-B01	None detected	1314V3-59-B01 (0-5)	8.2	None	Manganese (T/S)	Yes	Uncontaminated Soil
1314 V 3-39-B01	None detected	1314V3-59-B01 (5-10)	8.3	None	Manganese (T/S)	res	Uncontaminated Soil
ISGS #1314V3-60	(Vacant Lot)						
1314V3-60-B01	Niggi description	1314V3-60-B01 (0-6)	7.6	None	None	V	II. martini et a I
1314 V 3-60-B01	None detected	1314V3-60-B01 (6-11)	7.6	None	None	Yes	Unrestricted
1314V3-60-B02	None detected	1314V3-60-B02 (0-7)	8	None	benzo(a)pyrene, lead (T/S)	Yes (within an MSA, including Chicago)	Uncontaminated Soil
1314V3-60-B03	None detected	1314V3-60-B03 (0-4)	7.5	None	None	Yes	Unrestrictive
1314 v 3-00-603	None detected	1314V3-60-B03 (4-9)	7.5	None	None	res	Omesuicuve
1314V3-60-B04	None detected	1314V3-60-B04 (0-5)	8.9	None	Manganese (T/S)	Yes	Uncontaminated Soil
1214W2 60 D05	None detects d	1314V3-60-B05 (0-6)	8.2	None	None	Vac	I In no otni oto d
1314V3-60-B05	None detected	1314V3-60-B05 (6-12)	7.8	None	None	Yes	Unrestricted

Table 4-4 Summary of Soil Impacts
FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

	Bango of			Contaminant	s of Concern ^a	Off-Site Management ^b		
Boring ID	Range of Headspace Readings Above Background (meter units)	Sample	pН	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Eligible for CCDD or Uncontaminated Soil Fill Operation?	Classification	
1314V3-60-B06	None detected	1314V3-60-B06 (0-6)	11.8	None	Benzo(a)anthracene ^c , benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene	No (pH)	Non-special Waste	
	1314V3-60-B06 (6-12) 8.3		None	None				

Notes:

Key:

ISGS = Illinois State Geological Survey.

 $MAC = Maximum \ Allowable \ Concentrations \ of \ Chemical$

Constituents in Uncontaminated Soil Used as Fill at

Regulated Fill Operations.

MSA = Metropolitan Statistical Area.

SPLP = Synthetic precipitation leaching procedure.

TCLP = Toxicity characteristic leaching procedure.

T/S = Toxicity characteristic leaching procedure/Synthetic precipitation leaching procedure.

TVOCs = Total volatile organic compounds.

^a Contaminants of concern are defined as analytes that were detected at a concentration above one or more reference criteria. The following compounds and analytes have MACs for both MSAs and non-MSAs: arsenic, iron, manganese, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. TCLP/SPLP exceedances of the SCGIER are considered to be MAC exceedances when the total metal concentration also exceeds the MAC.

b Soils that contain constituent concentrations below the most stringent MACs may be managed off site as "uncontaminated soil" pursuant to 35 IAC 1100. Uncontaminated soil with a pH range of 6.25 to 9.0 and no PID readings above background levels may be managed off site to a Clean Construction and Demolition Debris (CCDD) facility or uncontaminated soil fill operation (USFO). When a constituent has a MAC based on a Metropolitan Statistical Area (MSA), soils that contain constituents below the applicable MACs for an MSA, exhibit a pH within the range of 6.25 to 9.0, and do not exhibit PID readings above background levels may be managed off site as "uncontaminated soil" to a CCDD or USFO within the MSA county, excluding Chicago. Soils containing constituents above MACs for an MSA that cannot be managed on site are estimated as non-special waste. Metals (excluding arsenic) are considered eligible for off-site management to a CCDD or USFO facility unless the detected total, TCLP, and SPLP concentrations exceed applicable comparison criteria.

^c The analyte concentration exceeds the MAC for Chicago Corporate limits.

^d The analyte concentration exceeds the TACO Tier 1 remediation objective for the residential soil exposure route.

^e The detected analyte concentration exceeds the TACO Tier 1 remediation objective for the construction worker exposure route.

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

		Contaminar	nts of Concern			Ir	nated Volum npacted Soil cubic yards)	b
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Special Waste
SGS #1314V3-1 (IDOT ROW)							
1314V3-01-B01	Station 252+35 to Station 252+90 (existing I-74 NB), 0 to 40' RT and 0 to 20' LT	None	Lead (T/S)	Storm Sewer	Quantity estimated from storm sewer dimensions	155.6		
1314V3-01-B02	Station 252+90 to Station 253+85 (existing I-74 NB), 0 to 20' RT and 0 to 20' LT	None	Manganese (T/S)	Storm Sewer	Quantity estimated from storm sewer dimensions	280.0	-	
1314V3-01-B03	Station 253+85 to Station 254+90 (existing I-74 NB), 0 to 20' RT and 0 to 20' LT	рН	None	Storm Sewer	Quantity estimated from storm sewer dimensions		311.1	
1314V3-01-B04	Station 254+90 to Station 255+95 (existing I-74 NB), 0 to 30' RT and 0 to 20' LT	Manganese, pH	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, lead (T/S), manganese (T/S)	Storm Sewer	Quantity estimated from storm sewer dimensions			357.8
1314V3-01-B05	Station 255+95 to Station 257+20 (existing I-74 NB), 0 to 30' RT and 0 to 50' LT	None	Benzo(a)pyrene, lead (T/S), manganese (T/S)	Storm Sewer	Quantity estimated from storm sewer dimensions	404.4		
1314V3-01-B06	Station 44+05 to Station 45+45 (proposed I-74), 35' to 95' RT	None	Lead (T/S), manganese (T/S)	Ramp construction, ditch work, pier installation; grading	Quantity estimated from IDOT excavation summary tables and cross sections.	3,523.3		
	(proposed 1-74), 33 to 33 K1			Storm Sewer	Quantity estimated from storm sewer dimensions	355.6		
1314V3-01-B07	Station 45+45 to Station 46+90 (proposed I-74), 35' to 95' RT	None	Lead (T/S)	Ramp construction, grading and piers	Quantity estimated from IDOT excavation summary tables and cross sections	2,700.9		
	(proposed 1-74), 33 to 73 KT			Storm Sewer	Quantity estimated from storm sewer dimensions	414.8		
1314V3-01-B08	Station 46+90 to Station 47+85 (proposed I-74), 35' to 125' RT	None	Manganese (T/S)	Ramp construction	Quantity estimated from IDOT excavation summary Tables and cross sections.	2,998.3		
	(proposed 1-74), 33 to 123 K1			Storm Sewer	Quantity estimated from storm sewer dimensions	325.9		
1314V3-01-B09	Station 430+65 to 431+45 (Ramp 6th-D), 0 to 30' RT and 0 to 30' LT	None	Lead (T/S), manganese (T/S)	Ramp construction and pier installation	Quantity estimated from IDOT excavation summary Tables and cross sections.	780.9		
1314V3-01-B10	Station 44+00 to Station 45+65 (proposed I-74), 0 to 35' RT and 0 to 75' LT	None	Manganese (T/S)	Ramp construction and pier installation	Quantity estimated from IDOT excavation summary Tables and cross sections.	2,337.1		

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

		Contamina	nts of Concern			lr	nated Volum npacted Soil (cubic yards)	l ^b
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Special Waste
1314V3-01-B11	Station 45+65 to Station 47+75 (proposed I-74), 0 to 35' RT and 0 to 75' LT	None	Manganese (T/S)	Ramp construction and pier installation	Quantity estimated from IDOT excavation summary Tables and cross sections.	1,474.6		
				Total Volume of Impac	cted Soil in Construction Zone:	15,751.0	311.0	358.0
SGS #1314V3-2 (I	Mississippi River)							
1314V3-02-B01	Station 219+25 to Station 219+70 (Ramp RD-H), 0 to 85' RT and 0 to 100' LT	pН	Benzo(a)pyrene, manganese (T/S)	Ramp construction, ditch work, multi-use path; storm sewer	Quantity estimated by IDOT.			32.0
1314V3-02-B02	Station 127+50 to Station 128+60 (Ramp RD-G), 0 to 210' RT and 0 to 105' LT	рН	Manganese (T/S)	Ramp construction, ditch work, multi-use path; Storm sewer	Quantity estimated by IDOT.			80.0
				Total Volume of Impac	eted Soil in Construction Zone:	0.0	0.0	112.0
SGS #1314V3-4 (City of Moline, Water Department							
1314V3-04-B01	Station 252+35 to Station 252+90 (existing I-74 SB), 0 to 60' LT	Lead	Benzo(a)pyrene, manganese (T/S)	Storm Sewer	Quantity estimated by IDOT.			47.7
				Total Volume of Impac	cted Soil in Construction Zone:	0.0	0.0	48.0
SGS #1314V3-5 (I	Industrial Building)							
1314V3-05-B02	Station 256+80 to Station 257+75 (existing I-74 NB), 45' LT to 195' LT	None	Manganese (T/S)	Potential UST	No Excavation Proposed.			
1314V3-05-B03	Station 257+75 to Station 258+95 (existing I-74 NB), 45' LT to 195' LT	Manganese	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, lead (T/S)	Potential UST	No Excavation Proposed.			
				Total Volume of Impac	cted Soil in Construction Zone:	0.0	0.0	0.0
SGS #1314V3-6 (Vacant Land)							
1314V3-06-B01	Station 128+65 to Station 129+60 (Ramp RD-G), 40' to 185' RT	Arsenic, iron	benzo(a)pyrene	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			2,820.7
	(Samp KD-0), 40 to 105 K1			Storm Sewer	Quantity estimated from storm sewer dimensions			168.9
1314V3-06-B02	Station 129+60 to Station 130+70	Manganese	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene,	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			2,476.8
1514 (5-00-1502	(Ramp RD-G), 40' to 155' RT	ivianganese	dibenz(a,h)anthracene	Storm Sewer	Quantity estimated from storm sewer dimensions			195.6

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

		Contaminan	ts of Concern			Ir	nated Volum npacted Soil (cubic yards)	l ^b
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Special Waste
1314V3-06-B03	Station 130+70 to Station 131+50 (Ramp RD-G), 70' to 120' RT	None	Manganese (T/S)	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.	115.2		
	(Kamp KB-G), 70 to 120 K1			Storm Sewer	Quantity estimated from storm sewer dimensions	183.3		
1314V3-06-B04	Station 132+30 to Station 133+10 (Ramp RD-G), 0 to 20' and 0 to 50'	None	Benzo(a)pyrene, manganese (T/S)	Ramp Construction	Quantity estimated from IDOT excavation summary tables and cross sections.	0.0		
	LT			Storm Sewer	Quantity estimated from storm sewer dimensions	53.5		
1314V3-06-B05	Station 133+10 to Station 134+00 (Ramp RD-G), 45' to 100' RT	None	Manganese (T/S)	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.	34.4		
1314V3-06-B06	Station 134+00 to Station 134+75	None	Benzo(a)pyrene	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.	41.2		
	(Ramp RD-G), 25' to 110' RT			Storm Sewer	Quantity estimated from storm sewer dimensions	62.2		
1314V3-06-B07	Station 133+65 to Station 134+65 (Ramp RD-G), 95' to 235' RT	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, carbazole	Dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, manganese (T/S)	Potential UST	No Excavation Proposed.			0.0
1314V3-06-B08	Station 133+65 to Station 135+20 (Ramp RD-G), 235' to 420' RT	Lead	Benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, manganese (T/S)	Potential UST	No Excavation Proposed.			0.0
1314V3-06-B09	Station 134+00 to Station 134+65 (Ramp RD-G), 0 to 25' RT and 0 to	None	Benzo(a)pyrene, benzo(b)fluoranthene, manganese	Ramp construction and pier installation	Quantity estimated from IDOT excavation summary tables and cross sections.	0.0		
	55' LT		(T/S)	Storm Sewer	Quantity estimated from storm sewer dimensions	40.9		
1314V3-06-B10	Station 211+10 to Station 212+35	None	Benzo(a)pyrene	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.	220.3		
	(Ramp RD-H), 5' to 95' RT			Storm Sewer	Quantity estimated from storm sewer dimensions	316.7		
1314V3-06-B11	Station 30+60 to Station 31+35 (proposed I-74), 0 to 20' RT and 0 to 20' LT	None	Manganese (T/S)	Ramp construction and pier installation	Quantity estimated from IDOT excavation summary tables and cross sections.	92.6		
VL1-2	Station 30+60 to Station 31+35 (proposed I-74), 20 to 100' RT	None	Manganese (T/S)	Ramp construction and Pier	Quantity estimated from IDOT excavation summary tables and cross sections.	138.9		

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

		Contaminant	ts of Concern			Estimated Volume of Impacted Soil ^b (cubic yards)		
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Special Waste
VL1-3	Station 30+60 to Station 31+15 (proposed I-74), 30' to 100' LT	None	Lead (T/S), manganese (T/S)	Ramp Construction, multiuse path installation, ditch work	Quantity estimated from IDOT excavation summary tables and cross sections.	120.4		
VL1-10	Station 133+10 to Station 134+00 (Ramp RD-G), 0 to 50' RT and 0 to	Manganese	Benzo(a)pyrene	Ramp Construction, multiuse path installation, ditch work	Quantity estimated from IDOT excavation summary tables and cross sections.			0.0
	50 'LT			Storm Sewer	Quantity estimated from storm sewer dimensions			59.8
VL1-12	Station 27+40 to Station 29+20 (propsoed I-74), 0 to 20' RT and 0 to 95' LT	Lead	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene	Ramp construction and unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			3,448.0
VL1-13	Station 131+45 to Station 132+30 (Ramp RD-G), 0 to 95' RT and 0 to	Benzo(a)anthracene, benzo(a)pyrene, pH	Indeno(1,2,3-dc)pyrene	Ramp Construction, multiuse path installation, ditch work	Quantity estimated from IDOT excavation summary tables and cross sections.			113.3
	5' LT	benzo(a)pyrene, pri		Storm Sewer	Quantity estimated from storm sewer dimensions			195.6
VL1-15	Station 26+00 to Station 27+40 (proposed I-74), 0 to 15' RT and 0 to 100' LT	Lead	benzo(a)pyrene	Ramp construction and unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			802.2
VL1-16	Station 130+70 to Station 131+45 (Ramp RD-G), 0 to 70' RT and 0 to 5' LT	Benzo(a)anthracene, benzo(a)pyrene	Indeno(1,2,3-dc)pyrene	Ramp Construction, multiuse path installation, ditch work	Quantity estimated from IDOT excavation summary tables and cross sections.			378.6
VL1-17	Station 128+60 to Station 130+65 (Ramp RD-G). 0 to 40' RT and 0 to 35' LT	Manganese	Lead (T/S)	Ramp construction and unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			13,708.8
VL1-19	Station 127+50 to Station 128+60 (Ramp RD-G), 0 to 115' RT and 0 to 35 LT	None	Benzo(a)pyrene, Dibenzo(a,h)anthracene	Ramp construction and unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.	708.3		
VB-5	Station 134+75 to Station 135+30	Manganese	Lead (T/S)	Ramp Construction, multiuse path installation, ditch work	Quantity estimated from IDOT excavation summary tables and cross sections.			19.3
	(Ramp RD-G), 25' RT to 115' RT		(,	Storm Sewer	Quantity estimated from storm sewer dimensions			125.3
1314V3-07-B01	Station 217+55 to Station 219+45 (Ramp RD-H), 85 to 120' LT	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, pH	None	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			708.4
1314V3-07-B02	Station 216+35 to Station 218+55 (Ramp RD-H), 55' to 90' LT	TVOCs	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			2,173.5

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

		Contaminant	s of Concern			In	nated Volum npacted Soil cubic yards)	l ^b
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Special Waste
1314V3-07-B03	Station 215+35 to Station 216+35 (Ramp RD-H), 55' to 100' LT	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, arsenic	Indeno(1,2,3-cd)pyrene	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			1,817.5
1314V3-08-B01	Station 212+35 to Station 214+85 (Ramp RD-H), 0 to 65' LT	None	Benzo(a)pyrene, lead (T/S)	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.	298.3		
CB-8	Station 213+30 to Station 214+15 (Ramp RD-H), 10' to 65' LT	Lead	Benzo(a)pyrene, manganese (T/S)	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			142.6
				Total Volume of Impac	ted Soil in Construction Zone:	2,128.0	0.0	24,513.0
ISGS #1314V3-7 (I	River Stone Moline Yard)							
1314V3-07-B01	Station 217+45 to Station 219+40 (Ramp RD-H), 0 to 25' RT and 0 to	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene,	installation, ditch work, unsuitable excavation					1,080.0
1314 v 3-07-B01	85' LT	dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, pH	None	Storm Sewer	Quantity estimated from storm sewer dimensions			422.2
1314V3-07-B02	Station 216+35 to Station 217+45 (Ramp RD-H), 0 to 30' RT and 0' to	TVOCs	Benzo(a)anthracene, benzo(a)pyrene,	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			5,847.8
	55' LT		benzo(b)fluoranthene, dibenz(a,h)anthracene	Storm Sewer	Quantity estimated from storm sewer dimensions			422.2
1314V3-07-B03	Station 215+35 to Station 216+35 (Ramp RD-H), 0 to 30' RT and 0 to	Benzo(a)anthracene, benzo(a)pyrene,	None	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			1,957.0
151110 0, 205	55' LT	benzo(b)fluoranthene, dibenzo(a,h)anthracene, arsenic	1000	Storm Sewer	Quantity estimated from storm sewer dimensions			422.2
1314V3-07-B04	Station 214+15 to Station 215+35 (Ramp RD-H), 0 to 55' RT and 0 to	Benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene,	benzo(a)anthracene, manganese	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			146.2
	55 'LT	indeno(1,2,3-cd)pyrene	(T/S)	Storm Sewer	Quantity estimated from storm sewer dimensions			464.4
				Total Volume of Impac	ted Soil in Construction Zone:	0.0	0.0	10,762.0

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

		Contamina	nts of Concern			Ir	mated Volum npacted Soil (cubic yards)	l ^b
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Special Waste
ISGS #1314V3-8 (Commercial Building)							
1314V3-08-B01	Station 212+35 to Station 214+85 (Ramp RD-H), 0 to 55' RT	None	Benzo(a)pyrene, lead (T/S)	Ramp Construction, multiuse path installation, ditch work	Quantity estimated from IDOT excavation summary tables and cross sections.	36.4		
	(Kamp KD-11), 0 to 35 K1			Storm Sewer	Quantity estimated from storm sewer dimensions	358.9		
CB-8	Station 213+30 to Station 214+15	Lead	Benzo(a)pyrene, manganese (T/S)	Ramp Construction, multiuse path installation, ditch work, unsuitable material	Quantity estimated from IDOT excavation summary tables and cross sections.			27.5
CB-0	(Ramp RD-H), 0 to 55 RT	Lead	Benzo(a)pyrene, manganese (1/8)	Storm Sewer	Quantity estimated from storm sewer dimensions			337.8
				Total Volume of Impac	ted Soil in Construction Zone:	395.0	0.0	365.0
ISGS #1314V3-11	(Vacant Land)							
1314V3-11-B01	Station 259+00 to Station 259+75 (existing I-74 SB), 80' to 170' RT	None	Manganese (T/S)	Grading	33% of excavation quantity estimated by IDOT.	2.4		
1314V3-11-B02	Station 259+75 to Station 260+85 (existing I-74 SB), 80' to 170' RT	None	Benzo(a)pyrene, manganese (T/S)	Grading	33% of excavation quantity estimated by IDOT.	2.4		
1314V3-11-B03	Station 259+00 to Station 259+75, (existing I-74 SB), 60' to 180' LT	None	Benzo(a)pyrene, manganese (T/S)	Grading	33% of excavation quantity estimated by IDOT.	2.4		
				Total Volume of Impac	ted Soil in Construction Zone:	7.0	0.0	0.0
ISGS #1314V3-17	(Parking Lot)							
1314V3-17-B02	Station 263+00 to Station 264+00 (existing I-74 SB), 35' to 75' RT	Arsenic, lead	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, manganese (T/S)	Grading	33% of excavation quantity estimated by IDOT.			50.9
1314V3-17-B03	Station 264+00 to Station 264+75, (existing I-74 SB), 35' to 75' RT	None	Manganese (T/S)	Grading	33% of excavation quantity estimated by IDOT.	50.9		
	'		·	Total Volume of Impac	ted Soil in Construction Zone:	52.0	26.0	51.0
ISGS #1314V3-18	(Vacant Land)							
1314V3-18-B01	Station 327+50 to Station 328+50 (Ramp 6th C), 0 to 20' RT and 0 to	None	Manganese (T/S)	Ramp construction, pier installation, retaining wall	Quantity estimated from IDOT excavation summary tables and cross sections.	2,104.7		
1314 V 3-10-ВИ	80' LT	None	ivianganese (1/5)	Storm Sewer	Quantity estimated from storm sewer dimensions	311.1		

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

		Contaminar	nts of Concern			lr	nated Volum npacted Soil (cubic yards)	l ^b
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Special Waste
1314V3-18-B02	Station. 327+00 to Station 328+00 (Ramp 6th-C), 120' to 310' RT	None	Benzo(a)pyrene	Ramp construction, pier installation, retaining wall	Quantity estimated from IDOT excavation summary tables and cross sections.	4,755.3		
	(Rump our C), 120 to 310 R1			Storm Sewer	Quantity estimated from storm sewer dimensions	328.9		
1314V3-18-B03	Station 326+50 to Station 327+50 (Ramp 6th-C), 0 to 40' RT and 0 to	None	Manganese (T/S)	Ramp construction, pier installation, retaining wall	Quantity estimated from IDOT excavation summary tables and cross sections.	1,342.4		
	70' LT			Storm Sewer	Quantity estimated from storm sewer dimensions	435.6		
1314V3-18-B04	Station 32+00 to Station 32+90 (proposed I-74), 0 to 45' RT and 0 to 10' LT	None	Benzo(a)pyrene, manganese (T/S)	Possible UST and road reconstruction (fill)	IDOT excavation summary tables and cross sections.	0.0		
1314V3-18-B05	Station 429+30 to Station 430+05 (Ramp 6th-D), 0 to 25' RT and 0 to	None	Lead (T/S), manganese (T/S)	Ramp construction, pier installation, retaining wall	Quantity estimated from IDOT excavation summary tables and cross sections.	1,071.3		
1314 V3-10-1003	120' LT	None	Lead (1/3), manganese (1/3)	Storm Sewer	Quantity estimated from storm sewer dimensions	808.9		
1314V3-18-B06	Station 430+05 to Station 432+20 (Ramp 6th-D), 0 to 30' RT and 0 to 130' LT	None	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, lead (T/S), manganese (T/S)	Ramp construction, pier installation, retaining wall	Quantity estimated from IDOT excavation summary tables and cross sections.	1,776.0		
1314V3-18-B08	Station 32+35 to Station 32+55 (proposed I-74), 35' to 70' LT	None	Benzo(a)pyrene, lead (T/S), manganese (T/S)	Possible UST and road reconstruction (fill)	IDOT excavation summary tables and cross sections.	0.0		
1314V3-18-B09	Station 32+55 to Station 32+90 (proposed I-74), 10' to 70' LT	Arsenic, thallium	Manganese (T/S)	Possible UST and road reconstruction (fill)	IDOT excavation summary tables and cross sections.			0.0
VL2-5	Station 325+55 to Station 326+50 (Ramp 6th-C), 0 to 40'RT and 0 to 50' LT	None	Benzo(a)pyrene	Grading and storm sewer	Quantity estimated from IDOT excavation summary tables and cross sections.	140.0		
VL2-8	Station 430+05 to Station 430+65 (Ramp 6th-D), 0 to 30 RT and 0 to 130 LT	Manganese, Lead	Benzo(a)pyrene	Grading	Quantity estimated from IDOT excavation summary tables and cross sections.			2,133.1
VL2-9	Station 327+05 to Station 329+30 (Ramp 6th-C), 20 to 120' RT	Lead	Benzo(a)pyrene, manganese (T/S)	Grading	Quantity estimated from IDOT excavation summary tables and cross sections.			3,222.5
				Total Volume of Impa	cted Soil in Construction Zone:	13,074.0	0.0	5,356.0

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

		Contaminan	ts of Concern			lr	nated Volum npacted Soil cubic yards)	b
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Specia Waste
SGS #1314V3-21	(BNSF Railroad)							
1314V3-21-B01	Station 35+10 to Station 36+25 (proposed I-74), 0 to 155' RT	None	Benzo(a)pyrene, manganese (T/S)	Ramp construction and Storm Sewer	Quantity estimated from storm sewer dimensions	518.5		
1314V3-21-B02	Station 35+10 to Station 36+25 (proposed I-74), 0 to 125' LT	Lead	Benzo(a)pyrene, antimony (T/S) manganese (T/S)	Ramp construction and Storm Sewer	Quantity estimated from storm sewer dimensions			100.0
				Total Volume of Impac	cted Soil in Construction Zone:	519.0	0.0	100.0
SGS #1314V3-24	(John Deere)							
1314V3-24-B01	Station 36+25 to Station 37+00	None	Benzo(a)pyrene	Ramp construction and pier installation	Quantity estimated from IDOT excavation summary tables and cross sections.	490.2		
	(proposed I-74), 60' to 100' RT		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Storm Sewer	Quantity estimated from storm sewer dimensions	129.6		
1314V3-24-B02	Station 37+00 to Station 37+85 (proposed I-74), 60' to 110' RT	Arsenic, lead, antimony	Benzo(a)pyrene	Ramp construction and Storm Sewer	Quantity estimated from storm sewer dimensions			207.4
1314V3-24-B03	Station 37+85 to Station 38+60 (proposed I-74), 65' to 165' RT	Lead	Manganese (T/S)	Ramp construction	Quantity estimated from storm sewer dimensions			207.4
1314V3-24-B04	Station 38+25 to 39+35 (proposed I-	Lead, manganese	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene,	Ramp construciton and pier installation	Quantity estimated from IDOT excavation summary tables and cross sections.			259.3
1314 (3-24-1004	74), 0 to 110' RT and 0 to 50' LT	Lead, manganese	dibenz(a,h)anthracene, antimony (T/S), manganese (T/S)	Storm Sewer	Quantity estimated from storm sewer dimensions			259.3
1314V3-24-B05	Station 39+35 to 40+00 (proposed I-74), 35' to 115' RT	Antimony, lead	Benzo(a)pyrene, manganese (T/S)	Ramp construction and Storm Sewer	Quantity estimated from storm sewer dimensions			233.3
1314V3-24-B06	Station 5000+75 to Station 5001+70 (5th Avenue), 0 to 115' LT	Manganese	None	Access Road reconstruction	No excavation proposed.			0.0
1314V3-24-B07	Station 39+35 to Station 40+00 (proposed I-74), 35' to 50' LT	Lead	Manganese (T/S)	Ramp construction and pier installation	Quantity estimated from IDOT excavation summary tables and cross sections.			111.1
1314V3-24-B08	Station 429+80 to Station 430+75 (Ramp 6th-D), 0 to 40' RT and 0 to	Arsenic	None	Ramp construction and retaining wall	Quantity estimated from IDOT excavation summary tables and cross sections.			165.0
	70' LT			Storm Sewer	Quantity estimated from storm sewer dimensions			425.9
1314V3-24-B09	Station 5001+70 to 5002+85 (5th Avenue), 0 to 150' LT	None	Manganese (T/S)	Road reconstruction and storm sewer	Quantity estimated from IDOT excavation summary tables and cross sections.	203.7		

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

		Contaminant	ts of Concern			lr	nated Volum npacted Soil cubic yards)	b
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Special Waste
1314V3-24-B10	Station 330+75 to Station 332+85 (Ramp 6th-C), 0 to 35' RT and 0 to 40' LT	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, lead	Dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene	Ramp construction and retaining wall	Quantity estimated from IDOT excavation summary tables and cross sections.			27.2
1314V3-24-B11	Station 332+00 to Station 332+85 (Ramp 6th-C), 40 to 95' LT	Lead	Benzo(a)pyrene, manganese (T/S)	Potential UST and road reconstruction (fill)	No Excavation Proposed.			0.0
1314V3-24-B12	Station 332+85 to Station 333+00 (Ramp 6ht-C), 50' to 85' LT	Antimony, lead, manganese	Benzo(a)pyrene	Potential UST and road reconstruction (fill)	No Excavation Proposed.			0.0
1314V3-24-B13	Station 330+75 to Station 332+85 (Ramp 6th-C), 20' to 65' LT	Antimonty, Lead	None	Potential UST and road reconstruction (fill)	No Excavation Proposed.			0.0
1314V3-24-B14	Station 332+85 to Station 333+00 (Ramp 6th-C), 0 to 50' LT	Antimonty, Lead	None	Possible UST and road reconstruction	Quantity estimated from IDOT excavation summary tables and cross sections.			163.5
				Total Volume of Impac	cted Soil in Construction Zone:	824.0	0.0	2,059.0
ISGS #1314V3-25	(Sivyer Steel Corp.)							
1314V3-25-B01	Station 409+90 to Station 410+75 (4th Avenue), 0 to 85' RT	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, lead, manganese	Manganese (T/S), indeno(1,2,3-cd)pyrene	Road reconstruction, curb, gutter and sidewalk replacement	Quantity estimated from IDOT excavation summary tables and cross sections.			73.7
1314V3-25-B02	Station 410+75 to Station 412+25 (4th Avenue), 0 to 85' RT	Lead	Manganese (T/S)	Road reconstruction, curb, gutter and sidewalk replacement	Quantity estimated from IDOT excavation summary tables and cross sections.			60.8
1314V3-25-B03	Station 426+15 to Station 426+80 (Ramp 6th-D), 0 to 35' RT and 0 to	Lead	Manganese (T/S)	Ramp construction and retaining wall	Quantity estimated from IDOT excavation summary tables and cross sections.			0.0
131113 23 203	90' LT	Bott	Walliganese (178)	Storm Sewer	Quantity estimated from storm sewer dimensions			124.4
1314V3-25-B04	Station 426+80 to Station 427+65 (Ramp 6th-D), 0 to 35' RT and 0 to	None	Manganese (T/S)	Ramp construction and pier installation	Quantity estimated from IDOT excavation summary tables and cross sections.	331.2		
	20' LT			Storm Sewer	Quantity estimated from storm sewer dimensions	259.3		
1314V3-25-B05	Station 36+20 to Station 39+35 (proposed I-74), 0 to 20' RT and 0 to 65' LT	Lead, manganese	Benzo(a)pyrene, antimony (T/S)	Ramp construction and pier installation	Quantity estimated from IDOT excavation summary tables and cross sections.			280.7
1314V3-25-B06	Station 36+15 to Station 36+40 (proposed I-74), 20' to 85' RT	Benzo(a)anthracene, benzo(b)fluoranthene, antimony, arsenic, lead	Benzo(a)pyrene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene	Ramp construction and pier installation	Quantity estimated from IDOT excavation summary tables and cross sections.			458.0

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

		Cont <u>aminan</u>	ts of Concern			In	nated Volum npacted Soil cubic yards)	b
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO		Non- Special Waste
1314V3-25-B07	Station 408+90 to Station 409+90 (4th Avenue), 0 to 85' RT	None	Manganese (T/S)	Ramp construction and pier installation, curb and gutter	Quantity estimated from IDOT excavation summary tables and cross sections.	616.7		
				Total Volume of Impac	cted Soil in Construction Zone:	1,207.0	0.0	998.0
SGS #1314V3-32	(Commercial Building)		1					
1314V3-32-B01	Station 1904+70 to Station 1905+00 (proposed 19th Street), 40' to 95' LT	None	Manganese (T/S)	Potential UST	No Excavation Proposed.	0.0		
1314V3-32-B02	Station 1905+00 to Station 1905+25 (proposed 19th Street), 45' to 95' LT	None	Manganese (T/S)	Potential UST	No Excavation Proposed.	0.0		
1314V3-32-B03	Station 1905+25 to Station 1905+60 (proposed 19th Street), 0 to 95' LT)	None	Manganese (T/S)	Road construction and potential UST	10% of excavation quantity estimated by IDOT.	9.4		
1314V3-32-B04	Station 1905+00 to Station 1905+25 (proposed 19th Street), 0 to 45' LT	None	Manganese (T/S)	Road construction and potential UST	10% of excavation quantity estimated by IDOT.	9.4		
1314V3-32-B05	Station 1904+70 to Station 1905+00 (proposed 19th Street), 0 to 40' LT	None	Benzo(a)pyrene	Road construction and potential UST	25% of excavation quantity estimated by IDOT.	23.6		
1314V3-32-B06	Station 31+75 to 32+65 (19th Street) 0 to 50' LT	None	Benzo(a)pyrene, manganese (T/S)		55% of excavation quantity estimated by IDOT.	51.9		
	5			Total Volume of Impac	cted Soil in Construction Zone:	94.0	0.0	0.0
SGS #1314V3-33	(Parking Lot)							
1314V3-33-B01	Station 5000+15 to Station 5001+15 (5th Avenue), 0 to 30' RT	None	Benzo(a)pyrene, manganese (T/S)	Road construction and potential UST	40% of excavation quantity estimated by IDOT.	64.5		
1314V3-33-B02	Station 5001+15 to Station 5001+70 (5th Avenue), 0 to 100' RT	None	Benzo(a)pyrene, manganese (T/S)	Road reconstruction	35% of excavation quantity estimated by IDOT.	56.4		
1314V3-33-B03	Station 5000+85 to Station 5001+15 (5th Avenue), 30' to 60' RT	Benzo(a)anthrance, Benzo(a)pyrene, benzo(b)fluoranthene, carbazole, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene	None	Potential UST	No Excavation Proposed.			0.0
1314V3-33-B04	Station 5000+55 to Station 5001+15 (5th Avenue), 60' to 90' RT	Lead, VOCs	Benzo(a)pyrene, manganese (T/S)	Potential UST	No Excavation Proposed.			0.0

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois

		Contaminan	ts of Concern			Ir	nated Volum npacted Soil cubic yards)	þ
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Special Waste
1314V3-33-B05	Station 5000+15 to Station 5000+55 (5th Avenue), 30' to 60' RT	None	Manganese (T/S)	Potential UST	No Excavation Proposed.	0.0		
1314V3-33-B06	Station 4999+25 to Station 5000+15 (5th Avnue), 0 to 60' RT	None	Manganese (T/S)	Road Reconstruction (fill)	No Excavation Proposed.	0.0		
1314V3-33-B07	Station 270+25 to Station 271+25(existing I-74), 65' to 145' RT	None	Lead (T/S), manganese (T/S)	Road reconstruction	25% of excavation quantity estimated by IDOT.	40.3		
				Total Volume of Impac	cted Soil in Construction Zone:	161.0	0.0	0.0
SGS #1314V3-56	(Commercial Building)							
1314V3-56-B01	Station 303+10 to Station 304+10 (6th Avenue), 0 to 45' RT	None	Manganese (T/S)	Road reconstruction	Quantity estimated from IDOT excavation summary tables and cross sections.	121.3		
1314V3-56-B02	Station 34+70 to Station 35+70 (19th Street), 0 to 55' LT	рН	Manganese (T/S)	Road reconstruction Cross sections. Quantity estimated from excavation summary tabl cross sections.				38.8
1314V3-56-B03	Station 35+70 to 36+55 (19th Street), 0 to 55' LT	None	Manganese (T/S)	Road reconstruction	Quantity estimated from IDOT excavation summary tables and cross sections.	125.4		
				Total Volume of Impac	cted Soil in Construction Zone:	247.0	0.0	39.0
SGS #1314V3-57	(Old Chamber Building)							
1314V3-57-B01	Station 36+55 to Station 37+50 (19th Street), 0 to 55' LT	None	Benzo(a)pyrene	Road reconstruction	Quantity estimated from IDOT excavation summary tables and cross sections.	195.7		
1314V3-57-B02	Station 209+65 to Station 211+50, (7th Avenue), 0 to 85' LT	None	Benzo(a)pyrene, lead (T/S), manganese (T/S)	Road reconstruction	Quantity estimated from IDOT excavation summary tables and cross sections.	661.6		
1314V3-57-B03	Station 211+50 to Station 212+60	None	Manganese (T/S)	Road reconstruction	Quantity estimated from IDOT excavation summary tables and cross sections.	471.4		
	(7th Avenue), 0 to 85' LT		-	Storm Sewer	Quantity estimated from storm sewer dimensions	74.1		
				Total Volume of Impac	cted Soil in Construction Zone:	1,403.0	0.0	0.0
SGS #1314V3-59	(Residence)							
1314V3-59-B01	Station 305+00 to Station 306+20 (6th Avenue), 0 to 45' RT	None	Manganese (T/S)	Road reconstruction and storm sewer	Quantity estimated from IDOT excavation summary tables and cross sections.	621.4		
				Total Volume of Impac	cted Soil in Construction Zone:	621.0	0.0	0.0

Table 4-5 Estimate of Impacted Soil Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

		Contaminan	ts of Concern			lr	mated Volum npacted Soil (cubic yards)	l _p
Boring ID ^a	Impacted Stationing	Above All Applicable Comparison Criteria	Above Most Stringent MAC, Chicago MAC, or SCGIER Criteria Only	Construction Feature Involving Excavation of Impacted Soil	Excavation Dimension Assumption ^b	Eligible for CCDD or USFO	Ineligible for CCDD or USFO	Non- Special Waste
ISGS #1314V3-60	(Vacant Lot)							
1314V3-60-B02	Station 644+95 to Station 645+80 (Ramp 7th-A), 0 to 115' RT and 0	None	Benzo(a)pyrene and Lead (T/S)	Road reconstruction	Quantity estimated from IDOT excavation summary tables and cross sections.	1,223.0		
	to 30' LT			Storm Sewer	Quantity estimated from storm sewer dimensions	133.3		
1314V3-60-B04	Station 216+70 to Station 217+75 (7th Avenue), 0 to 100' LT	None	Manganese (T/S)	Road reconstruction	Quantity estimated from IDOT excavation summary tables and cross sections.	243.1		
1314V3-60-B06	Station 309+85 to Station 310+70 (6th Avenue), 0 to 150' RT	рН	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene	Road reconstruction	Quantity estimated from IDOT excavation summary tables and cross sections.			1,307.1
				Total Volume of Impacted Soil in Construction		1,604.0	77.0	1,307.0

Notes:

Key:

COCs = Contaminants of concern.

ISGS = Illinois State Geological Survey

MACs = Maximum allowable concentration
of chemical constituents in uncontaminated
soil used as fill material at regulated fill operations

T/S = Toxicity characteristic leaching procedure/synthetic precipitation leaching procedure

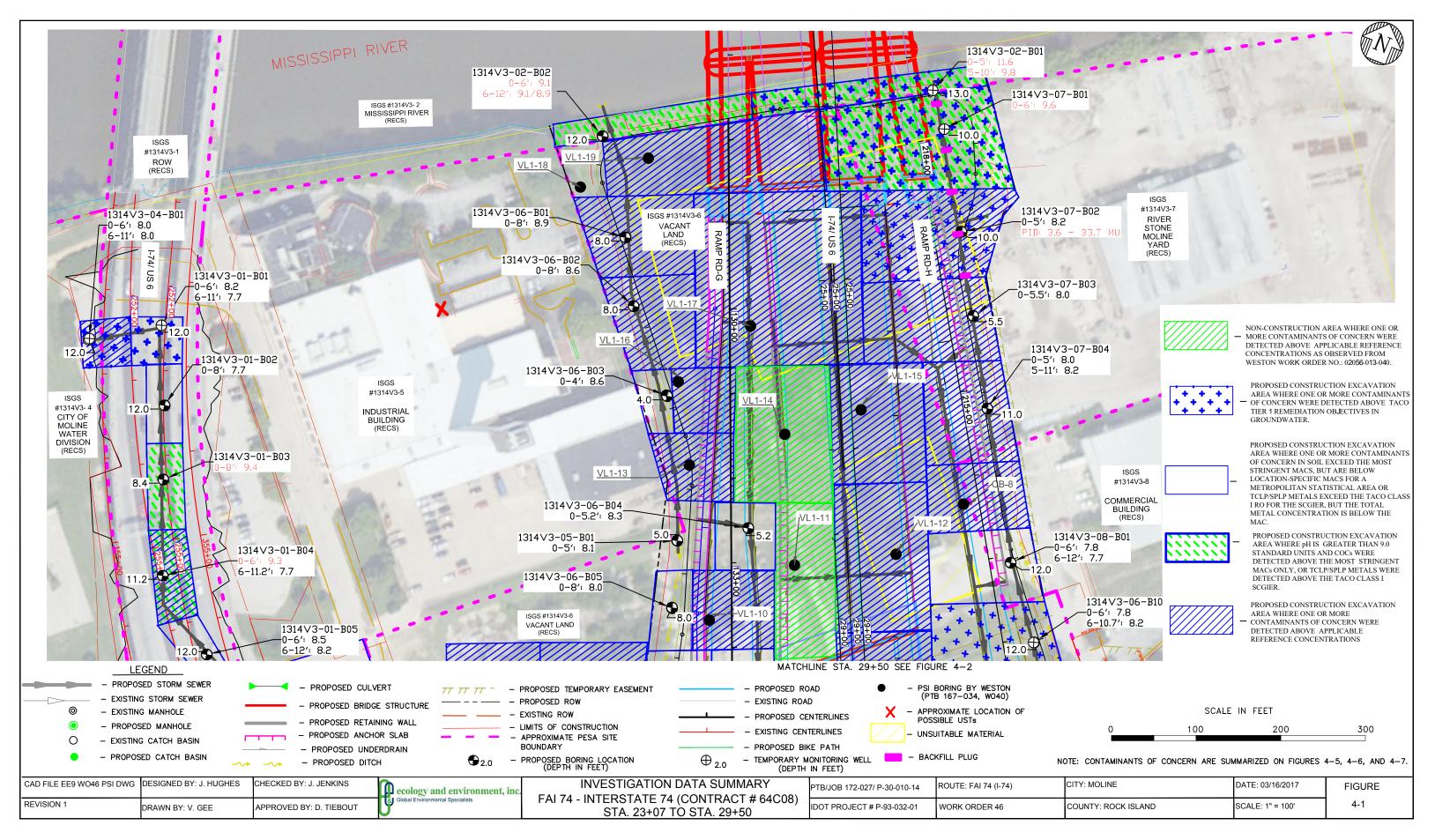
MSA = Metropolitan Statistical Area. VOC = Volatile organic compound.

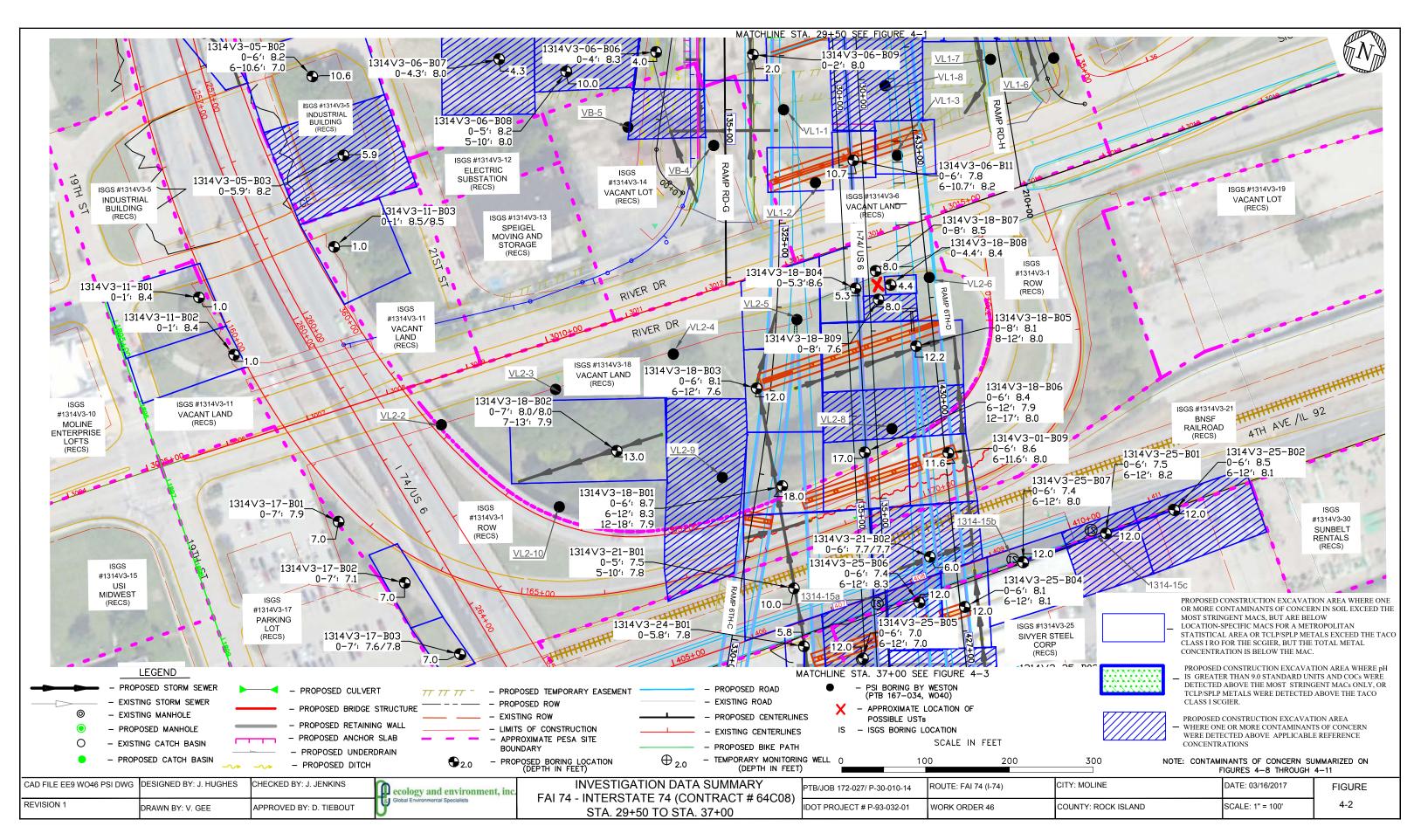
TVOCs = Total volatile organic compounds

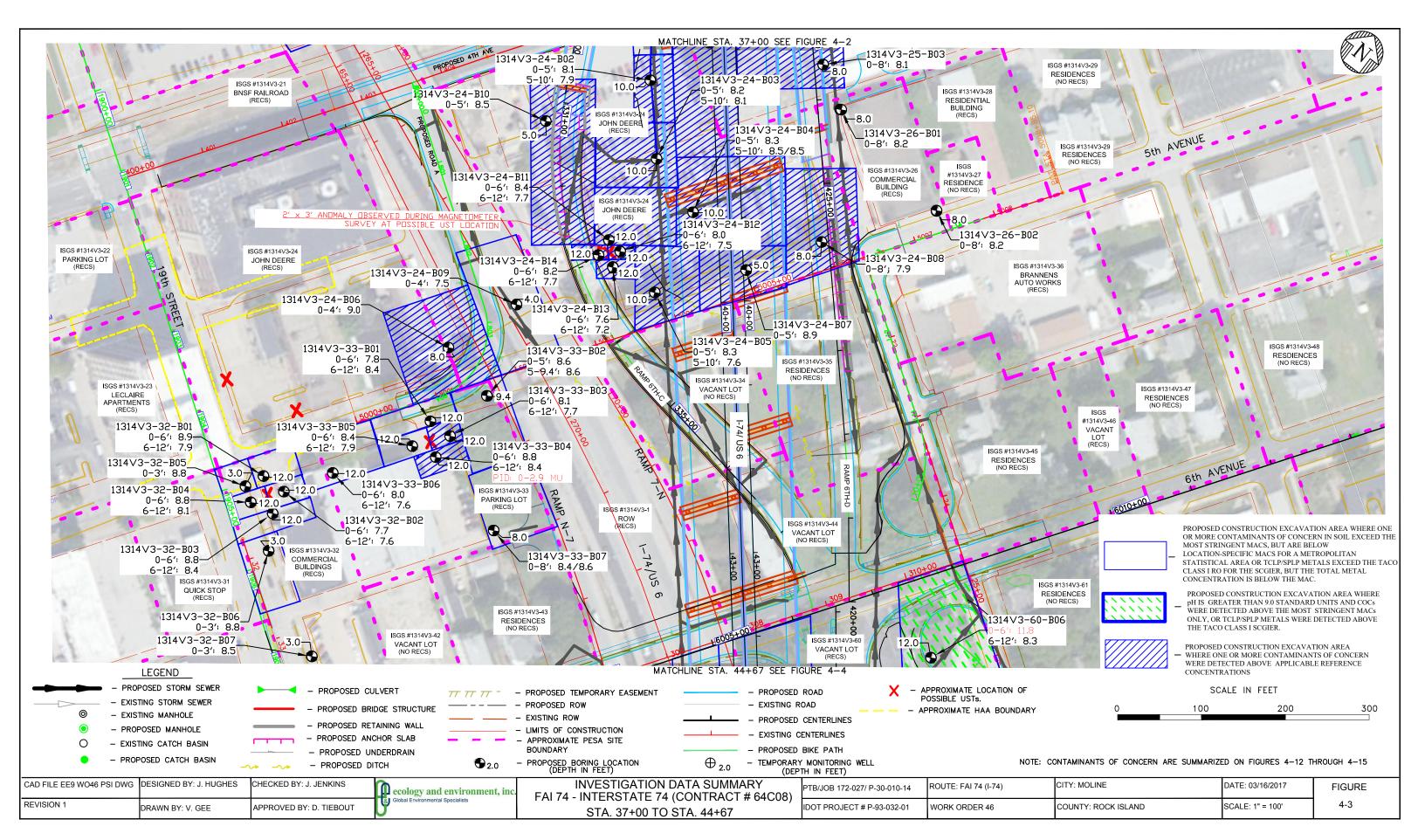
^a Borings shown for each site include borings from adjacent sites where COCs from the adjacent sites are assumed to extend to the proposed construction area on the site.

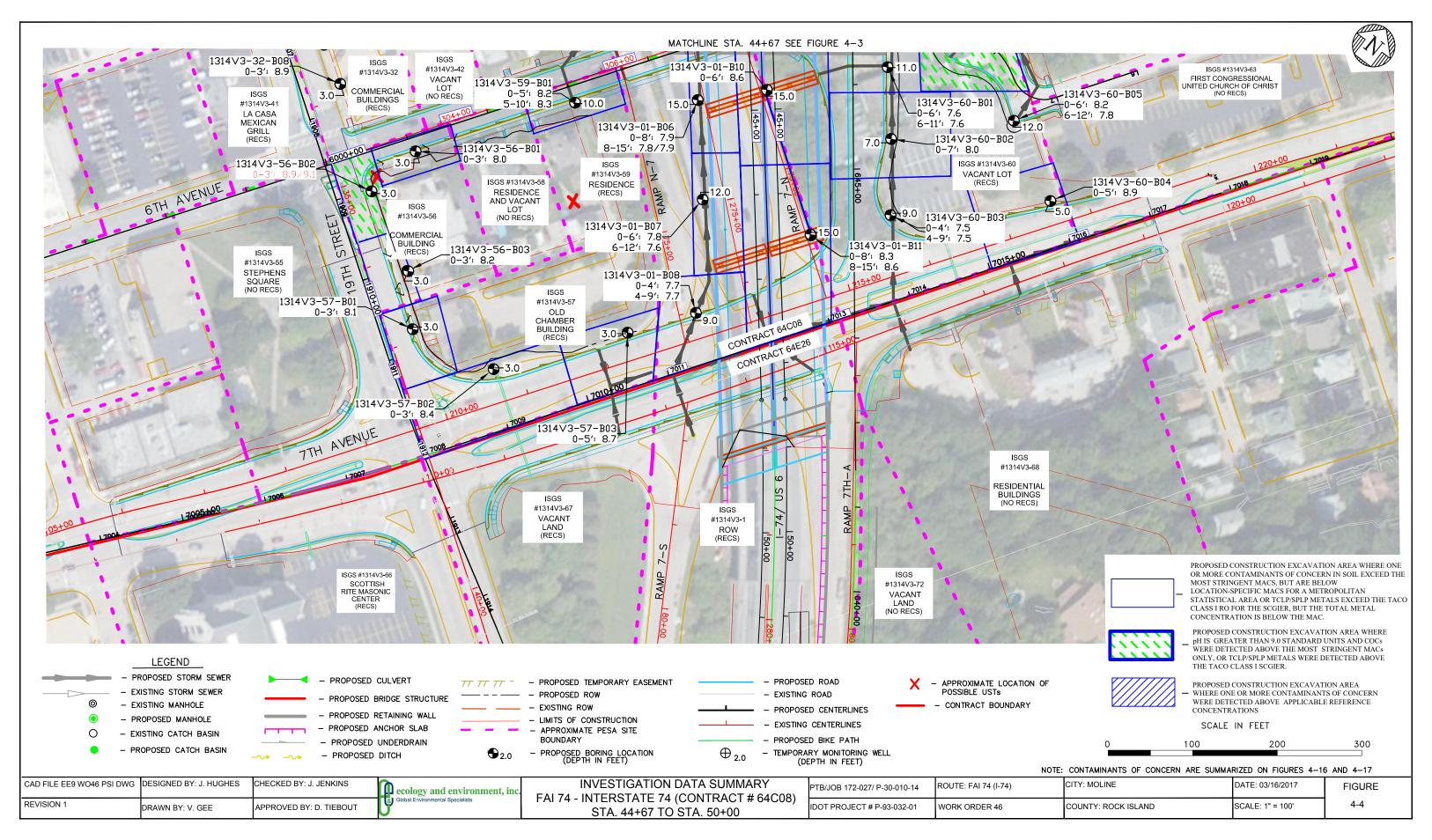
^b Estimated excavation volumes are based on quantities provided by IDOT. Impacted soil volumes for each boring were estimated by totalling the proposed excavation volume provided in IDOT's Engineer's Earthwork Summary Tables. Excavation quantities were provided at 10 foot interval stationing. Volumes were adjusted for each boring location to account for horizontal and vertical stationing. The lateral extent of impacted soil at a boring was assumed to extend one-half the distance between the impacted boring and any adjacent boring(s). Lateral features (i.e., storm sewers) were calculated based on pipe trench geometry where the depths were identified from cross sections details, trench widths were assumed to be the IDOT standards based on pipe size, and length of the linear feature was manually measured

^c Estimated excavation volumes shown are based on exceedences identified from borings collected by Weston Solutions under Agreement No. PTB 167-034, Work Order No. 040 to investigate for Job No. P-92-032-01 under Contract NO. 64J68. Borings were collected in May 2014.


Table 4-6 Estimates of Impacted Groundwater Within IDOT Construction Areas FAI 74 (Interstate 74), Contract No. 64C08
Moline, Rock Island County, Illinois


Impacted Groundwater Sample Near		Contaminants of Concern	Depth to	Maximum Depth of	Estimated Dim Excavation Wit Ground	th Impacted	Estimated Volume of Impacted Groundwater	
Construction Feature	Construction Feature	Detected Above TACO Tier 1 Remediation Objectives	Groundwater (feet bgs)	Construction (feet bgs)	Area (square yards)	Depth (yards bgs)	Within Excavation (gallons)	
ISGS #1314V3-4 (Cit	y of Moline, Water	Department)						
1314V3-04-B01	Sewer	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3- cd)pyrene	a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, k)fluoranthene, indeno(1,2,3-					
			Estimated Vo	olume of Groun	dwater in Const	ruction Zone:	3,553	
IISGS #1314V3-7 (Ri	ver Stone Moline Y	ard)						
1314V3-07-B01	Sewer	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3- cd)pyrene	6.0	12.0	111.11	2.0	44,883.1	
1314V3-07-B02	Sewer	Sheen observed on groundwater	6.0	12.0	111.11	2.0	44,883.1	
		Estimated Volume of Groundwater in Construct					89,766	


Key:


ISGS = Illinois State Geological Survey.

TACO = Tiered Approach to Corrective Action Objectives.

SITE				10.00		20110					10.00 #404 #10 0 ##			ĺ		-	omparison	Culturalia		
			Î		6 #1314V3-1 (IDOT I						ISGS #1314V3-2 (Mi						I			
BORING		1314V3-01-B01	l:	1314V3-01-B02	1314V3-01-B03		-01-B04	1314V3	3-01-B05		1314V3-02				MACs			TAC	co	т —
SAMPLE	1314V3-01-B01 (0-6)	1314V3-01-B01 (6-11)	1314V3-01-G01	1314V3-01-B02 (0-8)	1314V3-01-B03 (0-8)	1314V3-01-B04 (0-6)	1314V3-01-B04 (6-12)	1314V3-01-B05 (0-6)	1314V3-01-B05 (6-12)	1314V 3-02-B01 (0-5)	1314V3-02-B01 (5-10)	1314V3-02-G01	1314V3-02-G01D							
MATRIX	Soil	Soil	Water	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Wa	ater							
DEPTH (feet)	0-6	6-11	11	0-8	0-8	0-6	6-12	0-6	6-12	0-5	5-10	1	1		Within					
pH	8.2	7.7		7.7	9.4#	9.3 #	7.7	8.5	8.2	11.6#	9.8 #	-	•	Most	an	Within		Construction	,	
PID (meter units)		0		0	0		0		0	30	0			Stringent	MSA		Residential		- 1	Groundwate
SVOCs (soil: mg/kg,	water: mg/L)																			
Benzo(a)anthracene	0.077	ND U	ND U	0.012 J	0.045	1.4 †*	ND U	0.51	0.47	ND U	0.3	ND U	ND U	0.9	1.8	1.1	1.8	170		0.00013
Benzo(a)pyrene	0.069	ND U	ND U	0.015 J	0.05	1.2 †	ND U	0.43	0.37	ND U	0.31 †	ND U	ND U	0.09	2.1	1.3	2.1	17		0.0002
Benzo(b)fluoranthene	0.09	ND U	ND U	ND U	0.065	1.8 t*	0.01 J	0.54	0.47	ND U	0.39	ND U	ND U	0.9	2.1	1.5	2.1	170		0.00018
Dibenz(a,h)anthracene	ND U	ND U	ND U	ND U	ND U	0.14 †	ND U	0.043	0.038 J	ND U	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17	-	0.0003
Inorganics (soil: mg/	kg, water: mg/L)	_	70	-	~				7.4								3.	***		
Cadmium	1.9	0.15	ND U	0.24	0.58	0.51	0.23	0.49	0.26	0.14	0.31	0.0012	0.0011	5.2			78	200		0.005
Iron	18,000 †m	13,000	29 W1,2	15,000	16,000 †m	29,000 †m	17,000 †m	33,000 †m	20,000 †m	7,700	14,000	15 W1,2	14 W1,2	15,000	15,900		()			5
Lead	78	13	0.004	21	45	51	16	41	57	2.5	31	0.51 W1,2	0.48 W1,2	107			400	700		0.0075
Manganese	430	300	3 W1	390	760 t m	380	710 † m	370	400	830 †m	600	0.39 W1	0.35 W1	630	636		1,600	4,100		0.15
TCLP Metals (mg/L)																				
Cadmium	ND U	0.0021 J	NA	ND U	ND U	0.0037 J	0.0024 J	0.0079 L	0.0022 J	ND U	ND U	NA	NA		-				0.005	
Iron	ND U	ND U	NA	ND U	ND U	ND U	ND U	ND U	0.3 J	ND U	2	NA	NA				(***)		5	
Lead	0.014 L	ND U	NA	ND U	0.012 L	0.014 L	0.019 L	0.025 L	0.025 L	ND U	ND U	NA	NA	344					0.0075	
Manganese	3.3 L	5.3 L	NA	6.2 L	6.2 L	4.8 L	4.3 L	8 L	6.5 L	ND U	9.6 L	NA	NA				3944		0.15	220
SPLP Metals (mg/L)			10 1000000 10	5 865 5 550	2000							3443	nu = 0.000000						30,000,00	
Cadmium	NA	NA	NA	NA	NA	NA	NA	ND U	NA	NA	NA	NA	NA	(22)	522		1221	122	0.005	
Lead	0.014 L	NA	NA	NA	ND U	0.16 L	0.058 L	0.21 L	0.18 L	NA NA	NA	NA	NA						0.0075	
Manganese	0.02 J	0.077	NA	0.27 L	0.012 J	0.94 L	1.2 L	1.2 L	0.99 L	NA	0.45 L	NA	NA						0.15	

MAC = Maximum Allowable Concentration of Chemical Constituent in

Uncontaminated Soil Used as Fill Material At Regulated Fill Operations

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area.

TACO = Tiered Approach to Corrective Action Objectives.

TCLP = Toxicity Characteristic Leaching Procedure.

SCGIER = Soil Component of the Groundwater Ingestion Exposure Route.

SPLP = Synthetic Precipitation Leaching Procedure.

W1 = Concentration exceeds the Tier 1 RO for the Groundwater Component of the Groundwater Ingestion Route for Class 1 groundwater.

W1,2 = Concentration exceeds the Tier 1 RO for the Groundwater Component of the

Groundwater Ingestion Route for Class 1 and Class 2 groundwater.

ND = Not detected.

NA = Not analyzed.

J = Estimated value.

U = Analyte was analyzed for but not detected.

= pH is less than 6.25 or greater than 9.0 standard units.

† = Concentration exceeds the most stringent MAC.

m = Concentration exceeds the MAC for an MSA.

* = Concentration exceeds the MAC for Chicago corporate limits.

L = The detected concentration exceeds the TACO Tier 1 RO for the SCGIER.

= Concentration exceeds the most Stringent MAC, but is below the MAC for an MSA.

= Concentration exceeds the most stringent MAC and the MAC for Chicago.

CAD FILE EE9 WO46 PSI DWG	DESIGNED BY: J. HUGHES	CHECKED BY: J. JENKINS	ecology and environment, inc.	CONTAMINANTS OF CONCERN	PTB/JOB 172-027/ P-30-010-14	ROUTE: FAI 74 (I-74)	CITY: MOLINE	DATE: 03/03/2017	FIGURE
			ecology and environment, inc.	FAI 74 - INTERSTATE 74 (CONTRACT # 64C08)					
REVISION 0	DRAWN BY: V. GEE	APPROVED BY: D. TIEBOUT	Global Environmental Specialists		IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-5
	DIGWIN DT. V. OLL	74 TROVED BY: B: HEBOOT		ISGS 1314V3-01 AND 1314V3-02				SOALL: IVA	

							CONTAI	MINANTS OF CO	NCERN										
SITE	ISGS #	t1314V3-2 (Mississipp	oi River)	ISGS #1314V3-4	(City of Moline, Wat	er Department)	ISGS #1314V3-5 (Industrial Building)	_	ISGS	S #1314V3-6 (Vacant	Land)				(Comparison	Criteria		
BORING		1314V3-02-B02			1314V3-04-B01		1314V3-05-B01	1314V3-06-B01	1314V3-06-B02	1314V3-06-B03	1314V3-06-B04	1314V3-06-B05		MACs	, .		TAC	:0	
SAMPLE	1314V3-02-B02 (0-6)	1314V3-02-B02 (6-12)	1314V3-02-B02 (6-12)D	1314V3-04-B01 (0-6)	1314V3-04-B01 (6-11)	1314V3-04-G01	1314V3-05-B01 (0-5)	1314V3-06-B01 (0-8)	1314V3-06-B02 (0-8)	1314V3-06-B03 (0-4)	1314V3-06-B04 (0-5.2)	1314V3-06-B05 (0-8)							
MATRIX	Soil	Soil	Soil	Soil	Soil	Water	Soil	Soil	Soil	Soil	Soil	Soil							
DEPTH (feet)	0-6	6-12	6-12	0-6	6-11	11	0-5	0-8	0-8	0-4	0-5.2	0-8		2001000000					
рН	9.1#	9.1#	8.9	8	8		8.1	8.9	8.6	8.6	8.3	8		Within					
PID (meter units)		0			0		0	0	0	0	0	0	Most Stringent	an MSA	Within	Residential	Construction Worker		Groundwater
SVOCs (soil: mg/kg, v	water: mg/L)	(470)																	
Benzo(a)anthracene	0.021 J	0.0089 J	ND U	0.11	0.25	0.00076 W1,2	0.024 J	0.2	1 +	0.014 J	0.23	0.052	0.9	1.8	1.1	1.8	170		0.00013
Benzo(a)pyrene	0.034 J	0.0091 J	ND U	0.097 †	0.23 †	0.00086 W1	0.024 J	0.25	1.3 †	0.019 J	0.24 †	0.067	0.09	2.1	1.3	2.1	17		0.0002
Benzo(b)fluoranthene	0.048	0.021 J	0.013 J	0.16	0.37	0.0011 W1,2	0.036	0.37	1.3 †	0.031 J	0.4	0.12	0.9	2.1	1.5	2.1	170		0.00018
Benzo(k)fluoranthene	0.022 J	ND U	ND U	0.055	0.12	0.00042 W1	0.015 J	0.14	0.5	0.014 J	0.13	0.037 J	9	-	***	9	1,700		0.00017
Carbazole	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	0.6			32	6,200		-
Dibenz(a,h)anthracene	ND U	ND U	ND U	ND U	ND U	0.00012	ND U	0.029 J	0.11 †	ND U	0.03 J	0.016 J	0.09	0.42	0.2	0.42	17	-	0.0003
Indeno(1,2,3-cd)pyrene	0.027 J	ND U	ND U	0.034 J	0.059	0.00047 W1	0.013 J	0.084	0.27	ND U	0.099	0.045	0.9	1.6	0.9	1.6	170	-	0.00043
Inorganics (soil: mg/l	kg, water: mg/L)									T		ř							
Arsenic	6.7	4.5	3	4.9	8.7	0.011	5.6	14 †mr	7.7	4.7	4.3	2.4	11.3	13	-	13	61	-	0.05
Boron	1.5 J	1.7 J	2 J	12	43 †	1.1	2 J	7.1 J	11 J	2.2 J	4.4	5.6	40			16,000	41,000		2
Cadmium	0.39	0.27	0.25	0.65	0.82	0.00024 J	ND U	0.42 J	0.59	0.21	0.42	0.26	5.2	120	1229	78	200		0.005
Chromium	35 †	15	17	12	16	0.012	11	94 †	27 †	13	16	13	21	-	144	230	690		0.1
Iron	21,000 †m	15,000	12,000	21,000 †m	27,000 †m	28 W1,2	19,000 †m	95,000 †m	37,000 †m	13,000	13,000	11,000	15,000	15,900					5
Lead	22	20	20	96	140 †	0.06 W1	13	110 t	82	6.9	83	16	107			400	700		0.0075
Manganese	340	230	250	580	430	2 W1	640 †m	850 †m	660 tm	290	390	410	630	636	/	1,600	4,100		0.15
Nickel	61	14	14	12	16	0.01	20	310 †	49	16	17	23	100			1,600	4,100		0.1
Selenium	ND U	ND U	ND U	0.36 J	0.93	0.002 J	ND U	2.2 J †	ND U	ND U	ND U	ND U	1.3			390	1,000	-	0.05
Thallium	0.68	0.61	0.52 J	1.1	ND U	ND U	ND U	2.8	1.5 J	0.62	ND U	ND U	2.6			6.3	160		0.002
TCLP Metals (mg/L)			r							т									
Boron	ND U	ND U	ND U	0.22 J	0.43 J	NA .	ND U	0.07 J	0.077 J	ND U	0.062 J	0.17 J						2	***
Cadmium	0.0045 J	0.0074 L	0.004 J	ND U	ND U	NA .	ND U	ND U	0.0053 L	0.0029 J	ND U	ND U			1997	100	**	0.005	***
Chromium	ND U	ND U	ND U	ND U	ND U	NA .	ND U	0.014 J	ND U	ND U	ND U	ND U		-		-		0.1	
Iron	ND U	ND U	ND U	ND U	1.4	NA .	ND U	86 L	ND U	ND U	ND U	ND U			-		155	5	
Lead	ND U	ND U	ND U	0.017 L	0.013 L	NA .	ND U	ND U	ND U	ND U	ND U	ND U		-	-	-		0.0075	
Manganese	2.3 L	4.3 L	3.4 L	3.4 L	4.3 L	NA .	. 3 L	9.3 L	1.1 L	. 0.81 L	1.6 L	10 L						0.15	-
Nickel	0.24 L	0.063	0.038	0.016 J	0.012 J	NA NA	ND U	1.2 L	0.022 J	0.021 J	ND U	0.03				20		0.1	
Selenium	ND U	ND U	ND U	ND U	ND U	NA .	ND U	ND U	ND U	ND U	ND U	ND U			122	- 4		0.05	
Thallium	ND U	ND U	ND U	ND U	ND U	NA .	ND U	ND U	ND U	ND U	ND U	ND U				-		0.002	
SPLP Metals (mg/L)	T 1									·									
Cadmium	NA NA	ND U	NA NA	NA NA	NA NA	NA .	NA	NA.	ND U	NA NA	NA .	NA NA				-		0.005	
Iron	NA NA	NA NA	NA NA	NA NA	NA .	NA NA	NA NA	11 L	NA NA	NA .	NA NA	NA NA						5	-
Lead	NA NA	NA NA	NA NA	0.036 L	0.052 L	NA	NA NA	NA	NA NA	NA .	NA NA	NA NA				227		0.0075	
Manganese	0.11	0.28 L	0.28 L	0.085	0.16 L	NA	ND U	0.059	0.17 L	. 0.17 L	0.29 L	0.44 L		221		207	**	0.15	
Nickel	0.027	NA	NA	NA	NA	NA .	NA	0.01 J	NA	NA	NA	NA	**	-		**	-	0.1	**

MAC = Maximum Allowable Concentration of Chemical Constituent in

Uncontaminated Soil Used as Fill Material At Regulated Fill Operations.

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area.

TACO = Tiered Approach to Corrective Action Objectives.

TCLP = Toxicity Characteristic Leaching Procedure.

SCGIE = Soil Component of the Groundwater Ingestion Exposure Route.

R = Synthetic Precipitation Leaching Procedure.

ND = Not detected.

NA = Not analyzed.

- J = Estimated value.
- U = Analyte was analyzed for but not detected.
- # = pH is less than 6.25 or greater than 9.0 standard units.
- † = Concentration exceeds the most stringent MAC.
- m = Concentration exceeds the MAC for an MSA.
- * = Concentration exceeds the MAC for Chicago corporate limits.
- r = Concentration exceeds the TACO Tier 1 RO for Residential Exposure.
- W1 = Concentration exceeds the Tier 1 RO for the Groundwater Component of
- the Groundwater Ingestion Route for Class 1 groundwater.
- W1,2 = Concentration exceeds the Tier 1 RO for the Groundwater Component of the Groundwater Ingestion Route for Class 1 and Class 2 groundwater.

= Concentration exceeds the most Stringent MAC, but is below the MAC for an MSA.

= Concentration exceeds applicable comparison criteria.

CAD FILE EE9 WO46 PSI DWG	DESIGNED BY: J. HUGHES	CHECKED BY: J. JENKINS
REVISION 0	DRAWN BY: V. GEE	APPROVED BY: D. TIEBOUT

ecology and environment, inc.

Global Environmental Specialists

CONTAMINANTS OF CONCERN
FAI 74 - INTERSTATE 74 (CONTRACT # 64C08)
ISGS 1314V3-02, -04, -05, AND -06

PTB/JOB 172-027/ P-30-010-14	ROUTE: FAI 74 (I-74)	CITY: MOLINE	DATE: 03/03/2017	FIGURE
IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-6

						CONT	AMINANTS OF CO	ONCERN									
SITE	ISGS #1314V3-	6 (Vacant Land)	0	15	GS #1314V3-7 (Riv	er Stone Moline Yard	i)		ISGS #1314V3-8 (C	ommercial Building)			С	omparison	Criteria		
BORING	1314V3	-06-B10	1314V3	-07-B01	1314V3-07-B02	1314V3-07-B03	1314V3	-07-B04	1314V	3-08-B01		MACs			TAC	0	
SAMPLE	1314V3-06-B10 (0-6)	1314V3-06-B10 (6-11)	1314V3-07-B01 (0-6)	1314V3-07-G01	1314V3-07-B02 (0-5)	1314V3-07-B03 (0-5.5)	1314V3-07-B04 (0-5)	1314V3-07-B04 (5-11)	1314V3-08-B01 (0-6)	1314V3-08-B01 (6-12)							
MATRIX	Soil	Soil	Soil	Water	Soil	Soil	Soil	Soil	Soil	Soil	1						
DEPTH (feet)	0-6	6-11	0-6	6	0-5	0-5.5	0-5	5-11	0-6	6-12	1						
pH	8.3	8.4	9.6#	**	8.2	8	8	8.2	7.8	7.7	Most	Within	Within		Constructio		
PID (meter units)	2010	0	. (0	3.6 - 33.7**	0		0		0	Stringent	MSA	Chicago	Residential		SCGIER	Groundwate
SVOCs (soil: mg/kg,	water: mg/L)	·					,		•					•			
Benzo(a)anthracene	0.15	0.14	2.2 †mr*	0.00039 W1	1.1 +	4.1 +mr*	0.92 +	ND U	0.24	ND U	0.9	1.8	1.1	1.8	170	-	0.00013
Benzo(a)pyrene	0.17 t	0.1 t	5 †mr*	0.00068 W1	1.1 +	4.1 †mr*	2.4 tmr*	ND U	0.24	ND U	0.09	2.1	1.3	2.1	17	-	0.0002
Benzo(b)fluoranthene	0.23 J	0.15	5.8 †mr*	0.00078 W1	1.5 +	7.5 †mr*	3.6 +mr*	ND U	0.33	ND U	0.9	2.1	1.5	2.1	170	-	0.00018
Benzo(k)fluoranthene	0.1 J	0.066	2.4	0.00029 W1	0.69	2.7	1.3	ND U	0.15	ND U	9			9	1,700	-	0.00017
Dibenz(a,h)anthracene	0.03 J	0.022 J	0.91 +mr*		0.22 J +*	0.61 +mr*	0.64 †mr*	ND U	0.027 J	ND U	0.09	0.42	0.2	0.42	17		0.0003
Indeno(1,2,3-cd)pyrene	0.093 J	0.052	3.5 †mr*	0.00051 W1	0.52	1.6 +*	1.7 †mr*	ND U	0.094 J	ND U	0.9	1.6	0.9	1.6	170	-	0.00043
Inorganics (soil: mg/	200000			10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	1 110000			1222 2		***************************************		No milion			1. 012		
Antimony	ND U	ND U	0.49 J	ND U	ND U	ND U	ND U	ND U	0.9 J	0.53 J	5	-		31	82		0.006
Arsenic	2.1	3.8	4	0.0059	9.5	28 †mr	6.7	2	2.8	11	11.3	13	-	13	61		0.05
Boron	3.4	0.91 J	26	1.5	24	280 +	60 +	2.8 J	13	2.3 J	40			16,000	41.000		2
Cadmium	0.17	0.085 J	0.31	ND U	0.3 J	2.4	1.5	0.079 J	0.27	0.89	5.2	-		78	200		0.005
Chromium	7.7	7.1	21	0.0022 J	14	44 t	12	7.3	10	12	21	-		230	690	-	0.1
Iron	8,800	8,500	14,000	21 W1,2	50,000 †m	190,000 †m	29,000 †m	GREENSKING.	13,000 J	17,000 †m	15,000	15,900					5
Lead	18	2.3	44	0.011 W1	44	210 †	53	5.9	38 J	4	107		-	400	700	-	0.0075
Manganese	120	190	510	0.55 W1	780 †m	1,300 †m	420	240	230	98	630	636	-	1,600	4,100	-	0.15
Selenium	ND U	0.28 J	0.79	0.0015 J	ND U	4.9 †	ND U	ND U	ND U	0.33 J	1.3			390	1,000	144	0.05
TCLP Metals (mg/L)		et commente se	12	20	2. 2.000 \$700			5506.70 - 4.5	0.000.000	200000							2890-55
Antimony	ND U	ND U	ND U	NA	ND U	ND U	ND U	ND U	0.0083 L	ND U						0.006	-
Boron	ND U	ND U	0.53	NA NA	0.23 J	0.65	0.19 J	0.15 J	0.3 J	0.071 J			-			2	
Cadmium	ND U	ND U	ND U	NA	ND U	0.016 L	0.0081 L	ND U	ND U	0.01 L	()					0.005	
Chromium	ND U	ND U	0.055	NA	ND U	ND U	ND U	ND U	ND U	ND U	()	::==				0.1	
Iron	ND U	ND U	ND U	NA	ND U	9.4 L	ND U	ND U	ND U	ND U	(44)	(3		5	
Lead	ND U	ND U	ND U	NA	ND U	0.13 L	ND U	ND U	0.016 L	ND U	(+)	-	_			0.0075	-
Manganese	0.76 L	1.8 L	ND U	NA	6.1 L	8.3 L	1.5 L	10 L	2.4 L	0.75 L	-	844	_			0.15	
Selenium	ND U	ND U	ND U	NA	ND U	ND U	ND U	ND U	ND U	ND U	(+-)					0.05	
SPLP Metals (mg/L)										YIP .				T			
Antimony	NA	NA	NA	NA	NA	NA	NA	NA	ND U	NA						0.006	-
Cadmium	NA .	NA	NA	NA .	NA	ND U	ND U	NA	NA	0.0034 J						0.005	
Iron	NA .	NA	NA	NA	NA	ND U	NA	NA	NA	NA .	3	S =1			**	5	***
Lead	NA	NA	NA	NA	NA	ND U	NA	NA	0.038 L	NA NA				>==		0.0075	-
Manganese	0.11	0.091	NA	NA.	0.01 J	ND U	0.1	0.82 L	0.12	0.13		8++				0.15	

MAC = Maximum Allowable Concentration of Chemical Constituent in Uncontaminated Soil Used as Fill Material At Regulated Fill Operations.

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area.

TACO = Tiered Approach to Corrective Action Objectives.

TCLP = Toxicity Characteristic Leaching Procedure.

- SPLP = Synthetic Precipitation Leaching Procedure.
- W1 = Concentration exceeds the Tier 1 RO for the Groundwater Component of the Groundwater Ingestion Route for Class 1 groundwater.
- W1,2 = Concentration exceeds the Tier 1 RO for the Groundwater Component of the Groundwater Ingestion Route for Class 1 and Class 2 groundwater.

ND = Not detected.

NA = Not analyzed.

J = Estimated value.

U = Analyte was analyzed for but not detected.

= pH is less than 6.25 or greater than 9.0 standard units.

** = Headspace reading is above 1.0 photoionization detector (PID) units.

† = Concentration exceeds the most stringent MAC.

- m = Concentration exceeds the MAC for an MSA.
- * = Concentration exceeds the MAC for Chicago corporate limits.
- r = Concentration exceeds the TACO Tier 1 RO for Residential Exposure.
- L = The detected concentration exceeds the TACO Tier 1 RO for the

= Headspace reading exceeds background levels

Concentration exceeds the most Stringent MAC, but is below the MSA MAC.

 Concentration exceeds the most stringent MAC and the Chicago MAC.

CAD FILE EE9 WO46 PSI DWG	DESIGNED BY: J. HUGHES	CHECKED BY: J. JENKINS	acalogy and environment inc	CONTAMINANTS OF CONCERN	PTB/JOB 172-027/ P-30-010-14	ROUTE: FAI 74 (I-74)	CITY: MOLINE	DATE: 03/03/2017	FIGURE
			ecology and environment, inc.	EALTA INTERCTATE 74 (CONTRACT # 64C00)					
REVISION 0	DRAWN BY: V. GEE	APPROVED BY: D. TIEBOUT	Global Environmental Specialists	FAI 74 - INTERSTATE 74 (CONTRACT # 64C08) ISGS 1314V3-06, -07, AND -08	IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-7

SITE	ISGS #1314V3-	1 (IDOT ROW)	ISGS #	1314V3-5 (Industrial B	uilding)			ISGS	#1314V3-6 (Vacant	Land)					Compari	ison Criteria	ı	
BORING		-01-B09		I-05-B02	1314V3-05-B03	1314V3-06-B06	1314V3-06-B07	1314V3		1314V3-06-B09	1314V	3-06-B11		MACs			TACO	
SAMPLE	1314V3-01-B09 (0-6)	1314V3-01-B09 (6-11.6)	1314V3-05-B02 (0-6)	1314V3-05-B02 (6-10.6)	1314V3-05-B03 (0-5.9)	1314V3-06-B06 (0-4)	1314V3-06-B07 (0-4.3)	1314V3-06-B08 (0-5)	1314V3-06-B08 (5-10)	1314V3-06-B09 (0-2)	1314V3-06-B11 (0-6)	1314V3-06-B11 (6-10.7)						
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
DEPTH (feet)	0-6	6-11.6	0-6	6-10.6	0-5.9	0-4	0-4.3	0-5	5-10	0-2	0-6	6-10.7						
рН	8.6	8	8.2	7	8.2	8.3	8	8.2	8	8	7.8	8.2		Within	March to	را ا		
PID (meter units)	0.0		-	0	0	0	0	0.2		0	1.0	0	Most Stringent	an MSA	Within Chicago	Residential	Construction Worker	SCGIEF
SVOCs (soil: mg/kg	g. water: mg/L)	· · · · ·		37											-			-
Benzo(a)anthracene	ND U	0.069	0.042	ND U	0.96 +	0.22	3.2 †mr*	0.64	0.12	0.5	ND U	0.014 J	0.9	1.8	1.1	1.8	170	1
Benzo(a)pyrene	ND U	0.061	0.041	ND U	0.92 †	0.34 +	3.5 †mr*	0.81 +	0.13 +	0.73 †	ND U	0.015 J	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	ND U	0.1	0.058	ND U	1.3 +	0.58	4.4 †mr*	1.2 †	0.22	1.2 †	ND U	0.019 J	0.9	2.1	1.5	2.1	170	
Carbazole	ND U	ND U	ND U	ND U	0.13 J	ND U	0.71 +	0.18	ND U	ND U	ND U	ND U	0.6	_		32	6,200	
Dibenz(a,h)anthracene	ND U	ND U	ND U	ND UJ	0.1 +	0.047	0.36 +*	0.11 J +	ND U	0.069 J	ND U	ND U	0.09	0.42	0.2	0.42	17	
Indeno(1,2,3-cd)pyrene	ND U	0.027 J	0.024 J	ND UJ	0.3	0.14	1 +*	0.35	0.048	0.34	ND U	ND U	0.9	1.6	0.9	1.6	170	
Inorganics (soil: m	g/kg, water: mg/L)																
Cadmium	0.11	0.35	ND U	ND U	0.46	1.4	1.2	1.1	12 t	0.44 J	0.098 J	0.15	5.2			78	200	
Chromium	10	12	11	14	14	42 †	35 +	24 †	40 t	21	7.5	8.5	21			230	690	
Iron	15,000	14,000	12,000	19,000 †m	16,000 †m	29,000 †m	78,000 †m	19,000 †m	36,000 †m	17,000 †m	7,900	8,100	15,000	15,900				
Lead	8.5	14	23 J	9.8	100	230 †	46	110 †	570 tr	39	3.7	7	107			400	700	
Manganese	340	290	430 J	160	650 †m	510	440	570	450	440	180	410	630	636		1,600	4,100	
Nickel	13	13	15	20	19	68	25	62	38	49	8.8	13	100	220	15/10	1,600	4,100	222
Zinc	34	66	67 J	70	160	200	250	160	2,100	72	21	24	5,100			23,000	61,000	
TCLP Metals (mg/L	L)																	
Cadmium	0.0034 J	0.0046 J	ND U	ND U	0.0022 J	0.0026 J	0.016 L	0.017 L	0.1 L	. ND U	ND U	ND U			-			0.005
Chromium	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U						0.1
Iron	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	0.6	ND U	ND U	ND U	122	221	122	20	1220	5
Lead	ND U	0.008 L	ND U	ND U	0.013 L	ND U	ND U	ND U	0.72 L	. ND U	ND U	ND U					- 	0.0075
Manganese	7 L	8 L	0.99 L	1.4 L	1.2 L	0.24 L	6.2 L	6.5 L	4.7 L	. 0.92 L	0.095	0.74 L		**			**	0.15
Nickel	0.032	0.025	ND U	0.019 J	ND U	0.017 J	0.21 J L	0.22 L	0.061	0.05	ND U	0.02 J		-		<u></u>		0.1
Zinc	0.02 J	0.19 J	0.076 J	ND U	0.2 J	ND U	ND U	ND U	12 L	. ND U	ND U	ND U	- 22	220	22	- 22	3223	5
SPLP Metals (mg/L	-)	V	e.	200	Y5		075.	×		215	No		-Xe		5 6	W- W-		nur.
Cadmium	NA	NA	NA	NA	NA	NA	ND U	ND U	0.0029 J	NA	NA	NA		_			U 70 4	0.005
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		Het.				5
Lead	NA	0.028 L	NA	NA	0.12 L	NA	NA	NA	0.25 L	. NA	NA	NA	1227				-	0.0075
Manganese	0.19 L	0.32 L	0.21 L	0.52 L	0.39 L	0.013 J	0.26 L	0.57 L	0.13	0.17 L	NA	0.28 L			_ =			0.15
Nickel	NA	NA	NA	NA	NA	NA	0.015 J	0.079	NA	NA	NA	NA					1955	0.1
Zinc	NA	NA	NA	NA	NA	NA	NA	NA	0.52	NA	NA	NA	2				0 ++0	5

MAC = Maximum Allowable Concentration of Chemical Constituent in

Uncontaminated Soil Used as Fill Material At Regulated Fill Operations

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area

TACO = Tiered Approach to Corrective Action Objectives

TCLP = Toxicity Characteristic Leaching Procedure.

SCGIER = Soil Component of the Groundwater Ingestion Exposure Route

SPLP = Synthetic Precipitation Leaching Procedure.

= Concentration exceeds the most Stringent MAC, but is below the MAC for an MSA.

= Concentration exceeds the most stringent MAC and the MAC for Chicago.

ND = Not detected.

NA = Not analyzed.

J = Estimated value.

U = Analyte was analyzed for but not detected.

† = Concentration exceeds the most stringent MAC.

m = Concentration exceeds the MAC for an MSA.

* = Concentration exceeds the MAC for Chicago corporate limits.

r = Concentration exceeds the TACO Tier 1 RO for Residential Exposure.

L = The detected concentration exceeds the TACO Tier 1 RO for the SCGIER.

Concentration exceeds applicable comparison criteria.

CAD FILE EE9 WO46 PSI DWG	DESIGNED BY: J. HUGHES	CHECKED BY: J. JENKINS
REVISION 0	DRAWN BY: V. GEE	APPROVED BY: D. TIEBOUT

ecology and environment, inc.

| Global Environmental Specialists

CONTAMINANTS OF CONCERN
FAI 74 - INTERSTATE 74 (CONTRACT # 64C08) ISGS 1314V3-01, -05, AND -06

	PTB/JOB 172-027/ P-30-010-14	ROUTE: FAI 74 (I-74)	CITY: MOLINE	DATE: 03/03/2017	FIGURE
)	IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-8

SITE	E	ISGS #1314V3-	11 (Vacant Land)					Comparis	son Criteria	1				
BORING	1314V3-11-B01	1314V3-11-B02	1314V3	3-11-B03	1314V3-17-B01	1314V3-17-B02	1314V3	3-17-B03	MACs TACO				TACO	
SAMPLE	1314V3-11-B01 (0-1)	1314V3-11-B02 (0-1)	1314V3-11-B03 (0-1)	1314V3-11-B03 (0-1)D	1314V3-17-B01 (0-7)	1314V3-17-B02 (0-7)	1314V3-17-B03 (0-7)	1314V3-17-B03 (0-7)D						
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
DEPTH (feet)	0-1	0-1	0-1	0-1	0-7	0-7	0-7	0-7		1222222				
pН	8.4	8.4	8.5	8.5	7.9	7.1	7.6	7.8	Most	Within	Within		Construction	
PID (meter units)	0	0		0	0	0		0	Stringent	MSA		Residential	The state of the s	SCGI
SVOCs mg/kg)	2		2.0		377	2								
Benzo(a)anthracene	0.055	0.22	0.4	0.35	0.059	1.1 +	ND U	ND U	0.9	1.8	1.1	1.8	170	122
Benzo(a)pyrene	0.074	0.29 †	0.51 +	0.42 †	0.075	1.1 †	ND U	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.11	0.44	0.67	0.59	0.11	1.7 †*	ND U	ND U	0.9	2.1	1.5	2.1	170	
Inorganics (mg/kg)														
Arsenic	3.9	4.8	4.3	4.1	5.6	15 † mr	5.5	5	11.3	13		13	61	
Iron	12,000 J	14,000	15,000	13,000	14,000	32,000 †m	11,000	11,000	15,000	15,900	722			- 22
Lead	26 J	130 †	73	65	41	360 †	7.5	7.5	107	243	- 22	400	700	
Manganese	410 J	580	440	460	460	370	290	190	630	636	200	1,600	4,100	
Selenium	0.28 J	ND U	ND U	0.3 J	ND U	3 †	ND U	ND U	1.3			390	1,000	
TCLP Metals (mg/L)					·	Va								
Iron	ND U	ND U	ND U	ND U	ND U	1.2	ND U	ND U		- 14 10 5				5
Lead	ND U	ND U	ND U	ND U	ND U	0.072 L	ND U	ND U	(100)	0.000	2755		-	0.00
Manganese	0.9 L	0.97 L	0.46 L	0.61 L	5.4 L	2 L	0.56 L	0.58 L		7447	1944			0.1
Selenium	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U		2440	122			0.0
SPLP Metals (mg/L)														
Lead	NA	NA	NA	NA	NA	0.29 L	NA	NA	1.0	2 44 25				0.00
Manganese	0.38 L	0.29 L	0.33 L	0.37 L	0.055	0.5 L	0.78 L	1.2 J L		2.22			220	0.1

MAC = Maximum Allowable Concentration of Chemical Constituent in Uncontaminated Soil Used as Fill Material At Regulated Fill Operations

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area

TACO = Tiered Approach to Corrective Action Objectives

TCLP = Toxicity Characteristic Leaching Procedure.

SCGIER = Soil Component of the Groundwater Ingestion Exposure Route

SPLP = Synthetic Precipitation Leaching Procedure.

ND = Not detected.

NA = Not analyzed.

J = Estimated value.

U = Analyte was analyzed for but not detected.

† = Concentration exceeds the most stringent MAC.

m = Concentration exceeds the MAC for an MSA.

* = Concentration exceeds the MAC for Chicago corporate limits.

r = Concentration exceeds the TACO Tier 1 RO for Residential Exposure.

L = The detected concentration exceeds the TACO Tier 1 RO for the SCGIER.

= Concentration exceeds applicable comparison criteria.

= Concentration exceeds the most Stringent MAC, but is below the MSA MAC.

= Concentration exceeds the most stringent MAC and the MAC for Chicago.

SITE				ISGS	#1314V3-18 (Vacant L	_and)						Compari	son Criteria	3	
BORING						1314V3	I-18-B03	1314V3-18-B04		MACs			TACO		
SAMPLE	1314V3-18-B01 (0-6)	1314V3-18-B01 (6-12)	1314V3-18-B01 (12-18)	1314V3-18-B02 (0-7)	1314V3-18-B02 (0-7)D	1314V3-18-B02 (7-13)	1314V3-18-B03 (0-6)	1314V3-18-B03 (6-12)	1314V3-18-B04 (0-5.3)						
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
DEPTH (feet)	0-6	6-12	12-18	0-7	0-7	7-13	0-6	6-12	0-5.3						
pH	8.7	8.3	7.9	8	8	7.7	8.1	7.6	8.6	Most	Within an	Within		Construction	
PID (meter units)		0	90		0			0	0	Stringent	MSA	Chicago	Residential		SCGIER
SVOCs (mg/kg)	27			110						<u> </u>					
Benzo(a)pyrene	0.052	0.034 J	0.026 J	ND U	0.011 J	0.094 †	0.011 J	ND U	0.094	0.09	2.1	1.3	2.1	17	227
Inorganics (mg/kg)										4		W.			K
Iron	13,000	13,000	13,000	15,000	16,000 †m	15,000	13,000	11,000	12,000	15,000	15,900	-	-		-
Manganese	370	320	290	290	310	390	360	280	220	630	636		1,600	4,100	
TCLP Metals (mg/L	.)						×								
Iron	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U						5
Manganese	1.5 L	6.3 L	7.8 L	0.66 L	0.55 L	0.26 L	0.36 L	0.81 L	2.4 l						0.15
SPLP Metals (mg/L	.)													200	

CAD FILE EE9 WO46 PSI DWG	DESIGNED BY: J. HUGHES	CHECKED BY: J. JENKINS	ecology and environment, inc.			ROUTE: FAI 74 (I-74)	CITY: MOLINE	DATE: 03/03/2017	FIGURE
REVISION 0	DRAWN BY: V. GEE	APPROVED BY: D. TIEBOUT	& Global Environmental Specialists	FAI 74 - INTERSTATE 74 (CONTRACT # 64C08) ISGS 1314V3-11, -17 AND -18	IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-9

							CONTAMIN	ANTS OF CONCE	RN				-					
SITE				ISGS #1314V3-	18 (Vacant Land)					ISGS #1314V3-2	1 (BNSF Railroad)				Compari	son Criteria	а	
BORING	1314V3	3-18-B05		1314V3-18-B06		1314V3-18-B07	1314V3-18-B08	1314V3-18-B09	1314V3	J-21-B01	1314V3	-21-B02		MACs			TACO	
SAMPLE	1314V3-18-B05 (0-8)	1314V3-18-B05 (8-12)	1314V3-18-B06 (0-6)	1314V3-18-B06 (6-12)	1314V3-18-B06 (12-17)	1314V3-18-B07 (0-8)	1314V3-18-B08 (0-4.4)	1314V3-18-B09 (0-8)	1314V3-21-B01 (0-5)	1314V3-21-B01 (5-10)	1314V 3-21-B02 (0-6)	1314V3-21-B02 (0-6)D						
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
DEPTH (feet)	0-8	8-12	0-6	6-12	12-17	0-8	0-4.4	0-8	0-5	5-10	0-6	0-6						
pH	8.1	8	8.4	7.9	8	8.5	8.4	7.6	7.5	7.8	7.7	7.7	Most	Within	Within		Construction	
PID (meter units)		0		0		0	0	0		0		0	Stringent	550000	CONTRACTOR STATE	Residential		SCGIER
SVOCs (mg/kg)																		
Benzo(a)anthracene	0.059	ND U	0.91 †	0.09	ND U	0.018 J	0.13	0.011 J	0.11	ND U	0.28	0.43	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.086	ND U	0.72 †	0.084	ND U	0.02 J	0.13	0.0093 J	0.13 †	ND U	0.36 †	0.5	0.09	2.1	1.3	2.1	17	1,444
Benzo(b)fluoranthene	0.16	ND U	0.94 †	0.14	ND U	0.026 J	0.22	ND U	0.2	ND U	0.61	0.8	0.9	2.1	1.5	2.1	170	
Inorganics (mg/kg)	Ni diamana	1000			7,7,4,4				7.22	711720	•	E-15,00,747						
Antimony	0.48 J	0.41 J	0.54 J	0.62 J	0.27 J	0.27 J	0.44 J	ND U	2.2 J	0.32 J	4.2 J	2.9 J	5			31	82	1
Arsenic	3.2	4.8	5.6	7.3	2.5	3.5	2.3	220 †mrc	9	4.3	7.9	6.6	11.3	13		13	61	j
Boron	2.4 J	1.1 J	7.1	14	2 J	6.4	17	140 t	22	2.9	27	41 1	40	_		16,000	41,000	7-2
Cadmium	ND U	ND U	0.42	0.32	ND U	ND U	0.11	20 +	1.4	0.06 J	1.1	0.98	5.2		22	78	200	1222
Iron	12,000	12,000	13,000	20,000 †m	10,000	12,000	11,000	20,000 +m	48,000 tm	12,000	40,000 tm	39,000 †m		15,900				
Lead	18	2.8	23	39	6.6	16	9.2	13	82	5.6	140 †	150 1	107			400	700	
Manganese	270	300	280	220	210	320	110	350	500	480	440	410	630	636		1,600	4,100	m
Selenium	0.52	0.55	0.45	0.93	0.37 J	ND U	0.58	33 †	2.3 J †	0.33 J	2 J †	1.9 J 1	1.3			390	1,000	
Silver	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	4.4			390	1,000	
Sodium	89	140	560	270	110	480	340	33 J	470	170	900	790						122
Thallium	0.99	0.9	1	1	0.7	0.95	0.3 J	300 trc	3 J †	1.1	2.8 J †	2.5 J	2.6			6.3	160	
TCLP Metals (mg/L	<u>-)</u>					3403406												
Antimony	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	0.0098 L	ND U	***		***	H40)		0.006
Boron	ND U	ND U	ND U	ND U	ND U	0.082 J	0.1 J	0.062 J	ND U	ND U	ND U	ND U						2
Cadmium	ND U	ND U	0.0042 J	0.0079 L	0.0023 J	ND U	0.0048 J	ND U	ND U	ND U	0.0022 J	0.003 J				-		0.005
Iron	ND U	ND U	ND U	0.84	ND U	ND U	ND U	ND U	0.31 J	ND U	ND U	0.33 J				::		5
Lead	0.0079 L	ND U	ND U	0.015 L	ND U	ND U	0.012 L	. ND U	ND U	ND U	0.079 J L	0.0099 J L				***		0.0075
Manganese	0.44 L	2.8 L	. 1.4 L	9.1 L	14 L	. 2.9 L	4.7 L	. 1 L	1.4 L	ND U	3.1 L	2.3 L		122		1201	- 22	0.15
Selenium	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U		-			, 755	0.05
Thallium	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U				: ++::		0.002
SPLP Metals (mg/L	.)								0						7		-	
Antimony	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	0.0063 L	NA	- 92	-	920			0.006
Cadmium	NA	NA	NA	ND U	NA	NA	NA	NA	NA	NA	NA	NA	920	1,22	22	1.2256	322	0.005
Lead	0.042 L	NA	NA	0.03 L	NA	NA	0.092 L	. NA	NA	NA	0.071 L	0.097 L						0.0075
Manganese	0.5 L	0.025	0.34 L	0.14	0.17 L	ND U	0.65 L	. 0.83 L	0.32 L	NA	0.24 L	0.25 L				; n		0.15

MAC = Maximum Allowable Concentration of Chemical Constituent in

Uncontaminated Soil Used as Fill Material At Regulated Fill Operations

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area

TACO = Tiered Approach to Corrective Action Objectives

TCLP = Toxicity Characteristic Leaching Procedure.

SCGIER = Soil Component of the Groundwater Ingestion Exposure Route

SPLP = Synthetic Precipitation Leaching Procedure.

ND = Not detected.

= Concentration exceeds the most Stringent MAC, but is below the MAC for an MSA.

NA = Not analyzed.

J = Estimated value.

U = Analyte was analyzed for but not detected.

† = Concentration exceeds the most stringent MAC.

m = Concentration exceeds the MAC for an MSA.

* = Concentration exceeds the MAC for Chicago corporate limits.
r = Concentration exceeds the TACO Tier 1 RO for Residential Exposure.

c = Concentration exceeds a TACO Tier 1 RO for construction worker exposure.

L = The detected concentration exceeds the TACO Tier 1 RO for the SCGIER.

= Concentration exceeds applicable comparison criteria.

CAD FILE EE9 WO46 PSI DWG DESIGNED BY: J. HUGHES CHECKED BY: J. JENKINS CONTAMINANTS OF CONCERN CITY: MOLINE DATE: 03/03/2017 ROUTE: FAI 74 (I-74) **FIGURE** ecology and environment, inc.

Global Environmental Specialists PTB/JOB 172-027/ P-30-010-14 FAI 74 - INTERSTATE 74 (CONTRACT # 64C08) REVISION 0 4-10 SCALE: N/A IDOT PROJECT # P-93-032-01 COUNTY: ROCK ISLAND DRAWN BY: V. GEE APPROVED BY: D. TIEBOUT WORK ORDER 46 ISGS 1314V3-18 AND ISGS 1314V3-21

		,					CON	TAMINANTS OF C	CONCERN										
SITE	ISGS #1314V3-24 (John Deere)						ISGS #1314V3-25 (Sivyer Steel Corp.)		No.						Compar	ison Criteri	a	
BORING	1314V3-24-B01	1314V3	3-25-B01	1314V	3-25-B02	1314V	3-25-B04	1314V3	3-25-B05	1314V	3-25-B06	1314V	3-25-B07		MACs			TACO	
SAMPLE	1314V3-24-B01 (0-5.8)	1314V3-25-B01 (0-6)	1314V3-25-B01 (6-12)	1314V 3-25-B02 (0-6)	1314V3-25-B02 (6-12)	1314V3-25-B04 (0-6)	1314V3-25-B04 (6-12)	1314V3-25-B05 (0-6)	1314V3-25-B05 (6-12)	1314V 3-25-B06 (0-6)	1314V 3-25-B06 (6-12)	1314V 3-25-B07 (0-6)	1314V3-25-B07 (6-12)						
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						1
DEPTH (feet)	0-5.8	0-6	6-12	0-6	6-12	0-6	6-12	0-6	6-12	0-6	6-12	0-6	6-12		CONTRACTOR SANTA				1
pН	7.8	7.5	8.2	8.5	8.1	8.1	8.1	7	7	7.4	8.3	7.4	8	Most	Within	Within		Construction	.[
PID (meter units)	0	l	0		0		0		0		0		0	Stringent	100	(2) 11 2 mm	Residential	THE STATE OF THE POST OF	
SVOCs (mg/kg)		- · · · · · · · · · · · · · · · · · · ·				45		2		-82			17	-21-					
Benzo(a)anthracene	0.26	2 †mr*	ND U	ND U	ND U	0.016 J	0.015 J	0.41	0.0097 J	2.2 †mr*	ND U	0.022 J	ND U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.25	3 †mr*	ND U	ND U	ND U	0.016 J	0.012 J	0.4 †	0.014 J	2.1 †*	ND U	0.027 J	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.44	4.8 †mr*	ND U	ND U	ND U	0.018 J	0.015 J	0.58	0.017 J	3.3 †mr*	ND U	0.029 J	ND U	0.9	2.1	1.5	2.1	170	
Dibenz(a,h)anthracene	0.03 J	0.47 †mr*	ND U	ND U	ND U	ND U	ND U	0.08	ND U	0.4 †*	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17	
Indeno(1,2,3-cd)pyrene	0.088	1.6 †*	ND U	ND U	ND U	0.011 J	ND U	0.24	ND U	1.3 +*	ND U	0.014 J	ND U	0.9	1.6	0.9	1.6	170	
Inorganics (mg/kg)	_																		
Antimony	1.3 J	5.3 J †	ND U	ND U	ND U	1.1	ND U	4.1 J	ND U	18 †	ND U	ND U	ND U	5		522	31	82	
Arsenic	4.1	11	2.7	1.8	3.7	5.5	6.2	9.6	4.8	19 †mr	2.3	4.2	3.6	11.3	13		13	61	
Boron	110 1	50 †	ND U	ND U	ND U	ND U	ND U	14 J	ND U	61 †	ND U	ND U	ND U	40		155	16,000	41,000	
Cadmium	ND U	2.2	0.18	0.2	0.13	0.49	0.29	1.2	0.19	3.7	0.32	0.18	0.12	5.2			78	200	
Chromium	21	19	19	17	18	ND U	15	26 †	16	19	19	ND U	ND U	21			230	690	
Iron	71,000 †m	47,000 †m	15,000	12,000	17,000 †m	18,000 †m	14,000	61,000 †m	14,000	61,000 †m	16,000 †m	13,000	14,000	15,000	15,900	922		22	
Lead	52	270 †	9.4	160 †	11	63	11	710 †rc	10	1,900 †rc	12	13	9.3	107			400	700	
Manganese	250	840 †m	440	190	250	340	570	680 †m	440	870 †m	610	400	250	630	636		1,600	4,100	
Mercury	0.025	0.19	0.046	0.065	0.028	0.14	0.026	0.05	0.021	0.25	0.044	0.055	0.027	0.89		1200	10	0.1	
Selenium	2.4	2.4 J †	0.52 J	ND U	0.65	0.77	0.59 J	3.5 †	0.41 J	4.3 †	0.46 J	0.58 J	0.43 J	1.3	-		390	1,000	
TCLP Metals (mg/L)														_					
Antimony	ND U	ND U	ND U	ND U	ND U	ND U	ND U	0.013 L	ND U	0.066 L	ND U	ND U	ND U	**		S	***		0.006
Boron	0.12 J	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U		-				2
Cadmium	ND U	0.0068 L	ND U	ND U	0.0026 J	ND U	0.0022 J	0.0023 J	ND U	0.0066 L	ND U	ND U	ND U		-	- <u> </u>			0.005
Chromium	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U		-				0.1
Iron	ND U	ND U	ND U	ND U	ND U	0.34 J	ND U	0.43	0.28 J	0.2 J	ND U	0.24 J	ND U						5
Lead	ND U	0.016 L	ND U	0.028 L	ND U	ND U	ND U	0.12 L	ND U	0.96 L	ND U	ND U	ND U						0.0075
Manganese	1.6 L	1 L	4 L	0.13	2.9 L	0.1	0.34 L	. 0.4 L	0.011 J	1.1 L	0.15	0.17 L	. 0.67 L			: 44	**:		0.15
Selenium	ND U	ND U	ND U	ND U	0.02 J	ND U	ND U	ND U	0.021 J	ND U	ND U	ND U	ND U	227	-	5 44			0.05
SPLP Metals (mg/L)																			
Antimony	NA	NA	NA	NA	NA	NA	NA	0.0083 L	. NA	0.018 L	NA NA	NA	NA	120	1225	222	20 3		0.006
Cadmium	NA	ND U	NA	NA NA	NA	NA	NA	NA	NA	ND U	NA NA	NA	NA		-				0.005
Lead	NA	0.089 L	NA	0.25 L	NA NA	NA	NA	0.34 L	. NA	0.22 L	NA NA	NA	NA NA		-				0.0075
Manganese	ND U	0.21 L	0.46 L	NA NA	0.29 L	. NA	0.24 L	. 0.55 L	NA NA	0.066	0.4 L	0.16 L	0.15	.72		1,55			0.15
					ata Table Maximum Allowable Co Uncontaminated Soil Us Milliorams per kilogram				A = Not analyzed.										

mg/kg = Milligrams per kilogram. mg/L = Milligrams per liter. MSA = Metropolitan Statistical Area

TACO = Tiered Approach to Corrective Action Objectives

J = Estimated value.

U = Analyte was analyzed for but not detected.

= pH is less than 6.25 or greater than 9.0 standard units.
† = Concentration exceeds the most stringent MAC.

			TCLP = Toxicity Characteristic Lea	ching Procedure.	m = Concentration	n exceeds the MAC for an MSA.				
			SCGIER = Soil Component of the Gro	oundwater Ingestion Exposure Route	* = Concentration	n exceeds the MAC for Chicago corpor	ate limits.			
			SPLP = Synthetic Precipitation Lea	aching Procedure.	r = Concentration	n exceeds the TACO Tier 1 RO for Res	idential Exposure.			
			ND = Not detected.		c = Concentration	n exceeds a TACO Tier 1 RO for constr	ruction worker exposure.			
			= Concentration exceeds the	most Stringent MAC, but is below the MAC for an MSA.	L = The detected	concentration exceeds the TACO Tier	RO for the SCGIER.			
			= Concentration exceeds the	most stringent MAC and the MAC for Chicago.	= Concentration	n exceeds applicable comparison criter	ia.			
CAD FILE EE9 WO46 PSI DWG	DESIGNED BY: J. HUGHES	CHECKED BY: J. JENKINS	ecology and environment, inc.	CONTAMINANTS OF CON		PTB/JOB 172-027/ P-30-010-14	ROUTE: FAI 74 (I-74)	CITY: MOLINE	DATE: 03/03/2017	FIGURE
REVISION 0	DRAWN BY: V. GEE	APPROVED BY: D. TIEBOUT	Global Environmental Specialists	FAI 74 - INTERSTATE 74 (CONTR. ISGS 1314V3-24 AND 1314		IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-11

	ř .					COI	NTAMINANTS OF C	ONCERN				Ť					
SITE			·		ISG	S #1314V3-24 (John D	Deere)	<u>, </u>			, 1.			Compar	ison Criteri	ia	
BORING	1314V	3-24-B02	1314V3	3-24-B03		1314V3-24-B04		1314V3	3-24-B05	1314V3-24-B06	1314V3-24-B07	MACs				TACO	
SAMPLE	1314V3-24-B02 (0-5)	1314V3-24-B02 (5-10)	1314V3-24-B03 (0-5)	1314V3-24-B03 (5-10)	1314V3-24-B04 (0-5)	1314V3-24-B04 (5-10)	1314V3-24-B04 (5-10)D	1314V3-24-B05 (0-5)	1314V3-24-B05 (5-10)	1314V3-24-B06 (0-4)	1314V3-24-B07 (0-5)						
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
DEPTH (feet)	0-5	5-10	0-5	5-10	0-5	5-10	5-10	0-5	5-10	0-4	0-5						
pH	8.1	7.9	8.2	8.1	8.3	8.5	8.5	8.3	7.6	9	8.9	Most	Within an	Within		Construction	
PID (meter units)		0		0		0	87		0	0	0	Stringent	MSA	- 10 TO TO THE PARTY OF THE PAR	Residential	A STATE OF THE PROPERTY OF THE PARTY OF THE	SCGIE
SVOCs (mg/kg)																	
Benzo(a)anthracene	0.13	ND U	0.051	ND U	1.1 †	ND U	ND U	0.27	ND U	0.035 J	0.044	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.21 †	ND U	0.058	ND U	1.1 †	ND U	ND U	0.24 †	ND U	0.044	0.047	0.09	2.1	1.3	2.1	17	9242
Benzo(b)fluoranthene	0.31	ND U	0.091	ND U	1.5 †	ND U	ND U	0.34	ND U	0.082	0.066	0.9	2.1	1.5	2.1	170	175
Dibenz(a,h)anthracene	0.047	ND U	ND U	ND U	0.11 †	ND U	ND U	0.03 J	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17	
Inorganics (mg/kg)																	
Antimony	18 †	0.35 J	5	0.28 J	2.4 J	0.32 J	0.28 J	9.5 †	ND U	ND U	2.7	5			31	82	
Arsenic	32 †mr	4.2	10	4.3	4.6	6.4	4.2	9	6.2	5.8	5.2	11.3	13		13	61	
Chromium	24 †	12	15	9.7	17	12	12	11	15	11	12	21	7		230	690	
Iron	150,000 †m	12,000	58,000 †m	10,000	27,000 †m	14,000	13,000	29,000 †m	15,000	12,000	18,000 †n	15,000	15,900		7. 77. 0		
Lead	690 †r	7.8	220 †	7.2	110 †	10	8.8	220 †	10	13	120	107	944	-	400	700	
Manganese	830 †m	280	580	330	280	1,000 J †m	300 J	290	520	860 †m	270	630	636		1,600	4,100	
Selenium	2.6 †	0.32 J	1.4 J †	ND U	ND U	0.39 J	ND U	ND U	ND U	ND U	ND U	1.3			390	1,000	
TCLP Metals (mg/L)												_	_				
Antimony	0.032 L	ND U	ND U	ND U	0.0091 L	ND U	ND U	0.0075 L	ND U	ND U	ND U			i ne	() + - ()		0.006
Chromium	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	-		144	1989		0.1
Iron	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U		1999	C HE	S 111 5		5
Lead	0.12 L	ND U	0.011 L	ND U	0.028 L	ND U	ND U	0.021 L	ND U	ND U	0.03			-	2400		0.0075
Manganese	3.9 L	0.4 L	0.16 L	0.41 L	. 2.5 L	0.32 L	0.33 L	0.99 L	0.023 J	0.73 L	1.1 l		3		2 44 23		0.15
Selenium	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U		122	392			0.05
SPLP Metals (mg/L)																	
Antimony	0.019 L	NA	NA	NA	0.011 L	NA	NA	0.017 L	NA	NA	NA) P==	1 4- 51		0.006
Lead	0.043 L	NA	0.088 L	NA	0.11 L	NA	NA	0.15 L	NA	NA	0.17 l		1	9 500	(00);	5.5	0.0075
Manganese	0.034	0.039	0.19 L	0.26 L	0.38 L	0.33 L	0.33 L	0.31 L	NA	1.5 L	0.45 L		744		30443		0.15

MAC = Maximum Allowable Concentration of Chemical Constituent in

Uncontaminated Soil Used as Fill Material At Regulated Fill Operations

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area

TACO = Tiered Approach to Corrective Action Objectives

TCLP = Toxicity Characteristic Leaching Procedure.

SCGIER = Soil Component of the Groundwater Ingestion Exposure Route

SPLP = Synthetic Precipitation Leaching Procedure.

= Concentration exceeds the most Stringent MAC, but is below the MAC for an MSA.

ND = Not detected.

NA = Not analyzed.

J = Estimated value.

U = Analyte was analyzed for but not detected.

† = Concentration exceeds the most stringent MAC.

m = Concentration exceeds the MAC for an MSA.

* = Concentration exceeds the MAC for Chicago corporate limits.

r = Concentration exceeds the TACO Tier 1 RO for Residential Exposure.

L = The detected concentration exceeds the TACO Tier 1 RO for the SCGIER.

CAD FILE EE9 WO46 PSI	DWG DESIGNED BY: J. HUGHES	CHECKED BY: J. JENKINS	ecology and environment, inc.	CONTAMINANTS OF CONCERN	PTB/JOB 172-027/ P-30-010-14	ROUTE: FAI 74 (I-74)	CITY: MOLINE	DATE: 03/03/2017	FIGURE
REVISION 0	DRAWN BY: V. GEE	APPROVED BY: D. TIEBOUT	Global Environmental Specialists	FAI 74 - INTERSTATE 74 (CONTRACT # 64C08) ISGS 1314V3-24	IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-12

SITE					ISG	S #1314V3-24 (John I	Deere)					ISGS #1314V3-25 (Sivyer Steel Corp.)			Comparis	son Criteria	a	
BORING	1314V3-24-B08	1314V3-24-B09	1314V3-24-B10	1314V3	-24-B11	1314V3	-24-B12	1314V3	-24-B13	1314V3	3-24-B14	1314V3-25-B03		MACs			TACO	
SAMPLE	1314V3-24-B08 (0-8)	1314V3-24-B09 (0-4)	1314V3-24-B10 (0-5)	1314V3-24-B11 (0-6)	1314V3-24-B11 (6-12)	1314V3-24-B12 (0-6)	1314V3-24-B12 (6-12)	1314V3-24-B13 (0-6)	1314V3-24-B13 (6-12)	1314V3-24-B14 (0-6)	1314V3-24-B14 (6-12)	1314V 3-25-B03 (0-8)						T
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	1					
DEPTH (feet)	0-8	0-4	0-5	0-6	6-12	0-6	6-12	0-6	6-12	0-6	6-12	0-8						
рН	7.9	7.5	8.5	8.4	7.7	8	7.5	7.6	7.2	8.2	7.7	8.1	Most	Within	Within		Construction	_
PID (meter units)	0	0	0		0		0		0		0	0	Stringent	an MSA	100000000000000000000000000000000000000	Residential		SCG
SVOCs (mg/kg)					-													
Benzo(a)anthracene	0.081	0.028 J	4.3 †mr*	0.31	ND U	0.091	ND U	0.067	ND U	0.033 J	ND U	0.013 J	0.9	1.8	1.1	1.8	170	,
Benzo(a)pyrene	0.08	0.042	5 tmr*	0.31 +	ND U	0.13 +	ND U	0.075	ND U	0.033 J	ND U	0.011 J	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.1	0.067	7.2 †mr*	0.42 J	ND U	0.2	ND U	0.1	ND U	0.043	ND U	0.012 J	0.9	2.1	1.5	2.1	170	22
Dibenz(a,h)anthracene	0.012 J	ND UJ	0.42 †*	0.032 J	ND U	0.024 J	ND U	ND U	ND U	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17	
Indeno(1,2,3-cd)pyrene	0.034 J	0.024 J	1.5 †*	0.098 J	ND U	0.083	ND U	0.033 J	ND U	ND U	ND U	ND U	0.9	1.6	0.9	1.6	170	
Inorganics (mg/kg)	7	*			*	•		//	*		-	W	300			,	-	
Antimony	0.3 J	1.5 J	0.54 J	2.9 J	0.68 J	15 +	0.98 J	9.5 +	0.91 J	7.5 +	0.6 J	ND UJ	5			31	82	100
Arsenic	14 †mr	6 J	2.3	4.5	3.1	7.2	6.8	8.8	6.9	8.3	6.3	2.3	11.3	13		13	61	
Chromium	12	11	5.3	10	12	26 †	17	13	16	12	18	ND U	21			230	690	
Iron	10,000	17,000 J †m	6,200	24,000 J †m	10,000	40,000 †m	17,000 †m	30,000 †m	17,000 †m	34,000 †m	18,000 †m	12,000	15,000	15,900		344	-	-
Lead	18	65 J	170 †	110 t	6.4	280 †	7.6	230 †	9.2	130 †	7.2	490 J †r	107	722		400	700	
Manganese	170	450 J	670 †m	360	210	4,100 †mr	600	800 †m	830 † m	380	610	170	630	636		1,600	4,100	
Selenium	ND U	0.41 J	0.23 J	1 J	ND U	2.1 †	0.49 J	1.4 †	0.67	1.8 †	0.61	0.35 J	1.3			390	1,000	-
Thallium	ND U	ND U	ND U	1.3	0.56 J	5.1 †	1.5	2	1.8	1.6	1.5	ND U	2.6	***		6.3	160	
TCLP Metals (mg/L)																		
Antimony	ND U	0.21 L	ND U	0.044 L	ND U	ND U	ND U	ND U		3	242			0.006				
Chromium	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U						0.1				
Iron	ND U	ND U	ND U	ND U	ND U	ND U	ND U	0.35 J					-	5				
Lead	ND U	ND U	0.044 L	0.015 L	ND U	1.8 L	ND U	0.34 L	ND U	0.0086 L	ND U	ND U	-	144				0.007
Manganese	0.05	1.9 L	3.3 L	3 L	0.68 L	2.2 L	0.2 L	2.2 L	0.1	1.1 L	0.3 L	0.25 L						0.15
Selenium	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U						0.05				
Thallium	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U						0.00				
SPLP Metals (mg/L)																		
Antimony	NA	NA	NA	NA	NA	0.056 L	NA	0.012 L	NA	NA	NA	NA		144		824	-	0.00
Lead	NA	NA	0.057 L	0.3 L	NA	0.41 L	NA	0.081 L	NA	0.064 L	NA	NA	-		-			0.007
Manganese	NA	1.2 L	0.13	0.58 L	ND U	0.21 L	ND U	0.12	NA	0.11	ND U	0.16 L					-	0.15

MAC = Maximum Allowable Concentration of Chemical Constituent in Uncontaminated Soil Used as Fill Material At Regulated Fill Operations

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area

TACO = Tiered Approach to Corrective Action Objectives

TCLP = Toxicity Characteristic Leaching Procedure.

SCGIER = Soil Component of the Groundwater Ingestion Exposure Route

SPLP = Synthetic Precipitation Leaching Procedure.

= Concentration exceeds the most Stringent MAC, but is below the MAC for an MSA.

= Concentration exceeds the most stringent MAC and the MAC for Chicago.

ND = Not detected.

NA = Not analyzed.

J = Estimated value.

U = Analyte was analyzed for but not detected.

† = Concentration exceeds the most stringent MAC.

m = Concentration exceeds the MAC for an MSA.

* = Concentration exceeds the MAC for Chicago corporate limits.

r = Concentration exceeds the TACO Tier 1 RO for Residential Exposure.

L = The detected concentration exceeds the TACO Tier 1 RO for the SCGIER.

CAD FILE EE9 WO46 PSI DWG	DESIGNED BY: J. HUGHES	CHECKED BY: J. JENKINS		ecology and environment inc	CONTAMINANTS OF CONCERN
REVISION 0	DRAWN BY: V. GEE	APPROVED BY: D. TIEBOUT	t	Global Environmental Specialists	FAI 74 - INTERSTATE 74 (CONTRACT # 64C08) ISGS 1314V3-24 AND 1314V3-25

	PTB/JOB 172-027/ P-30-010-14	ROUTE: FAI 74 (I-74)	CITY: MOLINE	DATE: 01/23/2017	FIGURE
•)	IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-13

			r			CONTAMI	NANTS OF CONC	EKN								
SITE	ISGS #13 (Commercia					ISGS #1314V3-32 (C	ommercial Buildings)						Cor	mparison Cr	iteria	
DRING	1314V3-26-B01	1314V3-26-B02	1314V3	-32-B01	1314V3	3-32-B02	1314V3	3-32-B03	1314V3	3-32-B04		MAC			TACO	
MPLE	1314V3-26-B01 (0-8)	1314V3-26-B02 (0-8)	1314V3-32-B01 (0-6)	1314V3-32-B01 (6-12)	1314V3-32-B02 (0-6)	1314V3-32-B02 (6-12)	1314V3-32-B03 (0-6)	1314V3-32-B03 (6-12)	1314V3-32-B04 (0-6)	1314V3-32-B04 (6-12)					
TRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
PTH (feet)	0-8	0-8	0-6	6-12	0-6	6-12	0-6	6-12	0-6	6-12						
ı ııı (icct)	8.2	8.2	8.9	7.9	7.7	7.6	8.8	8.4	8.8	8.1	999. 20	With	100000	2000	559 54 56	
D (meter units)	0.2	0.2	- Contro	7.9	Trial.	0 7.6		0.4		0.1	Mos	9 5000	A CONTRACTOR	thin	Construction	69000
200 000 000 000		· ·	l.	u		0		0	l-	0	Stringe	nt MS	A Chi	cago Reside	ntial Worker	SCGIER
organics (mg/kg)	14.000	14.000	13.000	15,000	46 000	13,000	8,600	11,000	47,000	19.000	tm 15,00	15.9	20			
n	290	360	330	360	16,000 †m 390	330	230	360	17,000 †m	470	630	636		1.60	0 4.100	
nganese	7	300	330	300	390	330	230	300	470	470	630	636		1,60	0 4,100	
LP Metals (mg/L)		Table Table To					I was so I			15 man 27 m	_ 1			Ť		
n	ND U	0.26 J	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND (J					5
nganese	1.1 L	0.031	0.6 L	0.17 L	0.19 L	0.22 L	1.4 L	0.27 L	0.2 L	0.15						0.15
PLP Metals (mg/L)		51	9	-			1/2 3]				- E				7	
inganese	0.05	NA	0.66 L	0.67 L	0.52 L	0.59 J L	. 0.31 L	0.37 L	0.5 L	NA		. **		**		0.15
_	1000 #404			8		10.00 #404 #100	00 (8-14-14)				_	mparisor	C-141-			
TE		4V3-32 (Commercia	The state of the s	30470	00 804		33 (Parking Lot)	104,00				mparisor	Criteria			
DRING	1314V3-32-B05	1314V3-32-B06	1314V3-32-B07	1314V3-		1	3-33-B02		3-33-B03	1	MACs			TACO		
MPLE	1314V3-32-B05 (0-3)	1314V3-32-B06 (0-3)	1314V3-32-B07 (0-3)	1314V3-33-B01 (0-6)	1314V3-33-B01 (6-12)	1314V3-33-B02 (0-5)	1314V3-33-B02 (5-9.4)	1314V3-33-B03 (0-6)	1314V3-33-B03 (6-12)							
ATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	-						
EPTH (feet)	0-3	0-3	0-3	0-6	6-12	0-5	5-9.4	0-6	6-12	-	Within				Key	to Data Table
l 	8.8	8.8	8.5	7.8	8.4	8.6	8.6	8.1	7.7	Most	1,130,000	/ ithin		Construction		AC = Maximum Allowable Concentration of Chemical Constituent in
D (meter units)	0	0	0	C)		0		0	Stringent	MSA C	nicago R	esidential	Worker	SCGIER mg/	Uncontaminated Soil Used as Fill Material At Regulated Fill Operation //kg = Milligrams per kilogram.
OCs (mg/kg)	Ŷ	ř		P	-					, ,						g/L = Milligrams per liter.
enzo(a)anthracene	0.096	0.2	0.046	0.13	ND U	0.15	0.072	14 †mr*	0.023 J	0.9	1.8	1.1	1.8	170	17.007	SA = Metropolitan Statistical Area
enzo(a)pyrene	0.099 †	0.2	0.046	0.16 †	ND U	0.17 †	0.084	13 †mr*	0.024 J	0.09	2.1	1.3	2.1	17		CO = Tiered Approach to Corrective Action Objectives
enzo(b)fluoranthene	0.14	0.3	0.063	0.23	ND U	0.26	0.12	18 †mr*	0.034 J	0.9	2.1	1.5	2.1	170		ELP = Toxicity Characteristic Leaching Procedure. EER = Soil Component of the Groundwater Ingestion Exposure Route
arbazole	ND U	ND U	ND U	ND U	ND U	ND U	ND U	3.8 †	ND U	0.6		52E	32	6,200	100000000	PLP = Synthetic Precipitation Leaching Procedure.
benz(a,h)anthracene	ND U	0.038 J	ND U	0.023 J	ND U	0.021 J	ND U	2.1 †mr*	ND U	0.09	0.42	0.2	0.42	17		ND = Not detected.
deno(1,2,3-cd)pyrene	e 0.052	0.11	0.021 J	0.056	ND U	0.061	0.032 J	6.8 †mr*	0.013 J	0.9	1.6	0.9	1.6	170		NA = Not analyzed. J = Estimated value.
organics (mg/kg)	nu .		as:			21			×					· ·		U = Analyte was analyzed for but not detected.
hromium	13	53 1	15	13	14	6.3	5.8	13	12	21			230	690	I	† = Concentration exceeds the most stringent MAC. m = Concentration exceeds the MAC for an MSA.
ead	29	190 †	32	15	9.4	20 J	6.8	30	10	107			400	700	0.0075	* = Concentration exceeds the MAC for Chicago corporate limits.
anganese	320	400	410	330	330	210 J	270	470	490	630	636		1,600	4,100	0.15	r = Concentration exceeds the TACO Tier 1 RO for Residential Exposure. L = The detected concentration exceeds the TACO Tier 1 RO for the SCGi
	-	3		-		0 30										= Concentration exceeds the most Stringent MAC, but is below the MAC
CLP Metals (mg/L)		1902 s 177, 1	ND U	ND U	ND U	ND U	ND U	ND U	ND U						0.1	= Concentration exceeds applicable comparison criteria.
CLP Metals (mg/L)	1	ND II			140	100000-0-0000-0	1955/25 NOV	CONTROL MADE	1001011	-					0.0075	
hromium	ND U	ND U			ND II	ND II	MI 1 II	MI 1 II	Mil I I I							
hromium ead	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U				200	7/2579	1000	
hromium ead langanese	ND U ND U 0.67 L	100000 0000			ND U 0.26 L	1.1 L	1.7 L	. 0.11	0.13	-	**			(**)	0.15	
hromium ead	ND U ND U 0.67 L	100000 0000	ND U	ND U		100		240000	1263			-			1000	

SITE				ISGS #1314V3-	33 (Parking Lot)				ISGS #1314V3-	60 (Vacant Lot)			Compari	son Criteria	a	
BORING	1314V3	3-33-B04	1314V3	-33-B05	1314V3	3-33-B06	1314V3	3-33-B07	1314V3	-60-B06		MACs			TACO	
SAMPLE	1314V3-33-B04 (0-6)	1314V3-33-B04 (6-12)	1314V3-33-B05 (0-6)	1314V3-33-B05 (6-12)	1314V3-33-B06 (0-6)	1314V3-33-B06 (6-12)	1314V3-33-B07 (0-8)	1314V3-33-B07 (0-8)D	1314V3-60-B06 (0-6)	1314V3-60-B06 (6-12)						
MATRIX	Soil	Soil														
DEPTH (feet)	0-6	6-12	0-6	6-12	0-6	6-12	0-8	0-8	0-6	6-12		0500000				
pH	8.8	8.4	8.4	7.9	8	7.6	8.4	8.6	11.8#	8.3	Most	Within	Within		Construction	1
PID (meter units)	0-2	2.9**		0		0		0	()	Stringent	MSA	Chicago	Residential		SCGIER
SVOCs (mg/kg)																
Benzo(a)anthracene	0.2	ND U	0.0094 J	ND U	ND U	ND U	0.04	0.048	1.2 J †*	ND U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.2 †	ND U	0.0089 J	ND U	ND U	ND U	0.057	0.065	0.97 J †	ND U	0.09	2.1	1.3	2.1	17	_
Benzo(b)fluoranthene	0.36	ND U	ND U	ND U	ND U	ND U	0.093	0.1	1.5 J †	ND U	0.9	2.1	1.5	2.1	170	44.
Dibenz(a,h)anthracene	ND U	ND U	0.12 J †	ND U	0.09	0.42	0.2	0.42	17							
Inorganics (mg/kg)									_							
Cadmium	2.9	0.16	0.21	0.13	0.13	0.1 J	0.2	0.2	0.17	0.44	5.2	120	- 12	78	200	
Iron	14,000	13,000	14,000	14,000	14,000	12,000	12,000	12,000	6,600	18,000 †m	15,000	15,900	(***		***	
Lead	890 †rc	10	24	8.7	15	8.3	47	49	22	10	107		722	400	700	22
Manganese	380	370	590	340	390	240	320	360	680 †m	820 †m	630	636	977	1,600	4,100	
TCLP Metals (mg/L)			4	30	20	70		N. 100					W.S.	A1		
Cadmium	0.038 L	0.0027 J	0.0024 J	ND U	ND U	0.002 J	0.0023 J	0.0023 J	ND U	ND U			-		-	0.005
Iron	ND U	ND U		-				5								
Lead	1.7 L	ND U	ND U	ND U	ND U	ND U	0.02 L	0.034 L	ND U	ND U						0.0075
Manganese	0.48 L	2.9 L	4.1 L	0.21 L	0.43 L	0.26 L	0.2 L	0.32 L	ND U	0.072		-	: 			0.15
SPLP Metals (mg/L)				_												
Cadmium	0.0039 J	NA	NA	NA	NA	NA	NA	NA	NA	NA			; -	-	**	0.005
Lead	3.7 L	NA	NA	NA	NA	NA	0.13 L	0.077 L	NA	NA		923	722	120	<u></u>	0.0075
Manganese	0.49 L	0.64 L	0.35 L	0.25 L	0.22 L	0.076	0.31 L	0.26 L	NA	NA						0.15

MAC = Maximum Allowable Concentration of Chemical Constituent in Uncontaminated Soil Used as Fill Material At Regulated Fill Operations

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area

TACO = Tiered Approach to Corrective Action Objectives

TCLP = Toxicity Characteristic Leaching Procedure.

SCGIER = Soil Component of the Groundwater Ingestion Exposure Route

SPLP = Synthetic Precipitation Leaching Procedure.

ND = Not detected.

NA = Not analyzed.

= Concentration exceeds the most Stringent MAC, but is below the MAC for an MSA.

= Concentration exceeds the most stringent MAC and the MAC for Chicago.

J = Estimated value.

U = Analyte was analyzed for but not detected.

= pH is less than 6.25 or greater than 9.0 standard units.

** = Headspace reading is above 1.0 photoionization detector (PID) units.

† = Concentration exceeds the most stringent MAC.

m = Concentration exceeds the MAC for an MSA.

* = Concentration exceeds the MAC for Chicago corporate limits.

r = Concentration exceeds the TACO Tier 1 RO for Residential Exposure.

c = Concentration exceeds a TACO Tier 1 RO for construction worker exposure.

L = The detected concentration exceeds the TACO Tier 1 RO for the SCGIER.

Headspace reading exceeds background levels.

CAD FILE EE9 WO46 PSI DWG	DESIGNED BY: J. HUGHES	CHECKED BY: J. JENKINS	ecology and environment, inc.	CONTAMINANTS OF CONCERN FAI 74 - INTERSTATE 74 (CONTRACT # 64C08)		ROUTE: FAI 74 (I-74)	CITY: MOLINE	DATE: 03/03/2017	FIGURE
REVISION 0	DRAWN BY: V. GEE	APPROVED BY: D. TIEBOUT	g Global Environmental Specialists	ISGS 1314V3-33 AND 1314V3-60	IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-15

	100					CO	NTAMINANTS O	CONCERN						-0.					
SITE	ISGS #1314V3-1 (IDOT ROW)										(Commercial Buildings)	Comparison Criteria							
BORING	1	1314V3-01-B06		131/	V3-01-B07	T	/3-01-B08	1314V3-0	01_B10		1314V3-	.01_R11	1314V3-32-B08		MACs	Compa	Onten	TACO	
SAMPLE	1314V3-01-B06 (0-8)	1314V3-01-B06 (8-15)	1314V3-01-B06 (8-15)D	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7-21-21		T			1314V3-01-		1314V3-01-B11 (8-15		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	IVIACS			IACO	T
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soi	7	1314V3-01-		Soil	Soil)					
DEPTH (feet)	0-8	8-15	8-15	0-6	6-12	0-4	4-9	0-6		0-		8-15	0-3						
pH	7.9	7.8	7.9	7.8	7.6	7.7	7.7	8.6		8.		8.6	8.9		Within	02200001		DE 1 000	
PID (meter units)	7.0	0	1.0	7.0	0	137	0	0.0		0.	0		0.0	Most Stringent	MSA	Within	Residential	Construction	SCGIER
Inorganics (mg/kg))	1.400		1).	920	*	00001	- M			700			- Consideration		- mongo	rtooiaorida		
Iron	13,000	16,000 †m	14,000	13,000	13,000	12,000	15,000	12,000		10,000		11,000	12,000	15,000	15,900				
Lead	42	8.2	8.1	49	7.2	48	7.4	24		13	16	7.5	18	107	044	220	400	700	
Manganese	360	440	380	250	350	490	770	m 280		220	(6	210	250	630	636		1,600	4,100	
Mercury	0.2	0.029	0.019 J	0.18	0.011 J	0.04	0.022	0.038		0.029	ić.	0.026	2	† 0.89			10	0.1	
TCLP Metals (mg/L	L)																		
Iron	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND	U	ND	U	ND U	ND U				(88)	**	5
Lead	0.013 L	. ND U	ND U	0.013	L ND U	ND U	ND U	ND	U	ND	U	ND U	ND U			1227		1227	0.0075
Manganese	4.1 L	. 0.043	0.097	5.6	L ND U	1.1	L ND U	0.41	L	0.014	J	0.73	L 0.14		1	1:		1996	0.15
Mercury	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND	U	ND	U	ND U	ND U		322			1447	0.002
SPLP Metals (mg/L	L)														_		_		
Lead	0.054 L	. NA	NA	0.017	L NA	NA	NA	NA		NA		NA	NA		222	1220			0.0075
Manganese	0.34 L	. NA	NA	0.066	NA	0.29	L NA	0.4	L	NA		0.71	L NA	-	(<u>*</u>				0.15
SITE		ISGS #1314V3-56 (C	ommercial Building)		ISGS #1314\	V3-57 (Old Chamber	Building)			Comparis	son Crite	ria	Key to D					er wither	
BORING	1314V3-56-B01	1314V3	-56-B02	1314V3-56-B03	1314V3-57-B01	1314V3-57-B02	1314V3-57-B03	ı	MACs			TACO					Chemical Const	tuent in I Fill Operations	
SAMPLE	1314V3-56-B01 (0-3)	1314V3-56-B02 (0-3)	1314V3-56-B02 (0-3)D	1314V3-56-B03 (0-3)	1314V3-57-B01 (0-3)	1314V3-57-B02 (0-3)	1314V3-57-B03 (0-5)							Milligrams pe		i do I III Ividio	nui Mi Regulate	Till Operations	
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil						C (2) (2) (3) (4) (4)	Milligrams pe					
DEPTH (feet)	0-3	0-3	0-3	0-3	0-3	0-3	0-5	220						Metropolitan : Tiered Approa			Nications		
pH	8	8.9	9.1#	8.2	8.1	8.4	8.7	A2-2-5-1-10	Vithin an	Within		Construction		Toxicity Chara					
PID (meter units)	0	()	0	0	0	0				Residentia		SCGIER =	Soil Compone	ent of the Gre	oundwater Ing	gestion Exposure	Route	
SVOCs (mg/kg)														Synthetic Prec	cipitation Le	aching Proce	dure.		
Benzo(a)pyrene	ND U	0.013 J	0.052	ND U	0.22 †	0.16 †	ND U	0.09	2.1	1.3	2.1	17		Not detected. Not analyzed.					
Inorganics (mg/kg)													J =	Estimated valu					
Lead	7.6	9.4	9.8	6.7	66	52	14 J	107			400	700		Analyte was an pH is less than					
Manganese	620	400	370	500	330	370	360 J	630	636		1,600	4,100	† =	Concentration	exceeds the	most stringe	nt MAC.		
TCLP Metals (mg/L)													Concentration				O for the SCGIE	D
Lead	ND U	ND U	ND U	ND U	ND U	0.011 L	ND U				4						arison criteria.	o for the seedil	ic.
Manganese	0.21 L	0.29 L	0.25 L	1.7 L	0.14	0.6 L	1.9 L							Concentration	exceeds the	most Stringe	ent MAC, but is	below the MAC	or an MSA.
	.)				5,000			48.		**		- 10							
SPLP Metals (mg/L			1						7			T							
SPLP Metals (mg/L Lead	NA	NA	NA	NA	NA	0.15 L	NA						0.0075						

CONTAMINANTS OF CONCERN

FAI 74 - INTERSTATE 74 (CONTRACT # 64C08) ISGS 1314V3-01, -32, -56 AND -57

CAD FILE EE9 WO46 PSI DWG DESIGNED BY: J. HUGHES

DRAWN BY: V. GEE

REVISION 0

CHECKED BY: J. JENKINS

APPROVED BY: D. TIEBOUT

ecology and environment, inc.

Global Environmental Specialists

IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-16

CITY: MOLINE

ROUTE: FAI 74 (I-74)

PTB/JOB 172-027/ P-30-010-14

DATE: 03/03/2017

FIGURE

		-	pi-			CONTAM	NANTS OF CONC	ERN										
SITE	ISGS #1314V3	S #1314V3-59 (Residence) ISGS #1314V3-60 (Vacant Lot)									Comparison Criteria							
BORING	1314V	3-59-B01	1314V	3-60-B01	1314V3-60-B02	1314V3	-60-B03	1314V3-60-B04	1314V3	3-60-B05	MACs		000	TACO				
SAMPLE	1314V3-59-B01 (0-5)	1314V3-59-B01 (5-10)	1314V3-60-B01 (0-6)	1314V3-60-B01 (6-11)	1314V3-60-B02 (0-7)	1314V3-60-B03 (0-4)	1314V3-60-B03 (4-9)	1314V3-60-B04 (0-5)	1314V3-60-B05 (0-6)	1314V3-60-B05 (6-12)								
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil								
DEPTH (feet)	0-5	5-10	0-6	6-11	0-7	0-4	4-9	0-5	0-6	6-12								
рН	8.2	8.3	7.6	7.6	8	7.5	7.5	8.9	8.2	7.8	Most	Within an	12/2/02/100920		Construction	0		
PID (meter units)	0		0		0	0		0	0		Stringent	MSA		Residential	Worker	SCGIER		
SVOCs (mg/kg)																		
Benzo(a)pyrene	0.009 J	ND U	ND U	ND U	0.13 †	ND U	ND U	0.043 J	0.016 J	0.032 J	0.09	2.1	1.3	2.1	17			
Inorganics (mg/kg)																	
Lead	14	6.1	23	8.6	72	15	8.6	26	13	10	107			400	700	0.0075		
Manganese	460	190	180	330	530	260	160	380	300	280	630	636		1,600	4,100	0.15		
Selenium	ND U	1.6 †	0.48 J	0.33 J	0.5 J	0.59	ND U	0.47 J	0.32 J	ND U	1.3	**		390	1,000	0.05		
TCLP Metals (mg/l	-)				-													
Lead	ND U	ND U	ND U	ND U	0.021 L	ND U	755	E nt N		15 75	388	0.0075						
Manganese	0.35 L	2.4 L	0.042	ND U	0.13	0.013 J	ND U	1.8 L	ND U	0.042		7227		792		0.15		
Selenium	ND U	0.025 J	ND U	ND U	ND U	ND U	ND U	ND U	ND U	ND U		(0.55)		100	See.	0.05		
SPLP Metals (mg/l	-)					-					202		V. S.	110		701		
Lead	NA	NA	NA	NA	0.11 L	NA	NA	NA	NA	NA		1,550		1,000		0.0075		
Manganese	0.23 L	0.18 L	NA	NA	NA	NA	NA	0.49 L	NA	NA				20		0.15		

Key to Data Table

MAC = Maximum Allowable Concentration of Chemical Constituent in Uncontaminated Soil Used as Fill Material At Regulated Fill Operations

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area

TACO = Tiered Approach to Corrective Action Objectives

TCLP = Toxicity Characteristic Leaching Procedure.

SCGIER = Soil Component of the Groundwater Ingestion Exposure Route

SPLP = Synthetic Precipitation Leaching Procedure.

ND = Not detected.

NA = Not analyzed.

J = Estimated value.

U = Analyte was analyzed for but not detected.

† = Concentration exceeds the most stringent MAC.

L = The detected concentration exceeds the TACO Tier 1 RO for the SCGIER.

= Concentration exceeds applicable comparison criteria.

= Concentration exceeds the most Stringent MAC, but is below the MAC for an MSA.

CAD FILE EE9 WO46 PSI DWG	DESIGNED BY: J. HUGHES	CHECKED BY: J. JENKINS	ecology and environment, i
REVISION 0	DRAWN BY: V. GEE	APPROVED BY: D. TIEBOUT	& Global Environmental Specialists

CONTAMINANTS OF CONCERN
FAI 74 - INTERSTATE 74 (CONTRACT # 64C08)
ISGS 1314V3-59 AND 1314V3-60

PTB/JOB 172-027/ P-30-010-14	ROUTE: FAI 74 (I-74)	CITY: MOLINE	DATE: 03/03/2017	FIGURE
IDOT PROJECT # P-93-032-01	WORK ORDER 46	COUNTY: ROCK ISLAND	SCALE: N/A	4-17

5

Conclusions and Recommendations

E & E's investigation has identified COCs in project area soils and groundwater. The following sections summarize E & E's investigation findings and recommendation for classification and management of impacted soil and groundwater based on the comparison with MACs and TACO Tier 1 ROs. E & E has included an uncontaminated soil certification form in Appendix F for each site with soil that was found to meet the criteria for off-site management at a CCDD facility or USFO.

E & E's field investigation was designed to provide an initial characterization of site conditions at pre-designated boring locations. The investigation was limited in terms of analytical parameters and the number of samples collected, based on the known history of the property. Consequently, the findings and conclusion of this investigation are subject to revision if more site data becomes available. Applicable analytical data and soil management requirements associated with the field investigation conducted by Weston under PTB No. 167-034, Work Order No. 040 are included in this report. Soil removed from outside E & E's investigation area that exhibits discoloration or odor indicative of contamination should be sampled to determine the proper disposal classification.

5.1 Estimated Soil Management Volumes and Costs5.1.1 ISGS #1314V3-1 (IDOT ROW)

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead, and manganese were identified as COCs in soil at ISGS #1314V3-1 (IDOT ROW). VOCs were not detected during headspace screening of site soil. Soil associated with two borings (1314V3-01-B03 and 13143-01-B04) exhibited pH levels above the acceptable range for management of the soil at a CCDD facility or USFO. Soil pH associated with the remaining site borings were within the acceptable range.

Soil associated with the following borings may be managed on-site as fill; if it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA:

- 1314V3-01-B01 (TCLP/SPLP lead)
- 1314V3-01-B02 (TCLP/SPLP manganese)

- 1314V3-01-B06 (TCLP/SPLP lead and TCLP/SPLP manganese)
- 1314V3-01-B07 (TCLP/SPLP lead)
- 1314V3-01-B08 (TCLP/SPLP manganese)
- 1314V3-01-B09 (TCLP/SPLP lead and TCLP/SPLP manganese)
- 1314V3-01-B10 (TCLP/SPLP manganese)
- 1314V3-01-B11 (TCLP/SPLP manganese)

Soil associated with boring 1314V3-01-B05 (benzo(a)pyrene, TCLP/SPLP lead, and TCLP/SPLP manganese) may be managed on-site as fill; if it cannot be managed on-site, soil associated with the boring may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA, including Chicago.

Soil associated with boring 1314V3-01-B03 (pH) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the boring may be managed off-site as uncontaminated soil according to Article 202.03; however, the soil cannot be taken to a CCDD facility or USFO.

Soil associated with boring 1314V3-01-B04 (pH, benzo(a)anthracene, benzo(a)-pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, manganese, and TCLP/SPLP lead) may be managed as on-site fill. If it cannot be managed on-site, soil associated with the boring must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 358 cubic yards of soil at the site will require off-site disposal as non-special waste; 15,751 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO; and 311 cubic yards of soil may be managed off-site as uncontaminated soil, but not to a CCDD or USFO. The estimated cost for off-site disposal of soil removed from the site is \$1,051,966.00.

5.1.2 ISGS #1314V3-2 (Mississippi River)

Benzo(a)pyrene and manganese were identified as COCs in soil at ISGS #1314V3-2 (Mississippi River). VOCs were not detected during headspace screening of site soil. Soil associated with both of the site borings exhibited pH levels above the acceptable range for management of the soil at a CCDD facility or USFO.

Soil associated with borings 1314V3-02-B01 (pH, benzo(a)pyrene, and TCLP/SPLP manganese) and 1314V3-02-B02 (pH and TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the

borings must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 112 cubic yards of soil at the site will require off-site disposal as non-special waste if it cannot be managed on-site. The estimated cost for off-site disposal of soil removed from the site is \$8,254.00.

5.1.3 ISGS #1314V3-4 (City of Moline, Water Department)

Benzo(a)pyrene, lead, and manganese were identified as COCs in soil at ISGS #1314V3-4 (City of Moline, Water Department). VOCs were not detected during headspace screening of site soil. The pH associated with soil from the site boring was within the acceptable range for management of the soil at a CCDD facility or USFO.

Soil associated with boring 1314V3-4-B01 (benzo(a)pyrene, lead, TCLP/SPLP manganese) may be managed on-site as fill. If the soil cannot be managed on-site, soil associated with the boring must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 48 cubic yard of soils at the site will require off-site disposal as non-special waste if it cannot be managed on-site. The estimated cost for off-site disposal of soil removed from the site is \$5,224.00. This cost includes off-site management of impacted groundwater, as discussed in Section 5.3.3

5.1.4 ISGS #1314V3-5 (Industrial Building)

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead and manganese were identified as COCs in soil at ISGS #1314V3-5 (Industrial Building). VOCs were not detected during headspace screening of site soil. The pH levels associated with soil from the site borings were within the acceptable range for management of the soil at a CCDD facility or USFO.

COCs were not detected in soil associated with 1314V-05-B01. Soil associated with this boring may be managed without restriction.

Soil associated with boring 1314V1-05-B02 (TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the

boring may be managed off-site as an uncontaminated soil at a CCDD facility or USFO within an MSA.

Soil associated with boring 1314V3-05-B03 (benzo(a)anthracene, benzo(a)-pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, manganese, and TCLP/SPLP lead) may be managed as on-site fill. If it cannot be managed on-site, soil associated with the boring must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Planned construction at the site is anticipated to occur in the vicinity of boring 1314V1-05-B01. Borings 1314V1-05-B02 and 1314V1-05-B03 were advanced to assess an area of the site for the presence of an UST. Project plans do not indicate that excavation is planned in the vicinity of the borings. Consequently, E & E has not estimated a cost for off-site disposal of impacted soil at the site.

5.1.5 ISGS #1314V3-6 (Vacant Land)

Arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, carbazole, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, iron, lead and manganese were identified as COCs in soil at ISGS #1314V3-6 (Vacant Land). E & E did not detect VOCs during headspace screening of site soil. The pH levels associated with soil from the site borings conducted by E & E were within the acceptable range for management of the soil at a CCDD facility or USFO.

Weston advanced borings VL1-1 through VL1-19 at the site as part of a PSI conducted under PTB No. 167-034, Work Order No. 040. Weston detected VOCs during headspace screening of site soil from boring VL1-17. The pH associated with soil from boring VL1-13 was outside of the acceptable range for management of the soil at a CCDD facility or USFO

COCs were not detected in soil associated with Weston Borings VL1-1, VL1-6, VL1-7 and VL1-18. Soil associated with these borings may be managed without restriction.

Soil associated with the following borings may be managed on-site as fill. If the soil cannot be managed on-site, soil associated with the borings may be managed off-site as an uncontaminated soil at a CCDD facility or USFO within an MSA:

- 1314V3-06-B03 (TCLP/SPLP manganese)
- 1314V3-06-B05 (TCLP/SPLP manganese)
- 1314V3-06-B11 (TCLP/SPLP manganese)
- VL1-2 (TCLP/SPLP manganese)
- VL1-3 (TCLP/SPLP lead and TCLP/SPLP manganese)

- VL1-4 (TCLP/SPLP lead and TCLP/SPLP manganese)
- VL1-5 (TCLP/SPLP manganese)

Soil associated with the following borings may be managed on-site as fill. If the soil cannot be managed on-site, soil associated with the borings may be managed off-site as an uncontaminated soil at a CCDD facility or USFO within an MSA, including Chicago:

- 1314V3-06-B04 (benzo(a)pyrene and TCLP/SPLP manganese)
- 1314V3-06-B06 (benzo(a)pyrene)
- 1314V3-06-B09 (benzo(a)pyrene, benzo(b)fluoranthene, and TCLP/SPLP manganese)
- 1314V3-06-B10 (benzo(a)pyrene)
- VL1-9 (benzo(a)pyrene and TCLP/SPLP manganese)
- VL1-15 (benzo(a)pyrene and TCLP/SPLP lead)
- VL1-19 (benzo(a)pyrene and dibenzo(a,h)anthracene)

Soil associated with boring 1314V3-06-B02 (benzo(a)anthracene, benzo(a)-pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and manganese) and) may be managed as on-site fill. If it cannot be managed on-site, the soil associated with the boring must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475.

Soil associated with the following borings must be managed off-site as non-special waste:

- 1314V3-06-B01 (arsenic, benzo(a)pyrene, iron)
- 1314V3-6-B07 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, carbazole, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and manganese) 1314V3-06-B08 (benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead and TCLP/SPLP manganese)
- 1314V3-06-B08 (benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)-anthracene, lead and TCLP/SPLP manganese)
- VL1-8 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, TCLP/SPLP lead)
- VL1-10 (arsenic, manganese and benzo(a)pyrene)
- VL1-11 (PCBs, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene)
- VL1-12 (arsenic, lead, benzo(a)anthracene, benzo(a)pyrene, benzo(b)-fluoranthene, dibenzo(a,h)anthracene, and TCLP/SPLP manganese)

- VL1-13 (pH, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene)
- VL1-14 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, carbazole, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, manganese)
- VL1-16 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, manganese and TCLP/SPLP lead)
- VL1-17 (TVOCs, manganese and TCLP/SPLP lead)

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 24,513 cubic yards of soil at the site will require off-site disposal as non-special waste, and 2,128 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$\$1,706,110.00.

5.1.6 ISGS #1314V3-7 (River Stone Moline Yard)

Arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo-(a,h)anthracene, indeno(1,2,3-cd)pyrene, and manganese were identified as COCs in soil at ISGS #1314V3-7 (River Stone Moline Yard). VOCs were detected above background levels during headspace screening of soil associated with boring 1314V3-07-B02. The pH associated with soil at boring 1314V3-07-B01 was above the acceptable range for management of the soil at a CCDD facility or USFO. The pH levels associated with soil from the other site borings were within the acceptable range.

Soil associated with the following borings must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

- 1314V3-5-B01 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene),
- 1314V3-07-B02 (VOCs, benzo(a)anthracene, benzo(a)pyrene, benzo(b)-fluoranthene, dibenzo(a,h)anthracene)
- 1314V3-07-B03 (arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)-fluoranthene, dibenzo(a,h)anthracene)
- 1314V3-07-B04 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, TCLP/SPLP manganese)

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 10,762.0 cubic yards of soil at the site will require off-site disposal as non-special waste. The estimated cost for off-site disposal of soil removed from the site is \$722,762.00. This cost includes off-site management of impacted groundwater and installation of trench backfill plugs, as discussed in Sections 5.3.5 and 5.4.2.

5.1.7 ISGS #1314V3-8 (Commercial Building)

Benzo(a)pyrene and lead were identified as COCs in soil at ISGS #1314V3-8 (Commercial Building). VOCs were not detected during headspace screening of site soil. The pH associated with soil from the site boring was within the acceptable range for management of the soil at a CCDD facility or USFO.

Weston advanced boring CB-8 at the site as part of a PSI conducted under PTB No. 167-034, Work Order No. 040.

Soil associated with boring 1314V3-08-B01 (benzo(a)pyrene and TCLP/SPLP lead) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the boring may be managed off-site as an uncontaminated soil at a CCDD facility or USFO within an MSA, including Chicago.

Soil associated with Weston boring CB-8 (benzo(a)pyrene, lead, TCLP/SPLP manganese), may be managed as on-site fill. If it cannot be managed on-site, the soil associated with the boring must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 365 cubic yards of soil at the site will require off-site disposal as non-special waste, and 395 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$49,726.00.

5.1.8 ISGS #1314V3-11 (Vacant Land)

Benzo(a)pyrene and manganese were identified as COCs in soil at ISGS #1314V3-11 (Vacant Land). VOCs were not detected during headspace screening of site soil. The pH levels associated with soil from the site borings were within the acceptable range for management of the soil at a CCDD facility or USFO.

Soil associated with boring 1314V3-11-B01 (TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the

boring may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA.

Soil associated with borings 1314V3-11-B02 (benzo(a)pyrene, TCLP/SPLP manganese) and 1314V3-11-B03 (benzo(a)pyrene, TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA, including Chicago.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 7 cubic yard of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$1,534.00.

5.1.9 ISGS #1314V3-17 (Parking Lot)

Arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, lead, and manganese were identified as COCs in soil at ISGS #1314V3-17 (Parking Lot). VOCs were not detected during headspace screening of site soil. The pH levels associated with soil from the site borings were within the acceptable range for management of the soil at a CCDD facility or USFO.

COCs were not detected in soil associated with 1314V-17-B01. Soil associated with this boring may be managed without restriction.

Soil associated with boring 1314V3-17-B02 (arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, lead, and TCLP/SPLP manganese) must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Soil associated with boring 1314V3-17-B03 (TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the boring may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 51 cubic yards of soil at the site will require off-site disposal as non-special waste, and 51 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$7,614.00.

5.1.10 ISGS #1314V3-18 (Vacant Land)

Arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, lead, manganese and thallium were identified as COCs in soil at ISGS #1314V3-18 (Vacant Land). VOCs were not detected during headspace screening of site soil. The pH levels associated with soil from the site borings advanced by E & E were within the acceptable range for management of the soil at a CCDD facility or USFO.

Weston advanced borings VL2-1 through VL2-10 at the site as part of a PSI conducted under PTB No. 167-034, Work Order No. 040. VOCs were not detected during headspace screening of site soil. The pH associated with soil from boring VL2-6 was outside of the acceptable range for management of the soil at a CCDD facility or USFO

COCs were not detected in soil associated with borings 1314V-18-B07, VL2-2, VL2-3 and VL2-10. Soil associated with these borings may be managed without restriction.

Soil associated with boring VL2-6 (pH) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the boring may be managed off-site as uncontaminated soil according to Article 202.03; however, the soil cannot be taken to a CCDD facility or USFO.

Soil associated with the following borings may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA:

- 1314V3-18-B01 (TCLP/SPLP manganese)
- 1314V3-18-B03 (TCLP/SPLP manganese)
- 1314V3-18-B05 (TCLP/SPLP lead and TCLP/SPLP manganese)

Soil associated with the following borings may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA, including Chicago.

- 1314V3-18-B02 (benzo(a)pyrene)
- 1314V3-18-B04 (benzo(a)pyrene, TCLP/SPLP manganese)
- 1314V3-18-B06 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, TCLP/SPLP lead, TCLP/SPLP manganese)
- 1314V3-18-B08 (benzo(a)pyrene, TCLP/SPLP lead and TCLP/SPLP manganese)
- VL2-4 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene)
- VL2-5 (benzo(a)pyrene)

Soil associated with boring 1314V3-18-B09 (arsenic, thallium, TCLP/SPLP manganese) must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Soil associated with borings VL2-8 (benzo(a)pyrene, manganese and lead), and VL2-9 (benzo(a)pyrene, lead, and TCLP/SPLP manganese) may be managed onsite as fill. If the soil cannot be managed on-site then the soil must be managed off-site as non-special waste.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 5,356 cubic yards of soil at the site will require off-site disposal as non-special waste, and 13,074 cubic yards of soil may be managed off-site as uncontaminated soil, but not to a CCDD or USFO. The estimated cost for off-site disposal of soil removed from the site is \$1,180,606.00.

5.1.11 ISGS #1314V3-21 (BNSF Railroad)

Antimony, benzo(a)pyrene, lead, and manganese were identified as a COCs in soil at ISGS #1314V3-21 (BNSF Railroad). VOCs were not detected during headspace screening of site soil. The pH levels associated with soil from the site borings were within the acceptable range for management of the soil at a CCDD facility or USFO.

Soil associated with boring 1314V3-21-B01 (benzo(a)pyrene and TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the boring may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA, including Chicago.

Soil associated with boring 1314V3-21-B02 (TCLP/SPLP antimony, benzo(a)-pyrene, lead, and TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the boring must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 100 cubic yards of soil at the site will require off-site disposal as non-special waste, and 519 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$40,702.00.

5.1.12 ISGS #1314V3-24 (John Deere)

Arsenic, antimony, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, lead, and manganese were identified as COCs in soil at ISGS #1314V3-24 (John Deere). VOCs were not detected during headspace screening of site soil. The pH levels associated with soil from the site borings were within the acceptable range for management of the soil at a CCDD facility or USFO.

E & E observed an anomaly measuring approximately 6 square feet at the site at the possible location of a former UST. PCE and xylenes were detected below applicable reference concentrations in soil at one of the borings advanced adjacent to the suspected UST location (1314V3-24-13). E & E has included costs for the removal of an UST at this site.

Soil associated with borings 1314V3-24-B01 (benzo(a)pyrene) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the boring may be managed off-site as uncontaminated soil at a CCDD facility or USFO, including Chicago.

Soil associated with boring 1314V3-24-B09 (TCLP/SPLP manganese), may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA.

Soil associated with the following borings may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings must be managed offsite as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475:

- 1314V3-24-B03 (lead and TCLP/SPLP manganese)
- 1314V-24-B04 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead, manganese, TCLP/SPLP antimony)
- 1314V3-24-B05 (antimony, lead, benzo(a)pyrene, and TCLP/SPLP manganese)
- 1314V3-24-B06 (manganese)
- 1314V3-25-B07 (lead and TCLP/SPLP manganese)
- 1314V3-25-B11 (benzo(a)pyrene, lead and TCLP/SPLP manganese)
- 1314V3-25-B13 (antimony and lead)
- 1314V3-25-B14 (antimony and lead)

The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the borings.

Soil associated with the following borings must be managed off-site as non-special waste:

- 1314V3-24-B02 (arsenic, lead, antimony, benzo(a)pyrene)
- 1314V3-24-B08 (arsenic)
- 1314V3-25-B10 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, lead)
- 1314V3-25-B12 (antimony, benzo(a)pyrene, lead and manganese)

The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the borings.

Costs estimated for the off-site disposal of soil and an UST are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 2,059 cubic yards of soil at the site will require off-site disposal as non-special waste, and 824 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$190,598.00.

5.1.13 ISGS #1314V3-25 (Sivyer Steel Corp.)

Antimony, arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, lead, and manganese were identified as a COCs in soil at ISGS #1314V3-25 (Sivyer Steel Corp.). VOCs were not detected during headspace screening of site soil. The pH levels associated with soil from the site borings were within the acceptable range for management of the soil at a CCDD facility or USFO.

Soil associated with the following borings must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475:

- 1314V3-25-B01 (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead manganese
- 1314V3-25-B03 (lead and TCLP/SPLP manganese)
- 1314V3-25-B05 (benzo(a)pyrene, lead, manganese, TCLP/SPLP antimony)
- 1314V3-25-B06 (antimony, arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, lead)

The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the borings.

Soil associated with boring 1314V3-25-B02 (lead and TCLP/SPLP manganese may be used as on-site fill. If the soil cannot be managed on-site, soil associated with the boring must be managed off-site as non-special waste. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Soil associated with borings 1314V3-25-B04 (TCLP/SPLP manganese) and 1314V3-24-B07 (TCLP/SPLP manganese), may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed offsite as uncontaminated soil at a CCDD facility or USFO within an MSA.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 998 cubic yards of soil at the site will require off-site disposal as non-special waste, and 1,207 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$142,206.00.

5.1.14 ISGS #1314V3-26 (Commercial Building)

COCs were not detected in soil at ISGS #1314V3-26 (Commercial Building). VOCs were not detected during headspace screening of site soil, and the pH levels associated with soil from the site borings were within the acceptable range for management of the soil at a CCDD facility or USFO. Soil associated with ISGS #1314V-26 may be managed without restriction.

5.1.15 ISGS #1314V3-32 (Commercial Buildings)

Benzo(a)pyrene and manganese were identified as a COCs in soil at ISGS #1314V3-32 (Commercial Buildings). VOCs were not detected during headspace screening of site soil. The pH levels associated with soil from the site borings were within the acceptable range for management of the soil at a CCDD facility or USFO.

Soil associated with the following borings may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA:

- 1314V3-32-B01 (TCLP/SPLP manganese)
- 1314V3-32-B02 (TCLP/SPLP manganese)
- 1314V3-32-B03 (TCLP/SPLP manganese)
- 1314V3-32-B04 (TCLP/SPLP manganese)

Soil associated with borings 1314V3-32-B05 (benzo(a)pyrene) and 1314V3-32-B06 (benzo(a)pyrene and TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be man-

aged off-site as uncontaminated soil at a CCDD facility or USFO within an MSA, including Chicago.

COCs were not detected in soil associated with 1314V-32-B07 and 1314V-32-B08. Soil associated with these borings may be managed without restriction.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 94 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$7,102.00.

5.1.16 ISGS #1314V3-33 (Parking Lot)

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, carbazole, dibenzo-(a,h)anthracene, indeno(1,2,3-cd)pyrene, lead, and manganese were identified as COCs in soil at ISGS #1314V3-33 (Parking Lot). VOCs were detected above background levels during headspace screening of soil at boring 1314V3-33-B04. The pH levels associated with soil from the site borings were within the acceptable range for management of the soil at a CCDD facility or USFO.

Soil associated with borings 1314V3-33-B01 (benzo(a)pyrene and TCLP/SPLP manganese) and 1314V3-33-B02 (benzo(a)pyrene and TCLP/SPLP manganese), may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA, including Chicago.

Soil associated with the following borings, may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA.

- 1314V3-33-B05 (TCLP/SPLP manganese)
- 1314V3-33-B06 (TCLP/SPLP manganese)
- 1314V3-33-B07 (TCLP/SPLP lead and TCLP/SPLP manganese)

Soil associated with borings 1314V3-33-B03 (benzo(a)anthracene, benzo(a)-pyrene, benzo(b)fluoranthene, carbazole, dibenzo(a,h)anthracene, and indeno-(1,2,3-cd)pyrene) and 1314V3-33-B04 (VOCs, lead, benzo(a)pyrene and TCLP/SPLP manganese) must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the borings. Borings 1314V3-33-B03 and 1314V3-33-B04 were advanced to assess a potential UST location, and construction excavation is not associated with the borings.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 161.0 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$11,390.00.

5.1.17 ISGS #1314V3-56 (Commercial Building)

Manganese was identified as the lone COC in soil at ISGS #1314V3-56 (Commercial Building). VOCs were not detected during headspace screening of site soil; however, the pH associated with soil at boring 1314V3-56-B02 was above the acceptable range for management of the soil at a CCDD facility or USFO.

Soil associated with the borings 1314V3-56-B01 (TCLP/SPLP manganese) and 1314V-56-B03 (TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed offsite as uncontaminated soil at a CCDD facility or USFO within an MSA.

Soil associated with boring 1314V3-56-B02 (pH and TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the boring must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 39 cubic yards of soil at the site will require off-site disposal as non-special waste, and 247 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$19,390.00.

5.1.18 ISGS #1314V3-57 (Old Chamber Building)

Benzo(a)pyrene, lead and manganese were identified as a COCs in soil at ISGS #1314V3-57 (Old Chamber Building). VOCs were not detected during headspace screening of site soil. The pH levels associated with soil from the site borings were within the acceptable range for management of the soil at a CCDD facility or USFO.

Soil associated with the borings 1314V3-57-B01 (benzo(a)pyrene) and 1314V-57-B02 (benzo(a)pyrene, TCLP/SPLP lead, TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA, including Chicago.

Soil associated with the boring 1314V-57-B03 (TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 1,403 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$90,878.00.

5.1.19 ISGS #1314V3-59 (Residence)

Manganese was identified as the lone COC in soil at ISGS #1314V3-59 (Residence). VOCs were not detected during headspace screening of site soil. The pH levels associated with soil from the site boring were within the acceptable range for management of the soil at a CCDD facility or USFO.

Soil associated with boring 1314V3-59-B01 (TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the borings may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 621 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$40,830.00.

5.1.20 ISGS #1314V3-60 (Vacant Lot)

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead and manganese were identified as a COCs in soil at ISGS #1314V3-60 (Vacant Lot). VOCs were not detected during headspace screening of site soil; however, the pH of 11.8 SU associated with soil from boring 1314V3-60-B06 was above the acceptable range for management of the soil at a CCDD facility or USFO.

COCs were not detected in soil associated with borings 1314V3-60-B01, 1314V3-60-B03, and 1314V3-60-B05. Soil associated with these borings may be managed without restriction.

Soil associated with boring 1314V3-60-B02 (benzo(a)pyrene and TCLP/SPLP lead) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the boring may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA, including Chicago.

Soil associated with boring 1314V3-60-B04 (TCLP/SPLP manganese) may be managed on-site as fill. If it cannot be managed on-site, soil associated with the boring may be managed off-site as uncontaminated soil at a CCDD facility or USFO within an MSA.

Soil associated with boring 1314V3-60-B06 (pH, benzo(a)anthracene, benzo(a)-pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene) must be managed off-site as non-special waste, providing that a non-special waste certification is submitted by the generator according to the conditions set forth in 415 ILCS 5/22.48 and 415 ILCS 5/3.475. The property history and available analytical data indicate a non-special waste certification can be applied to soil associated with the boring.

Costs estimated for the off-site disposal of soil are presented in Table 5-1. Based on the estimated construction excavation quantities presented in Table 4-5, E & E estimates that approximately 1,307 cubic yards of soil at the site will require off-site disposal as non-special waste, and 1,604 cubic yards of soil at the site may be managed off-site as uncontaminated soil to a CCDD facility or USFO. The estimated cost for off-site disposal of soil removed from the site is \$192,318.00.

5.2 Soil Management Areas and Applicable Regulations5.2.1 ISGS #1314V3-1 (IDOT ROW)

Station 252+35 to Station 252+90 (existing I-74 NB), 0 to 40' RT and 0 to 20' LT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: lead.

Station 252+90 to Station 253+85 (existing I-74 NB), 0 to 20' RT and 0 to 20' LT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 253+85 to Station 254+90 (existing I-74 NB), 0 to 20' RT and 0 to 20' LT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(b)(1) and shall be managed in accordance with Article 669.09. COC sampling parameter: pH.

Station 254+90 to Station 255+95 (existing I-74 NB), 0 to 30' RT and 0 to 20' LT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: pH, benzo(a)anthracene, benzo(a)-pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead, manganese.

Station 255+95 to Station 257+20 (existing I-74 NB), 0 to 30' RT and 0 to 50' LT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, lead, manganese.

Station 44+05 to Station 45+45 (proposed I-74), 35' to 95' RT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: lead, manganese.

Station 45+45 to Station 46+90 (proposed I-74), 35' to 95' RT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: lead.

Station 46+90 to Station 47+85 (proposed I-74), 35' to 125' RT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 430+65 to Station 431+45 (Ramp 6th-D), 0 to 30' RT and 0 to 30' LT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: lead, manganese.

Station 44+00 to Station 45+65 (proposed I-74), 0 to 35' RT and 0 to 75' LT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 45+65 to Station 47+75 (proposed I-74), 0 to 35' RT and 0 to 75' LT (ROW, PESA Site 1314V3-1, mile markers 0 to 2.5, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

5.2.2 ISGS #1314V3-2 (Mississippi River)

Station 219+25 to Station 219+70 (Ramp RD-H), 0 to 100' RT (Mississippi River, PESA Site 1314V3-2, near I-74 mile marker 1, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: pH, benzo(a)pyrene, manganese.

Station 127+50 to Station 128+60 (Ramp RD-G), 0 to 210' RT and 0 to 105' LT (Mississippi River, PESA Site 1314V3-2, near I-74 mile marker 1, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: pH, manganese.

5.2.3 ISGS #1314V3-4 (City of Moline, Water Department)

Station 252+35 to Station 252+90 (existing I-74 SB), 0 to 60' LT (City of Moline Water Division, PESA Site 1314V3-4, 30 18th Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, lead, manganese.

5.2.4 ISGS #1314V3-5 (Industrial Building)

Station 256+80 to Station 257+75 (I-74 existing NB), 45' to 195' LT (Industrial Building, PESA Site 1314V3-5, 1 Kone Court, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 257+75 to Station 258+95 (I-74 existing NB), 45' to 195' LT (Industrial Building, PESA Site 1314V3-5, 1 Kone Court, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead, manganese.

5.2.5 ISGS #1314V3-6 (Vacant Land)

Station 128+65 to Station 129+60 (Ramp RD-G), 40' to 185' RT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: arsenic, benzo(a)pyrene, and iron.

Station 129+60 to Station 130+70 (Ramp RD-G), 40' to 155' RT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, manganese.

Station 130+70 to Station 131+50 (Ramp RD-G), 70' to 120' RT(Vacant Land, PESA Site 1314V3-6 (1314-7, 1314-5, 2708-64, 1314V2-6), 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 132+30 to Station 133+10 (Ramp RD-G), 0 to 20' and 0 to 50' LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, manganese.

Station 133+10 to Station 134+00 (Ramp RD-G), 45' to 100' RT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 134+00 to Station 134+75 (Ramp RD-G), 25' to 110' RT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameter: benzo(a)pyrene.

5 Conclusions and Recommendations

Station 133+65 to Station 134+65 (Ramp RD-G), 95' to 235' RT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, carbazole, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, manganese.

Station 133+65 to Station 135+20 (Ramp RD-G), 235' to 420' RT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)-anthracene, lead, manganese.

Station 134+00 to Station 134+65 (Ramp RD-G), 0 to 25' RT and 0 to 55' LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, benzo(b)fluoranthene, manganese.

Station 211+10 to Station 212+35 (Ramp RD-H), 5' to 95' RT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameter: benzo(a)pyrene.

Station 30+60 to Station 31+35 (proposed I-74), 0 to 20' RT and 0 to 20' LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 30+60 to Station 31+35 (proposed I-74), 20' to 100' RT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 30+60 to Station 31+15 (I-74 proposed), 30' to 300' LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: lead and manganese.

Station 133+10 to Station 134+00 (Ramp RD-G), 0 to 50' RT and 0 to 50 'LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese, benzo(a)pyrene.

Station 27+40 to Station 29+20 (proposed I-74), 0 to 20' RT and 0 to 95' LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with

Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene and lead.

Station 131+45 to Station 132+30 (Ramp RD-G), 0 to 95' RT and 0 to 5' LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: pH, benzo(a)anthracene, benzo(a)-pyrene, indeno(1,2,3-cd)pyrene.

Station 26+00 to Station 27+40 (proposed I-74), 0 to 15' RT and 0 to 100' LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene and lead.

Station 130+70 to Station 131+45 (Ramp RD-G), 0 to 70' RT and 0 to 5' LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene.

Station 128+60 to Station 130+65 (Ramp RD-G). 0 to 40' RT and 0 to 35' LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese and lead.

Station 127+50 to Station 128+60 (Ramp RD-G), 0 to 115' RT and 0 to 35' LT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, dibenzo(a,h)anthracene.

Station 134+75 to Station 135+30 (Ramp RD-G), 25' RT to 115' RT (Vacant Land, PESA Site 1314V3-6, 2020 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: lead and manganese.

Station 217+55 to Station 219+45 (Ramp RD-H), 85 to 120' LT (River Stone Moline Yard, PESA Site 1314V3-7, 75 23rd Street and 301 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: pH, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno-(1,2,3-cd)pyrene.

Station 216+35 to Station 218+55 (Ramp RD-H), 55' to 90' LT (River Stone Moline Yard, PESA Site 1314V3-7, 75 23rd Street and 301 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in

accordance with Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, VOCs.

Station 215+35 to Station 216+35 (Ramp RD-H), 55' to 100' LT (River Stone Moline Yard, PESA Site 1314V3-7, 75 23rd Street and 301 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: arsenic, benzo(a)-anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene.

Station 212+35 to Station 214+85 (Ramp RD-H), 0 to 65' LT (Commercial Building, PESA Site 1314V3-8, 190 22nd Street, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, lead.

Station 213+30 to Station 214+15 (Ramp RD-H), 10' to 65' LT (Commercial Building, PESA Site 1314V3-8, 190 22nd Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, manganese, lead.

5.2.6 ISGS #1314V3-7 (River Stone Moline Yard)

Station 217+45 to Station 219+40 (Ramp RD-H), 0 to 25' RT and 0 to 85' LT (River Stone Moline Yard, PESA Site 1314V3-7, 75 23rd Street and 301 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: pH, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene.

Station 216+35 to Station 217+45 (Ramp RD-H), 0 to 30' RT and 0 to 55' LT (River Stone Moline Yard, PESA Site 1314V3-7, 75 23rd Street and 301 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, VOCs.

Station 215+35 to Station 216+35 (Ramp RD-H), 0 to 30' RT and 0 to 55' LT (River Stone Moline Yard, PESA Site 1314V3-7, 75 23rd Street and 301 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)-anthracene.

Station 214+15 to Station 215+35 (Ramp RD-H), 0 to 55' RT and 0 to 55 'LT (River Stone Moline Yard, PESA Site 1314V3-7, 75 23rd Street and 301 River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters:

benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, manganese.

5.2.7 ISGS #1314V3-8 (Commercial Building)

Station 212+35 to Station 214+85 (Ramp RD-H), 0 to 55' RT (Commercial Building, PESA Site 1314V3-8, 190 22nd Street, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, lead.

Station 213+30 to Station 214+15 (Ramp RD-H), 0 to 55' RT (Commercial Building, PESA Site 1314V3-8, 190 22nd Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, manganese, lead.

5.2.8 ISGS #1314V3-11 (Vacant Land)

Station 259+00 to Station 259+75 (existing I-74), 80' to 170' RT (Vacant Land, PESA Site 1314V3-11, 1900 block of River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

Station 259+75 to Station 260+85 (existing I-74), 80' to 170' RT (Vacant Land, PESA Site 1314V3-11, 1900 block of River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene and manganese.

Station 259+00 to Station 259+75 (existing I-74), 60' to 180' LT (Vacant Land, PESA Site 1314V3-11, 1900 block of River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene and manganese.

5.2.9 ISGS #1314V3-17 (Parking Lot)

Station 263+00 to Station 264+00 (existing I-74 SB), 35' to 75' RT (Parking Lot, PESA Site 1314V3-17, 300 block of 19th Street, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, lead, and manganese.

Station 264+00 to Station 264+75, (existing I-74 SB), 35' to 75' RT (Parking Lot, PESA Site 1314V3-17, 300 block of 19th Street, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

5.2.10 ISGS #1314V3-18 (Vacant Land)

Station 327+50 to Station 328+50 (Ramp 6th C), 0 to 20' RT and 0 to 80' LT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline):

5 Conclusions and Recommendations

This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 327+00 to Station 328+00 (Ramp 6th-C), 120' to 310' RT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameter: benzo(a)pyrene.

Station 326+50 to Station 327+50 (Ramp 6th-C), 0 to 40' RT and 0 to 70' LT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 32+00 to Station 32+90 (proposed I-74), 0 to 45' RT and 0 to 10' LT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, manganese.

Station 429+30 to Station 430+05 (Ramp 6th-D), 0 to 25' RT and 0 to 120' LT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: lead and manganese.

Station 430+05 to Station 432+20 (Ramp 6th-D), 0 to 30' RT and 0 to 130' LT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(b)fluoranthene, lead, manganese.

Station 32+35 to Station 32+55 (proposed I-74), 35' to 70' LT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, lead and manganese.

Station 32+55 to Station 32+90 (proposed I-74), 10' to 70' LT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: arsenic, thalluim and manganese.

Station 325+55 to Station 327+05 (Ramp 6th-C), 0 to 40' RT and 0 to 50' LT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene.

Station 430+05 to Station 430+65 (Ramp 6th-D), 0 to 30' RT and 0 to 130' LT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, lead, manganese.

Station 327+05 to Station 329+30 (Ramp 6th-C), 20' to 120' RT (Vacant Land, PESA Site 1314V3-18, 1900-2100 blocks of River Drive, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, lead, manganese.

5.2.11 ISGS #1314V3-21 (BNSF Railroad)

Station 35+10 to Station 36+25 (proposed I-74), 0 to 155' RT (BNSF Railroad, PESA Site 1314V3-21, 1900-2200 blocks of 4th Avenue, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, manganese.

Station 35+10 to Station 36+25 (proposed I-74), 0 to 125' LT (BNSF Railroad, PESA Site 1314V3-21, 1900-2200 blocks of 4th Avenue, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: antimony, benzo(a)pyrene, lead, manganese.

5.2.12 ISGS #1314V3-24 (John Deere)

Station 36+25 to Station 37+00 (proposed I-74), 60' to 100' RT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene.

Station 37+00 to Station 37+85 (proposed I-74), 60' to 110' RT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: antimony, arsenic, benzo(a)pyrene, lead.

Station 37+85 to Station 38+60 (proposed I-74), 65' to 165' RT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: lead and manganese.

Station 38+25 to Station 39+35 (proposed I-74), 0 to 110' RT and 0 to 50' LT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: antimony, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, lead, manganese.

5 Conclusions and Recommendations

Station 39+35 to Station 40+00 (proposed I-74), 35' to 115' RT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: antimony, benzo(a)pyrene, lead, manganese.

Station 5000+75 to Station 5001+70 (5th Avenue), 0 to 115' LT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

Station 39+35 to Station 40+00 (proposed I-74), 35' to 50' LT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: lead and manganese.

Station 429+80 to Station 430+75 (Ramp 6th-D), 0 to 40' RT and 0 to 70' LT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: arsenic.

Station 5001+70 to Station 5002+85 (5th Avenue), 0 to 150' LT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 330+75 to Station 332+85 (Ramp 6th-C), 0 to 35' RT and 0 to 40' LT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, lead.

Station 332+00 to Station 332+85 (Ramp 6th-C), 40' to 95' LT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, lead, manganese.

Station 332+85 to Station 333+00 (Ramp 6th-C), 50' to 85' LT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: antimony, benzo(a)pyrene, lead, manganese.

Station 330+75 to Station 332+85 (Ramp 6th-C), 20' to 65' LT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: antimony and lead.

Station 332+85 to Station 333+00 (Ramp 6th-C), 0 to 50' LT (John Deere, PESA Site 1314V3-24, 400 19th Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: antimony and lead.

5.2.13 ISGS #1314V3-25 (Sivyer Steel Corp.)

Station 409+90 to Station 410+75 (4th Avenue), 0 to 85' RT (Sivyer Steel Corp., PESA Site 1314V3-25, 400 21st Street, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, lead, manganese.

Station 410+75 to Station 412+25 (4th Avenue), 0 to 85' RT (Sivyer Steel Corp., PESA Site 1314V3-25, 400 21st Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: lead and manganese.

Station 426+15 to Station 426+80 (Ramp 6th-D), 0 to 35' RT and 0 to 90' LT (Sivyer Steel Corp., PESA Site 1314V3-25, 400 21st Street, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: lead, manganese.

Station 426+80 to Station 427+65 (Ramp 6th-D), 0 to 35' RT and 0 to 20' LT (Sivyer Steel Corp., PESA Site 1314V3-25, 400 21st Street, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameter: manganese.

Station 36+20 to Station 39+35 (proposed I-74),0 to 20' RT and 0 to 65' LT (Sivyer Steel Corp., PESA Site 1314V3-25, 400 21st Street, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: antimony, benzo(a)pyrene, lead, manganese.

Station 36+15 to Station 36+40 (proposed I-74), 20' to 85' RT (Sivyer Steel Corp., PESA Site 1314V3-25, 400 21st Street, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: antimony, arsenic, benzo(a)anthracene, benzo(a)-pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, lead.

Station 408+90 to Station 409+90 (4th Avenue), 0 feet to 85' RT (Sivyer Steel Corp., PESA Site 1314V3-25, 400 21st Street, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

5.2.14 ISGS #1314V3-32 (Commercial Buildings)

Station 1904+70 to Station 1905+00 (proposed 19th Street), 40' to 90' LT (Commercial Buildings, PESA Site 1314V3-32, 1900 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

Station 1905+00 to Station 1905+25 (proposed 19th Street), 45' to 95'LT (Commercial Buildings, PESA Site 1314V3-32, 1900 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

Station 1905+25 to Station 1905+60 (proposed 19th Street), 0 to 95' LT (Commercial Buildings, PESA Site 1314V3-32, 1900 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

Station 1905+00 to Station 1905+25 (proposed 19th Street), 0 to 45' LT (Commercial Buildings, PESA Site 1314V3-32, 1900 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

Station 1904+70 to Station 1905+00 (proposed 19th Street), 0 to 40' LT (Commercial Buildings, PESA Site 1314V3-32, 1900 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene.

Station 31+75 to Station 32+65 (19th Street) 0 to 50' LT (Commercial Buildings, PESA Site 1314V3-32, 1900 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene and manganese.

5.2.15 ISGS #1314V3-33 (Parking Lot)

Station 5000+15 to Station 5001+15 (5th Avenue), 0 to 75' RT (Parking Lot PESA Site 1314V3-33, 1900 block of 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene and manganese.

Station 5001+15 to Station 5001+70 (5th Avenue), 0 to 100' RT and Station 269+30 to Station 270+25 (existing I-74), 60 feet to 120 RT(Parking Lot PESA Site 1314V3-33, 1900 block of 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene and manganese.

Station 5000+85 to Station 5001+15 (5th Avenue), 30' to 60' RT (Parking Lot PESA Site 1314V3-33, 1900 block of 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with

Article 669.09. COC sampling parameters: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, carbazole, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)-pyrene.

Station 5000+55 to Station 5001+15 (5th Avenue), 60' to 90' RT (Parking Lot PESA Site 1314V3-33, 1900 block of 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, lead, manganese, VOCs.

Station 5000+15 to Station 5000+55 (5th Avenue), 30' to 60' RT (Parking Lot PESA Site 1314V3-33, 1900 block of 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

Station 4999+25 to Station 5000+15 (5th Avenue), 0 to 60' RT (Parking Lot PESA Site 1314V3-33, 1900 block of 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

Station 270+25 to Station 271+25 (existing I-74), 65' to 145' RT (Parking Lot PESA Site 1314V3-33, 1900 block of 5th Avenue, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: lead and manganese.

5.2.16 ISGS #1314V3-56 (Commercial Building)

Station 303+10 to Station 304+10 (6th Avenue), 0 to 45' RT (Commercial Building, PESA Site 1314V3-56, 604-610 19th Street, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

Station 34+70 to Station 35+70 (19th Street), 0 to 55' LT (Commercial Building, PESA Site 1314V3-56, 604-610 19th Street, Moline): This material meets the criteria of Article 669.09(a)(1) and shall be managed in accordance with Article 669.09. COC sampling parameters: pH and manganese.

Station 35+70 to Station 36+55 (19th Street), 0 to 55' LT (Commercial Building, PESA Site 1314V3-56, 604-610 19th Street, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

5.2.17 ISGS #1314V3-57 (Old Chamber Building)

Station 36+55 to Station 37+50 (19th Street), 0 to 55' LT (Old Chamber Building, PESA Site 1314V3-57, 622 19th Street, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene.

Station 209+65 to Station 211+50, (7th Avenue), 0 to 85' LT (Old Chamber Building, PESA Site 1314V3-57, 622 19th Street, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene, lead and manganese.

Station 211+50 to Station 212+60 (7th Avenue), 0 to 85' LT (Old Chamber Building, PESA Site 1314V3-57, 622 19th Street, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

5.2.18 ISGS #1314V3-59 (Residence)

Station 305+00 to Station 306+20 (6th Avenue), 0 to 45' RT (Residence, PESA Site 1314V3-59, 1924 6th Avenue, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

5.2.19 ISGS #1314V3-60 (Vacant Lot)

Station 644+95 to Station 645+80 (Ramp 7th-A), 0 to 115' RT and 0 to 30' LT (Vacant Lot, PESA Site 1314V3-60, 2000 block of 6th Avenue, Moline): This material meets the criteria of Article 669.09(a)(3) and shall be managed in accordance with Article 669.09. COC sampling parameters: benzo(a)pyrene and lead.

Station 216+70 to Station 217+75 (7th Avenue), 0 to 100' LT (Vacant Lot, PESA Site 1314V3-60, 2000 block of 6th Avenue, Moline): This material meets the criteria of Article 669.09(a)(2) and shall be managed in accordance with Article 669.09. COC sampling parameters: manganese.

Station 309+85 to Station 310+70 (6th Avenue), 0 to 150' RT (Vacant Lot, PESA Site 1314V3-60, 2000 block of 6th Avenue, Moline): This material meets the criteria of Article 669.09(a)(5) and shall be managed in accordance with Article 669.09. COC sampling parameters: pH, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene.

5.3 Estimated Groundwater Management Volumes and Costs

5.3.1 ISGS #1314V3-1 (IDOT ROW)

Iron and manganese were identified as COCs in groundwater at the site. Groundwater was encountered at a depth of 11 feet bgs in boring 1314V3-01-B01. Excavation for storm sewer installation in the vicinity of the boring is anticipated to encounter impacted groundwater.

Based on the COCs detected in groundwater (inorganics), it is anticipated that any groundwater encountered during storm sewer installation will be managed within the excavation. Consequently, E & E has not included an estimated cost for off-site management of impacted groundwater.

5.3.2 ISGS #1314V3-2 (Mississippi River)

Iron, lead, and manganese were identified as COCs in groundwater at the site. Groundwater was encountered at a depth of 11 feet bgs in boring 1314V3-02-B01. Excavation for storm sewer installation in the vicinity of the boring is anticipated to encounter impacted groundwater.

Based on the COCs detected in groundwater (inorganics), it is anticipated that any groundwater encountered during storm sewer installation will be managed within the excavation. Consequently, E & E has not included an estimated cost for off-site management of impacted groundwater.

5.3.3 ISGS #1314V3-4 (City of Moline, Water Department)

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, iron, lead and manganese were identified as COCs in groundwater at the site. Groundwater was encountered at a depth of 11 feet bgs in boring 1314V3-04-B01. Excavation for storm sewer installation in the vicinity of the boring is anticipated to encounter impacted groundwater.

E & E has estimated a volume of impacted groundwater that will require proper handling and disposal during excavation in the vicinity of the boring. As shown on Table 4-6, E & E estimates that approximately 3,553 gallons of water will require off-site management as special waste. The estimated cost for disposal of the impacted groundwater is included in Table 5-1.

5.3.4 ISGS #1314V3-6 (Vacant Land)

Iron, lead, and manganese were identified as COCs in groundwater at the site. Groundwater was encountered at a depth of 11 feet bgs in boring 1314V3-06-B10. Excavation for bridge pier and storm sewer installation in the vicinity of the boring is anticipated to encounter impacted groundwater.

Based on the COCs detected in groundwater (inorganics), it is anticipated that any groundwater encountered during pier and storm sewer installation will be managed within the excavation. Consequently, E & E has not included an estimated cost for off-site management of impacted groundwater.

5.3.5 ISGS #1314V3-7 (River Stone Moline Yard)

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, iron, lead, and manganese were identified as COCs in groundwater sampled from boring 1314V3-07-B01. Groundwater encountered in boring 1314V3-07-B02 was not sampled, but exhibited sheen indicative of contamination. Groundwater was encountered at a depth of 6 feet bgs in boring 1314V3-07-B01, and 5 feet bgs in boring 1314V3-07-B02. Excavation for storm sewer installation in the vicinity of the borings is anticipated to encounter impacted groundwater.

E & E has estimated a volume of impacted groundwater that will require proper handling and disposal during excavation in the vicinity of the borings. As shown on Table 4-6, E & E estimates that approximately 89,766 gallons of water will require off-site management as special waste. The estimated cost for disposal of the impacted groundwater is included in Table 5-1.

5.4 Recommendations

5.4.1 Additional Investigations

E & E does not recommend further investigation for this project. Soil and groundwater in the project area have been characterized with regard to IDOT construction activities. Additional sampling may be required if soil is encountered that exhibits odor or discoloration indicative of contamination during construction excavation activities in those areas, or if activities extend beyond the previously investigated area. If groundwater exhibiting odor or discoloration is encountered during construction activities that hasn't been characterized in this report, the water should be sampled to determine proper management requirements.

5.4.2 Prevention of Accelerated Contaminant Migration

Soil containment and storm water runoff control measures are recommended to mitigate the migration of contaminants from any impacted soils that are stockpiled at the sites. If soil must be stockpiled, it should be stored in lined and covered roll-off boxes or segregated from other soils on storage pads designed to prevent migration of contaminants to unimpacted areas.

Impacted groundwater is anticipated to be encountered during storm sewer installation at ISGS #1314V3-7 (River Stone Moline Yard). PAHs and metals were detected in groundwater at boring 1314V3-07-B01, and sheen was observed on groundwater at boring 1314V3-07-B02. Backfill plugs are recommended at the site in conjunction with the storm sewer excavation in order to prevent migration of impacted groundwater along the storm sewer backfill materials. Costs for backfill plugs are included for the site in Table 5-1.

5.4.3 Comparison of Detected Soil Concentrations with TACO Tier 1 Remediation Objectives for Construction Worker Exposure

The COCs detected in site soil were also compared with TACO Tier 1 ROs for construction worker exposure. Arsenic and thallium were detected at 1314V3-18 (Vacant Land), and lead was detected at 1314V3-25 (Sivyer Steel Corp.) at concentrations above TACO Tier 1 ROs for construction worker exposure. The affected borings and detected concentration are presented in Table 5-2.

Although VOCs were not detected at concentrations above TACO Tier 1 ROs for construction worker exposure, VOCs were detected during PID headspace screening at ISGS #1314V3-7 (River Stone Moline Yard) and ISGS #1314V3-33 (Parking Lot). If soil unearthed during excavation activities exhibits PID readings, odors, or discoloration indicative of contamination, E & E recommends that the soil is sampled to determine appropriate worker protection measures during con-

5 Conclusions and Recommendations

struction activities. The health and safety of construction workers are the sole responsibility of the construction contractor, and Occupational Safety and Health Administration (OSHA) regulations should be adhered to during construction activities.

Table 5-1 Estimated Disposal Costs for Impacted Soil within IDOT Construction Areas General Cost Breakdown for Construction Activities FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

	Pay Item/Cost per Unit														
	SPECIAL WASTE PLANS AND REPORTS ^a \$342,076.00 lump sum		NON-SPECIAL WASTE DISPOSAL ^b \$60.00 per cubic yard		NON-SPECIAL WASTE DISPOSAL ^c \$60.00 per cubic yard		SPECIAL WASTE GROUNDWATER DISPOSAL \$0.30 per gallon		BACKFILL PLUGS ^d \$56.04 per cubic yard		UNDERGROUND STORAGE TANK (UST) REMOVAL [®] \$5,000.00 Iump sum		SOIL DISPOSAL ANALYSIS ^f \$875.00 each		Total Cost (Rounded to
Site	Quantity	Cost	Quantity	Cost	Quantity	Cost	Quantity	Cost	Quantity	Cost	Quantity		Quantity	Cost	nearest dollar)
ISGS #1314V3-1 (IDOT ROW)	1	\$65,891.11	358	\$21,480.00	16,062	\$963,720.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$1,051,966.00
ISGS #1314V3-2 (Mississippi River)	1	\$659.11	112	\$6,720.00	0	\$0.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$8,254.00
ISGS #1314V3-4 (City of Moline, Water Department)	1	\$403.11	48	\$2,880.00	0	\$0.00	3,553.0	\$1,065.90		\$0.00		\$0.00	1	\$875.00	\$5,224.00
ISGS #1314V3-6 (Vacant Land)	1	\$106,775.11	24,513	\$1,470,780.00	2,128	\$127,680.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$1,706,110.00
ISGS #1314V3-7 (River Stone Moline Yard)	1	\$43,259.11	10,762	\$645,720.00	0	\$0.00	89,766.0	\$26,929.80	106.7	\$5,977.80		\$0.00	1	\$875.00	\$722,762.00
ISGS #1314V3-8 (Commercial Building)	1	\$3,251.11	365	\$21,900.00	395	\$23,700.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$49,726.00
ISGS #1314V3-11 (Vacant Land)	1	\$239.11	0	\$0.00	7	\$420.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$1,534.00
ISGS #1314V3-17 (Parking Lot)	1	\$727.11	51	\$3,060.00	78	\$4,680.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$9,342.00
ISGS #1314V3-18 (Vacant Land)	1	\$73,931.11	5,356	\$321,360.00	13,074	\$784,440.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$1,180,606.00
ISGS #1314V3-21 (BNSF Railroad)	1	\$2,687.11	100	\$6,000.00	519	\$31,140.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$40,702.00
ISGS #1314V3-24 (John Deere)	1	\$11,743.11	2,059	\$123,540.00	824	\$49,440.00		\$0.00		\$0.00	1	\$5,000.00	1	\$875.00	\$190,598.00
ISGS #1314V3-25 (Sivyer Steel Corp.)	1	\$9,031.11	998	\$59,880.00	1,207	\$72,420.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$142,206.00
ISGS #1314V3-32 (Commercial Building)	1	\$587.11	0	\$0.00	94	\$5,640.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$7,102.00
ISGS #1314V3-33 (Parking Lot)	1	\$855.11	0	\$0.00	161	\$9,660.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$11,390.00
ISGS #1314V3-56 (Commercial Building)	1	\$1,355.11	39	\$2,340.00	247	\$14,820.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$19,390.00
ISGS #1314V3-57 (Old Chamber Building)	1	\$5,823.11	0	\$0.00	1,403	\$84,180.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$90,878.00
ISGS #1314V3-59 (Residence)	1	\$2,695.11	0	\$0.00	621	\$37,260.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$40,830.00
ISGS #1314V3-60 (Vacant Lot)	1	\$12,163.11	1,307	\$78,420.00	1,681	\$100,860.00		\$0.00		\$0.00		\$0.00	1	\$875.00	\$192,318.00

Notes:

^a Special waste plans assume the following documents and costs are required - 1) Site health and safety plan at \$700; 2) Site contamination operation plan at \$700; 3) Erosion control plan at \$700; and 4) one final environmental construction report at \$1,700. The total cost for documents described (\$3,800) is apportioned equally between the 18 potential waste properties listed above and assumes the activities will occur during one mobilization. This line item also includes labor, expenses, and equipment for air monitoring field oversight for a time period of approximately 423 days at \$800 per day (\$338,276.00 total); and is based on an excavation and loading rate of approximately 200 yd³ per day.

b Material must be managed to a non-special waste disposal facility. Transportation costs are based on a generic 100-mile distance facility and a truck capacity of 14 cubic yards.

^c Although the disposal costs are estimated as a non-special waste, soil in this category includes soil that may be managed to a CCDD facility or USFO, or soil that may be managed as uncontaminated soil, but not at a CCDD facility or USFO due to pH.

d The estimated cost assumes that concrete backfill plugs will be installed at 50-foot intervals along the trench. Backfill plugs are to be 4 feet long measured parallel to the trench and extend the full trench width and depth. When the sewer trench is less than 50 feet, a plug will be placed along each end of the trench to prevent contaminant migration.

^e The UST removal cost estimate is based on a UST that does not have a declared release.

f Disposal Analysis Methods: EPA Methods 1311, 8260B, 8270C, 8081, 8151A, 9045C, 1030, and 9095A.

Table 5-2 Contaminants of Concern Above TACO Tier 1 Remediation Objectives for Construction Worker Exposure FAI 74 (Interstate 74), Contract No. 64C08 Moline, Rock Island County, Illinois

					TACO Tier 1 Soil RO for Construction Worker Exposure		
Site	Boring	Sample Depth Interval (feet)	Contaminant of Concern	Detected Concentration (mg/kg)	Ingestion (mg/kg)	Inhalation (mg/kg)	
1314V3-18 (Vacant Land)	1314V3-19-B09	0-8	Arsenic	220	61	25,000	
1314 v 3-16 (v acant Land)	1314 (3-17-107		Thallium	300	160		
1314V3-25 (Sivyer Steel Corp.)	1314V3-25-B06	0-8	Lead	1,900	700		

Key:

mg/kg = Milligrams per kilogram.

RO = Remediation Objective.

TACO = Tiered Approach to Corrective Action Objectives.

6

References

Ecology and Environment, Inc., (E & E), November 11, 2016, FINAL *Preliminary Site Investigation Work Plan, FAI 74 (Interstate 74), Moline, Rock Island County, Illinois*, prepared by Ecology and Environment, Inc., Chicago, Illinois.

Illinois State Geological Survey (ISGS), September 7, 2016, *Preliminary Environmental Site Assessment*, FAI 74 (I-74), 23rd Avenue to Mississippi River, Moline, Rock Island County; Davenport East, Milan, Coal Valley, and Silvis quadrangles (USGS 7.5 minute topographic maps), T17N, R1W, Sections 4, 5, and 9; T18N, R1W, Sections 27, 29 and 32 - 34.

A ISGS PESA Excerpts

(Only the text portions of the PESA related to the E & E investigation sites are included in this appendix. Disregard any references in the text excerpts to PESA attachments, photographs, figures, and similar types of material, which have not been included in this appendix.)

Site 1314V3-1 (1314-37, 1314V-2, 2708-66, 1314V2-1). ROW, mile markers 0 to 2. 5, Moline (I-74 from the Mississippi River to 29th Street; I-74 stations 22+00 IL (6748 +25 IA) RT and LT to 49+00 IL RT and LT; Attachment 2, pages 1-12). This site is occupied by I-74 and its ROW. Natural gas pipeline markers were observed in the southeast and southwest corner of the I-74 and 27th Street intersection and near the intersection of 18th Avenue and 19th Street, indicating two pipelines pass through this site in east-west directions.

Sanborn maps from 1886 through 1906 did not have any coverage of this site. Sanborn maps from 1912 depicted residences and vacant land from 7th Avenue to 9th Avenue. The remainder of the site south of 9th Avenue was not covered. Aerial photographs from 1938 through 1964 depicted residences and vacant lots along the I-74 corridor south of 7th Avenue. Aerial photographs from 1938 through 1958 depicted a different two-lane bridge across the Mississippi River extending north from River Drive. Sanborn maps from 1950 through 1970 depicted residences and vacant lots from 7th Avenue to 9th Avenue and from 12th Avenue to 17th Avenue. The remainder of this site was not covered. Aerial photographs from 1964 depicted two different bridges extending from River Drive. Aerial photographs from 1970 depicted I-74 under construction. Aerial photographs from 1980 and later depicted I-74 with its current configuration.

The following bridges are present along I-74 in the project area, generally from north to south. Location references and construction dates are taken from the IDOT bridge information website. Where more than one year is present, the first year is the original construction date and later years are reconstruction dates. Map references are to Attachment 2. All of the bridges below were painted.

IDOT structure number	Location	Construction date	Map location, Attachment 2	
S. N. 081-0142	I-74 approach structure over Mississippi River	1975	Page 1, 1a	
S. N. 081-0143	I-74 approach structure over Mississippi River	1975	Page 1, 1b	
S. N. 081-0111	I-74 S. B. off ramp over River Drive (1 km [0. 6 mi] south of Iowa line)	1974	Page 3, 1c	
S. N. 081-0112	I-74 N. B. on ramp over River Drive (1 km [0. 6 mi] south of Iowa line)	1974	Page 3, 1d	
S. N. 081-0113	I-74 S. B. off ramp over 6th Avenue (1. 3 km [0. 8 mi]) south of Iowa line)	1975	Page 5, 1e	
S. N. 081-0114	I-74 N. B. on ramp over 6th Avenue (1. 3 km [0. 8 mi] south of Iowa line)	1975	Page 5, 1f	
S. N. 081-0115	I-74 S. B. on ramp over 19th Street (1. 8 km [1. 1 mi] south of Iowa line)	1975	Page 8, 1g	
S. N. 081-0099	I-74 S. B. over 19th Street (0. 8 km [0. 5 mi] north of 23rd Avenue)	1975	Page 8, 1h	
S. N. 081-0100	I-74 N. B. over 19th Street (0. 8 km [0. 5 mi] north of 23rd Avenue)	1975	Page 8, 1i	
S. N. 081-0116	I-74 N. B. off ramp over 19th Street (1. 8 km [1. 1 mi] south of Iowa line)	1975/2011	Page 8, 1j	

S. N. 081-0101	I-74 S. B. over 12th Avenue (1. 1 km [0. 7 mi] north of 23rd Avenue)	1975	Page 8, 1k
S. N. 081-0102	I-74 N. B. over 12th Avenue (1. 1 km [0. 7 mi] north of 23rd Avenue)	1975	Page 8, 1I
S. N. 081-0103	I-74 N. B. over 19th Street (0. 3 km [0. 2 mi] north of 23rd Avenue)	1971	Page 9, 1m
S. N. 081-0104	I-74 S. B. over 19th Street (0. 3 km [0. 2 mi] north of 23rd Avenue)	1971	Page 9, 1n
S. N. 081-0105	23rd Avenue over I-74 (2. 4 km [1. 5 mil] south of IL 92)	1970	Page 10, 1o
S. N. 081-0107	27th Street over I-74 (0. 8 km [0. 5 mi] south of 23rd Avenue)	1971	Page 11, 1p
S. N. 081-0108	19th Street over I-74 (1 km [0. 6 mi] south of 23rd Avenue)	1971	Page 11, 1q

This site appears numerous times on multiple regulatory lists. Incidents will be discussed in geographic order below from north to south. Their locations are described below and shown on Attachment 2 where they are designated with a lower case letter. No evidence of spills was observed during fieldwork for this project, and the exact locations of the spills discussed in IEMA and ERNS records below are unknown.

Under the name "IDOT" and the address "Rock Island Co Bridge&hwy", this site appears on the BOL list (IEPA #1618995006). According to IEPA files, in May 1998, this site was registered by IDOT to generate between 100 kg/mo (220 lb/mo) and 1,000 kg/mo (2,200 lb/mo) of wastes containing lead from the maintenance of the I-74 approach structures over the Mississippi River (S. N. 081-0142 and S. N. 081-0143). No further information was available in IEPA files regarding IEPA #1618995006.

Under the name "Reynolds Service Corp" and the address "I-74 bridge/over Miss Rvr", this site appears on the IEMA non-LUST list (IEMA #982762). According to IEMA records, in November 1998, a release of 114 liters (30 gallons) of hydraulic oil was reported following a crane accident at this location. The general location of the release is depicted as Site 1314V3-1a on Attachment 2, page 1.

Site 1314V3-1r (Attachment 2, page 5). Sanborn maps from 1886 depicted a carpentry shop at the northwest corner of 6th Avenue and 20th Street.

Site 1314V3-1s (Attachment 2, page 6). City directories listed a photography studio at 612 20th Street in 1939.

Site 1314V3-1t (Attachment 2, page 8). Under the name "Molo Quint LLC" and the address "on the off ramp from westbound I-74 to 7th St", this site appears on the IEMA non-LUST list (IEMA #H-2009-1298). Under the name "Molo" and the address "Intersection of I-74 and 7th Street", this site appears on the ERNS list (ERNS #924335). According to IEMA records, a release of 1,893-liters (500-gallon) of diesel was reported from a semi-truck at this location in November 2009. According to ERNS records, a release of 757-liters (200-gallons) of diesel was reported at this location in November 2009.

Under the name "IDOT" and the address "Rock Island Co Bridge&hwy", this site appears on the BOL list (IEPA #1618995006). According to IEPA files, in May 1998, this site was registered by IDOT to generate between 100 kg/mo (220 lb/mo) and 1,000 kg/mo (2,200 lb/mo) of wastes containing lead from the maintenance of the I-74 overpasses at 19th Street (S. N. 081-0099, S. N. 081-0100, S. N. 081-0105, S.

N. 081-0115, and S. N. 081-0116). No further information was available in IEPA files regarding IEPA #1618995006.

Site 1314V3-1u (Attachment 2, page 10). During fieldwork for ISGS# 1314V in 2010, a temporary parking and construction materials storage area was observed north of 20th Avenue and east of 18th Street-C for construction materials. Equipment on the site included construction vehicles and two 1,136-liter (300-gallon) plastic ASTs with unknown contents. A mobile office was also present on site. The ASTs described above were not present during the fieldwork for this project.

Site 1314V3-1v (Attachment 2, page 11). Under the name "B&J Transportation" and the address "I-74 MM 2. 2", this site appears on the BOL list (IEPA #1610255105). Under the name "B&J Transportation" and the address "I-74 E MM 2. 5", this site appears on the BOL list (IEPA #1610453003). According to IEPA files, in August 2001, B&J Transportation registered with IEPA as a generator of an unspecified types and amounts of waste. No further information was found in IEPA files regarding IEPA #16102551015 and 1610453003.

Potential hazards associated with carpentry shops and the wood working industry include VOCs and metals. Potential hazards associated with photography businesses include VOCs and metals.

In soil gas taken from two previous boreholes completed at this site for ISGS #1314 in 2002 near Site 1314V3-1t, no VOCs were detected. See ISGS #1314 for details.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The exact locations of the spills discussed in IEMA and ERNS records are unknown.
- The contents of the ASTs observed during fieldwork in 2010 are unknown.
- Evidence from aerial photographs and IDOT information indicates that these bridges have been present since before 1985, when lead paint was no longer used to paint bridges. These bridges are been painted. It is unknown if lead paint is present at these structures.

The structure on this site is painted and may contain friable asbestos-containing materials as a compound of painting or patching compounds. Evidence from aerial photographs and IDOT information indicates that these bridges have been present since before 1985, when lead paint was no longer used to paint bridges. These bridges are been painted. It is unknown if lead paint is present at these structures.

The following RECs were identified at this site: Spills: former ASTs: evidence of chemical use.

The following de minimis conditions were identified at this site: Natural gas pipeline; potential ACM.

Site 1314V3-2 (1314-1, 1314V-1, 1314V2-2). Mississippi River, near I-74 mile marker 1, Moline (northwest and northeast corners of 1st Avenue and Kone Court; no stationing given; Attachment 2, page 1). This site is occupied by a river.

Sanborn maps from 1886 and later depicted a river. Aerial photographs from 1938 and later depicted a river.

According to the 2016 IEPA Illinois Integrated Water Quality report, this segment of the Mississippi River has been assessed as "not supporting" in the categories of fish consumption, and primary contact. Causes of non-attainment were listed as mercury, PCBs, and fecal coliform. Sources were listed as atmospheric deposition of toxics and unknown sources. This river has been assessed as "fully support-

ing" in the categories of aquatic life, public and food processing water supplies, and aesthetic quality. This river has not been assessed for secondary contact.

Information in USEPA and IEPA files reviewed for Site 1314V3-A (USEPA #IL5210021833; IEPA #1618130001) pertained to this site. According to USEPA files, in 2001, surface water samples were collected from along the west side of the I-74 bridge (see Attachment 3 for the location of water sample PW-033). VOCs, PAHs, and metals were detected in unspecified levels, but elevated from other water samples collected downstream. The status of impacted surface water at this site is unknown. No further information impacting this project was found in USEPA and IEPA files for USEPA #IL5210021833 and IEPA #1618130001.

This site appears on the ERNS list three times. No evidence of spills was observed during fieldwork for this project, and the exact locations of spills at this site is unknown.

Under the name "Schadler River Excursion" and the address "Interstate 70 bridge going into Moline", this site appears on the ERNS list (ERNS #59181). According to ERNS records, in April 1987, an unknown type and amount of oil was observed on the river. No remedial action was taken in connection with this release. No further information was available in ERNS records regarding ERNS #59181.

Under the name "Dellitt Trucking Inc" and the address "East of I-74 bridge on Mississippi River bank", this site appears on the ERNS list (ERNS #397571). According to ERNS records, in August 1997, approximately 23 liters (6 gallons) of hydraulic oil were released into the Mississippi River from a ruptured hydraulic line. No further information was available from ERNS records regarding ERNS #577248.

Under the name "River Stone Group" and the address "200 23rd St.", this site appears on the ERNS list (ERNS #577248). According to ERNS records, on August 21, 2001, approximately 0.5 liters (0.12 gallons) of hydraulic oil were released into the Mississippi River from a sand barge. No further information was available in ERNS records regarding ERNS #577248.

In two boreholes and three surficial soil samples completed at this site for ISGS #1314 in 2002, no VOCs or metals were detected. See ISGS #1314 for details.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The status of impacted surface water at this site in unknown.
- The exact location of spills at this site are unknown.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Non-attainment of water quality; spills; potentially impacted surface water.

No de minimis conditions were identified at this site.

Site 1314V3-4 (1314-A, 1314-B, 1314-2, 1314V-3, 1314V2-4). City of Moline Water Division, 30 18th Street, Moline (southeast corner of 18th Street and 1st Avenue; no stationing provided; Attachment 2, page 1). This site is occupied by a water treatment plant. Site features included a main building with a smaller building to its south. A water tower was present on the northwest portion of the site. Two ASTs were observed along the west side of the small building. The contents of these ASTs are unknown.

A carbon dioxide AST was observed along the south side of the main building. Two USTs were observed north of the buildings, approximately 46 m (181 ft) south of the Mississippi River bank and 89 m (292 ft) west of 19th Street. No vent pipes were observed in association with these USTs. Three pad-mounted transformers were observed southwest of the buildings, and three pad-mounted transformers on the southwest corner of this site. Monitoring wells MW-1, EV-98-1, EV-98-2, and EV-98-3 labeled on Attachment 4 were not present.

The following information has been modified from ISGS #1314V:

Along the north side of the main building were two approximate 0. 5 m (1. 5 ft)-diameter pipes protruding from the ground. Along the east side of the main building was a larger pipe that appeared to be related to the natural gas pipelines into the building. Near the northwest corner of the building was a vent pipe leading inside the building.

Only one large-diameter protruding pipe in the ground was noted during fieldwork for this project. The pipe appeared to be a component of the water intake system at this facility.

Sanborn maps from 1886 through 1906 depicted a lumber storage yard along the river, and portions of a lumber storage shed on the south side of this site. The date of first development is unknown. Sanborn maps from 1912 depicted a park at the current buildings location, and railroad tracks south of the buildings. On the 1938 through 1980 aerial photographs, and on the 1950 through 1970 Sanborn maps, a portion of the main building was present. On Sanborn maps, the building was labeled as containing the Municipal Water Works. On the 1950 Sanborn map, a masonry block factory was depicted at the southwest corner of the site. On the 1957 Sanborn map, a foundry was depicted at the southwest corner. On the 1988 through 2002 aerial photographs, the current water treatment plant building was present. On the 2006 and later aerial photographs, the alignment of 18th Street had been change, and the site had its current configuration. City directories from 1891 through 1898 listed individual names in the historical address range along 1st Avenue. City directories from 1906 through 1939 listed Sylvan Park. City directories from 1945 through 1958 listed City of Moline Water Plant in the historical address range of this site. City directories from 1965 through 2014 listed the City of Moline Water Plant at the current address.

Under the name "City of Moline Water Plant" and the address "30 18th Street", this site appears on the UST list (OSFM #3011710) with three registered USTs. According to OSFM files, one 3,785-liter (1,000-gallon) diesel UST and one 2,082-liter (550-gallon) gasoline UST are currently in use. See above for the locations of these USTs. One gasoline UST was removed in February 1989. This UST was located in the general location as the current USTs; however, the exact location of the former UST is unknown.

Under the name "Moline, City of Water Dept" and the address "3018 St", this site appears on the BOL list (IEPA #1610455122). According to IEPA files, in 1994, the City of Moline Water Department registered with the IEPA as a generator of unspecified types and amounts of waste. In 1996, the City of Moline Water Department was removed as a generator of special waste. The waste consisted of small rocks and pebbles with hydrated lime, used for water treatment. According to IEPA files, the waste stream was analyzed and determined to be non-toxic, and therefore would no longer be regulated as a special waste as of 1996. No further information was found in IEPA files regarding IEPA #1610455122.

Under the name "Moline, City of" and the address "1800 1st Ave", this site appears on the BOL list (IEPA #1610655161). Under the same IEPA number, the name "Moline Water Plant" and the address "1800 1st Ave." this site appears on the state brownfields list. Under the same IEPA number, the name "City of Moline" and the address "1800 1st Ave." this site appears on the SRP list. According to IEPA files, an investigation of the area south of the main building was completed by the site consultants Missman, Stanley & Associates (MSA) for the City of Moline. During a Phase I ESA that was conducted by MSA in 1998, potentially impacted soil was identified. In 1999 and 2001, several rounds of soil and groundwater took place. These investigations included the completion of the several soil borings and the installation of one permanent monitoring and three temporary monitoring wells (MW-1, EV-98-1, EV-98-2, and EV-98-3 on Attachment 4). None of these wells were present during the fieldwork for this project. Depth to groundwater was approximately 2. 4 to 2. 7 m (8 to 9 ft), and the groundwater flow direction was deter-

mined to be toward the north. Soil and groundwater samples were analyzed for VOCs, SVOCs, PNAs, and metals. Various metals and a PNA were detected above TACO Tier 1 commercial/industrial SROs. Various metals, PNAs, and VOCs were detected above TACO Tier 1 Class I GROs.

In 2003, this site entered the Site Remediation Program in order to obtain a comprehensive NFR letter. MSA conducted Tier 2 modeling that predicted that any potentially impacted groundwater was not likely to migrate offsite, and proposed to manage residual impact through the use of AULs. The modeled extent of impacted groundwater is depicted in Attachment 4. Based on this information, on March 24, 2004, IEPA issued a comprehensive NFR letter with the following AULs: industrial/commercial land use restriction, engineering controls in the form of an asphalt barrier; groundwater use restriction, and notification of potentially affected property owners. No list of affected property owners was found in IEPA files.

The IEPA conducted an inspection of this site on July 19, 2012 to check for compliance with the AULs specified in the NFR letter. The site was found to be in compliance. No further information was available in updated IEPA files regarding IEPA #1610655161.

Potential hazards associated with foundries and welding shops include metals and VOCs. Potential hazards associated with concrete factories include acids and VOCs.

The following information has been modified from ISGS #1314:

A magnetometer survey was conducted on July 22, 2002. The area surveyed was the entire undeveloped area between 19th Street on the east and a building on the west and between 1st and 2nd Avenues. One magnetic anomaly was detected, having dimensions of approximately 2 m (6.6 ft) parallel with 19th Street and 1.5 m (5 ft) parallel with 2nd Avenue. The anomaly was centered on a point approximately 5.5 m (18 ft) west of 19th Street and 37 m (121 ft) north of 2nd Avenue.

It is unknown if the detected anomaly is associated with an UST, and its status is unknown.

In one of three boreholes completed at this site for ISGS #1314 in 2002, VOCs were detected. See ISGS #1314 for details. In two boreholes completed at this site for PSI Weston #8 work order #40 in 2014, SVOCs and metals were detected in soil and/or groundwater. See PSI Weston #8 work order #40 for details.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, pumps or dispensers, drums, monitoring wells, solid waste, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The contents of two of the three ASTs unknown.
- The date of first development is unknown.
- The exact location of the former UST is unknown.
- It is unknown if the detected anomaly is associated with an UST, and its status is unknown.

These buildings may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in these buildings. Water towers are commonly painted with lead paint, and this material may flake off the towers and enter soil beneath the tower. Therefore, lead paint may be present related to the water tower at this site.

The following RECs were identified at this site: USTs; former UST; potential UST(s); ASTs; former monitoring wells; evidence of chemical use; impacted soil and groundwater; VOCs detected in previous ISGS testing.

The following de minimis conditions were identified at this site: Transformers; potential ACM and lead paint.

Site 1314V3-5 (1314-3, 1314-6, 1314V-4, 1314V2-5). Industrial building, 1 Kone Court, Moline (northeast, northwest, and southwest corners of Kone Court and 19th Street; no stationing provided; Attachment 2, page 1). This site is occupied by a large, vacant, industrial building with parking lots to its southwest that extend beneath I-74. This site was surrounded by a fence; therefore, a complete site inspection could not be conducted. A pad-mounted transformer and a natural gas vent pipe were observed on the northwest corner of this site. A natural gas pipeline marker was observed on the northwest corner of Kone Court and 19th Street. Additional natural gas pipeline markers were observed east and west of this site, indicating a pipeline passes through this site in an east-west direction.

Sanborn maps from 1886 through 1906 depicted the Dimock Gould and Co. lumber yard on the south and east portions of this site. The date of first development is unknown. Sanborn maps from 1886 through 1970 depicted a railroad siding crossing the site from southeast to northwest. Sanborn maps from 1886 through 1898 depicted residences on the southwest part of the site. Sanborn maps from 1912 depicted a furnace works and most of the lumber yard to the south and east was depicted as vacant. Sanborn maps from 1898 through 1957 depicted the western portion of this site (now utilized as the parking lots) as occupied by various commercial and industrial occupants, including a cigar factory (1898-1906), a junk dealer (1906-1957), a candy factory (1912), a creamery (1950-1970), Stromberg Becker Manufacturing Company (1950-1957), and a coal dealer (1967-1970). Aerial photographs from 1938 and later depicted industrial buildings similar to the 1912 through 1957 Sanborn maps and some residential buildings. Sanborn maps from 1950 through 1970 depicted the northern end of the parking areas as Sylvan Park. Sanborn maps from 1957 through 1970 depicted Montgomery Elevator Co. (later known as Montgomery Kone Co. and Kone Co.) on the north side of this site. A "buried gasoline tank" was depicted on the 1957 Sanborn map along the north side of the Montgomery Elevator building, approximately 75 m (246 ft) east of Kone Court and 125 m (410 ft) north of 19th Street. This location is currently beneath the building of the former Kone Co. The status of this UST is unknown. Sanborn maps from 1957 through 1970 depicted Moline Tool Company, consisting of several buildings, south of the elevator company. Site features included a machine shop on the north side of these buildings. Aerial photographs from 1951 to 1970 depicted a junkyard near the 19th Street frontage between 1st and 2nd Avenue. Aerial photographs from 1970 through 1988 depicted a vacant lot on the west side and the current buildings present. Aerial photographs indicates that the railroad siding in this area was removed between 1970 and 1988. Aerial photographs from 1994 and later depicted the current buildings.

City directories from 1891 through 1911 either listed individual names or had no listings within the historical address range for this site. City directories from 1917 listed Moline Engineering Company and a junk dealer from 1917 through 1982 within the historical address range for this site. City directories listed E. H. Wilson Manufacturing and A.G. Abraham Company in 1925 within the historical address range for this site. City directories listed a trucking company from 1939 through 1945 within the historical address range for this site. City directories listed Montgomery Elevator, a salvage and lumber business, and a print shop in 1982 within the historical address range for this site. City directories listed Montgomery Elevator at 1 Montgomery Court from 1987 through 1992. City directories listed Kone Co. from 2004 through 2011 at the current address. During site inspections for ISGS #1314 in 2002 and for ISGS #1314V in 2010, the site was occupied by Kone Co.

Under the name "Kone Inc" and the address "1 Montgomery Ct", this site appears on the BOL list (IEPA #1610455068). According to IEPA files, this address pertains to this site. In 2000, Kone Inc. registered with IEPA as a generator of an unspecified amounts of non-halogenated solvents and stillbottoms. In October 2006, a site inspection was conducted due to a citizen complaint that the company was improperly disposing of computers. No violations were found during the inspection. No further information was present in IEPA files regarding IEPA #1610455068.

Potential hazards associated with print shops and lithography, and with metal working and machining, and coal yards include VOCs and metals. Potential hazards associated with junkyards include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; and used lead-acid batteries.

No UST information was available from the Moline Fire Department for this site.

In one of six boreholes completed at this site for ISGS #1314 in 2002, VOCs were detected. In two soil samples collected at this site for ISGS #1314 in 2002, metals were detected and no PCBs were detected. See ISGS #1314 for details.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- This site was surrounded by a fence; therefore, a complete site inspection could not be conducted.
- The date of first development is unknown.
- The status of the UST depicted on Sanborn maps is unknown.

This building may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

The following RECs were identified at this site: Potential UST; evidence of former chemical use; VOCs and metals detected in previous ISGS testing.

The following de minimis conditions were identified at this site: Natural gas pipeline; transformers; potential ACM and lead paint.

Site 1314V3-6 (1314-7, 1314V-5, 2708-64, 1314V2-6). Vacant land, 2020 River Drive, Moline (northwest corner of 22nd Street and River Drive; approximate River Drive station 3012+00 LT; Attachment 2, page 1). This site is occupied by vacant grassy and wooded land. Concrete foundations were observed on the south and west portions of this site. A monitoring well was observed in the general area of MW-41 as depicted on Attachment 7. MW-1, MW-9, MW-12, MW-14, MW-16, MW-18, MW-20, MW-21, MW-33, MW-34, MW-35, MW-37, MW-36, MW-38, MW-39, and MW-40 as depicted on Attachment 7 and 8 were not observed. Soil piles were also observed on the west and northeast side of this site. A pole-mounted transformer was observed on the southeast corner of this site. A natural gas pipeline marker was observed on the southeast corner of this site. A natural gas pipeline marker was observed east of this site, indicating a pipeline passes through this site in an east-west direction. Due to the presence of dense vegetation, the northern portion of this site was not adequately inspected, and the status of MW-1, MW-9, MW-12, MW-14, MW-16, MW-18, MW-20, MW-21, MW-33, MW-34, MW-35, MW-37, MW-36, MW-38, MW-39, and MW-40 on Attachments 7 and 8 are unknown.

Sanborn maps from 1886 through 1912 depicted Dimock Gould lumber yard at this site. The date of first development is unknown. Sanborn maps from 1950 through 1970 depicted the lumber yard on the east side of the site and Frank Foundries on the west side. Site features of the foundry included a foundry, milling room, casting room, and oil house. According to a local resident, Frank Foundries started in this area in 1917 and ceased operations in 1992. Aerial photographs from 1938 through 1988 depicted industrial building resembling the industrial buildings for Frank Foundries depicted on Sanborn maps. Aerial photographs from 1993 through 2015 depicted vacant grassy land. City directories listed Frank

Foundries from 1917 through 1992 within the historical address range for this site. No listing for this site were found in the 1997 through 2014 city directories.

Under the name "Frank Foundries Corp" and the address "2020 3rd Ave", this site appears on the UST list (OSFM #3002575) with one registered UST. According OSFM files, a gasoline UST was removed in November 1990. No location information was found, however, information from IEPA files in association with IEMA #903547 indicated the UST was located approximately 38 m (125 ft) north of 3rd Street and 41 m (135 ft) east of 21st Street. No further information was present in OSFM files regarding OSFM #3002575. See IEMA #903547, below, for a discussion of this UST.

Under the name "Frank Foundry Co" and the address "2020 3rd Ave", this site appears on the UST list(OSFM #3035383) with one registered UST. According to OSFM files, a heating-oil UST was removed in December 1996. The UST was located in a former material storage yard located approximately 213 m (700 ft) north of River Drive and approximately 100 m (328 ft) east of 20th Street. Removal logs indicated groundwater in the excavation had a petroleum sheen. No further information was present in OSFM files regarding OSFM #3035383. See IEMA #962282, below, for a discussion of this UST.

Under the name "Frank Foundries" and the address "2020 River Dr", this site appears on the BOL list (IEPA #1610455150). According to IEPA files, in an undated request, Frank Foundries applied for an IEPA generator number. The reason for the application was not stated. No further information was available in IEPA files regarding IEPA #1610455150.

Under the name "Frank Foundries Corp" and the address "2020 Third Ave", this site appears on the inactive RCRA list (USEPA #ILD005267562). Under the name "Frank Foundries Corp" and the address "2020 3rd Ave", this site appears on the BOL list (IEPA #1610455008). Under the same IEPA number, the name "Frank Foundries" and the address "2020 Third Avenue", this site appears on the SRP list (IEPA #1610455008). According to IEPA files, from 1980 through 1996, Frank Foundries registered with the USEPA as a generator of 100 to 1,000 kg/mo (220 to 2,200 lb/mo) of ignitable wastes, corrosive wastes, and lead wastes. No further information regarding the generator status of this site was included in IEPA files

Under the name "Frank Foundries Corp" and the address "2020 Third Ave.", this site appears on the LUST list (IEMA #903547). Under the name "Frank Foundries Co." and the address "2020 Third Ave., this site appears on the LUST list (IEMA #962282). According to IEPA files, in November 1990 during the removal of a gasoline UST, evidence of a release was observed, and IEMA #903547 was issued. The UST was located in a former material storage yard, approximately 38 m (125 ft) north of River Drive and 41 m (135 ft) east of 21st Street. Following the removal of the impacted soil, soil samples were collected by Q. C. Metallurgical Laboratory, Inc. BTEX compounds were detected below IEPA objectives in effect at that time. Water was encountered in the excavation, and a sample was submitted for PAH analysis. The depth to groundwater was not documented. The groundwater water sample did not exceed the IEPA cleanup objectives for PAHs in effect at that time. Based on this information, on January 21, 1992, IEPA issued an NFR letter, with no AULs (Attachment 6). No further information was present in IEPA files regarding IEMA #903547.

According to IEPA files, Phase I and II environmental assessments by Environmental S/E Services Inc., were conducted for a possible land purchase in February 1992. Findings during this assessment included three transformers that were out of use but covered with oil. Sampling of the transformer oil was conducted with no PCBs detected. Approximately 200 drums containing discolored soil were observed in a drum-storage area located approximately 213 m (700 ft) north of River Drive. PCBs above regulatory levels in effect at that time were detected in soils in these drums. IEPA files indicated that from late 1992 to 1995, all ACM, drums, foundry waste material, oil-filled equipment, and water from a sump in a pallet building, were removed. During this same period, soil borings and seventeen monitoring wells (MW-1, MW-9, MW-12, MW-14, MW-16, MW-18, MW-20, MW-21, MW-33, MW-34, MW-35, MW-37, MW-36, MW-38, MW-39, and MW-40, and MW-41 on Attachments 7 and 8) were installed on this site to delineate the previously detected metals and VOC-impacted areas. Two soil borings were also completed at Site 1314V3-8 (northwest corner of 23rd Street and River Drive). Several areas of lead-impacted soil above

regulatory levels in effect at that time were discovered on the northern half of this site, and benzene-impacted groundwater above regulatory levels in effect at that time was detected in the middle and northern portions of the site (see Attachment 7 for the estimated extent of impacted groundwater). Groundwater was encountered at a range of 1.2 to 4 m (4 to 12 ft) below the ground surface, with groundwater flow direction toward the north. During remedial activities in 1996, including soil removal and groundwater treatment via air stripping, an UST filled with what appeared to be groundwater was discovered in the approximate middle of this site. (see Attachment 7 for UST location). In samples of the liquid from this UST, VOCs above Class I GROs were detected, and IEMA #962282 was generated. Since this site was already undergoing remediation, remedial activities for this incident were added to this ongoing study.

A monitoring well was observed in the general area of MW-41 as depicted on Attachment 7. MW-1, MW-9, MW-12, MW-14, MW-16, MW-18, MW-20, MW-21, MW-33, MW-34, MW-35, MW-37, MW-36, MW-38, MW-39, and MW-40 as depicted on Attachment 7 and 8 were not observed.

Between 1996 and 1998, groundwater and soil samples were collected and analyzed for BTEX compounds and found to be below Class II GROs and TACO Tier 1 industrial/commercial objectives. Frank Foundries Corp. joined the SRP program in September 1998 to receive a comprehensive NFR letter for the events discussed above. Based on this information, IEPA issued an Comprehensive NFR letter on October 6, 1998, for IEPA #1610455008 with no AULs (Attachment 8). The NFR letter did not include IEMA #962282. No further information was present in IEPA files regarding IEMA #962282.

During a RCRA Compliance Evaluation Inspection in January 2007, no violations were observed, and the site was vacant land. No further information was present in IEPA files regarding IEPA #1610455008.

None of the drums or equipment discussed above were observed during field work for this project.

The following information was modified from PESA #1314:

Information was received from the IEPA OER concerning a release of particulates (IEMA #820760) that occurred in 1982. A red granular residue was observed coating automobiles in the area of the plant. The event was reported by personnel at Montgomery Elevator Co. A representative from Frank Foundries indicated that this emission happened quite frequently and that he would go to Montgomery Elevator to discuss the problem with them. Further information concerning this event was not available in IEMA files. During a search of updated IEMA records, this IEMA number was no longer listed.

Under the name "Frank Foundries Corp." and the address "2020 Third Ave." this site appears on the on the TRI list (TRI #61265FRNKF2020T). According to TRI records, between 1988 and 1991, 340 kg/yr (750 lb/yr) of chromium was released to the air. Between 1988 and 1991, 114 kg/yr (250 lb/yr) of chromium were transferred off site for disposal. No further information was available in TRI records regrading this site.

Potential hazards associated with foundries include metals and VOCs.

In five boreholes completed at this site for PESA #1314 in 2002, VOCs were detected. In two soil samples collected at this site for PESA #1314, metals were detected. In a soil sample collected at this site for PESA #1314, PCBs were detected. See PESA #1314 for details.

In 16 of 19 boreholes completed at this site for PSI Weston #8 work order #40 in 2014, VOCs, SVOCs, metals, and/or PCBs were detected in soil and/or groundwater. See PSI Weston #8 work order #40 for details.

No visual evidence of stressed vegetation, pits or depressions, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, solid waste, non-petroleum chemical use or storage, or unusual or

noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- Due to heavy vegetation, the northern portion of this site was not adequately viewed during site inspections, and the status of MW-1, MW-9, MW-12, MW-14, MW-16, MW-18, MW-20, MW-21, MW-33, MW-34, MW-35, MW-37, MW-36, MW-38, MW-39, and MW-40 are unknown.
- The date of first development is unknown.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Former USTs with documented releases; monitoring well; potential monitoring wells; former drums; evidence of former chemical use; air releases; VOCs, metals, and PCBs detected in previous PSI and ISGS testing.

The following de minimis conditions were identified at this site: Soil mounds; natural gas pipeline; transformer.

Site 1314V3-7 (1314-J, 1314V-6, 2708-G, 1314V2-7). River Stone Moline Yard, 75 23rd Street and 301 River Drive, Moline (northeast corner of 23rd Street and River Drive; approximate River Drive station 3022+00 LT; Attachment 2, page 3). This site is occupied by a landscape supply company and a sand and gravel company. Numerous gravel and sand piles were observed on the eastern portions of this site while smaller boulder piles and the main building were observed on the western portion. MW-14, MW-15, MW-16, MW-17, and MW-18 as depicted on Attachment 11 were not observed during fieldwork for this project. Due to the presence of fencing and concrete barriers, however, a complete inspection of the site's surface was not conducted. The status of MW-14, MW-15, MW-16, MW-17, and MW-18 are unknown. A pole-mounted transformer was observed along the western property boundary, and six pole-mounted transformers were observed along River Drive down the length of the site.

Sanborn maps from 1886 through 1970 depicted part of a lumber yard on the west side of the site, and various commercial businesses on the east side including a stone yard (1892), an ice house (1906-1912), a cement manufacturer (1950-1957), and a coal company (1957). The first date of development is unknown. Aerial photographs from 1938 and later depicted commercial and industrial buildings at this site. City directories from 1891 through 1898 either listed individual names or had no listings for this site. City directories listed individual names within the historical address range for this site, and included a lumber yard from 1905 through 1958; an icehouse and coal company from 1911 through 1925; and a cement company from 1911 through 1992. No potential hazards were identified in association with these occupants. City directories after 1992 did not have any listings for this site.

Under the name "Moline Consumers" and the address "200 23rd St", this site appears on the inactive RCRA list (USEPA #ILD984816942). Under the name "Riverstone Group Inc" and the address "2301 River Dr", this site appears on the BOL list (IEPA #1610455066). According to IEPA files, in 1991, Moline Consumers registered as a generator of hazardous wastes in quantities of 100-1,000 kg/mo (220-2,200 lb/mo) per month. The types of waste to be generated were listed as ignitable waste. During a RCRA inspection in February 2013, no violations were noted. No further information was present in IEPA files regarding IEPA #1610455066.

Information in IEPA files for Site 1314V3-20 (IEPA #1610455083) pertained to this site. Tier 2 modeling that predicted benzene-impacted groundwater could migrate offsite from Site 1314V3-19 onto this site. In response to LUST events at Site 1314V3-20, five monitoring wells (MW-14, MW-15, MW-16, MW-17, and MW-18 on Attachment 11) were installed on this site in March 2000. MW-14, MW-15, MW-16, MW-17, and MW-18 as depicted on Attachment 11 were not observed during fieldwork for this project. Soil samples collected during the installation of these monitoring wells analyzed for BTEX and PAHs did not exceed Tier 1 commercial/industrial SROs. Groundwater samples analyzed for BTEX and PAHs did not

exceed Tier 1 Class I GROs. were analyzed for BTEX. See Attachment 11 for the resulting modeled area of impacted groundwater. On February 8, 2008, municipal HAA was executed with the City of Moline for the River Drive ROW in response to investigation completed at 1314V3-20. See Attachment 16, page 10 for the area covered by the HAA. See Site 1314V3-20 for further details.

In one borehole completed at this site for PSI Weston #8 work order #40 in 2014, VOCs, and metals were detected in soil and/or groundwater. See PSI Weston #8 work order #40 for details.

Potential hazards associated with coal companies include acids, metals, VOCs, and PAHs. Potential hazards associated with concrete factories include VOCs.

No visual evidence of stressed vegetation, pits or depressions, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- Due to the presence of fencing and concrete barriers, however, a complete inspection of the site's surface was not conducted. The status of MW-14, MW-15, MW-16, MW-17, and MW-18 are unknown.
- The date of first development is unknown.
- The status of potentially impacted groundwater is unknown.

These buildings may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in these buildings.

The following RECs were identified at this site: Potential monitoring wells; evidence of chemical use; potentially impacted groundwater; HAA; VOCs and metals detected in previous PSI testing.

The following de minimis conditions were identified at this site: Mounding; transformers; potential ACM and lead paint.

Site 1314V3-8 (1314V-7, 2708-T, 1314V2-8), Commercial building, 190 22nd Street, Moline (northwest corner of 23rd Street and River Drive; approximate River Drive station 3019+00 LT; Attachment 2, page 3). This site is occupied by a vacant commercial building. Signage on the building indicated this site was formerly a cabinet company and a filtration distributor. Three pole- mounted transformers were observe near the northwest corner of the building.

On the 1886 through 1970 Sanborn maps and aerial photographs from 1938 through 1970 two different commercial buildings and railroad tracks were depicted, with Sanborn maps labeled the buildings as a lumber yard. The date of first development is unknown. Aerial photographs from 1988 through 2009 depicted the current building and no railroad tracks. Aerial photographs from 2010 through 2015 depicted the current building and a different entrance configuration. City directories from 1891 through 1898 either listed individual names or had no listings for this site. City directories listed a lumber yard within the historical address range for this site from 1905 through 1958, had no listings from 1965 through 1987, and listed a floor covering distributor from 1990 through 2004. City directories listed a cabinet manufacturer in 2004 and filtration systems company in 2011.

Under the name "Dimock Gould & Co" and the address "190 22Nd St", this site appears on the UST list (OSFM #3033500) with one registered UST. According to OSFM files, one diesel UST was removed in March 1995. No location information was found in OSFM files; however, according to an employee of Green Valley Cabinet interviewed in 2013, the UST was located near the northwest corner of the building,

just north of the loading docks and approximately 116 m (380 ft) north of River Drive and 101 m (330 ft) west of 23rd Street.

Information in IEPA files for Site 1314V3-6 (IEPA #161045008) pertained to this site. According to IEPA files, in February 1992, two soil borings were completed at this site in response to SRP events at Site 1314V3-6. Soil samples analyzed for BTEX and metals did not exceed the IEPA cleanup objectives in effect at that time. Groundwater was not encountered during these activities. See Site 1314V3-6 for further details.

In seven of eight boreholes completed at this site for PSI Weston #8 work order #40 in 2014, VOCs, SVOCs, and metals were detected in soil and/or groundwater. See PSI Weston #8 work order #40 for details.

Potential hazards associated with the wood working industry include VOCs and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gap was identified at this site:

The date of first development is unknown.

This building may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

The following RECs were identified at this site: Former UST; potential chemical use; VOCs and metals detected in previous PSI testing.

The following de minimis conditions were identified at this site: Transformers; potential ACM and lead paint.

Site 1314V3-11 (1314-4, 1314V-8, 1314V2-10). Vacant land, 1900 block of River Drive, Moline (north side of River Drive between 19th and 20th Street; approximate River Drive station 3014+00 LT; Attachment 2, page 3). This site is occupied by grassy vacant land that runs underneath I-74. A soil pile was observed east of I-74. A bike trail runs along the south side of this site. This site did not appear on any of the regulatory lists checked for this project.

Sanborn maps from 1886 through 1912 depicted residences. Sanborn maps from 1950 through 1957 depicted residences, a restaurant, a grocer, and a roofing business. Sanborn maps also depicted a bridge crossing over this site. Sanborn maps from 1967 through 1970 depicted this site as vacant with the current I-74 bridge. Aerial photographs from 1938 through 1970 depicted residences and commercial buildings. Aerial photographs from 1980 and later depicted the site as vacant with a grassy appearance and bridge. City directories either listed individual names or had no listings for this site prior to 1939 within the historical address range for this site. City directories from 1945 through 1958 listed a roofing company, Eagle Signal Company, a traffic control device manufacturer, in 1945, and listed a grocer from 1953 through 1970 within the historical address range for this site. In 1970 through 1997 city directories, no listings were found.

In two boreholes completed at this site for ISGS #1314 in 2002, no VOCs were detected. In a soil sample collected from this site in 2002 for ISGS #1314, no PAHs were detected. See ISGS #1314 for details.

In seven of eight boreholes completed at this site for PSI Weston #8 work order #40 in 2014, VOCs, SVOCs, and metals were detected in soil and/or groundwater. See PSI Weston #8 work order #40 for details.

Potential hazards associated with manufacturing include metals, cutting oils, lubricants, solvents, and cutting fluids.

No visual evidence of stressed vegetation, pits or depressions, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

No data gaps were identified at this site.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Potential former chemical use; VOCs, SVOCs, and metals detected in previous PSI testing.

The following de minimis condition was identified at this site: Soil pile.

Site 1314V3-17 (1314-12, 1314V-14, 2708-67, 1314V2-16). Parking lot, 300 block of 19th Street, Moline (southeast corner of 19th Street and River Drive; no stationing provided; Attachment 2, page 3). This site is occupied by a parking lot. No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed to the east and west of this site, and it is likely that a pipeline passes through this site as well. This site did not appear on any of the regulatory lists checked for this project.

Sanborn maps from 1886 through 1898 depicted residences at this site. Sanborn maps from 1906 depicted a machine shop on the east side of the site and residences on the remainder. Sanborn maps from 1912 depicted a railroad depot on the south side of the site, a machine shop on the northeast corner of the site, and residences along River Drive. On the 1938 through 1970 aerial photographs, two commercial buildings, one similar to the depot building depicted on the 1912 Sanborn map, and residences were shown. The 1950 through 1970 Sanborn maps depicted the same commercial buildings, labeled a machine shop on the northeast side of the site, offices in the depot building on the south side of the site, and residences on the northwest side of the site. Aerial photographs from 1980 through later depicted a parking lot.

City directories from 1891 through 1906 listed individual names in the historic address range for this location. City directories from 1911 through 1917 listed Moline Tool in the historic address range for this location. City directories from 1917 through 1958 listed a railroad freight depot in the historic address range for this location. City directories from 1925 through 1939 listed a sheet metal works within the historical address range for this site. City directories from 1953 through 1965 listed an elevator equipment company in the historic address range for this location. City directories from 1953 through 1965 listed a trucking company within the historical address range for this site. In city directories from 1965 through 2011, no listings were found.

Potential hazards associated with metal working and machining include VOCs and metals. Historic trucking companies commonly conducted auto repairs on the premises. Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s).

In two soil samples collected at this site for PESA #1314, no metals or PCBs were detected. See PESA #1314 for details. In two of two boreholes completed at this site for PSI Weston #8 work order #40 in 2014, VOCs, SVOCs, and metals were detected in soil and/or groundwater. See PSI Weston #8 work order #40 for details.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- No natural gas pipeline markers were observed at this site. However, natural gas pipeline markers were observed to the east and west of this site, and it is likely that a pipeline passes through this site as well.
- The status and location of any undocumented UST(s) at this site are unknown.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Potential former chemical use; VOCs, SVOCs, and metals.

The following de minimis condition was identified at this site: Likely natural gas pipeline.

Site 1314V3-18 (1314-8, 1314-9, 1314-10, 1314-13, 1314V-8, 2708-65, 1314V2-17), Vacant land, 1900-2100 blocks of River Drive, Moline (south side of River Drive between 19th Street and 22nd Street; approximate River Drive station 3015+00 RT; Attachment 2, page 3). This site is occupied by vacant grassy land and extends beneath I-74. Three natural gas pipeline markers were observed along the north side of this site. A natural gas pipeline crosses this site in an east-west direction. This site did not appear on any of the regulatory lists checked for this project.

Sanborn maps from 1886 through 1898 depicted a foundry and a machine shop on the east side of the site and residences on the remainder. The date of first development of this site is unknown. Sanborn maps from 1906 depicted a foundry and machine shop on the east side of the site and a machine shop and warehouse on the west side of the site. Sanborn maps from 1912 depicted a railroad freight depot on the south side of the site, a machine shop on the northwest side of the site, and a freight depot with a railyard on the east half of the site. On the 1938 through 1970 aerial photographs, three commercial buildings were shown on the northwest and south sides of the site and a gasoline station on the north side of the site. The 1950 through 1957 Sanborn maps depicted the same buildings, labeled an elevator bucket manufacturer, a freight house, and a coal yard and gasoline station. Three USTs were depicted approximately 94 m (310 ft) west of 22nd Street and 15 m (50 ft) south of River Drive. The status of these USTs are unknown. On the 1967 through 1970 Sanborn maps, only the bucket manufacturer and railyard was labeled. Aerial photographs from 1980 and later depicted vacant grassy land at this location.

City directories from 1905 listed Moline Pump Company in the historic address range for this location. City directories from 1911 through 1917 listed Interstate Motor Freight Systems in the historic address range for this location. City directories from 1940 through 1955 listed a gasoline station in the historic address range for this location. City directories from 1945 through 1975 listed a freight business, a roofing company, and a trucking company in the historic address range for this location. In 1975 through 2014 city directories, no listings were found.

No UST information was available from the Moline Fire Department for this site. In one of eight boreholes completed at this site for ISGS #1314 in 2002, VOCs were detected. In two soil samples collected from this site in 2002 for ISGS #1314, no metals were detected. See ISGS #1314 for details. In six of ten

boreholes completed at this site for PSI Weston #8 work order #40 in 2014, SVOCs and metals were detected in soil and/or groundwater. See PSI Weston #8 work order #40 for details.

Potential hazards associated with foundries include metals and VOCs. Potential hazards associated with metal working and machining include VOCs and metals. Historic trucking companies commonly conducted auto repairs on the premises. Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s).

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The date of first development is unknown.
- The status of the UST depicted on Sanborn maps is unknown.
- The status and location of any undocumented UST(s) at this site are unknown.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Potential UST(s); potential former chemical use; VOCs, SVOCs, and metals detected in previous ISGS and PSI testing.

The following de minimis condition was identified at this site: Natural gas pipeline.

Site 1314V3-21 (1314-12, 1314-16, 1314V-13, 2708-60, 1314V2-20). BNSF Railroad, 1900-2200 blocks of 4th Avenue, Moline (north side of 4th Avenue between 18th Street and 23rd Street; approximate 4th Avenue stations 402+00 to 410+00 LT; Attachments 3 and 13). This site is occupied by a railroad and a short spur at 23rd Street. Three signal boxes were observed, one east of 19th Street, one north of the railroad on an alignment with 22nd Street, and one west of 23rd Street. The 22nd Street box also had a battery box associated with the signal box. This site did not appear on any of the regulatory lists checked for this project.

On the 1886 through 1970 Sanborn maps, and on the 1938 and late aerial photographs, a railroad track was present at this site. The date of first development is unknown.

Information in IEPA files for Site 1314V3-30 (IEPA #1610455193) pertained to this site. Huff & Huff conducted Tier 2 modeling that predicted that impacted groundwater had the potential to migrate from Site 1314V3-30 onto this site. No testing was conducted on this site, and the status of any potentially impacted groundwater is unknown. On December 20, 2006, IEPA issued a NFR letter for IEPA #1610455193 (Site 1314V3-30) with an AUL that included notification of potentially affected property owners (Attachment 18). This site was required to be notified. No notification letters were present in IEPA files. See Site 1314V3-30 for further details.

Potential hazards associated with railroad signal and battery boxes include batteries and metals.

In one of two soil samples collected at this site for ISGS #1314 in 2002, PCBs were detected. No metals were detected in two soil samples. See ISGS #1314 for details.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground),

pumps or dispensers, protruding pipes, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gap was identified at this site:

- The date of first development is unknown.
- The status of potentially impacted groundwater is unknown.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Railroad signal and battery boxes; potentially impacted groundwater; PCBs detected in previous ISGS testing.

No de minimis conditions were identified at this site.

Site 1314V3-24 (1314-14, 1314-18, 1314-20, 1314-22, 1314-24, 1314-25, 1314-K, 1314-S, 1314-D, 1314V-G, 2708-G7, 2708-Q, 2708-X, 1314V2-23), John Deere, 400 19th Street, Moline (southeast corner of 4th Avenue and 19th Street; no stationing provided; Attachment 2, page 4). This site is occupied by an office building, a parking lot, an utility building west of I-74, and a large parking lot and commercial building east of I-74. Five protruding pipes, which had the appearance of vent pipes, were observed on the northeast corner of the office building; however, it could not be verified if USTs were present at this location. At least one vent pipe is associated with a natural gas utility. A generator with a diesel AST underneath was also observed on the northeast side of the building. MW-1, MW-2, MW-2A, MW-3A, MW-3A, MW-4, MW-99-1, MW-99-4, and MW-99-6 on Attachment 15 were not present during fieldwork for this project. Four pad- transformers were observed along the east side of the east parking lot. Inside the storage building on the south parking lot, two chemical containers with unknown contents were observed.

Due to the complexity of the history of this site, the site history section is divided into three areas: the office building; the parking area and storage building to the south of the office building; and the utility building and parking area to the east of the office building.

Office building:

Sanborn maps from 1886 through 1912 depicted residences and a different office at this site. The date of first development is unknown. Aerial photographs from 1938 and later depicted the current building. Sanborn maps from 1950 through 1970 depicted the same current building, labeled John Deere offices. City directories from 1891 through 1925 listed individual names. City directories from 1932 through 2014 listed John Deere at this location.

South parking area and storage building:

Sanborn maps from 1886 through 1912 depicted residences at this site. The date of first development is unknown. Aerial photographs from 1938 through 2011 depicted two different commercial buildings on the west side. Sanborn maps from 1950 depicted the same commercial buildings, labeled a garage, a restaurant, and stores in one of the buildings, and two gasoline stations (one at the northeast corner of 19th Street and 5th Avenue and one at the northwest corner of 20th Street and 5th Avenue). A total of seven USTs were depicted at this location: three gasoline USTs were located approximately 15 m (50 ft) east of 19th Street and 27 m (90 ft) north of 5th Avenue; one UST was located approximately 38 m (125 ft) east of 19th Street and in the 5th Avenue ROW; and three gasoline USTs were located along the north side of 5th Avenue approximately 91 m (300 ft) east of 19th Street. The status of these USTs is unknown. Sanborn maps from 1957 through 1970 depicted the same commercial buildings, labeled a dry cleaning shop, a gasoline station, and a garage. Only one UST was depicted in the 5th Avenue ROW. The status

of this UST is unknown. Aerial photographs from 1958 through 2014 depicted a small utility building on the south side of the parking lot in addition to the other commercial buildings.

City directories from 1891 through 1925 listed either individual names or had no listings for this area. City directories from 1932 through 1992 listed various commercial occupants were listed in the historic address ranges for this site, including a gasoline station (1932 through 1953), an auto repair shop (1958), a second gasoline station (1945 through 1965) and an auto repair shop (1958 through 1965). No potential hazards were identified in association with any other occupants. In the 1997 through 2014 city directories, no listings were found.

East parking area and building:

Sanborn maps from 1886 through 1912 depicted the Barnard and Lea Manufacturing Company at this site, with a foundry and machine shop on the north side and a lumber yard on the south side. The date of first development is unknown. Aerial photographs from 1938 through 1970 depicted commercial buildings. Sanborn maps from 1950 through 1957 depicted the same buildings, labeled Zephyr Laundry Machine Co., a unspecified commercial building and a restaurant. A gasoline station was also depicted at the northeast corner of 20th Street and 5th Avenue with three USTs depicted approximately 91 m (300 ft) west of 21st Street and 38 m (125 ft) north of 5th Avenue. Sanborn maps from 1967 through 1970 labeled the buildings as containing a used auto sales business at the northwest corner of 21st Street and 5th Avenue, a gasoline station at the northeast corner of 20th Street and 5th Avenue, with the same three USTs depicted. The status of these USTs is unknown. A laundry machine factory was also depicted. Aerial photographs from 1980 and later depicted the current parking area.

City directories from 1891 through 1925 listed Barnard and Lea. In the 1932 through 1977 city directories, numerous commercial occupants were listed in the historic address ranges for this site, including some with generic names, including a gasoline station (1932 through 1939), a foundry (1939), a second gasoline station (1945 through 1965), an auto parts warehouse (1953 through 1965), and an auto sales business (1953 through 1977). No potential hazards were identified in association with any other occupants. In the 2004 through 2014 city directories, no listings were found.

No information was available from the Moline Fire Department concerning USTs at this site.

The following information has been modified from ISGS #2708:

During a site inspection, a building was observed directly east of the 5-story building along the south side of 4th Avenue that housed what appeared to be several large generators. Three ASTs all labeled "diesel" were present next to the west side of this building.

The ASTs were not observed during fieldwork for this project. The status of these ASTs are unknown.

Under the name "Mikes Auto" and the address "428 19th St", this site appears on the BOL list (IEPA #1610455138). Under the name "Orvil Union 76" and the address "428 19th Street", this site appears on the LUST list (IEMA #942422). Under the name "Former Orvil Union 76" and the address "428 19th Street", this site appears on the UST list (OSFM #3015497) with five registered USTs. According to OSFM files, one used-oil UST and three gasoline USTs were removed in 1994, and one heating-oil UST was removed in 2012. The four USTs removed in 1994 were located approximately 16 m (52 ft) east of 19th Street and 38 m (125 ft) north of 5th Avenue. See IEMA #942422, below, for a discussion of the USTs. No information regarding the location of the heating- oil UST was present in OSFM files, and its former location is unknown.

According to IEPA files, in October 1994, three gasoline USTs and one used-oil UST were removed from this site. Evidence of a release was observed, and IEMA #942422 was issued. A site investigation was conducted by Geotechnical Services, Inc. (GSI) that determined only the gasoline UST and not the used-oil UST had leaking. Soil and groundwater samples collected from the excavation and surrounding area were analyzed for BTEX. BTEX was detected in both the soil and groundwater above IEPA objectives in

effect at that time. Water was encountered in these borings between 3.1 and 4.1 m (10.3 and13.3 ft), and groundwater flow direction was toward the southwest beneath 19th Street and toward the southeast beneath 5th Avenue. Additional site activities were completed in 1996 including the installation of four monitoring wells (MW-1 through MW-4 on Attachment 15). These monitoring well were not present during the fieldwork for this project. BTEX and metal were detected above TACO Tier 1 Class I GROs at the north, south, and west property lines. In 1999, three on-site monitoring wells (MW-99-1, MW-99-4, and MW-99-6) were installed, one off-site monitoring well (MW-99-2) was installed at Site 1314V3-23, and one off-site monitoring well (MW-99-3) was installed Site 1314V3-22. MW-99-1, MW-99-4, and MW-99-6 were not present during fieldwork for this project. BTEX and PAHs was not detected above TACO Tier 1 Class I GROs in any of the off-site wells. Soil samples were not collected at these off-site locations. During the most recent soil and groundwater sampling events in 2000, only BTEX was detected above TACO Tier 1 industrial/commercial SROs, and BTEX and lead were detected above TACO Tier 1 Class I GROs. Attachment 13 depicts the estimated extent of impacted soil, and Attachment 14 depicts the estimated extent of impacted groundwater.

GSI developed Tier 2 objectives and conducted Tier 2 modeling to determine that impacted impact was likely to migrate offsite. Attachment 15 depicts the modeled extent of impacted groundwater. GSI proposed to manage residual impact through AULs, and a HAA with the City of Moline. On September 12, 2003, municipal HAA was executed with the City of Moline for the 19th Street and 5th Avenue ROWs, and the alley north of the site (see page 10 of Attachment 16 for the area of the HAA). The agreement area for this HAA adjoins Sites 1314V3-22, 1314V3-23, 1314V3-31, 1314V3-32, and 1314V3-33. Based on this information, on May 3, 2005, IEPA issued an NFR letter for IEMA #942422 with the following AULs: a worker safety plan, an engineered barrier in the form a concrete slab, a HAA maintained with the City of Moline, a groundwater use restriction, and notification of potentially affected property owners (Attachment 16). No notification letters were present in IEPA files. No further information was available in IEPA files regarding IEMA #942422.

Under the name "Tag Enterprises" and the address "1909 5th Ave", this site appears on the BOL list (IEPA #1610455236). According to IEPA files, in 2002, Tag Enterprises registered with IEPA as a generator of unspecified wastes. No further information was present in IEPA files regarding IEPA #1610455236.

Under the name "Deere and Co" and the address "400 19th St", this site appears on the active RCRA list (USEPA #ILR000063875). Under the name "Deere & Co." and the address "400 19th Street", this site appears on the BOL list (IEPA #1610455119). According to IEPA files, in 1999, Deere & Company registered with USEPA and IEPA as a generator of less than 100 kg/mo (220 lb/mo) of ignitable waste. From 2009 through 2011 the site was permitted by USEPA as a nonhazardous special waste generator. No further information was present in IEPA files regarding IEPA #1610455119.

Under the name "Deere and Company" and the address "400 19th Street", this site appears on the IEMA non-LUST list (IEMA #1982197). According to IEMA records, a release of 2,495 kgs (5,500 lbs) of Halon 1301 occurred on September 3, 1998, due to an accidental triggering of a fire protection system. Halon is a gas and was released into the atmosphere. No further information was present in IEMA files regarding IEMA #1982197.

Information in IEPA files for Site 1314V3-31 (IEPA #1610455194) pertained to this site. In response to LUST events at Site 1314V3-31, one monitoring well was installed at this site (MW17 on Attachment 19) and groundwater samples were analyzed for BTEX. No groundwater samples from this location exceeded TACO Tier 1 Class I GROs. This monitoring well was not present during fieldwork for this project. See Site 1314V3-31 for further details.

Potential hazards associated with dry cleaning businesses include VOCs. Potential hazards associated with foundries include acids, metals, and VOCs. Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s).

In four of fifteen boreholes completed at this site for ISGS #1314 in 2002, VOCs were detected. In a soil sample collected from this site in 2002 for ISGS #1314, metals were detected. See ISGS #1314 for details.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, pumps or dispensers, pipelines, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The presence of USTs is unknown.
- The contents of the chemical containers are unknown.
- The date of first development is unknown.
- The status of the USTs depicted on Sanborn maps is unknown.
- The location of the former heating-oil UST is unknown.
- The status and location of any undocumented UST(s) at this site are unknown.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in these buildings.

The following RECs were identified at this site: Former USTs with a documented release; potential UST(s); AST; former ASTs; former monitoring wells; evidence of chemical use; chemical containers; air release; impacted soil and groundwater; HAA; VOCs and metals detected in previous ISGS testing.

The following de minimis conditions were identified at this site: Transformers; potential ACM and lead paint.

Site 1314V3-25 (1314-15, 1314V-15, 2708-63, 1314V2-24). Sivyer Steel Corp., 400 21st Street, Moline (south side of 4th Avenue between 19th and 22nd Street; approximate station 405+00 RT of 4th Avenue; Attachment 2, page 4). This site is occupied by a metal machine shop. Two 208-liter (55-gallon) drums with unknown contents were observed along the west side of the building. A pad-mounted transformer was observed near the south side of the building.

The following information has been modified from ISGS #1314V:

A site inspection revealed the presence of multiple 208-liter (55-gallon) drums that were visible in a garage bay near the west side of the building, and three more sealed drums on a pallet outside the west side of the building. Dark stains on the pavement were present around the trash dumpsters located near the intersection of 21st Street and the alley running along the south side of the building.

These drums and stains were not observed at this site during fieldwork for this project.

Sanborn maps from 1886 depicted a foundry on the northwest side of this site with the remainder of the site not depicted. The date of first development is unknown. Sanborn maps from 1892 through 1906 depicted residences on the middle and eastern parts of the site, and the same foundry at the northwest corner of the site. Sanborn maps from 1912 depicted industrial buildings associated with the foundry over the entire site. Aerial photos from 1938 and later depicted industrial buildings at this site, and Sanborn maps from 1960 through 1970 depicted the same buildings, labeled a laundry machine factory. City directories from 1891 through 1898 either listed individual names or had no listing for this site. City directories from 1905 through 1925 listed Barnard and Leas Manufacturing, a foundry. City directories from 1953 through 1965 listed a laundry machine manufacturer. In the 1971 through 1982 city directories,

no listings were found. City directories listed Sivyer Steel in 1987 through 1997. In the 2004 through 2014 city directories, no listings were found.

Under the name "Riverside Products Division" and the address "400 21st Street", this site appears on the BOL list (IEPA #1610455040). According to IEPA files, in 1998, Riverside Products registered with IEPA as a generator of unspecified wastes. No further information was present in IEPA files regarding IEPA #1610455040.

In two of three boreholes completed at this site for ISGS #1314 in 2002, VOCs were detected. In a soil sample collected at this site for ISGS #1314 in 2002, no metals were detected. See ISGS #1314 for details.

Potential hazards associated with foundries include acids, metals, and VOCs. Potential hazards associated with metal working and machining include metals and VOCs.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, monitoring wells, solid waste, non- petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The contents of the drums are unknown.
- The date of first development is unknown.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

The following RECs were identified at this site: Drums; former drums; evidence of chemical use; VOCs detected in previous ISGS testing.

The following de minimis conditions were identified at this site: Transformer; potential ACM and lead paint.

Site 1314V3-26 (1314-26, 1314V-16, 1314V2-25). Commercial building, 2101 5th Avenue, Moline (northeast corner of 5th Avenue and 21st Street; no stationing provided; Attachment 2, page 4). This site is occupied by a vacant commercial building. A pole-mounted transformer was observed along the north side of the building. This site did not appear on any of the regulatory lists checked for this project.

Sanborn maps from 1892 through 1912 depicted a residence. The date of first development is unknown. Aerial photographs from 1938 depicted a residence. Aerial photographs from 1958 and later depicted the current commercial building and Sanborn maps from 1957 through 1970 depicted the same commercial building, labeled an automobile sales and service business. City directories from 1915 through 1958 listed individual names. City directories from 1959 through 1977 listed an automobile dealership. City directories from 1982 through 2011 listed a building contractor. In 2014 city directories, no listings were found.

During interviews for ISGS #1314V in 2011, the owner stated that a used-oil UST had been removed from an area near the northeast corner of the building.

In three boreholes completed at this site for ISGS #1314 in 2002, no VOCs were detected. See ISGS #1314 for details.

Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s).

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The date of first development is unknown.
- The status and location of any undocumented UST(s) at this site are unknown.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

The following RECs were identified at this site: Former UST; potential UST(s); potential former chemical use.

The following de minimis conditions were identified at this site: Transformer; potential ACM and lead paint.

Site 1314V3-32 (1314-19, 1314V2-29). Commercial buildings, 1900 5th Avenue, Moline (southeast corner of 5th Avenue and 19th Street, no stationing provided, Attachment 2, page 5). This site is occupied by a vacant commercial building on its north side, a parking lot at its southwest corner, and another commercial building at the southwest corner. An AST vent and fill pipe with staining on the surrounding pavement was observed exiting the southeast corner of the north building. A pole-mounted transformer was also observed on the southeast corner of the north building.

During interviews for ISGS #1314 in 2002, a used-oil AST was documented inside the building at the corner of the current fill and vent pipe. This AST was not observed during fieldwork for this project, and its status is unknown.

Sanborn maps from 1886 depicted a different commercial building on the south side of the site and residences on the north side of this site. The date of first development is unknown. Sanborn maps from 1892 through 1912 depicted residences. Aerial photographs from 1938 through 1994 depicted the current commercial building on the north side of the site and residences on the south side. Sanborn maps from 1950 through 1970 depicted the same commercial building, labeled a gasoline station and automobile greasing station, on the north side of the site and residences on the south side. Two USTs were depicted on the 1950 through 1957 Sanborn maps, located approximately 12 m (40 ft) south of 5th Avenue and 12 m (40 ft) east of 19th Street. The status of these USTs are unknown. Aerial photographs from 1998 and later depicted the current commercial buildings. City directories from 1891 through 1925 listed individual names. City directories from 1932 through 2004 listed various gasoline stations and automobile service businesses. During fieldwork for ISGS #1314V2 in 2013, this site was occupied by an auto service business.

Under the name "Firestone Garage" and the address "1900 S 5th Ave", this site appears on the UST list (OSFM #3029118) with two registered USTs. According to OSFM files, two kerosene USTs were removed in March 1991. UST removal documents indicated that no evidence of a release was observed in the UST pit. No location information was found in OSFM files; however, Mike, former owner of Mike's Automotive and Towing, during an interview in 2002, stated that the USTs were formerly located along the north side of the building. The center of the area Mike indicated was located approximately 29 m (95

ft) east of 19th Street and 11 m (36 ft) south of 5th Avenue. No further information was present in OSFM files regarding OSFM #3029118.

Under the name "Precision Auto Care" and the address "1900 5th Ave", this site appears on the active RCRA (USEPA #IL0000378752) and BOL lists (IEPA #1610455072). According to IEPA files, in 1994, Precision Auto Care registered with USEPA and IEPA to generate between 100 and 1,000 kg/month (220 and 2,200 lbs/month) of ignitable wastes. An IEPA compliance inspection was conducted on June 26, 1997. The inspection indicated that waste materials generated by this facility were used oil, used antifreeze, and hazardous material related to waste paint. Minor violations were corrected at the time of the inspection. An RCRA inspection was conducted by IEPA in August 2012. Violations noted during the inspection concerned failure to send waste storage notifications to the IEPA, failure to label a waste-oil AST, and failure to post notices regarding waste tire handling. This AST was not observed during fieldwork for this project, and its status is unknown. In September 2012, the violations had been corrected. No further information was present in IEPA files regarding IEPA #1610455072.

Information in IEPA files for Site 1314V3-24 (IEPA #1610455138) pertained to this site. On September 12, 2003, a municipal HAA was executed with the City of Moline for the 5th Avenue ROW adjoining this site, in response to LUST events at 1314V3-24. See Attachment 16, page 10 for the area covered by the HAA. See Site 1314V3-24 for further details.

No information was available from the Moline Fire Department concerning USTs at this site.

In three boreholes completed at this site for PESA #1314 in 2002, no VOCs were detected. See PESA #1314 for details.

Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s).

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, pipelines, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The date of first development of the site is unknown.
- The status of the UST depicted on Sanborn maps is unknown.
- The AST mentioned in IEPA files was not observed, and its status is unknown.
- The status and location of any undocumented UST(s) at this site are unknown.

The buildings on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in these buildings.

The following RECs were identified at this site: Former USTs; potential UST(s); potential AST(s); evidence of former chemical use; protruding pipes; HAA.

The following de minimis conditions were identified at this site: Transformer; potential ACM and lead paint.

Site 1314V3-33 (1314-21, 1314V-17, 1314V2-30, 1314V2-31). Parking lot, 1900 block of 5th Avenue, Moline (south side of 5th Avenue between 19th Street and 21st Street; no stationing provided;

Attachment 2, page 5). This site is occupied by a parking lot. Three pole-mounted transformers were observed along the south side of this site.

Sanborn maps from 1886 through 1912 depicted residential buildings, with a print shop depicted near the center of this site in 1898. The date of first development is unknown. Aerial photographs from 1938 depicted residences on the west side of the site and a commercial building on the east side of the site. Aerial photographs from 1958 through 1970 depicted two commercial buildings on the west side of the site and a gasoline station on the northeast corner. Sanborn maps from 1950 through 1970 depicted the same commercial buildings, labeled as containing a store and a gasoline station and auto service business. Three USTs were depicted on 1950 through 1970 Sanborn maps, located approximately 99 meters (325 feet) east of 19th Street and 12 meters (40 feet) south of 5th Avenue. The status of these USTs are unknown. Aerial photographs from 1988 through 2014 depicted a commercial building and a vacant gravel lot. City directories from 1891 through 1939 listed individual names within the historical address range of this site. City directories from 1945 through 1965 listed residences and an automobile parts business within the historical address range of this site. City directories from 1953 through 1965 listed a grocery store. In the 1971 through 1977 city directories, no listings were found. In the 1982 through 1997 city directories, Berry Bearing (a ball bearing distributor) was listed. In the 2004 through 2014 city directories, no listings were found. During fieldwork for ISGS #1314V2 in 2013, this site was occupied by a vacant building and a vacant gravel-covered lot. Aerial photographs from 2015 depicted the current parking lot.

Under the names "Berry Bearing Building", and the address "1908-1920 5th Avenue", this appears on the USEPA Brownfields list associated with the City of Moline (Property ID 11328). According to Brownfields records, in 2010, a Phase II assessment was completed at this site detected VOCs, SVOCs, and PAHs in the soil and groundwater. No further information regrading this site was present in Brownfields records.

Under the names "O'Rourke Building" and the address "1909 5th Avenue", this appears on the USEPA Brownfields list associated with the City of Moline (Property ID 59361). According to Brownfields records, in 2007-2008, Phase I and Phase II assessments detected VOCs and SVOCs in the groundwater. No further information regrading this site was present in Brownfields records.

Under the names "Villareal Building", and the address "1919 5th Avenue", this appears on the USEPA Brownfields list associated with the City of Moline (Property ID 59381). According to Brownfields records, in 2007-2009, Phase I and Phase II assessments detected "other contaminants" in the groundwater. No further information regrading this site was present in Brownfields records.

Under the name "Skills, Inc." and the address "1946 5th Avenue", this site appears on the LUST (IEMA #20100458) and BOL lists (IEPA #1610455289). According to IEPA files, the LUST incident actually occurred at 1146 5th Avenue, which is located approximately 1 kilometer (0.6 miles) west of the project area. The IEPA information for this listing is therefore not included for this report.

Information in IEPA files for Site 1314V3-24 (IEPA #1610455138) pertained to this site. On September 12, 2003, a municipal HAA was executed with the City of Moline for the 5th Avenue ROW adjoining this site, in response to LUST events at 1314V3-24. See Attachment 16, page 10 for the area covered by the HAA. See Site 1314V3-24 for further details.

The following information has been modified from ISGS #1314:

A magnetometer survey was conducted in July 2002. Three magnetic anomalies were detected. The first anomaly centered on a point approximately 40 m (131 ft) west of I-74 and 26 m (85 ft) south of 5th Avenue. The second anomaly centered on a point approximately 25 m (82 ft) west of I-74 and 11 m (36 ft) south of 5th Avenue. The third anomaly, the largest of the three, was centered on a point approximately 16.5 m (54 ft) west of I-74 and 14.5 m (48 ft) south of 5th Avenue.

It is unknown if the detected anomaly is associated with an UST, and its status is unknown.

No information was available from the Moline Fire Department concerning USTs at this site.

In one of four boreholes completed at this site for ISGS #1314 in 2002, VOCs were detected. See ISGS #1314 for details.

Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s). Potential hazards associated with print shops include VOCs and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The date of first development of the site is unknown.
- The status and location of any undocumented UST(s) at this site are unknown.
- It is unknown if the detected anomaly is associated with an UST, and its status is unknown.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following RECs were identified at this site: Potential UST(s); potential former chemical use; presence on LUST and BOL lists (however see above); impacted soil and groundwater; HAA; VOCs detected in previous ISGS testing.

The following de minimis condition was identified at this site: Transformers.

Site 1314V3-56 (1314-31, 1314V2-54). Commercial building, 604-610 19th Street, Moline (southeast corner of 19th Street and 6th Avenue; approximate 6th Avenue station 6001+00 RT; Attachment 2, page 6). This site is occupied by office space, an insurance company, and a chiropractor (see address table for listings). This site did not appear on any of the regulatory lists checked for this project.

On the 1892 through 1912 Sanborn maps, several residences were present at this site. The date of first development is unknown. On the 1938 through 1970 aerial photographs, and on the 1950 through 1970 Sanborn maps, a gasoline station was depicted with three USTs located approximately 18 m (60 ft) east of 19th Street and 18 m (60 ft) south of 6th Avenue. The status of these USTs are unknown. On the 1980 and later aerial photographs, the current commercial building was present. City directories from 1891 through 1932 listed individual names. City directories from 1939 through 1965 listed a gasoline station. City directories from 1977 through 2014 listed various commercial businesses. No potential hazards were identified in association with any of these occupants.

During site interviews completed for ISGS #1314 in 2002, Mr. Bloomer, the owner of a heating and air-conditioning business located in the old gasoline station part of the building, stated that he acquired the site in 1970. He stated the facility ceased operation as a gasoline station in the 1960s. He further stated that three USTs were removed in 1970. He said the USTs were located at the west edge of the northern end of the building.

In two of three boreholes completed at this site for ISGS #1314 in 2002, VOCs were detected. See ISGS #1314 for details.

Historic gas stations commonly conducted auto repairs on the premises. Potential hazards associated with vehicle repair facilities include waste oil, lubricants, and transmission fluids; spent solvents; waste

paints and thinners; sludge from parts-cleaning tanks; oily sludge from floor sumps; used antifreeze; used lead-acid batteries; and undocumented UST(s).

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The date of first development is unknown.
- The status and location of any undocumented UST(s) at this site are unknown.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

The following RECs were identified at this site: Former USTs; potential UST(s); potential former chemical use; VOCs detected in previous ISGS testing.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 1314V3-57 (1314V-25, 1314V2-55). Old Chamber Building, 622 19th Street, Moline (northeast corner of 19th Street and 7th Avenue; approximate station 7010+00 LT of 7th Avenue; Attachment 2, page 6). This site is occupied by law offices with a parking lot to its east. A pole-mounted transformer was observed near the northeast corner of the site, and a pad-mounted transformer was observed along the southeast corner of the building. This site did not appear on any of the regulatory lists checked for this project.

On the 1906 through 1950 Sanborn maps, and on the 1938 aerial photograph, four residences were present at this site. The date of first development is unknown. On the 1958 through 1970 aerial photographs, a different commercial building was depicted on the west side of the site and residences on the east side of the site. On the 1957 through 1970 Sanborn maps, the commercial building is labeled offices. Aerial photographs from 1980 and later depicted the current building and parking lot. City directories from 1891 through 1945 listed individual names. The 1953 through 1971 city directories listed various commercial businesses. Occupants with potential hazards included a painting business (1958). City directories from 1975 through 2004 listed the Chamber of Commerce. City directories from 2014 listed law offices.

Potential hazards associated with paint businesses include VOCs and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gap was identified at this site:

The date of first development is unknown.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and

furnace insulation. Lead paint was banned for residential use in the United States in 1978, but has not been banned for industrial and commercial use. Therefore lead paint may be present in this building.

The following REC was identified at this site: Potential former chemical use.

The following de minimis conditions were identified at this site: Transformers; potential ACM and lead paint.

Site 1314V3-59 (1314-32, 1314V-23, 1314V2-57). Residence, 1924 6th Avenue, Moline (south west corner of 6th Avenue and I-74; approximate 6th Avenue station 6002+50 RT; Attachment 2, page 6). This site is occupied by a single-family residence. This site did not appear on any of the regulatory lists checked for this project.

On the 1912 Sanborn map, a different residence was depicted, with an UST mapped approximately 41 m (135 ft) south of 6th Avenue and 76 m (250 ft) east of 19th Street. The status of this UST is unknown. The date of first development is unknown. On the 1938 and later aerial photographs, and on the 1950 through 1970 Sanborn maps, the current residence was present.

No UST information was available from the Moline Fire Department for this site.

In two boreholes completed at this site for ISGS #1314 in 2002, no VOCs were detected. See ISGS #1314 for details.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gaps were identified at this site:

- The status of the UST depicted on Sanborn maps is unknown.
- The date of first development is unknown.

The building on this site may contain friable asbestos-containing materials as a component of floor tiles, wall and pipe insulation, roof materials, patching or painting compounds, ceiling materials, or stove and furnace insulation. Evidence from aerial photographs indicates that this residence was constructed before 1978. Lead paint was banned for residential use in the United States in 1978, and therefore lead paint may be present in this building.

The following REC was identified at this site: Potential UST.

The following de minimis conditions were identified at this site: Potential ACM and lead paint.

Site 1314V3-60 (1314V-24, 1314V-26, 1314V2-58, 1314V2-59). Vacant lot, 2000 block of 6th Avenue, Moline (southwest corner of 6th Avenue and 21st Street; approximate 6th Avenue station 6006+00 RT; Attachment 2, page 6). This site is occupied by a vacant gravel lot. Remnants of an asphalt parking lot were observed on its south side. This site did not appear on any of the regulatory lists checked for this project.

On the 1912 through 1970 Sanborn maps, residences and a funeral home were depicted. The date of first development is unknown. Aerial photographs from 1938 through 1980 depicted the same residences and a large residence at the funeral home location. Aerial photographs from 1988 through 2014 depicted a residence at the funeral home location and a single residence on the southwest corner of the site. Aerial photographs from 2015 depicted the current vacant lot. City directories from 1891 through 1917 listed individual names. City directories from 1925 listed a funeral home and residences. City directories from

1939 through 1987 listed a funeral home, a beauty shop, and residences. City directories from 1992 through 2014 listed a funeral home, a florist, and residences. During fieldwork for ISGS #1314V2 in 2013, this site was occupied by a funeral home and a florist.

Potential hazards associated with funeral homes include acids, VOCs, and metals.

No visual evidence of stressed vegetation, pits or depressions, mounding or soil piles, lagoons or surface impoundments, stained soil or pavement, water discoloration, fill, storage tanks (above or underground), pumps or dispensers, protruding pipes, pipelines, drums, monitoring wells, solid waste, transformers, non-petroleum chemical use or storage, or unusual or noxious odors was observed at this site during site inspections by ISGS on May 10, 11, and July 21, 2016.

The following data gap was identified at this site:

The date of first development is unknown.

Because there are no buildings present and no evidence of fill or demolition debris was observed, asbestos-containing materials and lead paint are unlikely to be present at this site.

The following REC was identified at this site: Potential former chemical use.

No de minimis conditions were identified at this site.

B Boring Logs

Illinois Department of Transportation

Geoprobe Boring Log Number: 1314V3-01-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51253580660; W90.51273274030

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/6/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					0 to 6-foot depth
		FILL: Asphalt.			interval soil sample collected for VOC,
Feet		FILL: Black, sandy clay, with trace small gravel and slag, stiff, moist.	75	0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
				0.0	
		FILL: Same as above, but with wood pieces.			
-5 -				0.0	
_			20		6- to 11-foot depth
			4	0.0	interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
		SILTY CLAY: Gray, soft, moist.			analyses.
-				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Page 1 of 2

ОЕРТН	GRAPHIC LOG	Geoprobe Boring Log Number: 1314V3-01-B01 SOIL DESCRIPTION (CONT.)		PID METER UNITS	SOIL INTERVAL COLLECTED FOR LABORATORY ANALYSIS
-10 -	+ + + + + + + + + + + + + + + + + + +	PEAT: Peaty material and coarse sand, dark brown, soft, saturated at 11 feet.	100	0.0	Groundwater sample collected for VOC, SVOC, and total TAL metals analyses.

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Page 2 of 2

Illinois Department of Transportation

Geoprobe Boring Log Number: 1314V3-01-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51228812130; W90.51269057970

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/6/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Asphalt. FILL: Medium gravel, stiff, dry. CLAY: Gray, stiff, with trace pebbles, dry.	100	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - - - -		CLAY: Becomes dark gray, soft and moist.	75	0.0	
		SILTY CLAY: Gray, soft, saturated to moist.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Page 1 of 2

ОЕРТН	GRAPHIC LOG	Geoprobe Boring Log Number: 1314V3-01-B02 SOIL DESCRIPTION (CONT.)	REC. (%)	PID METER UNITS	SOIL INTERVAL COLLECTED FOR LABORATORY ANALYSIS
-10 -			100	0.0	

Page 2 of 2

Geoprobe Boring Log Number: 1314V3-01-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51204848240; W90.51265344780

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

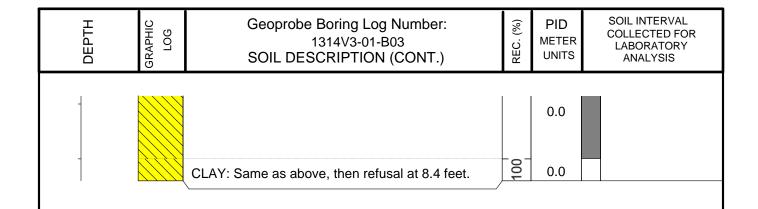
SAMPLING METHOD: Macro Core

DATE DRILLED: 12/6/16
TOTAL DEPTH: 8.4 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.


ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Asphalt. FILL: Black clay, medium gravel, coarse sand, medium stiff, dry.	75	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		FILL: Same as above. CLAY: Dark gray, soft, moist.	50	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-01-B04

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51174732060; W90.51257097000

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/6/16
TOTAL DEPTH: 11.2 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 7		FILL: Asphalt.			0 to 6-foot depth interval soil sample
Feet		FILL: Dark brown clay, black slag, coarse sand and medium gravel, stiff, dry.	100	0.0	collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
_				0.0	analyses.
-5 -		FILL: Same as above.			
		CLAY: Gray and black, stiff, dry.	75	0.0	
			7	0.0	6- to 11.2-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and
-10 -		SILTY CLAY: Gray, medium stiff, moist. Refusal at 11.2 feet.	7	0.0	percent solids analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-01-B05

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51151011300; W90.51236728940

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/6/16
TOTAL DEPTH: 12 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Asphalt. FILL: Brown and black clay, medium gravel and coarse sand, hard, dry.	10	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
			75	0.0	analyses.
-5 -		FILL: Same as above.	100	0.0	6- to 12-foot depth
-		SILTY CLAY: Dark brown, soft, moist. SILTY CLAY: Same as above. Refusal at 12.0		0.0	interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-		feet.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

DEPTH GRAPHIC LOG	Geoprobe Boring Log Number: 1314V3-01-B05 SOIL DESCRIPTION (CONT.)	REC. (%)	PID METER UNITS	SOIL INTERVAL COLLECTED FOR LABORATORY ANALYSIS
-10 -		90	0.0	

Geoprobe Boring Log Number: 1314V3-01-B06

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50755724970; W90.50888611980

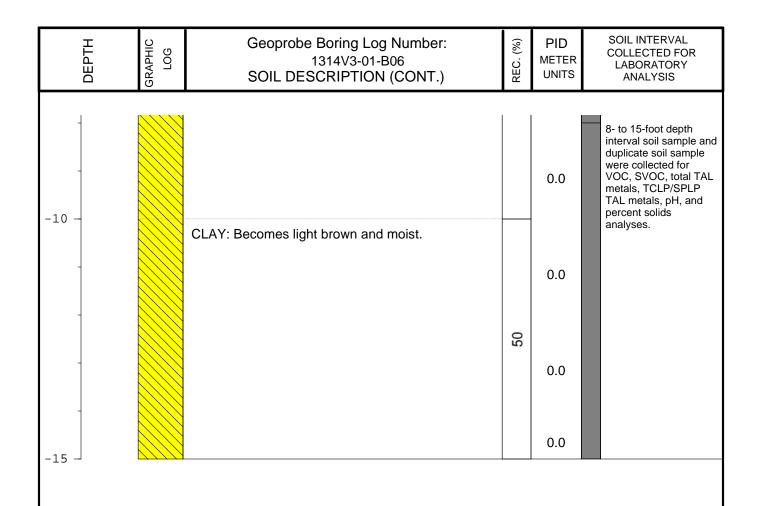
EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/6/16
TOTAL DEPTH: 15 feet

 ── Water level during drilling, if encountered


Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.

REC. (%)	PID Meter	SOIL INTERVAL
RE	Units	COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
		0 to 8-foot depth interval soil sample
	0.0	collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
100	0.0	
	0.0	
100	0.0	
	100	0.0

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-01-B07

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50723023020; W90.50880623970

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/6/16
TOTAL DEPTH: 12 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Leet - 0 - 0 - 0		FILL: Brown, clay with medium gravel, hard, dry.	100	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		FILL: Same as above.	100	0.0	6- to 12-foot depth
		CLAY: Dark brown, stiff, dry.		0.0	interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-10 -		CLAY: Grayish brown, medium stiff, moist.	100	0.0	TAL metals, pH, and percent solids analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-01-B08

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50687508930; W90.50877757390

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/6/16
TOTAL DEPTH: 9 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					
Feet		CONCRETE FILL: Fine sand and gravel, loose, dry.		0.0	0 to 4-foot depth interval soil sample collected for VOC, SVOC, total TAL
		CLAY: Dark brown, medium stiff, dry.	100	0.0	metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-				0.0	
-5 - -		CLAY: Light brown, medium stiff, moist.	100	0.0	4- to 9-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
_			_	0.0	
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-01-B09

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51043651660; W90.50892241250

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

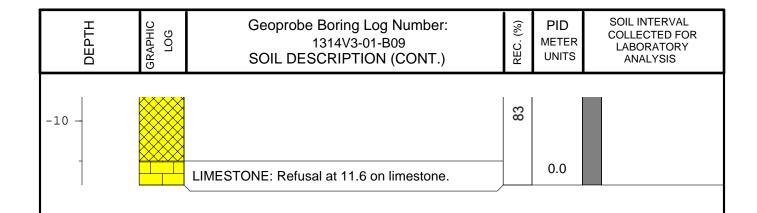
SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 11.6 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.


DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet - 0		TOPSOIL: Black silt, medium, moist FILL: Light brown, silt and very fine sand, with little fine to coarse gravel, stiff, moist.	95	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
		FILL, Come as above		0.0	analyses.
-5 -		FILL: Same as above.	86	0.0	6- to 11.6-foot depth interval soil sample
_		FILL: Dark brown, silt with little fine gravel, medium, moist.		0.0	collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-		FILL: Dark brown and dark gray, silt with little fine to coarse gravel, medium, moist.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-01-B10

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50762912480; W90.50859887150

EQUIPMENT: Stainless Steel Hand Auger

OPERATOR: T. Pachowicz

SAMPLING METHOD: Hand Auger

DATE DRILLED: 12/7/16
TOTAL DEPTH: 6 feet

✓ Water level during drilling, if encountered
 Boring continuously sampled using a hand auger.
 Soil headspace readings conducted at 2-foot intervals.

GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
				O to C foot don'th
	TOPSOIL			0 to 6-foot depth interval soil sample collected for VOC,
	FILL: Brown, clay with small gravel, hard, dry.	100	0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
		100	0.0	
		100	0.0	
	GRAPHIC	TOPSOIL	TOPSOIL FILL: Brown, clay with small gravel, hard, dry. 00	SOIL DESCRIPTION TOPSOIL FILL: Brown, clay with small gravel, hard, dry. 00 0.0 0.0

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-01-B11

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-1, IDOT ROW

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50718299770; W90.50833182370

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

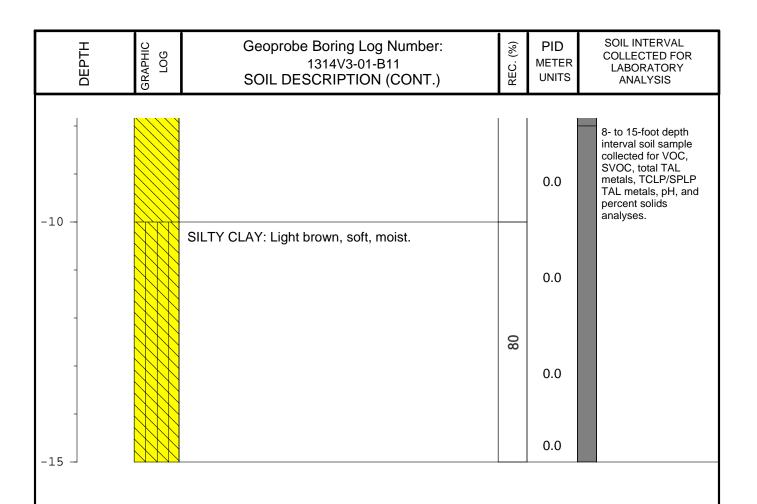
SAMPLING METHOD: Macro Core

DATE DRILLED: 12/5/16
TOTAL DEPTH: 15 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.


ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		TOPSOIL: Black, soft, moist. CLAY: Brown, stiff, dry.	100	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5				0.0	
		CLAY: Grayish brown, medium stiff, moist.		0.0	
			100	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-02-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-2, Mississippi River

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51360663580; W90.50955097100

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

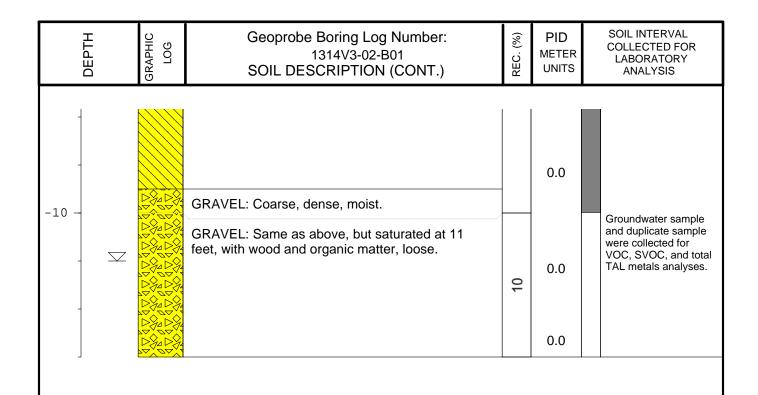
SAMPLING METHOD: Macro Core

DATE DRILLED: 12/8/16
TOTAL DEPTH: 13 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.


ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Small gravel and silty sand, brown, stiff, dry.		0.0	0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
_			100	0.0	analyses.
-5 -		FILL: Same as above, but moist.		0.0	5- to 10-foot depth interval soil sample collected for VOC, SVOC, total TAL
-		CLAY: Gray and black, stiff, moist.	70	0.0	metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-02-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-2, Mississippi River

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51332835730; W90.51093758880

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/8/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 7					0 to 6-foot depth
Feet		FILL: Medium gravel, brown clay, and coarse brown sand, hard, dry.	75	0.0	interval soil sample collected for analyses.
				0.0	
-5 -		FILL: Same as above.			
		SILTY CLAY: Brown, soft, moist.	100	0.0	6- to 12-foot depth
-				0.0	interval soil sample and duplicate soil sample were collected for analyses.
-10 -		SILTY CLAY: Same as above, but with some pebbles and fine brown sand.	75	0.0	
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-04-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-4, City of Moline,

Water Department

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51246330350; W90.51304513450

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/6/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet - 0 - 0		FILL: Asphalt. FILL: Hard, black clay, medium gravel, black slag, and coarse brown sand, stiff, dry.	75	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - -		FILL: Same as above. CLAY: Gray, soft, moist.	75	0.0	6 to 11-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-		SAND AND GRAVEL: Moist, coarse, stiff, saturated at 11 feet.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

DEPTH	907	Geoprobe Boring Log Number: 1314V3-04-B01 SOIL DESCRIPTION (CONT.)	REC. (%)	PID METER UNITS	SOIL INTERVAL COLLECTED FOR LABORATORY ANALYSIS
-10 -			90	0.0	Groundwater sample collected for VOC, SVOC, and total TAL metals analyses.

Geoprobe Boring Log Number: 1314V3-05-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-5, Industrial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51205665480; W90.51040282320

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/9/16
TOTAL DEPTH: 5 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Brown, sandy clay, with trace small gravel, medium stiff, dry.	100	0.0	0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5		FILL: Same as above, obstruction/refusal at 5.0 feet.	100	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-05-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-5, Industrial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51141057760; W90.51185557530 **EQUIPMENT:** E & E Geoprobe 5410

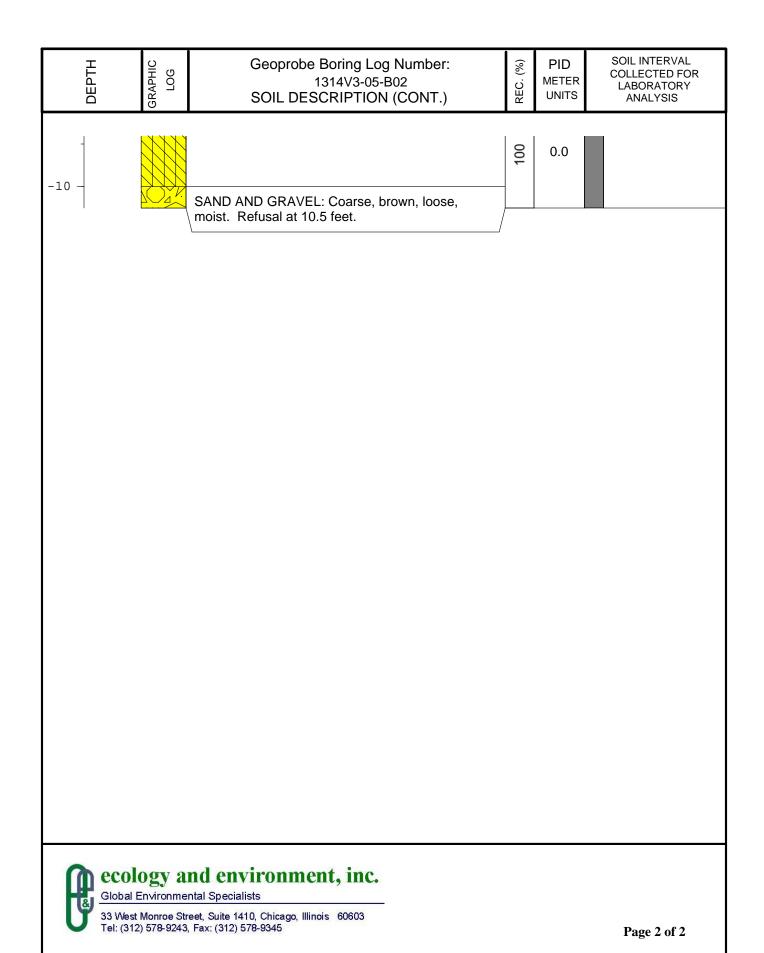
OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/9/16 TOTAL DEPTH: 10.5 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.


GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
	TOPSOIL: Black, stiff, dry. FILL: Brown clay, small gravel and brick fragments, stiff, dry.	100	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
	FILL: Same as above. SILTY CLAY: Brown, stiff, moist.	100	0.0	6- to 10.6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
	GRAPHIC	TOPSOIL: Black, stiff, dry. FILL: Brown clay, small gravel and brick fragments, stiff, dry. FILL: Same as above.	TOPSOIL: Black, stiff, dry. FILL: Brown clay, small gravel and brick fragments, stiff, dry. FILL: Same as above. SILTY CLAY: Brown, stiff, moist.	SOIL DESCRIPTION Meter Units Meter Units

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-05-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-5, Industrial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51117202860; W90.51166865870

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/9/16
TOTAL DEPTH: 5.9 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		TOPSOIL: Black, stiff, dry. FILL: Brown clay, some small gravel, and trace coarse sand, stiff, dry.	100	0.0	0 to 5.9-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		FILL: Same as above. Refusal at 5.9 feet.	50	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-06-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51301282030; W90.51078637880

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/8/16
TOTAL DEPTH: 8 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Dark brown clay, medium gravel, black, coarse sand and slag, medium stiff, dry.	75	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		FILL: Same as above, but with brick.	75	0.0	
		SILTY CLAY: Brown, soft, moist.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-06-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51280071660; W90.51072628060

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/8/16
TOTAL DEPTH: 8 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet - 0		FILL: Brown clay, dark brown, fine sand and small gravel, loose, moist.	50	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		FILL: Same as above.	50	0.0	
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-06-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51251812010; W90.51052603750

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/8/16
TOTAL DEPTH: 4 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Leet -5	FILL: Brown clay, with trace small gravel, hard, dr Refusal at 4 feet on concrete.	y. 100	0.0	0 to 4-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-06-B04

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51212362610; W90.51010861950 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/13/16 TOTAL DEPTH: 5.2 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Leet -		FILL: Tan silt, with little fine to coarse gravel, stiff, moist. FILL: Dark brown loam, with some fine to coarse	88	0.0	0 to 5.2-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, PCB, pH, and percent solids analyses.
-		gravel, soft, moist. FILL: Same as above.		0.0	
-5 -		FILL: Tan, fine sand, loose, moist.	100		
<u> </u>		FILL: Brown silt, with little coarse gravel, stiff, moist. Refusal at 5.2 feet.		0.0	
		nd environment, inc. ental Specialists			
33 W	Vest Monroe St	reet, Suite 1410, Chicago, Illinois 60603 , Fax: (312) 578-9345			Page 1 of 1

Geoprobe Boring Log Number: 1314V3-06-B05

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51183834790; W90.51039704030

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/13/16
TOTAL DEPTH: 8 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Tan, medium sand and medium to coarse gravel, loose, moist. FILL: Black, medium sand and dark gray silty clay, medium, moist. SILT: Dark brown, medium, moist.	73	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, PCB, pH, and percent solids analyses.
-5 - -		SILT: Same as above. SILT: Black to dark gray, soft, moist.	53	0.0	
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-06-B06

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51161958060; W90.51039729200

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/13/16
TOTAL DEPTH: 4 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Leet -		FILL: Brown, silty, medium sand, medium, moist. FILL: Brick. FILL: Tan, sandy, fine to coarse gravel, loose, dry. FILL: Black sand and coarse gravel and weathered asphalt, medium, moist, asphalt odor. NO RECOVERY: Refusal at 4 feet.	50	0.0	0 to 4-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-06-B07

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51153618080; W90.51106658680

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED:

TOTAL DEPTH: 4.3 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Leet Feet	CONCRETE FILL: Dark brown, silt and sand, with trace coarse gravel and glass shards. Refusal at 4.3 on concrete.	56	0.0	0 to 4.3-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-06-B08

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51152180540; W90.51077531580

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/13/16
TOTAL DEPTH: 10 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS			
0 ¬	0							
Feet		FILL: Brown, medium sand, medium, moist.	09	0.0	0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.			
-5 -		FILL: Black, silty, fine sand, with little coarse gravel, loose, moist.		0.0				
-5-		FILL: Same as above.		0.0	5- to 10-foot depth interval soil sample			
-		SILT: Black, medium, moist.	06	0.0	collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.			
-10		SILTY CLAY: Gray to tan, medium, moist.	-	0.0				

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-06-B09

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51164564840; W90.50996713260

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/13/16
TOTAL DEPTH: 2 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

Soil headspace readings conducted at 2-foot intervals.						
ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS	
0 ¬						
		TOPSOIL: Brown, sandy loam, soft, moist.	1		0 to 2-foot depth interval soil sample	
		FILL: Weathered asphalt.			collected for VOC, SVOC, total TAL metals, TCLP/SPLP	
Feet		SILTY SAND: Black, silty, fine sand, with trace coarse gravel and seams of fine tan sand at 1.5 and 1.9 feet, medium, moist.	100	0.0	TAL metals, pH, and percent solids analyses.	
<u> </u>	<u> </u>					
_5 _						
5 —						
• anala						

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-06-B10

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51187049300; W90.50882618780

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

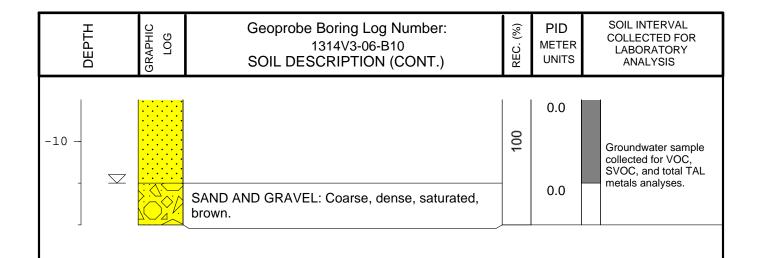
SAMPLING METHOD: Macro Core

DATE DRILLED: 12/7/16
TOTAL DEPTH: 12 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.


DЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Leet Control of the C	\$ - \$	TOPSOIL: Black, hard, dry. SAND: Brown, fine, medium stiff, moist.	75	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		SAND: Same as above. SAND: Same as above.	100	0.0	6- to 11-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-06-B11

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-6, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51135018640; W90.50949204650

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/7/16
TOTAL DEPTH: 10.7 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Coarse sand, gravel, and clay, stiff, dry. SAND: Brown, fine, medium, stiff, moist.	75	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		SAND: Same as above. SILTY CLAY: Brown, stiff, moist.		0.0	
-		SILTY CLAY: Same as above.	75	0.0	6- to 10.7-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-10 -		SAND: Fine, brown and white, with some pebbles. Refusal at 10.7 feet.	75	0.0	analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-07-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-7, River Stone Moline Yard

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION:

N41.51348430240; W90.50948207200

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/7/16

TOTAL DEPTH: 10 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet - 0		FILL: Light brown, silty sand and medium gravel, stiff, moist.	80	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		FILL: Same as above, but with brick and wood fragments.	09	0.0	Groundwater sample collected for VOC, SVOC, and total TAL metals analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-07-B02

PROJECT: **FAI 74 (I-74)**

EQUIPMENT: E & E Geoprobe 5410

SITE LOCATION: Moline, Rock Island County, IL

OPERATOR: T. Pachowicz

SITE NAME: ISGS #1314V3-7, River Stone Moline Yard

SAMPLING METHOD: Macro Core

JOB NUMBER: 1009008.0046.01

DATE DRILLED: 12/7/16 TOTAL DEPTH: 10 feet

GEOLOGIST: M. Fischer

LOCATION:

N41.51316143130; W90.50934988880

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
-5 - \square		FILL: Medium gravel, coarse black sand and slag, stiff, dry, petroleum odors.	50	3.6 23.7	0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-10		FILL: Same as above, but loose and wet, strong petroleum odors, saturated at 5 feet, groundwater has sheen.	20	NR NR	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-07-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-7, River Stone Moline Yard

JOB NUMBER: 1009008.0046.01

LOCATION:

GEOLOGIST: M. Fischer

N41.51289606080; W90.50925584400

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/7/16 TOTAL DEPTH: 5.5 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Medium gravel, black, coarse sand and slag, stiff, dry to moist.	80	0.0	0 to 5.5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

ОЕРТН	GRAPHIC LOG	Geoprobe Boring Log Number: 1314V3-07-B03 SOIL DESCRIPTION (CONT.)	REC. (%)	PID METER UNITS	SOIL INTERVAL COLLECTED FOR LABORATORY ANALYSIS
-5 -		FILL: Same as above, but with brick. Refusal at 5.5 feet.	100	0.0	

Geoprobe Boring Log Number: 1314V3-07-B04

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-7, River Stone Moline Yard

JOB NUMBER: 1009008.0046.01

LOCATION:

GEOLOGIST: M. Fischer

N41.51259481470; W90.50915216010

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/7/16 TOTAL DEPTH: 11 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Medium gravel, black coarse sand, slag, and brick, medium stiff, dry.	50	0.0	0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - -		FILL: Same as above. CLAY: Black, soft, moist.	50	0.0	5- to 11-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-10 -		SILTY CLAY: Grayish brown, very stiff, dry.	100	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-08-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-8, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51211532770; W90.50896650170

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/6/16
TOTAL DEPTH: 12 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Medium gravel, loose, dry. FILL: Black slag, black clay, wood, stiff, moist.	100	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		CLAY: Dark gray, medium stiff, moist.	100	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-10 -		SILTY CLAY: Gray, soft, moist.	75	0.0	TAL metals, pH, and percent solids analyses.
		SAND: Fine, brown, medium stiff, moist.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-11-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-11, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51066354130; W90.51219101850 **EQUIPMENT: Stainless Steel Hand Auger**

OPERATOR: T. Pachowicz

SAMPLING METHOD: Hand Auger

DATE DRILLED: 12/8/16 TOTAL DEPTH: 1 foot

 ── Water level during drilling, if encountered Boring continuously sampled using a hand auger. Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
-5 _		FILL: Black topsoil, brown clay, and medium gravel, hard, dry.	100	0.0	0 to 1-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603

Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-11-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-11, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51047209830; W90.51206780410

EQUIPMENT: Stainless Steel Hand Auger

OPERATOR: T. Pachowicz

SAMPLING METHOD: Hand Auger

DATE DRILLED: 12/8/16
TOTAL DEPTH: 1 foot

✓ Water level during drilling, if encountered
 Boring continuously sampled using a hand auger.
 Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet	Į Ū	FILL: Black topsoil, brown clay, medium gravel, hard, dry.	100 RE	0.0	0 to 1-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 _					

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-11-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-11, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51086185710; W90.51169229560

EQUIPMENT: Stainless Steel Hand Auger

OPERATOR: T. Pachowicz

SAMPLING METHOD: Hand Auger

DATE DRILLED: 12/8/16
TOTAL DEPTH: 1 foot

✓ Water level during drilling, if encountered
 Boring continuously sampled using a hand auger.
 Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Peet - 5 0		FILL: Black topsoil, brown clay, and medium gravel, hard, dry.	100	0.0	0 to 1-foot depth interval soil sample and duplicate soil sample were collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-17-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-17, Parking Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50996771780; W90.51152046600

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/9/16
TOTAL DEPTH: 7 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		TOPSOIL: Black, stiff, moist. FILL: Light brown, clay and fine sand, with trace small gravel, stiff, dry.	100	0.0	0 to 7-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		CLAY: Dark brown, with trace small gravel, hard, dry.	100	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-17-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-17, Parking Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50980024680; W90.51120094880

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/9/16
TOTAL DEPTH: 7 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Peet - 0		TOPSOIL: Black, stiff, moist. FILL: Brown clay, medium gravel, and black fine sand, stiff, dry. CLAY: Dark brown, medium stiff, dry.	100	0.0	0 to 7-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		SILTY CLAY: Brown, soft, moist.	100	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-17-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-17, Parking Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50958428750; W90.51092082500

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/9/16
TOTAL DEPTH: 7 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		TOPSOIL: Black, stiff, moist. FILL: Brown clay, medium gravel, and coarse sand, loose, dry. CLAY: Brown, hard, dry.	100	0.0	0 to 7-foot depth interval soil sample and duplicate soil sample were collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		CLAY: Same as above. SILTY CLAY: Brown, soft, moist.	100	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-18-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-18, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51025798220; W90.50962473180 **EQUIPMENT:** E & E Geoprobe 5410

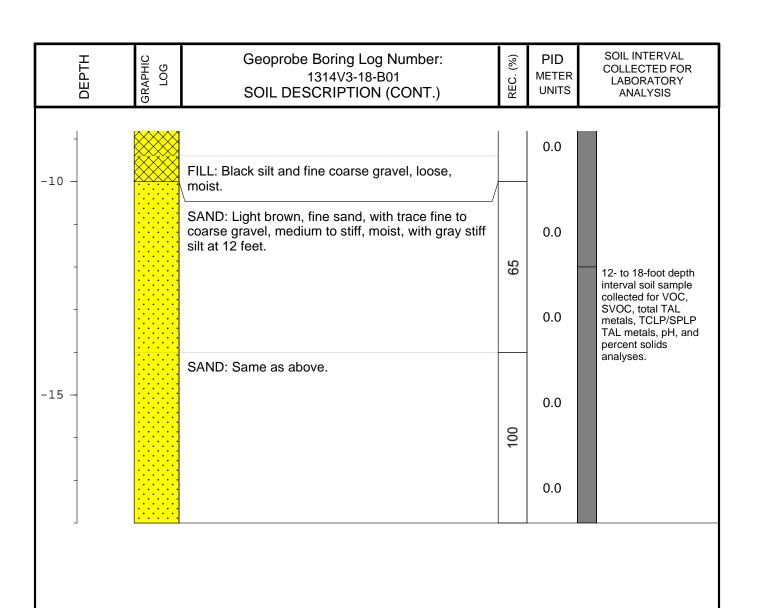
OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16 TOTAL DEPTH: 18 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.


DЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet - 0		FILL: Dark brown, silt, stiff, moist, with trace coarse gravel. FILL: Light brown, silt and very fine sand, with little fine to coarse gravel, stiff, moist.	84	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - - -		FILL: Light brown, fine sand with trace coarse gravel, medium, moist.	54	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-18-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-18, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51030575920; W90.51036326150

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 13 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 7		TOPSOIL: Dark brown silt, stiff, moist.			0 to 7-foot depth interval soil sample and
Feet		FILL: Light brown, silt and very fine sand, with trace medium gravel, stiff, moist.	100	0.0	duplicate soil sample were collected for VOC, SVOC, total TAL metals, TCLP/SPLP
				0.0	TAL metals, pH, and percent solids analyses.
-5 -		FILL: Same as above.	86	0.0	
-		FILL: Black, silt and fine to coarse gravel, loose, moist.		0.0	7- to 13-foot depth interval soil sample
		SAND: Grayish brown, fine sand, dense, wet.		0.0	collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
-10 -		SILT: Light brown, medium, moist.	52	0.0	analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-18-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-18, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51056061150; W90.50978315000 **EQUIPMENT:** E & E Geoprobe 5410

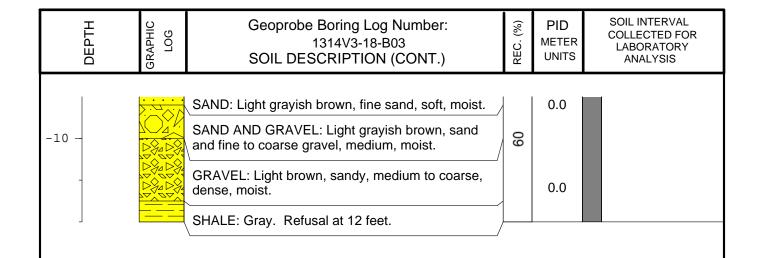
OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16 TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.


DEPTH GRAPHIC	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
	FILL: Black, silt with some fine to coarse gravel, stiff, moist.		0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
Feet	FILL: Tan, silt and fine sand, with little fine to coarse gravel, stiff, moist.	93		TAL metals, pH, and percent solids analyses.
	FILL: Same as above.		0.0	
-5 -	FILL: Dark brown silt, soft, moist. SILT: Black to dark brown, medium, moist.	63	0.0	6- to 12-foot depth
			0.0	interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
	SILT: Same as above.			analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-18-B04

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-18, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51093758730; W90.50940009730

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 5.3 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Leet -5 -		FILL: Brown silt and fine sand, with little fine gravel, stiff, moist. FILL: Tan, silty, fine to coarse gravel, loose, moist. FILL: Light brown, coarse sand, medium, moist. FILL: Black silt, with little fine gravel, medium, moist. FILL: Same as above. Refusal at 5.3 feet.	100 85	0.0	0 to 5.3-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-18-B05

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-18, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51077510350; W90.50911301680 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

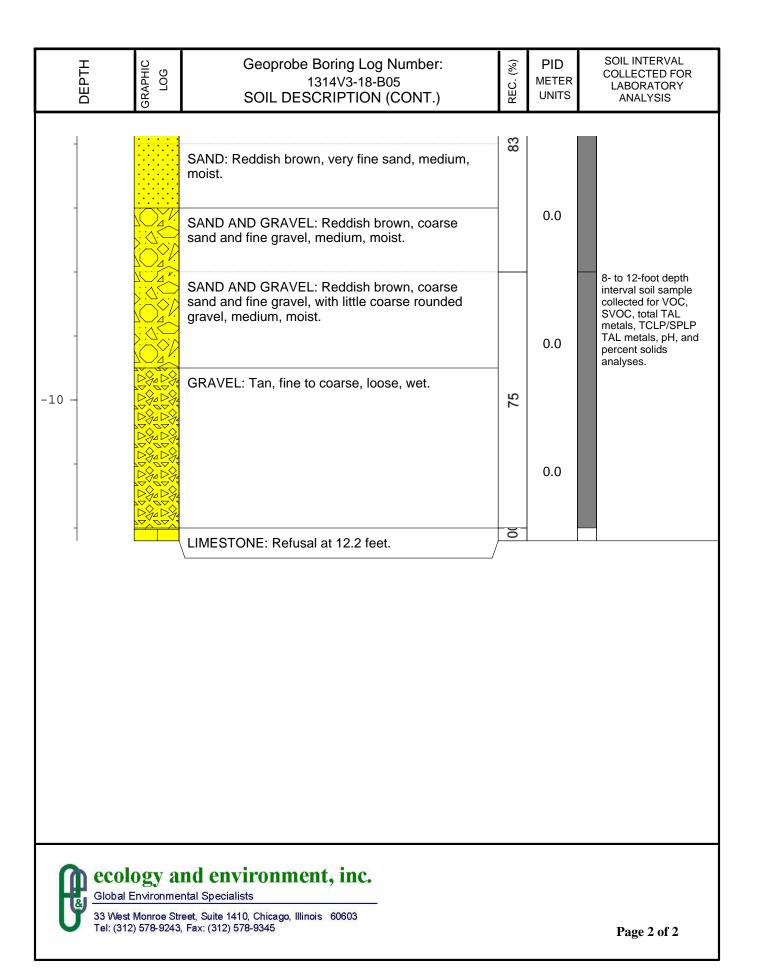
DATE DRILLED: 12/14/16

TOTAL DEPTH: 12.2 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.


ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet - 0		TOPSOIL: Dark brown, silty loam, loose, moist. FILL: Black sand and fine to medium gravel, loose, dry. FILL: Brown and tan, silt with some coarse gravel, loose, dry. SILT AND SAND: Reddish brown, silt and fine sand, very stiff, moist.	95	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		SILT AND SAND: Same as above. SAND: Reddish brown, coarse, dense, moist.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-18-B06

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-18, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51040563000; W90.50928534910

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 17 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Black and dark brown, silt, with some fine to coarse gravel, stiff, moist. FILL: Light brown, silt and fine sand, with trace coarse gravel, stiff, moist.	95	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		FILL: Same as above. FILL: Dark brown, silt and fine sand, stiff, moist.	86	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-		FILL: Light brown to gray, silt and fine sand, with trace coarse gravel, stiff, moist.		0.0	analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

ОЕРТН	GRAPHIC LOG	Geoprobe Boring Log Number: 1314V3-18-B06 SOIL DESCRIPTION (CONT.)	REC. (%)	PID METER UNITS	SOIL INTERVAL COLLECTED FOR LABORATORY ANALYSIS
-10 -		FILL: Black, sand and fine to medium gravel, loose, moist.	95	0.0	
		FILL: Dark brown, silt and fine sand, stiff, moist, piece of wood at 12 feet.			12- to 17-foot depth interval soil sample collected for VOC,
		FILL: Same as above. LIMESTONE		0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-15 -		SAND: Gray, medium sand, loose, moist. SILT AND SAND: Dark gray, silt and very fine sand, medium, moist.	89	0.0	analyses.
		CLAYEY SILT: Gray, medium, moist.	-	0.0	

Geoprobe Boring Log Number: 1314V3-18-B07

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-18, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51100196000; W90.50932231250

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 8 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					O to 9 fact depth
		CONCRETE			0 to 8-foot depth interval soil sample collected for VOC,
Feet		FILL: Tan, sandy, fine to coarse gravel, loose, moist.		0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
		FILL: Reddish brown, silt and fine sand, with some fine to coarsse gravel, stiff, moist.	83		analyses.
_		FILL: Light gray, sand and fine gravel, loose, moist.		0.0	
-		FILL: Reddish brown, silt and fine sand, with some fine to coarse gravel, stiff, moist.			
-5 -		FILL: Same as above.		0.0	
_		FILL: Tan, sandy, fine to coarse gravel, loose, moist.	06		
		SILT: Pink, stiff, moist.			
		SAND: Brown, fine to medium sand, medium, moist.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-18-B08

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-18, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51096290040; W90.50925802390

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

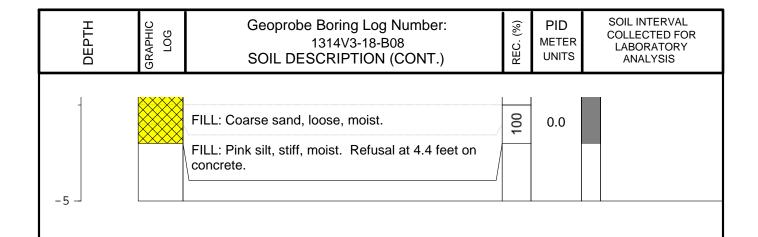
SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 4.4 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.


ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Brown, silt and fine sand, with little fine to coarse gravel, stiff, moist. FILL: Black, silt with little coarse gravel, medium, moist.	06	0.0	0 to 4.4-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-18-B09

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-18, Vacant Land

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.51090271840; W90.50930839870

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 8 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Dark brown and brown, silt and fine sand, stiff, moist. FILL: Black, fine to coarse gravel, loose, moist. FILL: Brown silt, medium, moist. SAND: Brown, very fine sand, medium, moist.	86	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		SAND: Same as above. SAND: Brown, medium sand, loose, moist.	09	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-21-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-21, BNSF Railroad

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50993477660; W90.50950805560

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 11/29/16
TOTAL DEPTH: 10 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					
Feet		FILL: Medium gravel, black slag, and black coarse sand, medium, stiff, dry.		0.0	0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
		FILL: Clay with fine sand, black, medium stiff, dry.	80	0.0	analyses.
-5 -		CLAY: Brown, medium stiff, dry.		0.0	5- to 10-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
_			80	0.0	TAL metals, pH, and percent solids analyses.
		SAND: Fine, light brown, medium stiff, moist.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-21-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-21, BNSF Railroad

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51009449370; W90.50895074290

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 11/29/16
TOTAL DEPTH: 6 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

рертн	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 7	\(\dagger{\dagger}}}}}}}}}}}}}\digrap\dignt\digtimt\digtimt\digtimt\digtimt\d	TOPSOIL: Dark brown, medium stiff, dry.			0 to 6-foot depth interval soil sample and duplicate soil sample were collected for VOC, SVOC, total TAL
Feet		FILL: Medium gravel, coarse sand, and black slag, medium stiff, dry.	100	0.0	metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
_				0.0	
-5 -		CLAY: Black, medium stiff, dry.	100	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-24-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50974928530; W90.50943932490

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/13/16
TOTAL DEPTH: 5.8 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
-5 -	FILL: Asphalt. FILL: Tan, silty, fine to coarse gravel, loose, dry. BRICK FILL: Black sand, fine to coarse gravel, and weathered asphalt. FILL: Same as above. Refusal at 5.8 feet on concrete.	100 64	0.0	0 to 5.8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-24-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

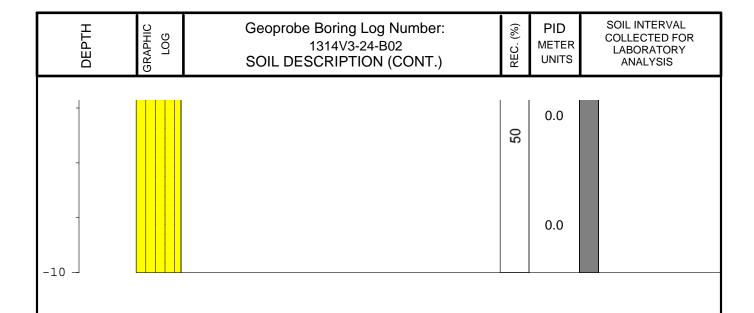
GEOLOGIST: E. Fisher

LOCATION: N41.50958734620; W90.50942180650

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core


DATE DRILLED: 12/13/16
TOTAL DEPTH: 10 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Asphalt. FILL: Light gray, silty, fine to coarse gravel, loose, dry. FILL: Black sand and gravel and weathered asphalt, loose, moist.	76	0.0	0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		FILL: Brick and tan sand. SILT: Grayish brown to tan, medium, moist.		0.0	5- to 10-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
		nd environment, inc. ntal Specialists		1	

Geoprobe Boring Log Number: 1314V3-24-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

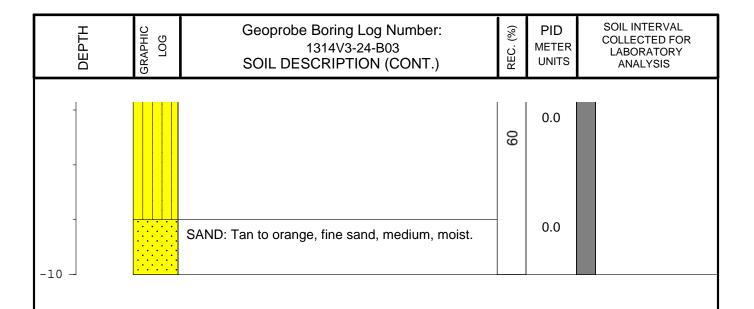
LOCATION: N41.50931380340; W90.50933781910 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/13/16 TOTAL DEPTH: 10 feet

 ── Water level during drilling, if encountered


Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.						
ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS	
0 ¬						
		FILL: Asphalt.			0 to 5-foot depth interval soil sample	
		FILL: Weathered asphalt.			collected for VOC, SVOC, total TAL metals, TCLP/SPLP	
Feet		FILL: Black, silt with little gravel and weathered asphalt.		0.0	TAL metals, pH, and percent solids analyses.	
			64			
-				0.0		
-						
		SILT: Light brown, medium, moist.				
-5 -		SILT: Same as above.		0.0	5- to 10-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.	
		•	ı	ı		
ecology and environment, inc.						

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-24-B04

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50917830980; W90.50914746720

EQUIPMENT: E & E Geoprobe 5410

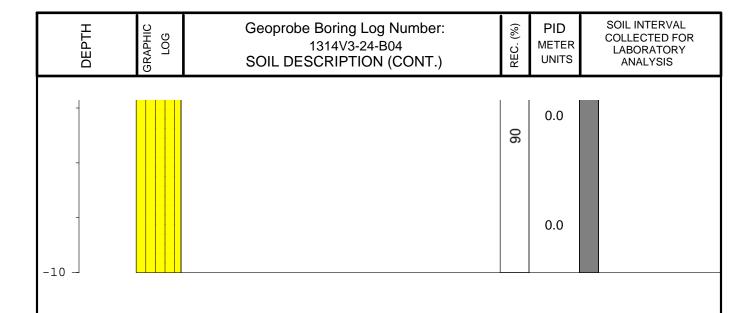
OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

Page 1 of 2

DATE DRILLED: 12/13/16
TOTAL DEPTH: 10 feet

 ── Water level during drilling, if encountered


Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603

Tel: (312) 578-9243, Fax: (312) 578-9345

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Alphalt. FILL: Weathered asphalt, pieces of brick.	4	0.0	0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-		SILT: Black, soft, moist.	64	0.0	
-5 -		SILT: Black to gray to tan, soft, moist.		0.0	5- to 10-foot depth interval soil sample and duplicate soil sample were collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
		nd environment, inc.			

Geoprobe Boring Log Number: 1314V3-24-B05

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50890086920; W90.50927059650 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/9/16 TOTAL DEPTH: 10 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		TOPSOIL: Brown, loose, dry. FILL: Medium gravel, loose, dry. CLAY: Brown, medium stiff, dry.	09	0.0	0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		CLAY: Same as above.	100	0.0	5- to 10-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-10		SILTY CLAY: Soft, brown, moist.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-24-B06

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50862317620; W90.51011532540

EQUIPMENT: Stainless Steel Hand Auger

OPERATOR: T. Pachowicz

SAMPLING METHOD: Hand Auger

DATE DRILLED: 12/9/16
TOTAL DEPTH: 4 feet

✓ Water level during drilling, if encountered
 Boring continuously sampled using a hand auger.
 Soil headspace readings conducted at 2-foot intervals.

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-24-B07

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50901536590; W90.50888318550

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/9/16
TOTAL DEPTH: 5 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Peet -5		FILL: Black, topsoil and small gravel, soft, moist. CLAY: Dark brown and black, soft, moist.	50	0.0	0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-24-B08

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50914012970; W90.50858604660 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/9/16 TOTAL DEPTH: 8 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

DEPTH	GRAPHIC	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		TOPSOIL: Black, loose, dry. FILL: Small gravel, loose, dry. CLAY: Brown, medium stiff, moist.	100	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5		CLAY: Same as above.	100	0.0	
]		SILTY CLAY: Light brown, soft, moist.		0.0	

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-24-B09

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50879986660; W90.50984861280

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/13/16
TOTAL DEPTH: 4 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
FILL: Asphalt. FILL: Light gray, silty, fine to coarse gravel, loose, dry. FILL: Dark brown to brown, silt with little coarse gravel and medium sand seam at 1.8 feet.	78	0.0	0 to 4-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-24-B10

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50940181350; W90.50983972810

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/13/16
TOTAL DEPTH: 5 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length. Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet	GRA	FILL: Asphalt. FILL: Tan, silty, fine to coarse gravel, loose, moist. FILL: Light brown, coarse sand, loose, moist. FILL: Brick.	66	0.0 0.0	
-5 _				0.0	

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-24-B11

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50905132400; W90.50949699250

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 12 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Asphalt. FILL: Grayish brown, silt, stiff, moist. FILL: Black, silt with little medium gravel and weathered asphalt, loose, moist. SILT: Black, medium, moist.	78	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - -		CLAYEY SILT: Black to dark brown, medium, moist. CLAYEY SILT: Light brown, medium, moist. SILTY SAND: Light brown to tan, silty, very fine	55	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

CLAYEY SILT: Tan to pink, medium, moist.	DEPTH	GRAPHIC LOG	Geoprobe Boring Log Number: 1314V3-24-B11 SOIL DESCRIPTION (CONT.)	REC. (%)	PID METER UNITS	SOIL INTERVAL COLLECTED FOR LABORATORY ANALYSIS
	-10 -		CLAYEY SILT: Tan to pink, medium, moist.	20		

Page 2 of 2

Geoprobe Boring Log Number: 1314V3-24-B12

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50901674900; W90.50944359930 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16 TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace	e readings c	onducted at 2-foot intervals.			
ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					
		FILL: Asphalt.			0 to 6-foot depth interval soil sample
		BRICK	The state of the s		collected for VOC, SVOC, total TAL metals, TCLP/SPLP
Feet		FILL: Light brown silt, stiff, moist.		0.0	TAL metals, pH, and percent solids analyses.
		FILL: Black, silt and fine to coarse gravel, loose, moist.	89		allalyses.
		SILT: Black, medium, moist.		0.0	
		SILT: Same as above.			
-5 -		SILT AND SAND: Dark brown to light brown, silt and very fine sand, medium, moist.		0.0	
m eco	ology a	nd environment, inc.			

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

DEРТН	GRAPHIC LOG	Geoprobe Boring Log Number: 1314V3-24-B12 SOIL DESCRIPTION (CONT.)	REC. (%)	PID METER UNITS	SOIL INTERVAL COLLECTED FOR LABORATORY ANALYSIS
		CLAYEY SILT: Pink, stiff, moist.	83	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-10 -		SILTY SAND: Tan, very fine sand, with medium sand seam at 9.5 feet, soft, moist.	63	0.0	
				0.0	

Page 2 of 2

Geoprobe Boring Log Number: 1314V3-24-B13

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50896226630; W90.50945960860 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16 TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

DEPTH	GRAPHIC	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Asphalt. FILL: Black, sand and fine to coarse gravel, loose, moist. SILT: Black, medium, moist.	89	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		SILT: Same as above. SILT: Light brown, silt and very fine sand, medium, moist. CLAYEY SILT: Pink, stiff, moist. CLAYEY SILT: Same as above.	80	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

DEPTH	LOG	Geoprobe Boring Log Number: 1314V3-24-B13 SOIL DESCRIPTION (CONT.)	REC. (%)	PID METER UNITS	SOIL INTERVAL COLLECTED FOR LABORATORY ANALYSIS
-10 -		SILTY SAND: Tan, very fine sand, with medium sand seam at 10 feet, soft, moist.	09	0.0	

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Page 2 of 2

Geoprobe Boring Log Number: 1314V3-24-B14

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-24, John Deere

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50898984270; W90.50952934580

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

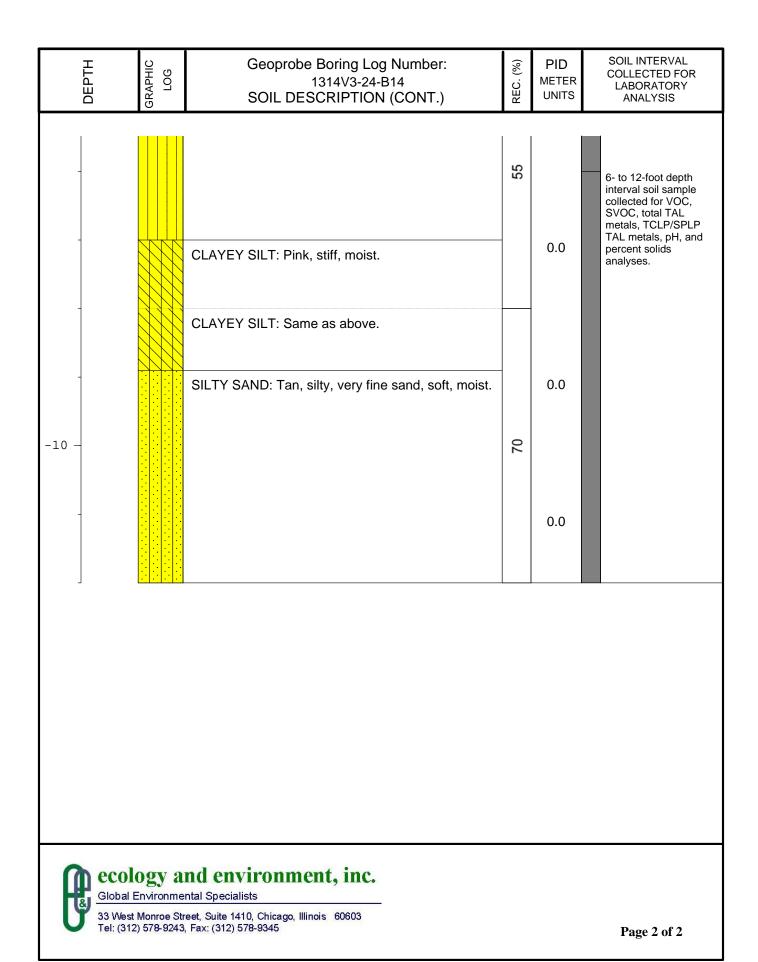
SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 12 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.


Soil headspace re	eadings c	onducted at 2-foot intervals.			
ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
-5 -		FILL: Asphalt. FILL: Tan, silty gravel, loose, dry. FILL: Light brown, silt, medium, moist. FILL: Black, silt with some fine to medium gravel, loose, moist. FILL: Light brown, silt, medium, moist. SILT: Black, medium, moist. SILT: Dark brown to tan, medium, moist.	82	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-25-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-25, Sivyer Steel Corp.

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51023560230; W90.50819771330

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 11/28/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					
		CONCRETE			0 to 6-foot depth interval soil sample
Feet		FILL: Dark brown, fine sand, brown slag, brick, medium stiff, dry.	75	0.0	collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
		CLAY: Dark brown, medium stiff, dry.		0.0	analyses.
-5 -		CLAY: Same as above.		0.0	
			50	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-10 -		CLAY: Same as above.	100	0.0	TAL metals, pH, and percent solids analyses.
		SILTY CLAY: Grayish brown, medium stiff, moist.		0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-25-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-25, Sivyer Steel Corp.

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51034033430; W90.50791390210

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 11/28/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬				I	O to C foot don't
		CONCRETE			0 to 6-foot depth interval soil sample collected for VOC,
Feet		FILL: Medium gravel, some dark brown slag and dark brown clay, dry, medium stiff.	75	0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
				0.0	analyses.
-5 -		CLAY: Dark brown, medium stiff, moist.			
_			20	0.0	6- to 12-foot depth
-				0.0	interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-10 -		CLAY: Same as above.	100	0.0	TAL metals, pH, and percent solids analyses.
		SILTY CLAY: Grayish brown, medium stiff, moist.	-	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-25-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-25, Sivyer Steel Corp.

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50970523750; W90.50868528920

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 11/28/16
TOTAL DEPTH: 8 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					
		CONCRETE			0 to 8-foot depth interval soil sample
Feet		CLAY: Dark brown, medium stiff, dry.	0	0.0	collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
		FILL: Dark brown, slag, medium stiff, moist.	20		
-		SILTY CLAY: Medium stiff, dark brown, moist.		0.0	
-5 -		SILTY CLAY: Same as above, but soft.	75	0.0	
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-25-B04

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-25, Sivyer Steel Corp.

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50994428980; W90.50877011340

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 11/28/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					
		CONCRETE	ļ		0 to 6-foot depth interval soil sample collected for VOC,
Feet		CLAY: Dark brown, stiff, dry.	75	0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
		SAND: Medium, fine sand, brown, stiff, dry.		0.0	analyses.
_		CLAY: Dark brown, medium stiff, dry.			
-5 -		CLAY: Same as above.	100	0.0	6- to 12-foot depth
-		CLAY: Same as above, but light brown.		0.0	interval soil sample collected for VOC, SVOC, total TAL
_		-			metals, TCLP/SPLP TAL metals, pH, and percent solids
-10 -		CLAY: Light brown, soft, moist.	75	0.0	analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-25-B05

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-25, Sivyer Steel Corp.

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50972753390; W90.50918937580

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 11/28/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					O to C foot don'th
		TOPSOIL: Dark brown, stiff, moist.			0 to 6-foot depth interval soil sample collected for VOC,
Feet		FILL: Dark brown clay, with medium gravel and coarse sand, medium stiff, moist.	20	0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
				0.0	analyses.
-5 -		FILL: Same as above.		0.0	
_		CLAVI Light brown madium stiff maint	20		6- to 12-foot depth
_		CLAY: Light brown, medium stiff, moist.		0.0	interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-10 -		CLAY: Same as above.	100	0.0	TAL metals, pH, and percent solids analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-25-B06

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-25, Sivyer Steel Corp.

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50993934480; W90.50896666860

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 11/28/16
TOTAL DEPTH: 12 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet -		CONCRETE FILL: Dark brown slag, medium gravel, some brick, and some clay, stiff, dry.	50	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		CLAY: Brown, medium stiff, moist.	50	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-10 -		CLAY: Same as above, but light brown.	100	0.0	TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-25-B07

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-25, Sivyer Steel Corp.

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.51010752700; W90.50853684550

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 11/28/16
TOTAL DEPTH: 12 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		CONCRETE FILL: Dark brown, slag, medium stiff, dry. CLAY: Brown, medium stiff, dry.	75	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - -		CLAY: Same as above, but dark brown.	50	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-10 -		CLAY: Same as above. SILTY CLAY: Grayish brown, medium soft, moist.	100	0.0	TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-26-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-26, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50956584720; W90.50857649170

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16
TOTAL DEPTH: 8 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

рертн	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Asphalt. FILL: Black, clay with brick fragments and black slag, medium stiff, moist.	75	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - - -		CLAY: Dark brown, medium stiff, moist.	50	0.0	

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-26-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-26, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50928823820; W90.50809931010 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16

TOTAL DEPTH: 8 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Asphalt. CLAY: Black and gray, stiff, dry.	75	0.0	0 to 8-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - -		CLAY: Brown and gray, medium stiff, moist.	75	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-32-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-32, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50811695130; W90.51084656220

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/15/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					O to O foot double
		FILL: Tan, silty, fine to coarse gravel, loose, moist.			0 to 6-foot depth interval soil sample collected for VOC,
Feet		FILL: Brown silt, medium, moist, interbedded with light brown, medium sand, medium, moist.	20	0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
				0.0	analyses.
-5 -		SILT: Light brown, medium, moist.	89	0.0	
		SAND: Light brown, very fine sand, medium, moist.	9	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-	333	CLAYEY SILT: Pink, medium, moist.			TAL metals, pH, and percent solids
-		CLAYEY SILT: Same as above.		0.0	analyses.
-10 -		SAND: Light brown, very fine sand, with narrow seams of medium sand and fine gravel, medium, moist.	73	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-32-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-32, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50808530980; W90.51075218200

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/15/16
TOTAL DEPTH: 12 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Light gray, silty, fine to coarse gravel, loose, dry. FILL: Brown, silt with little coarse gravel, medium, moist. SILT: Black to brown, medium, moist.	83	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		SILT: Light orangey brown, medium, moist.	85	0.0	
-		SILT AND SAND: Light brown and very fine sand, soft, moist.	w	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-10 -		CLAYEY SILT: Pink, medium, moist. SAND: Light brown, very fine sand, medium, moist.	89	0.0	TAL metals, pH, and percent solids analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-32-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-32, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50801758440; W90.51077372290

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/15/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Light gray, silty, fine to coarse gravel, loose, dry. FILL: Light brown, medium sand, loose, moist.	63	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - -		FILL: Same as above, interbedded with dark brown silt, medium, moist. NO RECOVERY	45	0.0 NR	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL
-10 -		FILL: Same as above. SAND: Light brown, very fine sand, medium, moist.	58	0.0	metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-32-B04

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-32, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50802848010; W90.51088914210

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/15/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 7		CONCRETE			0 to 6-foot depth
Feet		FILL: Light grayish brown, silt and fine to medium gravel, dense, moist.	89	0.0	interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and
		FILL: Dark brown silt, medium, moist.		0.0	percent solids analyses.
-5 -		SILT AND SAND: Light orangey-brown, silt and very fine sand, medium, moist.	02	0.0	C to 40 feet double
_				0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
		CLAYEY SILT: Pink, medium, moist. SAND: Light brown, very fine sand, medium moist.	***************************************		TAL metals, pH, and percent solids analyses.
-10 -		SAND: Same as above.	20	0.0	
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-32-B05

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-32, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50809113490; W90.51091219190

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/15/16
TOTAL DEPTH: 3 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
-5-		CONCRETE FILL: Tan, silty, fine to medium gravel, dense, moist. FILL: Light brown, sand and medium gravel, loose, moist. FILL: Light gray, medium to coarse gravel, loose, moist. FILL: Dark brown, silt with trace coarse gravel, soft, moist.	93	0.0	0 to 3-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-32-B06

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-32, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50787865420; W90.51076995150

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/15/16
TOTAL DEPTH: 3 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Peet -5 -		SILT: Dark brown, with trace coarse gravel, soft, moist.	93	0.0	0 to 3-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-32-B07

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-32, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50755905210; W90.51052302070

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16
TOTAL DEPTH: 3 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

GRAPHIC LOG LOG (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
TOPSOIL: Black, medium stiff, moist. CLAY: Dark brown, soft, moist.	0.0	0 to 3-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-32-B08

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-32, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50743625750; W90.51042302470

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16
TOTAL DEPTH: 3 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Peet 1		TOPSOIL: Black, medium stiff, moist. CLAY: Dark brown, medium stiff, moist.	100	0.0	0 to 3-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-33-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-33, Parking Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50837733500; W90.51016109040

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Tan, sandy, fine to coarse gravel, loose, dry. FILL: Dark brown, silt with trace fine gravel, stiff, moist.	80	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - -		SILT: Light orangey brown, medium, moist. SILT: Same as above.	88	0.0	6- to 12-foot depth interval soil sample
		SAND: Light brown, very fine sand, medium, moist, with pink clayey silt at 8 feet.		0.0	collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-10 -		SAND: Same as above.	73	0.0	TAL metals, pH, and percent solids analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-33-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-33, Parking Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50848110310; W90.50993134210

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

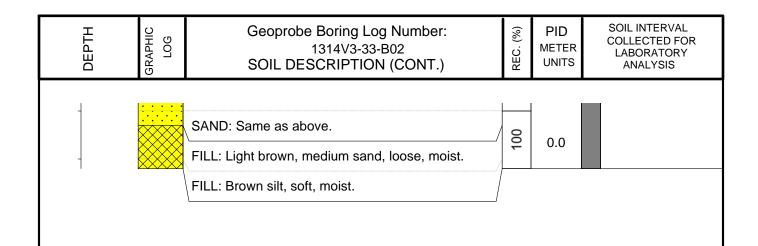
SAMPLING METHOD: Macro Core

DATE DRILLED: 12/15/16
TOTAL DEPTH: 9.2 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.


ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬				1	
		FILL: Dark brown, silt with some fine gravel, stiff, moist.			0 to 5-foot depth interval soil sample collected for VOC, SVOC, total TAL
Feet		FILL: Light brown, medium sand, medium, moist.		0.0	metals, TCLP/SPLP TAL metals, pH, and percent solids
		FILL: Dark brown, silt with trace fine to coarse gravel, medium, moist.	78		analyses.
		FILL: Light brown, medium sand, loose, moist.		0.0	
-5 -		FILL: Same as above.	02	0.0	5- to 9.4-foot depth interval soil sample collected for VOC, SVOC, total TAL
_		SAND: Light brown, medium sand, with some	7	0.0	metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
		coarse gravel, loose, moist.			

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Page 2 of 2

Geoprobe Boring Log Number: 1314V3-33-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-33, Parking Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50833412660; W90.51005346650

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Tan, sandy, fine to coarse gravel, loose, dry. FILL: Dark brown, silt with trace fine gravel, stiff, moist.	83	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - -		SILT: Light orangey-brown, medium, moist. SILT: Same as above.	95	0.0	6- to 12-foot depth interval soil sample
		SAND: Light brown, very fine sand, medium, moist, with pink clayey silt at 8 feet.		0.0	collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and
-10 -		SAND: Same as above.	7	0.0	percent solids analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-33-B04

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-33, Parking Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50826480830; W90.51010292010

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

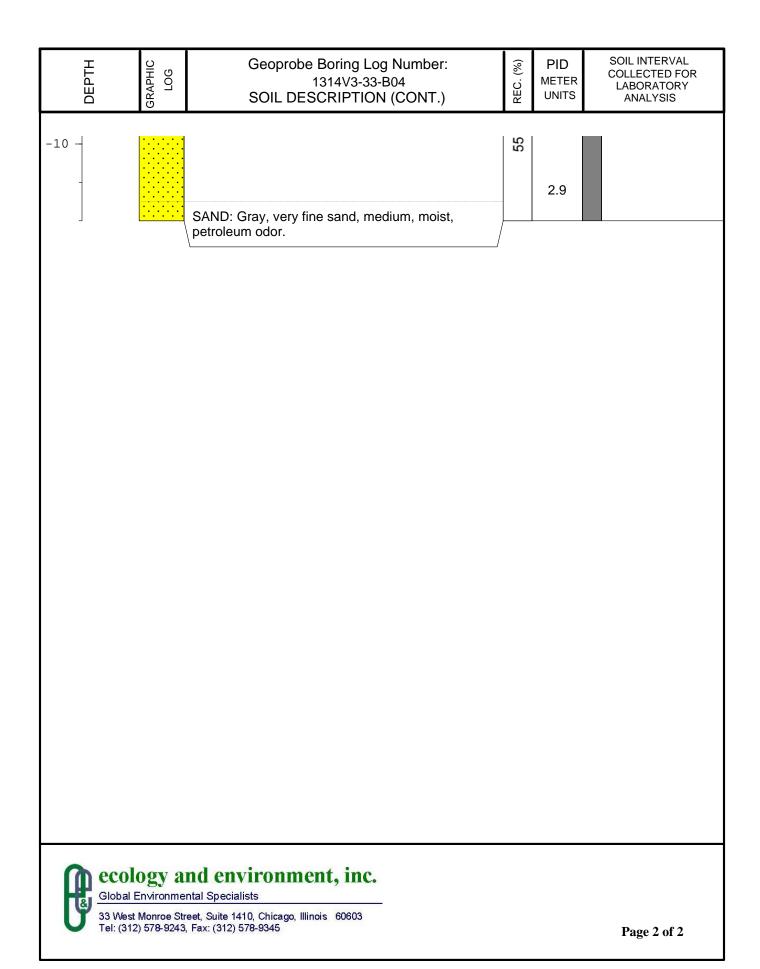
SAMPLING METHOD: Macro Core

DATE DRILLED: 12/15/16
TOTAL DEPTH: 12 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.


ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0-		FILL: Tan, sand, fine to coarse gravel, loose, moist.			0 to 6-foot depth interval soil sample collected for VOC,
Feet		moist.	80	0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids
		FILL: Dark brown and light brown, silt, soft, moist.		0.0	analyses.
-5 -		FILL: Yellow, very fine sand, loose, dry. SILT AND SAND: Light brown, silt and very fine		0.0	
-		sand, soft, moist, with pink clayey silt at 7.6 feet.	20	0.0	6- to 12-foot depth interval soil sample
-				0.0	collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and
		SAND: Light brown, very fine sand, medium, moist.		0.0	percent solids analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-33-B05

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-33, Parking Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50828802600; W90.51022412240

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/15/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬	r × × × × ×				O to O foot don't
Feet		FILL: Tan, sandy, fine to coarse gravel, loose, moist.	/	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL
		FILL: Dark brown, silt with little fine gravel, medium, moist.	06		metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
		FILL: Light brown, silt, soft, moist.		0.0	
-5 -		FILL: Same as above.		0.0	
			80	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
		FILL: Same as above.			TAL metals, pH, and percent solids analyses.
-10 -		SAND: Light brown, very fine sand, medium, moist.	85	0.0	
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-33-B06

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-33, Parking Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50816389020; W90.51054313760

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/15/16
TOTAL DEPTH: 12 feet

 ✓ Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬			ı	ı	
eet		FILL: Tan, sandy, fine to coarse gravel, loose, moist.		0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL
		FILL: Dark brown silt, soft, moist, trace coarse gravel.	89		metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
				0.0	anayses.
-5 -		FILL: Light brown silt, soft, moist.		0.0	
-		SAND: Light brown, very fine sand, medium, mosit.	65	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
		CLAYEY SILT: Pink, medium, moist.			TAL metals, pH, and percent solids analyses.
		CLAYEY SILT: Same as above.		0.0	analyses.
-10 -		SAND: Light brown to tan, very fine sand, medium, moist.	70	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-33-B07

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-33, Parking Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: E. Fisher

LOCATION: N41.50805743950; W90.50982078460

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/14/16
TOTAL DEPTH: 8 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					
		FILL: Dark brown, silt with little fine gravel, loose, moist.			0 to 8-foot depth interval soil sample and duplicate soil sample were collected for
Feet		FILL: Light brown, medium sand, loose, moist.		0.0	VOC, SVOC, total TAL metals, TCLP/SPLP
		FILL: Dark brown, silt and very fine sand, stiff, moist.	73		TAL metals, pH, and percent solids analyses.
-		SILT AND SAND: Light orangey-brown, silt and very fine sand, stiff, moist, trace fine gravel.		0.0	
		SILT AND SAND: Same as above.			
-5 -		SAND: Light brown, fine sand, medium, moist.	88	0.0	
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-56-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-56, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50725198130; W90.51006025550 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16 TOTAL DEPTH: 3 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.								
ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS			
Peet -5 -		CONCRETE FILL: Black, clay and medium gravel, loose, dry. CLAY: Brown, soft, moist.	100	0.0	0 to 3-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.			
_								

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-56-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-56, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50711124910; W90.51023082790 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16 TOTAL DEPTH: 3 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

0-		Units	CHEMICAL ANALYSIS
TOPSOIL: Dark brown, soft, dry. CLAY: Dark brown, medium stiff, moist.	100	0.0	0 to 3-foot depth interval soil sample and duplicate soil sample were collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-56-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-56, Commercial Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50686691670; W90.51002413040

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16
TOTAL DEPTH: 3 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Leet -5	CONCRETE CLAY: Brown, soft, moist.	100	0.0	0 to 3-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-57-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-57, Old Chamber Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50669747680; W90.50997216220

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16
TOTAL DEPTH: 3 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

Soil headspace re	eadings c	onducted at 2-foot intervals.			
ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Peet 5		TOPSOIL: Black, soft, moist. CLAY: Black, medium stiff, dry, with trace fine sand and small gravel.	100	0.0	0 to 3-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-57-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-57, Old Chamber Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50659622290; W90.50960805200

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16
TOTAL DEPTH: 3 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

T H	GRAPHIC LOG	onducted at 2-foot intervals. SOIL DESCRIPTION	REC. (%)	PID Meter	SOIL INTERVAL COLLECTED FOR LABORATORY
DE	GRA	COL BEGOIN HON	REC	Units	CHEMICAL ANALYSIS
Leet -5 -		TOPSOIL: Dark brown, medium stiff, moist. CLAY: Brown, very stiff, dry, with trace fine sand and medium gravel.	100	0.0	0 to 3-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-57-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-57, Old Chamber Building

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50677966120; W90.50905761330 **EQUIPMENT:** E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16 TOTAL DEPTH: 5 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length. Soil headspace readings conducted at 2-foot intervals

Soil headspace r	eadings c	onducted at 2-foot intervals.			
ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					0 to 5-foot depth
	A A	TOPSOIL: Dark brown, medium stiff, moist.	1		interval soil sample collected for VOC,
Feet		CLAY: Brown, very stiff, dry, with trace small gravel.		0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-			100	0.0	
-5 -				0.0	

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603

Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-59-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-59, Residence

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50748948210; W90.50941149690

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/1/16
TOTAL DEPTH: 10 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
0 ¬					
	\frac{\sqrt{\sq}\ext{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	TOPSOIL: Black, soft, moist.			0 to 5-foot depth interval soil sample collected for VOC,
Feet		SILTY CLAY: Grayish brown, soft, moist.	100	0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
				0.0	
-5 -		SILTY CLAY: Same as above.			
		SAND: Coarse, brown, medium stiff, moist.	0	0.0	5- to 10-foot depth interval soil sample collected for VOC,
		SILTY CLAY: Gray, soft, moist.	100	0.0	SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
		SILTY CLAY: Same as above.	100	0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-60-B01

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-60, Vacant Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50774441780; W90.50809956190

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/5/16
TOTAL DEPTH: 11 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		TOPSOIL: Black, soft, moist. FILL: Medium gravel, medium stiff, moist. CLAY: Black to gray, medium stiff, moist.	75	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - -		CLAY: Same as above, but gray.	75	0.0	6- to 11-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and
-10 -		CLAY: Same as above, but brown.	100	0.0	percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-60-B02

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-60, Vacant Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50752539860; W90.50804222920

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/5/16
TOTAL DEPTH: 7 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

DEPTH	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Leet -5 -	9	TOPSOIL: Black, soft, moist. CLAY: Dark brown, soft, moist. CLAY: Same as above.	100 50 R	0.0	0 to 7-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-60-B03

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-60, Vacant Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50726765550; W90.50801624600

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/5/16
TOTAL DEPTH: 9 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Brown, clay with medium gravel, medium stiff, moist. CLAY: Dark brown, stiff, dry.	100	0.0	0 to 4-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-				0.0	
-5 -		CLAY: Same as above, but soft and moist.	20	0.0	4- to 9-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-			2	0.0	
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-60-B04

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-60, Vacant Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50739065920; W90.50731451310

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/5/16
TOTAL DEPTH: 5 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 5 feet in length.

Soil headspace readings conducted at 2-foot intervals.

	T	onducted at 2-foot intervals.	(%)	PID Meter	SOIL INTERVAL COLLECTED FOR
DEPTH	GRAPHIC	SOIL DESCRIPTION	REC. (%)	Units	LABORATORY CHEMICAL ANALYSIS
0 —	<u>አ , አ</u>	TOPSOIL: Black, medium stiff, moist.			0 to 5-foot depth interval soil sample
					collected for VOC, SVOC, total TAL
Feet		FILL: Clay, brown, stiff, dry, and medium gravel, loose, dry.		0.0	metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
		CLAY: Dark brown, stiff, dry.	80		
-				0.0	
-5 _				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-60-B05

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-60, Vacant Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50763331530; W90.50753311240

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/5/16
TOTAL DEPTH: 12 feet

 ── Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		TOPSOIL: Black, soft, moist. FILL: Medium gravel and brick, loose, moist. CLAY: Dark brown, soft, moist.	50	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 - -		CLAY: Same as above, but grayish brown.	75	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP
-10 -		CLAY: Same as above. SILTY CLAY: Light brown, soft, moist.	75	0.0	TAL metals, pH, and percent solids analyses.

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

Geoprobe Boring Log Number: 1314V3-60-B06

PROJECT: **FAI 74 (I-74)**

SITE LOCATION: Moline, Rock Island County, IL

SITE NAME: ISGS #1314V3-60, Vacant Lot

JOB NUMBER: 1009008.0046.01

GEOLOGIST: M. Fischer

LOCATION: N41.50783540370; W90.50784156630

EQUIPMENT: E & E Geoprobe 5410

OPERATOR: T. Pachowicz

SAMPLING METHOD: Macro Core

DATE DRILLED: 12/5/16
TOTAL DEPTH: 12 feet

Water level during drilling, if encountered

Boring continuously sampled using a 2-inch diameter sampler, 4 feet in length.

Soil headspace readings conducted at 2-foot intervals.

ОЕРТН	GRAPHIC LOG	SOIL DESCRIPTION	REC. (%)	PID Meter Units	SOIL INTERVAL COLLECTED FOR LABORATORY CHEMICAL ANALYSIS
Feet		FILL: Medium gravel and coarse sand, medium, stiff, dry.	50	0.0	0 to 6-foot depth interval soil sample collected for VOC, SVOC, total TAL metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
-5 -		FILL: Same as above. CLAY: Brown, medium, stiff, dry.	100	0.0	6- to 12-foot depth interval soil sample collected for VOC, SVOC, total TAL
-10 -		CLAY: Same as above.	100	0.0	metals, TCLP/SPLP TAL metals, pH, and percent solids analyses.
				0.0	

ecology and environment, inc.

Global Environmental Specialists

33 West Monroe Street, Suite 1410, Chicago, Illinois 60603 Tel: (312) 578-9243, Fax: (312) 578-9345

C Summary of Analytical Results

Analytical Data Summary PTB #172-27; Work Order 46, Contract 64C08 - IDOT Job # P-93-032-01

Key to Data Tables

MAC = Maximum Allowable Concentration of Chemical Constituent in Uncontaminated Soil Used as Fill Material At Regulated Fill Operations

mg/kg = Milligrams per kilogram.

mg/L = Milligrams per liter.

MSA = Metropolitan Statistical Area

TACO = Tiered Approach to Corrective Action Objectives

TCLP = Toxicity Characteristic Leaching Procedure.

SCGIER = Soil Component of the Groundwater Ingestion Exposure Route

SPLP = Synthetic Precipitation Leaching Procedure.

ND = Not detected.

NA = Not analyzed.

J = Estimated value.

U = Analyte was analyzed for but not detected.

Criteria Qualifiers and Shading

= pH is less than 6.25 or greater than 9.0 standard units.

** = Headspace reading is above 1.0 photoionization detector (PID) units.

† = Concentration exceeds the most stringent MAC.

m = Concentration exceeds the MAC for an MSA.

* = Concentration exceeds the MAC for Chicago corporate limits.

r = Concentration exceeds the TACO Tier 1 RO for residential exposure.

c = Concentration exceeds a TACO Tier 1 RO for construction worker exposure.

L = The detected TCLP/SPLP concentration exceeds the TACO Tier 1 RO for the SCGIER.

W1 = Concentration exceeds the Tier 1 RO for the Groundwater Component of the Groundwater Ingestion Route for Class 1 groundwater.

W1,2 = Concentration exceeds the Tier 1 RO for the Groundwater Component of the Groundwater Ingestion Route for Class 1 and Class 2 groundwater.

= Headspace reading exceeds background levels

= Concentration exceeds the most stringent MAC, but is below the MAC for an MSA.

= Concentration exceeds the most stringent MAC and the MAC for Chicago corporate limits.

= Concentration exceeds applicable comparison criteria.

					ANTS OF CONCER							
SITE			#1314V3-1 (IDOT I					Со	mparison C			
BORING		1314V3-01-B01	1	1314V3-01-B02	1314V3-01-B03		MACs			TAC	0	
SAMPLE	1314V3-01-B01 (0-6)	1314V3-01-B01 (6-11)	1314V3-01-G01	1314V3-01-B02 (0-8)	1314V3-01-B03 (0-8)							
MATRIX	Soil	Soil	Water	Soil	Soil		Within					
DEPTH (feet)	0-6	6-11		0-8	0-8	Most	an	Within		Construction		
pH	8.2	7.7		7.7	9.4 #	Stringent	MSA	Chicago	Residential	Worker	SCGIER	Groundwater
VOCs (soil: mg/kg,	water: mg/L)											
2-Butanone (MEK)	0.011	0.012	ND U	0.0072	0.0096							
Acetone	0.062	0.054	ND U	0.04	0.053	25			70,000	100,000		6.3
SVOCs (soil: mg/kg	. water: mg/L)											
2-Methylnaphthalene	0.017 J	ND U	ND U	ND U	0.008 J							
Acenaphthene	ND U	ND U	ND U	ND U	0.028 J	570			4,700	120,000		0.42
Acenaphthylene	0.0059 J	ND U	ND U	ND U	0.0082 J							
Anthracene	0.022 J	ND U	ND U	ND U	0.019 J	12,000			23,000	610,000		2.1
Benzo(a)anthracene	0.077	ND U	ND U	0.012 J	0.045	0.9	1.8	1.1	1.8	170		0.00013
Benzo(a)pyrene	0.069	ND U	ND U	0.015 J	0.05	0.09	2.1	1.3	2.1	17		0.0002
Benzo(b)fluoranthene	0.09	ND U	ND U	ND U	0.065	0.9	2.1	1.5	2.1	170		0.00018
Benzo(g,h,i)perylene	0.029 J	ND U	ND U	ND U	0.035 J							
Benzo(k)fluoranthene	0.042	ND U	ND U	ND U	0.024 J	9	-		9	1,700		0.00017
Carbazole	ND U	ND U	ND U	ND U	ND U	0.6			32	6,200		
Chrysene	0.074	ND U	ND U	0.016 J	0.048	88	-		88	17,000		0.0015
Dibenz(a,h)anthracene	ND U	ND U	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17		0.0003
Dibenzofuran	ND U	ND U	ND U	ND U	ND U		-	-				
Diethyl phthalate	ND U	ND U	0.00032 J	0.22	0.15 J	470	-		2,000	2,000		5.6
Fluoranthene	0.16	0.016 J	ND U	0.036 J	0.11	3,100	-		3,100	82,000		0.28
Fluorene	0.0084 J	ND U	ND U	ND U	0.026 J	560			3,100	82,000		0.28
Indeno(1,2,3-cd)pyrene	0.026 J	ND U	ND U	ND U	0.028 J	0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	0.013 J	ND U	ND U	ND U	0.012 J	1.8			170	1.8		0.14
Phenanthrene	0.11	0.017 J	ND U	0.026 J	0.082							
Pyrene	0.14	0.013 J	ND U	0.034 J	0.1	2300	-	-	2,300	61,000		0.21
Inorganics (soil: mg	g/kg, water: mg/L)											
Antimony	1 J	0.43 J	ND U	0.55 J	0.51 J	5			31	82		0.006
Arsenic	4.2	2	0.0015	4.1	4.7	11.3	13		13	61		0.05
Barium	83	49	0.31	91	73	1,500			5,500	14,000		2
Beryllium	0.66	0.37	ND U	0.56	0.56	22			160	410		0.004
Boron	15	6.8	1.5	6.5	7	40			16,000	41,000		2
Cadmium	1.9	0.15	ND U	0.24	0.58	5.2			78	200		0.005
Calcium	41,000	8,400	230	29,000	34,000							
Chromium	10	8.6	0.00098 J	13	13	21	-		230	690		0.1
Cobalt	5.7	4.8	0.0013	5.8	6.2	20			4,700	12,000		1
Copper	25	8.7	0.0018 J	14	19	2,900			2,900	8,200		0.65
Iron	18,000 †m	13,000	29 W1,2	15,000	16,000 †m	15,000	15,900					5
Lead	78	13	0.004	21	45	107			400	700		0.0075
Magnesium	2,300	3,700	37	2,400	6,000	325,000				730,000		
Manganese	430	300	3 W1	390	760 †m	630	636		1,600	4,100		0.15
Mercury	0.12	0.012 J	ND U	0.17	0.18	0.89			10	0.1		0.002
Nickel	13	12	0.0075	12	14	100			1,600	4,100		0.1
Potassium	1,200	650	21	1,000	1,300							
Selenium	ND U	0.37 J	ND U	ND U	ND U	1.3	-		390	1,000		0.05
Silver	0.084 J	ND U	ND U	ND U	0.068 J	4.4			390	1,000		0.05
Sodium	380	180	230	170	490							
Thallium	0.96	0.68	ND U	0.87	1.3	2.6			6.3	160		0.002
Vanadium	17	15	ND U	20	21	550			550	1,400		0.049
Zinc	1,100	48	0.027	55	160	5,100			23,000	61,000		5
TCLP Metals (mg/L)	<u> </u>											
Barium	0.95	0.68	NA	1	0.66		-				2	-
Boron	0.27 J	0.22 J	NA	0.14 J	0.22 J						2	
Cadmium	ND U	0.0021 J	NA	ND U	ND U						0.005	
Cobalt	0.023 J	0.036	NA	0.017 J	0.016 J						1	
Iron	ND U	ND U	NA	ND U	ND U						5	
Lead	0.014 L	ND U	NA	ND U	0.012 L						0.0075	
Manganese	3.3 L	5.3 L	NA	6.2 L	6.2 L						0.15	
Nickel	0.025	0.04	NA	0.017 J	0.024 J						0.1	
Zinc	0.23 J	0.15 J	NA	0.071 J	0.87						5	
SPLP Metals (mg/L)												
Cadmium	NA	NA	NA	NA	NA						0.005	
Lead	0.014 L	NA	NA	NA	ND U						0.0075	
Manganese	0.02 J	0.077	NA	0.27 L	0.012 J						0.15	

				CO	NTAMINAN	SOFC	ONCERN						
SITE		ISGS	#1314V3	-1 (IDOT ROW)					Co	mparison C	riteria		
BORING	1314	V3-01-B04		1314\	3-01-B05			MACs			TAC	0	•
SAMPLE	1314V3-01-B04 (0-	6) 1314V3-01-B	04 (6-12)	1314V3-01-B05 (0-6) 1314V3-01-B	05 (6-12)							
MATRIX	Soil	Soil		Soil	Soil			Within					
DEPTH (feet)	0-6	6-12	2	0-6	6-12	2	Most	an	Within		Construction		
pH	9.3 #	7.7		8.5	8.2		Stringent	MSA	Chicago	Residential	Worker	SCGIER	Groundwater
VOCs (soil: mg/kg,	water: mg/L)									_			
2-Butanone (MEK)	0.013	ND	U	0.02	0.02								-
Acetone	0.072	0.033		0.09	0.097		25			70,000	100,000	-	6.3
SVOCs (soil: mg/kg	, water: mg/L)												
2-Methylnaphthalene	0.063 J	ND	U	0.083	0.039	J							
Acenaphthene	0.22	ND	U	0.086	0.11		570			4,700	120,000		0.42
Acenaphthylene	0.016 J	ND	U	0.038	0.0053	J							
Anthracene	0.65	ND	U	0.28	0.28		12,000			23,000	610,000		2.1
Benzo(a)anthracene		t* ND	U	0.51	0.47		0.9	1.8	1.1	1.8	170		0.00013
Benzo(a)pyrene	1.2	† ND	U	0.43	0.37	t	0.09	2.1	1.3	2.1	17		0.0002
Benzo(b)fluoranthene		<mark>†*</mark> 0.01	J	0.54	0.47		0.9	2.1	1.5	2.1	170		0.00018
Benzo(g,h,i)perylene	0.44	ND	U	0.14	0.12								
Benzo(k)fluoranthene	0.68	ND	U	0.2	0.17		9			9	1,700		0.00017
Carbazole	0.44	ND ND	U	0.12 J	0.13	J	0.6			32	6,200		0.0045
Chrysene	1.4	ND ND	U	0.49	0.41	,	88			88	17,000		0.0015
Dibenz(a,h)anthracene	0.14	† ND	U	0.043	0.038	J	0.09	0.42	0.2	0.42	17		0.0003
Dibenzofuran	0.1 J ND U	ND 0.11	U J	0.062 J ND U	80.0	J U	470			2 000	2,000		5.6
Diethyl phthalate Fluoranthene	4.1	0.11	J	1.1	ND 1	U	3,100			2,000 3,100	82,000		0.28
Fluorantnene	0.22	0.0099 ND	U	0.11	0.1		560			3,100	82,000		0.28
Indeno(1,2,3-cd)pyrene	0.22	ND ND	U	0.11	0.12		0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	0.08	ND	U	0.077	0.042		1.8			170	1.8		0.14
Phenanthrene	2.3	0.0069	J	1.1	1.1								
Pyrene	2.4	0.0096	J	1	0.91		2300			2,300	61,000		0.21
Inorganics (soil: mg		•								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Antimony	0.49 J	ND	U	4.7	0.68	J	5			31	82		0.006
Arsenic	6.4	3.3		8.4	3.9		11.3	13		13	61		0.05
Barium	110	110		120	100		1,500			5,500	14,000		2
Beryllium	0.73	0.58		0.55	0.57		22			160	410		0.004
Boron	5.8	3.2		6.2	4.1		40			16,000	41,000		2
Cadmium	0.51	0.23		0.49	0.26		5.2			78	200		0.005
Calcium	11,000	4,000		7,500	9,800								
Chromium	16	16		17	15		21			230	690		0.1
Cobalt	8.2	7.2		8.5	6.1		20			4,700	12,000		1
Copper	25	12		35	23		2,900			2,900	8,200		0.65
Iron	29,000 †	m 17,000	†m	33,000 †n	20,000	†m	15,000	15,900					5
Lead	51	16		41	57		107			400	700		0.0075
Magnesium	3,500	3,000		3,700	3,300		325,000				730,000		-
Manganese	380	710	†m	370	400		630	636		1,600	4,100		0.15
Mercury	0.06	0.27		0.16	0.47		0.89			10	0.1		0.002
Nickel	18	17		30	15		100			1,600	4,100		0.1
Potassium	1,400	1,400		1,400	1,600								
Selenium	0.34 J	ND ND	U	0.32 J	ND 0.07	U .	1.3			390	1,000		0.05
Silver	ND U	ND coo	U	ND U	0.07	J	4.4			390	1,000	-	0.05
Sodium	1,600	600		790	450		2.6			6.2	160		0.002
Thallium Vanadium	1.2 26	1.4		1.3 26	17		2.6 550			6.3 550	160 1,400		0.002 0.049
Zinc	190	59		120	110		5,100			23,000	61,000		5
				1.20	, 110		5,100	1	1	_0,000	01,000	<u> </u>	
TCLP Metals (mg/L)		0.50		0.05								0	
Barium	0.12	0.52	,	0.85 0.17 J	0.6	J						2	-
Boron Cadmium	0.12 J 0.0037 J	0.13 0.0024	J	0.17 J 0.0079 I	0.19	J						0.005	
Cadmium	0.0037 J 0.025	0.0024	J	0.0079	0.0022	J						0.005	
Iron	0.025 ND U	ND	U	ND U	0.023	J						5	
Lead	0.014	L 0.019	L	0.025	0.025	j						0.0075	
Manganese	4.8	L 4.3		8 1	6.5	-	-					0.0073	
Nickel	0.03	0.049		0.071	0.023	J						0.1	
Zinc	0.56	0.26	J	0.67	0.51							5	
SPLP Metals (mg/L)													
Cadmium	NA	NA		ND U	NA							0.005	
Lead	0.16	L 0.058	ı	0.21	0.18	1						0.0075	-
Manganese	0.94	L 1.2	L	1.2	0.99	L						0.15	

				•••••	TS OF CONCERN				Comparison Criteria			
SITE		ISC	SS #1314V3-1 (IDOT RO	W)				Co	mparison C	riteria		
BORING		1314V3-01-B06			3-01-B07		MACs	•		TAC	0	
SAMPLE	1314V3-01-B06 (0-8)	1314V3-01-B06 (8-15)	1314V3-01-B06 (8-15)D	1314V3-01-B07 (0-6)	1314V3-01-B07 (6-12)							
MATRIX	Soil	Soil	Soil	Soil	Soil		Within					
DEPTH (feet)	0-8	8-15	8-15	0-6	6-12	Most	an	Within		Construction		
pH	7.9	7.8	7.9	7.8	7.6	Stringent	MSA	Chicago	Residential	Worker	SCGIER	Groundwater
VOCs (soil: mg/kg,	water: mg/L)											
2-Butanone (MEK)	ND U	ND U	ND U	ND U	ND U							
Acetone	ND U	ND U	ND U	ND U	ND U	25			70,000	100,000		6.3
SVOCs (soil: mg/kg		-	-		-				-,			
<u> </u>	, ,	ND II	ND U	ND U	ND U							
2-Methylnaphthalene		ND U ND U	_	ND U ND U	_							0.42
Acenaphthene						570			4,700	120,000		0.42
Acenaphthylene	ND U	ND U	ND U	0.0052 J	ND U							
Anthracene	0.022 J	ND U	ND U	0.0088 J	ND U	12,000	1.8		23,000	610,000		2.1
Benzo(a)anthracene	0.074	ND U	ND U	0.037	ND U	0.9		1.1	1.8	170		0.00013
Benzo(a)pyrene	0.066	ND U	ND U	0.041	ND U	0.09	2.1	1.3	2.1	17		0.0002
Benzo(b)fluoranthene	0.083	ND U	ND U	0.067	ND U ND U	0.9	2.1	1.5	2.1	170		0.00018
Benzo(g,h,i)perylene	0.038	ND U	ND U	0.017 J						4.700		0.00047
Benzo(k)fluoranthene	0.033 J	ND U	ND U	0.021 J	ND U	9			9	1,700		0.00017
Chross	ND U	ND U	ND U	ND U	ND U	0.6			32	6,200		0.0045
Chrysene	0.076	ND U	ND U	0.046	ND U	88			88	17,000		0.0015
Dibenz(a,h)anthracene	0.01 J	ND U	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17		0.0003
Dibenzofuran	ND U	ND U	ND U	ND U	ND U	470						
Diethyl phthalate	0.076 J	ND U	ND U	ND U	ND U	470			2,000	2,000		5.6
Fluoranthene	0.18	ND U	0.0082 J	0.084	ND U	3,100			3,100	82,000		0.28
Fluorene	ND U	ND U	ND U	ND U	ND U	560			3,100	82,000		0.28
Indeno(1,2,3-cd)pyrene	0.034 J	ND U	ND U	ND U	ND U	0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	0.012 J	ND U	ND U	ND U	ND U	1.8			170	1.8		0.14
Phenanthrene	0.12	0.0056 J	0.0069 J	0.046	ND U							
Pyrene	0.15	ND U	ND U	0.076	ND U	2300			2,300	61,000		0.21
Inorganics (soil: mg	/kg, water: mg/L)	1		T .								
Antimony	0.28 J	0.33 J	ND U	0.41 J	0.34 J	5			31	82		0.006
Arsenic	4.1	4.5	3.8	4.1	2.9	11.3	13		13	61		0.05
Barium	77	84	82	74	82	1,500			5,500	14,000		2
Beryllium	0.55	0.53	0.51	0.52	0.46	22			160	410		0.004
Boron	4.9	2.5 J	2.2 J	4.8	2.4 J	40			16,000	41,000		2
Cadmium	0.34	0.15	0.17	0.28	0.17	5.2			78	200		0.005
Calcium	16,000	5,800	6,400	19,000	3,200							
Chromium	12	15	14	11	13	21			230	690		0.1
Cobalt	5.3	7.4	5.8	5	5.1	20			4,700	12,000		1
Copper	14	12	12	13	10	2,900			2,900	8,200		0.65
Iron	13,000	16,000 †m	14,000	13,000	13,000	15,000	15,900					5
Lead	42	8.2	8.1	49	7.2	107			400	700		0.0075
Magnesium	4,800	3,400	4,000	5,100	2,300	325,000				730,000		
Manganese	360	440	380	250	350	630	636		1,600	4,100		0.15
Mercury	0.2	0.029	0.019 J	0.18	0.011 J	0.89			10	0.1		0.002
Nickel	12	15	14	12	13	100			1,600	4,100		0.1
Potassium	980	930	920	940	870							
Selenium	ND U	ND U	ND U	ND U	ND U	1.3			390	1,000		0.05
Silver	ND U	ND U	ND U	ND U	ND U	4.4			390	1,000		0.05
Sodium	290	210	210	510	130							
Thallium	0.67	0.97	0.92	0.66	0.8	2.6			6.3	160		0.002
Vanadium	17	22	19	16	16	550			550	1,400		0.049
Zinc	88	36	33	65	32	5,100			23,000	61,000		5
TCLP Metals (mg/L)												
Barium	0.77	0.3 J	0.33 J	0.87	0.19 J						2	
Boron	0.11 J	0.052 J	0.073 J	0.14 J	0.06 J						2	
Cadmium	0.0028 J	ND U	ND U	0.003 J	ND U						0.005	
Cobalt	0.017 J	ND U	ND U	0.022 J	ND U						1	
Iron	ND U	ND U	ND U	ND U	ND U						5	
Lead	0.013 L	ND U	ND U	0.013 L	ND U						0.0075	
Manganese	4.1 L	0.043	0.097	5.6 L	ND U						0.15	
Nickel	0.018 J	ND U	ND U	0.023 J	ND U						0.1	
Zinc	0.13 J	0.022 J	ND U	0.16 J	ND U						5	
SPLP Metals (mg/L)												
Cadmium	NA	NA	NA	NA	NA						0.005	
Lead	0.054 L	NA NA	NA NA	0.017 L	NA NA						0.0075	
Manganese	0.34 L	NA NA	NA NA	0.066	NA NA						0.0073	

				NTAMINANTS OF C	1						
SITE		ISGS #1314\	/3-1 (IDOT ROW)				Co	mparison C	riteria		
BORING	1314V3	-01-B08	1314V	3-01-B09		MACs			TAC	0	
SAMPLE	1314V3-01-B08 (0-4)	1314V3-01-B08 (4-9)	1314V3-01-B09 (0-6)	1314V3-01-B09 (6-11.6)			<u> </u>]	
MATRIX	Soil	Soil	Soil	Soil	1						
DEPTH (feet)	0-4	4-9	0-6	6-11.6	1	Within					
pH	7.7	7.7	8.6	8	- Most Stringent	an MSA	Within Chicago	Residential	Construction Worker	SCGIER	Groundwater
<u>-</u>	L L	7.7	0.0		Ourngent	MOA	Officago	Residential	WOIKE	OCCILIC	Groundwater
VOCs (soil: mg/kg,	water: mg/L)		1		1	1	1	1	ı	1	1
2-Butanone (MEK)	ND U	ND U	ND U	ND U							
Acetone	ND U	ND U	ND U	ND U	25			70,000	100,000		6.3
SVOCs (soil: mg/kg	, water: mg/L)										
2-Methylnaphthalene	ND U	ND U	ND U	0.1							
Acenaphthene	ND U	ND U	ND U	0.0091 J	570			4,700	120,000		0.42
·											
Acenaphthylene	ND U		ND U	0.013 J		-					
Anthracene	ND U	ND U	ND U	0.031 J	12,000			23,000	610,000		2.1
Benzo(a)anthracene	0.023 J	ND U	ND U	0.069	0.9	1.8	1.1	1.8	170		0.00013
Benzo(a)pyrene	0.026 J	ND U	ND U	0.061	0.09	2.1	1.3	2.1	17		0.0002
Benzo(b)fluoranthene	0.038 J	ND U	ND U	0.1	0.9	2.1	1.5	2.1	170		0.00018
Benzo(g,h,i)perylene	0.017 J	ND U	ND U	0.036 J							
Benzo(k)fluoranthene	0.015 J	ND U	ND U	0.037	9			9	1,700		0.00017
Carbazole	ND U	ND U	ND U	ND U	0.6			32	6,200		
Chrysene	0.034 J	ND U	ND U	0.09	88			88	17,000		0.0015
Dibenz(a,h)anthracene	ND U	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17		0.0003
Dibenzofuran	ND U	ND U	ND U	0.045 J							
Diethyl phthalate	ND U	ND U	ND U	0.045 J ND U	470			2,000			5.6
									2,000		
Fluoranthene	0.057	ND U	0.012 J	0.15	3,100			3,100	82,000		0.28
Fluorene	ND U	ND U	ND U	0.0097 J	560			3,100	82,000		0.28
Indeno(1,2,3-cd)pyrene	0.016 J	ND U	ND U	0.027 J	0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	ND U	ND U	ND U	0.065	1.8			170	1.8		0.14
Phenanthrene	0.032 J	ND U	0.011 J	0.17	-	-					
Pyrene	0.053	ND U	0.014 J	0.16	2300			2,300	61,000		0.21
Inorganics (soil: mg	g/kg, water: mg/L))									
Antimony	0.27 J	0.27 J	0.46 J	0.44 J	5			31	82		0.006
Arsenic	3.7	6.3	4.6	4.6	11.3	13		13	61		0.05
Barium	100	76	35	55	1,500			5,500			2
									14,000		
Beryllium -	0.48	0.49	0.44	0.56	22			160	410		0.004
Boron	3	1.7 J	3.5	8.6	40			16,000	41,000		2
Cadmium	0.22	0.31	0.11	0.35	5.2			78	200		0.005
Calcium	7,400	2,500	36,000	26,000							
Chromium	12	13	10	12	21			230	690		0.1
Cobalt	5.5	6.9	5.3	5.3	20			4,700	12,000		1
Copper	11	11	11	15	2,900			2,900	8,200		0.65
Iron	12,000	15,000	15,000	14,000	15,000	15,900					5
Lead	48	7.4	8.5	14	107			400	700		0.0075
Magnesium	1,900	2,100	19,000	13,000	325,000				730,000		
Manganese	490	770 †m		290	630	636		1,600	4,100		0.15
									i e		
Mercury	0.04	0.022	0.019	0.036	0.89			10	0.1		0.002
Nickel	11	19	13	13	100			1,600	4,100		0.1
Potassium	880	660	790	780							
Selenium	0.35 J	ND U	0.76	0.54	1.3			390	1,000		0.05
Silver	ND U	ND U	ND U	ND U	4.4			390	1,000		0.05
Sodium	310	180	530	200							
Thallium	0.91	1.4	0.91	0.89	2.6			6.3	160		0.002
Vanadium	16	22	18	18	550			550	1,400		0.049
Zinc	41	31	34	66	5,100			23,000	61,000		5
TCLP Metals (mg/L)											
` <u> </u>		0.00	0.0	0.00	1	I	I	1		2	1
Barium	0.32 J	0.23 J	8.0	0.99						2	
Boron	0.12 J	0.05 J	ND U	ND U						2	
Cadmium	ND U	ND U	0.0034 J	0.0046 J						0.005	
Cobalt	ND U	ND U	0.023 J	0.021 J						1	
Iron	ND U	ND U	ND U	ND U						5	
Lead	ND U	ND U	ND U	0.008						0.0075	
Manganese	1.1 L	ND U	7 L	8 I						0.15	
Nickel	ND U	ND U	0.032	0.025						0.1	
Zinc	0.03 J	ND U	0.02 J	0.19 J						5	
SPLP Metals (mg/L)											
` <u> </u>		NIA.	NIA.	NIA						0.005	
Cadmium	NA	NA	NA	NA		-				0.005	
Lead	NA	NA	NA	0.028 I						0.0075	
Manganese	0.29 L	NA	0.19 L	0.32 I						0.15	

r	ı		CONTAMINA	IIS OF CO	NCERN					
SITE	ISG	S #1314V3-1 (IDOT F	ROW)			Co	mparison C			
BORING	1314V3-01-B10		3-01-B11		MACs	ı		TAC	0	
SAMPLE	1314V3-01-B10 (0-6)	1314V3-01-B11 (0-8)	1314V3-01-B11 (8-15)							
MATRIX	Soil	Soil	Soil		Within					
DEPTH (feet)	0-6	0-8	8-15	Most	an	Within		Construction		
pH	8.6	8.3	8.6	Stringent	MSA	Chicago	Residential	Worker	SCGIER	Groundwater
VOCs (soil: mg/kg,	water: mg/L)		ı			T	1	T	1	
2-Butanone (MEK)	ND U	ND U	ND U							
Acetone	ND U	ND U	ND U	25			70,000	100,000		6.3
SVOCs (soil: mg/kg	, water: mg/L)									
2-Methylnaphthalene	ND U	ND U	ND U							
Acenaphthene	ND U	ND U	ND U	570			4,700	120,000		0.42
Acenaphthylene	ND U	ND U	ND U							
Anthracene	ND U	ND U	ND U	12,000			23,000	610,000		2.1
Benzo(a)anthracene	0.043	ND U	ND U	0.9	1.8	1.1	1.8	170		0.00013
Benzo(a)pyrene	0.057	ND U	ND U	0.09	2.1	1.3	2.1	17		0.0002
Benzo(b)fluoranthene	0.073	ND U	ND U	0.9	2.1	1.5	2.1	170		0.00018
Benzo(g,h,i)perylene	0.044	ND U	ND U							
Benzo(k)fluoranthene	0.026 J	ND U	ND U	9			9	1,700		0.00017
Carbazole	ND U	ND U	ND U	0.6			32	6,200		
Chrysene	0.046	ND U	ND U	88	0.42		88	17,000		0.0015
Dibenz(a,h)anthracene	0.01 J ND U	ND U	ND U	0.09	0.42	0.2	0.42	17		0.0003
Dibenzofuran Diethyl obthalate	ND U ND U	ND U ND U	ND U	470			2 000	2 000		 5.6
Diethyl phthalate Fluoranthene	0.063	ND U ND U	ND U	3,100			2,000	2,000 82,000		5.6 0.28
Fluorantnene	0.063 ND U	ND U	ND U	3,100 560			3,100 3,100	82,000		0.28
Indeno(1,2,3-cd)pyrene	0.035 J	ND U	ND U	0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	ND U	ND U	ND U	1.8			170	1.8		0.14
Phenanthrene	0.026 J	ND U	ND U							
Pyrene	0.068	ND U	ND U	2300			2,300	61,000		0.21
Inorganics (soil: mg	g/kg. water: mg/L									
Antimony	ND U	ND U	ND U	5			31	82		0.006
Arsenic	4	3.1	3.7	11.3	13		13	61		0.05
Barium	54	68	58	1,500			5,500	14,000		2
Beryllium	0.54	0.42	0.38	22			160	410		0.004
Boron	1.7 J	2.3 J	2.1 J	40	-		16,000	41,000		2
Cadmium	0.24	0.23	0.2	5.2	-		78	200		0.005
Calcium	23,000	3,400	13,000							
Chromium	12	11	11	21			230	690		0.1
Cobalt	6.9	5.2	5.2	20			4,700	12,000		1
Copper	12	9	8.4	2,900			2,900	8,200		0.65
Iron	12,000	10,000	11,000	15,000	15,900					5
Lead	24	13	7.5	107			400	700		0.0075
Magnesium	13,000	1,900	8,500	325,000				730,000		
Manganese	280	220	210	630	636		1,600	4,100		0.15
Mercury	0.038	0.029	0.026	0.89			10	0.1		0.002
Nickel	24	12	13	100			1,600	4,100		0.1
Potassium	560	610	550							
Selenium	ND U	0.34 J	ND U	1.3			390	1,000		0.05
Silver	ND U	ND U	ND U	4.4			390	1,000		0.05
Sodium Thallium	350 ND U	540 ND U	840 ND U	2.6			6.3	160		0.002
Thallium Vanadium	18	14	18	2.6 550			550	1,400		0.002
Zinc	18 52	14 41	18 38	5,100			23,000	61,000		5
TCLP Metals (mg/L)		71	, 00	5,100	I	l	_0,000	21,000		
		0.00	0.40						0	
Barium	0.8 0.055 J	0.22 J 0.082 J	0.48 J 0.063 J						2	
Boron			0.063 J ND U						0.005	
Cadmium Cobalt	ND U ND U	ND U ND U	ND U						0.005	
Iron	ND U	ND U	ND U						5	
Lead	ND U	ND U	ND U						0.0075	
Manganese	0.41 L	0.014 J	0.73 L	-					0.0075	
Nickel	0.026	ND U	0.73 L						0.13	
Zinc	ND U	ND U	ND U						5	
SPLP Metals (mg/L)		· · · · ·					•			
Cadmium	NA	NA	NA						0.005	
Lead	NA NA	NA NA	NA NA						0.005	
Manganese	0.4 L	NA NA	0.71 L						0.0075	
manyanese	0.4 L	IN/A	0.71 L	-	-				0.10	

[TAMINANTS OF							
SITE		ISGS #1314V3-2 (Mi					Co	mparison C			
BORING	1011/0 00 701 //	1314V3-0		10111/0 00 00:-		MACs	1		TAC	Ü	
SAMPLE		1314V3-02-B01 (5-10)	1314V3-02-G01	1314V3-02-G01D							
MATRIX	Soil	Soil	Water	Water		Within					
DEPTH (feet) pH	0-5 11.6 #	5-10 9.8 #			Most	an	Within	Danislandial	Construction	COOLED	O
i		3.0 H		<u> </u>	Stringent	MSA	Chicago	Residential	Worker	SCGIER	Groundwater
VOCs (soil: mg/kg,				I I		1	1				
Acetone	0.032	ND U	ND U	ND U	25			70,000	100,000		6.3
Xylenes, Total	ND U	ND U	0.00067 J	ND U	5.6			320	5.6		10
SVOCs (soil: mg/kg	<u> </u>					l	l				
2-Methylnaphthalene	ND U	0.014 J	ND U	ND U							
Acenaphthene	ND U	0.039	ND U	ND U	570			4,700	120,000		0.42
Acenaphthylene	ND U	0.007 J	ND U	ND U ND U	12,000			23,000			2.1
Anthracene Benzo(a)anthracene	ND U	0.14	ND U	ND U ND U	0.9	1.8	1.1	1.8	610,000 170		0.00013
Benzo(a)pyrene	ND U	0.31 †	ND U	ND U	0.09	2.1	1.3	2.1	170		0.00013
Benzo(b)fluoranthene	ND U	0.39	ND U	ND U	0.9	2.1	1.5	2.1	170		0.00018
Benzo(g,h,i)perylene	ND U	0.17 J	ND U	ND U							
Benzo(k)fluoranthene	ND U	0.11 J	ND U	ND U	9			9	1,700		0.00017
Chrysene	ND U	0.39	ND U	ND U	88			88	17,000		0.0015
Diethyl phthalate	ND U	ND U	0.00048 J	0.00041 J	470			2,000	2,000		5.6
Fluoranthene	ND U	0.53	ND U	ND U	3,100			3,100	82,000		0.28
Fluorene	ND U	0.055	ND U	ND U	560			3,100	82,000		0.28
Indeno(1,2,3-cd)pyrene	ND U	0.1	ND U	ND U	0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	ND U	0.02 J	ND U	ND U	1.8			170	1.8		0.14
Phenanthrene	ND U	0.44	ND U	0.00032 J							
Pyrene	ND U	0.82	ND U	ND U	2300			2,300	61,000		0.21
Inorganics (soil: mg	g/kg, water: mg/L)			1	1	1	1		1	-	
Antimony	ND U	0.33 J	ND U	ND U	5			31	82		0.006
Arsenic	2.1	4.2	0.0074	0.0068	11.3	13		13	61		0.05
Barium	38	61	0.18	0.17	1,500			5,500	14,000		2
Beryllium -	0.57	0.43	0.00072 J	0.00071 J	22			160	410		0.004
Boron	25	4.3	0.49	0.46	40			16,000	41,000		2
Cadmium	0.14	0.31	0.0012	0.0011	5.2			78	200		0.005
Calcium	110,000 15	140,000 11	85 0.017	83 0.012	21			230	690		0.1
Chromium Cobalt	5.1	8.6	0.0044	0.012	20			4,700	12,000		1
Copper	6.7	13	0.029	0.028	2,900			2,900	8,200		0.65
Iron	7,700	14,000	15 W1,2	14 W1,2	15,000	15,900					5
Lead	2.5	31	0.51 W1,2	0.48 W1,2	107			400	700		0.0075
Magnesium	6,000	3,900	11	11	325,000				730,000		
Manganese	830 †m	600	0.39 W1	0.35 W1	630	636		1,600	4,100		0.15
Mercury	ND U	0.12	0.00012 J	ND U	0.89			10	0.1	-	0.002
Nickel	14	19	0.013	0.012	100			1,600	4,100		0.1
Potassium	380	1,300	9.6	9.1							
Silver	ND U	0.078 J	0.00011 J	0.0001 J	4.4			390	1,000		0.05
Sodium	100	170	21	20							
Thallium	1.2	0.8	ND U	ND U	2.6			6.3	160		0.002
Vanadium	18	18	0.015	0.015	550			550	1,400		0.049
Zinc	22	35	0.31	0.27	5,100			23,000	61,000		5
TCLP Metals (mg/L)		<u> </u>				I	I				
Barium	0.087 J	0.96	NA	NA 						2	
Boron	0.12 J	0.08 J	NA NA	NA NA						2	
Cadmium	ND U	ND U	NA NA	NA NA						0.005	
Chromium Cobalt	0.099 ND U	ND U 0.033	NA NA	NA NA						0.1	
Iron	ND U	0.033	NA NA	NA NA						5	
Manganese	ND U	9.6 L	NA NA	NA NA						0.15	
Nickel	ND U	0.047	NA NA	NA NA						0.13	
Zinc	ND U	0.047 0.11 J	NA NA	NA NA						5	
SPLP Metals (mg/L)		· · · ·	· · · · · · · · · · · · · · · · · · ·								
Cadmium	NA	NA	NA	NA						0.005	
Manganese	NA NA	0.45 L	NA NA	NA NA						0.005	
Nickel	NA NA	0.45 L NA	NA NA	NA NA						0.15	
	14/1	14/1	17/1	11/1		<u> </u>			-	V. I	-

			CONTAMINAN	TS OF CO	ICERN					
SITE	ISGS	#1314V3-2 (Mississip	pi River)			Co	mparison C	riteria		
BORING		1314V3-02-B02			MACs	1		TAC	0	
SAMPLE	1314V3-02-B02 (0-6)	1314V3-02-B02 (6-12)	1314V3-02-B02 (6-12)D							
MATRIX	Soil	Soil	Soil		Within					
DEPTH (feet)	0-6	6-12	6-12	Most	an	Within		Construction		
pH	9.1 #	9.1 #	8.9	Stringent	MSA	Chicago	Residential	Worker	SCGIER	Groundwater
VOCs (soil: mg/kg,	water: mg/L)									
Acetone	ND U	ND U	ND U	25			70,000	100,000		6.3
SVOCs (soil: mg/kg	յ, water: mg/L)									
2-Methylnaphthalene	0.014 J	0.0084 J	ND U		-					-
Acenaphthene	0.0085 J	ND U	ND U	570			4,700	120,000		0.42
Acenaphthylene	ND U	ND U	ND U	-						-
Anthracene	ND U	ND U	ND U	12,000			23,000	610,000		2.1
Benzo(a)anthracene	0.021 J	0.0089 J	ND U	0.9	1.8	1.1	1.8	170		0.00013
Benzo(a)pyrene	0.034 J	0.0091 J	ND U	0.09	2.1	1.3	2.1	17		0.0002
Benzo(b)fluoranthene	0.048	0.021 J	0.013 J	0.9	2.1	1.5	2.1	170		0.00018
Benzo(g,h,i)perylene	0.019 J	ND U	ND U	-	-					-
Benzo(k)fluoranthene	0.022 J	ND U	ND U	9			9	1,700		0.00017
Chrysene	0.026 J	0.012 J	ND U	88			88	17,000		0.0015
Fluoranthene	0.035 J	0.016 J	ND U	3,100			3,100	82,000		0.28
Fluorene	ND U	ND U	ND U	560			3,100	82,000		0.28
Indeno(1,2,3-cd)pyrene	0.027 J	ND U	ND U	0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	0.014 J	0.0077 J	ND U	1.8			170	1.8		0.14
Phenanthrene	0.028 J 0.032 J	0.016 J 0.014 J	ND U ND U	2200			2 200			0.21
Pyrene			ND U	2300			2,300	61,000		0.21
Inorganics (soil: mo	1					1				
Antimony	0.4 J	0.35 J	0.44 J	5	-		31	82		0.006
Arsenic	6.7	4.5	3	11.3	13		13	61		0.05
Barium	54	64	50	1,500			5,500	14,000		2
Beryllium	0.59	0.55	0.55	22	-		160	410		0.004
Boron	1.5 J	1.7 J	2 J	40	-		16,000	41,000		2
Cadmium	0.39	0.27	0.25	5.2			78 	200		0.005
Calcium	21,000 35 †	23,000 15	30,000 17	21			230	690		0.1
Chromium Cobalt	7.2	5.4	4.6	20			4,700	12,000		1
Copper	27	14	13	2,900			2,900	8,200		0.65
Iron	21,000 †m		12,000	15,000	15,900					5
Lead	22	20	20	107			400	700		0.0075
Magnesium	8,200	11,000	12,000	325,000				730,000		
Manganese	340	230	250	630	636		1,600	4,100		0.15
Mercury	ND U	ND U	ND U	0.89			10	0.1		0.002
Nickel	61	14	14	100			1,600	4,100		0.1
Potassium	780	740	450							
Silver	ND U	ND U	ND U	4.4			390	1,000		0.05
Sodium	73	140	140	1						-
Thallium	0.68	0.61	0.52 J	2.6			6.3	160		0.002
Vanadium	23	25	24	550			550	1,400		0.049
Zinc	39	34	33	5,100			23,000	61,000		5
TCLP Metals (mg/L))									
Barium	0.76	0.77	0.79	1					2	-
Boron	ND U	ND U	ND U						2	
Cadmium	0.0045 J	0.0074 L	0.004 J						0.005	
Chromium	ND U	ND U	ND U						0.1	
Cobalt	ND U	0.02 J	ND U						1	
Iron	ND U	ND U	ND U						5	
Manganese	2.3 L	4.3 L	3.4 L						0.15	-
Nickel 	0.24 L	0.063	0.038						0.1	
Zinc	0.044 J	0.38 J	ND U						5	
SPLP Metals (mg/L))		1							
Cadmium	NA	ND U	NA		-				0.005	
Manganese Nickel	0.11 0.027	0.28 L NA	0.28 L NA						0.15 0.1	

	ī				CONT	AMINA	NTS OF CO	DNCERN					
SITE		(City of	ISGS #131 Moline, Wat		tment)				Co	mparison C	Criteria		
BORING		· •	1314V3-04		,			MACs			TAC	0	
SAMPLE	1314V3-04-E	301 (0-6)	1314V3-04-B		1314V3-0	4-G01							
MATRIX	Soil	, ,	Soil		Wate	er							
DEPTH (feet)	0-6		6-11				Most	Within an	Within		Construction		
pН	8		8				Stringent	MSA	Chicago	Residential	Worker	SCGIER	Groundwater
VOCs (soil: mg/kg,	water: mg/	/L)											
2-Butanone (MEK)	0.01		0.014		ND	U							
Acetone	0.06		0.076		ND	U	25			70,000	100,000		6.3
SVOCs (soil: mg/kg	j, water: m	g/L)											
2-Methylnaphthalene	0.027	J	0.022	J	ND	U							
3 & 4 Methylphenol	ND	U	0.17	J	ND	U		-					-
Acenaphthene	0.01	J	0.088		ND	U	570			4,700	120,000		0.42
Acenaphthylene	0.014	J	0.052	J	ND	U							
Anthracene	0.032	J	0.11		ND	U	12,000			23,000	610,000		2.1
Benzo(a)anthracene	0.11		0.25		0.00076	W1,2	0.9	1.8	1.1	1.8	170		0.00013
Benzo(a)pyrene	0.097	t	0.23	t	0.00086	W1	0.09	2.1	1.3	2.1	17		0.0002
Benzo(b)fluoranthene	0.16		0.37		0.0011	W1,2	0.9	2.1	1.5	2.1	170		0.00018
Benzo(g,h,i)perylene	0.034	J	0.053	J	0.00036	J					4.700		
Benzo(k)fluoranthene	0.055		0.12		0.00042	W1	9			9	1,700		0.00017
Chrysene Dibenz(a,h)anthracene	0.1 ND	U	0.23 ND	U	0.00073 0.00012	J	0.09	0.42	0.2	0.42	17,000 17		0.0015
Fluoranthene	0.2		0.62		0.00012	•	3,100			3,100	82,000		0.0003
Fluorene	0.012	J	0.092		ND	U	560			3,100	82,000		0.28
Indeno(1,2,3-cd)pyrene	0.034	J	0.059		0.00047	W1	0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	0.02	J	0.042	J	ND	U	1.8			170	1.8		0.14
Phenanthrene	0.15		0.26		ND	U							
Pyrene	0.18		0.58		0.001		2300			2,300	61,000		0.21
Inorganics (soil: mg	g/kg, water	: mg/L)											
Antimony	0.67	J	0.87	J	ND	U	5	-		31	82		0.006
Arsenic	4.9		8.7		0.011		11.3	13		13	61		0.05
Barium	82		120		0.25		1,500			5,500	14,000		2
Beryllium	0.59		0.96		0.00034	J	22	-		160	410		0.004
Boron	12		43		1.1		40			16,000	41,000		2
Cadmium	0.65		0.82		0.00024	J	5.2			78	200		0.005
Calcium	43,000		22,000		190								
Cohalt	12 5.3		16 5		0.012		21 20			230 4,700	690 12,000		0.1 1
Cobalt Copper	3.3		39		0.0023		2,900			2,900	8,200		0.65
Iron	21,000	†m	27,000	†m	28	W1,2	15,000	15,900					5
Lead	96		140	†		W1	107			400	700		0.0075
Magnesium	8,300		2,600		34		325,000	-			730,000		-
Manganese	580		430		2	W1	630	636		1,600	4,100		0.15
Mercury	0.44		0.22		ND	U	0.89			10	0.1		0.002
Nickel	12		16		0.01		100			1,600	4,100		0.1
Potassium	1,000		1,000		15								
Selenium	0.36	J	0.93		0.002	J	1.3			390	1,000		0.05
Silver	0.13	J	0.14	J	ND 400	U	4.4			390	1,000		0.05
Sodium	430		380		100	11					160		
Thallium Vanadium	1.1 19		ND 18	U	0.0081	U	2.6 550			6.3 550	160 1,400		0.002
Vanadium Zinc	19		730		0.0081		5,100			23,000	61,000		5
TCLP Metals (mg/L)	•		100				3,.00	i.	1	_0,000	, 5.,550	1	·
Barium	0.84		0.33	J	NA							2	
Boron	0.84	J	0.33	J	NA NA							2	
Cobalt	0.012	J	0.013	J	NA NA							1	
Iron	ND	U	1.4	-	NA NA							5	
Lead	0.017	L	0.013	L	NA							0.0075	-
Manganese	3.4	L	4.3	L	NA							0.15	
Nickel	0.016	J	0.012	J	NA							0.1	
Zinc	0.31	J	0.86		NA							5	
SPLP Metals (mg/L))												
Lead	0.036	L	0.052	L	NA							0.0075	
Manganese	0.085		0.16	L	NA							0.15	

				INANTS OF CONC						
SITE			(Industrial Building)				Compa	rison Criter		
BORING	1314V3-05-B01		3-05-B02	1314V3-05-B03		MACs			TACO	
SAMPLE	1314V3-05-B01 (0-5)	` ′	1314V3-05-B02 (6-10.6)	` '						
MATRIX	Soil	Soil	Soil	Soil		Within				
DEPTH (feet)	0-5 8.1	0-6 8.2	6-10.6 7	0-5.9 8.2	Most	an	Within	Danisla satial	Construction	COOLED
pH		0.2	7	0.2	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detect	ed)									
SVOCs (mg/kg)										
2-Methylnaphthalene	ND U	ND U	ND U	0.025 J						
Acenaphthene	ND U	ND U	ND U	0.061	570			4,700	120,000	
Acenaphthylene	ND U	0.0058 J	ND U	0.12						
Anthracene	ND U	0.01 J	ND U	0.25	12,000			23,000	610,000	
Benzo(a)anthracene	0.024 J	0.042	ND U	0.96 †	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.024 J	0.041	ND U	0.92 †	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.036	0.058	ND U	1.3 †	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	0.016 J	0.032 J	ND UJ	0.29						
Benzo(k)fluoranthene	0.015 J	0.018 J	ND U	0.56	9			9	1,700	
Carbazole	ND U	ND U	ND U	0.13 J	0.6			32	6,200	
Chrysene	0.03 J	0.047	ND U	0.94	88	0.42		88	17,000	
Dibenz(a,h)anthracene	ND U	ND U	ND UJ	0.1 †	0.09	0.42	0.2	0.42	17	
Dibenzofuran	ND U	ND U 0.084	ND U ND U	0.06 J	3,100			3,100	 82,000	
Fluoranthene Fluorene	0.053 ND U	ND U	ND U ND U	2.2 0.065	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.013 J	0.024 J	ND UJ	0.003	0.9	1.6	0.9	1.6	170	
Naphthalene	ND U	ND U	ND U	0.046	1.8			170	1.8	
Phenanthrene	0.026 J	0.053	ND U	1.2						
Pyrene	0.045	0.086	ND U	2	2300			2,300	61,000	
Inorganics (mg/kg)								,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Antimony	0.3 J	0.28 J	ND U	0.37 J	5			31	82	
Arsenic	5.6	4.4	9.5	5.9	11.3	13		13	61	
Barium	64	81 J	110	110	1,500			5,500	14,000	
Beryllium	0.54	0.46	0.5	0.61	22			160	410	
Boron	2 J	4.6 J	2.7 J	4.7	40			16,000	41,000	
Cadmium	ND U	ND U	ND U	0.46	5.2			78	200	
Calcium	30,000	27,000 J	4,300	57,000						
Chromium	11	11	14	14	21			230	690	
Cobalt	9.9	7.9 J	9.1	8.4	20		-	4,700	12,000	
Copper	11	12	13	34	2,900			2,900	8,200	
Iron	19,000 †m	12,000	19,000 †m	16,000 †m	15,000	15,900				
Lead	13	23 J	9.8	100	107			400	700	
Magnesium	14,000	11,000 J	3,200	3,200	325,000				730,000	
Manganese	640 †m	430 J	160	650 †m	630	636		1,600	4,100	
Mercury	0.013 J	0.065	0.044	0.44	0.89			10	0.1	
Nickel	20	15	20	19	100			1,600	4,100	
Potassium	550	980 J	910	990						
Sodium	83	120	140	97						
Vanadium	21	17	26	22	550			550	1,400	
Zinc	43	67 J	70	160	5,100			23,000	61,000	
TCLP Metals (mg/L)									<u> </u>	_
Barium	0.67	0.45 J	0.67	0.73						2
Boron	ND U	0.12 J	0.074 J	0.11 J						2
Cadmium	ND U	ND U	ND U	0.0022 J						0.005
Iron	ND U	ND U	ND U	ND U						5
Lead	ND U	ND U	ND U	0.013 L						0.0075
Manganese Nickel	3 L	0.99 L	1.4 L	1.2 L						0.15
Nickel Zinc	ND U ND U	ND U 0.076 J	0.019 J ND U	ND U 0.2 J						0.1 5
		0.070 3	ND U	U.2 J					<u> </u>	J
SPLP Metals (mg/L)		A1A	A.A.	0.12						0.007-
Lead	NA ND 11	NA 0.31	NA 0.53	0.12 L						0.0075
Manganese	ND U	0.21 L	0.52 L	0.39 L						0.15

	CONTAMINANTS OF CONC				NIS OF CONCER							
SITE			S #1314V3-6 (Vacant					Co	mparison C			
BORING	1314V3-06-B01	1314V3-06-B02	1314V3-06-B03	1314V3-06-B04	1314V3-06-B05		MACs			TAC	0	
SAMPLE	1314V3-06-B01 (0-8)	1314V3-06-B02 (0-8)	1314V3-06-B03 (0-4)	1314V3-06-B04 (0-5.2)	1314V3-06-B05 (0-8)							
MATRIX	Soil	Soil	Soil	Soil	Soil		Within					
DEPTH (feet)	0-8	0-8	0-4	0-5.2	0-8	Most	an	Within		Construction		
pН	8.9	8.6	8.6	8.3	8	Stringent	MSA	Chicago	Residential	Worker	SCGIER	Groundwater
VOCs (None Detect	ed)											
SVOCs (soil: mg/kg	water: ma/l)											
		0.000	ND U	0.00	0.40	Ī		I	I	1		
2-Methylnaphthalene	0.032 J	0.022 J		0.02 J	0.12							
3 & 4 Methylphenol	ND U	ND U	ND U	ND U	ND U							
4-Nitroaniline	ND U	ND U	ND U	ND U	ND U				4.700			
Acenaphthene	0.018 J	0.011 J	ND U	0.019 J	ND U	570			4,700	120,000		0.42
Acenaphthylene	ND U	0.022 J	ND U	0.011 J	ND U	40.000						
Anthracene	0.053	0.06 1 t	ND U	0.057	0.0073 J	12,000			23,000	610,000		2.1
Benzo(a)anthracene	0.2 0.25 †	1.3 †	0.014 J 0.019 J	0.23 0.24 †	0.052	0.9	1.8 2.1	1.1	1.8 2.1	170 17		0.00013
Benzo(a)pyrene Benzo(b)fluoranthene	0.25	1.3 †	0.019 J 0.031 J	0.4	0.067 0.12	0.09	2.1	1.5	2.1	170		0.0002 0.00018
	0.074	0.28	ND U	0.096	0.049							0.00018
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.074	0.28	0.014 J	0.096	0.049 0.037 J	9			9	1,700		0.00017
	ND U	ND U	0.014 3 ND U	ND U	0.037 3 ND U	0.6			32	6,200		0.00017
Carbazole	0.22	0.96	0.016 J	0.25	0.083	88			88	17,000		0.0015
Chrysene	0.22 0.029 J					0.09	0.42	0.2	0.42	17,000		
Dibenz(a,h)anthracene Dibenzofuran	0.029 J ND U	0.11 † ND U	ND U	0.03 J ND U	0.016 J ND U	0.09	0.42					0.0003
Fluoranthene	0.37	1.1	0.033 J	0.51	0.096	3,100			3,100	82,000		0.28
Fluorantnene	0.37 0.018 J	0.0086 J	0.033 J ND U	0.51 0.015 J	0.096 0.0075 J	560			3,100	82,000		0.28
Indeno(1,2,3-cd)pyrene	0.018 3	0.0086 3	ND U	0.015 3	0.0075 3	0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	0.041	0.026 J	ND U	0.099 0.017 J	0.097	1.8			170	1.8		0.00043
Phenanthrene	0.24	0.24	0.014 J	0.28	0.13							
Pyrene	0.33	2	0.028 J	0.45	0.072	2300			2,300	61,000		0.21
PCBs (soil: mg/kg,	Ē									, , , , , , , , , , , , , , , , , , , ,		
PCB-1254	ND U	NA	NA	0.039	ND U	1			1	1		0.0005
PCB-1260	ND U	NA NA	NA NA	0.039	ND U	1			1	1		0.0005
PCBs, total	ND 0	NA NA	NA NA	0.06	ND 0	-						
Inorganics (soil: mg								I.				
			0.05	ND II	ND II	-			04			0.000
Antimony	2.8 J	1.3 J	0.25 J	ND U	ND U	5	40		31	82		0.006
Arsenic	14 †mr 31	7.7 62	4.7 70	4.3 73	2.4 75	11.3 1,500	13		13 5,500	61		0.05
Barium Beryllium	0.27 J	0.58 J	0.48	0.41	0.41	22			160	14,000 410		0.004
Boron	7.1 J	11 J	2.2 J	4.4	5.6	40			16,000	41,000		2
Cadmium	0.42 J	0.59	0.21	0.42	0.26	5.2			78	200		0.005
Calcium	4,500	13,000	30,000	43,000	3,800							
Chromium	94 †	27 †	13	16	13	21			230	690		0.1
Cobalt	10	5.8	5.3	7.1	6.1	20			4,700	12,000		1
Copper	66	29	11	15	14	2,900			2,900	8,200		0.65
Iron	95,000 †m	37,000 †m	13,000	13,000	11,000	15,000	15,900					5
Lead	110 †	82	6.9	83	16	107			400	700	-	0.0075
Magnesium	1,100	2,200	17,000	13,000	1,300	325,000				730,000		
Manganese	850 †m	660 †m	290	390	410	630	636		1,600	4,100	-	0.15
Mercury	ND U	0.43	ND U	0.045	0.16	0.89			10	0.1		0.002
Nickel	310 †	49	16	17	23	100			1,600	4,100		0.1
Potassium	370	600	480	610	1,200							
Selenium	2.2 J †	ND U	ND U	ND U	ND U	1.3			390	1,000		0.05
Silver	ND U	ND U	ND U	ND U	ND U	4.4			390	1,000		0.05
Sodium	85 J	140 J	120	160	120							
Thallium	2.8 †	1.5 J	0.62	ND U	ND U	2.6			6.3	160		0.002
Vanadium	34	23	23	18	15	550			550	1,400		0.049
Zinc	84	160	27	98	66	5,100			23,000	61,000		5
TCLP Metals (mg/L)	Ī	1		T	1	1	1	1	1	1		
Barium	0.3 J	0.4 J	0.98	0.71	0.65						2	
Boron	0.07 J	0.077 J	ND U	0.062 J	0.17 J						2	
Cadmium	ND U	0.0053 L	0.0029 J	ND U	ND U						0.005	
Chromium	0.014 J	ND U	ND U	ND U	ND U						0.1	
Cobalt	0.086	ND U	ND U	ND U	0.034						1	
Iron	86 L	ND U	ND U	ND U	ND U						5	
Lead	ND U	ND U	ND U	ND U	ND U						0.0075	
Manganese	9.3 L	1.1 L	0.81 L	1.6 L	10 L						0.15	
Nickel	1.2 L ND U	0.022 J ND U	0.021 J ND U	ND U	0.03 ND U						0.1	
Selenium Thallium	ND U	ND U	ND U	ND U	ND U ND U						0.05	
Zinc	0.39 J	0.49 J	0.057 J	ND U	ND U						5	
SPLP Metals (mg/L)	•	0		0	0		1	l				
` -	T	ND U	NIA	NIA	NIA						0.005	
Cadmium Iron	NA 11 L	ND U NA	NA NA	NA NA	NA NA						0.005 5	
Lead	NA L	NA NA	NA NA	NA NA	NA NA						0.0075	
Manganese	0.059	0.17 L	0.17 L	0.29 L	0.44 L						0.0075	
Nickel	0.039 0.01 J	NA L	NA L	NA	NA L						0.13	
Zinc	NA	NA NA	NA NA	NA NA	NA NA						5	

			TS OF CONCERN									
SITE		ISGS	#1314V3-6 (Vacant L	_and)				Co	mparison C	Criteria		
BORING	1314V3-06-B06	1314V3-06-B07	1314V3	3-06-B08	1314V3-06-B09		MACs			TAC	0	
SAMPLE	1314V3-06-B06 (0-4)	1314V3-06-B07 (0-4.3)	1314V3-06-B08 (0-5)	1314V3-06-B08 (5-10)	1314V3-06-B09 (0-2)							
MATRIX	Soil	Soil	Soil	Soil	Soil							
DEPTH (feet)	0-4	0-4.3	0-5	5-10	0-2	Most	Within	Within		Construction		
pH	8.3	8	8.2	8	8	Most Stringent	an MSA	Within Chicago	Residential	Construction Worker	SCGIER	Groundwater
VOCs (None Detect												
-												
SVOCs (soil: mg/kg	, water: mg/L)					1		ı	Г		1	
2-Methylnaphthalene	0.36	0.43	0.42	0.17	0.66							
3 & 4 Methylphenol	0.47	ND U	ND U	ND U	ND U							
4-Nitroaniline	ND U	ND U	ND U	0.27 J	ND U							
Acenaphthene	0.02 J	0.75	0.22	ND U	0.042 J	570			4,700	120,000		0.42
Acenaphthylene	0.0096 J	0.046	0.033 J	0.015 J	0.03 J							
Anthracene	0.04	1.1	0.42	0.04	0.074 J	12,000			23,000	610,000		2.1
Benzo(a)anthracene	0.22	3.2 †mr*	0.64	0.12	0.5	0.9	1.8	1.1	1.8	170		0.00013
Benzo(a)pyrene	0.34 †	3.5 †mr*	0.81 †	0.13 †	0.73 †	0.09	2.1	1.3	2.1	17		0.0002
Benzo(b)fluoranthene	0.58	4.4 †mr*	1.2 †	0.22	1.2 †	0.9	2.1	1.5	2.1	170		0.00018
Benzo(g,h,i)perylene	0.15	0.94	0.25	0.047	0.29							
Benzo(k)fluoranthene	0.21	1.8	0.5	0.082	0.4	9			9	1,700		0.00017
Carbazole	ND U	0.71 †	0.18	ND U	ND U	0.6			32	6,200		
Chrysene	0.29	2.9	0.66	0.13	0.58	88			88	17,000		0.0015
Dibenz(a,h)anthracene	0.047	0.36 †*	0.11 J †	ND U	0.069 J	0.09	0.42	0.2	0.42	17		0.0003
Dibenzofuran	0.17 J	0.42	0.37	ND U	0.23 J							
Fluoranthene	0.35	7	1.5	0.19	0.68	3,100			3,100	82,000		0.28
Fluorene	0.016 J	0.61	0.22	0.0088 J	0.028 J	560			3,100	82,000		0.28
Indeno(1,2,3-cd)pyrene	0.14	1 †*	0.35	0.048	0.34	0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	0.21	0.95	0.36	0.033 J	0.48	1.8			170	1.8		0.14
Phenanthrene	0.35	5.9	1.4	0.18	0.85							-
Pyrene	0.41	6.7	1.6	0.25	1.2	2300			2,300	61,000		0.21
PCBs (soil: mg/kg, v	water: mg/L)	•										
PCB-1254	NA	NA	NA	NA	NA	1			1	1		0.0005
PCB-1260	NA NA	NA NA	NA NA	NA NA	NA NA	1			1	1		0.0005
PCBs, total	NA NA	NA NA	NA NA	NA NA	NA NA	-						0.0005
	I .		INA	IVA	INA							
Inorganics (soil: mg									ı			
Antimony	0.42 J	ND U	0.47 J	0.96 J	ND U	5			31	82		0.006
Arsenic	5.6	4	4.2	8.8	5.7	11.3	13		13	61		0.05
Barium	61	90	52	380	60	1,500			5,500	14,000		2
Beryllium	0.3	0.8 J	0.27	0.66	0.53 J	22			160	410		0.004
Boron	5.6	11 J	3.1	18	6.5 J	40			16,000	41,000		2
Cadmium	1.4	1.2	1.1	12 †	0.44 J	5.2			78	200		0.005
Calcium	27,000	6,200	17,000	12,000	23,000							
Chromium	42 †	35 †	24 †	40 †	21	21			230	690		0.1
Cobalt	3.9	5.7	4	7.2	3.3	20			4,700	12,000		1
Copper	86	21	59	35	20	2,900			2,900	8,200		0.65
Iron	29,000 †m	78,000 †m	19,000 †m	36,000 †m	17,000 †m	15,000	15,900					5
Lead	230 †	46	110 †	570 †r	39	107			400	700		0.0075
Magnesium	3,800	1,600	3,700	4,000	4,000	325,000				730,000		
Manganese	510	440	570	450	440	630	636		1,600	4,100		0.15
Mercury	0.059	0.2	0.081	0.18	0.046	0.89			10	0.1		0.002
Nickel	68	25	62	38	49	100			1,600	4,100		0.1
Potassium	550	620	320	870	610							
Selenium	ND U	ND U	ND U	ND U	ND U	1.3			390	1,000	-	0.05
Silver	0.46	0.36 J	0.25 J	0.2 J	0.81 J	4.4			390	1,000		0.05
Sodium	160	93 J	90	200	140 J							-
Thallium	ND U	ND U	ND U	ND U	ND U	2.6			6.3	160	-	0.002
Vanadium	11	24	12	19	45	550			550	1,400		0.049
Zinc	200	250	160	2,100	72	5,100			23,000	61,000		5
TCLP Metals (mg/L)										J	J	
Barium	0.25 J	0.46 J	0.48 J	0.73	0.26 J						2	
	0.25 J 0.14 J	0.46 J	0.48 J 0.052 J	0.73 0.13 J	0.26 J 0.061 J						2	
Boron		0.05 J 0.016 L	0.052 J 0.017 L									
Chromium				0.1 L ND U	ND U						0.005	
Chromium	ND U	ND U	ND U		ND U						0.1	
Cobalt	ND U	0.016 J	0.016 J	0.026	ND U						1	
Iron	ND U	ND U	ND U	0.6	ND U						5	
Lead	ND U	ND U	ND U	0.72 L	ND U						0.0075	
Manganese	0.24 L	6.2 L	6.5 L	4.7 L	0.92 L						0.15	
Nickel	0.017 J	0.21 J L	0.22 L	0.061	0.05						0.1	-
Selenium	ND U	ND U	ND U	ND U	ND U						0.05	
Thallium	ND U	ND U	ND U	ND U	ND U						0.002	
Zinc	ND U	ND U	ND U	12 L	ND U						5	
SPLP Metals (mg/L)								1	•			
Cadmium	NA	ND U	ND U	0.0029 J	NA						0.005	
Iron	NA	NA	NA	NA	NA						5	
Lead	NA	NA	NA	0.25 L	NA						0.0075	
Manganese	0.013 J	0.26 L	0.57 L	0.13	0.17 L						0.15	
Nickel	NA	0.015 J	0.079	NA	NA						0.1	
Zinc	NA	NA	NA	0.52	NA						5	
-		-							•	•		

	CONTAMINANTS OF CONC						ERN						
SITE		ISGS	8 #1314V3-6 (Vacant	Land)				Co	mparison C	riteria			
BORING		1314V3-06-B10		1314V	3-06-B11		MACs			TAC	0		
SAMPLE	1314V3-06-B10 (0-6)	1314V3-06-B10 (6-11)	1314V3-06-G01	1314V3-06-B11 (0-6)	1314V3-06-B11 (6-10.7)								
MATRIX	Soil	Soil	Water	Soil	Soil								
DEPTH (feet)	0-6	6-11	-	0-6	6-10.7	Most	Within	Within		Construction			
pH	8.3	8.4		7.8	8.2	Most Stringent	an MSA	Within Chicago	Residential	Construction Worker	SCGIER	Groundwater	
VOCs (None Detect									Jiaomia		- JOILIN		
· ·	•												
SVOCs (soil: mg/kg	, water: mg/L)				1								
2-Methylnaphthalene	0.021 J	ND U	ND U	ND U	ND U							-	
3 & 4 Methylphenol	ND U	ND U	ND U	ND U	ND U								
4-Nitroaniline	ND U	ND U	ND U	ND U	ND U								
Acenaphthene	0.0072 J	ND U	ND U	ND U	ND U	570			4,700	120,000		0.42	
Acenaphthylene	0.023 J	0.017 J	ND U	ND U	ND U							-	
Anthracene	0.031 J	0.033 J	ND U	ND U	ND U	12,000		-	23,000	610,000	-	2.1	
Benzo(a)anthracene	0.15	0.14	ND U	ND U	0.014 J	0.9	1.8	1.1	1.8	170		0.00013	
Benzo(a)pyrene	0.17 †	0.1 †	ND U	ND U	0.015 J	0.09	2.1	1.3	2.1	17		0.0002	
Benzo(b)fluoranthene	0.23 J	0.15	ND U	ND U	0.019 J	0.9	2.1	1.5	2.1	170		0.00018	
Benzo(g,h,i)perylene	0.098 J	0.052	ND U	ND U	ND U								
Benzo(k)fluoranthene	0.1 J	0.066	ND U	ND U	ND U	9			9	1,700		0.00017	
Carbazole	ND U	ND U	ND U	ND U	ND U	0.6			32	6,200			
	0.19	0.13	ND U	ND U	0.017 J	88			88	17,000		0.0015	
Chrysene Dibenz(a,h)anthracene	0.19 0.03 J	0.13 0.022 J	ND U	ND U	0.017 J ND U	0.09	0.42	0.2	0.42	17,000		0.0015	
							0.42						
Dibenzofuran	ND U	ND U		ND U		2 100			2 100				
Fluoranthene	0.37	0.3	ND U	ND U	0.03 J	3,100			3,100	82,000		0.28	
Fluorene	0.0098 J	0.011 J	ND U	ND U	ND U	560			3,100	82,000		0.28	
Indeno(1,2,3-cd)pyrene	0.093 J	0.052	ND U	ND U	ND U	0.9	1.6	0.9	1.6	170		0.00043	
Naphthalene	0.018 J	0.0057 J	ND U	ND U	ND U	1.8			170	1.8		0.14	
Phenanthrene	0.23	0.16	ND U	ND U	0.017 J								
Pyrene	0.34	0.25	ND U	ND U	0.03 J	2300			2,300	61,000		0.21	
PCBs (soil: mg/kg,	water: mg/L)												
PCB-1254	NA	NA	NA	NA	NA	1			1	1		0.0005	
PCB-1260	NA NA	NA NA	NA NA	NA NA	NA	1			1	1		0.0005	
PCBs, total	NA NA	NA NA	NA NA	NA NA	NA NA								
Inorganics (soil: mg	I .												
		1				_	I		21			0.00-	
Antimony	ND U	ND U	ND U	ND U	ND U	5			31	82		0.006	
Arsenic	2.1	3.8	0.004	2.1	2.4	11.3	13		13	61		0.05	
Barium	24	38	0.18	32	51	1,500			5,500	14,000		2	
Beryllium	0.37	0.16 J	ND U	0.26	0.24	22			160	410		0.004	
Boron	3.4	0.91 J	0.28	1.1 J	1.3 J	40			16,000	41,000		2	
Cadmium	0.17	0.085 J	0.00021 J	0.098 J	0.15	5.2			78	200		0.005	
Calcium	5,900	1,700	130	1,600	7,200								
Chromium	7.7	7.1	0.0024 J	7.5	8.5	21			230	690		0.1	
Cobalt	3.7	3.1	0.0033	3.9	4.5	20			4,700	12,000		1	
Copper	9.7	6.1	0.015	7.3	8.3	2,900			2,900	8,200	-	0.65	
Iron	8,800	8,500	6.3 W1.2	7,900	8,100	15,000	15,900					5	
Lead	18	2.3	0.012 W1	3.7	7	107			400	700		0.0075	
Magnesium	910	1,200	25	1,100	1,300	325,000				730,000		-	
Manganese	120	190	1.1 W1	180	410	630	636		1,600	4,100		0.15	
Mercury	0.026	ND U	ND U	0.012 J	0.017 J	0.89			10	0.1		0.002	
Nickel	9.3	8.7	0.011	8.8	13	100			1,600	4,100		0.002	
Potassium	420	210	4.3	390	360								
			ND U							1,000			
Selenium					0.39 J	1.3			390			0.05	
Silver					ND U	4.4			390	1,000		0.05	
Sodium	65	49 J	98	36 J	50 J					400			
Thallium	ND U	ND U	ND U	ND U	ND U	2.6			6.3	160		0.002	
Vanadium	13	10	0.0033 J	13	12	550			550	1,400		0.049	
Zinc	48	16	0.016 J	21	24	5,100			23,000	61,000		5	
TCLP Metals (mg/L)		ı				1		1					
Barium	0.29 J	0.53	NA	0.19 J	0.38 J						2	-	
Boron	ND U	ND U	NA	0.057 J	ND U						2		
Cadmium	ND U	ND U	NA	ND U	ND U						0.005	-	
Chromium	ND U	ND U	NA	ND U	ND U						0.1	-	
Cobalt	ND U	ND U	NA	ND U	ND U						1	-	
Iron	ND U	ND U	NA	ND U	ND U						5		
Lead	ND U	ND U	NA	ND U	ND U						0.0075		
Manganese	0.76 L	1.8 L	NA NA	0.095	0.74 L						0.15	-	
Nickel	ND U	0.03	NA NA	ND U	0.02 J						0.13	-	
Selenium	ND U	ND U	NA NA	ND U	ND U						0.05	-	
Thallium Zinc	ND U	ND U ND U	NA NA	ND U	ND U ND U						0.002		
	I .	U UNI	INA	ט עאו	ט עאו						5		
SPLP Metals (mg/L)		ı		1			ı	1					
Cadmium	NA	NA	NA	NA	NA						0.005	-	
Iron	NA	NA	NA	NA	NA						5	-	
Lead	NA	NA	NA	NA	NA	-					0.0075	-	
Manganese	0.11	0.091	NA	NA	0.28 L						0.15	-	
Nickel	NA	NA	NA	NA	NA						0.1	-	
Zinc	NA	NA	NA	NA	NA						5	-	

	CONTAMIN ISGS #1314V3-7						INANTS OF CONCERN							
SITE			ISGS #131 er Stone M		rd)				Co	mparison C	riteria			
BORING	131	•	7-B01		1314V3-0	7-B02		MACs			TAC	0		
SAMPLE	1314V3-07-B01 (1314V3-07	7-G01	1314V3-07-E									
MATRIX	Soil		Wate	r	Soil									
DEPTH (feet)	0-6				0-5			Within						
pH	9.6 #		-		8.2		Most	an	Within		Construction			
PID (meter units)		0			3.6 - 33.7	**	Stringent	MSA	Chicago	Residential	Worker	SCGIER	Groundwater	
VOCs (soil: mg/kg, v	water: mg/L)				T							1	1	
2-Butanone (MEK)	ND U		ND	U	ND	U								
2-Hexanone	ND U		ND	U	12			-						
Acetone	0.048		ND	U	ND	U	25	-	-	70,000	100,000		6.3	
SVOCs (soil: mg/kg		- 1			T									
2-Methylnaphthalene 4-Nitroaniline	0.058 J ND U	-	ND	U	4.9 ND									
Acenaphthene	ND U 0.14 J		ND ND	U	0.51	U	570		-	4,700	120,000		0.42	
Acenaphthylene	0.34		ND	U	ND	U								
Anthracene	0.63		ND	U	ND	U	12,000	1	-	23,000	610,000		2.1	
Benzo(a)anthracene	2.2 †	mr*	0.00039	W1	1.1	t	0.9	1.8	1.1	1.8	170		0.00013	
Benzo(a)pyrene	5 †	mr*	0.00068	W1	1.1	t	0.09	2.1	1.3	2.1	17		0.0002	
Benzo(b)fluoranthene	5.8 †	mr*	0.00078	W1	1.5	t	0.9	2.1	1.5	2.1	170		0.00018	
Benzo(g,h,i)perylene	3.6	_	0.00055	J	0.63									
Benzo(k)fluoranthene	2.4		0.00029	W1	0.69		9			9	1,700		0.00017	
Carbazole	ND U	\dashv	ND 0.00046	U	ND 4.3	U	0.6		-	32	6,200		0.0015	
Chrysene Dibenz(a,h)anthracene	3.1 0.91 †	mr*	0.00046	J	0.22	J †*	0.09	0.42	0.2	88 0.42	17,000 17		0.0015 0.0003	
Diethyl phthalate	0.91 J		0.00014	J	ND	U	470			2,000	2,000		5.6	
Fluoranthene	4.1		0.0007	J	1.7	Ü	3,100			3,100	82,000		0.28	
Fluorene	0.065 J		ND	U	ND	U	560			3,100	82,000		0.28	
Indeno(1,2,3-cd)pyrene	3.5 †	mr*	0.00051	W1	0.52		0.9	1.6	0.9	1.6	170		0.00043	
Naphthalene	0.18 J		ND	U	1.3		1.8			170	1.8		0.14	
Phenanthrene	0.74		0.0003	J	2.7									
Pyrene	5.8	_	0.00084		2.1		2300			2,300	61,000		0.21	
Inorganics (soil: mg	/kg, water: mg	/L)			1									
Antimony	0.49 J		ND	U	ND	U	5			31	82		0.006	
Arsenic	4	-	0.0059		9.5		11.3	13		13	61		0.05	
Barium Beryllium	330 0.61		0.59 ND	U	57 0.71	J	1,500 22			5,500 160	14,000 410		0.004	
Boron	26		1.5		24	,	40		-	16,000	41,000		2	
Cadmium	0.31		ND	U	0.3	J	5.2			78	200		0.005	
Calcium	110,000		200		41,000		-	1	-	-	1		-	
Chromium	21		0.0022	J	14		21			230	690		0.1	
Cobalt	7		0.0027		5.7		20			4,700	12,000		1	
Copper	21		0.0067		22		2,900			2,900	8,200		0.65	
Iron	14,000	-	21	W1,2	50,000	†m	15,000	15,900			-		5	
Lead	44		0.011	W1	2.500		107 325,000	-	-	400	700		0.0075	
Magnesium	6,300		0.55	W1	2,500	+m				1 600	730,000		0.15	
Manganese Mercury	510 0.072	\top	ND	U	780 0.035	†m	630 0.89	636	-	1,600 10	4,100 0.1		0.15 0.002	
Nickel	20	\dashv	0.0035		12		100		-	1,600	4,100		0.002	
Potassium	540		21		440			-	-					
Selenium	0.79		0.0015	J	ND	U	1.3			390	1,000		0.05	
Silver	ND U		ND	U	ND	U	4.4			390	1,000		0.05	
Sodium	160		36		120	J								
Vanadium	23	_	ND 0.045	U	20		550	-	-	550	1,400		0.049	
Zinc	110	!_	0.015	J	88		5,100			23,000	61,000		5	
TCLP Metals (mg/L)		- 1				1								
Barium	0.81		NA NA		0.89							2		
Boron	0.53	-	NA NA		0.23	J U						0.005		
Cadmium Chromium	0.055	\dashv	NA NA		ND ND	U			-			0.005		
Cobalt	ND U	\dashv	NA NA		0.01	J			-			1		
Iron	ND U		NA		ND	U		-			-	5		
Lead	ND U		NA		ND	U	-				-	0.0075		
Manganese	ND U		NA		6.1	L	-		-			0.15		
Nickel	ND U		NA		0.031			-				0.1		
Selenium	ND U	_	NA		ND	U						0.05		
Zinc	ND U		NA		ND	U						5		
SPLP Metals (mg/L)					ı		1					1		
Cadmium	NA		NA		NA				-			0.005		
Iron	NA NA	\dashv	NA NA		NA NA							5		
Lead	NA NA	\dashv	NA NA		NA 0.01							0.0075		
Manganese	NA		NA		0.01	J						0.15		

OUTE			14V3-7 (River Stone Moline Yard)			Comparison Criteria							
SITE			4V3-7 (River		•				Co	mparison C			
BORING	1314V3-0				3-07-B04			MACs			TAC	0	
SAMPLE	1314V3-07-B			. ,	1314V3-07-B0)4 (5-11)							
MATRIX	Soil	1	Soil		Soil			Within					
DEPTH (feet)	0-5.	5	0-5		5-11		Most	an	Within		Construction		
рН	8		8		8.2		Stringent	MSA	Chicago	Residential	Worker	SCGIER	Groundwater
VOCs (soil: mg/kg,	water: mg/l	L)											
2-Butanone (MEK)	0.0051	,	ND	U	ND	U							
2-Hexanone	ND	U	ND	U	ND	U							
Acetone	0.036		ND	U	0.032	Ü	25			70,000	100,000		6.3
		-# \	ND	0	0.032		25			70,000	100,000		0.3
SVOCs (soil: mg/kg		3/L)	1						1		1	1	
2-Methylnaphthalene	0.16		0.044	J	ND	U							
4-Nitroaniline	3	J	ND	U	ND	U							
Acenaphthene	0.061		0.0089	J	ND	U	570			4,700	120,000		0.42
Acenaphthylene	0.019	J	0.027	J	ND	U							
Anthracene	0.32		0.066		ND	U	12,000			23,000	610,000		2.1
Benzo(a)anthracene	4.1	†mr*	0.92	t	ND	U	0.9	1.8	1.1	1.8	170		0.00013
Benzo(a)pyrene	4.1	†mr*	2.4	†mr*	ND	C	0.09	2.1	1.3	2.1	17	-	0.0002
Benzo(b)fluoranthene	7.5	†mr*	3.6	†mr*	ND	C	0.9	2.1	1.5	2.1	170		0.00018
Benzo(g,h,i)perylene	1.4		1.9		ND	U							
Benzo(k)fluoranthene	2.7		1.3		ND	U	9			9	1,700		0.00017
Carbazole	0.48		ND	U	ND	U	0.6			32	6,200		
Chrysene	5.3		1.7		ND	U	88			88	17,000	-	0.0015
	0.61	+mr*	0.64	+mr*		U	0.09	0.42	0.2	0.42	17,000		0.0013
Dibenz(a,h)anthracene		<u>†mr*</u>		†mr*	ND								
Diethyl phthalate	ND 6.3	U	ND 0.04	U	ND	U	470			2,000	2,000		5.6
Fluoranthene	6.3		0.91		ND	U	3,100			3,100	82,000		0.28
Fluorene	0.061		0.011	J	ND	U	560			3,100	82,000	-	0.28
Indeno(1,2,3-cd)pyrene	1.6	†*	1.7	†mr*	ND	U	0.9	1.6	0.9	1.6	170		0.00043
Naphthalene	0.078		0.026	J	ND	U	1.8			170	1.8		0.14
Phenanthrene	1.8		0.29		ND	U							
Pyrene	4.7		0.97		ND	U	2300			2,300	61,000		0.21
Inorganics (soil: mg	g/kg, water:	mg/L)											
Antimony	ND	U	ND	U	ND	U	5			31	82		0.006
Arsenic	28	†mr	6.7		2	Ü	11.3	13		13	61		0.05
Barium	360	,	89		36		1,500			5,500	14,000		2
Beryllium	1.3		1.1		0.69		22			160	410		0.004
Boron	280	T	60		2.8	J	40			16,000	41,000		2
Cadmium	2.4		1.5		0.079	J	5.2			78	200		0.005
Calcium	9,500		16,000		2,000			-					
Chromium	44	t	12		7.3		21			230	690		0.1
Cobalt	14		6.7		8.2		20			4,700	12,000		1
Copper	77		19		13		2,900			2,900	8,200		0.65
Iron	190,000	†m	29,000	†m	5,900		15,000	15,900					5
Lead	210	t	53		5.9		107			400	700		0.0075
Magnesium	1,200		1,600		1,200		325,000				730,000		
Manganese	1,300	†m	420		240		630	636		1,600	4,100		0.15
Mercury	0.12		0.053		0.03		0.89			10	0.1		0.002
Nickel	25		18		11		100	-		1,600	4,100	-	0.002
Potassium	330		860		830								
				11		11							
Selenium	4.9		ND	U	ND	U	1.3			390	1,000		0.05
Silver	0.37	J	ND	U	ND 40	U	4.4			390	1,000		0.05
Sodium	180	J	300		43	J							
Vanadium	36		21		7.3		550			550	1,400	-	0.049
Zinc	820		450		42		5,100	-		23,000	61,000	-	5
TCLP Metals (mg/L))												
Barium	1.7		0.56		0.39	J						2	
Boron	0.65		0.19	J	0.15	J						2	
Cadmium	0.016	1	0.0081	1	ND	U						0.005	
Chromium	ND	U	ND	U	ND	U						0.00	
Cobalt	0.036		ND ND	U	0.048	ŭ						1	-
Iron	9.4		ND ND	U	ND	U						5	-
	0.13	-		U		U						0.0075	-
Lead			ND 1.5		ND 40								
Manganese	8.3	L	1.5	L	10	L						0.15	
Nickel	0.063	.,	ND	U	0.032							0.1	
Selenium	ND	U	ND .	U	ND	U						0.05	-
Zinc	3.9		1		ND	U		-				5	
SPLP Metals (mg/L))												
Cadmium	ND	U	ND	U	NA							0.005	
Iron	ND	U	NA		NA							5	
Lead	ND	U	NA		NA							0.0075	
Manganese	ND	U	0.1		0.82			-			-	0.15	
	IND		V. 1		0.02	-					L	3.10	

	ı	CONTAIN	AMINANTS OF CONCERN						
SITE	,	commercial Building)			Compa	rison Criter			
BORING	1314V3-08-B01	1314V3-08-B01		MACs	1		TACO		
SAMPLE	,	1314V3-08-B01 (6-12)							
MATRIX	Soil	Soil		Within					
DEPTH (feet)	0-6	6-12	Most	an	Within	B	Construction	000150	
pH	7.8	7.7	Stringent	MSA	Chicago	Residential	Worker	SCGIER	
VOCs (mg/kg)	1				1	ı	l I		
2-Butanone (MEK)	0.022	ND U							
Acetone	0.11	0.024	25			70,000	100,000		
SVOCs (mg/kg)	ı	1	1		1	ı	1		
2-Methylnaphthalene	0.016 J	ND U	-						
Acenaphthene	0.013 J	ND U	570			4,700	120,000		
Acenaphthylene	0.049	ND U							
Anthracene	0.072	ND U	12,000			23,000	610,000		
Benzo(a)anthracene	0.24	ND U	0.9	1.8	1.1	1.8	170		
Benzo(a)pyrene	0.24	ND U ND U	0.09	2.1	1.3	2.1	17		
Benzo(b)fluoranthene			0.9		1.5	2.1	170		
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.095 J 0.15	ND U ND U	9			9	1,700		
Chrysene	0.13	ND U	88			88	17,000		
Dibenz(a,h)anthracene	0.027 J	ND U	0.09	0.42	0.2	0.42	17,000		
Diethyl phthalate	ND U	0.29	470			2,000	2,000		
Fluoranthene	0.63	ND U	3,100			3,100	82,000		
Fluorene	0.03 J	ND U	560			3,100	82,000		
Indeno(1,2,3-cd)pyrene	0.094 J	ND U	0.9	1.6	0.9	1.6	170		
Naphthalene	0.03 J	ND U	1.8			170	1.8		
Phenanthrene	0.38	ND U							
Pyrene	0.48	ND U	2300			2,300	61,000		
Inorganics (mg/kg)									
Antimony	0.9 J	0.53 J	5			31	82		
Arsenic	2.8	11	11.3	13		13	61		
Barium	51	37	1,500			5,500	14,000		
Beryllium	0.6	0.53	22			160	410		
Boron	13	2.3 J	40			16,000	41,000		
Cadmium	0.27	0.89	5.2			78	200		
Calcium	37,000 J	2,400							
Chromium	10	12	21			230	690		
Cobalt	4.6 J	6.8	20			4,700	12,000		
Copper	15 J	36	2,900			2,900	8,200		
Iron	13,000 J	17,000 †m	15,000	15,900		400	700		
Lead	38 J 1,400 J	1,200	107 325,000			400	700 730,000		
Magnesium Manganese	230	98	630	636		1,600	4,100		
	0.22	0.028	0.89			10	0.1		
Mercury Nickel	11 J	20	100			1,600	4,100		
Potassium	1,200 J	490							
Selenium	ND U	0.33 J	1.3			390	1,000		
Sodium	170	69							
Thallium	0.66	0.62	2.6			6.3	160		
Vanadium	18	55	550	-		550	1,400		
Zinc	100 J	27	5,100			23,000	61,000		
TCLP Metals (mg/L))								
Antimony	0.0083 L	. ND U						0.006	
Barium	0.47 J	0.23 J						2	
Boron	0.3 J	0.071 J						2	
Cadmium	ND U	0.01 L						0.005	
Cobalt	0.014 J	0.025						1	
Iron	ND U	ND U						5	
Lead	0.016 L	. ND U						0.0075	
Manganese	2.4 L	. 0.75 L						0.15	
Nickel	0.019 J	0.055						0.1	
Zinc	0.62	0.077 J						5	
SPLP Metals (mg/L)	1	_	1		ı	ı	 		
Antimony	ND U	NA						0.006	
Cadmium	NA	0.0034 J						0.005	
Lead	0.038 L	. NA						0.0075	
Manganese	0.12	0.13						0.15	

SITE		ISGS #1314V2-	WINANTS OF CONC	Comparison Criteria						
BORING	1314V3-11-B01	1314V3-11-B02	11 (Vacant Land)	3-11-B03		MACs	Compa	I ISON CINE	TACO	
SAMPLE	1314V3-11-B01 1314V3-11-B01 (0-1)	1314V3-11-B02 1314V3-11-B02 (0-1)		1314V3-11-B03 (0-1)D		MAGS			1,400	
MATRIX	Soil	Soil	Soil	Soil						
DEPTH (feet)		0-1	0-1			Within				
pH	0-1 8.4	8.4	8.5	0-1 8.5	Most	an MSA	Within	Residential	Construction Worker	SCGIER
•		0.4	0.5	0.5	Stringent	IVIOA	Chicago	Residential	Worker	SCGIER
VOCs (None Detect	ea)									
SVOCs (mg/kg)		1		ı			Г	T	1	
2-Methylnaphthalene	ND U	0.013 J	0.02 J	0.016 J						
Acenaphthene	ND U	0.016 J	0.031 J	0.025 J	570			4,700	120,000	
Acenaphthylene	ND U	0.012 J	0.011 J	0.01 J						
Anthracene	0.011 J	0.045	0.092	0.074	12,000	-		23,000	610,000	
Benzo(a)anthracene	0.055	0.22	0.4	0.35	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.074	0.29 †	0.51 †	0.42 †	0.09	2.1	1.3	2.1	17	-
Benzo(b)fluoranthene	0.11	0.44	0.67	0.59	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	0.029 J	0.095	0.15	0.12		-				
Benzo(k)fluoranthene	0.039	0.16	0.27 J	0.78 J	9	-		9	1,700	
Chrysene	0.062	0.25	0.38	0.34	88	-		88	17,000	
Dibenz(a,h)anthracene	ND U	0.034 J	0.054	0.046	0.09	0.42	0.2	0.42	17	
Fluoranthene	0.12	0.49	0.79	0.68	3,100	-		3,100	82,000	
Fluorene	ND U	0.013 J	0.032 J	0.023 J	560	4.0		3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.039	0.11	0.16	0.14	0.9	1.6	0.9	1.6	170	-
Naphthalene	ND U	0.0088 J	0.014 J	0.013 J	1.8	-		170	1.8	-
Phenanthrene	0.053	0.25	0.4 0.76	0.35	2300			2,300		
Pyrene	0.1	0.57	0.76	0.7	2300			2,300	61,000	
Inorganics (mg/kg)		<u> </u>		<u> </u>			l		1	
Antimony	ND UJ	0.37 J	0.47 J	0.33 J	5	-		31	82	
Arsenic	3.9	4.8	4.3	4.1	11.3	13		13	61	
Barium	81	85	81	87	1,500			5,500	14,000	
Beryllium	0.49	0.47	0.56	0.54	22			160	410	
Boron	3.3 J	4.1	5.6	5.1	40	-		16,000	41,000	
Cadmium	0.23	0.44	0.44	0.43	5.2	-		78	200	
Characitan	8,900	83,000	19,000	21,000		-				
Chromium	13 4.8	17 5.2	15 5	15 5	21 20			230 4,700	690 12,000	
Copper	12	20	19	17	2,900			2,900	8,200	
Copper Iron	12,000 J	14,000	15,000	13,000	15,000	15,900		2,900		
Lead	26 J	130 †	73	65	107			400	700	
Magnesium	2,800	4,500	4,300	4,000	325,000				730,000	
Manganese	410 J	580	440	460	630	636		1,600	4,100	
Mercury	0.065	0.13	0.12	0.091	0.89			10	0.1	
Nickel	11	14	13	13	100			1,600	4,100	
Potassium	570	650	580	600						
Selenium	0.28 J	ND U	ND U	0.3 J	1.3			390	1,000	
Sodium	290	180	280	270		1				
Thallium	0.66	0.93	0.8	0.84	2.6			6.3	160	
Vanadium	20	18	21	20	550			550	1,400	
Zinc	45 J	120	85	76	5,100	-		23,000	61,000	
TCLP Metals (mg/L))									
Barium	0.78	0.86	0.74	0.74		-				2
Boron	0.074 J	0.061 J	0.064 J	0.06 J		1				2
Cadmium	0.0021 J	0.0037 J	0.0032 J	0.0029 J		ı				0.005
Lead	ND U	ND U	ND U	ND U		ı				0.0075
Manganese	0.9 L	0.97 L	0.46 L			-				0.15
Zinc	0.048 J	0.25 J	0.069 J	0.094 J		-				5
SPLP Metals (mg/L))									
Manganese	0.38 L	0.29 L	0.33 L	0.37 L						0.15
J		_		_				•		

	ı		CONTAMINA	ANTS OF CONCER						
SITE		ISGS #1314V3-	17 (Parking Lot)				Comparis	son Criteria	l	
BORING	1314V3-17-B01	1314V3-17-B02	1314V	3-17-B03		MACs			TACO	
SAMPLE	1314V3-17-B01 (0-7)	1314V3-17-B02 (0-7)	1314V3-17-B03 (0-7)	1314V3-17-B03 (0-7)D						
MATRIX	Soil	Soil	Soil	Soil		NATIONAL LAN				
DEPTH (feet)	0-7	0-7	0-7	0-7	Most	Within an	Within		Construction	
pH	7.9	7.1	7.6	7.8	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detected)										
SVOCs (mg/kg)										
	0.0004	0.5	ND II	ND U						
2-Methylnaphthalene	0.0084 J	0.5	ND U							
Accepability	0.015 J	0.06	ND U	ND U	570			4,700	120,000	
Acenaphthylene	ND U	0.074	ND U	ND U						
Anthracene	0.016 J	0.3	ND U	ND U	12,000			23,000	610,000	
Benzo(a)anthracene	0.059	1.1 †	ND U	ND U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.075		ND U	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.11	1.7 †*	ND U	ND U	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	0.061	0.3	ND U	ND U					4 700	
Benzo(k)fluoranthene	0.039	0.96	ND U	ND U	9			9	1,700	
Carbazole	ND U	0.22	ND U	ND U	0.6			32	6,200	
Chrysene	0.066	1.5	ND U	ND U	88			88	17,000	
Dibenz(a,h)anthracene	0.017 J	0.087	ND U	ND U	0.09	0.42	0.2	0.42	17	
Dibenzofuran	ND U	0.16 J	ND U	ND U	2 100			2 100	92,000	
Fluoranthene	0.12	2.7	ND U	ND U	3,100			3,100	82,000	
Fluorene	0.0076 J	0.074	ND U	ND U	560	4.0		3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.053	0.31	ND U	ND U	0.9	1.6	0.9	1.6	170	
Naphthalene	0.0076 J	0.25	ND U	ND U	1.8			170	1.8	
Phenanthrene	0.085	1.9	ND U	ND U	2 200			2 200		
Pyrene	0.11	2.6	ND U	ND U	2,300			2,300	61,000	
Inorganics (mg/kg)	1	1	1	ı		1			1	
Antimony	ND U	ND U	ND U	ND U	5			31	82	
Arsenic	5.6	15 †mr	5.5	5	11.3	13		13	61	
Barium	74	210	46	40	1,500			5,500	14,000	
Beryllium	0.4	1.1	0.38	0.37	22			160	410	
Boron	3.4	26	1.8 J	1.8 J	40			16,000	41,000	
Cadmium	ND U	1.5	ND U	ND U	5.2			78	200	
Calcium	19,000	5,500	7,200	9,000	-					
Chromium	12	16	10	10	21			230	690	
Cobalt	8	9.3	6.6	5.8	20			4,700	12,000	
Copper	17	120	8.1	8.3	2,900			2,900	8,200	
Iron	14,000	32,000 †m	11,000	11,000	15,000	15,900		-		
Lead	41	360 †	7.5	7.5	107			400	700	
Magnesium	9,600	1,300	4,500	5,600	325,000				730,000	
Manganese	460	370	290	190	630	636		1,600	4,100	
Mercury	0.047	0.42	0.014 J	0.022	0.89			10	0.1	
Nickel	18	21	13	12	100			1,600	4,100	
Potassium	780	890	440	450						
Selenium	ND U	3 †	ND U	ND U	1.3			390	1,000	
Silver	ND U	ND U	ND U	ND U	4.4			390	1,000	
Sodium	240	1,100	570	570						
Thallium	ND U	ND U	ND U	ND U	2.6			6.3	160	
Vanadium	18	27	19	18	550			550	1,400	
Zinc	64	460	28	29	5,100			23,000	61,000	
TCLP Metals (mg/L)										
Barium	0.7	0.36 J	0.49 J	0.45 J	-					2
Boron	0.079 J	0.3 J	0.06 J	0.051 J	-					2
Cadmium	0.0026 J	ND U	ND U	ND U						0.005
Cobalt	0.018 J	0.019 J	ND U	ND U	-					1
Iron	ND U	1.2	ND U	ND U	1					5
Lead	ND U	0.072 L	ND U	ND U	1					0.0075
Manganese	5.4 L	2 L	0.56 L	0.58 L						0.15
Nickel	0.036	0.014 J	ND U	ND U						0.1
Selenium	ND U	ND U	ND U	ND U						0.05
Zinc	0.062 J	1.3	ND U	ND U						5
SPLP Metals (mg/L)	· · · · · · · · · · · · · · · · · · ·						•		•	
` 	NΑ	0.20	NA	NA			I			0.0075
Lead	NA 0.055	0.29 L	0.78 L	NA 1.2 J L						0.0075
Manganese	0.055	0.5 L	0.78 L	1.2 J L						0.15

	CONTAMINANTS OF CONCERN											
SITE			ISGS #1314V3-1	8 (Vacant Land)					Comparis	son Criteria	1	
BORING		1314V3-18-B01			1314V3-18-B02			MACs			TACO	
SAMPLE	1314V3-18-B01 (0-6)	1314V3-18-B01 (6-12)	1314V3-18-B01 (12-18)	1314V3-18-B02 (0-7)	1314V3-18-B02 (0-7)D	1314V3-18-B02 (7-13)						
MATRIX	Soil	Soil	Soil	Soil	Soil	Soil		Within				
DEPTH (feet)	0-6	6-12	12-18	0-7	0-7	7-13	Most	an	Within		Construction	l
pH	8.7	8.3	7.9	8	8	7.7	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (mg/kg)												
2-Butanone (MEK)	ND U	ND U	ND U	ND U	ND U	ND U						
Acetone	ND U	ND U	ND U	ND U	ND U	ND U	25			70,000	100,000	
SVOCs (mg/kg)	•						1		·			
2-Methylnaphthalene	0.059 J	0.019 J	0.0081 J	ND U	ND U	ND U				-		
				ND U	ND U	ND U						
3 & 4 Methylphenol		1										
Acenaphthene	ND U	ND U	ND U	ND U	ND U	ND U	570			4,700	120,000	
Acenaphthylene	0.012 J	0.009 J	ND U	ND U	ND U	0.0087 J						
Anthracene	0.019 J	0.016 J	0.012 J	ND U	ND U	0.0067 J	12,000			23,000	610,000	
Benzo(a)anthracene	0.047	0.037	0.025 J	0.0059 J	0.0093 J	0.092	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.052	0.034 J	0.026 J	ND U	0.011 J	0.094 †	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.085	0.061	0.037	0.011 J	0.016 J	0.12	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	0.025 J	0.018 J	0.012 J	ND UJ	ND U	0.053						
Benzo(k)fluoranthene	0.03 J	0.019 J	ND U	ND U	ND U	0.061	9			9	1,700	
Carbazole	ND U	ND U	ND U	ND U	ND U	ND U	0.6			32	6,200	
Chrysene	0.056	0.048	0.032 J	ND U	0.012 J	0.089	88			88	17,000	
Dibenz(a,h)anthracene	ND U	ND U	ND U	ND UJ	ND U	0.013 J	0.09	0.42	0.2	0.42	17	
Dibenzofuran	ND U	ND U	ND U	ND U	ND U	ND U						
Fluoranthene	0.088	0.068	0.064	0.012 J	0.02 J	0.15	3,100			3,100	82,000	
Fluorene	ND U	ND U	0.006 J	ND U	ND U	ND U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.021 J	0.015 J	0.01 J	ND U	ND U	0.047	0.9	1.6	0.9	1.6	170	
Naphthalene	0.039	0.011 J	0.0068 J	ND U	ND U	0.0063 J	1.8			170	1.8	
Phenanthrene	0.089	0.069	0.055	ND U	0.0078 J	0.026 J						
Pyrene	0.086	0.074	0.068	0.0096 J	0.017 J	0.15	2,300	-		2,300	61,000	
Inorganics (mg/kg)												
Antimony	0.33 J	0.39 J	0.31 J	0.58 J	0.61 J	0.47 J	5			31	82	
Arsenic	4.5	6.2	6	4	4.6	5.8	11.3	13		13	61	
Barium	52	52	39	78	71	64	1,500			5,500	14,000	
Beryllium	0.5	0.46	0.39	0.59	0.59	0.63	22			160	410	
Boron	4.6	6.2	2.8	2.5	2.6	4.8	40			16,000	41,000	
Cadmium	0.2	0.2	0.13	ND U	ND U	0.076 J	5.2			78	200	
Calcium	80,000	54,000	35,000	14,000	15,000	4,500						
Chromium	11	10	9.7	15	15	14	21			230	690	
Cobalt	5.4	4.6	5.7	5.8	6.5	6.6	20			4,700	12,000	
Copper	15	15	11	12	13	14	2,900			2,900	8,200	
Iron	13,000	13,000	13,000	15,000	16,000 †m	15,000	15,000	15,900				
Lead	19	17	9.5	9.1	10	19	107			400	700	
Magnesium	19,000	18,000	18,000	8,100	8,600	1,700	325,000				730,000	
Manganese	370	320	290	290	310	390	630	636		1,600	4,100	
Mercury	0.039	0.02	0.016 J	0.029	0.025	0.05	0.89			10	0.1	
Nickel	13	11	13	14	15	15	100	-	-	1,600	4,100	
	930		760		810	900						
Potassium Selenium	0.34 J	760 0.37 J	0.62	780 J 0.46 J	0.5 J	0.57	1.3			390	1,000	
Sodium	340	710	460	100	110	94			-		160	
Thallium	0.89	0.76	0.86	0.98	0.92	1 24	2.6			6.3	160	
Vanadium Zinc	19 51	18 78	16 33	26 32	26 36	24 56	550 5,100			550 23,000	1,400 61,000	
	•	10	აა	32	30	90	υ, IUU			۷۵,000	01,000	
TCLP Metals (mg/L)	T .	T		1							1	
Barium	0.76	0.81	1	0.68	0.73	0.48 J						2
Boron	ND U	ND U	ND U	0.054 J	0.062 J	0.12 J						2
Cadmium	0.003 J	0.0047 J	0.0038 J	0.0022 J	0.0021 J	0.0022 J						0.005
Cobalt	ND U	0.032	0.024 J	ND U	ND U	ND U						1
Iron	ND U	ND U	ND U	ND U	ND U	ND U						5
Lead	ND U	ND U	ND U	ND U	ND U	ND U						0.0075
Manganese	1.5 L	6.3 L	7.8 L	0.66 L	0.55 L	0.26 L						0.15
Nickel	0.013 J	0.041	0.032	ND U	ND U	ND U						0.1
Selenium	ND U	ND U	ND U	ND U	ND U	ND U						0.05
Thallium	ND U	ND U	ND U	ND U	ND U	ND U						0.002
Zinc	0.076 J	0.096 J	0.021 J	0.035 J	ND U	0.14 J						5
SPLP Metals (mg/L)												
Cadmium	NA	NA	NA	NA	NA	NA						0.005
Lead	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						0.005
Manganese	0.36 L	0.72 L	0.23 L	0.13	0.15	0.074			-			0.0073
aiigaii030	7.30 L	U.72 L	0.20 L	V. 10	V.10	V.U17						0.10

CITE		100	NIAMINANIS OF		Comparison Criteria						
SITE BORING	1214\/2	ISG: I-18-B03	3 #1314V3-18 (Vacant L 1314V3-18-B04		3-18-B05		MACs	Comparis	on onteria	TACO	
SAMPLE		-18-B03 1314V3-18-B03 (6-12)	1314V3-18-B04 1314V3-18-B04 (0-5.3)		1314V3-18-B05 (8-12)		WACS			IACU	
MATRIX	Soil	Soil	Soil	Soil	Soil						
DEPTH (feet)	0-6	6-12	0-5.3	0-8	8-12		Within				
pH	8.1	7.6	8.6	8.1	8	Most Stringent	an MSA	Within Chicago	Residential	Construction Worker	SCGIER
VOCs (mg/kg)		-			-	g					
2-Butanone (MEK)	ND U	ND U	0.0084	ND U	ND U						
Acetone	ND U	ND U	0.0084	ND U	ND U	25			70,000	100,000	-
SVOCs (mg/kg)	115 0	115 0	0.0.0		115 0	20			70,000	100,000	
	ND U	ND U	0.06 J	ND U	ND U					_	
2-Methylnaphthalene 3 & 4 Methylphenol	ND U	ND U ND U	0.06 J ND U	ND U	ND U					-	
Acenaphthene	ND U	ND U	0.0086 J	ND U	ND U	570			4,700	120,000	
Acenaphthylene	ND U	ND U	0.0068 J	ND U	ND U				4,700		
Anthracene	ND U	ND U	0.022 J	0.0084 J	ND U	12,000	-		23,000	610,000	
Benzo(a)anthracene	0.0079 J	ND U	0.09	0.059	ND U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.011 J	ND U	0.094 †	0.086	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.025 J	0.016 J	0.15	0.16	ND U	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	ND U	ND U	0.045	0.065	ND U			-		-	
Benzo(k)fluoranthene	ND U	ND U	0.051	0.087	ND U	9		-	9	1,700	
Carbazole	ND U	ND U	ND U	ND U	ND U	0.6			32	6,200	
Chrysene	0.017 J	0.011 J	0.11	0.068	ND U	88			88	17,000	
Dibenz(a,h)anthracene	ND U	ND U	0.013 J	0.015 J	ND U	0.09	0.42	0.2	0.42	17	
Dibenzofuran	ND U	ND U	ND U	ND U	ND U					-	
Fluoranthene	0.022 J	ND U	0.2	0.059	ND U	3,100			3,100	82,000	
Fluorene	ND U	ND U	0.007 J	ND U	ND U	560	-	-	3,100	82,000	
Indeno(1,2,3-cd)pyrene	ND U	ND U	0.038	0.059	ND U	0.9	1.6	0.9	1.6	170	
Naphthalene	ND U	ND U	0.036 J	ND U	ND U	1.8			170	1.8	
Phenanthrene	0.014 J	ND U	0.16	0.026 J	ND U			-			
Pyrene	0.021 J	0.03 J	0.18	0.063	ND U	2,300			2,300	61,000	
Inorganics (mg/kg)			1								
Antimony	ND U	0.24 J	0.6 J	0.48 J	0.41 J	5			31	82	
Arsenic	4.1	3.1	5.3	3.2	4.8	11.3	13		13	61	
Barium	60	73	38	53	29	1,500			5,500	14,000	
Beryllium	0.5	0.42	0.4	0.52	0.42	22	-		160	410	
Boron Cadmium	4.5 0.083 J	2.1 J ND U	0.13	2.4 J ND U	1.1 J ND U	40 5.2			16,000 78	41,000 200	
Calcium	38,000	7,500	18,000	5,000	13,000			-			
Chromium	12	11	12	13	8.6	21			230	690	
Cobalt	5.5	4.4	4.8	5.3	5.4	20			4,700	12,000	
Copper	13	8.2	11	13	11	2,900			2,900	8,200	
Iron	13,000	11,000	12,000	12,000	12,000	15,000	15,900				
Lead	10	5.1	17	18	2.8	107	-	-	400	700	
Magnesium	19,000	4,500	5,200	2,600	6,900	325,000		-		730,000	
Manganese	360	280	220	270	300	630	636		1,600	4,100	
Mercury	0.083	0.018	0.058	0.023	ND U	0.89		-	10	0.1	
Nickel	15	9.7	13	13	15	100	-		1,600	4,100	
Potassium	980	680	550	570	320						
Selenium	ND U	0.49 J	0.53	0.52	0.55	1.3			390	1,000	
Sodium	89	72	370	89	140						
Thallium	0.88	0.81	0.71	0.99	0.9	2.6			6.3	160	
Vanadium 	18	15	18	21	25	550			550	1,400	
Zinc	38	33	62	38	24	5,100			23,000	61,000	
TCLP Metals (mg/L)			1			1			ı	· ·	
Barium	0.86	0.81	0.59	0.57	0.38 J						2
Boron	ND U	ND U	0.067 J	ND U	ND U						2
Cadmium	ND U	ND U	0.0033 J	ND U	ND U						0.005
Cobalt	ND U	ND U	ND U	ND U	0.013 J					-	1
Iron	ND U	ND U	ND U	ND U	ND U						5
Lead	ND U	ND U	ND U	0.0079 L	ND U 2.8 L					-	0.0075 0.15
Manganese Nickel	0.36 L ND U	0.81 L ND U	2.4 L 0.02 J	0.44 L ND U	0.031		-				0.15
Nickei Selenium	ND U	ND U	0.02 J ND U	ND U	0.031 ND U						0.1
Thallium	ND U	ND U	ND U	ND U	ND U		-			-	0.002
Zinc	0.035 J	0.022 J	0.1 J	0.12 J	0.038 J					-	5
SPLP Metals (mg/L)		.		· · · · · · ·							
Cadmium	NA	NA	NA	NA	NA					_	0.005
Lead	NA NA	NA NA	NA NA	0.042 L	NA NA						0.005
Manganese	0.22 L	0.37 L	0.42 L	0.5 L	0.025					-	0.15
		,.v. L		U.U L							55

Second Submitted Second Submitted Second Submitted		1			CONTAMINA	ANTS OF CONCER	N						
SAMPLE	SITE			ISGS #1314V3-1	8 (Vacant Land)					Compari	son Criteria	I	
MATRICE Sept. Sept	BORING		1314V3-18-B06		1314V3-18-B07	1314V3-18-B08	1314V3-18-B09		MACs			TACO	
Part	SAMPLE	1314V3-18-B06 (0-6)	1314V3-18-B06 (6-12)	1314V3-18-B06 (12-17)	1314V3-18-B07 (0-8)	1314V3-18-B08 (0-4.4)	1314V3-18-B09 (0-8)						
Part	MATRIX	Soil	Soil	Soil	Soil	Soil							İ
Part													
## MOSE (mg/sg) **Control 1987 **Co	` '	1									Pacidontial		SCCIED
Millander March		0.4	1.5	0	0.5	0.4	7.0	Stringent	IVIOA	Cilicago	Residential	Worker	SCGIER
Second Content	VOCs (mg/kg)		1		1	1					1	1	
SYOCA (mg/sqs) 2-Butanone (MEK)	ND U	ND U	ND U	ND U	0.011	ND U							
Commission Com	Acetone	ND U	ND U	0.021	ND U	0.051	ND U	25			70,000	100,000	
Commission Com	SVOCs (ma/ka)												
Mathematic No U		0.21	0.23	0.0001 I	0.007	0.066	0.0085						
Concepting Con													
Amount A											t		
Methodology 10													
Description of the content of the	Acenaphthylene										1		
Description 1972 1	Anthracene	0.46	0.03 J	ND U	ND U	0.041	ND U	12,000			23,000	610,000	
Descriptions Desc	Benzo(a)anthracene	0.91 †	0.09	ND U	0.018 J	0.13	0.011 J	0.9	1.8	1.1	1.8	170	
Marcong 1,000 1,	Benzo(a)pyrene	0.72 †	0.084	ND U	0.02 J	0.13 †	0.0093 J	0.09	2.1	1.3	2.1	17	
Demonstrational content	Benzo(b)fluoranthene	0.94 †	0.14	ND U	0.026 J	0.22	ND U	0.9	2.1	1.5	2.1	170	
Demonstrational content	Benzo(g,h,i)perylene	0.25	0.043	ND U	ND U	0.054	ND U						
Carbon C			0.057					9			9	1.700	
Department 10.52													
Development										<u> </u>			
Demonstration Demonstratio	•												
December 1.9													
December 10,009	Dibenzofuran									1	1		
Control Cont	Fluoranthene	1									1		
Machemathring Machemathrin	Fluorene	0.099	0.0089 J	ND U	ND U	0.013 J	ND U	560			3,100	82,000	
Processing 1.6 0.22	Indeno(1,2,3-cd)pyrene	0.24	0.036 J	ND U	ND U	0.051	ND U	0.9	1.6	0.9	1.6	170	
Pyreme 1.6 0.17 ND U 0.055 J 0.25 0.19 J 2.300 2.300 61,000 Termony 0.54 J 0.62 J 0.27 J 0.27 J 0.44 J ND U 5 31 82 Termony 0.54 J 0.62 J 0.27 J 0.27 J 0.44 J ND U 5 31 82 Termony 0.54 J 0.62 J 0.27 J 0.27 J 0.44 J ND U 5 31 82 Termony 0.55 0.68 0.41 0.52 0.77 8.9 22 160 1410 Termony 0.42 0.32 ND U ND U 0.11 20 Termony 1.500 160 1410 Termony 0.42 0.32 ND U ND U 0.11 20 Termony 1.50 160 14100 Termony 0.42 0.32 ND U ND U 0.11 20 Termony 1.52 160 14100 Termony 0.42 0.32 ND U ND U 0.11 20 Termony 1.52 160 14100 Termony 0.42 0.32 ND U ND U 0.11 20 Termony 1.52 Termony 0.42 0.32 ND U ND U 0.11 20 Termony 1.52	Naphthalene	0.13	0.17	ND U	ND U	0.033 J	ND U	1.8			170	1.8	
International Content	Phenanthrene	1.6	0.22	0.0072 J	0.031 J	0.22	0.019 J						
Note	Pyrene	1.6	0.17	ND U	0.035 J	0.25	0.019 J	2,300			2,300	61,000	
Note		-											
Name		1 .	1					1	ı	1	1		Ε
Searmorn 63	Antimony												
Description Q.55	Arsenic	5.6	7.3	2.5	3.5	2.3	220 †mrc	11.3	13		13	61	
Second 7.1	Barium	63	76	49	48	40	60	1,500			5,500	14,000	
Cadesium	Beryllium	0.55	0.68	0.41	0.52	0.77	8.9	22			160	410	
Calcum	Boron	7.1	14	2 J	6.4	17	140 †	40			16,000	41,000	
Chromium	Cadmium	0.42	0.32	ND U	ND U	0.11	20 †	5.2			78	200	
Chromium	Calcium	28,000	14,000	3,300	110,000	6,700	2,300						
Cobate 4.7 5.6 4.5 4.4 2.3 4.1 20 4,700 12,000 Copper 17 19 8.1 12 7.8 120 2,900 2,900 8.200 2,900 8.200 Copper 17 19 8.1 12 7.8 120 2,900 2,900 8.200 2,900 8.200 Copper 13,000 20,000 1m 10,000 12,000 11,000 15,000 4,700 12,000 Copper 14,000 13,000 15,000 4,700 12,000 Copper 14,000 14,000 4,700 12,000 Copper 4,700 12,000 Copper 4,700 Copper 4,700 12,000 Copper 4,700 12,000 Copper 4,700 Copper 4,700 Copper								21			230	690	
Copper		1											
13,000	_	1								1			
Lead		1	_							1			
Hagnesium				•	,								
Anganese 280 220 210 320 110 350 630 636 1,600 4,100	Lead			6.6	16	9.2	13				400	700	
Mercury	Magnesium	14,000	4,300	1,800	30,000	1,000	1,300	325,000				730,000	
No.	Manganese	280	220	210	320	110	350	630	636		1,600	4,100	
Selentim	Mercury	0.045	0.19	0.014 J	0.016 J	0.033	0.01 J	0.89			10	0.1	
Selenium	Nickel	12	13	9.3	11	6.6	8.9	100			1,600	4,100	
Selenium	Potassium	850	790	580	1,000	410	340						
Sodium Sec S	Selenium							1.3			390	1,000	
Thailium													
19													
TCLP Metals (mg/L)													
CLP Metals (mg/L) Sarium													
Sarium			120	24	24	/1	78	5,100			23,000	01,000	
No	TCLP Metals (mg/L)												
Cadmium 0.0042 J 0.0079 L 0.0023 J ND U 0.0048 J ND U	Barium	0.7	0.83	1.3	0.66	0.63	0.31 J						2
Cadmium 0.0042 J 0.0079 L 0.0023 J ND U 0.0048 J ND U	Boron	ND U	ND U	ND U	0.082 J	0.1 J	0.062 J						2
No No No No No No No No	Cadmium												
ron ND U 0.84 ND U ND U ND U ND U ND U ND U 5 Lead ND U 0.015 L ND U ND U 0.012 L ND U 5 Manganese 1.4 L 9.1 L 14 L 2.9 L 4.7 L 1 L 0.05 Selenium ND U ND													
Lead ND U 0.015 L ND U ND U 0.012 L ND U 0.0075 Manganese 1.4 L 9.1 L 14 L 2.9 L 4.7 L 1 L 0.15 Nickel 0.01 J 0.047 0.041 0.026 0.04 0.015 J 0.15 Selenium ND U 0.05 Thallium ND U ND													
Manganese		1											
Nickel 0.01 J 0.047 0.041 0.026 0.04 0.015 J 0.1 Selenium ND U ND													
No U N											1		
Thailium	Nickel	1											
Zinc 0.16 J 0.35 J 0.062 J 0.041 J 0.34 J 0.12 J 5 SPLP Metals (mg/L) Cadmium NA ND U NA NA NA NA 0.005 Lead NA 0.03 L NA NA 0.092 L NA 0.0075	Selenium	ND U	ND U	ND U	ND U	ND U	ND U						0.05
SPLP Metals (mg/L) Cadmium NA ND U NA NA NA NA 0.0075	Thallium	ND U	ND U	ND U	ND U	ND U	ND U						0.002
Cadmium NA ND U NA NA NA NA <th< td=""><td>Zinc</td><td>0.16 J</td><td>0.35 J</td><td>0.062 J</td><td>0.041 J</td><td>0.34 J</td><td>0.12 J</td><td></td><td></td><td></td><td></td><td></td><td>5</td></th<>	Zinc	0.16 J	0.35 J	0.062 J	0.041 J	0.34 J	0.12 J						5
Cadmium NA ND U NA NA NA NA <th< td=""><td>SPLP Metals (mg/l)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	SPLP Metals (mg/l)												
ead NA 0.03 L NA NA 0.092 L NA 0.0075		1	ND U	NIA	NIA	NA	NA	I	l	I	1		0.005
		1									1		
Manganese 0.34 L 0.14 0.17 L ND U 0.65 L 0.83 L 0.15	Lead												
	Manganese	0.34 L	0.14	0.17 L	ND U	0.65 L	0.83 L						0.15

PTB #172-27; Work Order 46, Contract 64C08 - IDOT Job # P-93-032-01

Description				CONTAMINA	ANTS OF CONCER	CERN					
SAMPLE	SITE		ISGS #1314V3-2	1 (BNSF Railroad)				Comparis	on Criteria		
MATEK		1314V3	3-21-B01	1314V3	3-21-B02		MACs	1		TACO	
DEPTH (edg)		1314V3-21-B01 (0-5)	1314V3-21-B01 (5-10)	1314V3-21-B02 (0-6)	1314V3-21-B02 (0-6)D						
Control Cont							Within				
VOCs. (mg/kg)	` '						an				
Secretary Secr	•	7.5	7.8	7.7	7.7	Stringent	MSA	Chicago	Residential	Worker	SCGIER
Section Company Comp		1		1			ı	ī	I		
Section Sect											
Sectors Section Sect		0.023	ND U	0.05	0.042	25			70,000	100,000	
Accordation	` • •			1			1	1	I		
Associate phone 0.033											
Embrace											
Beanchipselmenneme											
Benziciphyrene		1									
Security Descriptions											
Beanstail Application 0.082											
Septimental production Septiment Sep	Benzo(g,h,i)perylene	0.052	ND U	0.089	0.13						
Chrystem	Benzo(k)fluoranthene	0.071	ND U	0.2	0.27	9			9	1,700	
Debroticharen 0.022 J ND U 0.046 0.057 0.09 0.42 0.2 0.42 17	Bis(2-ethylhexyl) phthalate	ND U	0.07 J	ND U	ND U	46			46	4,100	
Depresonation		1									
Pubmenheric No U											
Fluorene		1									
Podenot(1_2,5-dijpyrene 0.081											
Naphthalene		1									
Penerathrene											
Perene 0.18	·										
PCB-1260 ND U 0.012 J ND U ND U 1 1 1 PCBs, Iotal ND O.012 ND ND U 1 1 1 Inforganics (mg/kg) Ansenic 9 4.3 7.9 6.6 11.3 13 61 82 Berlium 140 53 210 190 1.500 5.500 14,000 Berlium 1.5 0.45 1.4 1.8 22 160 410 Boron 22 2.9 27 41 1.4 40 16.00 41,000 Calcium 6.400 2.200 10,000 9,600 78 20 Choalt 8.4 5.7 8.1 7.8 20 <td></td> <td></td> <td></td> <td></td> <td></td> <td>2,300</td> <td></td> <td></td> <td>2,300</td> <td>61,000</td> <td></td>						2,300			2,300	61,000	
PCBs, total	PCBs (mg/kg)										
Inorganics (mg/kg)	PCB-1260	ND U	0.012 J	ND U	ND U	1			1	1	
Anteninory	PCBs, total	ND	0.012	ND	ND						
Arsenic 9 4.3 7.9 6.6 11.3 13 13 61 Barlum 140 53 210 190 1,500 5,500 14,000 Bervillum 1,5 0.45 1.4 1.8 22 160 410 Boron 22 2.9 2.9 27 41 7 40 16,000 41,000 Cadmium 1.4 0.06 J 1.1 0.98 5.2 78 200 Calcilum 6,400 2,200 10,000 9,800 230 690 Chromium 14 11 15 15 14 21 230 690 Cobalt 8.4 5.7 8.1 7.8 20 4,700 12,000 Copper 70 8.7 52 41 2,900 2,900 8,200 Cropper 70 8.7 52 41 2,900 2,900 8,200 Copper 70 8.7 52 41 2,900 2,900 8,200 Copper 9 70 8.7 52 41 2,900 2,900 8,200 Copper 1,100 1,500 1,800 1,500 325,000 730,000 Magnesium 1,100 1,500 1,800 440 410 630 636 1,600 4,100 Mercury 0,038 0,015 J 0,056 0,075 0,89 10 0,1 Selenium 2.3 J 1 0,33 J 2 J 1 1.9 J 1 1.3 390 1,000 Selenium 2.3 J 1 0,33 J 2 J 1 1.9 J 1 1.3 390 1,000 Sodium 470 170 900 790	Inorganics (mg/kg)										
Barlum	Antimony	2.2 J	0.32 J	4.2 J	2.9 J	5			31	82	
Beryllium	Arsenic	9	4.3	7.9	6.6	11.3	13		13	61	
Boron 22 2.9 27	Barium	140	53	210	190	1,500			5,500	14,000	
Cadmium 1.4 0.06 J 1.1 0.98 5.2 78 200 Calcium 6,400 2,200 10,000 9,800 47,00 12,000 12,000 12,000 47,00 12,000 12,000	Beryllium										
Calcium 6,400 2,200 10,000 9,600 <td></td>											
Chromium											
Cobalt 8.4 5.7 8.1 7.8 20 4,700 12,000 Copper 70 8.7 52 41 2,900 2,900 8,200 Iron 48,000 †m 12,000 40,000 †m 39,000 †m 15,000 15,000 400 700 Magnesium 1,100 1,500 1,800 1,500 325,000 730,000 Marganese 500 480 440 410 630 636 1,600 4,100 Mercury 0.038 0.015 J 0.056 0.075 0.89 10 0.1 Nickel 24 12 24 23 100 1,600 4,100 Potassium 640 590 1,000 980 1,600 4,100 Selenium 23											
Copper 70 8.7 52 41 2,900 2,900 8,200 Iron 48,000 †m 12,000 40,000 †m 39,000 †m 15,000 15,900 700,000 Manganesium 1,100 1,500 4,100 1,500 4,100 4,100 Manganese 500 4,800 440 410 630 636 1,600 4,100 Mercury 0.038 0.015 J 0.056 0.075 0.89 10 0.1 0.1 0.1 0.1 0.00 1,000 980 <											
Iron											
Magnesium 1,100 1,500 1,800 1,500 325,000 730,000 Manganese 500 480 440 410 630 636 1,600 4,100 Mercury 0.038 0.015 J 0.056 0.075 0.89 10 0.1 Nickel 24 12 24 23 100 1,600 4,100 Potassium 640 590 1,000 980							15,900		·		
Manganese 500 480 440 410 630 636 1,600 4,100 Mercury 0.038 0.015 J 0.056 0.075 0.89 10 0.1 Nickel 24 12 24 23 100 1,600 4,100 Potassium 640 590 1,000 980 </td <td>Lead</td> <td>82</td> <td>5.6</td> <td>140 †</td> <td>150 †</td> <td>107</td> <td></td> <td></td> <td>400</td> <td>700</td> <td></td>	Lead	82	5.6	140 †	150 †	107			400	700	
Mercury 0.038 0.015 J 0.056 0.075 0.89 10 0.1 Nickel 24 12 24 23 100 1,600 4,100 Potassium 640 590 1,000 980	Magnesium	1,100	1,500	1,800	1,500	325,000				730,000	
Nickel 24	Manganese	500	480	440	410	630	636		1,600	4,100	
Potassium											
Selenium											
Sodium											
Thallium 3 J † 1.1 2.8 J † 2.5 J 2.6 6.3 160 Vanadium 26 22 27 25 550 550 1,400 Zinc 330 22 240 250 5,100 23,000 61,000 TCLP Metals (mg/L) Antimony ND U ND U 0.0098 L ND U 23,000 61,000 TCLP Metals (mg/L) Antimony ND U ND U 0.098 L ND U -											
Vanadium 26 22 27 25 550 550 1,400 Zinc 330 22 240 250 5,100 23,000 61,000 TCLP Metals (mg/L) Antimony ND U ND U 0.0098 L ND U <td></td>											
Zinc 330 22 240 250 5,100 23,000 61,000											
Antimony ND U ND U 0.0098 L ND U	Zinc	330	22	240	250	5,100			23,000		
Barium 0.24 J 0.24 J 0.59 0.56	TCLP Metals (mg/L)										
Boron ND U ND U ND U <	Antimony	ND U	ND U	0.0098 L	ND U						0.006
Cadmium ND U ND U 0.0022 J 0.003 J	Barium	0.24 J	0.24 J	0.59	0.56						2
Cobalt ND U ND U 0.014 J 0.017 J <	Boron										2
Iron 0.31 J ND U ND U 0.33 J -											0.005
Lead ND U ND U 0.079 J L 0.0099 J L											1
Manganese 1.4 L ND U 3.1 L 2.3 L											5
											0.0075 0.15
Nickel ND U ND U 0.012 J 0.017 J	Nickel	ND U	ND U	0.012 J	0.017 J						0.13
											0.05
		1									0.002
Zinc 0.29 J ND U 0.21 J 0.43 J		0.29 J	ND U	0.21 J	0.43 J						5
SPLP Metals (mg/L)	SPLP Metals (mg/L)										
Antimony NA NA 0.0063 L NA	Antimony	NA	NA	0.0063 L	NA						0.006
	Lead										0.0075
Manganese 0.32 L NA 0.24 L 0.25 L	Manganese	0.32 L	NA	0.24 L							0.15

			CON	TAMINANTS OF	CONCERN	1					
SITE		ISGS	#1314V3-24 (John De	ere)				Comparis	son Criteria		
BORING	1314V3-24-B01	1314V	3-24-B02	1314V3	3-24-B03		MACs			TACO	
SAMPLE	1314V3-24-B01 (0-5.8) 1314V3-24-B02 (0-5)	1314V3-24-B02 (5-10)	1314V3-24-B03 (0-5)	1314V3-24-B03 (5-10)						
MATRIX	Soil	Soil	Soil	Soil	Soil		Within				
DEPTH (feet)	0-5.8	0-5	5-10	0-5	5-10	Most	an	Within		Construction	
pH	7.8	8.1	7.9	8.2	8.1	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (mg/kg)									_		
Tetrachloroethene	ND U	ND U	ND U	ND U	ND U	0.06			11	28	
Xylenes, Total	ND U	ND U	ND U	ND U	ND U	5.6			320	5.6	
SVOCs (mg/kg)		_			-						
2-Methylnaphthalene	0.029 J	0.014 J	ND U	ND U	ND U						
Acenaphthene	0.0094 J	ND U	ND U	ND U	ND U	570			4,700	120,000	
Acenaphthylene	0.012 J	ND U	ND U	0.0072 J	ND U						
Anthracene	0.044	0.014 J	ND U	0.014 J	ND U	12,000			23,000	610,000	
Benzo(a)anthracene	0.26	0.13	ND U	0.051	ND U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.25	† <mark> 0.21 †</mark>	ND U	0.058	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.44	0.31	ND U	0.091	ND U	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	0.085	0.21	ND U	0.037 J	ND U						
Benzo(k)fluoranthene	0.15	0.094	ND U	0.029 J	ND U	9			9	1,700	
Bis(2-ethylhexyl) phthalate	ND U	ND U	ND U	ND U	ND U	46			46	4,100	
Carbazole	ND U 0.28	ND U	ND U ND U	ND U	ND U	0.6			32 88	6,200	
Chrysene Dibenz(a,h)anthracene	0.28 0.03 J	0.16 0.047	ND U	0.056 ND U	ND U	0.09	0.42	0.2	0.42	17,000 17	
Dibenzofuran	ND U	ND U	ND U	ND U	ND U	0.09					
Fluoranthene	0.58	0.16	ND U	0.083	ND U	3,100			3,100	82,000	
Fluorene	0.008 J	ND U	ND U	ND U	ND U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.088	0.17	ND U	0.025 J	ND U	0.9	1.6	0.9	1.6	170	
Naphthalene	0.018 J	0.016 J	ND U	ND U	ND U	1.8			170	1.8	
Phenanthrene	0.26	0.089	ND U	0.049	ND U						
Pyrene	0.59	0.44	ND U	0.084	ND U	2,300	-		2,300	61,000	
Inorganics (mg/kg)											
Antimony	1.3 J	18 †	0.35 J	5	0.28 J	5			31	82	
Arsenic	4.1	32 †mr	4.2	10	4.3	11.3	13		13	61	
Barium	270	110	54	84	45	1,500	-		5,500	14,000	
Beryllium	2.9	1.5	0.4	1.1	0.38	22			160	410	
Boron	110	36	2.7 J	19	2 J	40			16,000	41,000	
Cadmium	ND U	0.44 J	0.077 J	1.5	0.089 J	5.2			78	200	
Calcium	28,000	57,000	2,700	6,000	8,300						
Chromium	21	24 †	12	15	9.7	21			230	690	
Cobalt	11	19	6.4	8	7.4	20			4,700	12,000	
Copper	40	1,000	8.7	220	7.6	2,900			2,900	8,200	
Iron	71,000 †n		12,000	58,000 †m	10,000	15,000	15,900				
Lead	52	690 †r		220 †	7.2	107			400	700	
Magnesium	1,200	4,100	1,800	1,200	5,000	325,000				730,000	
Manganese	250	830 †m	280	580	330	630	636		1,600	4,100	
Mercury	0.025	0.13 40	0.027	0.31	0.022	0.89			10	0.1	
Nickel	30	1	14	22	16	100			1,600	4,100	
Potassium Selenium	2,000	860	810 0.32 J	700 1.4 J †	610 ND U	1.3			390	1,000	
Silver	ND U	0.65 J	0.32 J ND U	ND U	ND U	4.4			390	1,000	
Sodium	1,500	900	180	210 J	130						
Thallium	ND U	ND U	ND U	ND U	ND U	2.6			6.3	160	
Vanadium	46	51	20	28	16	550	1		550	1,400	
Zinc	170	670	29	700	27	5,100	-		23,000	61,000	
TCLP Metals (mg/L)											
Antimony	ND U	0.032 L	ND U	ND U	ND U		-				0.006
Barium	0.21 J	0.6	0.56	0.29 J	0.6		-				2
Boron	0.12 J	0.097 J	0.12 J	0.081 J	0.064 J						2
Cadmium	ND U	0.0046 J	ND U	ND U	ND U		-				0.005
Chromium		ND U	ND U	ND U	ND U		-			-	0.1
Cobalt	ND U			ND U	ND U						1
liana I	ND U 0.013 J	0.03	ND U								5
Iron	0.013 J ND U		ND U	ND U	ND U						
Iron Lead	0.013 J ND U ND U	0.03 ND U 0.12 L	ND U ND U	0.011 L	ND U						0.0075
Lead Manganese	0.013 J ND U ND U 1.6 I	0.03 ND U 0.12 L 3.9 L	ND U ND U 0.4 L	0.011 L 0.16 L	ND U 0.41 L						0.15
Lead Manganese Nickel	0.013 J ND U ND U 1.6 I 0.029	0.03 ND U 0.12 L 3.9 L 0.034	ND U ND U 0.4 L ND U	0.011 L 0.16 L ND U	ND U 0.41 L ND U			 	 		0.15 0.1
Lead Manganese Nickel Selenium	0.013 J ND U ND U 1.6 I 0.029	0.03 ND U 0.12 L 3.9 L 0.034 ND U	ND U ND U 0.4 L ND U ND U	0.011 L 0.16 L ND U ND U	ND U 0.41 L ND U ND U	 	 	 	 	 	0.15 0.1 0.05
Lead Manganese Nickel Selenium Thallium	0.013 J ND U ND U 1.6 I 0.029 ND U ND U	0.03 ND U 0.12 L 3.9 L 0.034 ND U ND U	ND U ND U 0.4 L ND U ND U ND U ND U	0.011 L 0.16 L ND U ND U ND U	ND U 0.41 L ND U ND U ND U						0.15 0.1 0.05 0.002
Lead Manganese Nickel Selenium Thallium Zinc	0.013 J ND U ND U 1.6 I 0.029	0.03 ND U 0.12 L 3.9 L 0.034 ND U	ND U ND U 0.4 L ND U ND U	0.011 L 0.16 L ND U ND U	ND U 0.41 L ND U ND U	 	 	 	 	 	0.15 0.1 0.05
Lead Manganese Nickel Selenium Thallium Zinc SPLP Metals (mg/L)	0.013 J ND U ND U 1.6 I 0.029 ND U ND U ND U ND U ND U	0.03 ND U 0.12 L 3.9 L 0.034 ND U ND U 0.54	ND U ND U 0.4 L ND U ND U ND U ND U ND U ND U	0.011 L 0.16 L ND U ND U ND U 0.35 J	ND U 0.41 L ND U ND U ND U ND U ND U						0.15 0.1 0.05 0.002 5
Lead Manganese Nickel Selenium Thallium Zinc SPLP Metals (mg/L) Antimony	0.013 J ND U ND U 1.6 I 0.029 ND U ND U ND U ND U ND U ND ND U	0.03 ND U 0.12 L 3.9 L 0.034 ND U ND U 0.54	ND U ND U O.4 L ND U ND U ND U ND U ND U ND U ND ND U	0.011 L 0.16 L ND U ND U ND U 0.35 J	ND U 0.41 L ND U ND U ND U ND U ND U ND U						0.15 0.1 0.05 0.002 5
Lead Manganese Nickel Selenium Thallium Zinc SPLP Metals (mg/L)	0.013 J ND U ND U 1.6 I 0.029 ND U ND U ND U ND U ND U	0.03 ND U 0.12 L 3.9 L 0.034 ND U ND U 0.54	ND U ND U 0.4 L ND U ND U ND U ND U ND U ND U	0.011 L 0.16 L ND U ND U ND U 0.35 J	ND U 0.41 L ND U ND U ND U ND U ND U						0.15 0.1 0.05 0.002 5

-			CON	TAMINANTS OF (CONCERN						
SITE		ISG	S #1314V3-24 (John De	ere)				Comparis	son Criteria		
BORING		1314V3-24-B04	Γ		3-24-B05		MACs	T		TACO	
SAMPLE	1314V3-24-B04 (0-5)		1314V3-24-B04 (5-10)D		•						
MATRIX DEPTH (feet)	Soil	Soil	Soil	Soil	Soil		Within				
pH (feet)	0-5 8.3	5-10 8.5	5-10 8.5	0-5 8.3	5-10 7.6	Most Stringent	an MSA	Within Chicago	Residential	Construction Worker	SCGIER
VOCs (mg/kg)	0.0	0.0	0.0	0.0	7.0	Stringent	WISA	Cilicago	Residential	WOIKE	SCGIER
Tetrachloroethene	ND U	ND U	ND U	ND U	ND U	0.06			11	28	
Xylenes, Total	ND U	ND U	ND U	ND U	ND U	5.6			320	5.6	
SVOCs (mg/kg)	ND 0	ND 0	ND 0	ND 0	ND 0	0.0		1	020	0.0	
2-Methylnaphthalene	0.042 J	ND U	ND U	0.014 J	ND U						
Acenaphthene	0.088	ND U	ND U	0.04	ND U	570			4,700	120,000	
Acenaphthylene	0.082	ND U	ND U	0.0089 J	ND U						
Anthracene	0.27	ND U	ND U	0.077	ND U	12,000			23,000	610,000	
Benzo(a)anthracene	1.1 †	ND U	ND U	0.27	ND U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	1.1 †	ND U	ND U	0.24 †	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	1.5 †	ND U	ND U	0.34	ND U	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	0.42	ND U	ND U	0.091	ND U						
Benzo(k)fluoranthene	0.58	ND U	ND U	0.12	ND U	9			9	1,700	
Bis(2-ethylhexyl) phthalate	ND U ND U	ND U	ND U ND U	ND U	ND U	46 0.6			46 32	4,100 6,200	
Carbazole Chrysene	1.2	ND U	ND U	0.31	ND U	88			32 88	6,200 17,000	
Dibenz(a,h)anthracene	0.11 †	ND U	ND U	0.03 J	ND U	0.09	0.42	0.2	0.42	17,000	
Dibenzofuran	ND U	ND U	ND U	ND U	ND U						
Fluoranthene	2.2	ND U	ND U	0.6	ND U	3,100			3,100	82,000	
Fluorene	80.0	ND U	ND U	0.025 J	ND U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.41	ND U	ND U	0.084	ND U	0.9	1.6	0.9	1.6	170	
Naphthalene	0.058	ND U	ND U	0.011 J	ND U	1.8			170	1.8	
Phenanthrene	1.4	ND U	ND U	0.53	ND U						
Pyrene	2.2	ND U	ND U	0.64	ND U	2,300			2,300	61,000	
Inorganics (mg/kg)	1	1						1	ı	ı	т
Antimony	2.4 J	0.32 J	0.28 J	9.5 †	ND U	5			31	82	
Arsenic	4.6	6.4	4.2	9	6.2	11.3	13		13	61	
Barium Beryllium	140 0.91 J	130 0.47	65 0.43	84 0.76	100 0.49	1,500 22			5,500 160	14,000 410	
Boron	9.2 J	2.4 J	2.3 J	13	2.3 J	40			16,000	41,000	
Cadmium	0.46 J	0.36	0.098 J	0.51	ND U	5.2			78	200	
Calcium	8,500	5,400	6,700	9,800	3,100						
Chromium	17	12	12	11	15	21			230	690	
Cobalt	6.4	13 J	5.9 J	6.3	10	20			4,700	12,000	
Copper	220	8.8	8.5	83	13	2,900			2,900	8,200	
Iron	27,000 †m	14,000	13,000	29,000 †m	15,000	15,000	15,900				
Lead	110 †	10	8.8	220 †	10	107			400	700	
Magnesium	2,700	4,200	4,800	2,200	2,300	325,000				730,000	
Manganese Marauni	280 0.39	1,000 J †m 0.027	300 J 0.032	290 0.12	520 0.026	630 0.89	636		1,600 10	4,100 0.1	
Mercury Nickel	20	29	15	17	23	100			1,600	4,100	
Potassium	1,100	690	680	690	780						
Selenium	ND U	0.39 J	ND U	ND U	ND U	1.3			390	1,000	
Silver	ND U	ND U	ND U	ND U	ND U	4.4			390	1,000	
Sodium	720	440	450	390	570						
Thallium	ND U	ND U	ND U	ND U	ND U	2.6			6.3	160	
Vanadium	20	23	16	20	25	550			550	1,400	
Zinc	190	33	33	200	45	5,100			23,000	61,000	
TCLP Metals (mg/L)			1		-			1	ı	ı	т
Antimony	0.0091 L	ND U	ND U	0.0075 L	ND U						0.006
Barium	0.73	0.48 J	0.48 J	0.59	0.6						2
Boron Cadmium	0.13 J 0.0021 J	0.086 J ND U	0.1 J ND U	0.082 J ND U	0.088 J ND U						0.005
Cadmium Chromium	0.0021 J ND U	ND U	ND U	ND U	ND U						0.005
Cobalt	0.014 J	ND U	ND U	ND U	ND U						1
Iron	ND U	ND U	ND U	ND U	ND U						5
Lead	0.028 L	ND U	ND U	0.021 L	ND U						0.0075
Manganese	2.5 L	0.32 L	0.33 L	0.99 L	0.023 J						0.15
Nickel	0.014 J	ND U	ND U	0.014 J	ND U						0.1
Selenium	ND U	ND U	ND U	ND U	ND U						0.05
Thallium	ND U	ND U	ND U	ND U	ND U						0.002
Zinc	ND U	ND U	ND U	0.21 J	ND U						5
SPLP Metals (mg/L)		Τ	T		T			1	1	ı	
Antimony	0.011 L	NA	NA	0.017 L	NA						0.006
Lead	0.11 L	NA .	NA	0.15 L	NA NA						0.0075
Manganese	0.38 L	0.33 L	0.33 L	0.31 L	NA						0.15

			CO	NTAMINANTS OF	CONCERN						
SITE		ISGS	#1314V3-24 (John D	eere)				Comparis	on Criteria		
BORING	1314V3-24-B06	1314V3-24-B07	1314V3-24-B08	1314V3-24-B09	1314V3-24-B10		MACs			TACO	
SAMPLE	1314V3-24-B06 (0-4)	1314V3-24-B07 (0-5)	1314V3-24-B08 (0-8)	1314V3-24-B09 (0-4)	1314V3-24-B10 (0-5)						
MATRIX	Soil	Soil	Soil	Soil	Soil		Within				
DEPTH (feet)	0-4	0-5	0-8	0-4	0-5	Most	an	Within		Construction	
pH	9	8.9	7.9	7.5	8.5	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (mg/kg)	I			I	1		Π	ı	1		
Tetrachloroethene	0.0096	ND U	ND U	ND U	ND U	0.06			11	28	
Xylenes, Total	ND U	ND U	ND U	ND U	ND U	5.6			320	5.6	
SVOCs (mg/kg)	I			1	1		I	1	1		
2-Methylnaphthalene	ND U	0.0078 J	ND U	ND U	0.0096 J				4.700	400,000	
Acenaphthene Acenaphthylene	ND U ND U	ND U	ND U	ND U ND U	0.21 0.021 J	570			4,700	120,000	
Anthracene	ND U	ND U	0.016 J	0.0074 J	0.021 3	12,000			23,000	610,000	
Benzo(a)anthracene	0.035 J	0.044	0.081	0.028 J	4.3 †mr*	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.044	0.047	0.08	0.042	5 †mr*	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.082	0.066	0.1	0.067	7.2 †mr*	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	0.024 J	0.028 J	0.039	ND UJ	1.3						
Benzo(k)fluoranthene	0.026 J	0.025 J	0.046	0.015 J	2.3	9			9	1,700	
Bis(2-ethylhexyl) phthalate	ND U	ND U	ND U	ND U	ND U	46			46	4,100	
Carbazole	ND U	ND U	ND U	ND U	0.26	0.6			32	6,200	
Chrysene	0.04	0.052	0.093	0.044	3.9	88			88	17,000	
Dibenz(a,h)anthracene	ND U ND U	ND U	0.012 J ND U	ND UJ	0.42 †*	0.09	0.42	0.2	0.42	17	
Dibenzofuran Fluoranthene	ND U 0.081	ND U 0.074	ND U 0.18	ND U 0.043	0.058 J 8.5	3,100			3,100	82,000	
Fluorene	ND U	ND U	0.0056 J	ND U	0.18	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.019 J	0.023 J	0.034 J	0.024 J	1.5 †*	0.9	1.6	0.9	1.6	170	
Naphthalene	ND U	0.0072 J	ND U	ND U	0.018 J	1.8			170	1.8	
Phenanthrene	0.031 J	0.03 J	0.12	0.032 J	2.3	-				-	
Pyrene	0.067	0.077	0.18	0.084 J	9.2	2,300			2,300	61,000	
Inorganics (mg/kg)											
Antimony	ND U	2.7	0.3 J	1.5 J	0.54 J	5			31	82	
Arsenic	5.8	5.2	14 †mr	6 J	2.3	11.3	13		13	61	
Barium	110	80	84	62 J	33	1,500			5,500	14,000	
Beryllium -	0.37	0.6	0.43	0.5	0.22	22			160	410	
Boron	2.3	5.9	3.2	5.2 J	2.5	40			16,000	41,000	
Cadmium Calcium	ND U 13,000	0.44 11,000	ND U 5,300	0.16 J 47,000 J	0.098 86,000	5.2			78	200	
Chromium	11	12	12	11	5.3	21			230	690	
Cobalt	12	6.1	4.5	8.4 J	8.6	20			4,700	12,000	
Copper	10	28	14	15 J	18	2,900			2,900	8,200	
Iron	12,000	18,000 †m	10,000	17,000 J †m	6,200	15,000	15,900				
Lead	13	120 †	18	65 J	170 †	107			400	700	
Magnesium	7,500	2,000	2,000	7,200 J	5,000	325,000				730,000	
Manganese	860 †m	270	170	450 J	670 †m	630	636		1,600	4,100	
Mercury	0.029	0.37	0.028	0.092	0.0084 J	0.89			10	0.1	
Nickel	18	15	13	19 J	18	100			1,600	4,100	
Potassium	600	820 ND U	860 ND U	700 J	300	1.2			200	1 000	
Selenium Silver	ND U ND U	ND U	ND U	0.41 J ND U	0.23 J ND U	1.3 4.4			390 390	1,000	
Sodium	820	560	490	2,200	260						
Thallium	ND U	ND U	ND U	ND U	ND U	2.6			6.3	160	
Vanadium	20	17	12	19	11	550			550	1,400	
Zinc	42	150	52	74 J	44	5,100			23,000	61,000	
TCLP Metals (mg/L)											
Antimony	ND U	ND U	ND U	ND U	ND U						0.006
Barium	0.67	0.49 J	0.3 J	0.42 J	0.37 J						2
Boron	0.055 J	0.074 J	0.076 J	0.11 J	0.067 J						2
Cadmium	ND U	ND U	ND U	ND U	ND U						0.005
Chromium	ND U	ND U	ND U	ND U	ND U						0.1
Cobalt	ND U	ND U	ND U	ND U	ND U						1
Iron	ND U ND U	ND U	ND U	ND U ND U	ND U 0.044 L						5 0.0075
Lead Manganese	ND U 0.73 L	0.03 L 1.1 L	0.05	1.9 L	0.044 L 3.3 L						0.0075
Nickel	ND U	ND U	ND U	ND U	0.011 J						0.15
Selenium	ND U	ND U	ND U	ND U	ND U						0.05
Thallium	ND U	ND U	ND U	ND U	ND U	-				-	0.002
Zinc	0.032 J	0.13 J	ND U	ND U	ND U						5
SPLP Metals (mg/L)											
Antimony	NA	NA	NA	NA	NA						0.006
Lead	NA	0.17 L	NA	NA	0.057 L	-					0.0075
Manganese	1.5 L	0.45 L	NA	1.2 L	0.13						0.15

			CONTAMINA	NTS OF CONCER	N					
SITE		ISGS #1314V3-	24 (John Deere)				Comparis	on Criteria		
BORING	1314V	3-24-B11	1314V3	-24-B12		MACs			TACO	
SAMPLE	1314V3-24-B11 (0-6)	1314V3-24-B11 (6-12)	1314V3-24-B12 (0-6)	1314V3-24-B12 (6-12)		·				
MATRIX	Soil	Soil	Soil	Soil						
DEPTH (feet)	0-6	6-12	0-6	6-12	Most	Within	Within		Construction	
pH	8.4	7.7	8	7.5	Stringent	an MSA	Chicago	Residential	Construction Worker	SCGIER
VOCs (mg/kg)		<u></u>	<u>L</u>	<u> </u>	g					
	ND 11	NB 11	ND II	ND 11	0.00	l			00	
Tetrachloroethene	ND U	ND U	ND U	ND U	0.06			11	28	
Xylenes, Total	ND U	ND U	ND U	ND U	5.6			320	5.6	
SVOCs (mg/kg)	1	1	1	1			ı			
2-Methylnaphthalene	0.023 J	ND U	0.015 J	ND U						
Acenaphthene	0.021 J	ND U	ND U	ND U	570			4,700	120,000	
Acenaphthylene	0.033 J	ND U	0.021 J	ND U						
Anthracene	0.084	ND U	0.04	ND U	12,000			23,000	610,000	1
Benzo(a)anthracene	0.31	ND U	0.091	ND U	0.9	1.8	1.1	1.8	170	-
Benzo(a)pyrene	0.31	ND U	0.13 †	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.42 J	ND U	0.2	ND U	0.9	2.1	1.5	2.1	170	-
Benzo(g,h,i)perylene	0.11 J	ND U	0.098	ND U						
Benzo(k)fluoranthene	0.22	ND U	0.072	ND U	9			9	1,700	
Bis(2-ethylhexyl) phthalate	ND U	ND U	ND U	0.091 J	46			46	4,100	
Carbazole					0.6			32	6,200	
Chrysene	0.33	ND U	0.11	ND U	88	0.42		88	17,000	
Dibenz(a,h)anthracene	0.032 J	ND U	0.024 J	ND U	0.09	0.42	0.2	0.42	17	
Dibenzofuran	ND U	ND U	ND U	ND U						
Fluoranthene	0.63	ND U	0.14	ND U	3,100			3,100	82,000	
Fluorene	0.023 J	ND U	ND U	ND U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.098 J	ND U	0.083	ND U	0.9	1.6	0.9	1.6	170	
Naphthalene	0.023 J	ND U	0.0098 J	ND U	1.8			170	1.8	
Phenanthrene	0.41	ND U	0.06	ND U						
Pyrene	0.62	ND U	0.19	ND U	2,300			2,300	61,000	
Inorganics (mg/kg)										
Antimony	2.9 J	0.68 J	15 †	0.98 J	5			31	82	
Arsenic	4.5	3.1	7.2	6.8	11.3	13		13	61	
Barium	110 J	56	56	91	1,500			5,500	14,000	
Beryllium	0.8	0.47	0.73	0.65	22			160	410	
Boron	18 J	3.5	16	3.2	40			16,000	41,000	-
Cadmium	0.28	ND U	0.31	0.064 J	5.2			78	200	
	15,000 J	15,000	6,600							
Calcium				13,000						
Chromium	10	12	26 †	17	21			230	690	
Cobalt	5.1	4.4	3.4	8.1	20			4,700	12,000	
Copper .	42 J	9.2	30	15	2,900			2,900	8,200	
Iron	24,000 J †m		40,000 †m	17,000 †m	15,000	15,900				
Lead	110 †	6.4	280 †	7.6	107			400	700	
Magnesium	4,600 J	9,400	1,800	9,100	325,000				730,000	
Manganese	360	210	4,100 †mr	600	630	636		1,600	4,100	
Mercury	0.16 J	ND U	0.091	0.024	0.89			10	0.1	
Nickel	15 J	10	7.9	19	100			1,600	4,100	
Potassium	930 J	660	390	970						
Selenium	1 J	ND U	2.1 †	0.49 J	1.3			390	1,000	
Silver	ND U	ND U	0.29	ND U	4.4			390	1,000	
Sodium	1,100 J	300	400	180						-
Thallium	1.3	0.56 J	5.1 †	1.5	2.6			6.3	160	
Vanadium	18	18	74	26	550			550	1,400	
Zinc	230 J	27	170	34	5,100			23,000	61,000	-
TCLP Metals (mg/L)										
Antimony	ND U	ND U	0.21 L	ND U						0.006
										2
Barium	0.6	0.74	0.84	0.84						
Boron	ND U	ND U	ND U	ND U						2
Cadmium	0.0034 J	ND U	0.0048 J	ND U						0.005
Chromium	ND U	ND U	ND U	ND U						0.1
Cobalt	ND U	ND U	ND U	ND U						1
Iron	ND U	ND U	ND U	ND U						5
Lead	0.015 L		1.8 L	ND U						0.0075
Manganese	3 L	. 0.68 L	2.2 L	0.2 L						0.15
Nickel	0.012 J	0.01 J	0.015 J	ND U						0.1
Selenium	ND U	ND U	ND U	ND U						0.05
Thallium	ND U	ND U	ND U	ND U					-	0.002
Zinc	0.29 J	ND U	0.39 J	0.031 J						5
SPLP Metals (mg/L)										
Antimony	NA	NA	0.056 L	NA						0.006
Lead	0.3 L		0.41 L	NA NA						0.0075
	0.58 L		0.41 L	ND U						0.0075
Manganese	0.30 L	ט טאו ן	V.21 L	ט עווו						U. 10

	•				CON	TAMINA	ANTS OF C	ONCER	N					
SITE			ISGS #1	1314V3-2	24 (John Dee	ere)					Comparis	son Criteria		
BORING		1314V	3-24-B13			1314V3	3-24-B14			MACs			TACO	
SAMPLE	1314V3-24-	B13 (0-6)	1314V3-24-B1	3 (6-12)	1314V3-24-I	314 (0-6)	1314V3-24-B	14 (6-12)						
MATRIX	Soi	il	Soil		Soil		Soil			Within				
DEPTH (feet)	0-6		6-12		0-6		6-12		Most	an	Within		Construction	
pH	7.6	6	7.2		8.2		7.7		Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (mg/kg)	Т		1	-	1		T			1	1	·		1
Tetrachloroethene	0.0034	J	ND	U	ND	U	ND	U	0.06			11	28	
Xylenes, Total	0.0025	J	ND	U	ND	U	ND	U	5.6			320	5.6	
SVOCs (mg/kg)					1		1		ī	T			r	1
2-Methylnaphthalene	ND	U	ND	U	ND	U	ND	U						
Acenaphthene	ND	U	ND	U	ND	U	ND	U	570			4,700	120,000	
Acenaphthylene	ND	U	ND	U	ND	U	ND	U						
Anthracene	0.018	J	ND	U	ND	U	ND	U	12,000			23,000	610,000	
Benzo(a)anthracene	0.067		ND ND	U	0.033		ND	U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.075		ND ND	U	0.033	J	ND	U	0.09	2.1	1.3	2.1	17	-
Benzo(b)fluoranthene	0.1	J	ND ND	U	0.043	J	ND	U	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.036	J	ND ND	U	0.025 ND	U	ND ND	U	9			9	1,700	
Bis(2-ethylhexyl) phthalate	ND	U	ND ND	U	ND	U	ND	U	46		-	46	4,100	
Carbazole	ND ND	U	ND ND	U	ND	U	ND ND	U	0.6			32	6,200	
Chrysene	0.079		ND ND	U	0.04		ND	U	88			88	17,000	
Dibenz(a,h)anthracene	ND	U	ND	U	ND	U	ND	U	0.09	0.42	0.2	0.42	17	
Dibenzofuran	ND	U	ND	U	ND	U	ND	U						
Fluoranthene	0.12		ND	U	0.061		ND	U	3,100			3,100	82,000	
Fluorene	ND	U	ND	U	ND	U	ND	U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.033	J	ND	U	ND	U	ND	U	0.9	1.6	0.9	1.6	170	
Naphthalene	ND	U	ND	U	ND	U	ND	U	1.8			170	1.8	
Phenanthrene	0.055		ND	U	0.037	J	ND	U						
Pyrene	0.12		ND	U	0.067		ND	U	2,300			2,300	61,000	
Inorganics (mg/kg)												_		
Antimony	9.5	t	0.91	J	7.5	t	0.6	J	5			31	82	
Arsenic	8.8		6.9		8.3		6.3		11.3	13		13	61	
Barium	110		95		93		96		1,500			5,500	14,000	
Beryllium	0.66		0.66		0.78		0.64		22			160	410	
Boron	7.1		2.7	J	14		2.5	J	40			16,000	41,000	
Cadmium	0.16		0.21		0.29		0.099	J	5.2		-	78	200	
Calcium	9,600		7,200		11,000		8,500							
Chromium Cobalt	13 12		16 8.7		12 6.1		18		21 20			230 4,700	690 12,000	
Copper	120		16		90		17		2,900			2,900	8,200	
Iron	30,000	†m	17,000	†m	34,000	†m	18,000	†m	15,000	15,900				
Lead	230	†	9.2	,	130	†	7.2	12.22	107			400	700	
Magnesium	2,100		5,100		1,300		6,500		325,000				730,000	
Manganese	800	†m	830	†m	380		610		630	636		1,600	4,100	
Mercury	0.13		0.026		0.19		0.024		0.89			10	0.1	
Nickel	17		21		19		22		100			1,600	4,100	
Potassium	710		770		630		940							
Selenium	1.4		0.67		1.8		0.61		1.3			390	1,000	
Silver	0.13	J	0.079	J	0.099	J	ND	U	4.4			390	1,000	
Sodium	910		200		640		340							
Thallium	2		1.8		1.6		1.5		2.6			6.3	160	
Vanadium	100		29		24		28 34		550			550	1,400	
Zinc	100		35		210		34		5,100			23,000	61,000	
TCLP Metals (mg/L)										1		1		0.000
Antimony	0.044	L	ND 0.97	U	ND 0.03	U	ND 0.06	U						0.006
Barium	0.66	U	0.87	U	0.92	U	0.96	U						2
Boron Cadmium	0.002	J	ND ND	U	ND ND	U	ND ND	U						0.005
Chromium	0.002 ND	U	ND ND	U	ND ND	U	ND ND	U						0.005
Cobalt	ND	U	ND ND	U	ND	U	ND	U						1
Iron	ND	U	ND	U	ND	U	ND	U						5
Lead	0.34	L	. ND	U	0.0086	L	ND	U						0.0075
Manganese	2.2	L	0.1		1.1	L	0.3	L						0.15
Nickel	0.025		ND	U	ND	U	ND	U						0.1
Selenium	ND	U	ND	U	ND	U	ND	U						0.05
Thallium	ND	U	ND	U	ND	U	ND	U						0.002
Zinc	0.23	J	ND	U	0.2	J	ND	U						5
l	0.23													
SPLP Metals (mg/L)	0.23												,	1
	0.012	L	NA		NA		NA							0.006
SPLP Metals (mg/L)		L	NA NA NA		NA 0.064 0.11	L	NA NA ND	U						0.006 0.0075

	1			ITAMINANTS OF C	ONOLINI						
SITE			314V3-25 (Sivyer Ste					Comparis	son Criteria		
BORING		3-25-B01		3-25-B02	1314V3-25-B03		MACs	1		TACO	1
SAMPLE		1314V3-25-B01 (6-12)									
MATRIX	Soil	Soil	Soil	Soil	Soil		Within				
DEPTH (feet)	0-6	6-12	0-6	6-12	0-8	Most	an	Within		Construction	
pH	7.5	8.2	8.5	8.1	8.1	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detected)											
SVOCs (mg/kg)											
2-Methylnaphthalene	0.2	ND U	ND U	ND U	ND U		-				
Acenaphthene	0.21	ND U	ND U	ND U	ND U	570	-		4,700	120,000	
Acenaphthylene	0.45	ND U	ND U	ND U	ND U	-	1				
Anthracene	0.63	ND U	ND U	ND U	ND U	12,000	-		23,000	610,000	
Benzo(a)anthracene	2 †mr*	ND U	ND U	ND U	0.013 J	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	3 †mr*	ND U	ND U	ND U	0.011 J	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	4.8 †mr*	ND U	ND U	ND U	0.012 J	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	1.4	ND U	ND U	ND U	ND UJ						
Benzo(k)fluoranthene	1.8	ND U	ND U	ND U	ND U	9			9	1,700	
Carbazole	0.42	ND U	ND U	ND U	ND U	0.6			32	6,200	
Chrysene	2.1	ND U	ND U	ND U	0.012 J	88			88	17,000	
Dibenz(a,h)anthracene	0.47 †mr*	ND U	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17	
Dibenzofuran	0.25	ND U	ND U	ND U	ND U						
Fluoranthene	3.8	ND U	ND U	ND U	0.025 J	3,100			3,100	82,000	
Fluorene	0.28	ND U	ND U	ND U	ND U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	1.6 †*	ND U	ND U	ND U	ND U	0.9	1.6	0.9	1.6	170	
Naphthalene	0.22	ND U	ND U	ND U	ND U	1.8			170	1.8	
Phenanthrene	0.25	ND U	ND U	ND U	0.024 J						
Pyrene	4	ND U	ND U	ND U	0.021 J	2,300			2,300	61,000	
Inorganics (mg/kg)											
Antimony	5.3 J †	ND U	ND U	ND U	ND UJ	5			31	82	
Arsenic	11	2.7	1.8	3.7	2.3	11.3	13		13	61	
Barium	190	110	180	99	120 J	1,500			5,500	14,000	
Beryllium	1.9	0.54	0.61	0.54	0.61	22			160	410	
Boron	50 †	ND U	ND U	ND U	ND U	40			16,000	41,000	
Cadmium	2.2	0.18	0.2	0.13	0.38	5.2			78	200	
Calcium	67,000	11,000	9,400	14,000	6,300						
Chromium	19	19	17	18	ND U	21			230	690	
Cobalt	7.7	8.6	4.9	9.5	5.1	20	-		4,700	12,000	
Copper	63	11	48	11	13 J	2,900			2,900	8,200	
Iron	47,000 †m	15,000	12,000	17,000 †m	12,000	15,000	15,900				
Lead	270 †	9.4	160 †	11	490 J †r	107			400	700	
Magnesium	6,400	7,500	2,600	9,300	2,500	325,000				730,000	
Manganese	840 †m	440	190	250	170	630	636		1,600	4,100	
Mercury	0.19	0.046	0.065	0.028	0.06	0.89			10	0.1	
Nickel	25	21	18	18	13	100			1,600	4,100	
Potassium	1,600	900	1,000	990	710 J						
Selenium	2.4 J †	0.52 J	ND U	0.65	0.35 J	1.3			390	1,000	
Silver	ND U	ND U	ND U	ND U	ND UJ	4.4			390	1,000	
Sodium	460	82	190	150	54 J						
Thallium	1.5 J	ND U	ND U	ND U	ND U	2.6			6.3	160	
Vanadium	28	18	15	23	13	550			550	1,400	
Zinc	850	59	93	59	110 J	5,100			23,000	61,000	
TCLP Metals (mg/L)	ī			1	1			1	1		
Antimony	ND U	ND U	ND U	ND U	ND U		-				0.006
Barium	0.57	0.79	0.63	1	0.57						2
Boron	ND U	ND U	ND U	ND U	ND U						2
Cadmium	0.0068 L	ND U	ND U	0.0026 J	ND U						0.005
Chromium	ND U	ND U	ND U	ND U	ND U						0.1
Cobalt .	ND U	0.011 J	ND U	0.026	ND U						1 -
Iron	ND U	ND U	ND U	ND U	0.35 J						5
Lead	0.016 L	ND U	0.028 L	ND U	ND U						0.0075
Manganese	1 L	4 L	0.13	2.9 L	0.25 L						0.15
Nickel	0.02 J	0.024 J	ND U	0.017 J	ND U						0.1
Selenium	ND U	ND U	ND U	0.02 J	ND U						0.05
Zinc	1.9	ND U	0.045 J	ND U	0.082 J		-				5
SPLP Metals (mg/L)	ı			Г	-	· ·		ı	ı		ı
Antimony	NA	NA	NA	NA	NA						0.006
Cadmium	ND U	NA	NA	NA	NA						0.005
Lead	0.089 L	NA .	0.25 L	NA	NA .						0.0075
Manganese	0.21 L	0.46 L	NA	0.29 L	0.16 L						0.15

	•		CONTAMINA	NTS OF CONCERN	N					
SITE		ISGS #1314V3-25	Sivyer Steel Corp.)				Comparis	son Criteria	1	
BORING	1314	V3-25-B04	1314V3	-25-B05		MACs			TACO	
SAMPLE	1314V3-25-B04 (0-6	6) 1314V3-25-B04 (6-12)	1314V3-25-B05 (0-6)	1314V3-25-B05 (6-12)						
MATRIX	Soil	Soil	Soil	Soil						
DEPTH (feet)	0-6	6-12	0-6	6-12	Most	Within an	Within		Construction	
pH	8.1	8.1	7	7	Stringent	MSA	Chicago	Residential		SCGIER
VOCs (None Detected)										
SVOCs (mg/kg)							1	ı		1
2-Methylnaphthalene	ND U	ND U	0.037 J	ND U						
Acenaphthene	ND U	ND U	0.09	ND U	570			4,700	120,000	
Acenaphthylene	ND U	ND U	0.016 J	ND U						
Anthracene	0.0067 J	ND U	0.14	ND U	12,000			23,000	610,000	
Benzo(a)anthracene	0.016 J	0.015 J	0.41	0.0097 J	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.016 J	0.012 J	0.4 †	0.014 J	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.018 J ND U	0.015 J ND U	0.58 0.25	0.017 J ND U	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND U	ND U	0.25	ND U	9			9	1,700	
Carbazole	ND U	ND U	0.27 0.17 J	ND U	0.6			32	6,200	
	0.016 J	0.014 J	0.46	ND U	88			88	17,000	
Chrysene	ND U	0.014 3 ND U	0.40	ND U	0.09	0.42	0.2	0.42	17,000	
Dibenz(a,h)anthracene Dibenzofuran	ND U	ND U	0.08 0.053 J	ND U						
Fluoranthene	0.033 J	0.03 J	0.86	0.017 J	3,100			3,100	82,000	
Fluoranthene	0.033 J ND U	0.03 J ND U	0.86	0.017 J ND U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.011 J	ND U	0.074	ND U	0.9	1.6	0.9	1.6	170	
Naphthalene	ND U	ND U	0.025 J	ND U	1.8			170	1.8	
Phenanthrene	0.031 J	0.026 J	0.69	0.011 J						
Pyrene	0.029 J	0.020 J	0.72	0.011 J	2,300			2,300	61,000	
	0.020	0.020	0.72	0.010	2,000	Į.		2,000	01,000	I.
Inorganics (mg/kg)					_					
Antimony	1.1	ND U	4.1 J	ND U	5			31	82	
Arsenic	5.5	6.2	9.6	4.8	11.3	13		13	61	
Barium	88	87	120	71	1,500			5,500	14,000	
Beryllium	0.7	0.49	1.5	0.46	22			160	410	
Boron	ND U	ND U	14 J	ND U	40			16,000	41,000	
Cadmium	0.49	0.29	1.2	0.19	5.2			78	200	
Chromium	5,300 ND U	7,800	5,100	3,100				220		
Coholt	ND U 7.1	15 11	26 †	16	21 20			230 4,700	690	
Copper			9	8.1					12,000	
Copper Iron	15 18,000 †ı	13 m 14,000	100 61,000 †m	11 14,000	2,900 15,000	15,900		2,900	8,200	
Lead	63	11	710 †rc	10	107			400	700	
Magnesium	1,600	4,700	960	2,000	325,000				730,000	
Manganese	340	570	680 †m		630	636		1,600	4,100	
Mercury	0.14	0.026	0.05	0.021	0.89			10	0.1	
Nickel	17	25	30	19	100			1,600	4,100	
Potassium	530	750	610	730						
Selenium	0.77	0.59 J	3.5 †	0.41 J	1.3			390	1,000	
Silver	ND U	ND U	ND U	ND U	4.4			390	1,000	
Sodium	85	87	84 J	39 J						
Thallium	ND U	ND U	ND U	ND U	2.6			6.3	160	
Vanadium	20	24	33	21	550			550	1,400	
Zinc	120	45	380	49	5,100			23,000	61,000	
TCLP Metals (mg/L)	•		•	· · · · · · · · · · · · · · · · · · ·						
· · · ·	ND II	ND U	0.013 L	ND U			I	I		0.006
Antimony	ND U									0.006
Barium	0.47 J	0.62	0.25 J ND U	0.19 J ND U						2
Boron	ND U	0.0022 J								0.005
Cadmium	ND U ND U	0.0022 J ND U	0.0023 J ND U	ND U ND U						0.005
Cohalt										0.1
Cobalt Iron	ND U 0.34 J	ND U	ND U 0.43	ND U 0.28 J						5
Lead	ND U	ND U	0.43 0.12 L	0.28 J ND U						0.0075
	0.1	0.34 L	0.12 L	0.011 J						0.0075
Manganese	ND U	0.34 L	0.4 L ND U	0.011 J ND U						0.15
Nickel	U UNI		ND U	0.021 J						0.1
Nickel Selenium	ND II		• INI / LI	U.U∠I J						
Selenium	ND U	ND U		NID II						
Selenium Zinc	ND U 0.085 J	0.034 J	0.3 J	ND U						5
Selenium Zinc SPLP Metals (mg/L)	0.085 J	0.034 J	0.3 J				1	I	· 	1
Selenium Zinc SPLP Metals (mg/L) Antimony	0.085 J	0.034 J	0.3 J 0.0083 L	NA						0.006
Selenium Zinc SPLP Metals (mg/L) Antimony Cadmium	0.085 J NA NA	0.034 J NA NA	0.3 J 0.0083 L NA	NA NA						0.006 0.005
Selenium Zinc SPLP Metals (mg/L) Antimony	0.085 J	0.034 J	0.3 J 0.0083 L	NA						0.006

	r			CONTAMINA	NTS OF CONCER	V					
SITE			ISGS #1314V3-25 (Sivyer Steel Corp.)				Comparis	son Criteria		
BORING	13	14V3	3-25-B06		-25-B07		MACs			TACO	
SAMPLE			1314V3-25-B06 (6-12)								
MATRIX	Soil	(0 0)	Soil	Soil	Soil						
DEPTH (feet)	0-6		6-12	0-6	6-12		Within				
pH	7.4		8.3	7.4	8	Most	an	Within	Danisla maint	Construction	SCGIER
•	7.4		0.3	7.4	0	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detected)											
SVOCs (mg/kg)											
2-Methylnaphthalene	0.1		ND U	ND U	ND U						
Acenaphthene	0.01 J		ND U	ND U	ND U	570			4,700	120,000	
Acenaphthylene	0.017 J		ND U	ND U	ND U	-					
Anthracene	0.22		ND U	ND U	ND U	12,000			23,000	610,000	
Benzo(a)anthracene		†mr*	ND U	0.022 J	ND U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	2.1	†*	ND U	0.027 J	ND U	0.09	2.1	1.3	2.1	17	
				0.027 J			2.1			170	
Benzo(b)fluoranthene		†mr*				0.9		1.5	2.1		
Benzo(g,h,i)perylene	0.97		ND U	ND U	ND U						
Benzo(k)fluoranthene	0.99		ND U	0.013 J	ND U	9			9	1,700	
Carbazole	ND U		ND U	ND U	ND U	0.6			32	6,200	
Chrysene	2.8		ND U	0.02 J	ND U	88			88	17,000	
Dibenz(a,h)anthracene	0.4	†*	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17	
Dibenzofuran	0.076 J		ND U	ND U	ND U						
Fluoranthene	5.6		ND U	0.026 J	ND U	3,100			3,100	82,000	
Fluorene	0.012 J		ND U	ND U	ND U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	1.3	†*	ND U	0.014 J	ND U	0.9	1.6	0.9	1.6	170	-
Naphthalene	0.062		ND U	ND U	ND U	1.8			170	1.8	
Phenanthrene	1.1		ND U	0.0075 J	ND U						
Pyrene	4.9		ND U	0.026 J	ND U	2,300			2,300	61,000	
	7.0		110 0	3.320 0	110 0	_,000	ı	ı	_,000	01,000	
Inorganics (mg/kg)			T -				l	l	1	ı	
Antimony	18		ND U	ND U	ND U	5			31	82	-
Arsenic	19	†mr	2.3	4.2	3.6	11.3	13		13	61	
Barium	130		100	71	110	1,500			5,500	14,000	
Beryllium	1.9		0.54	0.47	0.47	22			160	410	
Boron	61	t	ND U	ND U	ND U	40			16,000	41,000	
Cadmium	3.7		0.32	0.18	0.12	5.2			78	200	
Calcium	15,000		9,100	4,100	8,000						
Chromium	19		19	ND U	ND U	21			230	690	
Cobalt	9.6		12	7	7.5	20			4,700	12,000	-
Copper	100		12	10	9.6	2,900			2,900	8,200	
Iron	61,000	†m	16,000 †m	13,000	14,000	15,000	15,900				
Lead	1,900	†rc	12	13	9.3	107			400	700	
	1,800	Įιυ	5,900	2,300	5,000	325,000				730,000	
Magnesium											
Manganese	870	†m	610	400	250	630	636		1,600	4,100	-
Mercury	0.25		0.044	0.055	0.027	0.89			10	0.1	
Nickel	26		27	17	14	100			1,600	4,100	
Potassium	800		1,100	680	690	-					
Selenium	4.3	t	0.46 J	0.58 J	0.43 J	1.3			390	1,000	
Silver	0.35 J		ND U	ND U	ND U	4.4			390	1,000	
Sodium	280 J		390	53 J	72						
Thallium	ND U		ND U	ND U	ND U	2.6			6.3	160	
Vanadium	34		20	18	18	550			550	1,400	
Zinc	980		66	45	43	5,100			23,000	61,000	
TCLP Metals (mg/L)											
Antimony	0.066	- 1	ND U	ND U	ND U						0.006
		L									
Barium	0.39 J		0.68	0.63	0.42 J						2
Boron	ND U		ND U	ND U	ND U						2
Cadmium	0.0066	L	ND U	ND U	ND U	-					0.005
Chromium	ND U		ND U	ND U	ND U	-					0.1
Cobalt	ND U		ND U	ND U	ND U						1
Iron	0.2 J		ND U	0.24 J	ND U	-					5
Lead	0.96	L	ND U	ND U	ND U	-					0.0075
Manganese	1.1	L	0.15	0.17 L	0.67 L						0.15
Nickel	ND U		ND U	ND U	ND U						0.1
Selenium	ND U		ND U	ND U	ND U	1					0.05
Zinc	0.83		0.023 J	0.033 J	ND U	1					5
SPLP Metals (mg/L)											
 	0.040	- 1	NA	NA	NA						0.006
Antimony	0.018	L									
Cadmium	ND U		NA NA	NA NA	NA NA						0.005
Lead 	0.22	L	NA .	NA .	NA						0.0075
Manganese	0.066		0.4 L	0.16 L	0.15						0.15

			CONT	- IVIIIVA	NIS OF CC	MOLKIN				
SITE	ISGS #1314V	3-26 (C	ommercial Bu	ıilding)			Compari	son Criteria		
BORING	1314V3-26-	B01	1314V3-26	5-B02		MACs			TACO	
SAMPLE	1314V3-26-B0	1 (0-8)	1314V3-26-B	02 (0-8)						
MATRIX	Soil		Soil			14 224 -				
DEPTH (feet)	0-8		0-8		Most	Within an	Within		Construction	
pH	8.2		8.2		Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detected)										
SVOCs (mg/kg)	0.040		ND							
2-Methylnaphthalene		J	ND	U	12.000					
Anthracene		J	ND	U	12,000			23,000	610,000	
Benzo(a)anthracene		J	ND	U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.05		ND	U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene Benzo(g,h,i)perylene	0.091	J	ND ND	U	0.9	2.1	1.5	2.1	170 	
Benzo(k)fluoranthene Chrysene	0.029 0.045	J	ND ND	U	9 88			9 88	1,700 17,000	
Dibenz(a,h)anthracene		J		U		0.42		0.42	17,000	
Fluoranthene	0.012 0.071	J	ND ND	U	0.09 3,100		0.2	3,100	82,000	
Indeno(1,2,3-cd)pyrene		J	ND ND	U	0.9	1.6	0.9	1.6	170	
Naphthalene		J	ND ND	U	1.8			170	1.8	
Phenanthrene	0.0078	J	ND ND	U						
Pyrene	0.043		ND ND	U	2,300			2,300	61,000	
Inorganics (mg/kg)	5.550		110	-	_,000	I.	1	_,000	,	I
	0.42	,	0.05		F			24	00	
Antimony		J	0.25	J	5			31	82 61	
Arsenic	2.7 110		2.5 79		11.3	13 		13 5 500	14,000	
Barium	0.56		0.49		1,500 22			5,500 160	14,000 410	
Beryllium Boron	7.2		2.8	J	40			16,000	41,000	
Cadmium	0.31		0.22	.	5.2			78	200	
Calcium	7,700		6,000							
Chromium	11		13		21			230	690	
Cobalt	4.4		5.3		20			4,700	12,000	
Copper	19		9.3		2,900			2,900	8,200	
Iron	14,000		14,000		15,000	15,900				
Lead	21		7		107			400	700	
Magnesium	2,100		3,200		325,000				730,000	
Manganese	290		360		630	636		1,600	4,100	
Mercury	0.058		0.013	J	0.89			10	0.1	
Nickel	12		12		100	-		1,600	4,100	
Potassium	1,100		880		-	-				
Selenium		J	ND	U	1.3			390	1,000	
Sodium	230		150							
Thallium	0.7		0.8		2.6			6.3	160	
Vanadium	14		17		550			550	1400	
Zinc	58		32		5,100			23,000	61,000	
TCLP Metals (mg/L)										
Barium	0.51		0.45	J						2
Boron		J	0.084	J						2
Cadmium		J	ND	U						0.005
Iron		U	0.26	J						5
Manganese	1.1	L	0.031							0.15
Selenium		U	0.02	J						0.05
SPLP Metals (mg/L)										
Manganese	0.05		NA							0.15
manyanese	0.03		INA						<u> </u>	U.10

	ı		OOMIAMIN	ANTS OF CONCE						1
SITE		ISGS #1314V3-32 (Co	ommercial Buildings	s)			Compari	son Criteria	1	
BORING	1314V3	3-32-B01	1314V	3-32-B02		MACs			TACO	
SAMPLE	1314V3-32-B01 (0-6)	1314V3-32-B01 (6-12)	1314V3-32-B02 (0-6	1314V3-32-B02 (6-12)						
MATRIX	Soil	Soil	Soil	Soil		Martin Co.				
DEPTH (feet)	0-6	6-12	0-6	6-12	Most	Within an	Within		Construction	
pН	8.9	7.9	7.7	7.6	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detected	1)									
SVOCs (mg/kg)	•									
, , , ,	ND U	ND U	ND U	ND U	12,000			22,000	640,000	1
Anthracene					12,000	1.0		23,000	610,000	
Benzo(a)anthracene	ND U ND U				0.9	1.8	1.1	1.8	170 17	
Benzo(a)pyrene					0.09	2.1	1.3	2.1		
Benzo(b)fluoranthene	ND U ND U	ND U	ND U	ND U	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene		_	_							
Benzo(k)fluoranthene					9			9	1,700	
Bis(2-ethylhexyl) phthalate		_			46			46	4,100	
Chrysene	ND U	ND U	ND U	ND U	88			88	17,000	
Dibenz(a,h)anthracene	ND U	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17	
Fluoranthene	0.0087 J	ND U	ND U	ND U	3,100			3,100	82,000	
Fluorene	ND U	ND U	ND U	ND U	560	1.6		3,100	82,000	
Indeno(1,2,3-cd)pyrene	ND U	ND U	ND U	ND U	0.9	1.6	0.9	1.6	170	
Phenanthrene Pyropo	ND U 0.0093 J	ND U	ND U	ND U	2,300			2,300	61.000	
Pyrene	0.0093 J	ND U	ND U	ט טא	2,300			2,300	61,000	
Inorganics (mg/kg)	1						1	ı	1	1
Antimony	0.35 J	0.36 J	0.37 J	0.29 J	5			31	82	
Arsenic	4.2	6.1	5.2	4.7	11.3	13		13	61	
Barium	56	66	89	61	1,500			5,500	14,000	
Beryllium	0.56	0.57	0.63	0.49	22			160	410	
Boron	3.7	3.4	3.9	3.6	40			16,000	41,000	
Cadmium	0.041 J	ND U	ND U	ND U	5.2			78	200	
Calcium	4,500	13,000	5,200	20,000						
Chromium	12	15	16	13	21			230	690	
Cobalt	5.8	6.4	6.3	4.9	20			4,700	12,000	
Copper	11	13	13	10	2,900			2,900	8,200	
Iron	13,000	15,000	16,000 †m	13,000	15,000	15,900				
Lead	12	7.1	11	5.7	107			400	700	
Magnesium	2,300	9,000	2,900	13,000	325,000				730,000	
Manganese	330	360	390	330	630	636		1,600	4,100	
Mercury	0.029	0.02	0.016 J	0.015 J	0.89			10	0.1	
Nickel	12	14	15	12	100			1,600	4,100	
Potassium	900	800	970	810						
Selenium	0.52	0.47 J	0.63	0.31 J	1.3			390	1,000	
Sodium	180	440	730	820						
Thallium	0.82	1.1	1.1	0.93	2.6			6.3	160	
Vanadium	22	25	25	22	550			550	1400	
Zinc	64	32	39	28	5,100			23,000	61,000	
TCLP Metals (mg/L)										
Barium	0.66	0.79	0.52	0.82						2
Boron	ND U	0.072 J	0.08 J	0.081 J						2
Cadmium	ND U	ND U	ND U	ND U						0.005
Chromium	ND U	ND U	ND U	ND U						0.1
Iron	ND U	ND U	ND U	ND U						5
Lead	ND U	ND U	ND U	ND U						0.0075
Manganese	0.6 L	0.17 L	0.19 L	. 0.22 L						0.15
Nickel	0.013 J	ND U	ND U	ND U						0.1
Zinc	0.033 J	ND U	ND U	ND U						5
SPLP Metals (mg/L)										
Manganese	0.66 L	0.67 L	0.52 L	. 0.59 J L				I		0.15
iviai iyai iese	0.00 L	0.07 L	0.02 L	U.J9 J L						0.10

	ı		0011171111	NANTS OF CONCE	T						
SITE		ISGS #1314V3-32 (Commercial Buildin	gs)	Comparison Criteria						
BORING	1314	V3-32-B03	1314	V3-32-B04		MACs			TACO		
SAMPLE	1314V3-32-B03 (0-	-6) 1314V3-32-B03 (6-1	2) 1314V3-32-B04 (0	-6) 1314V3-32-B04 (6-12)						
MATRIX	Soil	Soil	Soil	Soil		\A/i4bim					
DEPTH (feet)	0-6	6-12	0-6	6-12	Most	Within an	Within		Construction		
рН	8.8	8.4	8.8	8.1	Stringent	MSA	Chicago	Residential	Worker	SCGIER	
VOCs (None Detected	1)										
SVOCs (mg/kg)	•										
Anthracene	ND U	ND U	ND U	ND U	12,000			23,000	610,000		
Benzo(a)anthracene	0.012 J	ND U	ND U	ND U	0.9	1.8	1.1	1.8	170		
Benzo(a)pyrene	0.012 J	ND U	ND U	ND U	0.09	2.1	1.3	2.1	170		
Benzo(b)fluoranthene	0.015 J	ND U	0.0087 J	ND U	0.09	2.1	1.5	2.1	170		
Benzo(g,h,i)perylene	0.018 J	ND U	ND U	ND U							
Benzo(k)fluoranthene	0.010 J	ND U	ND U	ND U	9			9	1,700		
Bis(2-ethylhexyl) phthalate	ND U	ND U	ND U	ND U	46			46	4,100		
Chrysene	0.018 J	ND U	ND U	ND U	88			88	17,000		
Dibenz(a,h)anthracene	ND U	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17		
Fluoranthene	0.023 J	ND U	ND U	ND U	3,100			3,100	82,000		
Fluorene	0.023 J ND U	ND U	ND U	ND U	560			3,100	82,000		
Indeno(1,2,3-cd)pyrene	0.012 J	ND U	ND U	ND U	0.9	1.6	0.9	1.6	170		
Phenanthrene	ND U	ND U	ND U	ND U							
Pyrene	0.023 J	ND U	ND U	ND U	2,300			2,300	61,000		
Inorganics (mg/kg)				1 11 2	_,,,,,,		1	_,-,	51,000	1	
` ` ` ` ` ` ` ` ` ` ` `				1				0.1			
Antimony	0.32 J	0.34 J	0.38 J	0.35 J	5			31	82		
Arsenic	2.9	4.2	6.1	6.4	11.3	13		13	61		
Barium	39	45	78	87	1,500			5,500	14,000		
Beryllium	0.38	0.4	0.59	0.71	22			160	410		
Boron	2.2 J ND U	2.5 0.09 J	2.6 ND U	4.2	40			16,000	41,000		
Cadmium				ND U	5.2			78	200		
Calcium	9,500 8.7	14,000 9.4	16,000 16	12,000 19	21			230	690		
Chromium Cobalt	3.8	5.5	6.2	7.8	20			4,700	12,000		
Copper	7.5	8.9	13	14	2,900			2,900	8,200		
Iron	8,600	11,000		m 19,000 †m		15,900					
Lead	7.7	5.2	9.4	8.4	107			400	700		
Magnesium	3,800	8,800	2,200	8,700	325,000				730,000		
Manganese	230	360	470	470	630	636		1,600	4,100		
Mercury	0.026	0.019	0.11	0.021	0.89			10	0.1		
Nickel	9.1	13	17	20	100			1,600	4,100		
Potassium	480	530	970	1,100							
Selenium	0.3 J	0.3 J	0.49 J	0.54 J	1.3			390	1,000		
Sodium	390	300	900	510							
Thallium	0.65	0.8	1.2	1.5	2.6			6.3	160		
Vanadium	15	19	26	32	550			550	1400		
Zinc	23	23	35	40	5,100			23,000	61,000		
TCLP Metals (mg/L)	•	•	-	•							
Barium	0.73	0.55	0.79	0.7						2	
Boron	0.73 0.054 J	0.55 0.06 J	0.79 ND U	0.7 0.06 J						2	
Cadmium	0.034 J ND U	ND U	ND U	ND U						0.005	
Chromium	ND U	ND U	ND U	ND U						0.003	
Iron	ND U	ND U	ND U	ND U						5	
Lead	ND U	ND U	ND U	ND U						0.0075	
Manganese	1.4	L 0.27	L 0.2	L 0.15						0.0073	
Nickel	ND U	ND U	ND U	ND U						0.13	
Zinc	0.053 J	ND U	ND U	ND U						5	
SPLP Metals (mg/L)	0.000 0	145 0	140 0	1 140 0						<u> </u>	
	0.04				1	l				0.45	
Manganese	0.31	L 0.37	L 0.5	L NA						0.15	

			CONTAINING	ANTS OF CONCE							
SITE		ISGS #1314V3-32 (Co	mmercial Buildings)			Compari	son Criteria			
BORING	1314V3-32-B05	1314V3-32-B06	1314V3-32-B07	1314V3-32-B08		MACs	1		TACO	1	
SAMPLE	1314V3-32-B05 (0-3)	1314V3-32-B06 (0-3)	1314V3-32-B07 (0-3)	1314V3-32-B08 (0-3)							
MATRIX	Soil	Soil	Soil	Soil		Within					
DEPTH (feet)	0-3	0-3	0-3	0-3	Most	an	Within		Construction		
рН	8.8	8.8	8.5	8.9	Stringent	MSA	Chicago	Residential	Worker	SCGIER	
VOCs (None Detected)										
SVOCs (mg/kg)											
Anthracene	0.013 J	0.046	0.0089 J	ND U	12,000			23,000	610,000		
Benzo(a)anthracene	0.096	0.2	0.046	0.028 J	0.9	1.8	1.1	1.8	170		
Benzo(a)pyrene	0.099 †	0.2 †	0.046	0.032 J	0.09	2.1	1.3	2.1	17		
Benzo(b)fluoranthene	0.14	0.3	0.063	0.047	0.9	2.1	1.5	2.1	170		
Benzo(g,h,i)perylene	0.064	0.12	ND U	ND U							
Benzo(k)fluoranthene	0.033 J	0.11	0.028 J	0.018 J	9			9	1,700		
Bis(2-ethylhexyl) phthalate	ND U	ND U	0.49	ND U	46			46	4,100		
Chrysene	0.1	0.25	0.041 J	0.028 J	88	-		88	17,000		
Dibenz(a,h)anthracene	ND U	0.038 J	ND U	ND U	0.09	0.42	0.2	0.42	17		
Fluoranthene	0.16	0.51	0.086	0.052	3,100			3,100	82,000		
Fluorene	ND U	0.01 J	ND U	ND U	560			3,100	82,000		
Indeno(1,2,3-cd)pyrene	0.052	0.11	0.021 J	0.017 J	0.9	1.6	0.9	1.6	170		
Phenanthrene	0.062	0.23	0.04 J	0.035 J		-					
Pyrene	0.16	0.4	0.072	0.045	2,300			2,300	61,000		
Inorganics (mg/kg)											
Antimony	0.5 J	0.51 J	0.41 J	0.29 J	5			31	82		
Arsenic	3.8	3.9	4.3	3.1	11.3	13		13	61		
Barium	67	99	86	83	1,500			5,500	14,000		
Beryllium	0.57	0.62	0.56	0.54	22			160	410		
Boron	4.9	6.2	3 J	3.3	40	-		16,000	41,000		
Cadmium	0.12	0.22	0.24	0.18	5.2	-		78	200		
Calcium	42,000	11,000	3,700	7,400		-					
Chromium	13	53 †	15	13	21	-		230	690		
Cobalt	4.2	6.9	5.7	4.3	20			4,700	12,000		
Copper	19	14	16	11	2,900			2,900	8,200		
Iron	13,000	15,000	14,000	12,000	15,000	15,900					
Lead	29	190 †	32	18	107			400	700		
Magnesium	14,000	2,700	1,800	2,100	325,000				730,000		
Manganese	320	400	410	250	630	636		1,600	4,100		
Mercury	0.19	0.27 J	0.067	2 †	0.89	-		10	0.1		
Nickel	11	13	12	11	100			1,600	4,100		
Potassium	1,200	1,000	910	830							
Selenium	0.27 J	0.63	ND U	ND U	1.3			390	1,000		
Sodium	530	840	430	520		1					
Thallium	0.98	1.2	0.9	0.67	2.6	1		6.3	160		
Vanadium	19	20	22	19	550	-		550	1400		
Zinc	64	76	46	42	5,100			23,000	61,000		
TCLP Metals (mg/L)											
Barium	0.67	0.73	0.28 J	0.43 J						2	
Boron	0.062 J	0.081 J	0.078 J	0.071 J		-				2	
Cadmium	ND U	0.0025 J	ND U	ND U						0.005	
Chromium	ND U	ND U	ND U	ND U						0.1	
Iron	ND U	ND U	0.39 J	ND U						5	
Lead	ND U	ND U	ND U	ND U						0.0075	
Manganese	0.67 L	1 L	ND U	0.14						0.15	
Nickel	ND U	ND U	ND U	ND U						0.1	
Zinc	0.036 J	0.065 J	ND U	ND U						5	
SPLP Metals (mg/L)	· · · · · · · · · · · · · · · · · · ·		·				•	-			
` • ′	ND II	0.52	NA	NA						0.45	
Manganese	ND U	0.53 L	NA	NA						0.15	

	•		CONTAMINA	ANTS OF CONCER	N					
SITE		ISGS #1314V3-		Comparison Criteria						
BORING	1314V	3-33-B01		3-33-B02		MACs			TACO	
SAMPLE				1314V3-33-B02 (5-9.4)					1	
MATRIX	Soil	Soil	Soil	Soil						
						Within				
DEPTH (feet)	0-6	6-12	0-5	5-9.4	Most	an	Within		Construction	
pH	7.8	8.4	8.6	8.6	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detected)	l .									
SVOCs (mg/kg)										
2-Methylnaphthalene	ND U	ND U	ND U	ND U						
Acenaphthene	0.013 J	ND U	0.012 J	0.0066 J	570			4,700	120,000	
									,	
Acenaphthylene	ND U	ND U	ND U	ND U						
Anthracene	0.032 J	ND U	0.041	0.021 J	12,000			23,000	610,000	
Benzo(a)anthracene	0.13	ND U	0.15	0.072	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.16 †	ND U	0.17 †	0.084	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.23	ND U	0.26	0.12	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	0.051	ND U	0.056	0.024 J						
Benzo(k)fluoranthene	0.069	ND U	0.098	0.049	9			9	1,700	
Bis(2-ethylhexyl) phthalate	ND U	ND U	ND U	ND U	46	-		46	4,100	
Carbazole	ND U	ND U	ND U	ND U	0.6			32	6,200	
Chrysene	0.12	ND U	0.14	0.07	88	-		88	17,000	
Dibenz(a,h)anthracene	0.023 J	ND U	0.021 J	ND U	0.09	0.42	0.2	0.42	17	
Dibenzofuran	ND U	ND U	ND U	ND U		-				
Fluoranthene	0.27	ND U	0.32 J	0.14	3,100			3,100	82,000	
Fluorene	0.27 0.012 J	ND U	0.32 J 0.014 J	0.14 0.0074 J	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.056	ND U	0.061	0.032 J	0.9	1.6	0.9	1.6	170	
Naphthalene	ND U	ND U	0.0065 J	ND U	1.8			170	1.8	
Phenanthrene	0.16	ND U	0.19	0.082						
Pyrene	0.28	ND U	0.31 J	0.13	2,300			2,300	61,000	
Inorganics (mg/kg)										
Antimony	0.25 J	ND U	ND UJ	0.26 J	5			31	82	
Arsenic	4.6	5.6	2	2.7	11.3	13		13	61	
Barium	70	64	26 J	26	1,500			5,500	14,000	
Beryllium	0.52	0.5	0.2 J	0.24	22			160	410	
Boron	1.5 J	1.7 J	1.1 J	1.3 J	40	-		16,000	41,000	
Cadmium	0.15	0.17	0.14	0.057 J	5.2	-		78	200	
Calcium	5,700	13,000	7,800 J	10,000						
Chromium	13	14	6.3	5.8	21	-		230	690	
Cobalt	7.4	8.2	4.1	4.3	20	-		4,700	12,000	
Copper	12	13	6.4	6.3	2,900	-		2,900	8,200	
Iron	14,000	14,000	7,000	11,000	15,000	15,900				
Lead	15	9.4	20 J	6.8	107			400	700	
Magnesium	2,000	8,100	2,900	5,700	325,000				730,000	
Manganese	330	330	210 J	270	630	636		1,600	4,100	
Mercury	0.025	0.033	0.011 J	0.012 J	0.89			10	0.1	
Nickel	16	22	9.9 J	9.8	100	-		1,600	4,100	
Potassium	680	650	260	260		-				
Selenium	0.29 J	ND U	0.3 J	0.33 J	1.3			390	1,000	
Sodium	460	170	85	140						
Thallium	ND U	ND U	ND U	ND U	2.6	-		6.3	160	
	19	22	10	10	550				1400	
Vanadium Zinc	19 98	43	25	34	5,100			550 23,000	61,000	
	30	43	20	34	J, 10U			∠3,000	01,000	
TCLP Metals (mg/L)	T	1	1				1	1	ı	
Barium	0.59	0.65	0.39 J	0.51		-				2
Boron	0.065 J	0.068 J	ND U	0.055 J						2
Cadmium	ND U	ND U	0.0026 J	0.0023 J						0.005
Cobalt	ND U	ND U	ND U	ND U		-				1
Lead	ND U	ND U	ND U	ND U	-					0.0075
Manganese	2.2 L	0.26 L	1.1 L	1.7 L	1					0.15
Nickel	ND U	ND U	0.014 J	0.021 J						0.1
Zinc	.,,,					-				5
	0.13 .I	ND II	0.072	0.049 .1						
	0.13 J	ND U	0.072 J	0.049 J						
SPLP Metals (mg/L)	1	T					1	1	<u>'</u>	1
SPLP Metals (mg/L) Cadmium	NA	NA	NA	NA						0.005
SPLP Metals (mg/L)	1	T					1	1	<u>'</u>	1

			NTS OF CONCER							
SITE		ISGS #1314V3-	33 (Parking Lot)				Compari	son Criteria	l	
BORING	1314\	/3-33-B03	1314V3	3-33-B04		MACs	1		TACO	T
SAMPLE	1314V3-33-B03 (0-6	1314V3-33-B03 (6-12)	1314V3-33-B04 (0-6)	1314V3-33-B04 (6-12)						
MATRIX	Soil	Soil	Soil	Soil						
DEPTH (feet)	0-6	6-12	0-6	6-12		Within				
pH	8.1	7.7	8.8	8.4	Most	an	Within		Construction	
PID (meter units		0	0-2.9	**	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detected)									
SVOCs (mg/kg)										
2-Methylnaphthalene	0.5	ND U	0.0097 J	ND U						
Acenaphthene	2.5	ND U	0.014 J	ND U	570			4,700	120,000	
Acenaphthylene	0.03 J	ND U	0.0098 J	ND U						
Anthracene	6.4	0.011 J	0.033 J	ND U	12,000			23,000	610,000	
Benzo(a)anthracene	14 †mr		0.033 3	ND U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	13 †mr		0.2 †	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	18 †mr		0.36	ND U	0.09	2.1	1.5	2.1	170	
	6.5	ND U	0.12	ND U						
Benzo(g,h,i)perylene Benzo(k)fluoranthene	6.8	0.016 J	0.12	ND U	9			9	1,700	
` '	0.13 J	ND U	0.12 J	ND U	46			46	4,100	
Bis(2-ethylhexyl) phthalate Carbazole	3.8	t ND U	0.12 J ND U	ND U	0.6			32	6,200	
	15		0.22		88			88	17,000	
Chrysene Dibenz(a,h)anthracene						0.42			i e	
Dibenz(a,h)anthracene Dibenzofuran	2.1 †mr	* ND U ND U	ND U ND U	ND U	0.09	0.42	0.2	0.42	17 	
Fluoranthene	34	0.052	0.36	ND U	3,100			3,100	82,000	
Fluorene	2.9	ND U	0.011 J	ND U	560	1.6		3,100	82,000	
Indeno(1,2,3-cd)pyrene	6.8 †mr		0.11	ND U	0.9	1.6	0.9	1.6	170	
Naphthalene	1	ND U	0.011 J	ND U	1.8			170	1.8	
Phenanthrene	26	0.043	0.18	ND U	2 200					
Pyrene	28	0.051	0.62	ND U	2,300			2,300	61,000	
Inorganics (mg/kg)	1	1		Г	ı	ı	1	Г	Г	1
Antimony	ND U	ND U	0.41 J	0.37 J	5			31	82	
Arsenic	5.4	5.5	6.8	6.3	11.3	13		13	61	
Barium	70	70	140	64	1,500			5,500	14,000	
Beryllium	0.5	0.44	0.5	0.45	22			160	410	
Boron	1.5 J	1.6 J	2.5 J	1.7 J	40			16,000	41,000	
Cadmium	0.22	0.18	2.9	0.16	5.2			78	200	
Calcium	5,800	13,000	16,000	19,000						
Chromium	13	12	13	12	21			230	690	
Cobalt	9.6	9.2	7.5	7	20			4,700	12,000	
Copper	11	12	18	11	2,900			2,900	8,200	
Iron	13,000	13,000	14,000	13,000	15,000	15,900				
Lead	30	10	890 †rc	10	107			400	700	
Magnesium	2,800	8,400	7,600	12,000	325,000				730,000	
Manganese	470	490	380	370	630	636		1,600	4,100	
Mercury	0.046	0.026	0.11	0.026	0.89			10	0.1	
Nickel	20	20	17	19	100			1,600	4,100	
Potassium	620	540	640	610						
Selenium	0.44 J	0.49 J	0.42 J	ND U	1.3			390	1,000	
Sodium	350	250	630	260						
Thallium	ND U	ND U	ND U	ND U	2.6			6.3	160	
Vanadium	20	20	19	20	550			550	1400	
Zinc	50	39	420	37	5,100			23,000	61,000	
TCLP Metals (mg/L)										
Barium	0.45 J	0.64	0.87	0.62						2
Boron	0.073 J	0.067 J	0.071 J	0.054 J						2
Cadmium	ND U	0.002 J	0.038 L	0.0027 J						0.005
Cobalt	ND U	ND U	ND U	0.019 J						1
Lead	ND U	ND U	1.7 L	ND U						0.0075
Manganese	0.11	0.13	0.48 L	2.9 L						0.15
Nickel	ND U	ND U	0.017 J	0.046						0.1
Zinc	ND U	ND U	3.1	ND U						5
SPLP Metals (mg/L)										_
Cadmium	NA	NA	0.0039 J	NA						0.005
Lead	NA NA	NA NA	3.7 L	NA NA						0.005
Manganese	NA NA	NA NA	0.49 L	0.64 L						0.0075
	19/3	1973	5.40 L	J.07 L		<u> </u>	1	1	l	J. 10

	1		CONTAININA	ANTS OF CONCER	1					
SITE		ISGS #1314V3-	33 (Parking Lot)				Compari	son Criteria	ı	
BORING	131	4V3-33-B05	1314V	3-33-B06		MACs			TACO	
SAMPLE	1314V3-33-B05 (0	-6) 1314V3-33-B05 (6-12	1314V3-33-B06 (0-6)	1314V3-33-B06 (6-12)						
MATRIX	Soil	Soil	Soil	Soil						
DEPTH (feet)	0-6	6-12	0-6	6-12	Most	Within an	Within		Construction	
рН	8.4	7.9	8	7.6	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detected))	•	•	•				•		
· · · · · ·	/									
SVOCs (mg/kg)		1	1	ı		1	1		ı	
2-Methylnaphthalene	ND U	ND U	ND U	ND U						
Acenaphthene	ND U	ND U	ND U	ND U	570			4,700	120,000	
Acenaphthylene	ND U	ND U	ND U	ND U						
Anthracene	ND U	ND U	ND U	ND U	12,000			23,000	610,000	
Benzo(a)anthracene	0.0094 J	ND U	ND U	ND U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.0089 J	ND U	ND U	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	ND U	ND U	ND U	ND U	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	ND U	ND U	ND U	ND U						
Benzo(k)fluoranthene	ND U	ND U	ND U	ND U	9			9	1,700	
Bis(2-ethylhexyl) phthalate	ND U	ND U	ND U	ND U	46			46	4,100	
Carbazole	ND U	ND U	ND U	ND U	0.6			32	6,200	
Chrysene	ND U	ND U	ND U	ND U	88			88	17,000	
Dibenz(a,h)anthracene	ND U	ND U	ND U	ND U	0.09	0.42	0.2	0.42	17	
Dibenzofuran	ND U	ND U	ND U	ND U						
Fluoranthene	0.015 J	ND U	ND U	ND U	3,100			3,100	82,000	
Fluorene	ND U	ND U	ND U	ND U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	ND U	ND U	ND U	ND U	0.9	1.6	0.9	1.6	170	
Naphthalene	ND U	ND U	ND U	ND U	1.8			170	1.8	
Phenanthrene	0.008 J	ND U	ND U	ND U						
Pyrene	0.017 J	ND U	ND U	ND U	2,300			2,300	61,000	
Inorganics (mg/kg)					, , , , , , , , , , , , , , , , , , , ,			/		
	204	ND II	0.00	0.00	T -			04	00	ĺ
Antimony	0.34 J	ND U	0.28 J	0.26 J	5			31	82	
Arsenic	5.9	5.1	5.5	4.9	11.3	13		13	61	
Barium	83	69	65	47	1,500			5,500	14,000	
Beryllium	0.53	0.49	0.54	0.44	22			160	410	
Boron	2 J	2 J	1.4 J	2 J	40			16,000	41,000	
Cadmium	0.21	0.13	0.13	0.1 J	5.2			78	200	
Calcium	14,000	15,000	29,000	20,000						
Chromium	13	14	13	12	21			230	690	
Cobalt	9.8	7	9	6.5	20			4,700	12,000	
Copper	12	12	14	12	2,900			2,900	8,200	
Iron	14,000	14,000	14,000	12,000	15,000	15,900				
Lead	24	8.7	15	8.3	107			400	700	
Magnesium	2,600	10,000	2,100	12,000	325,000				730,000	
Manganese	590	340	390	240	630	636		1,600	4,100	
Mercury	0.041	0.027	0.039	0.021	0.89			10	0.1	
Nickel	19	18	20	15	100			1,600	4,100	
Potassium	700	690	710	520						
Selenium	ND U	0.4 J	ND U	ND U	1.3			390	1,000	
Sodium	290	170	95	96						
Thallium	ND U	ND U	ND U	ND U	2.6			6.3	160	
Vanadium	21	21	21	20	550			550	1400	
Zinc	62	45	47	34	5,100			23,000	61,000	
TCLP Metals (mg/L)					<u></u>					
Barium	0.68	0.52	0.7	0.65						2
Boron	0.064 J	0.071 J	0.056 J	0.084 J						2
Cadmium	0.0024 J	ND U	ND U	0.002 J						0.005
Cobalt	ND U	ND U	ND U	ND U						1
Lead	ND U	ND U	ND U	ND U						0.0075
Manganese Nickel	4.1 ND 11	L 0.21 L		0.26 L						0.15
Nickel Zinc	ND U 0.045 J	ND U ND U	ND U	ND U						0.1 5
	U.U43 J	ט עאו	U UNI	U UNI						υ
SPLP Metals (mg/L)	1	1	T	1	I	Ī	I	ı	I	1
Cadmium	NA	NA	NA	NA						0.005
Lead	NA	NA	NA	NA						0.0075
Manganese	0.35	L 0.25 L	0.22 L	0.076						0.15

	1		CON	I AIVIIIVA	NTS OF CO	JNCERN				
SITE	ISGS :	#1314V3	33 (Parking	Lot)			Compari	son Criteria	1	
BORING		1314V	3-33-B07			MACs	1		TACO	1
SAMPLE	1314V3-33-I	B07 (0-8)	1314V3-33-E	807 (0-8)D						
MATRIX	Soi	I	Soi	l		Within				
DEPTH (feet)	0-8		0-8	1	Most	an	Within		Construction	
pH	8.4		8.6	i	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detected))									
SVOCs (mg/kg)										
2-Methylnaphthalene	ND	U	ND	U						
Acenaphthene	ND	U	ND	U	570			4,700	120,000	
Acenaphthylene	ND	U	ND	U						
Anthracene	ND	U	0.0071	J	12,000			23,000	610,000	
Benzo(a)anthracene	0.04		0.048		0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.057		0.065		0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.093		0.1		0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	0.022	J	0.022	J						
Benzo(k)fluoranthene	0.036	J	0.036	J	9			9	1,700	
Bis(2-ethylhexyl) phthalate	ND	U	ND	U	46			46	4,100	
Carbazole	ND	U	ND	U	0.6			32	6,200	
Chrysene	0.049		0.048		88			88	17,000	
Dibenz(a,h)anthracene	ND	U	ND	U	0.09	0.42	0.2	0.42	17	
Dibenzofuran	ND	U	ND	U						
Fluoranthene	0.085		0.085		3,100			3,100	82,000	
Fluorene	ND	U	ND	U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.029	J	0.031	J	0.9	1.6	0.9	1.6	170	
Naphthalene	ND	U	ND	U	1.8			170	1.8	
Phenanthrene	0.037		0.034	J						
Pyrene	0.085		0.097		2,300			2,300	61,000	
Inorganics (mg/kg)	ı				ı	ı	ſ	ı	ı	ı
Antimony	ND	U	0.37	J	5			31	82	
Arsenic	6.4		5.7		11.3	13		13	61	
Barium	53		53		1,500			5,500	14,000	
Beryllium	0.41		0.42		22			160	410	
Boron	1.5 0.2	J	1.9 0.2	J	40			16,000	41,000 200	
Cadmium Calcium	6,200	J	13,000	J	5.2			78		
Chromium	11	J	13,000	<u> </u>	21			230	690	
Cobalt	6.4		6.6		20			4,700	12,000	
Copper	11		11		2,900			2,900	8,200	
Iron	12,000		12,000		15,000	15,900				
Lead	47		49		107			400	700	
Magnesium	3,400		3,400		325,000				730,000	
Manganese	320		360		630	636		1,600	4,100	
Mercury	0.041		0.031		0.89			10	0.1	
Nickel	15		16	-	100			1,600	4,100	
Potassium	620		700							
Selenium	ND	U	0.34	J	1.3			390	1,000	
Sodium	120		130							
Thallium	ND	U	ND	U	2.6			6.3	160	
Vanadium	18		18		550			550	1400	
Zinc	43		47		5,100			23,000	61,000	
TCLP Metals (mg/L)			1		T	г	1		Т	T
Barium	0.6		0.68							2
Boron	0.07	J	0.058	J						2
Cadmium	0.0023	J	0.0023	J						0.005
Cobalt	ND	U	ND	U						1
Lead	0.02	L	0.034	L						0.0075
Manganese	0.2	L	0.32	L						0.15
Nickel	ND 0.054	U .	ND 0.036	U						0.1
Zinc	0.051	J	0.036	J						5
SPLP Metals (mg/L)							1	1		ı
Cadmium	NA		NA							0.005
Lead 	0.13	<u>L</u>	0.077	<u>L</u>						0.0075
Manganese	0.31	L	0.26	L						0.15

CITE		1000 "101 "10 70 10		N15 OF CONCER	Comparison Criteria						
SITE	40441/0 50 504	,	commercial Building)	40441/0 50 500			Compari	TACO			
BORING	1314V3-56-B01		3-56-B02	1314V3-56-B03		MACs			TACO		
SAMPLE MATRIX	1314V3-56-B01 (0-3)	` ′	1314V3-56-B02 (0-3)D	, ,							
	Soil	Soil	Soil	Soil		Within					
DEPTH (feet)	0-3	0-3	0-3	0-3	Most	an	Within		Construction		
pH	8	8.9	9.1 #	8.2	Stringent	MSA	Chicago	Residential	Worker	SCGIER	
VOCs (None Detected))										
SVOCs (mg/kg)											
Anthracene	ND U	ND U	0.013 J	ND U	12,000			23,000	610,000		
Benzo(a)anthracene	ND U	0.01 J	0.048	ND U	0.9	1.8	1.1	1.8	170		
Benzo(a)pyrene	ND U	0.013 J	0.052	ND U	0.09	2.1	1.3	2.1	17		
Benzo(b)fluoranthene	ND U	0.026 J	0.071	ND U	0.9	2.1	1.5	2.1	170		
Benzo(g,h,i)perylene	ND U	ND U	0.02 J	ND U							
Benzo(k)fluoranthene	ND U	ND U	0.027 J	ND U	9			9	1,700		
Chrysene	ND U	0.012 J	0.047	ND U	88			88	17,000		
Fluoranthene	ND U	0.017 J	0.11	ND U	3,100			3,100	82,000		
Indeno(1,2,3-cd)pyrene	ND U	0.013 J	0.026 J	ND U	0.9	1.6	0.9	1.6	170		
Phenanthrene	ND U	ND U	0.056	ND U							
Pyrene	ND U	0.016 J	0.082	ND U	2,300			2,300	61,000		
Inorganics (mg/kg)											
Antimony	0.23 J	0.28 J	0.25 J	ND U	5	-		31	82		
Arsenic	4.4	5.1	4.6	4.1	11.3	13		13	61		
Barium	69	63	62	80	1,500	-		5,500	14,000		
Beryllium	0.47	0.49	0.48	0.47	22			160	410		
Boron	1.7 J	2.7	2.6 J	2.7	40			16,000	41,000		
Cadmium	0.17	0.17	0.11	0.12	5.2			78	200		
Calcium	2,300	5,200	5,200	3,300							
Chromium	12	13	12	12	21			230	690		
Cobalt	5.4	6.1	5.3	5.6	20			4,700	12,000		
Copper	9.3	10	9.7	8.6	2,900			2,900	8,200		
Iron	13,000	14,000	13,000	12,000	15,000	15,900					
Lead	7.6	9.4	9.8	6.7	107	-		400	700		
Magnesium	1,500	2,600	2,700	1,600	325,000				730,000		
Manganese	620	400	370	500	630	636		1,600	4,100		
Mercury	0.018	0.024	0.019	0.014 J	0.89			10	0.1		
Nickel	16	12	12	11	100			1,600	4,100		
Potassium	680	850	800	800							
Selenium	0.26 J	ND U	ND U	ND U	1.3			390	1,000		
Sodium	670	1,300	1,300	260							
Thallium	1.1	0.82	0.72	0.95	2.6			6.3	160		
Vanadium	21	21	20	19	550	1		550	1400		
Zinc	25	28	26	24	5,100	-		23,000	61,000		
TCLP Metals (mg/L)											
Barium	0.46 J	0.58	0.56	0.43 J						2	
Boron	0.051 J	0.079 J	0.075 J	0.092 J						2	
Iron	0.34 J	ND U	0.31 J	0.21 J		-				5	
Manganese	0.21 L	0.29 L	0.25 L	1.7 L						0.15	
SPLP Metals (mg/L)											
` • ′	0.76 L	0.81 L	0.59 L	0.34 L						0.15	
Manganese	0.76 L	0.01 L	0.08 L	0.34 L		-				0.15	

			NIAMINANISOF	CONCER	'				
SITE	ISGS #131	4V3-57 (Old Chambe	r Building)			Compari	son Criteria	l	
BORING	1314V3-57-B01	1314V3-57-B02	1314V3-57-B03		MACs	ı		TACO	
SAMPLE	1314V3-57-B01 (0-3)	1314V3-57-B02 (0-3)	1314V3-57-B03 (0-5)						
MATRIX	Soil	Soil	Soil		Within				
DEPTH (feet)	0-3	0-3	0-5	Most	an	Within		Construction	
pН	8.1	8.4	8.7	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detected))								
SVOCs (mg/kg)									
2-Methylnaphthalene	ND U	0.0098 J	ND U						
Acenaphthene	0.012 J	0.016 J	ND U	570			4,700	120,000	
Acenaphthylene	ND U	0.006 J	ND U						
Anthracene	0.036 J	0.034 J	ND U	12,000			23,000	610,000	
Benzo(a)anthracene	0.18	0.12	0.012 J	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	0.22	0.16 †	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	0.33	0.17	0.021 J	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	0.078	0.074	ND U						
Benzo(k)fluoranthene	0.12	0.075	ND U	9			9	1,700	
Chrysene	0.21	0.11	0.013 J	88			88	17,000	
Dibenz(a,h)anthracene	0.034 J	0.026 J	ND U	0.09	0.42	0.2	0.42	17	
Fluoranthene	0.43	0.22	0.021 J	3,100			3,100	82,000	
Fluorene	0.014 J	0.014 J	ND U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	0.094	0.082	0.014 J	0.9	1.6	0.9	1.6	170	
Naphthalene	ND U	0.023 J	ND U	1.8			170	1.8	
Phenanthrene	0.26	0.14	0.0085 J						
Pyrene	0.36	0.2	0.02 J	2,300			2,300	61,000	
Inorganics (mg/kg)									
Antimony	0.43 J	0.45 J	0.32 J	5			31	82	
Arsenic	3.7	3.9	5 J	11.3	13		13	61	
Barium	91	68	73 J	1,500			5,500	14,000	
Beryllium	0.6	0.43	0.45	22			160	410	
Boron	5.1	2.6	3 J	40			16,000	41,000	
Cadmium	0.5	0.25	0.22 J	5.2			78	200	
Calcium	7,200	14,000	11,000 J						
Chromium	14	11	12	21			230	690	
Cobalt	5.5	5.3	5.3 J	20			4,700	12,000	
Copper	15	12	17 J	2,900			2,900	8,200	
Iron	14,000	12,000	12,000	15,000	15,900				
Lead	66	52	14 J	107			400	700	
Magnesium	2,600	7,800	6,600 J	325,000				730,000	
Manganese	330	370	360 J	630	636		1,600	4,100	
Mercury	0.19	0.11	0.029	0.89			10	0.1	
Nickel	13	12	11 J	100			1,600	4,100	
Potassium	910	750	870 J						
Selenium	0.38 J	ND U	ND UJ	1.3			390	1,000	
Sodium	210	420	780						
Thallium	0.78	0.72	0.77	2.6			6.3	160	
Vanadium	17	18	20	550			550	1400	
Zinc	85	47	33 J	5,100			23,000	61,000	
TCLP Metals (mg/L)	_	T		1				T	
Barium	0.48 J	0.75	0.59						2
Boron	0.11 J	0.064 J	0.072 J						2
Cadmium	ND U	0.002 J	0.0022 J						0.005
Lead	ND U	0.011 L	ND U						0.0075
Manganese	0.14	0.6 L	1.9 L						0.15
Nickel	ND U	ND U	0.03						0.1
SPLP Metals (mg/L)	_			1	1	1		1	
Lead	NA	0.15 L	NA						0.0075
Manganese	NA	0.21 L	0.7 L						0.15

PTB #172-27; Work Order 46, Contract 64C08 - IDOT Job # P-93-032-01 CONTAMINANTS OF CONCERN

SITE	JOSE	"4044	.,,	50 (D ' l		Comparison Criteria							
	1565			59 (Residen	ce)		1110-	Compani	son Criteria				
BORING SAMPLE	4044)/0.50			-59-B01	04 (5 40)		MACs			TACO			
SAMPLE MATRIX			-5)	1314V3-59-B	, ,								
	Soi			Soil			Within						
DEPTH (feet)	0-5		_	5-10)	Most	an	Within	B	Construction	200150		
pH	8.2			8.3		Stringent	MSA	Chicago	Residential	Worker	SCGIER		
VOCs (None Detected)													
SVOCs (mg/kg)						1	1	1		1			
Benzo(a)anthracene	0.0075	J		ND	U	0.9	1.8	1.1	1.8	170			
Benzo(a)pyrene	0.009	J		ND	U	0.09	2.1	1.3	2.1	17			
Benzo(b)fluoranthene	0.016	J		ND	U	0.9	2.1	1.5	2.1	170			
Fluoranthene	0.014	J		ND	U	3,100			3,100	82,000			
Phenanthrene	0.0056	J		ND	U								
Pyrene	0.011	J		ND	U	2,300			2,300	61,000			
Inorganics (mg/kg)						=							
Antimony	0.28	J		0.27	J	5			31	82			
Arsenic	6.5			4.4		11.3	13		13	61			
Barium	67			48		1,500			5,500	14,000			
Beryllium	0.49			0.45		22			160	410	-		
Boron	2.7			3.1		40			16,000	41,000			
Cadmium	0.29			0.22		5.2			78	200			
Calcium	7,400			23,000									
Chromium	14			12		21			230	690	1		
Cobalt	6.8			5.6		20			4,700	12,000	1		
Copper	11			9.4		2,900			2,900	8,200			
Iron	14,000			14,000		15,000	15,900						
Lead	14			6.1		107			400	700			
Magnesium	4,900			15,000		325,000				730,000			
Manganese	460			190		630	636		1,600	4,100			
Mercury	0.013	J		ND	U	0.89			10	0.1			
Nickel	15			9.8		100			1,600	4,100	-		
Potassium	780			870									
Selenium	ND	U		1.6	t	1.3			390	1,000			
Sodium	180			180									
Thallium	1			0.57		2.6			6.3	160			
Vanadium	27			21		550			550	1400			
Zinc	36			26		5,100			23,000	61,000			
TCLP Metals (mg/L)													
Barium	0.56			0.57							2		
Boron	0.063	J		0.075	J						2		
Cobalt	ND	U		0.035							1		
Manganese	0.35		L	2.4	L						0.15		
Nickel	ND	U		0.034							0.1		
Selenium	ND	U		0.025	J						0.05		
SPLP Metals (mg/L)	-												
, ,	0.23		L	0.18	L						0.15		
Manganese	0.23		L	0.18	L						0.15		

		F CONCERN	Commente on Oritoria								
SITE			#1314V3-60 (Vacant					Compari	son Criteria		
BORING		3-60-B01	1314V3-60-B02		I-60-B03		MACs	1		TACO	
SAMPLE	` /	1314V3-60-B01 (6-11)	` ′	1314V3-60-B03 (0-4)	1						
MATRIX	Soil	Soil	Soil	Soil	Soil		Within				
DEPTH (feet)	0-6	6-11	0-7	0-4	4-9	Most	an	Within		Construction	
рН	7.6	7.6	8	7.5	7.5	Stringent	MSA	Chicago	Residential	Worker	SCGIER
VOCs (None Detect	ed)										
SVOCs (mg/kg)											
2-Methylnaphthalene	ND U	ND U	ND U	ND U	ND U						
Acenaphthene	ND U	ND U	ND U	ND U	ND U	570			4,700	120,000	
Acenaphthylene	ND U	ND U	ND U	ND U	ND U						
Anthracene	ND U	ND U	0.011 J	ND U	ND U	12,000			23,000	610,000	
Benzo(a)anthracene	ND U	ND U	0.11	ND U	ND U	0.9	1.8	1.1	1.8	170	
Benzo(a)pyrene	ND U	ND U	0.13 †	ND U	ND U	0.09	2.1	1.3	2.1	17	
Benzo(b)fluoranthene	ND U	ND U	0.23	ND U	ND U	0.9	2.1	1.5	2.1	170	
Benzo(g,h,i)perylene	ND U	ND U	0.1	ND U	ND U						
Benzo(k)fluoranthene	ND U	ND U	0.081	ND U	ND U	9			9	1,700	
Carbazole	ND U	ND U	ND U	ND U	ND U	0.6			32	6,200	
Chrysene	ND U	ND U	0.17	ND U	ND U	88			88	17,000	
Dibenz(a,h)anthracene	ND U	ND U	0.027 J	ND U	ND U	0.09	0.42	0.2	0.42	17	
Dibenzofuran	ND U	ND U	ND U	ND U	ND U						
Fluoranthene	ND U	ND U	0.3	ND U	ND U	3,100			3,100	82,000	
Fluorene	ND U	ND U	ND U	ND U	ND U	560			3,100	82,000	
Indeno(1,2,3-cd)pyrene	ND U	ND U	0.091	ND U	ND U	0.9	1.6	0.9	1.6	170	
Phenanthrene	ND U	ND U	0.085	ND U	ND U						
Pyrene	ND U	ND U	0.24	ND U	ND U	2,300	-		2,300	61,000	
Inorganics (mg/kg)									•		
Antimony	ND U	ND U	0.32 J	ND U	ND U	5			31	82	
Arsenic	2.7	3.8	3.6	2.5	3.1	11.3	13		13	61	
Barium	49	86	82	76	62	1,500			5,500	14,000	
Beryllium	0.36	0.55	0.48	0.45	0.41	22			160	410	
Boron	1.7 J	2 J	2.5 J	2.2 J	1.6 J	40			16,000	41,000	
Cadmium	0.18	0.2	0.44	0.32	0.16	5.2	-		78	200	
Calcium	3,000	5,000	54,000	3,700	2,600						
Chromium	9.2	16	11	10	10	21			230	690	
Cobalt	4.5	7.6	8.5	5.4	5.5	20			4,700	12,000	
Copper	7.7	13	11	10	9.4	2,900			2,900	8,200	
Iron	9,100	14,000	11,000	10,000	11,000	15,000	15,900				-
Lead	23	8.6	72	15	8.6	107			400	700	
Magnesium	1,500	4,700	1,800	1,500	1,700	325,000				730,000	
Manganese	180	330	530	260	160	630	636		1,600	4,100	
Mercury	0.042	0.029	0.076	0.031	0.022	0.89			10	0.1	
Nickel	10	19	17	14	11	100			1,600	4,100	
Potassium	530	850	830	670	650					4.000	
Selenium	0.48 J	0.33 J	0.5 J	0.59	ND U	1.3			390	1,000	
Sodium	41 J 12	120	63	43 J	42 J	 550			 550	1400	
Vanadium Zinc	38	19 45	14 75	14 110	13 37	550 5,100			550 23,000	1400 61,000	
TCLP Metals (mg/L)			1 13	110	J.	5,100	<u> </u>		20,000	01,000	
` ` `		0.45			0.05						_
Barium	0.22 J	0.45 J	0.34 J	0.27 J	0.22 J						2
Boron	0.11 J	0.11 J	0.068 J	0.073 J	ND U		-				2
Chromium	ND U	ND U	ND U	ND U	ND U						0.1
Iron	0.27 J	ND U	ND U	ND U	0.32 J						5
Lead	ND U	ND U	0.021 L	ND U	ND U						0.0075
Manganese Zinc	0.042 0.022 J	ND U	0.13 0.082 J	0.013 J 0.092 J	ND U						0.15 5
Zinc		U UNI	U.UOZ J	U.U32 J	ט עאו		-				<u>, , , , , , , , , , , , , , , , , , , </u>
SPLP Metals (mg/L)						1		1		ĺ	T _
Lead	NA NA	NA NA	0.11 L	NA NA	NA NA						0.0075
Manganese	NA	NA	NA	NA	NA						0.15

0	CONTAMINANTS OF CONCERN						Commente en Oritorio						
SITE	40441/2 00 004		S #1314V3-60 (Vacant					Compari	son Criteria I				
BORING SAMPLE	1314V3-60-B04		3-60-B05		3-60-B06		MACs			TACO			
MATRIX	, ,		1314V3-60-B05 (6-12)	, ,									
DEPTH (feet)	Soil	Soil	Soil	Soil	Soil		Within						
pH	0-5 8.9	0-6 8.2	6-12 7.8	0-6 11.8 #	6-12 8.3	Most Stringent	an MSA	Within Chicago	Residential	Construction Worker	SCGIER		
		0.2	7.0	11.0 #	0.0	Stringent	WISA	Cilicago	Residential	WOIKE	SCOILK		
VOCs (None Detect	ea)												
SVOCs (mg/kg)		ı			1			ı	ı		Г		
2-Methylnaphthalene	ND U	ND U	ND U	0.094	ND U								
Acenaphthene	ND U	ND U	ND U	0.25	ND U	570			4,700	120,000			
Acenaphthylene	ND U	ND U	ND U	0.0049 J	ND U								
Anthracene	0.0084 J	ND U	ND U	0.65 J	ND U	12,000			23,000	610,000			
Benzo(a)anthracene	0.036 J 0.043 J	0.011 J 0.016 J	0.02 J 0.032 J	1.2 J †* 0.97 J †	ND U ND U	0.9	1.8 2.1	1.1	1.8 2.1	170 17			
Benzo(a)pyrene Benzo(b)fluoranthene	0.054 J	0.016 J	0.032 J 0.057	1.5 J †	ND U ND U	0.09	2.1	1.5	2.1	170			
Benzo(g,h,i)perylene	0.054 J	0.019 J	0.037 J	0.32 J	ND U								
Benzo(k)fluoranthene	0.04 J	0.013 J	0.023 J	0.5	ND U	9			9	1,700			
Carbazole	ND U	ND U	ND U	0.43	ND U	0.6			32	6,200			
Chrysene	0.045	0.02 J	0.041 J	1.1 J	ND U	88			88	17,000			
Dibenz(a,h)anthracene	0.009 J	ND U	ND U	0.12 J †	ND U	0.09	0.42	0.2	0.42	17			
Dibenzofuran	ND U	ND U	ND U	0.19	ND U								
Fluoranthene	0.079	0.027 J	0.064	3.1 J	ND U	3,100			3,100	82,000			
Fluorene	ND U	ND U	ND U	0.26	ND U	560			3,100	82,000			
Indeno(1,2,3-cd)pyrene	0.028 J	0.015 J	0.029 J	0.34 J	ND U	0.9	1.6	0.9	1.6	170			
Phenanthrene	0.052	0.0059 J	0.012 J	2.5 J	ND U								
Pyrene	0.092	0.023 J	0.051	2.2 J	ND U	2,300			2,300	61,000			
Inorganics (mg/kg)													
Antimony	ND U	ND U	ND U	0.62 J	ND U	5			31	82			
Arsenic	3.1	2.2	2.9	1.7	7	11.3	13		13	61			
Barium	75	70	72	57	120	1,500			5,500	14,000			
Beryllium	0.44	0.48	0.5	0.26	0.56	22			160	410			
Boron	1.8 J	1.6 J	1.8 J	9.1	2.5 J	40			16,000	41,000			
Cadmium	0.26	0.24	0.21	0.17	0.44	5.2			78	200			
Calcium	18,000	3,300	3,600	220,000	9,500								
Chromium	12	11	13	9.8	16	21			230	690			
Copper	6.1 9.1	9.5	7 10	4.6 8.8	11 14	2,900			4,700 2,900	12,000 8,200			
Copper Iron	11,000	11,000	13,000	6,600	18,000 †m	15,000	15,900		2,900				
Lead	26	13	10	22	10	107			400	700			
Magnesium	7,000	1,800	2,700	6,400	7,400	325,000				730,000			
Manganese	380	300	280	680 †m	820 †m	630	636		1,600	4,100			
Mercury	0.029	0.034	0.029	0.014 J	0.032	0.89			10	0.1			
Nickel	14	15	15	11	31	100			1,600	4,100			
Potassium	550	750	770	450	900					-			
Selenium	0.47 J	0.32 J	ND U	0.63	0.43 J	1.3			390	1,000			
Sodium	290	120	130	170	180								
Vanadium	16	12	16	12	25	550			550	1400			
Zinc	45	46	43	34	49	5,100			23,000	61,000			
TCLP Metals (mg/L)		ı			T			T	T	1	1		
Barium	0.74	0.24 J	0.38 J	0.2 J	0.61						2		
Boron	0.068 J	0.065 J	0.06 J	0.15 J	0.07 J						2		
Chromium	ND U	ND U	ND U	0.015 J	ND U						0.1		
Iron	ND U	ND U	ND U	ND U	ND U						5		
Lead	ND U	ND U	ND U	ND U	ND U						0.0075		
Manganese	1.8 L	ND U ND U	0.042 ND U	ND U	0.072 ND U						0.15		
Zinc	0.049 J	ND U	ND U	ND U	ND U						5		
SPLP Metals (mg/L)		I						1	Ī		l		
Lead	NA .	NA NA	NA NA	NA NA	NA NA						0.0075		
Manganese	0.49 L	NA	NA	NA	NA						0.15		

Laboratory Data Package and Site Photographs (on CD-ROM)

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/6/16 Direction: North Time: 0947

Description: Orange cone and placard indicate location of boring 1314V3-

01-B01

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/6/16 Direction: North Time: 1113

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/6/16 Direction: North Time: 1139

Description: Orange cone and placard indicate location of boring 1314V3-

01-B03

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/6/16 Direction: North Time: 1228

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/6/16 Direction: North Time: 1250

Description: Orange cone and placard indicate location of boring 1314V3-

01-B05

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/6/16

Direction: Northwest

Time: 1518

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/6/16

Direction: Northwest

Time: 1545

Description: Orange cone and placard indicate location of boring 1314V3-

01-B07

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/7/16

Direction: Northwest

Time: 0835

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74 Contract Number: PTB 172-027

IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/14/16 Direction: East Time: 1129

Description: Orange cone and placard indicate location of boring 1314V3-

01-B09

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/7/16

Direction: Northwest

Time: 0837

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-1 (IDOT ROW)

Date: 12/5/16

Direction: Northwest

Time: 1524

Description: Orange cone and placard indicate location of boring 1314V3-

01-B11

Site: ISGS #1314V3-2 (Mississippi River)

Date: 12/8/16

Direction: Northwest

Time: 0948

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-2 (Mississippi River)

Date: 12/8/16

Direction: Northwest

Time: 1102

Description: Orange cone and placard indicate location of boring 1314V3-

02-B02

Site: ISGS #1314V3-4

(City of Moline, Water Department)

Date: 12/6/16 Direction: North Time: 1034

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-4

(City of Moline, Water Department)

Date: 12/12/16 Direction: North Time: 1236

Description: Area where E&E conducted a magnetometer survey.

Site: ISGS #1314V3-5 (Industrial Building)

Date: 12/9/16
Direction: northwest

Time: 1029

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-5 (Industrial Building)

Date: 12/9/16 Direction: North Time: 0837

Description: Orange cone and placard indicate location of boring 1314V3-

05-B02

Site: ISGS #1314V3-5 (Industrial Building)

Date: 12/9/16 Direction: North Time: 0848

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-5 (Industrial Building)

Date: 12/12/16 Direction: North Time: 1239

Description: Area where E&E conducted a magnetometer survey.

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/8/16

Direction: Northwest

Time: 1136

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/8/16

Direction: Northwest

Time: 1159

Description: Orange cone and placard indicate location of boring 1314V3-

06-B02

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/8/16

Direction: Northwest

Time: 1223

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/13/16 Direction: North Time: 1207

Description: Orange cone and placard indicate location of boring 1314V3-

06-B04

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/13/16 Direction: North Time: 1229

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/13/16 Direction: North Time: 1300

Description: Orange cone and placard indicate location of boring 1314V3-

06-B06

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/13/16 Direction: North Time: 1406

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046
Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/13/16 Direction: North Time: 1334

Description: Orange cone and placard indicate location of boring 1314V3-

06-B08

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/13/16 Direction: North Time: 1210

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/7/16

Direction: Northwest

Time: 1024

Description: Orange cone and placard indicate location of boring 1314V3-

06-B10

Site: ISGS #1314V3-6

(Vacant Land)

Date: 12/7/16

Direction: Northwest

Time: 1049

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-7 (River Stone Moline Yard)

Date: 12/7/16

Direction: Northwest

Time: 1414

Description: Orange cone and placard indicate location of boring 1314V3-

07-B01

Site: ISGS #1314V3-7 (River Stone Moline Yard)

Date: 12/7/16

Direction: Northwest

Time: 1509

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-7 (River Stone Moline Yard)

Date: 12/7/16

Direction: Northwest

Time: 1524

Description: Orange cone and placard indicate location of boring 1314V3-

07-B03

Site: ISGS #1314V3-7 (River Stone Moline Yard)

Date: 12/7/16

Direction: Northwest

Time: 1606

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-8 (Commercial

Building)

Date: 12/6/16

Direction: Northwest

Time: 0831

Description: Orange cone and placard indicate location of boring 1314V3-

08-B01

Site: ISGS #1314V3-11

(Vacant Land)

Date: 12/8/16 Direction: North Time: 1649

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-11

(Vacant Land)

Date: 12/8/16 Direction: North Time: 1647

Description: Orange cone and placard indicate location of boring 1314V3-

11-B02

Site: ISGS #1314V3-11

(Vacant Land)

Date: 12/8/16 Direction: North Time: 1645

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-17

(Parking Lot)

Date: 12/9/16

Direction: Northwest

Time: 0921

Description: Orange cone and placard indicate location of boring 1314V3-

17-B01

Site: ISGS #1314V3-17

(Parking Lot)

Date: 12/9/16

Direction: Northwest

Time: 0949

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-17

(Parking Lot)

Date: 12/9/16

Direction: Northwest

Time: 0949

Description: Orange cone and placard indicate location of boring 1314V3-

17-B03

Site: ISGS #1314V3-17

(Parking Lot)

Date: 12/12/16 Direction: Northwest

Time: 1244

Description: Area where E&E conducted a magnetometer survey.

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-18

(Vacant Land)

Date: 12/14/16 Direction: East Time: 1304

Description: Orange cone and placard indicate location of boring 1314V3-

18-B01

Site: ISGS #1314V3-18

(Vacant Land)

Date: 12/1/16 Direction: West Time: 1505

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-18

(Vacant Land)

Date: 12/14/16 Direction: West Time: 1434

Description: Orange cone and placard indicate location of boring 1314V3-

18-B03

Site: ISGS #1314V3-18

(Vacant Land)

Date: 12/14/16 Direction: East Time: 1639

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-18

(Vacant Land)

Date: 12/14/16 Direction: East Time: 1431

Description: Orange cone and placard indicate location of boring 1314V3-

18-B05

Site: ISGS #1314V3-18

(Vacant Land)

Date: 12/14/16 Direction: East Time: 1216

Description: Orange cone and placard indicate location of boring 1314V3-18-B06

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-18

(Vacant Land)

Date: 12/14/16 Direction: East Time: 1638

Description: Orange cone and placard indicate location of boring 1314V3-

18-B07

Site: ISGS #1314V3-18

(Vacant Land)

Date: 12/14/16 Direction: East Time: 1640

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-18

(Vacant Land)

Date: 12/14/16 Direction: East Time: 1641

Description: Orange cone and placard indicate location of boring 1314V3-

18-B09

Site: ISGS #1314V3-18

(Vacant Land)

Date: 12/14/16 Direction: East Time: 1641

Description: Area in the vicinity of borings 1314V3-18-B04, -B07, -B08, and -B09 where E&E conducted a

magnetometer survey.

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-21 (BNSF Railroad)

Date: 11/29/16 Direction: East Time: 1229

Description: Orange cone and placard indicate location of boring 1314V3-

21-B01

Site: ISGS #1314V3-21 (BNSF Railroad)

Date: 11/29/16 Direction: East Time: 1214

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/13/16 Direction: North Time: 1535

Description: Orange cone and placard indicate location of boring 1314V3-

24-B01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/13/16 Direction: North Time: 1720

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/13/16 Direction: North Time: 1641

Description: Orange cone and placard indicate location of boring 1314V3-

24-B03

Site: ISGS #1314V3-24 (John Deere)

Date: 12/13/16 Direction: North Time: 1619

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/9/16 Direction: East Time: 1154

Description: Orange cone and placard indicate location of boring 1314V3-

24-B05

Site: ISGS #1314V3-24 (John Deere)

Date: 12/9/16

Direction: Northwest

Time: 1125

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/9/16 Direction: East Time: 1214

Description: Orange cone and placard indicate location of boring 1314V3-

24-B07

Site: ISGS #1314V3-24 (John Deere)

Date: 12/9/16 Direction: East Time: 1224

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/13/16 Direction: West Time: 1053

Description: Orange cone and placard indicate location of boring 1314V3-

24-B09

Site: ISGS #1314V3-24 (John Deere)

Date: 12/13/16 Direction: North Time: 1446

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/14/16 Direction: North Time: 1017

Description: Orange cone and placard indicate location of boring 1314V3-

24-B11

Site: ISGS #1314V3-24 (John Deere)

Date: 12/14/16 Direction: North Time: 1019

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/14/16 Direction: North Time: 1023

Description: Orange cone and placard indicate location of boring 1314V3-

24-B13

Site: ISGS #1314V3-24 (John Deere)

Date: 12/14/16 Direction: North Time: 1018

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/14/16 Direction: North Time: 1030

Description: Area where E&E conducted a magnetometer survey. Cones mark borings 1314V3-24-B11, -B12, -B13, -B14, and a small anomaly de-

tected during the survey.

Site: ISGS #1314V3-24 (John Deere)

Date: 12/14/16 Direction: East Time: 1030

Description: Area where E&E conducted a magnetometer survey. Cones mark borings 1314V3-24-B11, -B12, -B13, -B14, and a small anomaly de-

tected during the survey.

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/14/16 Direction: South Time: 1030

Description: Area where E&E conducted a magnetometer survey. Cones mark borings 1314V3-24-B11, -B12, -B13, -B14, and a small anomaly de-

tected during the survey.

Site: ISGS #1314V3-24 (John Deere)

Date: 12/14/16

Direction: West-northwest

Time: 1030

Description: Area where E&E conducted a magnetometer survey. Cones mark borings 1314V3-24-B11, -B12, -B13, -B14, and a small anomaly de-

tected during the survey.

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-24 (John Deere)

Date: 12/14/16 Direction: West Time: 1031

Description: The four cones outline a small anomaly detected during the

survey.

Site: ISGS #1314V3-25 (Sivyer Steel Corp.)

Date: 11/28/16 Direction: East Time: 1512

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-25 (Sivyer Steel Corp.)

Date: 11/28/16 Direction: East Time: 1545

Description: Orange cone and placard indicate location of boring 1314V3-

25-B02

Site: ISGS #1314V3-25 (Sivyer Steel Corp.)

Date: 11/28/16 Direction: North Time: 1246

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-25 (Sivyer Steel Corp.)

Date: 11/28/16 Direction: North Time: 1308

Description: Orange cone and placard indicate location of boring 1314V3-

25-B04

Site: ISGS #1314V3-25 (Sivyer Steel Corp.)

Date: 11/28/16 Direction: East Time: 1635

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-25 (Sivyer Steel Corp.)

Date: 11/28/16 Direction: North Time: 1351

Description: Orange cone and placard indicate location of boring 1314V3-

25-B06

Site: ISGS #1314V3-25 (Sivyer Steel Corp.)

Date: 11/28/16 Direction: North Time: 1420

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-26 (Commercial Building)

Date: 12/1/16

Direction: Northwest

Time: 1420

Description: Orange cone and placard indicate location of boring 1314V3-

26-B01

Site: ISGS #1314V3-26 (Commercial Building)

Date: 12/1/16 Direction: Northeast

Time: 1445

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-26 (Commercial Building)

Date: 12/12/16 Direction: Northwest

Time: 1257

Description: Area where E&E conducted a magnetometer survey.

Site: ISGS #1314V3-32 (Commercial Buildings)

Date: 12/15/106 Direction: North Time: 1527

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-32 (Commercial Buildings)

Date: 12/15/16 Direction: North Time: 1558

Description: Orange cone on the right side of photo indicates location of

boring 1314V3-32-B02

Site: ISGS #1314V3-32 (Commercial Buildings)

Date: 12/15/16 Direction: North Time: 1530

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-32 (Commercial Buildings)

Date: 12/15/16 Direction: North Time: 1529

Description: Orange cone and placard indicate location of boring 1314V3-

32-B04

Site: ISGS #1314V3-32 (Commercial Buildings)

Date: 12/15/16 Direction: North Time: 1528

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-32 (Commercial Buildings)

Date: 12/15/16 Direction: North Time: 1327

Description: Orange cone and placard indicate location of boring 1314V3-

32-B06

Site: ISGS #1314V3-32 (Commercial Buildings)

Date: 12/1/16

Direction: Northwest

Time:

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-32 (Commercial Buildings)

Date: 12/1/16

Direction: Northwest

Time: 1221

Description: Orange cone and placard indicate location of boring 1314V3-

32-B08

Site: ISGS #1314V3-32 (Commercial Buildings)

Date: 12/15/16 Direction: North Time: 1558

Description: Area where E&E conducted a magnetometer survey. Orange cones indicate the locations of borings 1314V3-32-B01, -B02, -B03,

-B04, and -B05

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-32 (Commercial Buildings)

Date: 12/15/16 Direction: Southeast

Time: 1558

Description: Area where E&E conducted a magnetometer survey. Orange cones indicate the locations of borings 1314V3-32-B01, -B02, -B03,

-B04, and -B05

Site: ISGS #1314V3-33

(Parking Lot)

Date: 12/15/16 Direction: North Time: 1104

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-33

(Parking Lot)

Date: 12/15/16 Direction: North Time: 0849

Description: Orange cone and placard indicate location of boring 1314V3-

33-B02

Site: ISGS #1314V3-33

(Parking Lot)

Date: 12/15/16 Direction: North Time: 1105

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-33

(Parking Lot)

Date: 12/15/16 Direction: North Time: 1106

Description: Orange cone and placard indicate location of boring 1314V3-

33-B04

Site: ISGS #1314V3-33

(Parking Lot)

Date: 12/15/16 Direction: North Time: 1107

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-33

(Parking Lot)

Date: 12/15/16 Direction: North Time: 1146

Description: Orange cone and placard indicate location of boring 1314V3-

33-B06

Site: ISGS #1314V3-33

(Parking Lot)

Date: 12/15/16 Direction: North Time: 0854

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-33

(Parking Lot)

Date: 12/15/16 Direction: South Time: 1108

Description: Area where E&E conducted a magnetometer survey. Orange cones indicate the locations of borings 1314V3-33-B01, -B03, -B04,

and -B05

Site: ISGS #1314V3-33

(Parking Lot)

Date: 12/15/16 Direction: Southwest

Time: 1108

Description: Area where E&E conducted a magnetometer survey. Orange cones indicate the locations of borings 1314V3-33-B01, -B03, -B04,

and -B05

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-56 (Commercial Building)

Date: 12/1/16 Direction: Northeast

Time: 1115

Description: Orange cone and placard indicate location of boring 1314V3-

56-B01

Site: ISGS #1314V3-56 (Commercial Building)

Date: 12/1/16

Direction: Northwest

Time: 1051

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-56 (Commercial Building)

Date: 12/1/16

Direction: Northwest

Time: 1049

Description: Orange cone and placard indicate location of boring 1314V3-

56-B03

Site: ISGS #1314V3-56 (Commercial Building)

Date: 12/12/16 Direction: Northwest

Time: 1303

Description: Area where E&E conducted a magnetometer survey.

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-56 (Commercial Building)

Date: 12/12/16 Direction: Northeast

Time: 1304

Description: Area where E&E conducted a magnetometer survey.

Site: ISGS #1314V3-57 (Old Chamber Building)

Date: 12/1/16

Direction: Northwest

Time: 1027

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-57 (Old Chamber Building)

Date: 12/1/16 Direction: Northeast

Time: 1004

Description: Orange cone and placard indicate location of boring 1314V3-

57-B02

Site: ISGS #1314V3-57 (Old Chamber Building)

Date: 12/1/16 Direction: Northeast

Time: 0951

Description: Orange cone and placard indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-59 (Residence)

Date: 12/1/16 Direction: Northeast

Time: 1138

Description: Orange cone and placard indicate location of boring 1314V3-

59-B01

Site: ISGS #1314V3-59 (Residence)

Date: 12/12/16 Direction: Northeast

Time: 1305

Description: Area where E&E conducted a magnetometer survey.

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-60

(Vacant Lot)

Date: 12/5/16

Direction: Northwest

Time: 1247

Description: Orange cone and placard indicate location of boring 1314V3-

60-B01

Site: ISGS #1314V3-60

(Vacant Lot)

Date: 12/5/16

Direction: Northwest

Time: 1426

Description: Orange cone and placard

indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-60

(Vacant Lot)

Date: 12/5/16

Direction: Northwest

Time: 1421

Description: Orange cone and placard indicate location of boring 1314V3-

60-B03

Site: ISGS #1314V3-60

(Vacant Lot)

Date: 12/5/16

Direction: Northwest

Time: 1357

Description: Orange cone and placard

indicate location of boring 1314V3-

Work Order No: 046 Route: FAI 74

Contract Number: PTB 172-027 IDOT Project Number: P-93-032-01

Site: ISGS #1314V3-60

(Vacant Lot)

Date: 12/5/16

Direction: Northwest

Time: 1354

Description: Orange cone and placard indicate location of boring 1314V3-

60-B05

Site: ISGS #1314V3-60

(Vacant Lot)

Date: 12/5/16

Direction: Northwest

Time: 1317

Description: Orange cone and placard

indicate location of boring 1314V3-

Analytical Summary Tables from Weston WO40

CONFIDENTIAL

REVISED PRELIMINARY SITE INVESTIGATION REPORT OF POTENTIAL WASTE SITES FAI 74: INTERSTATE 74 FROM 19th STREET TO 23rd STREET MOLINE, ROCK ISLAND COUNTY, ILLINOIS

THIS IS A PRELIMINARY DRAFT. IT HAS BEEN PREPARED BASED ON PRELIMINARY INFORMATION AND ASSUMPTIONS. NO ONE MAY RELY ON THIS DRAFT. IT IS SUBJECT TO CHANGE AS ADDITIONAL INFORMATION BECOMES AVAILABLE OR IS CLARIFIED.

AGREEMENT No. PTB 167-034
WESTON WORK ORDER No. 040
ISGS REPORT No. 1314V2
DESIGN APPROVAL DATE: 31 December 2003
ANTICIPATED LETTING DATE: 13 June 2014
JOB No. P-92-032-01
CONTRACT No. 64J68
SEQUENCE No. 9724A

Prepared for

ILLINOIS DEPARTMENT OF TRANSPORTATION BUREAU OF DESIGN AND ENVIRONMENT

2300 South Dirksen Parkway Springfield, Illinois 62764

Prepared by

WESTON SOLUTIONS, INC.

750 East Bunker Ct., Suite 500 Vernon Hills, Illinois 60061

May 2014

REVISED PRELIMINARY SITE INVESTIGATION OF POTENTIAL WASTE SITES FAI 74: INTERSTATE 74 FROM 19th STREET TO 23rd STREET MOLINE, ROCK ISLAND COUNTY, ILLINOIS

Prepared for ILLINOIS DEPARTMENT OF TRANSPORTATION BUREAU OF DESIGN AND ENVIRONMENT

2300 South Dirksen Parkway Springfield, Illinois 62764

May 2014

Andris J. Slesers
Task Order Manager

S. Babusukumar, P.G. Program Manager

Prepared by

WESTON SOLUTIONS, INC. 750 E. Bunker Ct., Suite 500 Vernon Hills, Illinois 60061

MATCHLINE SEE FIGURE 4-3

131442-1

Field Sample ID	CB-1(0-6)	-040814	CB-1(6-8)-040814	CB-8(0-5)-040814	CB-8(5-10)-040814	ES-1(0-5)-040814	ES-1(5-10)-040814	PL-1(0-5.5)-040714	PL-2(0-5.5)-040714		Soil
Sample Date	4/8/2	2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/7/2014	4/7/2014	Soil Reference	Remediation
Location ID	СВ	-1	CB-1	CB-8	CB-8	ES-1	ES-1	PL-1	PL-2	Concentrations	Objectives for
Depth	0 -	6	6 - 8	0 - 5	5 - 10	0 - 5	5 - 10	0 - 5.5	0 - 5.5	Conconductions	Construction
Parameter											Workers
Laboratory pH	8.23		8.27	7.61	7.22	8.81	8.92	8.9	7.48	<6.25,>9.0	
SVOCs (ug/kg)											
Benzo(a)pyrene	35		ND	480	ND	51	30 J	360	220	90 / 1300 / 2100	17000
Dibenzo(a,h)anthracene		ND	ND	ND	ND	ND	26 J	97	53	90 / 200 / 420	17000
Total Metals (mg/kg)											
Iron, Total	9200	J	8300 J	26000 J	21000 J	8900 J-	7900 J-	8600 J	18000 J	15000 / 15900	
Lead, Total	22	J	2.9 J	110 J	9.4 J	27 J	19 J	20 J	9 J	107	700
Manganese, Total	120	J	95 J	520 J	610 J	400 J	480 J	310	340	630 / 636	4100
Mercury, Total	0.0085	J	0.011 J	0.35 J	0.023 J	0.22 J	0.023 J	0.014 J	0.038 J	0.89	0.1
Selenium, Total	0.31	J	0.47 J	1.5 J-	0.92 J-	ND	ND	ND	ND	1.3	1000
TCLP Metals (mg/l)											
Iron, TCLP		ND	ND	ND	ND	ND	ND	ND	ND	5	
Lead, TCLP	0.0095		ND	0.019	ND	ND	ND	ND	ND	0.0075	
Manganese, TCLP	0.069		0.059	9.6	11	2.9	3.5	0.55	0.027	0.15	
Mercury, TCLP		ND	ND	ND	ND	ND	ND	ND	ND	0.002	.=-
Selenium, TCLP	Y	ND	ND	ND	0.013 J	ND	ND	ND	ND	0.05	
SPLP Metals (mg/l)											
Iron, SPLP	18	J+	15 J+	2.3 J+	34 J+	12 J+	3 J+	1.4	13	5	
Lead, SPLP	0.037		0.017	0.033	0.02	0.035	0.012	0.068	0.014	0.0075	1
Manganese, SPLP	0.15		0.081 B	0.22 B	0.99 B	0.11	0.15	0.13	0.17	0.15	
Mercury, SPLP		ND	ND	ND	ND	ND	ND	0.0002	0.00015 J	0.002	
Selenium, SPLP		ND	ND	ND	ND	ND	ND	ND	ND	0.05	

LEGEND — EXISTING R.O.W. PROPOSED R.O.W. SOIL BORING LOCATION SOIL SAMPLE pH VALUES. A / REPRESENTS A SOIL SAMPLE AND (X.XX/X.XX)DUPLICATE SOIL SAMPLE pH VALUES. RED INDICATES A pH VALUE EITHER LESS THAN 6.25 S.U. OR GREATER THAN 9.0 S.U. CONSTRUCTION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS. SOIL EXCAVATED FROM THIS AREA SHOULD BE MANAGED AS A NON-SPECIAL WASTE. CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. SOIL MAY BE MANAGED TO A CCDD OR UNCONTAMINATED SOIL FILL OPERATION WITHIN A MSA COUNTY OR CHICAGO CORPORATE LIMITS. CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. SOIL MAY BE MANAGED TO A CCDD OR UNCONTAMINATED SOIL FILL OPERATION WITHIN A MSA COUNTY, EXCLUDING CHICAGO. ACQUISITION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS. ANY EXCAVATED MATERIAL SHOULD BE MANAGED AS A NON-SPECIAL WASTE. APPROXIMATE AREA ESTIMATED TO EXCEED TACO TIER 1

CONSTRUCTION WORKER REFERENCE CONCENTRATIONS

NOTES:

- 1. ORGANIC SOIL REFERENCE CONCENTRATIONS (RC) INCLUDE THE MOST STRINGENT VALUES FROM THE MAC TABLE. THE SECOND AND THIRD RC, AS APPLICABLE, ARE THE CHICAGO CORPORATE LIMIT, AND MSA COUNTY EXCLUDING CHICAGO VALUES FROM THE MAC TABLE.
- 2. INORGANIC SOIL REFERENCE CONCENTRATIONS (RC) INCLUDE THE MOST STRINGENT VALUES FROM THE MAC TABLE. THE SECOND RC, AS APPLICABLE, IS THE MSA COUNTY VALUE FROM THE MAC TABLE.
- 3. ONLY SAMPLES AND PARAMETERS WITH EXCEEDANCES IMPACTING CONSTRUCTION ACTIVITIES ARE PRESENTED ON THIS FIGURE: SEE TABLES 4-2 AND 4-3 AND APPENDIX C FOR ALL DATA.
- 4. YELLOW IN THE TABLE INDICATES CONCENTRATION EXCEEDS THE REFERENCE CONCENTRATION FOR SOIL.
- 5. BLUE IN THE TABLE INDICATES CONCENTRATION EXCEEDS THE REMEDIATION OBJECTIVES FOR CONSTRUCTION WORKERS.
- 6. GREEN IN THE TABLE INDICATES CONCENTRATION EXCEEDS BOTH THE REFERENCE CONCENTRATION FOR SOIL THE REMEDIATION OBJECTIVES FOR CONSTRUCTION WORKERS.

FIGURE 4-1a

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061

Mercury, SPLP

0.0014

ND

ND

0.00013 J

Field Sample ID	PL-3(0-5)-040714	PL-3(5-10)-040714	SM-1(0-6)-040814	SM-1(6-10)-040814	SM-2(0-6)-040814	SM-2(6-12)-040814	SM-3(0-6)-040814	SM-3(0-6)-040814D	SM-3(6-12)-040814		
Sample Date	4/7/2014	4/7/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014		Soil Remediation
Location ID	PL-3	PL-3	SM-1	SM-1	SM-2	SM-2	SM-3	SM-3	SM-3	Soil Reference Concentrations	Objectives for Construction
Depth	0 - 5	5 - 10	0 - 6	6 - 10	0 - 6	6 - 12	0 - 6	0 - 6	6 - 12	Concentiations	Workers
Parameter											
Laboratory pH	7.41	7.53	9.07	9.03	9.69	9.33	9.38	9.48	8.86	<6.25,>9.0	_
Total Metals (mg/kg)											
Chromium, Total	15 J+	22 J+	15 J	6.3 J	9.6 J	8.5 J	8.1 J	9.6 J	7 J	21	690
Iron, Total	14000 J	17000 J	14000 J-	7100 J-	9900 J-	10000 J-	11000 J-	12000 J-	8100 J-	15000 / 15900	_
Lead, Total	7.7 J	7.2 J	28 J	23 J	22 J	36 J	42 J	41 J	24 J	107	700
Manganese, Total	350	440	600 J	180 J	240 J	480 J	350 J	330 J	210 J	630 / 636	4100
Mercury, Total	0.045 J	0.054 J	8.00E-02 J	0.12 J	6.90E-02 J	0.35 J	0.24 J	0.13 J	0.044 J	0.89	0.1
TCLP Metals (mg/l)											
Chromium, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	_
Iron, TCLP	2.7	ND	ND	ND	ND	ND	ND	ND	ND	5	_
Lead, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	0.0094	0.0075	_
Manganese, TCLP	7	4.6	0.86	2.6	0.51	2.5	1 J	4.7 J	4.8	0.15	_
Mercury, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	_
SPLP Metals (mg/l)											
Chromium, SPLP	0.015 J	ND	0.071	0.027	0.084	0.014 J	ND	0.04	0.03	0.1	_
Iron, SPLP	9.5	4.5	67 J+	18 J+	68 J+	7.8 J+	6.9 J	35 J	26 J+	5	_
Lead, SPLP	0.012	0.012	0.088	0.064	0.14	0.078	0.088 J	0.15 J	0.11	0.0075	_
Manganese, SPLP	0.97	0.49	0.6	0.16	0.54	0.4	0.23 J	0.43 J	0.58	0.15	_
Mercury, SPLP	ND	0.00023	0.00019 J	ND	0.00018 J	0.00018 J	0.00027	0.00031	ND	0.002	_
						I					
Field Sample ID	SR-1(0-5)-040714	CD 1/6 10\ 040714	LCD 1/E 10\ 040714D	SR-2(0-5)-040714	SR-2(5-10)-040714	SR-2(10-13)-040714	SR-3(0-5)-040714	SR-3(5-10)-040714	SR-3(10-13)-040714		
	114 154 154 1	SR-1(5-10)-040714	SR-1(5-10)-040714D		11 2 12						Soil Remediation
Sample Date	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	Soil Reference	Soil Remediation Objectives for
Sample Date Location ID	4/7/2014 SR-1	4/7/2014 SR-1	4/7/2014 SR-1	4/7/2014 SR-2	4/7/2014 SR-2	4/7/2014 SR-2	4/7/2014 SR-3	4/7/2014 SR-3	4/7/2014 SR-3	Soil Reference	Talking the sensing the annual reservoir
Sample Date Location ID Depth	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014		Objectives for
Sample Date Location ID Depth Parameter	4/7/2014 SR-1 0 - 5	4/7/2014 SR-1 5 - 10	4/7/2014 SR-1 5 - 10	4/7/2014 SR-2 0 - 5	4/7/2014 SR-2 5 - 10	4/7/2014 SR-2 10 - 13	4/7/2014 SR-3 0 - 5	4/7/2014 SR-3 5 - 10	4/7/2014 SR-3 10 - 13	Concentrations	Objectives for Construction
Sample Date Location ID Depth Parameter Laboratory pH	4/7/2014 SR-1	4/7/2014 SR-1	4/7/2014 SR-1	4/7/2014 SR-2	4/7/2014 SR-2	4/7/2014 SR-2	4/7/2014 SR-3	4/7/2014 SR-3	4/7/2014 SR-3		Objectives for Construction
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg)	4/7/2014 SR-1 0 - 5	4/7/2014 SR-1 5 - 10	4/7/2014 SR-1 5 - 10	4/7/2014 SR-2 0 - 5	4/7/2014 SR-2 5 - 10	4/7/2014 SR-2 10 - 13	4/7/2014 SR-3 0 - 5	4/7/2014 SR-3 5 - 10	4/7/2014 SR-3 10 - 13	Concentrations <6.25,>9.0	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene	4/7/2014 SR-1 0 - 5	4/7/2014 SR-1 5 - 10	4/7/2014 SR-1 5 - 10	4/7/2014 SR-2 0 - 5	4/7/2014 SR-2 5 - 10	4/7/2014 SR-2 10 - 13	4/7/2014 SR-3 0 - 5	4/7/2014 SR-3 5 - 10	4/7/2014 SR-3 10 - 13	Concentrations	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg)	4/7/2014 SR-1 0 - 5	4/7/2014 SR-1 5 - 10 7.99	4/7/2014 SR-1 5 - 10 8.18	4/7/2014 SR-2 0 - 5	4/7/2014 SR-2 5 - 10 7.74	4/7/2014 SR-2 10 - 13 8.47	4/7/2014 SR-3 0 - 5 7.57	4/7/2014 SR-3 5 - 10 7.76	4/7/2014 SR-3 10 - 13 8.65	<6.25,>9.0 90 / 1300 / 2100	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total	4/7/2014 SR-1 0 - 5 8.23 110	4/7/2014 SR-1 5 - 10 7.99 ND	4/7/2014 SR-1 5 - 10 8.18 ND	4/7/2014 SR-2 0 - 5 8.14 62	4/7/2014 SR-2 5 - 10 7.74 15 J	4/7/2014 SR-2 10 - 13 8.47 ND	4/7/2014 SR-3 0 - 5 7.57 220	4/7/2014 SR-3 5 - 10 7.76 ND	4/7/2014 SR-3 10 - 13 8.65 ND	<6.25,>9.0 90 / 1300 / 2100 5.2	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J	Concentrations <6.25,>9.0 90 / 1300 / 2100 5.2 15000 / 15900	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J	7.76 ND 0.38 J 17000 J	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J	Concentrations <6.25,>9.0 90 / 1300 / 2100 5.2 15000 / 15900 107	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J-	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J-	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J-	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J-	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J-	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J-	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J-	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J-	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J-	Concentrations <6.25,>9.0 90 / 1300 / 2100 5.2 15000 / 15900 107 630 / 636	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J	7.76 ND 0.38 J 17000 J	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J	Concentrations <6.25,>9.0 90 / 1300 / 2100 5.2 15000 / 15900 107	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total TCLP Metals (mg/l)	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J- 0.83 J	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J- 0.024 J	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J- 0.021 J	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J- 0.058 J	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J- 0.03 J	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J- ND	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J- 0.29 J	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J- 0.041 J	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J- ND	Concentrations <6.25,>9.0 90 / 1300 / 2100 5.2 15000 / 15900 107 630 / 636 0.89	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total TCLP Metals (mg/l) Cadmium, TCLP	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J- 0.83 J 0.0032 J	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J- 0.024 J ND	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J- 0.021 J	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J- 0.058 J 0.002 J	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J- 0.03 J	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J- ND	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J- 0.29 J	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J- 0.041 J	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J- ND	Concentrations <6.25,>9.0 90 / 1300 / 2100 5.2 15000 / 15900 107 630 / 636 0.89 0.005	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total TCLP Metals (mg/l) Cadmium, TCLP Iron, TCLP	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J- 0.83 J 0.0032 J	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J- 0.024 J ND ND	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J- 0.021 J ND ND	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J- 0.058 J 0.002 J ND	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J- 0.03 J ND	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J- ND ND ND 0.92	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J- 0.29 J 0.0056	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J- 0.041 J ND	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J- ND ND	Concentrations <6.25,>9.0 90 / 1300 / 2100 5.2 15000 / 15900 107 630 / 636 0.89 0.005 5	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total TCLP Metals (mg/l) Cadmium, TCLP Iron, TCLP Lead, TCLP	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J- 0.83 J 0.0032 J ND	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J- 0.024 J ND ND ND	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J- 0.021 J ND ND	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J- 0.058 J 0.002 J ND	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J- 0.03 J ND ND	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J- ND ND ND ND ND ND ND ND	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J- 0.29 J 0.0056 ND	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J- 0.041 J ND ND	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J- ND ND ND	\$\frac{<6.25,>9.0}{90 / 1300 / 2100}\$ \$\frac{5.2}{15000 / 15900}\$ \$107\$ \$630 / 636\$ \$0.89\$ \$\frac{0.005}{5}\$ \$0.0075\$	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total TCLP Metals (mg/l) Cadmium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Manganese, TCLP	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J- 0.83 J 0.0032 J ND ND	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J- 0.024 J ND ND ND ND ND ND ND ND ND N	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J- 0.021 J ND ND ND	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J- 0.058 J 0.002 J ND ND	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J- 0.03 J ND ND ND	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J- ND ND ND ND ND	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J- 0.29 J 0.0056 ND ND	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J- 0.041 J ND 1.7 ND	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J- ND ND ND	\$\ \text{Concentrations} \\ \$<6.25,>9.0 \\ 90 / 1300 / 2100 \\ \$5.2 \\ 15000 / 15900 \\ 107 \\ 630 / 636 \\ 0.89 \\ \$0.005 \\ 5 \\ 0.0075 \\ 0.15 \\ \$0.15	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total TCLP Metals (mg/l) Cadmium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP Mercury, TCLP	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J- 0.83 J 0.0032 J ND	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J- 0.024 J ND ND ND	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J- 0.021 J ND ND	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J- 0.058 J 0.002 J ND	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J- 0.03 J ND ND	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J- ND ND ND ND ND ND ND ND	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J- 0.29 J 0.0056 ND	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J- 0.041 J ND ND	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J- ND ND ND	\$\frac{<6.25,>9.0}{90 / 1300 / 2100}\$ \$\frac{5.2}{15000 / 15900}\$ \$107\$ \$630 / 636\$ \$0.89\$ \$\frac{0.005}{5}\$ \$0.0075\$	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total TCLP Metals (mg/l) Cadmium, TCLP Iron, TCLP Lead, TCLP Menganese, TCLP Menganese, TCLP Mercury, TCLP SPLP Metals (mg/l)	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J- 0.83 J 0.0032 J ND ND 0.48	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J- 0.024 J ND ND ND ND ND ND ND ND ND N	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J- 0.021 J ND 0.79 ND 0.12 J ND	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J- 0.058 J 0.002 J ND ND ND	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J- 0.03 J ND ND ND ND	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J- ND ND 0.92 ND 0.73 ND	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J- 0.29 J 0.0056 ND ND ND ND 0.54 ND	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J- 0.041 J ND 1.7 ND 0.13 ND	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J- ND ND ND ND	Concentrations <6.25,>9.0 90 / 1300 / 2100 5.2 15000 / 15900 107 630 / 636 0.89 0.005 5 0.0075 0.15 0.002	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total TCLP Metals (mg/l) Cadmium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP SPLP Metals (mg/l) Cadmium, SPLP	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J- 0.83 J 0.0032 J ND ND ND	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J- 0.024 J ND ND ND ND ND ND ND ND ND N	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J- 0.021 J ND 0.79 ND 0.12 J ND ND ND	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J- 0.058 J 0.002 J ND ND ND	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J- 0.03 J ND ND ND ND ND ND ND ND ND N	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J- ND ND 0.92 ND 0.73 ND	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J- 0.29 J 0.0056 ND ND ND ND ND ND	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J- 0.041 J ND 1.7 ND 0.13 ND	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J- ND	\$\frac{\$< 6.25, > 9.0}{90 / 1300 / 2100}\$\$ \$\frac{5.2}{15000 / 15900}\$\$ \$107\$ \$630 / 636\$ \$0.89\$ \$\frac{5}{0.0075}\$ \$0.15\$ \$0.002\$	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total TCLP Metals (mg/l) Cadmium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP SPLP Metals (mg/l) Cadmium, SPLP Iron, SPLP	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J- 0.83 J 0.0032 J ND ND ND ND	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J- 0.024 J ND ND ND ND ND ND ND ND ND N	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J- 0.021 J ND 0.79 ND 0.12 J ND ND 3.2 J+	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J- 0.058 J 0.002 J ND ND ND ND 0.39 ND ND ND ND ND ND ND	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J- 0.03 J ND ND ND ND ND ND ND	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J- ND ND 0.92 ND 0.73 ND ND 0.41 J+	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J- 0.29 J 0.0056 ND ND ND ND ND 0.54 ND ND ND A.6 J+	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J- 0.041 J ND 1.7 ND 0.13 ND ND 13 J+	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J- ND ND ND ND ND ND ND O.98 ND ND ND O.98 ND 1	Concentrations <6.25,>9.0 90 / 1300 / 2100 5.2 15000 / 15900 107 630 / 636 0.89 0.005 5 0.0075 0.15 0.002 0.005 5	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)pyrene Total Metals (mg/kg) Cadmium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total TCLP Metals (mg/l) Cadmium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP SPLP Metals (mg/l) Cadmium, SPLP	4/7/2014 SR-1 0 - 5 8.23 110 0.81 J 15000 J 150 J 510 J- 0.83 J 0.0032 J ND ND ND	4/7/2014 SR-1 5 - 10 7.99 ND 0.068 J 7100 J 5.3 J 100 J- 0.024 J ND ND ND ND ND ND ND ND ND N	4/7/2014 SR-1 5 - 10 8.18 ND 0.12 J 14000 J 6.7 J 120 J- 0.021 J ND 0.79 ND 0.12 J ND ND ND	4/7/2014 SR-2 0 - 5 8.14 62 0.38 J 12000 J 27 J 460 J- 0.058 J 0.002 J ND ND ND	4/7/2014 SR-2 5 - 10 7.74 15 J 0.36 J 17000 J 17 J 470 J- 0.03 J ND ND ND ND ND ND ND ND ND	4/7/2014 SR-2 10 - 13 8.47 ND 0.014 J 2200 J 1.2 J 27 J- ND ND 0.92 ND 0.73 ND	4/7/2014 SR-3 0 - 5 7.57 220 0.97 J 17000 J 84 J 540 J- 0.29 J 0.0056 ND ND ND ND ND ND	4/7/2014 SR-3 5 - 10 7.76 ND 0.38 J 17000 J 14 J 790 J- 0.041 J ND 1.7 ND 0.13 ND	4/7/2014 SR-3 10 - 13 8.65 ND ND 4900 J 1.3 J 59 J- ND	\$\frac{\$< 6.25, > 9.0}{90 / 1300 / 2100}\$\$ \$\frac{5.2}{15000 / 15900}\$\$ \$107\$ \$630 / 636\$ \$0.89\$ \$\frac{5}{0.0075}\$ \$0.15\$ \$0.002\$	Objectives for Construction Workers

ND

0.00032

ND

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061

ND

0.002

0.0003

Field Sample ID	SR-4(0-5)-040714	SR-4(0-5)-040714D	SR-4(5-10)-040714	SR-4(10-12)-040714	SR-5(0-5)-040714	SR-6(0-5)-040714	SR-7(0-3)-040714	SR-8(0-3)-040714	VB-1(0-6)-040814		
Sample Date	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/8/2014	Dail Dafanana	Soil Remediation
Location ID	SR-4	SR-4	SR-4	SR-4	SR-5	SR-6	SR-7	SR-8	VB-1	Soil Reference Concentrations	Objectives for Construction
Depth	0 - 5	0 - 5	5 - 10	10 - 12	0 - 5	0 - 5	0 - 3	0 - 3	0 - 6	Concentrations	Workers
Parameter											VOIRCIG
Laboratory pH	8.28	8.41	8.12	8.61	7.64	8.45	7.86	8	9.69	<6.25,>9.0	
SVOCs (ug/kg)											
Benzo(a)pyrene	50	53	73	53	15 J	47	270	170	56	90 / 1300 / 2100	17000
Total Metals (mg/kg)											
Chromium, Total	16	13	14	13	18	13	17	16	7.2 J	21	690
Iron, Total	16000 J	14000 J	17000 J	14000 J	18000 J	14000 J	14000 J	16000 J	9000 J-	15000 / 15900	
Lead, Total	54 J	54 J	48 J	52 J	10 J	42 J	130 J	60 J	33 J	107	700
Manganese, Total	630 J-	400 J-	390 J-	380 J-	580 J-	550 J-	430 J-	410 J-	320 J	630 / 636	4100
Mercury, Total	0.11 J	0.1 J	0.094 J	0.17 J	0.036 J	7.30E-02 J	0.42 J	0.12 J	1.6 J	0.89	0.1
Nickel, Total	20	14	16	16	17	12	15	16	6.8 J-	100	4100
TCLP Metals (mg/l)											
Chromium, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	
Iron, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	5	
Lead, TCLP	0.01	ND	0.0094	0.017	ND	0.0079	0.0097	ND	ND	0.0075	
Manganese, TCLP	0.43	0.52	6.8	6.7	0.53	1.7	1.8	0.22	0.78	0.15	
Mercury, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.011 J	0.011 J	0.026	0.045	ND	ND	ND	ND	ND	0.1	
SPLP Metals (mg/l)											
Chromium, SPLP	0.016 J	0.011 J	0.011 J	0.011 J	0.15	0.014 J	0.01 J	0.019 J	0.063	0.1	
Iron, SPLP	12 J+	7.2 J+	7.6 J+	8.1 J+	150 J+	8.6 J+	6.8 J+	13 J+	51 J+	5	
Lead, SPLP	0.07	0.073	0.14	0.11	0.076	0.017	0.09	0.085	0.17	0.0075	
Manganese, SPLP	0.26	0.25	0.96	0.45	0.64	0.048	0.15	0.14	0.64	0.15	
Mercury, SPLP	0.00034	0.00046	0.00034	0.00048	0.00056	ND	0.00067	0.00027	0.00041	0.002	
Nickel, SPLP	0.040 1	5 V-1		2021	1200 140000	A. 1000			100000000000000000000000000000000000000	1 W 1 T 10	
NICKEI, OF LF	0.012 J	ND	0.011 J	0.01 J	0.12	ND	ND	0.012 J	0.039	0.1	
,										0.1	
Field Sample ID	VB-1(6-10)-040814 4/8/2014	VB-2(0-6)-040814	VB-2(6-12.5)-040814	VB-3(0-6)-040814	VB-3(6-12.5)-040814	VB-4(0-5)-040814	VB-4(5-10)-040814	VB-5(0-5)-040814	0.039 VB-5(5-10)-040814 4/8/2014		Soil Remediation
	VB-1(6-10)-040814								VB-5(5-10)-040814	Soil Reference	Soil Remediation Objectives for
Field Sample ID Sample Date	VB-1(6-10)-040814 4/8/2014	VB-2(0-6)-040814 4/8/2014	VB-2(6-12.5)-040814 4/8/2014	VB-3(0-6)-040814 4/8/2014	VB-3(6-12.5)-040814 4/8/2014	VB-4(0-5)-040814 4/8/2014	VB-4(5-10)-040814 4/8/2014	VB-5(0-5)-040814 4/8/2014	VB-5(5-10)-040814 4/8/2014		Soil Remediation Objectives for Construction
Field Sample ID Sample Date Location ID	VB-1(6-10)-040814 4/8/2014 VB-1	VB-2(0-6)-040814 4/8/2014 VB-2	VB-2(6-12.5)-040814 4/8/2014 VB-2	VB-3(0-6)-040814 4/8/2014 VB-3	VB-3(6-12.5)-040814 4/8/2014 VB-3	VB-4(0-5)-040814 4/8/2014 VB-4	VB-4(5-10)-040814 4/8/2014 VB-4	VB-5(0-5)-040814 4/8/2014 VB-5	VB-5(5-10)-040814 4/8/2014 VB-5	Soil Reference	Soil Remediation Objectives for
Field Sample ID Sample Date Location ID Depth	VB-1(6-10)-040814 4/8/2014 VB-1	VB-2(0-6)-040814 4/8/2014 VB-2	VB-2(6-12.5)-040814 4/8/2014 VB-2	VB-3(0-6)-040814 4/8/2014 VB-3	VB-3(6-12.5)-040814 4/8/2014 VB-3	VB-4(0-5)-040814 4/8/2014 VB-4	VB-4(5-10)-040814 4/8/2014 VB-4	VB-5(0-5)-040814 4/8/2014 VB-5	VB-5(5-10)-040814 4/8/2014 VB-5	Soil Reference	Soil Remediation Objectives for Construction
Field Sample ID Sample Date Location ID Depth Parameter	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10	Soil Reference Concentrations	Soil Remediation Objectives for Construction Workers
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10	Soil Reference Concentrations	Soil Remediation Objectives for Construction Workers
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg)	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10	Soil Reference Concentrations	Soil Remediation Objectives for Construction Workers
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09	Soil Reference Concentrations <6.25,>9.0	Soil Remediation Objectives for Construction Workers
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21	Soil Remediation Objectives for Construction Workers 61 690
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20	Soil Remediation Objectives for Construction Workers 61 690 12000
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J-	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J-	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J-	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J-	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J-	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900	Soil Remediation Objectives for Construction Workers 61 690 12000
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107	Soil Remediation Objectives for Construction Workers 61 690 12000 700
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107	Soil Remediation Objectives for Construction Workers 61 690 12000 700
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l)	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J 51 J ND	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l) Arsenic, TCLP	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND ND ND	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND ND ND	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND ND	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND ND	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND ND ND	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J ND	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J ND ND	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J 51 J ND	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05 0.1	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/I) Arsenic, TCLP Chromium, TCLP Cobalt, TCLP	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND ND ND	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND ND ND	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J ND ND ND	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND ND	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND ND 0.017 J	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND ND	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND ND ND	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J 51 J ND ND ND 0.022 J	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND ND	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05 0.1 1	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Cobalt, TCLP	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND ND ND ND ND 1.5	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND ND ND ND 0.3	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J ND ND ND ND	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND ND ND	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND ND 0.017 J 0.22	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND ND ND 0.3	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND ND ND ND 0.94	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J 51 J ND ND ND 0.022 J 0.3	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND ND ND ND	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05 0.1 1 5	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Cobalt, TCLP Iron, TCLP Lead, TCLP Lead, TCLP Lead, TCLP	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND ND ND ND ND ND ND ND ND N	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J ND ND ND ND ND	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND ND ND ND ND ND ND	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND ND 0.017 J 0.22	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND ND ND ND ND ND ND ND N	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND ND ND ND ND ND ND ND ND N	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J ND ND ND 0.022 J 0.3 0.022	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND ND ND ND ND ND	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05 0.1 1 5 0.0075	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Cobalt, TCLP Lead, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Manganese, TCLP	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND ND ND ND ND ND ND ND ND N	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J ND ND ND ND ND	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND ND ND ND ND ND ND	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND ND 0.017 J 0.22	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND ND ND ND ND ND ND ND N	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND ND ND ND ND ND ND ND ND N	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J ND ND ND 0.022 J 0.3 0.022	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND ND ND ND ND ND	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05 0.1 1 5 0.0075	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Cobalt, TCLP Lead, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP SPLP Metals (mg/l)	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND ND ND ND ND ND 1.5 ND O.23	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND ND ND ND ND ND ND O.3	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J ND ND ND ND ND ND ND ND ND N	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND ND ND ND ND ND 1.5 ND 0.12	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND ND 0.017 J 0.22 ND 0.95	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND ND ND ND ND ND ND O.3 ND O.05	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND ND ND ND ND ND O.94 ND O.019 J	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J 51 J ND ND ND 0.022 J 0.3 0.022 0.56	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND ND ND ND ND ND ND ND ND 1 ND 0.55	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05 0.1 1 5 0.0075 0.15	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Cobalt, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP SPLP Metals (mg/l) Arsenic, SPLP	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND ND ND ND ND 1.5 ND 0.23	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND ND ND ND ND ND ND ND ND N	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J ND	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND ND ND ND 1.5 ND 0.12	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND ND 0.017 J 0.22 ND ND 0.95	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND ND ND ND ND ND ND ND N	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND ND ND ND ND ND ND ND ND N	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J 51 J ND ND ND 0.022 J 0.3 0.022 0.56	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND ND ND ND ND ND 1 ND 0.55	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05 0.1 1 5 0.0075 0.15 0.05	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Cobalt, TCLP Iron, TCLP Lead, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP SPLP Metals (mg/l) Arsenic, SPLP Chromium, SPLP	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND ND ND ND ND 0.23 0.09 0.13	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND ND ND ND ND ND O.03 ND O.061	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J ND	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND ND ND ND 1.5 ND 0.12	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND 0.017 J 0.22 ND 0.95	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND ND ND ND ND ND O.05	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND ND ND ND ND ND O.019 J ND O.039	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J 51 J ND ND ND 0.022 J 0.3 0.022 0.56	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND ND ND ND ND 1 ND 0.55	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05 0.1 1 5 0.0075 0.15 0.05 0.15	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Cobalt, TCLP Iron, TCLP Lead, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP SPLP Metals (mg/l) Arsenic, SPLP Chromium, SPLP Cobalt, SPLP	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND ND ND ND ND 0.23 0.09 0.13 0.036	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND ND ND ND ND O.061 ND ND ND ND ND ND ND ND ND N	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J ND ND ND ND ND ND ND ND ND N	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND ND ND 1.5 ND 0.12 0.022 J 0.12 0.021 J	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND 0.017 J 0.22 ND 0.95	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND ND ND ND 0.05 ND 0.05	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND ND ND ND ND 0.094 ND 0.019 J ND 0.039 ND	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J 51 J ND ND ND 0.022 J 0.3 0.022 0.56 ND 0.042 0.012 J	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND ND ND ND 1 ND 0.55 0.049 J 0.042 0.015 J	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05 0.1 1 5 0.0075 0.15 0.05 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100
Field Sample ID Sample Date Location ID Depth Parameter Laboratory pH Total Metals (mg/kg) Arsenic, Total Chromium, Total Cobalt, Total Iron, Total Lead, Total Manganese, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Cobalt, TCLP Iron, TCLP Lead, TCLP Head, TCLP SPLP Metals (mg/l) Arsenic, SPLP Chromium, SPLP Cobalt, SPLP Iron, SPLP	VB-1(6-10)-040814 4/8/2014 VB-1 6 - 10 9.11 8.1 J 11 J 5.7 J 17000 J- 6.6 J 170 J ND ND ND ND ND 0.23 0.09 0.13 0.036 160 J+	VB-2(0-6)-040814 4/8/2014 VB-2 0 - 6 7.98 2.5 J 8.7 J 3.9 J 8500 J- 4.6 J 130 J ND ND ND ND ND ND ND 1.30 ND ND 1.30 ND	VB-2(6-12.5)-040814 4/8/2014 VB-2 6 - 12.5 8.75 2.9 J 10 J 4.5 J 9800 J- 4.4 J 210 J ND ND ND ND ND ND ND ND ND N	VB-3(0-6)-040814 4/8/2014 VB-3 0 - 6 9.39 2.6 J 10 J 4.2 J 9800 J- 5.4 J 110 J ND ND ND ND ND 1.5 ND 0.12 0.022 J 0.021 J 100 J+	VB-3(6-12.5)-040814 4/8/2014 VB-3 6 - 12.6 8.92 2.7 J 6.7 J 3 J 7300 J- 2.6 J 82 J ND ND 0.017 J 0.22 ND 0.95 ND 0.01 J ND 0.01 J ND 3.3 J+	VB-4(0-5)-040814 4/8/2014 VB-4 0 - 5 7.22 1.2 J 7 2.4 5900 J+ 2.6 J 94 J ND ND ND ND ND ND 0.03 ND 0.05 ND 0.063 ND 0.063 ND	VB-4(5-10)-040814 4/8/2014 VB-4 5 - 10 7.12 1.3 J 11 4 8400 J+ 3 J 440 J ND ND ND ND ND O.094 ND O.019 J ND O.039 ND ND ND O.039 ND ND O.039 ND	VB-5(0-5)-040814 4/8/2014 VB-5 0 - 5 7.4 1.6 J 13 4.5 10000 J+ 15 J ND ND ND 0.022 J 0.3 0.022 0.56 ND 0.042 0.012 J 33	VB-5(5-10)-040814 4/8/2014 VB-5 5 - 10 7.09 33 J 13 32 29000 J+ 6.5 J 3400 J ND ND ND ND ND 1 ND 0.55 0.049 J 0.042 0.015 J 56	Soil Reference Concentrations <6.25,>9.0 11.3 / 13 21 20 15000 / 15900 107 630 / 636 0.05 0.1 1 5 0.0075 0.15 0.05 0.1 1 5 5 5 0.0075 0.15	Soil Remediation Objectives for Construction Workers 61 690 12000 700 4100

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061 FIGURE 4-1c

Field Sample ID	VB-6(0-5)-040914	V B-6(5-10)-040914	VL-1(0-5.5)-040914	VL1-1(0-5)-040814	VL1-1(5-10)-040814	VL1-2(0-6)-040814	VL1-2(6-10)-040814	VL1-3(0-6)-040814	VL1-3(0-6)-040614D		
Sample Date	4/9/2014	4/9/2014	4/9/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Cail Dafanana	Soil Remediation
Location ID	VB-6	VB-6	VL-1	VL1-1	VL1-1	VL1-2	VL1-2	VL1-3	VL1-3	Soil Reference	Objectives for
Depth	0 - 5	5 - 10	0 - 5.5	0 - 5	5 - 10	0 - 6	6 - 10	0-6	0 - 6	Concentrations	Construction Workers
Parameter	W/19 to \$5000*		March III. March Addition I	(400)	paragram in support to		14,000 to	97(5)	a de la constante		Workers
Laboratory pH	8.65	8.12	8.14	6.47	7.09	7.55	8.5	8.23	8.21	<6.25,>9.0	
Total Metals (mg/kg)											
Beryllium, Total	0.47 J	0.74 J	0.48	0.36	0.15 J	0.23 J	0.16 J	0.25	0.24	22	410
Chromium, Total	15 J	22 J	16	11	5.3	7.7 J	6.6 J	8.7	8	21	690
Iron, Total	14000 J	19000 J	16000	11000 J+	5700 J+	8900 J-	5900 J-	7200 J+	6700 J+	15000 / 15900	
Lead, Total	28 J	10 J	4.9 B	5.7 J	2 J	2.8 J	2.6 J	5.7 J	3.9 J	107	700
Manganese, Total	480 J	250 J	260	110 J	940 J	150 J	300 J	260 J	220 J	630 / 636	4100
Mercury, Total	0.15	0.051	0.035	0.015 J	0.018 J	0.013 J	ND	ND	ND	0.89	0.1
Nickel, Total	14 J	18 J	14	9.1	25	8.7 J-	8.2 J-	6.3	5.5	100	4100
	14 J	10 3	14	9.1	25	0. / J-	0. Z J-	6.3	5.5	100	4100
TCLP Metals (mg/l)	ND	ND	ND	NID	ND	ND	ND	ND	ND	0.004	
Beryllium, TCLP	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	0.004	
Chromium, TCLP	ND	ND	ND ND	ND 0.20	ND	ND 0.4	ND 0.35	ND	ND 0.30	0.1	-
Iron, TCLP	0.27	2	0.23	0.29	1.2	0.4	0.35	0.39	0.36	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	ND	ND	0.014 J	ND	0.0075	
Manganese, TCLP	0.91	0.066	ND	0.017 J	0.043	0.074	0.63	0.44	0.33	0.15	
Mercury, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.011 J	0.011 J	ND	ND	ND	ND	0.015 J	ND	ND	0.1	
SPLP Metals (mg/l)											
Beryllium, SPLP	0.0055	0.0045	0.0054	ND	ND	ND	ND	ND	ND	0.004	
Chromium, SPLP	0.19	0.16	0.2	0.032	0.054	0.014 J	0.022 J	0.045 J	0.012 J	0.1	
Iron, SPLP	170 J+	120 J+	150	23	42	7.7 J+	15 J+	34 J	6.9 J	5	
Lead, SPLP	0.17	0.038	0.038	0.016	0.018	0.011	0.019	0.016 J	0.0082 J	0.0075	
Manganese, SPLP	1.2	0.43	1.2	0.35	0.73	0.065	0.19	0.36 J	0.065 J	0.15	
Mercury, SPLP	0.0012	0.0004	0.00042	ND	0.00017 J	ND	ND	0.00011 J	ND	0.002	
Nickel, SPLP	0.13	0.078	0.15	0.024 J	0.043	ND	0.014 J	0.025	ND	0.1	
				r			1				
	VL1-3(6-10)-040814	3/ 2/	VL1-4(6-10)-040814	VL1-5(0-6)-040814	VL1-5(6-10)-040814	VL1-6(0-5)-040814	VL1-6(5-10)-040814	VL1-7(0-5)-040814	VL1-7(5-10)-040814		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	VL1-3	VL1-4	V L1-4	VL1-5	VL1-5	VL1-6	VL1-6	VL1-7	VL1-7	Concentrations	Construction
Depth	6 - 10	0 - 6	6 - 10	0-6	6 - 10	0 - 5	5 - 10	0 - 5	5 - 10		Workers
Parameter											
Laboratory pH	7.87	8.1	8.11	7.87	7.43	7	7.17	7.24	7.32	<6.25,> 9 .0	
Total Metals (mg/kg)											
Iron, Total	9700 J+	7100 J+	5700 J+	6400 J+	7900 J+	6300 J+	11000 J+	8000 J+	4100 J+	15000 / 15900	
Lead, Total	3.9 J	5.6 J	1.9 J	2.6 J	2.4 J	1.9 J	3.8 J	2.9 J	1.2 J	107	700
Manganese, Total	66 J	720 J	70 J	98 J	130 J	84 J	370 J	92 J	66 J	630 / 636	4100
TCLP Metals (mg/l)											
Iron, TCLP	2.2	1.3	1.7	0.86	1.7	0.66	1.1	0.53	0.56	5	-
Lead, TCLP	0.013	ND	0.0091	ND	ND	ND	ND	ND	ND	0.0075	-
Manganese, TCLP	0.029	0.076	0.14	0.31	0.25	0.039	0.11	0.043	0.15	0.15	
SPLP Metals (mg/l)											
Iron, SPLP	27	20	49	7.5	71	16	21	9.2	1.3	5	
Lead, SPLP	0.014	0.0087	0.015	0.0085	0.024	0.011	0.011	0.011	0.0076	0.0075	
Manganese, SPLP	0.093	0.26	0.28	0.096	1.1	0.21	0.2	0.076	0.02 J	0.15	
Manganese, SFLF	0.030	0.20	0.20	0.030	1.1	0.21	0.2	0.070	0.02 3	0.10	

Field Sample ID VB-6(0-5)-040914 VB-6(5-10)-040914 VL-1(0-5.5)-040914 VL-1(0-5.5)-040914 VL-1(0-5)-040814 VL-1(5-10)-040814 VL-2(0-6)-040814 VL-2(6-10)-040814 VL-3(0-6)-040814

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061 FIGURE 4-1d

INVESTIGATION RESULTS

FAI 74: I-74 FROM 19TH STREET TO 23RD STREET STATION 3003+00 TO 3018+00

STATION 3003+00 TO 3018+00

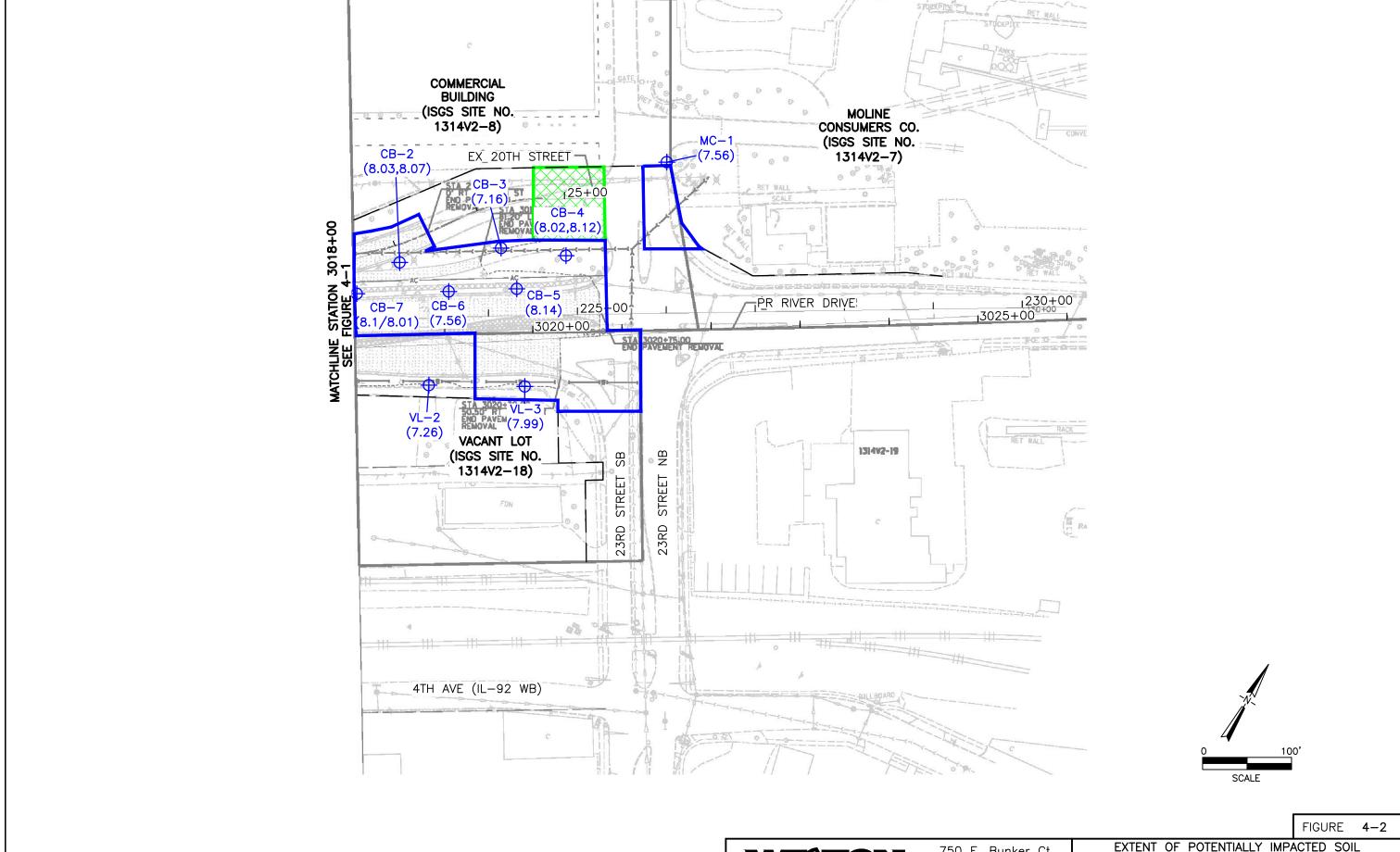
ILLINOIS DEPARTMENT OF TRANSPORTATION

Moline, Rock Island County, Illinois

Field Comple ID	V/I 4 0/0 E) 040044	1/1 1 0/0 E) 040014D	VL1-8(5-10)-040814	VII 4 0/0 E) 040044	VI 4 0/5 40\ 040044	VI 4 0/5 40) 040044D	VI 4 40/0 E) 040044	VL1-10(5-10)-040914	VII 4 44/0 C) 040044		
Sample Date	VL1-8(0-5)-040814 4/8/2014	VL1-8(0-5)-040814D 4/8/2014	4/8/2014	VL1-9(0-5)-040814 4/8/2014	4/8/2014	4/8/2014	4/9/2014	4/9/2014	4/8/2014		Soil Remediation
Location ID	VL 1-8	VL1-8	VL1-8	VL1-9	VL1-9	VL1-9	VL1-10	VL1-10	VL1-11	Soil Reference	Objectives for
Depth	0 - 5	0 - 5	5 - 10	0 - 5	5 - 10	5 - 10	0 - 5	5 - 10	0 - 5	Concentrations	Construction
Parameter	00		0 10			0 10		5 10	0.00	1	Workers
Laboratory pH	6.95	6.64	6.88	8.54	8.54	8.58	8.05	7.46	8.09	<6.25,>9.0	
PCBs (ug/kg)	tiller (in virtual cool)			A SOCIETY OF THE PROPERTY OF T	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		1000000	70.07 110.00	disposition of		
Aroclor-1248	ND	ND	ND	ND	ND	ND	ND	ND	1900	1000	1000
SVOCs (ug/kg)											
Benzo(a)anthracene	2200 J	230 J	ND	110	36 J	100 J	180	ND	1100	900 / 1100 / 1800	170000
Benzo(a)pyrene	1600 J	180 J	ND	95	43 J	74 J	200	ND	890	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	2000 J	270 J	ND	130	51 J	92 J	310	ND	1400	900 / 1500 / 2100	170000
Dibenzo(a,h)anthracene	370 J	20 J	ND	ND	29 J	13 J	ND	ND	330	90 / 200 / 420	17000
Total Metals (mg/kg)	1.7 J	1.8 J	1.4 J	6.8 J	2.8 J	3.5 J	14 J	1.4 J	6.1 J	11.3 / 13	61
Arsenic, Total	7300 J+	7700 J+	6500 J+	52000 J-	7900 J-	10000 J-	30000 J	1.4 J 14000 J	31000 J	15000 / 15900	
Lead, Total	12 J	7.4 J	2.2 J	58 J	15 J	12 J	30 J	6.3 J	90 J	107	700
Manganese, Total	240 J	540 J	64 J	470 J	160 J	120 J	980 J	790 J	1500 J	630 / 636	4100
Mercury, Total	0.019 J	0.17 J	ND	0.24 J	ND	0.057 J	0.05	0.034	0.098 J	0.89	0.1
Selenium, Total	0.25 J	ND	ND	0.72 J-	0.43 J	0.61 J-	ND	ND	1.6 J-	1.3	1000
TCLP Metals (mg/l)											
Arsenic, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	
Iron, TCLP	ND	ND	1.8	ND	ND	ND	ND	0.22	ND	5	
Lead, TCLP	0.0096	ND	0.01	ND	ND	ND	ND	0.0076	ND	0.0075	
Manganese, TCLP	2.5	2.5	0.083	0.85	1.5	1.3	2.6	54	0.84	0.15	
Mercury, TCLP	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.002	
Selenium, TCLP SPLP Metals (mg/l)	ND	ND	ND	IND	ND	טא	ND	ND	ND	0.05	
Arsenic, SPLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	
Iron, SPLP	11 J	22 J	22	23 J+	18 J+	11 J+	2.4 J+	19 J+	2.8 J+	5	
Lead, SPLP	0.032	0.026	0.014	0.074	0.04	0.03	0.0079	0.013	0.022	0.0075	
Manganese, SPLP	0.11	0.13	0.16	0.27	0.16	0.14	0.095	0.65	ND	0.15	
Mercury, SPLP	ND	0.00011 J	ND	ND	ND	ND	ND	ND	ND	0.002	
Selenium, SPLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	
Field Sample ID	VII.4.44/5.0\ 0.400.44					Market Committee of the	Act of the second	The second second second	W. C. C. C. C. W. C. C.		1
	VI 1-11(5-81-040814	I VI 1-12(0-5)-040814	I VI 2-1(0-5 5)-040714 I	VI 2-2(0-5 5)-040714	I VI 2-3(0-5 5)-040714 I	VI 2-3(0-5 5)-040714D	VI 2-4(0-5 5)-040714	VI 2-5(0-5 5)-040814	VI 2-6(0-5 5)-040814		
Sample Date	4/8/2014	VL1-12(0-5)-040814 4/8/2014	VL2-1(0-5.5)-040714 4/7/2014	VL2-2(0-5.5)-040714 4/7/2014	VL2-3(0-5.5)-040714 4/7/2014	VL2-3(0-5.5)-040714D 4/7/2014	VL2-4(0-5.5)-040714 4/7/2014	VL2-5(0-5.5)-040814 4/8/2014	VL2-6(0-5.5)-040814 4/8/2014	Lie Transcript	Soil Remediation
										Soil Reference	Objectives for
Sample Date	4/8/2014	4/8/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/8/2014	4/8/2014	Soil Reference Concentrations	Objectives for Construction
Sample Date Location ID	4/8/2014 VL1-11	4/8/2014 VL1-12	4/7/2014 VL2-1	4/7/2014 VL2-2	4/7/2014 VL2-3	4/7/2014 VL2-3	4/7/2014 VL2-4	4/8/2014 VL2-5	4/8/2014 VL2-6		Objectives for
Sample Date Location ID Depth	4/8/2014 VL1-11	4/8/2014 VL1-12	4/7/2014 VL2-1	4/7/2014 VL2-2	4/7/2014 VL2-3	4/7/2014 VL2-3	4/7/2014 VL2-4	4/8/2014 VL2-5	4/8/2014 VL2-6		Objectives for Construction
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg)	4/8/2014 VL1-11 5 - 8	4/8/2014 VL1-12 0 - 5 7.15	4/7/2014 VL2-1 0 - 5.5	4/7/2014 VL2-2 0 - 5.5	4/7/2014 VL2-3 0 - 5.5	4/7/2014 VL2-3 0 - 5.5	4/7/2014 VL2-4 0 - 5.5	4/8/2014 VL2-5 0 - 5.5	4/8/2014 VL2-6 0 - 5.5	<6.25,>9.0	Objectives for Construction Workers
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene	4/8/2014 VL1-11 5 - 8 8.02 280	4/8/2014 VL1-12 0 - 5 7.15	4/7/2014 VL2-1 0 - 5.5 7.42	4/7/2014 VL2-2 0 - 5.5 7.58	4/7/2014 VL2-3 0 - 5.5 8.15	4/7/2014 VL2-3 0 - 5.5 8.25	4/7/2014 VL2-4 0 - 5.5 8.06	4/8/2014 VL2-5 0 - 5.5 7.92	4/8/2014 VL2-6 0 - 5.5	Concentrations <6.25,>9.0 900 / 1100 / 1800	Objectives for Construction Workers 170000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene	4/8/2014 VL1-11 5 - 8 8.02 280 230	4/8/2014 VL1-12 0 - 5 7.15 1200 940	4/7/2014 VL2-1 0 - 5.5 7.42 150 130	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37	4/7/2014 VL2-4 0 - 5.5 8.06 1700	4/8/2014 VL2-5 0 - 5.5 7.92 140	4/8/2014 VL2-6 0 - 5.5 5.1 ND	- Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100	Objectives for Construction Workers 170000 17000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	4/8/2014 VL1-11 5 - 8 8.02 280 230 410	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND	- Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100	Objectives for Construction Workers 170000 170000 170000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene	4/8/2014 VL1-11 5 - 8 8.02 280 230	4/8/2014 VL1-12 0 - 5 7.15 1200 940	4/7/2014 VL2-1 0 - 5.5 7.42 150 130	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37	4/7/2014 VL2-4 0 - 5.5 8.06 1700	4/8/2014 VL2-5 0 - 5.5 7.92 140	4/8/2014 VL2-6 0 - 5.5 5.1 ND	- Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100	Objectives for Construction Workers 170000 17000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg)	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420	Objectives for Construction Workers 170000 170000 170000 170000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene	4/8/2014 VL1-11 5 - 8 8.02 280 230 410	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND	- Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100	Objectives for Construction Workers 170000 170000 170000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13	Objectives for Construction Workers 170000 170000 170000 170000 61
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND ND 23 J+	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND ND ND 3.9 J 33 J+	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21	Objectives for Construction Workers 170000 170000 170000 170000 61 690
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Iron, Total	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND ND 23 J+ 19000 J	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND ND ND 3.9 J 33 J+ 23000 J	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900	Objectives for Construction Workers 170000 170000 170000 170000 61 690
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND 14.7 J 23 J+ 19000 J 7.8 J 400 0.048 J	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND 3.9 J 33 J+ 23000 J 6.4 J 230 0.025 J	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89	Objectives for Construction Workers 170000 170000 170000 170000 61 690 700 4100 0.1
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND 23 J+ 19000 J 7.8 J	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J 32 J 720	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND 3.9 J 33 J+ 23000 J 6.4 J 230	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636	Objectives for Construction Workers 170000 170000 170000 170000 61 690 700 4100
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l)	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J-	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J-	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND 14.7 J 23 J+ 19000 J 7.8 J 400 0.048 J 0.33 J	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND	477/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND 3.9 J 33 J+ 23000 J 6.4 J 230 0.025 J 0.23 J	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3	Objectives for Construction Workers 170000 170000 170000 170000 170000 61 690 700 4100 0.1 1000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J-	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND 14.7 J 23 J+ 19000 J 7.8 J 400 0.048 J 0.33 J ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND 3.9 J 33 J+ 23000 J 6.4 J 230 0.025 J 0.23 J	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3	Objectives for Construction Workers 170000 170000 170000 170000 61 690 700 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total ITCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J-	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND 14.7 J 23 J+ 19000 J 7.8 J 400 0.048 J 0.33 J ND ND ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J ND	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND ND 13.9 J 33 J+ 23000 J 6.4 J 230 0.025 J 0.23 J ND ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1	Objectives for Construction Workers 170000 170000 170000 170000 61 690 700 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total ITCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND ND ND	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND A.7 J 23 J+ 19000 J 7.8 J 400 0.048 J 0.33 J ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12000 J 27 J 520 0.029 J 0.28 J ND ND ND	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND ND ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND ND ND ND ND ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5	Objectives for Construction Workers 170000 170000 170000 170000 61 690 700 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP Lead, TCLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND ND ND ND	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND ND 1.6 B	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND ND	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND ND A.7 J 23 J+ 19000 J 7.8 J 400 0.048 J 0.33 J ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND ND ND ND	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J ND ND ND	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND ND ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND ND ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND 3.9 J 33 J+ 23000 J 6.4 J 230 0.025 J 0.23 J ND ND ND ND ND ND ND ND ND ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 90 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5 0.0075	Objectives for Construction Workers 170000 170000 170000 170000 61 690 700 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total ITCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND ND ND	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND	4/7/2014 VL2-2 0 - 5.5 7.58 ND ND ND ND ND A.7 J 23 J+ 19000 J 7.8 J 400 0.048 J 0.33 J ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12000 J 27 J 520 0.029 J 0.28 J ND ND ND	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND ND ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND ND ND ND ND ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5	Objectives for Construction Workers 170000 170000 170000 170000 61 690 700 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND ND ND ND ND ND ND 0.013 J	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND 1.6 B 0.037 4.1	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-2 0 - 5.5 7.58 ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND ND ND ND ND ND ND ND ND 3.2	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND ND ND ND ND ND ND ND ND 0.34	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND 3.9 J 33 J+ 23000 J 6.4 J 230 0.025 J 0.23 J ND ND ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5 0.0075 0.15	Objectives for Construction Workers 170000 170000 170000 170000 61 690 700 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP Mercury, TCLP Mercury, TCLP Mercury, TCLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND 1.6 B 0.037 4.1	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-2 0 - 5.5 7.58 ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND 4.3 J 4.4 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND ND ND ND N	477/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 D+ 12000 J 27 J 520 0.029 J 0.28 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND ND 3.9 J 33 J+ 23000 J 6.4 J 230 0.025 J 0.23 J ND ND ND ND ND ND ND ND ND ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5 0.0075 0.15 0.002	Objectives for Construction Workers 170000 170000 170000 170000 170000 61 690 700 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP Selenium, TCLP Selenium, TCLP Selenium, TCLP Selenium, TCLP Selenium, TCLP Selenium, TCLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND 1.6 B 0.037 4.1 ND ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-2 0 - 5.5 7.58 ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND ND ND ND N	477/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND ND S3.9 J 33 J+ 23000 J 6.4 J 230 0.025 J 0.23 J ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5 0.0075 0.15 0.002	Objectives for Construction Workers 170000 170000 170000 170000 61 690 700 4100 0.1 1000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP Selenium, TCLP Chromium, TCLP Selenium, SPLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND ND ND ND ND ND ND ND 0.013 J ND 0.01 J ND 0.01 J	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND ND 1.6 B 0.037 4.1 ND ND ND ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-2 0 - 5.5 7.58 ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND ND ND ND N	477/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND ND ND ND ND ND S3.9 J 33 J+ 23000 J 6.4 J 230 0.025 J 0.23 J ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 900 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5 0.0075 0.15 0.002 0.05 0.05 0.10	Objectives for Construction Workers 170000 170000 170000 170000 170000 61 6900 700 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Lead, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP Selenium, SPLP Iron, SPLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND ND 1.6 B 0.037 4.1 ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-2 0 - 5.5 7.58 ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND ND ND ND N	477/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 900 / 1500 / 2100 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5 0.0075 0.15 0.002 0.05 0.15 0.005 0.15 5 0.005	Objectives for Construction Workers 170000 170000 170000 170000 170000 61 690 700 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP Selenium, TCLP Lead, SPLP Lead, SPLP Lead, SPLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND ND 1.6 B 0.037 4.1 ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-2 0 - 5.5 7.58 ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND ND ND ND N	477/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 90 / 200 / 420 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5 0.0075 0.15 0.002 0.05 0.1 5 0.005 0.1 5 0.005	Objectives for Construction Workers 170000 170000 170000 170000 61 6900 7000 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP Selenium, TCLP Selenium, TCLP Selenium, TCLP Selenium, TCLP Mercury, TCLP Selenium, SPLP Lead, SPLP Lead, SPLP Manganese, SPLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND ND 1.6 B 0.037 4.1 ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-2 0 - 5.5 7.58 ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND ND ND ND N	477/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 900 / 1500 / 2100 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5 0.0075 0.15 0.002 0.05 0.1 5 0.0075 0.11 5 0.0075 0.11 5	Objectives for Construction Workers 170000 170000 170000 170000 170000 61 6900 7000 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP Selenium, TCLP Selenium, TCLP Lead, TCLP Mercury, TCLP Selenium, TCLP Lead, TCLP Selenium, SPLP Iron, SPLP Lead, SPLP Manganese, SPLP Mercury, SPLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND 0.013 J ND 0.01 J ND 0.021 J 14 J+ 0.056 0.18 B 0.00016 J	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND ND 1.6 B 0.037 4.1 ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-2 0 - 5.5 7.58 ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND ND ND ND N	477/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 900 / 1500 / 2100 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5 0.0075 0.15 0.002 0.05 0.1 5 0.0075 0.11 5 0.0075 0.11 5 0.0075 0.15 0.0002	Objectives for Construction Workers 170000 170000 170000 170000 170000 61 6900 7000 4100 0.1 10000
Sample Date Location ID Depth Parameter Laboratory pH SVOCs (ug/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)ffluoranthene Dibenzo(a,h)anthracene Total Metals (mg/kg) Arsenic, Total Chromium, Total Iron, Total Lead, Total Manganese, Total Mercury, Total Selenium, Total TCLP Metals (mg/l) Arsenic, TCLP Chromium, TCLP Iron, TCLP Lead, TCLP Manganese, TCLP Mercury, TCLP Selenium, TCLP Lead, TCLP Lead, SPLP Chromium, SPLP Lead, SPLP Lead, SPLP Lead, SPLP Lead, SPLP Lead, SPLP Manganese, SPLP	4/8/2014 VL1-11 5 - 8 8.02 280 230 410 63 4.2 J 13 15000 J 67 J 370 J 0.72 J 0.92 J- ND	4/8/2014 VL1-12 0 - 5 7.15 1200 940 1200 250 21 J 17 130000 J 130 J 620 J 0.94 J 3.5 J- ND ND ND 1.6 B 0.037 4.1 ND	4/7/2014 VL2-1 0 - 5.5 7.42 150 130 170 30 J 6.9 J 14 J+ 16000 J 80 J 460 0.13 J 0.23 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-2 0 - 5.5 7.58 ND	4/7/2014 VL2-3 0 - 5.5 8.15 28 J 22 J 28 J ND ND 4.3 J 14 J+ 15000 J 32 J 720 0.03 J ND ND ND ND ND ND ND ND ND N	477/2014 VL2-3 0 - 5.5 8.25 29 J 37 43 27 J 4.4 J 12 J+ 12000 J 27 J 520 0.029 J 0.28 J ND ND ND ND ND ND ND ND ND N	4/7/2014 VL2-4 0 - 5.5 8.06 1700 1500 2000 300 5 J 11 J+ 17000 J 74 J 290 0.23 J 0.26 J ND	4/8/2014 VL2-5 0 - 5.5 7.92 140 120 170 31 J 3 J 14 J+ 13000 J 9.7 J 240 0.021 J 0.21 J ND	4/8/2014 VL2-6 0 - 5.5 5.1 ND	Concentrations <6.25,>9.0 900 / 1100 / 1800 90 / 1300 / 2100 900 / 1500 / 2100 900 / 1500 / 2100 11.3 / 13 21 15000 / 15900 107 630 / 636 0.89 1.3 0.05 0.1 5 0.0075 0.15 0.002 0.05 0.1 5 0.0075 0.11 5 0.0075 0.11 5	Objectives for Construction Workers 170000 170000 170000 170000 170000 61 6900 7000 4100 0.1 10000

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061 INVESTIGATION RESULTS
FAI 74: I-74 FROM 19TH STREET TO 23RD STREET
STATION 3003+00 TO 3018+00
ILLINOIS DEPARTMENT OF TRANSPORTATION
Moline, Rock Island County, Illinois

FIGURE 4-1e


Field Sample ID	VL2-7(0-5.5)-040814	VL2-8(0-5)-040814	VL2-8(5-10)-040814	VL2-8(5-10)-040814D	VL2-9(0-5)-040714	VL2-9(5-10)-040714	VL2-10(0-5)-040714	VL2-10(5-10)-040714	WI-1(0-5.5)-040714		
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	Soil Reference	Soil Remediation
Location ID	VL2-7	VL2-8	VL2-8	VL2-8	VL2-9	VL2-9	VL2-10	VL2-10	WI-1	Concentrations	Objectives for Construction
Depth	0 - 5.5	0 - 5	5 - 10	5 - 10	0 - 5	5 - 10	0 - 5	5 - 10	0 - 5.5	Concentrations	Workers
Parameter											
Laboratory pH	7.63	8.34	7.81	7.9	7.95	7.97	8.31	8.36	7.94	<6.25,>9.0	_
SVOCs (ug/kg)											
Benzo(a)pyrene	37 J	230	260 J-	280	200	10 J	ND	ND	42	90 / 1300 / 2100	17000
Total Metals (mg/kg)											
Antimony, Total	ND	ND	9.2 Љ	0.66 J	0.44 J	ND	ND	ND	ND	5	82
Cadmium, Total	0.62 J	1.1 J	1.5 J	1.8	0.74	0.51	0.28 J	0.47 J	0.59	5.2	200
Chromium, Total	27	13 J+	13	12	11	18	14 J+	12 J+	15	21	690
Iron, Total	23000 J	15000 J	22000 J	19000	16000	16000	14000 J	14000 J	15000	15000 / 15900	
Lead, Total	11 J	33 J	110 J	46	140 B	12 B	6.8 J	5.3 J	28 B	107	700
Manganese, Total	360 J	330	1000 J	480 B	300	590	260	180	430	630 / 636	4100
Nickel, Total	24	14 J	13	12	11	21	10 J	10 J	15	100	4100
TCLP Metals (mg/l)											
Cadmium, TCLP	ND	ND	0.0031 J	0.0033 J	0.0083	ND	ND	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	
Iron, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	5	
Lead, TCLP	0.0088	ND	0.0088	ND	0.18	ND	ND	ND	ND	0.0075	
Manganese, TCLP	0.43	0.022 J	7.3	8.7	1.1	0.067	0.42	0.47	0.12	0.15	
Nickel, TCLP	0.015 J	ND	0.018 J	0.02 J	0.021 J	ND	ND	ND	ND	0.1	
SPLP Metals (mg/l)											
Cadmium, SPLP	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005	
Chromium, SPLP	ND	ND	0.017 J	0.012 J	0.019 J	ND	ND	ND	ND	0.1	
Iron, SPLP	3.4 J+	1.6	10 J	4.3	1.2	0.38	0.88	0.34	0.81	5	
Lead, SPLP	0.011	0.026	0.019	0.017	0.14	ND	ND	ND	0.037	0.0075	
Manganese, SPLP	ND	0.074	0.22 B	0.16 B	0.23	0.014 J	0.046	ND	0.038	0.15	
Nickel, SPLP	ND	ND	0.012 J	ND	0.48	ND	ND	ND	ND	0.1	

Field Sample ID	WP-1(0-4	9)-040714	WP-1(0-4.9	9)-040714D	WP-2(0-4.	9)-040714		
Sample Date	4/7/2	2014	4/7/	2014	4/7/2	2014	Soil Reference	Soil Remediation Objectives for
Location ID	W	P-1	WF	² -1	WF	² -2	Concentrations	Construction
De pth	0 -	4.9	0 -	4.9	0 -	4.9	Concentations	Workers
Parameter Parameter								
Laboratory pH	8.19		8.43		8.48		<6.25,>9.0	_
SVOCs (ug/kg)								
Benzo(a)pyrene	260		170	J	58		90 / 1300 / 2100	17000
Dibenzo(a,h)anthracene	94	J		ND	14	J	90 / 200 / 420	17000
Total Metals (mg/kg)								
Cadmium, Total	0.5		1.1		0.68		5.2	200
Iron, Total	11000		16000		13000		15000 / 15900	=
Lead, Total	65	В	98	В	43	В	107	700
Manganese, Total	250		380		400		630 / 636	4100
Mercury, Total	0.62		0.34		0.31		0.89	0.1
TCLP Metals (mg/l)								
Cadmium, TCLP	0.0053		0.0063		0.005	U	0.005	
Iron, TCLP		ND		U	0.2	U	5	_
Lead, TCLP	0.04		0.039	Ĭ	0.0075	U	0.0075	_
Manganese, TCLP	6.7		3.3		0.63		0.15	
Mercury, TCLP		ND		U	0.0002	U	0.002	-
SPLP Metals (mg/l)								
Cadmium, SPLP		ND		U	0.005	U	0.005	1
Iron, SPLP	3.1		1.4		1.2		5	_
Lead, SPLP	0.052		0.1		0.057		0.0075	<u></u>
Manganese, SPLP	0.12		0.12		0.088		0.15	_
Mercury, SPLP		ND		U	0.00026		0.002	_

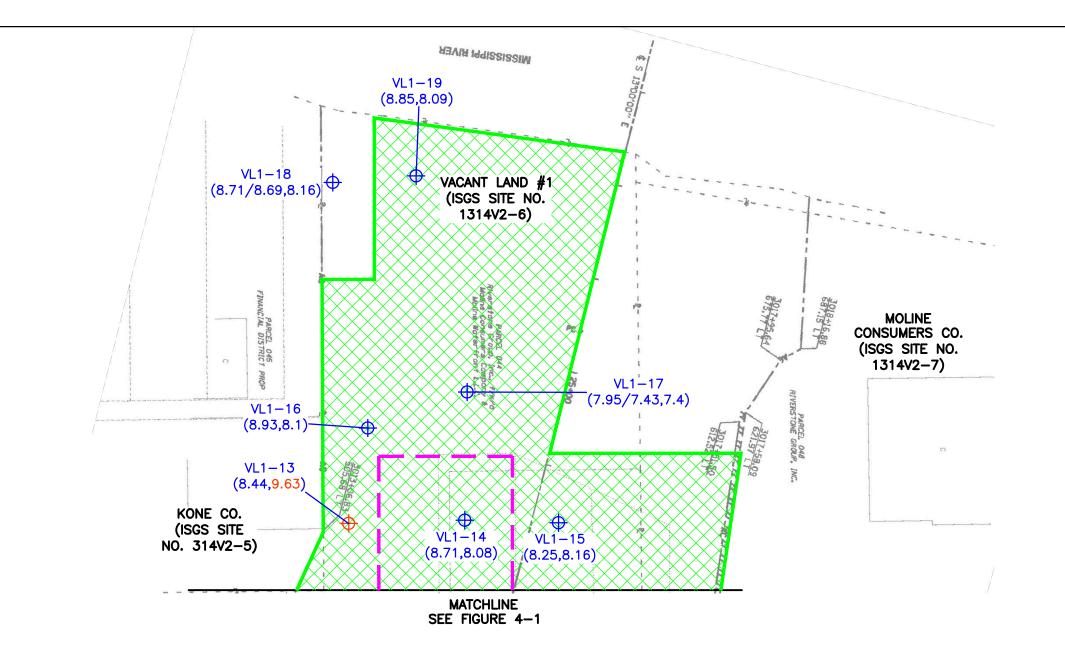
SOLUTIONS.

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061 FIGURE 4-1f

LEGEND, NOTES AND DATA ARE PRESENTED ON FIGURES 4-2a.

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061 EXTENT OF POTENTIALLY IMPACTED SOIL
FAI 74: I-74 FROM 19TH STREET TO 23RD STREET
STATION 3018+00 TO 3025+00
ILLINOIS DEPARTMENT OF TRANSPORTATION
Moline, Rock Island County, Illinois

Field Sample ID	CB-2(0-6)-040814	CB-2(6-8)-040814	CB-3(0-6)-040814	CB-4(0-6)-040814	CB-4(6-8)-040814	CB-5(0-2)-040814	CB-6(0-2)-040814	CB-7(0-2)-040814	CB-7(0-2)-040814D	MC-1(0-6)-040814	VL-2(0-5.5)-040914	VL-3(0-5.5)-040914		
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/9/2014	4/9/2014	Soil Reference	Soil Remediation Objectives for
Location ID	CB-2	CB-2	CB-3	CB-4	CB-4	CB-5	CB-6	CB-7	CB-7	MC-1	VL-2	VL-3	Concentrations	Construction
Depth	0 - 6	6 - 8	0 - 6	0 - 6	6 - 8	0 - 2	0 - 2	0 - 2	0 - 2	0 - 6	0 - 5.5	0 - 5.5	Conconications	Workers
Parameter														Electric State of Professional Code
Laboratory pH	8.03	8.07	7.16	8.02	8.12	8.14	7.56	8.1	8.01	7.56	8.85	7.97	<6.25,>9.0	
SVOCs (ug/kg)														
Benzo(a)pyrene	31 J	18 J	ND	310	29 J	250	560	180	130	ND	ND	200 J	90 / 1300 / 2100	17000
Dibenzo(a,h)anthracene	26 J	ND	ND	63	ND	67	110	54	44	ND	ND	46 J	90 / 200 / 420	17000
Total Metals (mg/kg)														
Cadmium, Total	0.51 J	0.072 J	0.17 J	0.71 J	0.26 J	0.61 J	0.74 J	0.38 J	0.46 J	0.11 J	0.19	0.2	5.2	200
Chromium, Total	8.2	4.7	11	13	9.5	14	15	13	13	9.1	23	17	21	690
Iron, Total	8900 J	4900 J	10000 J	21000 J	11000 J	15000 J	15000 J	12000 J	12000 J	7500 J	19000	20000	15000 / 15900	
Lead, Total	16 J	4.9 J	3.5 J	80 J	4.8 J	50 J	88 J	38 J	46 J	3.6 J	7.3 B	57 B	107	700
Manganese, Total	340 J	79 J	200 J	340 J	170 J	420 J	370 J	270 J	320 J	170 J	550	260	630 / 636	4100
Mercury, Total	0.02 J	ND	0.011 J	0.087 J	ND	0.14 J	0.24 J	ND	0.29 J	0.013 J	0.023	0.18	0.89	0.1
TCLP Metals (mg/l)														
Cadmium, TCLP	ND	ND	ND	ND	ND	0.0021 J	0.0032 J	ND	0.0024 J	ND	ND	0.0068	0.005	
Chromium, TCLP	ND	ND	ND	ND	ND	ND	0.01 J	ND	ND	ND	ND	ND	0.1	
Iron, TCLP	ND	5.7 B	0.83	0.36	5									
Lead, TCLP	0.0079	ND	ND	ND	ND	ND	0.011	0.0098	ND	ND	ND	1.4	0.0075	
Manganese, TCLP	0.23	0.34	0.21	0.011 J	1.3	0.11	0.19	0.16 J	0.75 J	0.078	ND	4.1 B	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002									
SPLP Metals (mg/l)														
Cadmium, SPLP	ND	ND	ND	ND	0.005									
Chromium, SPLP	0.03	0.011 J	0.033	0.035	0.016 J	0.026	0.027	0.033	0.024 J	0.019 J	0.017 J	0.013 J	0.1	
Iron, SPLP	25 J+	1.8 J+	23 J+	21 J+	7.4 J+	17 J+	13 J+	20 J	11 J	12 J+	8.8	7.1	5	
Lead, SPLP	0.029	0.017	0.015	0.033	0.014	0.037	0.047	0.046	0.032	ND	0.0078	0.22	0.0075	
Manganese, SPLP	0.24 B	ND	0.25 B	0.18 B	0.068 B	0.17 B	0.13 B	0.17 B	0.11 B	0.11 B	0.064	0.11	0.15	
Mercury, SPLP	ND	0.00013 J	ND	0.00022	ND	0.00016 J	0.002							


LEGEND — — EXISTING R.O.W. — PROPOSED R.O.W. SOIL BORING LOCATION SOIL SAMPLE pH VALUES. A / REPRESENTS A SOIL SAMPLE AND DUPLICATE SOIL SAMPLE pH VALUES. RED INDICATES A pH VALUE EITHER LESS THAN 6.25 S.U. OR GREATER THAN 9.0 S.U. CONSTRUCTION AREA ESTIMATED TO EXCEED THE SOIL REFERENCE CONCENTRATIONS. SOIL MAY BE MANAGED TO A CCDD OR UNCONTAMINATED SOIL FILL OPERATION WITHIN A MSA COUNTY OR CHICAGO CORPORATE LIMITS. ACQUISITION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS. ANY EXCAVATED MATERIAL SHOULD BE MANAGED AS A NON—SPECIAL WASTE.

NOTES:

- 1. ORGANIC SOIL REFERENCE CONCENTRATIONS (RC) INCLUDE THE MOST STRINGENT VALUES FROM THE MAC TABLE. THE SECOND AND THIRD RC, AS APPLICABLE, ARE THE CHICAGO CORPORATE LIMIT, AND MSA COUNTY EXCLUDING CHICAGO VALUES FROM THE MAC TABLE.
- 2. INORGANIC SOIL REFERENCE CONCENTRATIONS (RC) INCLUDE THE MOST STRINGENT VALUES FROM THE MAC TABLE. THE SECOND RC, AS APPLICABLE, IS THE MSA COUNTY VALUE FROM THE MAC TABLE.
- 3. ONLY SAMPLES AND PARAMETERS WITH EXCEEDANCES IMPACTING CONSTRUCTION ACTIVITIES ARE PRESENTED ON THIS FIGURE: SEE TABLES 4-2 AND 4-3 AND APPENDIX C FOR ALL DATA.
- 4. YELLOW IN THE TABLE INDICATES CONCENTRATION EXCEEDS THE REFERENCE CONCENTRATION FOR SOIL.
- 5. BLUE IN THE TABLE INDICATES CONCENTRATION EXCEEDS THE REMEDIATION OBJECTIVES FOR CONSTRUCTION WORKERS. FIGURE 4-2a

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061

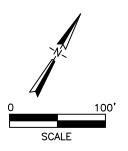


FIGURE 4-3

SOLUTIONS.

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061 EXTENT OF POTENTIALLY IMPACTED SOIL
ACQUISITION AREAS NORTH OF RIVER ROAD
ILLINOIS DEPARTMENT OF TRANSPORTATION
Moline, Rock Island County, Illinois

Field Sample ID	VL1-13(0-5)-040914	VL1-13(5-10)-040914	VL1-14(0-5)-040914	VL1-14(5-7)-040914	VL1-15(0-5)-040914	VL1-15(5-7)-040914	VL1-16(0-5)-040914	VL1-16(5-10)-040914		
Sample Date	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	0-11 0-6	Soil Remediation
Location ID	VL1-13	VL1-13	VL1-14	VL1-14	VL1-15	VL1-15	VL1-16	VL1-16	Soil Reference Concentrations	Objectives for Construction
Depth	0 - 5	5 - 10	0 - 5	5 - 7	0 - 5	5 - 7	0 - 5	5 - 10	Concentiations	Workers
Parameter										
Laboratory pH	8.44	9.63	8.71	8.08	8.25	8.16	8.93	8.1	<6.25,>9.0	
SVOCs (ug/kg)										
Benzo(a)anthracene	ND	2000	31000 J-	1600	68	230	3000	ND	900 / 1100 / 1800	170000
Benzo(a)pyrene	ND	2300	38000 J-	1600	62	180	2500	ND	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	ND	3400	38000 J-	2000	88	280	4200	ND	900 / 1500 / 2100	170000
Benzo(k)fluoranthene	ND	1200	25000 J-	1000	32 J	120	1300	ND	9000	1700000
Carbazole	ND	200	3300 J-	ND	ND	ND	510	ND	600	6200000
Dibenzo(a,h)anthracene	ND	600	4200 J-	190	ND	26 J	730	ND	90 / 200 / 420	17000
Indeno(1,2,3-cd)pyrene	ND	1300	15000 J	770	33 J	97	1500	ND	900 / 900 / 1600	170000
Total Metals (mg/kg)										
Cadmium, Total	0.43 J-	0.093 J	0.37 J	0.24	0.88	0.47	0.39 J-	0.28 J-	5.2	200
Chromium, Total	12 J	5.4 J	25	8.9	18	19	12 J	18 J	21	690
Iron, Total	23000 J	5200 J	21000	9400	24000	20000	17000 J	20000 J	15000 / 15900	
Lead, Total	7.7 J	8.2 J	62 B	11 B	110 B	61 B	30 J	8.6 J	107	700
Manganese, Total	920 J	280 J	1400	530	380	250	1800 J	440 J	630 / 636	4100
Mercury, Total	0.022	0.43	0.053	0.027	0.41	0.39	0.012 J	0.032	0.89	0.1
Selenium, Total	ND	ND	1.9 J	ND	0.31 J	ND	ND	0.3 J	1.3	1000
TCLP Metals (mg/l)										
Cadmium, TCLP	ND	0.0025 J	0.0022 J	0.0021 J	0.006	0.0023 J	0.0068	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	0.1	-
Iron, TCLP	ND	ND	0.47	ND	0.4	0.52	ND	1.1	5	-
Lead, TCLP	ND	ND	ND	ND	1.3	0.019	ND	0.012	0.0075	-
Manganese, TCLP	1.1	1	1.5 B	1.7 B	0.87 B	0.27 B	0.76	7.6	0.15	
Mercury, TCLP	ND	0.00012 J	ND	ND	ND	ND	ND	ND	0.002	-
Selenium, TCLP	ND	ND	ND	0.011 J	ND	ND	ND	ND	0.05	
SPLP Metals (mg/l)										
Cadmium, SPLP	ND	ND	ND	ND	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.013 J	ND	0.015 J	0.011 J	0.019 J	0.013 J	0.033	0.012 J	0.1	-
Iron, SPLP	7.7 J+	ND	6.8	5	10	6.6	24 J+	9.5 J+	5	-
Lead, SPLP	0.0078	ND	0.042	0.011	0.11	0.054	0.019	0.013	0.0075	
Manganese, SPLP	0.06	ND	0.1	0.081	0.082	0.11	0.21	1.2	0.15	-
Mercury, SPLP	ND	ND	ND	ND	0.0002	0.00051	ND	0.00018 J	0.002	-
Selenium, SPLP	ND	ND	ND	ND	ND	ND	ND	ND	0.05	-

LEGEND

— — EXISTING R.O.W.

SOIL BORING LOCATION

(X.XX/X.XX) SOIL SAMPLE pH VALUES. A / REPRESENTS A SOIL SAMPLE AND DUPLICATE SOIL SAMPLE pH VALUES. RED INDICATES A pH VALUE EITHER LESS THAN 6.25 S.U. OR GREATER THAN 9.0 S.U.

ACQUISITION AREA ESTIMATED TO EXCEED SOIL REFERENCE CONCENTRATIONS. MATERIAL SHOULD BE MANAGED AS A NON-SPECIAL WASTE.

APPROXIMATE AREA ESTIMATED TO EXCEED TACO TIER 1
CONSTRUCTION WORKER REFERENCE CONCENTRATIONS

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061 EXTENT OF POTENTIALLY IMPACTED SOIL
ACQUISITION AREAS NORTH OF RIVER ROAD
ILLINOIS DEPARTMENT OF TRANSPORTATION
Moline, Rock Island County, Illinois

FIGURE **4-3**a

Field Sample ID	VL1-17(0-5)-040914	VL1-17(0-5)-040914D	VL1-17(5-9)-040914	VL1-18(0-5)-040914	VL1-18(0-5)-040914D	VL1-18(5-10)-040914	VL1-19(0-5)-040914	VL1-19(5-10)-040914		
Sample Date	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	Call Bafanana	Soil Remediation
Location ID	VL1-17	VL1-17	VL1-17	VL1-18	VL1-18	VL1-18	VL1-19	VL1-19	Soil Reference Concentrations	Objectives for Construction
Depth	0 - 5	0 - 5	5 - 9	0 - 5	0 - 5	5 - 10	0 - 5	5 - 10	Concentiations	Workers
Parameter										
Laboratory pH	7.95	7.43	7.4	8.71	8.69	8.16	8.85	8.09	<6.25,>9.0	
SVOCs (ug/kg)										
Benzo(a)pyrene	63	85	ND	27 J	ND	37	500	42	90 / 1300 / 2100	17000
Dibenzo(a,h)anthracene	31 J	32 J	ND	ND	ND	15 J	140	ND	90 / 200 / 420	17000
Total Metals (mg/kg)										
Cadmium, Total	1.4	1.5	0.13 J	0.27 J-	0.25 J-	0.062 J	0.3 J-	0.15 J-	5.2	200
Chromium, Total	19	22	5.8	12 J	12 J	52 J	33 J	25 J	21	690
Iron, Total	130000	100000	10000	12000 J	11000 J	15000 J	12000 J	13000 J	15000 / 15900	
Lead, Total	40 B	45 B	9.5 B	6.9 J	6 J	10 J	9.8 J	13 J	107	700
Manganese, Total	1900 J	580 J	270	360 J	310 J	960 J	300 J	170 J	630 / 636	4100
Mercury, Total	0.28	0.23	0.03	0.018	0.024	0.012 J	0.011 J	0.01 J	0.89	0.1
Nickel, Total	24	20	7.4	13 J	12 J	7.1 J	31 J	38 J	100	4100
TCLP Metals (mg/l)										
Cadmium, TCLP	0.0099	0.0081	ND	ND	ND	ND	0.0031 J	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	0.1	
Iron, TCLP	ND	0.37	ND	0.3	ND	ND	ND	4.9	5	
Lead, TCLP	0.0084	ND	ND	ND	ND	ND	ND	ND	0.0075	
Manganese, TCLP	6.4 B	5.5 B	3.9 B	0.23	0.26	0.78	0.55	1.7	0.15	
Mercury, TCLP	ND	ND	ND	ND	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.056	0.047	0.018 J	ND	ND	0.034	0.015 J	0.11	0.1	
SPLP Metals (mg/l)										
Cadmium, SPLP	ND	ND	ND	ND	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.019 J	0.012 J	ND	0.016 J	0.015 J	ND	0.02 J	ND	0.1	
Iron, SPLP	11	9.2	2.2	9 J+	10 J+	0.81 J+	10 J+	0.58 J+	5	
Lead, SPLP	0.027	0.022	0.011	0.0083	0.0082	ND	0.0097	ND	0.0075	
Manganese, SPLP	0.17	0.13	0.12	0.057	0.081	0.015 J	0.059	0.029	0.15	
Mercury, SPLP	ND	ND	ND	ND	ND	ND	ND	ND	0.002	
Nickel, SPLP	0.014 J	0.01 J	ND	ND	0.01 J	ND	0.013 J	ND	0.1	

<u>NOTES</u>

- 1. ORGANIC SOIL REFERENCE CONCENTRATIONS (RC) INCLUDE THE MOST STRINGENT VALUES FROM THE MAC TABLE. THE SECOND AND THIRD RC, AS APPLICABLE, ARE THE CHICAGO CORPORATE LIMIT, AND MSA COUNTY EXCLUDING CHICAGO VALUES FROM THE MAC TABLE.
- 2. INORGANIC SOIL REFERENCE CONCENTRATIONS (RC) INCLUDE THE MOST STRINGENT VALUES FROM THE MAC TABLE. THE SECOND RC, AS APPLICABLE, IS THE MSA COUNTY VALUE FROM THE MAC TABLE.
- 3. ONLY SAMPLES AND PARAMETERS WITH EXCEEDANCES IMPACTING CONSTRUCTION ACTIVITIES ARE PRESENTED ON THIS FIGURE: SEE TABLES 4-2 AND 4-3 AND APPENDIX C FOR ALL DATA.
- 4. YELLOW IN THE TABLE INDICATES CONCENTRATION EXCEEDS THE REFERENCE CONCENTRATION FOR SOIL.
- 5. BLUE IN THE TABLE INDICATES CONCENTRATION EXCEEDS THE REMEDIATION OBJECTIVES FOR CONSTRUCTION WORKERS.
- 6. GREEN IN THE TABLE INDICATES CONCENTRATION EXCEEDS BOTH THE REFERENCE CONCENTRATION FOR SOIL THE REMEDIATION OBJECTIVES FOR CONSTRUCTION WORKERS.

Sample Location/Depth Interval	Head Space Reading (Units Above Background)
VL1-17: 2.4 to 3.0 m (8.0 to 10.0 ft) bgs	25

FIGURE 4-3b

750 E. Bunker Ct. Suite 500 Vernon Hills, Illinois 60061

Table 4-1

Field Observations and Sampling Rationale Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Site	Boring Station Location ¹	Boring	Depth	Construction Activity/Property	Maximum Constr	•	Headspace Screening	Max. Heads	pace Depth	Soil Sample	Depth ²	Comments
l		meters	feet	Acquisition	meters	feet	OVM units	meters	feet	meters	feet	
City of Mo	oline (ISGS Site No. 131	14V2-4)				•	•				•	
WP-1	STA 1893+52, 7.3 m (24 ft) RT of 19th Street CL.	1.5	5.0	Sanitary sewer reconstruction.	1.5	4.9	BG	na	na	0 - 1.5	0 - 4.9	
WP-2	STA 1894+17, 9.1 m (30 ft) RT of 19th Street CL.	1.5	5.0	Sanitary sewer reconstruction.	1.5	4.9	BG	na	na	0 - 1.5	0 - 4.9	
Vacant La	and No. 1 (ISGS Site No	. 1314V2-6)	<u>'</u>		ı	<u> </u>		<u> </u>		1	
VL1-1	STA 3013+58, 52.7 m (173 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10	
VL1-2	STA 3013+64, 29.9 m (98 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition, River Drive reconstruction, temporary bike path construction, and sanitary sewer/water main reconstruction.	5.9	19.4	BG	na	na	0 - 1.8 1.8 - 3.0	0 - 6.0 6.0 - 10	Maximum depth of construction was not reached due to refusal.
VL1-3	STA 3014+68, 25.6 m (84 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition, River Drive reconstruction, temporary bike path construction, and sanitary sewer/water main reconstruction.	5.9	19.4	BG	na	na	0 - 1.8 1.8 - 3.0	0 - 6.0 6.0 - 10	Maximum depth of construction was not reached due to refusal.
VL1-4	STA 3015+52, 25.3 m (83 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition, River Drive reconstruction, temporary bike path construction, and sanitary sewer/water main reconstruction.	5.9	19.4	BG	na	na	0 - 1.8 1.8 - 3.0	0 - 6.0 6.0 - 10	Maximum depth of construction was not reached due to refusal.
VL1-5	STA 3016+59, 25.6 m (84 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition, River Drive reconstruction, temporary bike path construction, and sanitary sewer/water main reconstruction.	5.9	19.4	BG	na	na	0 - 1.8 1.8 - 3.0	0 - 6.0 6.0 - 10	Maximum depth of construction was not reached due to refusal.
VL1-6	STA 3016+91, 40.2 m (132 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition, River Drive reconstruction, temporary bike path construction, and sanitary sewer/water main reconstruction.	4.6	15.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10	Maximum depth of construction was not reached due to refusal.
VL1-7	STA 3016+11, 47.9 m (157 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	2.1 - 2.7	7.0 - 9.0	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10	

Field Observations and Sampling Rationale

Illinois Department of Transportation FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Site	Boring Station Location ¹	Boring	Depth	Construction Activity/Property	Maximum Constr	•	Headspace Screening	Max. Heads	pace Depth	Soil Sample	e Depth ²	Comments	
		meters	feet	Acquisition	meters feet		OVM units	meters feet		meters feet			
Vacant La	nd No. 1 (ISGS Site No	o. 1314V2-6) (Continu	ied)	•		•				<u> </u>		
VL1-8	STA 3014+72, 49.1 m (161 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10		
VL1-9	STA 3009+27, 91.1 m (299 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition investigation.	4.6	15.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10	Maximum depth of construction was not reached due to refusal.	
VL1-10	STA 3013+13, 103 m (338 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10		
VL1-11	STA 3014+31, 112 m (368 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 2.4	0 - 5.0 5.0 - 8.0		
VL1-12	STA 3015+56, 105 m (346 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5	0 - 5.0		
VL1-13	Located north of River Drive and west of Site 1314V2-7, as shown on Figure 3-3.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10		
VL1-14	Located north of River Drive and west of Site 1314V2-7, as shown on Figure 3-3.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 2.1	0 - 5.0 5.0 - 7.0		
VL1-15	Located north of River Drive and west of Site 1314V2-7, as shown on Figure 3-3.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 2.1	0 - 5.0 5.0 - 7.0		
VL1-16	Located north of River Drive and west of Site 1314V2-7, as shown on Figure 3-3.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10		
VL1-17	Located north of River Drive and west of Site 1314V2-7, as shown on Figure 3-3.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	25.0	2.7	9.0	0 - 1.5 1.5 - 2.7	0 - 5.0 5.0 - 9.0	Groundwater encountered at 2.7 m (9.0 ft) bgs. Temporary well screened from 0 - 3.0 m (0 - 10 ft) bgs.	
VL1-18	Located north of River Drive and west of Site 1314V2-7, as shown on Figure 3-3.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10		
VL1-19	Located north of River Drive and west of Site 1314V2-7, as shown on Figure 3-3.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10		

Field Observations and Sampling Rationale

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Site	Boring Station Location 1	Boring	Depth	Construction Activity/Property	Maximum Constr	•	Headspace Screening	Max. Heads	pace Depth	Soil Sample	Depth ²	Comments
		meters	feet	Acquisition	meters	feet	OVM units	meters	feet	meters	feet]
Moline Co	onsumers Co. (ISGS Sit	e No. 1314	V2-7)				•	•				
MC-1	STA 3021+57, 56.1 m (184 ft) LT of River Drive CL.	3.0	10.0	Sanitary sewer reconstruction.	5.7	18.8	BG	na	na	0 - 1.8	0 - 6.0	Groundwater encountered at 1.8 m (6.0 ft) bgs. Temporary well screened from 0 - 3.0 m (0 - 10 ft) bgs.
Commerc	ial Building (ISGS Site	No. 1314V	2-8)									
CB-1	STA 3017+66, 14.3 m (47 ft) LT of River Drive CL.	3.0	10.0	Sanitary sewer reconstruction and temporary bike path construction.	6.0	19.7	BG	na	na	0 - 1.8 1.8 - 2.4	0 - 6.0 6.0 - 8.0	Maximum depth of construction was not reached due to refusal.
CB-2	STA 3018+52, 24.4 m (80 ft) LT of River Drive CL.	3.0	10.0	Sanitary sewer reconstruction and temporary bike path construction.	6.0	19.7	BG	na	na	0 - 1.8 1.8 - 2.4	0 - 6.0 6.0 - 8.0	Maximum depth of construction was not reached due to refusal.
CB-3	STA 3019+68, 28.3 m (93 ft) LT of River Drive CL.	3.0	10.0	Sanitary sewer reconstruction and temporary bike path construction.	6.0	19.7	BG	na	na	0 - 1.8	0 - 6.0	Maximum depth of construction was not reached due to refusal.
CB-4	STA 3020+39, 25.6 m (84 ft) LT of River Drive CL.	3.0	10.0	Sanitary sewer reconstruction and temporary bike path consturction.	6.0	19.7	BG	na	na	0 - 1.8 1.8 - 2.4	0 - 6.0 6.0 - 8.0	Groundwater encountered at 2.4 m (8.0 ft) bgs. Temporary well screened from 0 - 3.0 m (0 - 10 ft) bgs.
CB-5	STA 3019+83, 14.9 m (49 ft) LT of River Drive CL.	1.5	5.0	River Drive reconstruction and temporary bike path construction.	0.6	2.0	BG	na	na	0 - 0.6	0 - 2.0	
CB-6	STA 3019+06, 14.3 m (47 ft) LT of River Drive CL.	1.5	5.0	River Drive reconstruction and temporary bike path construction.	0.6	2.0	BG	na	na	0 - 0.6	0 - 2.0	
CB-7	STA 3018+01, 17.4 m (57 ft) LT of River Drive CL.	1.5	5.0	River Drive reconstruction and temporary bike path construction.	0.6	2.0	BG	na	na	0 - 0.6	0 - 2.0	
CB-8	STA 3016+46, 112 m (369 ft) LT of River Drive CL.	3.0	10.0	ROW Acquisition area.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10	

Field Observations and Sampling Rationale

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Site	Boring Station Location 1	Boring	Depth	Construction Activity/Property	Maximum Constr	-	Headspace Screening	Max. Heads	pace Depth	Soil Sample	Depth ²	Comments
		meters	feet	Acquisition	meters	feet	OVM units	meters	feet	meters	feet	
State of II	linois IDOT (ISGS Site	No. 1314V	2-10)	<u> </u>		ı		<u> </u>	<u>_</u>		· L	
SR-1	STA 1895+09, 11.6 m (38 ft) LT of 19th Street CL.	3.0	10.0	Sanitary sewer reconstruction.	6.6	21.5	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10	Maximum depth of construction was not reached due to refusal.
SR-2	STA 3006+10, 21.3 m (70 ft) LT of River Drive CL.	4.0	13.0	Sanitary sewer reconstruction.	6.6	21.5	BG	na	na	0 - 1.5 1.5 - 3.0 3.0 - 4.0	0 - 5.0 5.0 - 10 10 - 13	Groundwater encountered at 4.0 m (13 ft) bgs. Temporary well screened from 0.9 - 4.0 m (3.0 - 13 ft) bgs.
SR-3	STA 3007+05, 24.7 m (81 ft) LT of River Drive CL.	4.0	13.0	Sanitary sewer reconstruction.	6.6	21.5	BG	na	na	0 - 1.5 1.5 - 3.0 3.0 - 4.0	0 - 5.0 5.0 - 10 10 - 13	Maximum depth of construction was not reached due to refusal.
SR-4	STA 3007+89, 25.3 m (83 ft) LT of River Drive CL.	3.7	12.0	Sanitary sewer reconstruction.	6.6	21.5	BG	na	na	0 - 1.5 1.5 - 3.0 3.0 - 3.7	0 - 5.0 5.0 - 10 10 - 12	Maximum depth of construction was not reached due to refusal.
SR-5	STA 3008+74, 13.1 m (43 ft) LT of River Drive CL.	1.5	5.0	River Drive reconstruction.	1.5	5.0	BG	na	na	0 - 1.5	0 - 5.0	
SR-6	STA 3007+47, 15.2 m (50 ft) LT of River Drive CL.	1.5	5.0	River Drive reconstruction.	1.5	5.0	BG	na	na	0 - 1.5	0 - 5.0	
SR-7	STA 3006+39, 12.2 m (40ft) LT of River Drive CL.	0.9	3.0	River Drive reconstruction.	0.9	3.0	BG	na	na	0 - 0.9	0 - 3.0	
SR-8	STA 3005+66, 11.2 m (37 ft) LT of River Drive CL.	0.9	3.0	River Drive reconstruction.	0.9	3.0	BG	na	na	0 - 0.9	0 - 3.0	
Electrical	Substation (ISGS Site	No. 1314V	2-11)									_
ES-1	STA 3009+40, 66.8 m (219 ft) LT of River Drive CL.	3.0	10.0	River Drive reconstruction and sanitary sewer reconstruction.	6.0	19.7	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10	Maximum depth of construction was not reached due to refusal.
Spiegel N	loving and Storage (ISC	SS Site No	. 1314V2-1			1	1					
SM-1	STA 3009+33, 45.7 m (150 ft) LT of River Drive CL.	3.0	10.0	River Drive reconstruction and sanitary sewer reconstruction.	6.0	19.7	BG	na	na	0 - 1.8 1.8 - 3.0	0 - 6.0 6.0 - 10	Groundwater encountered at 3.0 m (10 ft) bgs. Temporary well screened from 0 - 3.0 m (0 - 10 ft) bgs.
SM-2	STA 3009+36, 12.2 m (40 ft) LT of River Drive CL.	3.7	12.0	River Drive reconstruction and sanitary sewer reconstruction.	6.0	19.7	BG	na	na	0 - 1.8 1.8 - 3.7	0 - 6.0 6.0 - 12	Maximum depth of construction was not reached due to refusal.
SM-3	STA 3010+28, 11.9 m (39 ft) LT of River Drive CL.	3.7	12.0	River Drive reconstruction and sanitary sewer reconstruction.	6.0	19.7	BG	na	na	0 - 1.8 1.8 - 3.7	0 - 6.0 6.0 - 12	Maximum depth of construction was not reached due to refusal.

Field Observations and Sampling Rationale

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Site	Boring Station Location ¹	Boring	Depth	Construction Activity/Property	Maximum Depth of Construction		Headspace Screening	Max. Headspace Depth		Soil Sample Depth ²		Comments	
		meters	feet	Acquisition	meters	feet	OVM units	meters	feet	meters	feet		
Vacant B	uilding (ISGS Site No. 1	314V2-13)											
VB-1	STA 3011+11, 11.6 m (38 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition, roadway reconstruction, sanitary sewer/water main reconstruction.	5.7	18.6	BG	na	na	0 - 1.8 1.8 - 3.0	0 - 6.0 6.0 - 10	Maximum depth of construction was not reached due to refusal.	
VB-2	STA 3011+92, 12.8 m (42 ft) LT of River Drive CL.	3.8	12.5	Proposed property acquisition, roadway reconstruction, sanitary sewer/water main reconstruction.	5.7	18.6	BG	na	na	0 - 1.8 1.8 - 3.8	0 - 6.0 6.0 - 12.5	Maximum depth of construction was not reached due to refusal.	
VB-3	STA 3012+62, 13.4 m (44 ft) LT of River Drive CL.	3.8	12.5	Proposed property acquisition, roadway reconstruction, sanitary sewer/water main reconstruction.	5.7	18.6	BG	na	na	0 - 1.8 1.8 - 3.8	0 - 6.0 6.0 - 12.5	Maximum depth of construction was not reached due to refusal.	
VB-4	STA 3012+73, 50.3 m (165 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10		
VB-5	STA 3011+77, 66.1 m (217 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10		
VB-6	STA 3011+01, 48.2 m (158 ft) LT of River Drive CL.	3.0	10.0	Proposed property acquisition investigation.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10		
Willis Ins	urance (ISGS Site No. 1	1314V2-14)											
WI-1	STA 3004+73, 26.8 m (88 ft) RT of River Drive CL.	1.8	6.0	Water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5		
Parking L	ot (ISGS Site No. 1314)	V2-16)											
PL-1	STA 3005+59, 14.3 m (47 ft) RT of River Drive CL.	1.8	6.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5		
PL-2	STA 3006+13, 14.9 m (49 ft) RT of River Drive CL.	2.1	7.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5		
PL-3	STA 3006+72, 43.6 m (143 ft) RT of River Drive CL.	3.0	10.0	ROW Acquisition area.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10		

Field Observations and Sampling Rationale

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Site	Boring Station Location ¹	Boring	Depth	Construction Activity/Property	Maximum Constr	•	Headspace Screening	Max. Heads	pace Depth	Soil Sample	Depth ²	Comments
		meters	feet	Acquisition	meters	feet	OVM units	meters	feet	meters	feet	
Vacant La	and No. 2 (ISGS Site No	. 1314V2-1	7)			•					•	
VL2-1	STA 3007+31, 16.8 m (55 ft) RT of River Drive CL.	1.8	6.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5	
VL2-2	STA 3008+49, 16.5 m (54 ft) RT of River Drive CL.	2.1	7.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5	
VL2-3	STA 3010+01, 17.4 m (57 ft) RT of River Drive CL.	2.1	7.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5	
VL2-4	STA 3011+40, 17.1 m (56 ft) RT of River Drive CL.	2.1	7.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5	
VL2-5	STA 3012+96, 19.5 m (64 ft) RT of River Drive CL.	1.8	6.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5	
VL2-6	STA 3014+70, 27.1 m (89 ft) RT of River Drive CL.	1.8	6.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5	
VL2-7	STA 3016+35, 23.8 m (78 ft) RT of River Drive CL.	1.8	6.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5	
VL2-8	STA 3013+63, 65.8 m (216 ft) RT of River Drive CL.	3.0	10.0	ROW Acquisition area.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10	
VL2-9	STA 3011+50, 64.9 m (213 ft) RT of River Drive CL.	3.0	10.0	ROW Acquisition area.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10	
	STA 3009+48, 57.6 m (189 ft) RT of River Drive CL.	3.0	10.0	ROW Acquisition area.	3.0	10.0	BG	na	na	0 - 1.5 1.5 - 3.0	0 - 5.0 5.0 - 10	
Vacant Lo	ot (ISGS Site No. 1314V	2-18)								•		
VL-1	STA 3017+34, 14.6 m (48 ft) RT of River Drive CL.	1.8	6.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5	
VL-2	STA 3018+82, 17.1 m (56 ft) RT of River Drive CL.	1.8	6.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5	
VL-3	STA 3019+89, 17.7 m (58 ft) RT of River Drive CL.	1.8	6.0	River Drive reconstruction and water main reconstruction.	1.7	5.5	BG	na	na	0 - 1.7	0 - 5.5	

Notes:

Locations referenced to proposed centerline (CL) as indicated above. See also Figures 3-1 through 3-3 for boring locations.

²- Sampling intervals are based on the soil sampling analyses approach discussed in section 3.2.1 of the Revised Work Plan for this PSI dated March 2014.

BG - Headspace readings indicative of background levels. Background levels are headspace readings of less than 1.0 PID units. na - not applicable

Table 4-2

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	CB-1(0-6)-040814	CB-1(6-8)-040814	CB-2(0-6)-040814	CB-2(6-8)-040814	CB-3(0-6)-040814	CB-4(0-6)-040814	CB-4(6-8)-040814		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	CB-1	CB-1	CB-2	CB-2	CB-3	CB-4	CB-4	Concentrations	Construction
Depth	0 - 6	6 - 8	0 - 6	6 - 8	0 - 6	0 - 6	6 - 8	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	ND	ND	na	na	na	na	na	1000	1000
Aroclor-1254	ND	ND	na	na	na	na	na	1000	1000
VOCs (ug/kg)									
Acetone	ND	25000	1.00E+08						
Chloroform	ND	300	760						
cis-1,2-Dichloroethene	ND	400	1200000						
Methyl ethyl ketone	ND	17000							
SVOCs (ug/kg)									
2-Methylnaphthalene	ND	ND	19 J	ND	ND	120	7.5 J		
4,6-Dinitro-2-methylphenol	ND								
Acenaphthene	ND	ND	ND	ND	ND	81	ND	570000	1.20E+08
Acenaphthylene	ND	ND	ND	ND	ND	13 J	ND	85000	
Anthracene	ND	ND	ND	ND	ND	160	ND	1.20E+07	6.10E+08
Benzo(a)anthracene	34 J	ND	16 J	25 J	ND	440	12 J	900 / 1100 / 1800	170000
Benzo(a)pyrene	35	ND	31 J	18 J	ND	310	29 J	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	48	ND	33 J	27 J	ND	390	27 J	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	27 J	ND	25 J	16 J	ND	210	13 J	2300000	
Benzo(k)fluoranthene	13 J	ND	ND	ND	ND	200	ND	9000	1700000
Carbazole	ND	600	6200000						
Chrysene	40	ND	18 J	27 J	ND	450	15 J	88000	1.70E+07
Dibenzo(a,h)anthracene	ND	ND	26 J	ND	ND	63	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	46 J	ND		
Di-N-Butyl phthalate	ND	2300000	2300000						
Fluoranthene	63	ND	31 J	49	ND	850	28 J	3100000	8.20E+07
Fluorene	ND	ND	17 J	ND	ND	63	18 J	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	16 J	ND	31 J	ND	ND	140	26 J	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	ND	9.5 J	ND	ND	48	ND	1800	1800
Phenanthrene	28 J	ND	19 J	26 J	ND	920	14 J	210000	
Pyrene	63	ND	25 J	50	ND	1400	25 J	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	CB-5(0-2)-040814	CB-6(0-2)-040814	CB-7(0-2)-040814	CB-7(0-2)-040814D	CB-8(0-5)-040814	CB-8(5-10)-040814	ES-1(0-5)-040814		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	CB-5	CB-6	CB-7	CB-7	CB-8	CB-8	ES-1	Concentrations ^A	Construction
Depth	0 - 2	0 - 2	0 - 2	0 - 2	0 - 5	5 - 10	0 - 5	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	na	na	na	na	ND	ND	ND	1000	1000
Aroclor-1254	na	na	na	na	ND	ND	ND	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	ND	22	120	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	ND	22	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	42	33 J	13 J	19 J	360 J	ND	9.4 J		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	11 J	51	ND	ND	ND	ND	ND	570000	1.20E+08
Acenaphthylene	11 J	15 J	ND	7.5 J	ND	ND	ND	85000	
Anthracene	39	150	24 J	20 J	71 J	ND	9.6 J	1.20E+07	6.10E+08
Benzo(a)anthracene	290	730	200	150	310 J	ND	53	900 / 1100 / 1800	170000
Benzo(a)pyrene	250	560	180	130	480	ND	51	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	330	680	250	180	520	ND	81	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	200	350	140	110	350 J	ND	45	2300000	
Benzo(k)fluoranthene	160	410	110 J	63 J	190 J	ND	24 J	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	370	850	260	170	600	ND	60	88000	1.70E+07
Dibenzo(a,h)anthracene	67	110	54	44	ND	ND	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	390	1500	290	240	560	ND	83	3100000	8.20E+07
Fluorene	22 J	52	20 J	19 J	250 J	ND	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	130	240	97	76	370 J	ND	35 J	900 / 900 / 1600	170000
Naphthalene, SVOC	25 J	20 J	8.7 J	9.7 J	190 J	ND	7.2 J	1800	1800
Phenanthrene	200	740	110	94	470	ND	49	210000	
Pyrene	900	1500	610 J	280 J	1200	ND	83	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	ES-1(5-10)-040814	MC-1(0-6)-040814	PL-1(0-5.5)-040714	PL-2(0-5.5)-040714	PL-3(0-5)-040714	PL-3(5-10)-040714	SM-1(0-6)-040814		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/8/2014	Soil Reference	Objectives for
Location ID	ES-1	MC-1	PL-1	PL-2	PL-3	PL-3	SM-1	Concentrations ^A	Construction
Depth	5 - 10	0 - 6	0 - 5.5	0 - 5.5	0 - 5	5 - 10	0 - 6	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	ND	na	na	na	na	na	na	1000	1000
Aroclor-1254	ND	na	na	na	na	na	na	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	ND	190	ND	10	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	35	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	ND		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	ND	ND	10 J	21 J	ND	ND	ND	570000	1.20E+08
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	85000	
Anthracene	ND	ND	29 J	38 J	ND	ND	17 J	1.20E+07	6.10E+08
Benzo(a)anthracene	12 J	ND	270	200	ND	ND	130	900 / 1100 / 1800	170000
Benzo(a)pyrene	30 J	ND	360	220	ND	ND	64	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	26 J	ND	620	340	ND	ND	150	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	14 J	ND	280	170	ND	ND	ND	2300000	
Benzo(k)fluoranthene	ND	ND	240	140	ND	ND	110	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	12 J	ND	370	240	ND	ND	130	88000	1.70E+07
Dibenzo(a,h)anthracene	26 J	ND	97	53	ND	ND	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	24 J	ND	700	550	ND	ND	180	3100000	8.20E+07
Fluorene	ND	ND	ND	14 J	ND	ND	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	30 J	ND	250	160	ND	ND	ND	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	ND	ND	ND	ND	ND	ND	1800	1800
Phenanthrene	ND	ND	220	310	ND	ND	55	210000	
Pyrene	15 J	ND	660	520	ND	ND	180	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	SM-1(6-10)-040814	SM-2(0-6)-040814	SM-2(6-12)-040814	SM-3(0-6)-040814	SM-3(0-6)-040814D	SM-3(6-12)-040814	SR-1(0-5)-040714		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/7/2014	Soil Reference	Objectives for
Location ID	SM-1	SM-2	SM-2	SM-3	SM-3	SM-3	SR-1	Concentrations ^A	Construction
Depth	6 - 10	0 - 6	6 - 12	0 - 6	0 - 6	6 - 12	0 - 5	Concentrations	Workers ^B
Parameter									WOIKEIS
PCBs (ug/kg)									
Aroclor-1248	na	na	na	na	na	na	na	1000	1000
Aroclor-1254	na	na	na	na	na	na	na	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	ND	ND	59	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	ND	8.3	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	16 J		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	ND	ND	ND	ND	ND	ND	12 J	570000	1.20E+08
Acenaphthylene	ND	ND	ND	ND	ND	ND	10 J	85000	
Anthracene	12 J	10 J	16 J	ND	ND	ND	33 J	1.20E+07	6.10E+08
Benzo(a)anthracene	45	43	63	34 J	47	17 J	140	900 / 1100 / 1800	170000
Benzo(a)pyrene	35 J	43	64	43	55	ND	110	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	52	49	77	53	65	ND	160	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	29 J	25 J	48	27 J	38	17 J	79	2300000	
Benzo(k)fluoranthene	24 J	19 J	33 J	18 J	29 J	ND	47	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	33 J	44	75	38	56	16 J	160	88000	1.70E+07
Dibenzo(a,h)anthracene	11 J	ND	37 J	27 J	32 J	26 J	36 J	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	67	62	96	53	91	28 J	290	3100000	8.20E+07
Fluorene	ND	ND	22 J	19 J	19 J	19 J	27 J	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	17 J	16 J	47	35 J	40	29 J	70	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	ND	ND	ND	ND	ND	13 J	1800	1800
Phenanthrene	41	42	63	28 J	44	13 J	200	210000	
Pyrene	62	71	92	45 J	80 J	19 J	280	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	SR-1(5-10)-040714	SR-1(5-10)-040714D	SR-2(0-5)-040714	SR-2(5-10)-040714	SR-2(10-13)-040714	SR-3(0-5)-040714	SR-3(5-10)-040714		Soil Remediation
Sample Date	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	Soil Reference	Objectives for
Location ID	SR-1	SR-1	SR-2	SR-2	SR-2	SR-3	SR-3	Concentrations	Construction
Depth	5 - 10	5 - 10	0 - 5	5 - 10	10 - 13	0 - 5	5 - 10	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	na	na	na	na	na	na	na	1000	1000
Aroclor-1254	na	na	na	na	na	na	na	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	ND	ND	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	ND	ND	11 J	ND	ND	23 J	ND		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	ND	ND	ND	ND	ND	21 J	ND	570000	1.20E+08
Acenaphthylene	ND	ND	ND	ND	ND	12 J	ND	85000	
Anthracene	ND	ND	ND	ND	ND	67	ND	1.20E+07	6.10E+08
Benzo(a)anthracene	ND	ND	66	14 J	ND	250	ND	900 / 1100 / 1800	170000
Benzo(a)pyrene	ND	ND	62	15 J	ND	220	ND	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	ND	ND	96	14 J	ND	310	ND	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	13 J	ND	44	ND	ND	140	ND	2300000	
Benzo(k)fluoranthene	ND	ND	25 J	ND	ND	150	ND	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	ND	ND	76	16 J	ND	300	ND	88000	1.70E+07
Dibenzo(a,h)anthracene	ND	ND	12 J	ND	ND	33 J	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	ND	ND	130	23 J	ND	520	ND	3100000	8.20E+07
Fluorene	ND	ND	ND	ND	ND	20 J	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	ND	ND	33 J	ND	ND	120	ND	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	ND	ND	ND	ND	17 J	ND	1800	1800
Phenanthrene	ND	ND	ND	11 J	ND	300	ND	210000	
Pyrene	ND	ND	140	23 J	ND	480	ND	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	SR-3(10-13)-040714	SR-4(0-5)-040714	SR-4(0-5)-040714D	SR-4(5-10)-040714	SR-4(10-12)-040714	SR-5(0-5)-040714	SR-6(0-5)-040714		Soil Remediation
Sample Date	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	Soil Reference	Objectives for
Location ID	SR-3	SR-4	SR-4	SR-4	SR-4	SR-5	SR-6	Concentrations ^A	Construction
Depth	10 - 13	0 - 5	0 - 5	5 - 10	10 - 12	0 - 5	0 - 5	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	na	na	na	na	na	na	na	1000	1000
Aroclor-1254	na	na	na	na	na	na	na	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	14	15	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	3 J	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	5.4 J	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	ND	33 J	10 J	16 J	ND	ND	ND		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	ND	ND	ND	12 J	8.7 J	ND	ND	570000	1.20E+08
Acenaphthylene	ND	ND	8.4 J	ND	ND	ND	ND	85000	
Anthracene	ND	17 J	10 J	22 J	21 J	ND	12 J	1.20E+07	6.10E+08
Benzo(a)anthracene	ND	62	58	95	57	8.8 J	56	900 / 1100 / 1800	170000
Benzo(a)pyrene	ND	50	53	73	53	15 J	47	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	ND	59	84	120	67	14 J	61	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	ND	43	32 J	54	40	ND	19 J	2300000	
Benzo(k)fluoranthene	ND	38 J	18 J	32 J	31 J	ND	26 J	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	ND	70	53	98	61	ND	50	88000	1.70E+07
Dibenzo(a,h)anthracene	ND	14 J	ND	16 J	ND	ND	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	ND	93	78	150	130	11 J	86	3100000	8.20E+07
Fluorene	ND	ND	ND	11 J	ND	ND	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	ND	27 J	29 J	49	27 J	10 J	27 J	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	11 J	ND	15 J	ND	ND	ND	1800	1800
Phenanthrene	ND	110	49	110	80	ND	55	210000	
Pyrene	ND	100	91	160	110	14 J	96	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	SR-7(0-3)-040714	SR-8(0-3)-040714	VB-1(0-6)-040814	VB-1(6-10)-040814	VB-2(0-6)-040814	VB-2(6-12.5)-040814	VB-3(0-6)-040814		Soil Remediation
Sample Date	4/7/2014	4/7/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	SR-7	SR-8	VB-1	VB-1	VB-2	VB-2	VB-3	Concentrations ^A	Construction
Depth	0 - 3	0 - 3	0 - 6	6 - 10	0 - 6	6 - 12.5	0 - 6	Concentrations	Workers ^B
Parameter									WOIKEIS
PCBs (ug/kg)									
Aroclor-1248	na	na	na	na	na	na	na	1000	1000
Aroclor-1254	na	na	na	na	na	na	na	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	ND	ND	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	ND	8 J	ND	ND	ND	ND	ND		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	21 J	ND	ND	ND	ND	ND	ND	570000	1.20E+08
Acenaphthylene	14 J	ND	ND	ND	ND	ND	ND	85000	
Anthracene	50	26 J	ND	ND	ND	ND	ND	1.20E+07	6.10E+08
Benzo(a)anthracene	280	160	47	ND	28 J	22 J	ND	900 / 1100 / 1800	170000
Benzo(a)pyrene	270	170	56	ND	31 J	37	23 J	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	390	230	68	ND	45	41	20 J	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	230	140	37	ND	22 J	23 J	11 J	2300000	
Benzo(k)fluoranthene	130	120	27 J	ND	21 J	15 J	ND	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	340	190	52	ND	32 J	29 J	ND	88000	1.70E+07
Dibenzo(a,h)anthracene	77	44	34 J	ND	ND	29 J	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	640	390	71	ND	75	64	20 J	3100000	8.20E+07
Fluorene	17 J	8.8 J	19 J	ND	ND	19 J	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	170	120	41	ND	22 J	33 J	25 J	900 / 900 / 1600	170000
Naphthalene, SVOC	12 J	ND	ND	ND	ND	ND	ND	1800	1800
Phenanthrene	290	170	33 J	ND	46	30 J	ND	210000	
Pyrene	540	350	68	ND	68	48	9.2 J	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	VB-3(6-12.5)-040814	VB-4(0-5)-040814	VB-4(5-10)-040814	VB-5(0-5)-040814	VB-5(5-10)-040814	VB-6(0-5)-040914	VB-6(5-10)-040914		Cail Damadiation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/9/2014	4/9/2014	Soil Reference	Soil Remediation Objectives for
Location ID	VB-3	VB-4	VB-4	VB-5	VB-5	VB-6	VB-6	Concentrations ^A	Construction
Depth	6 - 12.6	0 - 5	5 - 10	0 - 5	5 - 10	0 - 5	5 - 10	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	na	ND	ND	ND	ND	ND	ND	1000	1000
Aroclor-1254	na	ND	ND	ND	ND	ND	ND	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	150 J	ND	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	23	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	ND		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	570000	1.20E+08
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	85000	
Anthracene	ND	ND	ND	ND	ND	9.3 J	ND	1.20E+07	6.10E+08
Benzo(a)anthracene	8.7 J	37 J	14 J	19 J	ND	58	ND	900 / 1100 / 1800	170000
Benzo(a)pyrene	27 J	45	13 J	15 J	ND	52	ND	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	24 J	54	22 J	28 J	ND	91	ND	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	14 J	ND	ND	ND	ND	25 J	ND	2300000	
Benzo(k)fluoranthene	ND	49	ND	ND	ND	38 J	ND	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	12 J	66	28 J	21 J	ND	66	ND	88000	1.70E+07
Dibenzo(a,h)anthracene	25 J	ND	ND	ND	ND	ND	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	63 J	ND	2300000	2300000
Fluoranthene	30 J	140	61	46	ND	130	ND	3100000	8.20E+07
Fluorene	18 J	ND	ND	ND	ND	ND	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	27 J	ND	ND	ND	ND	40	ND	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	ND	ND	ND	ND	ND	ND	1800	1800
Phenanthrene	13 J	71	35 J	25 J	ND	86	ND	210000	
Pyrene	19 J	98	46	42	ND	130	ND	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	VL-1(0-5.5)-040914	VL-2(0-5.5)-040914	VL-3(0-5.5)-040914	VL1-1(0-5)-040814	VL1-1(5-10)-040814	VL1-2(0-6)-040814	VL1-2(6-10)-040814		Soil Remediation
Sample Date	4/9/2014	4/9/2014	4/9/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	VL-1	VL-2	VL-3	VL1-1	VL1-1	VL1-2	VL1-2	Concentrations ^A	Construction
Depth	0 - 5.5	0 - 5.5	0 - 5.5	0 - 5	5 - 10	0 - 6	6 - 10	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	na	na	na	ND	ND	ND	ND	1000	1000
Aroclor-1254	na	na	na	ND	ND	ND	12 J	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	30	ND	ND	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	6.8	ND	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	ND		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	570000	1.20E+08
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	85000	
Anthracene	ND	ND	46 J	ND	ND	ND	ND	1.20E+07	6.10E+08
Benzo(a)anthracene	ND	ND	210	ND	ND	ND	11 J	900 / 1100 / 1800	170000
Benzo(a)pyrene	ND	ND	200 J	ND	ND	ND	16 J	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	ND	ND	250	ND	ND	ND	20 J	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	ND	ND	170 J	ND	ND	ND	ND	2300000	
Benzo(k)fluoranthene	ND	ND	91 J	ND	ND	ND	ND	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	ND	ND	210	ND	ND	ND	14 J	88000	1.70E+07
Dibenzo(a,h)anthracene	ND	ND	46 J	ND	ND	ND	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	ND	ND	330	13 J	ND	ND	22 J	3100000	8.20E+07
Fluorene	ND	ND	ND	ND	ND	ND	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	ND	ND	120 J	ND	ND	ND	ND	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	ND	ND	ND	ND	ND	ND	1800	1800
Phenanthrene	ND	ND	180 J	12 J	ND	ND	13 J	210000	
Pyrene	ND	ND	420	9.4 J	ND	ND	29 J	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	VL1-3(0-6)-040814	VL1-3(0-6)-040814D	VL1-3(6-10)-040814	VL1-4(0-6)-040814	VL1-4(6-10)-040814	VL1-5(0-6)-040814	VL1-5(6-10)-040814		Cail Damadiation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Soil Remediation Objectives for
Location ID	VL1-3	VL1-3	VL1-3	VL1-4	VL1-4	VL1-5	VL1-5	Concentrations ^A	Construction
Depth	0 - 6	0 - 6	6 - 10	0 - 6	6 - 10	0 - 6	6 - 10	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	ND	ND	ND	ND	ND	ND	ND	1000	1000
Aroclor-1254	ND	ND	ND	ND	ND	ND	ND	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	ND	ND	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	ND		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	570000	1.20E+08
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	85000	
Anthracene	ND	ND	ND	ND	ND	ND	ND	1.20E+07	6.10E+08
Benzo(a)anthracene	15 J	ND	ND	8.3 J	ND	ND	ND	900 / 1100 / 1800	170000
Benzo(a)pyrene	28 J	10 J	ND	8.2 J	ND	ND	ND	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	37	13 J	9.9 J	12 J	ND	ND	ND	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	19 J	13 J	15 J	14 J	12 J	ND	11 J	2300000	
Benzo(k)fluoranthene	20 J	ND	ND	ND	ND	ND	ND	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	15 J	ND	ND	ND	ND	ND	ND	88000	1.70E+07
Dibenzo(a,h)anthracene	14 J	7.1 J	ND	ND	ND	ND	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	32 J	9.5 J	ND	13 J	ND	ND	7.2 J	3100000	8.20E+07
Fluorene	ND	ND	ND	ND	ND	ND	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	13 J	ND	ND	ND	ND	ND	ND	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	ND	ND	ND	ND	ND	ND	1800	1800
Phenanthrene	16 J	ND	ND	8.8 J	ND	ND	ND	210000	
Pyrene	24 J	8.1 J	ND	12 J	ND	ND	7 J	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	VL1-6(0-5)-040814	VL1-6(5-10)-040814	VL1-7(0-5)-040814	VL1-7(5-10)-040814	VL1-8(0-5)-040814	VL1-8(0-5)-040814D	VL1-8(5-10)-040814		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	VL1-6	VL1-6	VL1-7	VL1-7	VL1-8	VL1-8	VL1-8	Concentrations ^A	Construction
Depth	0 - 5	5 - 10	0 - 5	5 - 10	0 - 5	0 - 5	5 - 10	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	ND	ND	ND	ND	ND	ND	ND	1000	1000
Aroclor-1254	ND	ND	ND	ND	ND	ND	ND	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	ND	ND	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	DN	ND	ND	ND	25 J	ND	ND		
4,6-Dinitro-2-methylphenol	DN	ND	ND	ND	ND	ND	ND		
Acenaphthene	ND	ND	ND	ND	52	ND	ND	570000	1.20E+08
Acenaphthylene	ND	ND	ND	ND	340 J	30 J	ND	85000	
Anthracene	ND	ND	ND	ND	620 J	64 J	ND	1.20E+07	6.10E+08
Benzo(a)anthracene	ND	ND	ND	ND	2200 J	230 J	ND	900 / 1100 / 1800	170000
Benzo(a)pyrene	ND	ND	ND	ND	1600 J	180 J	ND	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	ND	ND	ND	ND	2000 J	270 J	ND	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	ND	ND	ND	ND	840 J	61 J	ND	2300000	
Benzo(k)fluoranthene	ND	ND	ND	ND	970 J	97 J	ND	9000	1700000
Carbazole	ND	ND	ND	ND	180 J	ND	ND	600	6200000
Chrysene	ND	ND	ND	ND	2100 J	240 J	ND	88000	1.70E+07
Dibenzo(a,h)anthracene	ND	ND	ND	ND	370 J	20 J	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	63 J	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	ND	9 J	ND	ND	4300 J	530 J	ND	3100000	8.20E+07
Fluorene	ND	ND	ND	ND	210	20 J	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	880 J	64	ND	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	ND	ND	ND	74 J	7.7 J	ND	1800	1800
Phenanthrene	ND	ND	ND	ND	850 J	59 J	ND	210000	
Pyrene	ND	ND	ND	ND	3900 J	430 J	ND	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	VL1-9(0-5)-040814	VL1-9(5-10)-040814	VL1-9(5-10)-040814D	VL1-10(0-5)-040914	VL1-10(5-10)-040914	VL1-11(0-5)-040814	VL1-11(5-8)-040814		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/9/2014	4/9/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	VL1-9	VL1-9	VL1-9	VL1-10	VL1-10	VL1-11	VL1-11	Concentrations ^A	Construction
Depth	0 - 50	5 - 10	5 - 10	0 - 5	5 - 10	0 - 5	5 - 8	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	ND	ND	ND	ND	ND	1900	ND	1000	1000
Aroclor-1254	ND	ND	ND	ND	ND	ND	ND	1000	1000
VOCs (ug/kg)									
Acetone	ND	33	21	95	14	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	3.8 J	17	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	13 J	ND	ND	33 J	ND	150 J	59		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	ND	ND	ND	24 J	ND	130 J	44	570000	1.20E+08
Acenaphthylene	ND	ND	9.6 J	20 J	ND	37 J	7.8 J	85000	
Anthracene	13 J	ND	8.7 J	35 J	ND	250	58	1.20E+07	6.10E+08
Benzo(a)anthracene	110	36 J	100 J	180	ND	1100	280	900 / 1100 / 1800	170000
Benzo(a)pyrene	95	43 J	74 J	200	ND	890	230	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	130	51 J	92 J	310	ND	1400	410	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	62	22 J	37 J	ND	ND	720	170	2300000	
Benzo(k)fluoranthene	70	13 J	53	91 J	ND	580	120	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	120	34 J	82 J	210	ND	1500	360	88000	1.70E+07
Dibenzo(a,h)anthracene	ND	29 J	13 J	ND	ND	330	63	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	190	54 J	120 J	260	ND	1800	560	3100000	8.20E+07
Fluorene	ND	19 J	ND	22 J	ND	170 J	40	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	55	35 J	40	100	ND	480	130	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	ND	ND	42 J	ND	130 J	59	1800	1800
Phenanthrene	96	13 J	20 J	170	ND	1500	420	210000	
Pyrene	200	50	150	240 J	ND	2900	440	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	VL1-12(0-5)-040814	VL1-13(0-5)-040914	VL1-13(5-10)-040914	VL1-14(0-5)-040914	VL1-14(5-7)-040914	VL1-15(0-5)-040914	VL1-15(5-7)-040914		Soil Remediation
Sample Date	4/8/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	Soil Reference	Objectives for
Location ID	VL1-12	VL1-13	VL1-13	VL1-14	VL1-14	VL1-15	VL1-15	Concentrations ^A	Construction
Depth	0 - 5	0 - 5	5 - 10	0 - 5	5 - 7	0 - 5	5 - 7	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	ND	ND	ND	ND	ND	ND	ND	1000	1000
Aroclor-1254	ND	ND	ND	ND	ND	ND	ND	1000	1000
VOCs (ug/kg)									
Acetone	750	ND	ND	ND	ND	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	49	ND	ND	ND	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	190	ND	25 J	440 J-	46 J	63	250		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	75	ND	52	1200 J-	77 J	ND	ND	570000	1.20E+08
Acenaphthylene	51	ND	98	3500 J-	220	11 J	25 J	85000	
Anthracene	230	ND	230	4800 J-	330	19 J	64	1.20E+07	6.10E+08
Benzo(a)anthracene	1200	ND	2000	31000 J-	1600	68	230	900 / 1100 / 1800	170000
Benzo(a)pyrene	940	ND	2300	38000 J-	1600	62	180	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	1200	ND	3400	38000 J-	2000	88	280	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	640	ND	1300	14000 J	940	30 J	130	2300000	
Benzo(k)fluoranthene	710	ND	1200	25000 J-	1000	32 J	120	9000	1700000
Carbazole	140 J	ND	200	3300 J-	ND	ND	ND	600	6200000
Chrysene	1800	ND	3100	38000 J-	2000	89	290	88000	1.70E+07
Dibenzo(a,h)anthracene	250	ND	600	4200 J-	190	ND	26 J	90 / 200 / 420	17000
Dibenzofuran	89 J	ND	ND	1500 J-	ND	ND	110 J		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	1900	ND	5500	110000 J-	4900	140	550	3100000	8.20E+07
Fluorene	91	ND	58	1800 J-	120 J	ND	22 J	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	420	ND	1300	15000 J	770	33 J	97	900 / 900 / 1600	170000
Naphthalene, SVOC	85	ND	38	920 J-	77 J	31 J	130	1800	1800
Phenanthrene	1500	ND	1500	58000 J-	2700	140	500	210000	
Pyrene	2800	ND	4600	110000 J-	4400	150	490	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	VL1-16(0-5)-040914	VL1-16(5-10)-040914	VL1-17(0-5)-040914	VL1-17(0-5)-040914D	VL1-17(5-9)-040914	VL1-18(0-5)-040914	VL1-18(0-5)-040914D		Soil Remediation
Sample Date	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	4/9/2014	Soil Reference	Objectives for
Location ID	VL1-16	VL1-16	VL1-17	VL1-17	VL1-17	VL1-18	VL1-18	Concentrations ^A	Construction
Depth	0 - 5	5 - 10	0 - 5	0 - 5	5 - 9	0 - 5	0 - 5	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	ND	ND	ND	ND	ND	ND	ND	1000	1000
Aroclor-1254	ND	ND	ND	ND	ND	ND	ND	1000	1000
VOCs (ug/kg)									
Acetone	ND	13	ND	ND	260	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	59 J	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	96	ND	10 J	17 J	ND	ND	ND		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	260	ND	ND	ND	720	ND	ND	570000	1.20E+08
Acenaphthylene	120	ND	ND	ND	290 J	11 J	ND	85000	
Anthracene	780	ND	15 J	15 J	490	9.5 J	ND	1.20E+07	6.10E+08
Benzo(a)anthracene	3000	ND	58	82	ND	30 J	ND	900 / 1100 / 1800	170000
Benzo(a)pyrene	2500	ND	63	85	ND	27 J	ND	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	4200	ND	83 J	150 J	ND	32 J	8.3 J	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	1600	ND	40	40	ND	ND	ND	2300000	
Benzo(k)fluoranthene	1300	ND	27 J	39	ND	23 J	ND	9000	1700000
Carbazole	510	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	2400	ND	100	140	ND	32 J	ND	88000	1.70E+07
Dibenzo(a,h)anthracene	730	ND	31 J	32 J	ND	ND	ND	90 / 200 / 420	17000
Dibenzofuran	190	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	7700	ND	120	180	120 J	51	13 J	3100000	8.20E+07
Fluorene	350	ND	21 J	23 J	1200	ND	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	1500	ND	44	45	ND	17 J	ND	900 / 900 / 1600	170000
Naphthalene, SVOC	240	ND	ND	11 J	ND	ND	ND	1800	1800
Phenanthrene	4400	ND	61	98	3200	24 J	ND	210000	
Pyrene	6500	ND	110	170	330 J	56	10 J	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	VL1-18(5-10)-040914	VL1-19(0-5)-040914	VL1-19(5-10)-040914	VL2-1(0-5.5)-040714	VL2-2(0-5.5)-040714	VL2-3(0-5.5)-040714	VL2-3(0-5.5)-040714D		Soil Remediation
Sample Date	4/9/2014	4/9/2014	4/9/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	Soil Reference	Objectives for
Location ID	VL1-18	VL1-19	VL1-19	VL2-1	VL2-2	VL2-3	VL2-3	Concentrations ^A	Construction
Depth	5 - 10	0 - 5	5 - 10	0 - 5.5	0 - 5.5	0 - 5.5	0 - 5.5	Concentrations	Workers ^B
Parameter									WOIKEIS
PCBs (ug/kg)									
Aroclor-1248	ND	ND	ND	na	na	na	na	1000	1000
Aroclor-1254	ND	ND	ND	na	na	na	na	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	23	ND	ND	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	50	110	240	7.7 J	ND	ND	ND		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	ND	240	19 J	13 J	ND	ND	ND	570000	1.20E+08
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	85000	
Anthracene	ND	29 J	32 J	33 J	ND	ND	ND	1.20E+07	6.10E+08
Benzo(a)anthracene	27 J	230	64	150	ND	28 J	29 J	900 / 1100 / 1800	170000
Benzo(a)pyrene	37	500	42	130	ND	22 J	37	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	73	510	84	170	ND	28 J	43	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	35 J	480	43	91	ND	19 J	21 J	2300000	
Benzo(k)fluoranthene	25 J	330	19 J	57	ND	19 J	14 J	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	86	240	110	150	ND	32 J	31 J	88000	1.70E+07
Dibenzo(a,h)anthracene	15 J	140	ND	30 J	ND	ND	27 J	90 / 200 / 420	17000
Dibenzofuran	43 J	ND	120 J	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	49	210	110	280	ND	57	56	3100000	8.20E+07
Fluorene	ND	25 J	41	8.7 J	ND	ND	19 J	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	39	360	23 J	78	ND	17 J	32 J	900 / 900 / 1600	170000
Naphthalene, SVOC	54	78	220	ND	ND	ND	ND	1800	1800
Phenanthrene	120	150	360	180	ND	40	28 J	210000	
Pyrene	30 J	230	89	270	ND	57	47	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	VL2-4(0-5.5)-040714	VL2-5(0-5.5)-040814	VL2-6(0-5.5)-040814	VL2-7(0-5.5)-040814	VL2-8(0-5)-040814	VL2-8(5-10)-040814	VL2-8(5-10)-040814D		Soil Remediation
Sample Date	4/7/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	VL2-4	VL2-5	VL2-6	VL2-7	VL2-8	VL2-8	VL2-8	Concentrations ^A	Construction
Depth	0 - 5.5	0 - 5.5	0 - 5.5	0 - 5.5	0 - 5	5 - 10	5 - 10	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	na	na	na	na	na	na	na	1000	1000
Aroclor-1254	na	na	na	na	na	na	na	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	ND	ND	45	32	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	ND	6.6	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	42 J	22 J	ND	7.9 J	230	580	760		
4,6-Dinitro-2-methylphenol	2300	ND	ND	ND	ND	ND	ND		
Acenaphthene	42 J	ND	ND	ND	ND	18 J	17 J	570000	1.20E+08
Acenaphthylene	180	11 J	ND	ND	ND	54	65	85000	
Anthracene	310	22 J	ND	ND	44 J	76	94	1.20E+07	6.10E+08
Benzo(a)anthracene	1700	140	ND	42	170 J	370	440	900 / 1100 / 1800	170000
Benzo(a)pyrene	1500	120	ND	37 J	230	260 J-	280	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	2000	170	ND	64	290	340 J-	420	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	1100	68	ND	31 J	170 J	190 J	200	2300000	
Benzo(k)fluoranthene	760	65	ND	27 J	90 J	200 J	170	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	2000	160	ND	49	240	520	640	88000	1.70E+07
Dibenzo(a,h)anthracene	300	31 J	ND	ND	ND	50	69	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	150 J	180 J		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	3200	220	ND	90	280	480	570	3100000	8.20E+07
Fluorene	140 J	20 J	ND	ND	93 J	37 J	41	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	730	60	ND	20 J	180	120 J-	130	900 / 900 / 1600	170000
Naphthalene, SVOC	56 J	14 J	ND	ND	140 J	330	400	1800	1800
Phenanthrene	1300	82	ND	42	290	650	770	210000	
Pyrene	3600	320	ND	70	430	1100 J	1200	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	VL2-9(0-5)-040714	VL2-9(5-10)-040714	VL2-10(0-5)-040714	VL2-10(5-10)-040714	WI-1(0-5.5)-040714	WP-1(0-4.9)-040714	WP-1(0-4.9)-040714D		Soil Remediation
Sample Date	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	Soil Reference	Objectives for
Location ID	VL2-9	VL2-9	VL2-10	VL2-10	WI-1	WP-1	WP-1	Concentrations ^A	Construction
Depth	0 - 5	5 - 10	0 - 5	5 - 10	0 - 5.5	0 - 4.9	0 - 4.9	Concentrations	Workers ^B
Parameter									Workers
PCBs (ug/kg)									
Aroclor-1248	na	na	na	na	ND	na	na	1000	1000
Aroclor-1254	na	na	na	na	ND	na	na	1000	1000
VOCs (ug/kg)									
Acetone	ND	ND	ND	ND	ND	ND	ND	25000	1.00E+08
Chloroform	ND	ND	ND	ND	ND	ND	ND	300	760
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	400	1200000
Methyl ethyl ketone	ND	ND	ND	ND	ND	ND	ND	17000	
SVOCs (ug/kg)									
2-Methylnaphthalene	91	ND	ND	ND	ND	120 J	110 J		
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND		
Acenaphthene	6.3 J	ND	ND	ND	ND	ND	ND	570000	1.20E+08
Acenaphthylene	23 J	ND	ND	ND	8.3 J	ND	ND	85000	
Anthracene	37	ND	ND	ND	8.9 J	68 J	54 J	1.20E+07	6.10E+08
Benzo(a)anthracene	270	12 J	ND	ND	53	270	190	900 / 1100 / 1800	170000
Benzo(a)pyrene	200	10 J	ND	ND	42	260	170 J	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	340	ND	ND	ND	68	330	190	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	150	ND	ND	ND	49	370	200	2300000	
Benzo(k)fluoranthene	130	ND	ND	ND	22 J	150 J	110 J	9000	1700000
Carbazole	ND	ND	ND	ND	ND	ND	ND	600	6200000
Chrysene	330	11 J	ND	ND	49	310	200	88000	1.70E+07
Dibenzo(a,h)anthracene	54	ND	ND	ND	9.5 J	94 J	ND	90 / 200 / 420	17000
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND		
Di-N-Butyl phthalate	ND	ND	ND	ND	ND	ND	ND	2300000	2300000
Fluoranthene	430	18 J	ND	ND	74	550	ND	3100000	8.20E+07
Fluorene	26 J	ND	ND	ND	ND	ND	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	110	ND	ND	ND	32 J	210	92 J	900 / 900 / 1600	170000
Naphthalene, SVOC	53	ND	ND	ND	ND	56 J	49 J	1800	1800
Phenanthrene	280	13 J	ND	ND	37 J	430	230	210000	
Pyrene	420	18 J	ND	ND	89	580	ND	2300000	6.10E+07

Comparison of Detected Constituents to Applicable Reference Concentrations

Soil Analytical Results - Organics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID	WP-2(0-4.9)-040714		
Sample Date	4/7/2014	0 - 11 D - f	Soil Remediation
Location ID	WP-2	Soil Reference	Objectives for Construction
Depth	0 - 4.9	Concentrations ^A	Workers ^B
Parameter			Workers
PCBs (ug/kg)			
Aroclor-1248	na	1000	1000
Aroclor-1254	na	1000	1000
VOCs (ug/kg)			
Acetone	ND	25000	1.00E+08
Chloroform	ND	300	760
cis-1,2-Dichloroethene	ND	400	1200000
Methyl ethyl ketone	ND	17000	
SVOCs (ug/kg)			
2-Methylnaphthalene	11 J		
4,6-Dinitro-2-methylphenol	ND		
Acenaphthene	ND	570000	1.20E+08
Acenaphthylene	ND	85000	
Anthracene	15 J	1.20E+07	6.10E+08
Benzo(a)anthracene	67	900 / 1100 / 1800	170000
Benzo(a)pyrene	58	90 / 1300 / 2100	17000
Benzo(b)fluoranthene	81	900 / 1500 / 2100	170000
Benzo(g,h,i)perylene	42	2300000	
Benzo(k)fluoranthene	38	9000	1700000
Carbazole	ND	600	6200000
Chrysene	67	88000	1.70E+07
Dibenzo(a,h)anthracene	14 J	90 / 200 / 420	17000
Dibenzofuran	ND		
Di-N-Butyl phthalate	ND	2300000	2300000
Fluoranthene	110	3100000	8.20E+07
Fluorene	ND	560000	8.20E+07
Indeno(1,2,3-cd)pyrene	33 J	900 / 900 / 1600	170000
Naphthalene, SVOC	ND	1800	1800
Phenanthrene	62	210000	
Pyrene	120	2300000	6.10E+07

Notes:

- --- not applicable or value not available
- ^A Soil reference concentrations from MAC Table. Background values for Chicago corporate limits and MSA counties are included, as applicable.
- ^B Soil Remediation Objective for Construction Worker, most stringent of the *Ingestion or Inhalation* exposure route.
- na Constituent not analyzed.
- ND Constituent not detected above the reporting limit.
- J Estimated concentration.
- J- Estimated concentration biased low.
- Shaded values indicate concentration exceeds Reference Concentration.
- Shaded values indicate concentration exceeds Reference Concentration and Soil Remediation Objective for Construction Workers.

Table 4-3

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	CB-1(0-6)-040814	CB-1(6-8)-040814	CB-2(0-6)-040814	CB-2(6-8)-040814		
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	0-11 D-1	Soil Remediation
Location ID	CB-1	CB-1	CB-2	CB-2	Soil Reference	Objectives for Construction
Depth	0 - 6	6 - 8	0 - 6	6 - 8	Concentrations	Workers ^B
Parameter						workers
Laboratory pH	8.23	8.27	8.03	8.07	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	2.4 J	1.7 J	2.7 J	1.1 J	11.3 / 13	61
Barium, Total	23 J-	27 J-	75 J-	20 J-	1500	14000
Beryllium, Total	0.29 J	0.28 J	0.33 J	0.16 J	22	410
Cadmium, Total	0.12 J	0.091 J	0.51 J	0.072 J	5.2	200
Calcium, Total	1200 J	1600 J	16000 J	2400 J		
Chromium, Total	6.5	8.7	8.2	4.7	21	690
Cobalt, Total	3.4	4	5.2	2	20	12000
Copper, Total	7.7 J	8 J	9 J	4.3 J	2900	8200
Iron, Total	9200 J	8300 J	8900 J	4900 J	15000 / 15900	
Lead, Total	22 J	2.9 J	16 J	4.9 J	107	700
Magnesium, Total	830 J	1300 J	2100 J	720 J	325000	730000
Manganese, Total	120 J	95 J	340 J	79 J	630 / 636	4100
Mercury, Total	0.0085 J	0.011 J	0.02 J	ND	0.89	0.1
Nickel, Total	7.4	8.1	9.8	4.8	100	4100
Potassium, Total	410 J+	610 J+	660 J+	240 J+		
Selenium, Total	0.31 J	0.47 J	0.41 J	0.34 J	1.3	1000
Silver, Total	ND	ND	0.023 J	ND	4.4	1000
Sodium, Total	120 J	290 J	200 J	62 J		
Thallium, Total	ND	ND	0.33 J	ND	2.6	160
Vanadium, Total	15	16	17	9.1	550	1400
Zinc, Total	22 J	18 J	310 J	25 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.22 J	0.15 J	0.38 J	0.26 J	2	
Cadmium, TCLP	ND	ND	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND	ND	1	
Copper, TCLP	ND	ND	ND	ND	0.65	
Iron, TCLP	ND	ND	ND	ND	5	
Lead, TCLP	0.0095	ND	0.0079	ND	0.0075	
Manganese, TCLP	0.069	0.059	0.23	0.34	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	0.021 J	0.014 J	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	ND	ND	ND	0.17 B	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.23 J	0.18 J	0.17 J	0.09 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.026	0.027	0.03	0.011 J	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	18 J+	15 J+	25 J+	1.8 J+	5	
Lead, SPLP	0.037	0.017	0.029	0.017	0.0075	
Manganese, SPLP	0.15 B	0.081 B	0.24 B	ND	0.15	
Mercury, SPLP	ND	ND	ND	ND	0.002	
Nickel, SPLP	0.025	0.019 J	0.029	ND	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	ND	ND	ND	ND	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	CB-3(0-6)-040814	CB-4(0-6)-040814	CB-4(6-8)-040814	CB-5(0-2)-040814		Cail Damadiation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	0-11 D-1	Soil Remediation
Location ID	CB-3	CB-4	CB-4	CB-5	Soil Reference	Objectives for Construction
Depth	0 - 6	0 - 6	6 - 8	0 - 2	Concentrations	Workers ^B
Parameter						workers
Laboratory pH	7.16	8.02	8.12	8.14	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	ND	0.55 J	ND	ND	5	82
Arsenic, Total	2.4 J	3.4 J	2.5 J	4.2 J	11.3 / 13	61
Barium, Total	34 J-	58 J-	27 J-	230 J-	1500	14000
Beryllium, Total	0.29 J	0.59 J	0.35 J	0.62 J	22	410
Cadmium, Total	0.17 J	0.71 J	0.26 J	0.61 J	5.2	200
Calcium, Total	1600 J	16000 J	15000 J	19000 J		
Chromium, Total	11	13	9.5	14	21	690
Cobalt, Total	5.6	5.8	4.4	8	20	12000
Copper, Total	8.6 J	15 J	9.6 J	22 J	2900	8200
Iron, Total	10000 J	21000 J	11000 J	15000 J	15000 / 15900	
Lead, Total	3.5 J	80 J	4.8 J	50 J	107	700
Magnesium, Total	1400 J	2800 J	1800 J	3000 J	325000	730000
Manganese, Total	200 J	340 J	170 J	420 J	630 / 636	4100
Mercury, Total	0.011 J	0.087 J	ND	0.14 J	0.89	0.1
Nickel, Total	9.3	12	8.6	15	100	4100
Potassium, Total	730 J+	1000 J+	640 J+	1000 J+		
Selenium, Total	0.37 J	0.91 J-	0.39 J	0.66 J-	1.3	1000
Silver, Total	ND	0.036 J	ND	0.027 J	4.4	1000
Sodium, Total	40 J	110 J	130 J	450 J		
Thallium, Total	0.24 J	0.47 J	ND	0.43 J	2.6	160
Vanadium, Total	20	22	17	23	550	1400
Zinc, Total	22 J	96 J	24 J	100 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.19 J	0.55	0.36 J	0.7	2	
Cadmium, TCLP	ND	ND	ND	0.0021 J	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND	ND	1	
Copper, TCLP	ND	ND	ND	ND	0.65	
Iron, TCLP	ND	ND	ND	ND	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	
Manganese, TCLP	0.21	0.011 J	1.3	0.11	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	0.01 J	ND	0.1	
Selenium, TCLP	ND	ND	ND	0.01 J	0.05	
Zinc, TCLP	ND	ND	ND	ND	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.18 J	0.21 J	0.11 J	0.24 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.033	0.035	0.016 J	0.026	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	23 J+	21 J+	7.4 J+	17 J+	5	
Lead, SPLP	0.015	0.033	0.014	0.037	0.0075	
Manganese, SPLP	0.25 B	0.18 B	0.068 B	0.17 B	0.15	
M	ND	ND	ND	ND	0.002	
Mercury, SPLP			0.244 :	0.000 :	,	
Nickel, SPLP	0.026	0.026	0.011 J	0.022 J	0.1	
			0.011 J ND ND	0.022 J ND ND	0.1 0.05 0.05	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	CB-6(0-2)-040814	CB-7(0-2)-040814	CR-7(0-2)-040814D	CB-8(0-5)-040814		
Sample Date	` '	4/8/2014	4/8/2014	4/8/2014		Soil Remediation
Location ID		CB-7	CB-7	CB-8	Soil Reference	Objectives for
Depth	0 - 2	0 - 2	0 - 2	0 - 5	Concentrations ^A	Construction
Parameter	0 2	0 2	0 2	0 0	•	Workers ^B
Laboratory pH	7.56	8.1	8.01	7.61	<6.25,>9.0	
Total Metals (mg/kg)			0.0.		10.20,5 0.0	
Antimony, Total	ND	ND	ND	2.3 J-	5	82
Arsenic, Total	4.3 J	3.2 J	3.4 J	5 J	11.3 / 13	61
Barium, Total	88 J-	67 J-	58 J-	110 J-	1500	14000
Beryllium, Total	0.66 J	0.47 J	0.5 J	1.1 J	22	410
Cadmium, Total	0.74 J	0.38 J	0.46 J	1.2 J	5.2	200
Calcium, Total	27000 J	11000 J	24000 J	20000 J		
Chromium, Total	15	13	13	10	21	690
Cobalt, Total	7.1	5.9	6.6	5.1	20	12000
Copper, Total	26 J	20 J	19 J	37 J	2900	8200
Iron, Total	15000 J	12000 J	12000 J	26000 J	15000 / 15900	
Lead, Total	88 J	38 J	46 J	110 J	107	700
Magnesium, Total	2800 J	2600 J	2500 J	2500 J	325000	730000
Manganese, Total	370 J	270 J	320 J	520 J	630 / 636	4100
Mercury, Total	0.24 J	ND	0.29 J	0.35 J	0.89	0.1
Nickel, Total	14	13	13	16	100	4100
Potassium, Total	1200 J+	940 J+	980 J+	1300 J+		
Selenium, Total	0.78 J-	0.55 J-	0.74 J-	1.5 J-	1.3	1000
Silver, Total	0.052 J	ND	ND	0.17 J	4.4	1000
Sodium, Total	310 J	170 J	170 J	230 J		
Thallium, Total	0.25 J	ND	0.3 J	0.78 J-	2.6	160
Vanadium, Total	23	20	21	16	550	1400
Zinc, Total	160 J	73 J	86 J	300 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.68	0.54	0.67	0.87	2	
Cadmium, TCLP	0.0032 J	ND	0.0024 J	0.0032 J	0.005	
Chromium, TCLP	0.01 J	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND	0.017 J	1	
Copper, TCLP	0.072 J	0.1 B	ND	ND	0.65	
Iron, TCLP	ND	ND	ND	ND	5	
Lead, TCLP	0.011	0.0098	ND	0.019	0.0075	
Manganese, TCLP	0.19	0.16 J	0.75 J	9.6	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	ND	0.021 J	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.16 B	ND	ND	1 B	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.2 J	0.23 J	0.22 J	0.11 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.027	0.033	0.024 J	0.01 J	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	13 J+	20 J	11 J	2.3 J+	5	
Lead, SPLP	0.047	0.046	0.032	0.033	0.0075	
Manganese, SPLP	0.13 B	0.17 B	0.11 B	0.22 B	0.15	
Mercury, SPLP	ND	0.00013 J	ND	ND	0.002	
Nickel, SPLP	0.016 J	0.024 J	0.017 J	ND	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	ND	ND	ND	ND	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	CB-8(5-10)-040814	ES-1(0-5)-040814	ES-1(5-10)-040814	MC-1(0-6)-040814		O . II D II . ti
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014		Soil Remediation
Location ID	CB-8	ES-1	ES-1	MC-1	Soil Reference	Objectives for Construction
Depth	5 - 10	0 - 5	5 - 10	0 - 6	Concentrations ^A	Workers ^B
Parameter						Workers
Laboratory pH	7.22	8.81	8.92	7.56	<6.25,>9.0	
Total Metals (mg/kg)					•	
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	3 J	4 J	2.5 J	1.2 J	11.3 / 13	61
Barium, Total	110 J-	48	51	33 J-	1500	14000
Beryllium, Total	0.72 J	0.36 J	0.25 J	0.31 J	22	410
Cadmium, Total	0.54 J	0.56 J-	0.35 J-	0.11 J	5.2	200
Calcium, Total	4900 J	140000 J	52000 J	1600 J		
Chromium, Total	17	7 J	7.2 J	9.1	21	690
Cobalt, Total	8.8	4.1 J	4 J	3.7	20	12000
Copper, Total	13 J	15 J	7.6 J	5.8 J	2900	8200
Iron, Total	21000 J	8900 J-	7900 J-	7500 J	15000 / 15900	
Lead, Total	9.4 J	27 J	19 J	3.6 J	107	700
Magnesium, Total	2400 J	17000 J	4000 J	870 J	325000	730000
Manganese, Total	610 J	400 J	480 J	170 J	630 / 636	4100
Mercury, Total	0.023 J	0.22 J	0.023 J	0.013 J	0.89	0.1
Nickel, Total	15	9.1 J-	8.5 J-	5.2	100	4100
Potassium, Total	1100 J+	900 J	580 J	490 J+		
Selenium, Total	0.92 J-	ND	ND	0.35 J	1.3	1000
Silver, Total	0.062 J	0.045 J	0.05 J	ND	4.4	1000
Sodium, Total	100 J	230 J	130 J	250 J		
Thallium, Total	0.63 J-	ND	0.48 J	0.34 J	2.6	160
Vanadium, Total	28	12 J	12 J	15	550	1400
Zinc, Total	68 J	53 J	40 J	26 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.53	0.42 J	0.42 J	0.17 J	2	
Cadmium, TCLP	ND	0.002 J	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	0.038	0.016 J	ND	ND	1	
Copper, TCLP	ND	0.021 J	0.012 J	ND	0.65	
Iron, TCLP	ND	ND	ND	5.7 B	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	
Manganese, TCLP	11	2.9	3.5	0.078	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.033	0.011 J	0.012 J	ND	0.1	
Selenium, TCLP	0.013 J	ND	ND	ND	0.05	
Zinc, TCLP	ND	0.11	0.022 J	ND	5	
SPLP Metals (mg/l)	ND	ND	ND	ND	0.05	
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP Beryllium, SPLP	0.24 J	0.11 J	0.063 J	0.22 J	2	
	ND ND	ND	ND	ND	0.004	
Cadmium, SPLP	0.035	ND 0.02 J	ND ND	ND 0.019 J	0.005	
Chromium, SPLP Cobalt, SPLP	0.035 ND	0.02 J ND	ND ND	0.019 J ND	0.1 1	
Copper, SPLP	ND ND	ND ND	ND ND	ND ND	0.65	
Iron, SPLP	34 J+	ND 12 J+	3 J+	12 J+	0.65 5	
Lead, SPLP	0.02	0.035	0.012	12 J+ ND	0.0075	
Manganese, SPLP	0.02 0.99 B	0.035	0.012	0.11 B	0.0075	
Mercury, SPLP	0.99 B ND	ND	0.15 ND	0.00022	0.15	†
			ND ND	0.00022 0.014 J	0.002	
Nickel, SPLP	0.024 J ND	0.013 J ND	ND ND		0.1	
Selenium, SPLP				ND		
Silver, SPLP	ND	ND	ND	ND	0.05	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	PL-1(0-5.5)-040714	PL-2(0-5 5)-040714	PL-3(0-5)-040714	PL-3(5-10)-040714		
Sample Date	, ,	4/7/2014	4/7/2014	4/7/2014	,	Soil Remediation
Location ID		PL-2	PL-3	PL-3	Soil Reference	Objectives for
Depth	•	0 - 5.5	0 - 5	5 - 10	Concentrations ^A	Construction
Parameter	0 0.0	0 0.0	0 0	0 10		Workers ^B
Laboratory pH	8.9	7.48	7.41	7.53	<6.25,>9.0	
Total Metals (mg/kg)					,	
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	2.3 J	4.8 J	4.5 J	3.6 J	11.3 / 13	61
Barium, Total	35 J	87 J	63 J	89 J	1500	14000
Beryllium, Total	0.23 J	0.58 J	0.43 J	0.55 J	22	410
Cadmium, Total	0.33 J	0.49 J	0.26 J	0.81 J	5.2	200
Calcium, Total	13000 J	6200 J	2300 J	4400 J		
Chromium, Total	9.9 J+	20 J+	15 J+	22 J+	21	690
Cobalt, Total	4.6 J	6.9 J	6.8 J	6.2 J	20	12000
Copper, Total	10 J	16 J	11 J	15 J	2900	8200
Iron, Total	8600 J	18000 J	14000 J	17000 J	15000 / 15900	
Lead, Total	20 J	9 J	7.7 J	7.2 J	107	700
Magnesium, Total	4900 J	2900 J	1800 J	3700 J	325000	730000
Manganese, Total	310	340	350	440	630 / 636	4100
Mercury, Total	0.014 J	0.038 J	0.045 J	0.054 J	0.89	0.1
Nickel, Total	11 J	18 J	12 J	22 J	100	4100
Potassium, Total	460 J	1200 J	950 J	1300 J		
Selenium, Total	ND	ND	0.28 J	ND	1.3	1000
Silver, Total	ND	ND	ND	0.042 J	4.4	1000
Sodium, Total	530 J	340 J	150 J	150 J		
Thallium, Total	0.4 J	0.45 J	0.42 J	0.54 J	2.6	160
Vanadium, Total	15	31	24	32	550	1400
Zinc, Total	31 J	48 J	34 J	53 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	0.01 J	ND	0.05	
Barium, TCLP	0.41 J	0.38 J	0.53	0.43 J	2	
Cadmium, TCLP	ND	ND	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	0.024 J	0.017 J	1	
Copper, TCLP	0.012 J	ND	0.015 J	0.012 J	0.65	
Iron, TCLP	ND	ND	2.7	ND	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	
Manganese, TCLP	0.55	0.027	7	4.6	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	0.015 J	0.029	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.049 J	0.032 J	0.035 J	0.029 J	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.19 J	0.28 J	0.16 J	0.23 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	ND	0.02 J	0.015 J	ND	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	0.03	0.042	0.019 J	0.033	0.65	
Iron, SPLP	1.4	13	9.5	4.5	5	
Lead, SPLP	0.068	0.014	0.012	0.012	0.0075	
Manganese, SPLP	0.13	0.17	0.97	0.49	0.15	
Mercury, SPLP	0.0002	0.00015 J	ND	0.00023	0.002	
Nickel, SPLP	ND	0.015 J	ND	0.019 J	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	0.081 J	0.068 J	0.036 J	0.051 J	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	SM-1(0-6)-040814	SM-1(6-10)-040814	SM-2(0-6)-040814	SM-2(6-12)-040814		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	SM-1	SM-1	SM-2	SM-2	Concentrations ^A	Construction
Depth	0 - 6	6 - 10	0 - 6	6 - 12	Concentrations	Workers ^B
Parameter						
Laboratory pH	9.07	9.03	9.69	9.33	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	4 J	1.9 J	2.4 J	2.4 J	11.3 / 13	61
Barium, Total	62	28	57	61	1500	14000
Beryllium, Total	0.47 J	0.2 J	0.35 J	0.37 J	22	410
Cadmium, Total	0.7 J-	0.26 J-	0.3 J-	0.45 J-	5.2	200
Calcium, Total	18000 J	48000 J	21000 J	38000 J		
Chromium, Total	15 J	6.3 J	9.6 J	8.5 J	21	690
Cobalt, Total	12 J	2.8 J	4.7 J	4.3 J	20	12000
Copper, Total	16 J	7.5 J	11 J	13 J	2900	8200
Iron, Total	14000 J-	7100 J-	9900 J-	10000 J-	15000 / 15900	
Lead, Total	28 J	23 J	22 J	36 J	107	700
Magnesium, Total	3200 J	920 J	1500 J	1700 J	325000	730000
Manganese, Total	600 J	180 J	240 J	480 J	630 / 636	4100
Mercury, Total	8.00E-02 J	0.12 J	6.90E-02 J	0.35 J	0.89	0.1
Nickel, Total	15 J-	6.7 J-	9.1 J-	8.8 J-	100	4100
Potassium, Total	990 J	560 J	810 J	780 J		
Selenium, Total	ND	ND	ND	ND	1.3	1000
Silver, Total	ND	ND	ND	0.041 J	4.4	1000
Sodium, Total	640 J	210 J	600 J	780 J		
Thallium, Total	0.58	ND	ND	0.58	2.6	160
Vanadium, Total	23 J	10 J	17 J	13 J	550	1400
Zinc, Total	65 J	45 J	42 J	55 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.47 J	0.48 J	0.47 J	0.7	2	
Cadmium, TCLP	0.0024 J	ND	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	0.019 J	ND	ND	1	
Copper, TCLP	0.066	0.031	0.042	0.017 J	0.65	
Iron, TCLP	ND	ND	ND	ND	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	
Manganese, TCLP	0.86	2.6	0.51	2.5	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	0.02 J	ND	ND	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.081 J	0.16	0.046 J	0.086 J	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	0.015 J	ND	0.014 J	ND	0.05	
Barium, SPLP	0.32 J	0.15 J	0.38 J	0.22 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.071	0.027	0.084	0.014 J	0.1	
Cobalt, SPLP	0.013 J	ND	0.018 J	ND	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	67 J+	18 J+	68 J+	7.8 J+	5	
Lead, SPLP	0.088	0.064	0.14	0.078	0.0075	
Manganese, SPLP	0.6	0.16	0.54	0.4	0.15	
Mercury, SPLP	0.00019 J	ND	0.00018 J	0.00018 J	0.002	
Nickel, SPLP	0.055	0.018 J	0.061	ND	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	0.42 B	0.23 B	0.47 B	ND	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	` '	SM-3(0-6)-040814D	, ,	SR-1(0-5)-040714		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/7/2014	Soil Reference	Objectives for
Location ID	SM-3	SM-3	SM-3	SR-1	Concentrations ^A	Construction
Depth	0 - 6	0 - 6	6 - 12	0 - 5		Workers ^B
Parameter						1
Laboratory pH	9.38	9.48	8.86	8.23	<6.25,>9.0	
Total Metals (mg/kg)	ND	ND	ND	0.0.1		00
Antimony, Total	ND	ND	ND	0.6 J	5	82
Arsenic, Total	2.6 J	3 J	2.6 J	4.6 J	11.3 / 13	61
Barium, Total	60	58	55	130	1500	14000
Beryllium, Total	0.38 J	0.42 J	0.31 J	0.62	22	410
Cadmium, Total	0.49 J-	0.52 J-	0.23 J-	0.81 J	5.2	200
Calcium, Total	53000 J	40000 J	13000 J	12000 J		
Chromium, Total	8.1 J	9.6 J	7 J	13	21	690
Cobalt, Total	4 J	4.5 J	3.9 J	6.6 J-	20	12000
Copper, Total	12 J	14 J	7.5 J	49 J	2900	8200
Iron, Total	11000 J-	12000 J-	8100 J-	15000 J	15000 / 15900	700
Lead, Total	42 J	41 J	24 J	150 J	107	700
Magnesium, Total	1400 J	2000 J	960 J	2400 J	325000	730000
Manganese, Total	350 J	330 J	210 J	510 J-	630 / 636	4100
Mercury, Total	0.24 J 9 J-	0.13 J 10 J-	0.044 J 6.9 J-	0.83 J 14	0.89	0.1 4100
Nickel, Total					100	4100
Potassium, Total	850 J	970 J	720 J	1100 J+		
Selenium, Total	ND	ND	0.25 J	0.25 J	1.3	1000
Silver, Total	0.033 J	0.036 J	ND ND	0.078 J	4.4	1000
Sodium, Total	960 J	1100 J	650 J	160 B		400
Thallium, Total	0.37 J	0.32 J	ND 10 I	0.58	2.6	160
Vanadium, Total	14 J	16 J	12 J	20	550	1400
Zinc, Total	60 J	67 J	47 J	190 J	5100	61000
TCLP Metals (mg/l)	ND	ND	ND	ND	0.05	
Arsenic, TCLP Barium, TCLP	0.54	0.6	0.67	0.69	2	
Cadmium, TCLP	0.0021 J	0.0039 J	0.67 ND	0.0032 J	0.005	
Chromium, TCLP	0.0021 3 ND	0.0039 3 ND	ND ND	0.0032 3 ND	0.005	
Cobalt, TCLP	ND ND	ND ND	0.022 J	ND	1	
Copper, TCLP	0.045	0.016 J	0.043	ND	0.65	
Iron, TCLP	ND	0.010 3 ND	ND	ND ND	5	
Lead, TCLP	ND	ND	0.0094	ND ND	0.0075	
Manganese, TCLP	1 J	4.7 J	4.8	0.48	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	0.02 J	0.014 J	ND ND	0.002	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.084 J	0.22 J	0.18	0.28	5	
SPLP Metals (mg/l)	0.004 0	0.22 0	0.10	0.20	<u> </u>	
Arsenic, SPLP	ND	ND	0.019 J	ND	0.05	
Barium, SPLP	0.19 J	0.26 J	0.2 J	0.14 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	ND	0.04	0.03	0.029	0.1	
Cobalt. SPLP	ND	ND	ND	0.023 ND	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	6.9 J	35 J	26 J+	25 J+	5	
Lead, SPLP	0.088 J	0.15 J	0.11	0.074	0.0075	
Manganese, SPLP	0.23 J	0.43 J	0.58	0.16	0.15	
Mercury, SPLP	0.00027	0.00031	ND	0.0014	0.002	
Nickel, SPLP	0.00027 ND	0.0031	0.022 J	0.0014 0.017 J	0.002	
Selenium, SPLP	ND ND	0.031 ND	0.022 J ND	0.017 3 ND	0.05	
JOIGHIUH, OF LF						
Silver, SPLP	ND	ND	ND	ND	0.05	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	SR-1(5-10)-040714	SR-1(5-10)-040714D	SR-2(0-5)-040714	SR-2(5-10)-040714		Soil Remediation
Sample Date	4/7/2014	4/7/2014	4/7/2014	4/7/2014	Soil Reference	Objectives for
Location ID	SR-1	SR-1	SR-2	SR-2	Concentrations ^A	Construction
Depth	5 - 10	5 - 10	0 - 5	5 - 10	Concentiations	Workers ^B
Parameter						
Laboratory pH	7.99	8.18	8.14	7.74	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	4.8 J	3.3 J	4.1 J	5.1 J	11.3 / 13	61
Barium, Total	35 J	64 J	79	83	1500	14000
Beryllium, Total	0.25 J	0.51 J	0.41	0.5	22	410
Cadmium, Total	0.068 J	0.12 J	0.38 J	0.36 J	5.2	200
Calcium, Total	9800 J	3900 J	83000 J	9400 J		
Chromium, Total	6.7 J	16 J	13	16	21	690
Cobalt, Total	7.2 J-	6.9 J-	5.2 J-	5.7 J-	20	12000
Copper, Total	6.7 J	12 J	15 J	17 J	2900	8200
Iron, Total	7100 J	14000 J	12000 J	17000 J	15000 / 15900	
Lead, Total	5.3 J	6.7 J	27 J	17 J	107	700
Magnesium, Total	960 J	2200 J	3800 J	6700 J	325000	730000
Manganese, Total	100 J-	120 J-	460 J-	470 J-	630 / 636	4100
Mercury, Total	0.024 J	0.021 J	0.058 J	0.03 J	0.89	0.1
Nickel, Total	11	13	12	17	100	4100
Potassium, Total	620 J	1100 J	1100 J+	1000 J+		
Selenium, Total	0.44 J	ND	ND	ND	1.3	1000
Silver, Total	ND	ND	ND	ND	4.4	1000
Sodium, Total	120 B	150 B	140 B	150 B		
Thallium, Total	ND	ND	0.38 J	0.38 J	2.6	160
Vanadium, Total	8 J	22 J	20	30	550	1400
Zinc, Total	39 J	43 J	41 J	47 J	5100	61000
TCLP Metals (mg/l)	ND	ND		N.D.	0.05	
Arsenic, TCLP	ND	ND	ND 0.74	ND 0.04	0.05	
Barium, TCLP	0.37 J	0.31 J	0.74	0.64	2	
Cadmium, TCLP	ND	ND	0.002 J	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND 0.057	ND	1	
Copper, TCLP	ND	0.014 J	0.057	0.016 J	0.65	
Iron, TCLP	ND	0.79	ND	ND	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	
Manganese, TCLP	0.41 J	0.12 J	0.39	0.27	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.016 J	ND	ND	ND ND	0.1	
Selenium, TCLP Zinc, TCLP	ND 0.025 J	ND 0.064 J	0.069 J	ND 0.063 L	0.05	
SPLP Metals (mg/l)	0.025 J	0.064 J	0.069 J	0.063 J	5	
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.12 J	ND 0.1 J	0.24 J	0.15 J	0.05	
Beryllium, SPLP	0.12 J ND	0.1 J ND	0.24 J ND	0.15 J ND	0.004	
Cadmium, SPLP	ND ND	ND ND	ND ND	ND ND	0.004	
,	0.022 J	0.012 J		ND ND	0.005	
Chromium, SPLP Cobalt, SPLP	0.022 J ND	0.012 J ND	ND ND	ND ND	1	
Copper, SPLP	ND ND	ND ND	ND ND	ND ND	0.65	
Iron, SPLP	5.9 J+				5	
Iron, SPLP Lead, SPLP	5.9 J+ 0.0087	3.2 J+ ND	4.1 J+ 0.014	4.5 J+ 0.016	0.0075	
Manganese, SPLP	0.0087	0.022 J		0.016	0.0075	
Manganese, SPLP Mercury, SPLP			0.051		0.15	
,	ND ND	ND ND	0.00013 J	ND ND		
Nickel, SPLP	ND ND	ND ND	ND	ND ND	0.1	
Selenium, SPLP Silver, SPLP	ND ND	ND ND	ND ND	ND ND	0.05	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	SR-2(10-13)-040714	SR-3(0-5)-040714	SR-3(5-10)-040714	SR-3(10-13)-040714		
Sample Date	, ,	4/7/2014	4/7/2014	4/7/2014		Soil Remediation
Location ID		SR-3	SR-3	SR-3	Soil Reference	Objectives for
	10 - 13	0 - 5	5 - 10	10 - 13	Concentrations ^A	Construction
Depth Parameter	10 - 13	0-5	5 - 10	10 - 13		Workers ^B
Laboratory pH	8.47	7.57	7.76	8.65	<6.25,>9.0	
Total Metals (mg/kg)	0.17	7.01	7.70	0.00	10.20,20.0	
Antimony, Total	ND	0.5 J	ND	ND	5	82
Arsenic, Total	0.81 J	7.2 J	5.5 J	2.1 J	11.3 / 13	61
Barium, Total	5.3	100	92	8.1	1500	14000
Beryllium, Total	ND	0.67	0.62	0.056 J	22	410
Cadmium, Total	0.014 J	0.97 J	0.38 J	ND	5.2	200
Calcium, Total	240 J	33000 J	8800 J	600 J		
Chromium, Total	5.3	14	19	3.1	21	690
Cobalt, Total	0.47 J-	6.3 J-	15 J-	1.4 J-	20	12000
Copper, Total	2.5 J	75 J	18 J	2.9 J	2900	8200
Iron, Total	2200 J	17000 J	17000 J	4900 J	15000 / 15900	
Lead, Total	1.2 J	84 J	14 J	1.3 J	107	700
Magnesium, Total	120 J	3100 J	3200 J	400 J	325000	730000
Manganese, Total	27 J-	540 J-	790 J-	59 J-	630 / 636	4100
Mercury, Total	ND	0.29 J	0.041 J	ND	0.89	0.1
Nickel, Total	1.7	15	24	3.3	100	4100
Potassium, Total	310 J+	1000 J+	1700 J+	130 J+		
Selenium, Total	0.27 J	ND	ND	ND	1.3	1000
Silver, Total	ND	0.051 J	ND	ND	4.4	1000
Sodium, Total	100 B	240 B	160 B	ND		
Thallium, Total	ND	0.64	0.94	ND	2.6	160
Vanadium, Total	1.8	22	28	5.6	550	1400
Zinc, Total	2.8 J	180 J	51 J	9.1 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.15 J	0.82	0.47 J	0.22 J	2	
Cadmium, TCLP	ND	0.0056	ND	ND	0.005	
Chromium, TCLP	0.013 J	ND	0.01 J	ND	0.1	
Cobalt, TCLP	ND	ND	ND	ND	1	
Copper, TCLP	0.075	0.015 J	0.029	0.02 J	0.65	
Iron, TCLP	0.92	ND	1.7	0.98	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	
Manganese, TCLP	0.73	0.54	0.13	1	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.011 J	ND	0.038	0.019 J	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.071 J	0.2	0.083 J	0.057 J	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	ND	0.22 J	0.21 J	0.062 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	ND	ND	0.018 J	ND	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	0.41 J+	4.6 J+	13 J+	0.33 J+	5	
Lead, SPLP	ND	0.072	ND	ND	0.0075	
Manganese, SPLP	0.079	0.087	0.081	0.072	0.15	
Mercury, SPLP	ND	0.00032	0.0003	ND	0.002	
Nickel, SPLP	ND	ND	0.014 J	ND	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	ND	0.19 B	ND	ND	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	SR-4(0-5)-040714	SR-4(0-5)-040714D	SP-4/5-10)-040714	SP-4(10-12)-040714		1
Sample Date	` '	4/7/2014	4/7/2014	4/7/2014		Soil Remediation
•			SR-4		Soil Reference	Objectives for
Location ID		SR-4		SR-4	Concentrations ^A	Construction
Depth Parameter	0 - 5	0 - 5	5 - 10	10 - 12		Workers ^B
Laboratory pH	8.28	8.41	8.12	8.61	<6.25,>9.0	
Total Metals (mg/kg)	0.20	0.11	0.12	0.01	40.20,20.0	
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	5.8 J	6.2 J	7 J	6.6 J	11.3 / 13	61
Barium, Total	94	73	85	73	1500	14000
Beryllium, Total	0.5	0.4	0.47	0.43	22	410
Cadmium, Total	0.41 J	0.38 J	0.3 J	0.39 J	5.2	200
Calcium, Total	11000 J	28000 J	14000 J	17000 J		
Chromium, Total	16	13	14	13	21	690
Cobalt, Total	7.3 J-	5.4 J-	6.6 J-	6.6 J-	20	12000
Copper, Total	19 J	17 J	18 J	18 J	2900	8200
Iron, Total	16000 J	14000 J	17000 J	14000 J	15000 / 15900	
Lead, Total	54 J	54 J	48 J	52 J	107	700
Magnesium, Total	3000 J	2600 J	4400 J	3500 J	325000	730000
Manganese, Total	630 J-	400 J-	390 J-	380 J-	630 / 636	4100
Mercury, Total	0.11 J	0.1 J	0.094 J	0.17 J	0.89	0.1
Nickel, Total	20	14	16	16	100	4100
Potassium, Total	1100 J+	980 J+	1100 J+	1000 J+		
Selenium, Total	ND	ND	ND	ND	1.3	1000
Silver, Total	ND	ND	ND	ND	4.4	1000
Sodium, Total	210 B	200 B	270 B	200 B		
Thallium, Total	0.53 J	0.33 J	0.31 J	0.27 J	2.6	160
Vanadium, Total	25	21	25	20	550	1400
Zinc, Total	96 J	68 J	67 J	77 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.82	0.77	0.85	0.83	2	
Cadmium, TCLP	0.0026 J	0.0028 J	0.003 J	0.0037 J	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	0.014 J	0.03	1	
Copper, TCLP	0.016 J	0.02 J	0.016 J	0.016 J	0.65	
Iron, TCLP	ND	ND	ND	ND	5	
Lead, TCLP	0.01	ND	0.0094	0.017	0.0075	
Manganese, TCLP	0.43	0.52	6.8	6.7	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.011 J	0.011 J	0.026	0.045	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.076 J	0.092 J	0.071 J	0.18	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.24 J	0.23 J	0.2 J	0.21 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.016 J	0.011 J	0.011 J	0.011 J	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	12 J+	7.2 J+	7.6 J+	8.1 J+	5	
Lead, SPLP	0.07	0.073	0.14	0.11	0.0075	
Manganese, SPLP	0.26	0.25	0.96	0.45	0.15	
Mercury, SPLP	0.00034	0.00046	0.00034	0.00048	0.002	
Nickel, SPLP	0.012 J	ND	0.011 J	0.01 J	0.1	
Selenium, SPLP	ND	ND	ND	0.012 J	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	0.19 B	0.14 B	ND	ND	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	SR-5(0-5)-040714	SR-6(0-5)-040714	SR-7(0-3)-040714	SR-8(0-3)-040714		
Sample Date	` '	4/7/2014	4/7/2014	4/7/2014		Soil Remediation
Location ID		SR-6	SR-7	SR-8	Soil Reference	Objectives for
Depth	0 - 5	0 - 5	0 - 3	0 - 3	Concentrations ^A	Construction
Parameter	0-3	0-3	0-3	0-3		Workers ^B
Laboratory pH	7.64	8.45	7.86	8	<6.25,>9.0	
Total Metals (mg/kg)		51.10			.0.20,. 0.0	
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	6.5 J	4.4 J	4.7 J	4.9 J	11.3 / 13	61
Barium, Total	83	71	110	92	1500	14000
Beryllium, Total	0.45	0.38	0.57	0.55	22	410
Cadmium, Total	0.19 J	0.64 J	0.7 J	0.6 J	5.2	200
Calcium, Total	3300 J	130000 J	12000 J	24000 J		
Chromium, Total	18	13	17	16	21	690
Cobalt, Total	8.1 J-	5 J-	6.2 J-	6.5 J-	20	12000
Copper, Total	17 J	17 J	37 J	30 J	2900	8200
Iron, Total	18000 J	14000 J	14000 J	16000 J	15000 / 15900	
Lead, Total	10 J	42 J	130 J	60 J	107	700
Magnesium, Total	2200 J	4000 J	3100 J	6100 J	325000	730000
Manganese, Total	580 J-	550 J-	430 J-	410 J-	630 / 636	4100
Mercury, Total	0.036 J	7.30E-02 J	0.42 J	0.12 J	0.89	0.1
Nickel, Total	17	12	15	16	100	4100
Potassium, Total	1200 J+	1200 J+	980 J+	1000 J+		
Selenium, Total	0.27 J	ND	0.35 J	ND	1.3	1000
Silver, Total	ND	0.031 J	0.056 J	0.034 J	4.4	1000
Sodium, Total	850 B	920 B	390 B	260 B		
Thallium, Total	0.66	0.43 J	0.57	0.3 J	2.6	160
Vanadium, Total	30	20	20	22	550	1400
Zinc, Total	38 J	67 J	120 J	87 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.45 J	0.85	0.91	0.76	2	
Cadmium, TCLP	ND	0.0046 J	0.004 J	0.0027 J	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND	ND	1	
Copper, TCLP	0.017 J	0.021 J	0.032	0.022 J	0.65	
Iron, TCLP	ND	ND	ND	ND	5	
Lead, TCLP	ND	0.0079	0.0097	ND	0.0075	
Manganese, TCLP	0.53	1.7	1.8	0.22	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	ND	ND	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.037 J	0.17	0.18	0.089 J	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	0.039 J	ND	ND .	ND	0.05	
Barium, SPLP	0.46 J	0.11 J	0.28 J	0.27 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	0.0021 J	ND	ND	ND	0.005	
Chromium, SPLP	0.15	0.014 J	0.01 J	0.019 J	0.1	
Cobalt, SPLP	0.027	ND	ND	ND	1	
Copper, SPLP	0.16 B	ND	ND	ND	0.65	
Iron, SPLP	150 J+	8.6 J+	6.8 J+	13 J+	5	
Lead, SPLP	0.076	0.017	0.09	0.085	0.0075	
Manganese, SPLP	0.64	0.048	0.15	0.14	0.15	
Mercury, SPLP	0.00056	ND	0.00067	0.00027	0.002	
Nickel, SPLP	0.12	ND	ND	0.012 J	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND 0.14 B	ND 0.16 B	0.05	
Zinc, SPLP	0.37 B	ND	0.14 B	0.16 B	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID		VB-1(6-10)-040814		VB-2(6-12.5)-040814		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	VB-1	VB-1	VB-2	VB-2	Concentrations ^A	Construction
Depth	0 - 6	6 - 10	0 - 6	6 - 12.5	Concentiations	Workers ^B
Parameter						
Laboratory pH	9.69	9.11	7.98	8.75	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	2 J	8.1 J	2.5 J	2.9 J	11.3 / 13	61
Barium, Total	60	68	31	33	1500	14000
Beryllium, Total	0.4 J	0.37 J	0.23 J	0.24 J	22	410
Cadmium, Total	0.31 J-	0.45 J-	0.13 J-	0.18 J-	5.2	200
Calcium, Total	39000 J	4700 J	1500 J	2900 J		
Chromium, Total	7.2 J	11 J	8.7 J	10 J	21	690
Cobalt, Total	3.5 J	5.7 J	3.9 J	4.5 J	20	12000
Copper, Total	7.8 J	8.1 J	7.7 J	10 J	2900	8200
Iron, Total	9000 J-	17000 J-	8500 J-	9800 J-	15000 / 15900	
Lead, Total	33 J	6.6 J	4.6 J	4.4 J	107	700
Magnesium, Total	1000 J	1600 J	1000 J	2000 J	325000	730000
Manganese, Total	320 J	170 J	130 J	210 J	630 / 636	4100
Mercury, Total	1.6 J	0.031 J	0.012 J	0.011 J	0.89	0.1
Nickel, Total	6.8 J-	10 J-	7.3 J-	12 J-	100	4100
Potassium, Total	570 J	760 J	460 J	620 J		
Selenium, Total	ND	0.59 J-	ND	0.24 J	1.3	1000
Silver, Total	0.053 J	ND	ND	ND	4.4	1000
Sodium, Total	730 J	1000 J	260 J	310 J		
Thallium, Total	0.43 J	0.33 J	0.28 J	0.39 J	2.6	160
Vanadium, Total	12 J	20 J	18 J	16 J	550	1400
Zinc, Total	79 J	29 J	17 J	32 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.44 J	0.23 J	0.28 J	0.28 J	2	
Cadmium, TCLP	0.0021 J	ND	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND	ND	1	
Copper, TCLP	0.021 J	0.035	0.018 J	0.032	0.65	
Iron, TCLP	ND	1.5	0.3	ND	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	
Manganese, TCLP	0.78	0.23	0.061	1.4	0.15	
Mercury, TCLP	ND ND	ND ND	ND ND	ND 0.025	0.002	
Nickel, TCLP Selenium, TCLP	ND ND	ND ND	ND ND	0.025 ND	0.05	
Zinc, TCLP	0.12	0.031 J	0.033 J			
·	0.12	0.031 J	0.033 J	0.14	5	
SPLP Metals (mg/l) Arsenic, SPLP	ND	0.09	ND	ND	0.05	
Barium, SPLP	0.31 J	0.09 0.48 J	ND 0.13 L	ND 0.11 L	0.05	
Beryllium, SPLP	0.31 J ND	0.46 J ND	0.13 J ND	0.11 J ND	0.004	
Cadmium, SPLP	ND ND	ND ND	ND ND	ND ND	0.004	
·	0.063		0.018 J	0.014 J	0.005	
Chromium, SPLP Cobalt, SPLP	0.063 0.012 J	0.13 0.036	0.018 J ND	0.014 J ND	1	
Copper, SPLP	0.012 J ND	0.036 ND	ND ND	ND ND	0.65	
Iron, SPLP	51 J+	160 J+	ND 12 J+	8.6 J+	0.65 5	
Lead, SPLP	0.17	0.076	0.017	0.0093	0.0075	
Manganese, SPLP	0.17	0.62	0.017	0.0093	0.0075	
	0.64					
Mercury, SPLP		0.00023	ND	ND ND	0.002	
Nickel, SPLP	0.039	0.087	0.011 J	ND	0.1	
Selenium, SPLP	ND	0.01 J	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND		

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID		VB-3(6-12.5)-040814				Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	VB-3	VB-3	VB-4	VB-4	Concentrations ^A	Construction
Depth	0 - 6	6 - 12.6	0 - 5	5 - 10	Concentiations	Workers ^B
Parameter						
Laboratory pH	9.39	8.92	7.22	7.12	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	2.6 J	2.7 J	1.2 J	1.3 J	11.3 / 13	61
Barium, Total	36	19	21	70	1500	14000
Beryllium, Total	0.26 J	0.15 J	0.2 J	0.26	22	410
Cadmium, Total	0.18 J-	0.12 J-	0.076 J	0.083 J	5.2	200
Calcium, Total	1900 J	1200 J	5800 J-	1900 J-		
Chromium, Total	10 J	6.7 J	7	11	21	690
Cobalt, Total	4.2 J	3 J	2.4	4	20	12000
Copper, Total	7.4 J	6 J	4.5	8.8	2900	8200
Iron, Total	9800 J-	7300 J-	5900 J+	8400 J+	15000 / 15900	
Lead, Total	5.4 J	2.6 J	2.6 J	3 J	107	700
Magnesium, Total	1200 J	970 J	1000 J+	1400 J+	325000	730000
Manganese, Total	110 J	82 J	94 J	440 J	630 / 636	4100
Mercury, Total	0.015 J	ND	0.042	0.012 J	0.89	0.1
Nickel, Total	7.7 J-	7.9 J-	6.3	10	100	4100
Potassium, Total	560 J	310 J	370 J+	630 J+		
Selenium, Total	0.37 J	0.33 J	ND	ND	1.3	1000
Silver, Total	ND	ND	ND	ND	4.4	1000
Sodium, Total	620 J	190 J	39 J	130		
Thallium, Total	0.23 J	ND	ND	0.38 J	2.6	160
Vanadium, Total	19 J	10 J	12	15	550	1400
Zinc, Total	21 J	14 J	26 B	20 B	5100	61000
TCLP Metals (mg/l)	NB	115	115	N.D.	0.05	
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.2 J	0.24 J	0.22 J	0.2 J	2	
Cadmium, TCLP	ND	ND	ND	ND	0.005	
Chromium, TCLP Cobalt, TCLP	ND ND	ND	ND ND	ND ND	0.1 1	
		0.017 J				
Copper, TCLP	0.028 J 1.5	0.053 0.22	0.013 J 0.3	0.018 J 0.94	0.65 5	
Iron, TCLP Lead, TCLP	ND				0.0075	
Manganese, TCLP	0.12	ND 0.95	ND 0.05	ND 0.019 J		
			0.05		0.15	
Mercury, TCLP Nickel, TCLP	ND ND	ND 0.026	ND ND	ND ND	0.002	
Selenium, TCLP	ND ND	0.026 ND	ND ND	ND ND	0.05	
Zinc, TCLP		0.054 J	0.041 J	0.035 J		
	0.034 J	0.054 J	0.041 J	0.035 J	5	
SPLP Metals (mg/l) Arsenic, SPLP	0.022 J	ND	ND	ND	0.05	
Barium, SPLP		ND 0.12 J	ND	ND ND	0.05	
Beryllium, SPLP	0.42 J ND	0.12 J ND	ND ND	ND ND	0.004	
Cadmium, SPLP	ND ND	ND ND	ND ND	ND ND	0.004	
Chromium, SPLP	0.12	0.01 J	0.063	0.039	0.005	
Cobalt, SPLP	0.12 0.021 J	0.01 J ND	0.063 ND	0.039 ND	1	
Copper, SPLP	0.021 J ND	ND ND			0.65	
Iron, SPLP	100 J+	3.3 J+	0.1 B 47	0.089 B 27	0.65 5	
Lead, SPLP	0.065	0.0075	0.023	0.022	0.0075	
	0.065			0.022	0.0075	
Manganese, SPLP		0.1 ND	0.18			
Mercury, SPLP	0.0002	ND ND	0.00021	ND	0.002	
Nickel, SPLP	0.068	ND	0.033	0.023 J	0.1	
Selenium, SPLP Silver, SPLP	ND ND	ND ND	ND ND	ND ND	0.05 0.05	
	INI I	INI)	INI I	INI)	0.05	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	\/R-5(0-5\-040814	VB-5(5-10)-040814	\/R_6(0_5)_0/091/	VR-6/5-10)-040914		1
Sample Date	4/8/2014	4/8/2014	4/9/2014	4/9/2014		Soil Remediation
Location ID	VB-5	VB-5	VB-6	VB-6	Soil Reference	Objectives for
Depth	0 - 5	5 - 10	0 - 5	5 - 10	Concentrations ^A	Construction
Parameter	0-5	5-10	0-5	5-10		Workers ^B
Laboratory pH	7.4	7.09	8.65	8.12	<6.25,>9.0	
Total Metals (mg/kg)			5.50		.0.20,. 0.0	
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	1.6 J	33 J	4.3 J	3.3 J	11.3 / 13	61
Barium, Total	49	290	76	110	1500	14000
Beryllium, Total	0.33	0.45	0.47 J	0.74 J	22	410
Cadmium, Total	0.15	0.71	0.37 J-	0.12 J	5.2	200
Calcium, Total	4000 J-	3000 J-	14000 J	4800 J		
Chromium, Total	13	13	15 J	22 J	21	690
Cobalt, Total	4.5	32	6.2 J	6.3 J	20	12000
Copper, Total	10	23	22 J-	20 J-	2900	8200
Iron, Total	10000 J+	29000 J+	14000 J	19000 J	15000 / 15900	
Lead, Total	15 J	6.5 J	28 J	10 J	107	700
Magnesium, Total	1500 J+	1900 J+	8800 J	4000 J	325000	730000
Manganese, Total	51 J	3400 J	480 J	250 J	630 / 636	4100
Mercury, Total	0.061	0.024	0.15	0.051	0.89	0.1
Nickel, Total	9.9	45	14 J	18 J	100	4100
Potassium, Total	840 J+	900 J+	1100 J+	1200 J+		
Selenium, Total	0.37 J	0.42 J	ND	ND	1.3	1000
Silver, Total	ND	0.14 J	ND	ND	4.4	1000
Sodium, Total	49 J	67	800	460		
Thallium, Total	ND	2.4	0.37 J	ND	2.6	160
Vanadium, Total	21	45	21	22	550	1400
Zinc, Total	47 B	80 B	53 J-	62 J-	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.67	0.43 J	0.42 J	0.29 J	2	
Cadmium, TCLP	ND	ND	0.0024 J	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	0.022 J	ND	ND	ND	1	
Copper, TCLP	0.019 J	0.028	0.03	0.039	0.65	
Iron, TCLP	0.3	1	0.27	2	5	
Lead, TCLP	0.022	ND	ND	ND	0.0075	
Manganese, TCLP	0.56	0.55	0.91	0.066	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.021 J	0.027	0.011 J	0.011 J	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.18	0.059 J	0.15	0.054 J	5	
SPLP Metals (mg/l)		0.040	0.000	0.005 1	0.05	
Arsenic, SPLP	ND	0.049 J	0.032 J	0.025 J	0.05	
Barium, SPLP	ND	0.34 J	0.69	0.59	2	
Beryllium, SPLP	ND	ND	0.0055	0.0045	0.004	
Cadmium, SPLP	ND 0.042	ND 0.043	0.0033 J	ND 0.46	0.005	
Chromium, SPLP	0.042	0.042	0.19	0.16	0.1	
Copper SPLP	0.012 J	0.015 J	0.03	0.02 J	1	
Copper, SPLP	ND	ND	0.24	0.12	0.65	
Iron CDI D	33	56	170 J+ 0.17	120 J+ 0.038	5 0.0075	
Iron, SPLP	0.04	0.046		0.030	0.0075	
Lead, SPLP	0.04	0.016		0.42		
Lead, SPLP Manganese, SPLP	0.11	0.69	1.2	0.43	0.15	
Lead, SPLP Manganese, SPLP Mercury, SPLP	0.11 0.00013 J	0.69 0.00015 J	1.2 0.0012	0.0004	0.15 0.002	
Lead, SPLP Manganese, SPLP Mercury, SPLP Nickel, SPLP	0.11 0.00013 J 0.029	0.69 0.00015 J 0.051	1.2 0.0012 0.13	0.0004 0.078	0.15 0.002 0.1	
Lead, SPLP Manganese, SPLP Mercury, SPLP	0.11 0.00013 J	0.69 0.00015 J	1.2 0.0012	0.0004	0.15 0.002	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VL-1(0-5.5)-040914	VL-2(0-5.5)-040914	VL-3(0-5.5)-040914	VL1-1(0-5)-040814		
Sample Date	4/9/2014	4/9/2014	4/9/2014	4/8/2014	,	Soil Remediation
Location ID	VL-1	VL-2	VL-3	VL1-1	Soil Reference	Objectives for Construction
Depth	0 - 5.5	0 - 5.5	0 - 5.5	0 - 5	Concentrations	Workers ^B
Parameter						workers
Laboratory pH	8.14	7.26	7.99	6.47	<6.25,>9.0	
Total Metals (mg/kg)					,	
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	4.4	4.2	8.6	3.1 J	11.3 / 13	61
Barium, Total	56	95	120	39	1500	14000
Beryllium, Total	0.48	0.62	0.43	0.36	22	410
Cadmium, Total	0.18	0.19	0.2	ND	5.2	200
Calcium, Total	2300	2400	3600	1900 J-		
Chromium, Total	16	23	17	11	21	690
Cobalt, Total	7.4	18	5.4	5.5	20	12000
Copper, Total	17	24	18	8	2900	8200
Iron, Total	16000	19000	20000	11000 J+	15000 / 15900	
Lead, Total	4.9 B	7.3 B	57 B	5.7 J	107	700
Magnesium, Total	2100	3900	2900	1400 J+	325000	730000
Manganese, Total	260	550	260	110 J	630 / 636	4100
Mercury, Total	0.035	0.023	0.18	0.015 J	0.89	0.1
Nickel, Total	14	19	15	9.1	100	4100
Potassium, Total	760	1100	1100	590 J+		
Selenium, Total	ND	ND	0.39 J	ND	1.3	1000
Silver, Total	ND	ND	ND	ND	4.4	1000
Sodium, Total	220	190	210	25 J		
Thallium, Total	0.34 J	0.55 J	ND	ND	2.6	160
Vanadium, Total	31	38	31	21	550	1400
Zinc, Total	24	31	65	27 B	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.27 J	0.34 J	0.96	0.24 J	2	
Cadmium, TCLP	ND	ND	0.0068	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	0.029	ND	1	
Copper, TCLP	ND	ND	0.11	0.022 J	0.65	
Iron, TCLP	0.23	0.83	0.36	0.29	5	
Lead, TCLP	ND	ND	1.4	ND	0.0075	
Manganese, TCLP	ND	ND	4.1 B	0.017 J	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	0.032	ND	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	ND	ND	1.5 B	0.042 J	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	0.028 J	ND	ND	ND	0.05	
Barium, SPLP	0.77	0.13 J	0.2 J	ND	2	
Beryllium, SPLP	0.0054	ND ND	ND	ND	0.004	
Cadmium, SPLP	0.0028 J	ND	ND	ND	0.005	
Chromium, SPLP	0.2	0.017 J	0.013 J	0.032	0.1	
Cobalt, SPLP	0.036	ND	ND	ND	1	
Copper, SPLP	0.22	0.021 J	0.019 J	ND	0.65	
Iron, SPLP	150	8.8	7.1	23	5	
Lead, SPLP	0.038	0.0078	0.22	0.016	0.0075	
Manganese, SPLP	1.2	0.064	0.11	0.35	0.15	
14 OD: T	0.00042	ND	0.00016 J	ND	0.002	
Mercury, SPLP	0 :-					
Nickel, SPLP	0.15	0.011 J	ND	0.024 J	0.1	
•	0.15 ND ND	0.011 J ND ND	ND ND ND	0.024 J ND ND	0.1 0.05 0.05	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	\/ 1_1/5_10\ 040944	VI 1-2(0-6) 040914	VL1-2(6-10)-040814	\/ 1-3/0-6\ 040914		1
	, ,	, ,	, ,	` ,		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	VL1-1	VL1-2	VL1-2	VL1-3	Concentrations ^A	Construction
Depth Parameter	5 - 10	0 - 6	6 - 10	0 - 6		Workers ^B
Laboratory pH	7.06	7.55	8.5	8.23	<6.25,>9.0	
Total Metals (mg/kg)	7.00	7.00	0.0	0.20	VO.20,7 0.0	
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	1.4 J	2.9 J	1.9 J	1.4 J	11.3 / 13	61
Barium, Total	60	29	43	41	1500	14000
Beryllium, Total	0.15 J	0.23 J	0.16 J	0.25	22	410
Cadmium, Total	0.31	0.21 J-	0.16 J-	0.016 J	5.2	200
Calcium, Total	1100 J-	1100 J	2900 J	2100 J		
Chromium, Total	5.3	7.7 J	6.6 J	8.7	21	690
Cobalt, Total	2.6	3.3 J	2.6 J	4.1	20	12000
Copper, Total	9.3	7.2 J	5.9 J	4.7	2900	8200
Iron, Total	5700 J+	8900 J-	5900 J-	7200 J+	15000 / 15900	
Lead, Total	2 J	2.8 J	2.6 J	5.7 J	107	700
Magnesium, Total	880 J+	1400 J	1100 J	1200 J+	325000	730000
Manganese, Total	940 J	1400 J	300 J	260 J	630 / 636	4100
Mercury, Total	0.018 J	0.013 J	300 J ND	260 J ND	0.89	0.1
Nickel, Total	25	8.7 J-	8.2 J-	6.3	100	4100
Potassium, Total	270 J+	440 J	280 J	530 J+		
Selenium. Total	ND	0.31 J	200 3 ND	330 34 ND	1.3	1000
Silver, Total	0.058 J	0.51 3 ND	ND ND	ND ND	4.4	1000
Sodium, Total	37 J	27 J	57 J	44 J	4.4	1000
Thallium, Total	0.92	0.31 J	0.27 J	0.24 J	2.6	160
Vanadium, Total	11	17 J	12 J	14	550	1400
Zinc, Total	12 B	17 J	12 J	18 B	5100	61000
TCLP Metals (mg/l)	12 0	10 J	11.5	10 Б	3100	01000
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.2 J	0.2 J	0.24 J	0.38 J	2	
Cadmium, TCLP	0.2 3 ND	0.2 3 ND	0.24 3 ND	0.38 3 ND	0.005	
Chromium, TCLP	ND	ND ND	ND ND	ND ND	0.005	
Cobalt, TCLP	ND	ND ND	ND ND	ND ND	1	
Copper, TCLP	0.026	0.043	0.072	0.055 J	0.65	
Iron, TCLP	1.2	0.4	0.35	0.39	5	
Lead, TCLP	0.0075	ND	ND	0.014 J	0.0075	
Manganese, TCLP	0.043	0.074	0.63	0.44	0.0073	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	0.015 J	ND	0.1	
Selenium, TCLP	ND	ND ND	0.013 3 ND	ND	0.05	
Zinc, TCLP	0.054 J	0.039 J	0.064 J	0.076 J	5	
SPLP Metals (mg/l)	0.00.0	0.000	0.00.0	0.0.0		
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	ND	0.12 J	0.14 J	ND	2	
Beryllium, SPLP	ND ND	0.12 3 ND	0.14 3 ND	ND ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.054	0.014 J	0.022 J	0.045 J	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	42	7.7 J+	15 J+	34 J	5	
Lead, SPLP	0.018	0.011	0.019	0.016 J	0.0075	
	0.73	0.065	0.19	0.36 J	0.15	
Manganese, SPI P			3			+
Manganese, SPLP Mercury, SPLP		ND	ND	0.00011 J	0.002	
Mercury, SPLP	0.00017 J	ND ND	ND 0.014 J	0.00011 J 0.025	0.002	
Mercury, SPLP Nickel, SPLP	0.00017 J 0.043	ND	0.014 J	0.025	0.1	
Mercury, SPLP	0.00017 J					†

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	\/I 1-3(0-6)-040814D	VL1-3(6-10)-040814	\/ 1-4(0-6)-040814	VI 1-4(6-10)-040814		
Sample Date	` ,	4/8/2014	4/8/2014	4/8/2014		Soil Remediation
Location ID	VL1-3	VL1-3	VL1-4	VL1-4	Soil Reference	Objectives for
	0 - 6	6 - 10	0 - 6	6 - 10	Concentrations ^A	Construction
Depth Parameter	0-6	6 - 10	0-6	6 - 10		Workers ^B
Laboratory pH	8.21	7.87	8.1	8.11	<6.25,>9.0	
Total Metals (mg/kg)	0.21	7.01	0.1	0.11	10.20,20.0	
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	1.2 J	1.1 J	1.3 J	1 J	11.3 / 13	61
Barium, Total	39	37	94	16	1500	14000
Beryllium, Total	0.24	0.3	0.35	0.16 J	22	410
Cadmium, Total	ND	ND	0.059 J	ND	5.2	200
Calcium, Total	1200 J	2200 J-	4600 J-	1300 J-		
Chromium, Total	8	14	8.3	6.2	21	690
Cobalt, Total	3.9	2.7	5.2	2.1	20	12000
Copper, Total	4.1	8.7	5.8	4	2900	8200
Iron, Total	6700 J+	9700 J+	7100 J+	5700 J+	15000 / 15900	
Lead, Total	3.9 J	3.9 J	5.6 J	1.9 J	107	700
Magnesium, Total	1100 J+	1900 J+	920 J+	750 J+	325000	730000
Manganese, Total	220 J	66 J	720 J	70 J	630 / 636	4100
Mercury, Total	ND	0.012 J	0.01 J	0.013 J	0.89	0.1
Nickel, Total	5.5	7.4	6.3	5	100	4100
Potassium, Total	540 J+	780 J+	770 J+	300 J+		
Selenium, Total	ND	ND	ND	ND	1.3	1000
Silver, Total	ND	ND	0.021 J	ND	4.4	1000
Sodium, Total	41 J	250	41 J	120		
Thallium, Total	0.4 J	ND	0.62	ND	2.6	160
Vanadium, Total	13	15	13	13	550	1400
Zinc, Total	16 B	24 B	22 B	11 B	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.31 J	0.18 J	0.34 J	0.16 J	2	
Cadmium, TCLP	ND	ND	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND	ND	1	
Copper, TCLP	0.014 J	0.097	0.013 J	0.058	0.65	
Iron, TCLP	0.36	2.2	1.3	1.7	5	
Lead, TCLP	ND	0.013	ND	0.0091	0.0075	
Manganese, TCLP	0.33	0.029	0.076	0.14	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	ND	ND	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.031 J	0.086 J	0.031 J	0.069 J	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	ND	ND	ND	0.28 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.012 J	0.047	0.031	0.067	0.1	
Cobalt, SPLP	ND	ND	ND	0.011 J	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	6.9 J	27	20	49	5	
Lead, SPLP	0.0082 J	0.014	0.0087	0.015	0.0075	
Manganese, SPLP	0.065 J	0.093	0.26	0.28	0.15	
Mercury, SPLP	ND	0.00012 J	ND 0.045 L	0.00018 J	0.002	
Nickel, SPLP	ND	0.02 J	0.015 J	0.041	0.1	
Selenium, SPLP	ND 0.004 J	ND	ND	ND	0.05	
Silver, SPLP	0.021 J	ND	ND	ND	0.05	
Zinc, SPLP	ND	ND	ND	ND	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VL1-5(0-6)-040814	VL1-5(6-10)-040814	VL1-6(0-5)-040814	VL1-6(5-10)-040814		
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	0 !! 0 .	Soil Remediation
Location ID	VL1-5	VL1-5	VL1-6	VL1-6	Soil Reference	Objectives for Construction
Depth	0 - 6	6 - 10	0 - 5	5 - 10	Concentrations	Workers ^B
Parameter						workers
Laboratory pH	7.87	7.43	7.00	7.17	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	1.7 J	1.7 J	1.8 J	2.1 J	11.3 / 13	61
Barium, Total	18	22	23	42	1500	14000
Beryllium, Total	0.18 J	0.23	0.17 J	0.29	22	410
Cadmium, Total	ND	0.015 J	0.013 J	0.064 J	5.2	200
Calcium, Total	1500 J-	1800 J-	1000 J-	2500 J-		
Chromium, Total	6.6	8.9	5.8	12	21	690
Cobalt, Total	2.9	3	2.4	4.9	20	12000
Copper, Total	4.3	7	5.4	9.9	2900	8200
Iron, Total	6400 J+	7900 J+	6300 J+	11000 J+	15000 / 15900	
Lead, Total	2.6 J	2.4 J	1.9 J	3.8 J	107	700
Magnesium, Total	1100 J+	1500 J+	800 J+	1900 J+	325000	730000
Manganese, Total	98 J	130 J	84 J	370 J	630 / 636	4100
Mercury, Total	0.011 J	0.013 J	ND	0.021	0.89	0.1
Nickel, Total	5.8	9.1	6.3	12	100	4100
Potassium, Total	340 J+	440 J+	390 J+	690 J+		
Selenium, Total	ND	ND	ND	ND	1.3	1000
Silver, Total	ND	ND	ND	ND	4.4	1000
Sodium, Total	41 J	86	30 J	210		
Thallium, Total	0.35 J	ND	ND	0.48 J	2.6	160
Vanadium, Total	13	14	12	20	550	1400
Zinc, Total	11 B	18 B	12 B	21 B	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.23 J	0.23 J	0.23 J	0.17 J	2	
Cadmium, TCLP	ND	ND	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND	ND	1	
Copper, TCLP	0.019 J	0.02 J	0.025	0.02 J	0.65	
Iron, TCLP	0.86	1.7	0.66	1.1	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	
Manganese, TCLP	0.31	0.25	0.039	0.11	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	0.013 J	ND	ND	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.059 J	0.043 J	0.037 J	0.036 J	5	
SPLP Metals (mg/l)	ND	0.040 1	ND	ND	0.05	
Arsenic, SPLP	ND ND	0.013 J	ND ND	ND ND	0.05	
Barium, SPLP Beryllium, SPLP	ND ND	0.34 J ND	ND ND	ND ND	2	
Cadmium, SPLP	ND ND	ND ND	ND ND	ND ND	0.004 0.005	
Chromium, SPLP	0.014 J	0.08	0.02 J	0.032	0.005	
Cobalt, SPLP	0.014 J ND	0.08 0.017 J	0.02 J ND	0.032 ND	0.1	
Copper, SPLP	ND ND	0.017 J 0.093 B	ND ND	ND ND	0.65	
Iron, SPLP	7.5	0.093 B 71	16	21	0.65 5	
Lead, SPLP	0.0085	0.024	0.011	0.011	0.0075	
Manganese, SPLP	0.0085	1.1	0.011	0.011	0.0075	1
Mercury, SPLP	0.096 ND	0.00018 J	ND	0.2 ND	0.002	
	ND ND	0.00018 J 0.07			0.002	
Nickel, SPLP			0.017 J ND	0.019 J ND	0.1	
Solonium SDLD						
Selenium, SPLP Silver, SPLP	ND ND	ND ND	ND	ND	0.05	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VL1-7(0-5)-040814	VL1-7(5-10)-040814	VL1-8(0-5)-040814	VL1-8(0-5)-040814D		Soil Remediation
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Objectives for
Location ID	VL1-7	VL1-7	VL1-8	VL1-8	Concentrations ^A	Construction
Depth	0 - 5	5 - 10	0 - 5	0 - 5	Concentrations	Workers ^B
Parameter						110111010
Laboratory pH	7.24	7.32	6.95	6.64	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	1.6 J	1.2 J	1.7 J	1.8 J	11.3 / 13	61
Barium, Total	29	10	47	77	1500	14000
Beryllium, Total	0.24	0.094 J	0.28	0.29	22	410
Cadmium, Total	0.013 J	ND	0.1 J	0.073 J	5.2	200
Calcium, Total	2500 J-	920 J-	2500 J-	2400 J-		
Chromium, Total	9.8	3.7	8.6	8.7	21	690
Cobalt, Total	3.1	2.3	4.5	4.2	20	12000
Copper, Total	8.4	4.5	6.4	5.4	2900	8200
Iron, Total	8000 J+	4100 J+	7300 J+	7700 J+	15000 / 15900	
Lead, Total	2.9 J	1.2 J	12 J	7.4 J	107	700
Magnesium, Total	1300 J+	720 J+	940 J+	960 J+	325000	730000
Manganese, Total	92 J	66 J	240 J	540 J	630 / 636	4100
Mercury, Total	ND	ND	0.019 J	0.17 J	0.89	0.1
Nickel, Total	9.4	5	6.9	7.2	100	4100
Potassium, Total	510 J+	140 J+	640 J+	660 J+		
Selenium, Total	ND	ND	0.25 J	ND	1.3	1000
Silver, Total	ND	ND	0.045 J	0.041 J	4.4	1000
Sodium, Total	42 J	69	28 J	26 J		
Thallium, Total	ND	ND	0.25 J	0.46 J	2.6	160
Vanadium, Total	16	7.5	14	14	550	1400
Zinc, Total	17 B	7.4 B	38 B	32 B	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.17 J	0.13 J	0.5	0.45 J	2	
Cadmium, TCLP	ND	ND	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	0.029	0.013 J	1	
Copper, TCLP	0.041	0.024 J	0.022 J	0.016 J	0.65	
Iron, TCLP	0.53	0.56	ND	ND	5	
Lead, TCLP	ND	ND	0.0096	ND	0.0075	
Manganese, TCLP	0.043	0.15	2.5	2.5	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	0.024 J	0.016 J	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.05 J	0.037 J	0.26	0.16	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	ND	ND	ND	ND	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.017 J	ND	0.018 J	0.036	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	9.2	1.3	11 J	22 J	5	
Lead, SPLP	0.011	0.0076	0.032	0.026	0.0075	
Manganese, SPLP	0.076	0.02 J	0.11	0.13	0.15	
Mercury, SPLP	ND	ND	ND	0.00011 J	0.002	
Nickel, SPLP	0.012 J	ND	0.012 J	0.021 J	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	ND	ND	ND	ND	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	\/ 1-8/5-10\-040814	VL1-9(0-5)-040814	VI 1-9/5-10\-040814	\/I 1-9/5-10\-040814D		
Sample Date	` '	4/8/2014	4/8/2014	4/8/2014		Soil Remediation
Location ID	VL1-8	VL1-9	VL1-9	VL1-9	Soil Reference	Objectives for
					Concentrations ^A	Construction
Depth Parameter	5 - 10	0 - 5	5 - 10	5 - 10		Workers ^B
Laboratory pH	6.88	8.54	8.54	8.58	<6.25,>9.0	
Total Metals (mg/kg)	0.00	0.01	0.01	0.00	10.20,20.0	
Antimony, Total	ND	1.2 J	ND	ND	5	82
Arsenic, Total	1.4 J	6.8 J	2.8 J	3.5 J	11.3 / 13	61
Barium, Total	20	55	38	31	1500	14000
Beryllium, Total	0.19 J	0.83 J	0.21 J	0.2 J	22	410
Cadmium, Total	ND	2 J-	0.32 J-	0.31 J-	5.2	200
Calcium, Total	1000 J-	19000 J	4900 J	6300 J		
Chromium, Total	8.3	11 J	6 J	7 J	21	690
Cobalt, Total	2.8	7.5 J	4.9 J	2.6 J	20	12000
Copper, Total	5.9	27 J	7.5 J	7.4 J	2900	8200
Iron, Total	6500 J+	52000 J-	7900 J-	10000 J-	15000 / 15900	
Lead, Total	2.2 J	58 J	15 J	12 J	107	700
Magnesium, Total	1100 J+	2400 J	2000 J	1300 J	325000	730000
Manganese, Total	64 J	470 J	160 J	120 J	630 / 636	4100
Mercury, Total	ND	0.24 J	ND	0.057 J	0.89	0.1
Nickel, Total	7	16 J-	6.6 J-	5.7 J-	100	4100
Potassium, Total	340 J+	640 J	420 J	490 J		
Selenium, Total	ND	0.72 J-	0.43 J	0.61 J-	1.3	1000
Silver, Total	ND	0.11 J	ND	0.039 J	4.4	1000
Sodium, Total	37 J	1100 J	350 J	330 J		
Thallium, Total	ND	0.91	ND	ND	2.6	160
Vanadium, Total	12	20 J	11 J	10 J	550	1400
Zinc, Total	14 B	110 J	35 J	23 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.14 J	0.37 J	0.45 J	0.5	2	
Cadmium, TCLP	ND	0.0041 J	0.0025 J	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	0.011 J	ND	1	
Copper, TCLP	0.058	ND	ND	0.014 J	0.65	
Iron, TCLP	1.8	ND	ND	ND	5	
Lead, TCLP	0.01	ND	ND	ND	0.0075	
Manganese, TCLP	0.083	0.85	1.5	1.3	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	0.015 J	ND	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.075 J	0.095 J	0.11	0.047 J	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	ND	0.097 J	0.13 J	0.14 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.035	0.025	0.019 J	0.017 J	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	ND	ND	ND	ND	0.65	
Iron, SPLP	22	23 J+	18 J+	11 J+	5	
Lead, SPLP	0.014	0.074	0.04	0.03	0.0075	
Manganese, SPLP	0.16	0.27	0.16	0.14	0.15	
Mercury, SPLP	ND	ND	ND	ND	0.002	
Nickel, SPLP	0.022 J	0.016 J	0.013 J	ND	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VL1-10(0-5)-040914	VL1-10(5-10)-040914	VL1-11(0-5)-040814	VL1-11(5-8)-040814		Coil Domodiation
Sample Date	4/9/2014	4/9/2014	4/8/2014	4/8/2014	Soil Reference	Soil Remediation Objectives for
Location ID	VL1-10	VL1-10	VL1-11	VL1-11	Concentrations ^A	Construction
Depth	0 - 5	5 - 10	0 - 5	5 - 8	Concentrations	Workers ^B
Parameter						Workers
Laboratory pH	8.05	7.46	8.09	8.02	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	0.89 J	ND	0.7 J	ND	5	82
Arsenic, Total	14 J	1.4 J	6.1 J	4.2 J	11.3 / 13	61
Barium, Total	62	220	75 J-	76 J-	1500	14000
Beryllium, Total	0.44 J	0.4 J	0.55 J	0.56 J	22	410
Cadmium, Total	0.49 J-	0.24 J-	1.6 J	1.1 J	5.2	200
Calcium, Total	59000 J	4000 J	130000 J	28000 J		
Chromium, Total	13 J	15 J	17	13	21	690
Cobalt, Total	6.3 J	8 J	5.5	5	20	12000
Copper, Total	23 J-	7.4 J-	41 J	24 J	2900	8200
Iron, Total	30000 J	14000 J	31000 J	15000 J	15000 / 15900	
Lead, Total	30 J	6.3 J	90 J	67 J	107	700
Magnesium, Total	1200 J	2400 J	3100 J	1500 J	325000	730000
Manganese, Total	980 J	790 J	1500 J	370 J	630 / 636	4100
Mercury, Total	0.05	0.034	0.098 J	0.72 J	0.89	0.1
Nickel, Total	15 J	19 J	23	11	100	4100
Potassium, Total	940 J+	1000 J+	910 J+	870 J+		
Selenium, Total	ND	ND	1.6 J-	0.92 J-	1.3	1000
Silver, Total	0.082 J	ND	0.17 J	0.05 J	4.4	1000
Sodium, Total	280	130	240 J	160 J		
Thallium, Total	0.56 J	0.81	0.66 J-	0.29 J	2.6	160
Vanadium, Total	28	18	16	15	550	1400
Zinc, Total	76 J-	37 J-	130 J	160 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.36 J	1.6	0.56	0.5	2	
Cadmium, TCLP	ND	0.0042 J	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	0.057	ND	ND	1	
Copper, TCLP	0.024 J	0.045	ND	ND	0.65	
Iron, TCLP	ND	0.22	ND	ND	5	
Lead, TCLP	ND	0.0076	ND	ND	0.0075	
Manganese, TCLP	2.6	54	0.84	0.013 J	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.017 J	0.069	0.014 J	ND	0.1	
Selenium, TCLP	ND	ND	ND	0.01 J	0.05	
Zinc, TCLP	0.092 J	0.074 J	ND	ND	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.064 J	0.29 J	0.063 J	0.14 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	ND	0.022 J	0.012 J	0.021 J	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	0.018 J	0.035	ND	ND	0.65	
Iron, SPLP	2.4 J+	19 J+	2.8 J+	14 J+	5	
Lead, SPLP	0.0079	0.013	0.022	0.056	0.0075	
Manganese, SPLP	0.095	0.65	ND	0.18 B	0.15	
Mercury, SPLP	ND	ND	ND	0.00016 J	0.002	
Nickel, SPLP	ND	0.021 J	0.013 J	0.017 J	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	0.044 J	0.066 J	ND	ND	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VL1-12(0-5)-040814	VL1-13(0-5)-040914	VL1-13(5-10)-040914	VL1-14(0-5)-040914	-	Soil Remodiation	
Sample Date	4/8/2014	4/9/2014	4/9/2014	4/9/2014	0-11 D-1	Soil Remediation	
Location ID	VL1-12	VL1-13	VL1-13	VL1-14	Soil Reference	Objectives for Construction	
Depth	0 - 5	0 - 5	5 - 10	0 - 5	Concentrations	Workers ^B	
Parameter						workers	
Laboratory pH	7.15	8.44	9.63	8.71	<6.25,>9.0		
Total Metals (mg/kg)							
Antimony, Total	1.5 J-	ND	ND	ND	5	82	
Arsenic, Total	21 J	5.2 J	0.95 J	5.4	11.3 / 13	61	
Barium, Total	120 J-	67	23	73	1500	14000	
Beryllium, Total	0.85 J	0.48 J	0.11 J	0.81 J	22	410	
Cadmium, Total	2.8 J	0.43 J-	0.093 J	0.37 J	5.2	200	
Calcium, Total	14000 J	36000 J	7600 J	140000			
Chromium, Total	17	12 J	5.4 J	25	21	690	
Cobalt, Total	6.7	8.6 J	4.1 J	4.5	20	12000	
Copper, Total	60 J	11 J-	6.7 J-	57	2900	8200	
Iron, Total	130000 J	23000 J	5200 J	21000	15000 / 15900		
Lead, Total	130 J	7.7 J	8.2 J	62 B	107	700	
Magnesium, Total	4900 J	10000 J	2300 J	7100 B	325000	730000	
Manganese, Total	620 J	920 J	280 J	1400	630 / 636	4100	
Mercury, Total	0.94 J	0.022	0.43	0.053	0.89	0.1	
Nickel, Total	14	17 J	12 J	28	100	4100	
Potassium, Total	610 J+	890 J+	190 J+	900			
Selenium, Total	3.5 J-	ND	ND	1.9 J	1.3	1000	
Silver, Total	0.37	ND	ND	0.1 J	4.4	1000	
Sodium, Total	150 J	110	56	310			
Thallium, Total	1.2 J-	0.68	0.34 J	ND	2.6	160	
Vanadium, Total	30	21	9.5	19	550	1400	
Zinc, Total	260 J	34 J-	17 J-	94	5100	61000	
TCLP Metals (mg/l)							
Arsenic, TCLP	ND	ND	ND	ND	0.05		
Barium, TCLP	0.7	0.58	0.3 J	0.25 J	2		
Cadmium, TCLP	0.0045 J	ND	0.0025 J	0.0022 J	0.005		
Chromium, TCLP	ND	ND	ND	ND	0.1		
Cobalt, TCLP	0.038	ND	ND	ND	1		
Copper, TCLP	ND	0.029	0.026	0.016 J	0.65		
Iron, TCLP	1.6 B	ND	ND	0.47	5		
Lead, TCLP	0.037	ND	ND	ND	0.0075		
Manganese, TCLP	4.1	1.1	1	1.5 B	0.15		
Mercury, TCLP	ND	ND	0.00012 J	ND	0.002		
Nickel, TCLP	0.06	ND	0.023 J	0.055	0.1		
Selenium, TCLP Zinc, TCLP	ND 1.6 B	ND 0.045 J	ND	ND ND	0.05	+	
SPLP Metals (mg/l)	1.0 Б	0.045 J	0.1	ND	5		
Arsenic, SPLP	ND	ND	ND	ND	0.05		
Barium, SPLP	0.065 J	0.085 J	ND ND	0.068 J	0.05		
Beryllium, SPLP	0.065 J ND	0.065 J ND	ND ND	0.066 J ND	0.004		
Cadmium, SPLP	ND ND	ND ND	ND ND	ND ND	0.004		
Chromium, SPLP	ND ND	0.013 J	ND ND	0.015 J	0.003		
Cobalt, SPLP	ND ND	0.013 J ND	ND ND	0.015 3 ND	1		
Copper, SPLP	ND ND	0.03	0.023 J	0.036	0.65		
Iron, SPLP	0.33 J+	0.03 7.7 J+	0.023 J ND	6.8	0.65 5		
Lead, SPLP	0.33 J+ 0.0085	0.0078	ND ND	0.042	0.0075		
Manganese, SPLP	0.0085 0.16 B	0.0078	ND ND	0.042	0.0075		
Mercury, SPLP	ND	0.06 ND	ND ND	ND	0.002		
WICICUIY, OFLF	ND ND	ND ND	ND ND				
Niekol CDLD	INLI	IVI J	עא וו	0.016 J	0.1		
Nickel, SPLP					0.05		
Nickel, SPLP Selenium, SPLP Silver, SPLP	ND ND	ND ND	ND ND	ND ND	0.05 0.05		

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VI 1-14/5-7)-040914	VI 1-15(0-5)-040914	VL1-15(5-7)-040914	VI 1-16(0-5)-040914		
Sample Date	` ,	4/9/2014	4/9/2014	4/9/2014		Soil Remediation
Location ID	VL1-14	VL1-15	VL1-15	VL1-16	Soil Reference	Objectives for
Depth	5 - 7	0 - 5	5 - 7	0 - 5	Concentrations ^A	Construction
Parameter	5-7	0-5	5-7	0-5		Workers ^B
Laboratory pH	8.08	8.25	8.16	8.93	<6.25,>9.0	
Total Metals (mg/kg)	0.00	5.25	00	0.00	10.20,7 0.0	
Antimony, Total	ND	1.5	0.47 J	ND	5	82
Arsenic, Total	1.8	5.9	4.7	4.1 J	11.3 / 13	61
Barium, Total	52	110	97	62	1500	14000
Beryllium, Total	0.3	0.77	0.73	0.49 J	22	410
Cadmium, Total	0.24	0.88	0.47	0.39 J-	5.2	200
Calcium, Total	26000	6400	5200	19000 J		
Chromium, Total	8.9	18	19	12 J	21	690
Cobalt, Total	3.4	7.5	5.9	3.5 J	20	12000
Copper, Total	10	39	22	14 J-	2900	8200
Iron, Total	9400	24000	20000	17000 J	15000 / 15900	
Lead, Total	11 B	110 B	61 B	30 J	107	700
Magnesium, Total	1100	3200	3500	4700 J	325000	730000
Manganese, Total	530	380	250	1800 J	630 / 636	4100
Mercury, Total	0.027	0.41	0.39	0.012 J	0.89	0.1
Nickel, Total	8.2	21	17	19 J	100	4100
Potassium, Total	680	1300	1300	900 J+		
Selenium, Total	ND	0.31 J	ND	ND	1.3	1000
Silver, Total	ND	ND	0.071 J	0.062 J	4.4	1000
Sodium, Total	99	140	100	260		
Thallium, Total	0.43 J	0.46 J	0.32 J	1.3	2.6	160
Vanadium, Total	13	27	27	23	550	1400
Zinc, Total	46	200	120	45 J-	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	0.017 J	ND	ND	0.05	
Barium, TCLP	0.58	0.56	0.43 J	0.58	2	
Cadmium, TCLP	0.0021 J	0.006	0.0023 J	0.0068	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND	ND	1	
Copper, TCLP	0.032	0.021 J	0.036	0.021 J	0.65	
Iron, TCLP	ND	0.4	0.52	ND	5	
Lead, TCLP	ND	1.3	0.019	ND	0.0075	
Manganese, TCLP	1.7 B	0.87 B	0.27 B	0.76	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	0.017 J	ND	0.031	0.1	
Selenium, TCLP	0.011 J	ND	ND	ND	0.05	
Zinc, TCLP	ND	0.95 B	0.29 B	0.04 J	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.11 J	0.16 J	0.16 J	0.17 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.011 J	0.019 J	0.013 J	0.033	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	0.014 J	0.033	0.027	0.042	0.65	
Iron, SPLP	5	10	6.6	24 J+	5	
Lead, SPLP	0.011	0.11	0.054	0.019	0.0075	
Manganese, SPLP	0.081	0.082	0.11	0.21	0.15	
Mercury, SPLP	ND	0.0002	0.00051	ND	0.002	
Nickel, SPLP	ND	0.011 J	ND	0.036	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND 0.40	ND	0.05	
Zinc, SPLP	0.064 J	0.21	0.16	0.096 J	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VL1-16(5-10)-040914	VL1-17(0-5)-040914	VL1-17(0-5)-040914D	VL1-17(5-9)-040914		
Sample Date	4/9/2014	4/9/2014	4/9/2014	4/9/2014	0 !! 0 .	Soil Remediation
Location ID	VL1-16	VL1-17	VL1-17	VL1-17	Soil Reference	Objectives for Construction
Depth	5 - 10	0 - 5	0 - 5	5 - 9	Concentrations	Workers ^B
Parameter						workers
Laboratory pH	8.1	7.95	7.43	7.4	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	ND	1.3	1.5	ND	5	82
Arsenic, Total	2.3 J	7.5	11	3.3	11.3 / 13	61
Barium, Total	110	79	76	42	1500	14000
Beryllium, Total	0.58 J	0.62	0.47	0.18 J	22	410
Cadmium, Total	0.28 J-	1.4	1.5	0.13 J	5.2	200
Calcium, Total	4100 J	9000	9700	10000		
Chromium, Total	18 J	19	22	5.8	21	690
Cobalt, Total	6.7 J	13	9.6	3.7	20	12000
Copper, Total	13 J-	170	210	7.1	2900	8200
Iron, Total	20000 J	130000	100000	10000	15000 / 15900	
Lead, Total	8.6 J	40 B	45 B	9.5 B	107	700
Magnesium, Total	3300 J	2700	2100	1800	325000	730000
Manganese, Total	440 J	1900 J	580 J	270	630 / 636	4100
Mercury, Total	0.032	0.28	0.23	0.03	0.89	0.1
Nickel, Total	15 J	24	20	7.4	100	4100
Potassium, Total	1500 J+	550	700	370		
Selenium, Total	0.3 J	ND	0.22 J	0.49 J	1.3	1000
Silver, Total	ND	0.13 J	0.071 J	ND	4.4	1000
Sodium, Total	74	120	130	87		
Thallium, Total	0.34 J	0.94	0.53 J	ND	2.6	160
Vanadium, Total	22	16	18	9	550	1400
Zinc, Total	54 J-	250	270	40	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.42 J	0.88	0.79 0.53		2	
Cadmium, TCLP	ND	0.0099	0.0081	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND 0.010 L	0.1	
Cobalt, TCLP	0.02 J	0.025 0.14	0.022 J	0.016 J		
Copper, TCLP Iron, TCLP	0.05 1.1	0.14 ND	0.097	ND ND	0.65 5	
Lead, TCLP	0.012	0.0084	0.57 ND	ND ND	0.0075	
Manganese, TCLP	7.6	6.4 B	5.5 B	3.9 B	0.0075	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.016 J	0.056	0.047	0.018 J	0.1	
Selenium, TCLP	ND	0.011 J	ND	ND	0.05	
Zinc, TCLP	0.096 J	1.7 B	1.4 B	0.18 B	5	
SPLP Metals (mg/l)	0.000 0	1.7 5	1.10	0.10 B		
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.28 J	0.14 J	0.12 J	0.086 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.012 J	0.019 J	0.012 J	ND	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	0.031	0.077	0.072	0.024 J	0.65	
Iron, SPLP	9.5 J+	11	9.2	2.2	5	
Lead, SPLP	0.013	0.027	0.022	0.011	0.0075	
Manganese, SPLP	1.2	0.17	0.13	0.12	0.15	
Mercury, SPLP	0.00018 J	ND	ND	ND	0.002	
Nickel, SPLP	0.01 J	0.014 J	0.01 J	ND	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	0.061 J	0.2	0.13	0.059 J	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VL1-18(0-5)-040914	\/I 1 19/0 5\ 040014D	\/I 1_18/5_10_040014	\/ 1_10(0_5)_0/001/		1
Sample Date	, ,	4/9/2014	4/9/2014 VL1-18	4/9/2014 VL1-19		Soil Remediation Objectives for
Location ID	VL1-18	VL1-18			Soil Reference	
	0 - 5	0 - 5	5 - 10	0 - 5	Concentrations ^A	Construction
Depth Parameter	0-5	0-5	5-10	0-5		Workers ^B
Laboratory pH	8.71	8.69	8.16	8.85	<6.25,>9.0	
Total Metals (mg/kg)		0.00	51.10	0.00	.0.20, 0.0	
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	4.5 J	4 J	2.9 J	3.8 J	11.3 / 13	61
Barium, Total	70	66	29	49	1500	14000
Beryllium, Total	0.35 J	0.34 J	0.48 J	0.34 J	22	410
Cadmium, Total	0.27 J-	0.25 J-	0.062 J	0.3 J-	5.2	200
Calcium, Total	23000 J	21000 J	9200 J	20000 J		
Chromium, Total	12 J	12 J	52 J	33 J	21	690
Cobalt, Total	5.1 J	5.1 J	1.6 J	4.2 J	20	12000
Copper, Total	10 J-	10 J-	61 J-	56 J-	2900	8200
Iron, Total	12000 J	11000 J	15000 J	12000 J	15000 / 15900	
Lead, Total	6.9 J	6 J	10 J	9.8 J	107	700
Magnesium, Total	12000 J	11000 J	710 J	8200 J	325000	730000
Manganese, Total	360 J	310 J	960 J	300 J	630 / 636	4100
Mercury, Total	0.018	0.024	0.012 J	0.011 J	0.89	0.1
Nickel, Total	13 J	12 J	7.1 J	31 J	100	4100
Potassium, Total	780 J+	740 J+	600 J+	1000 J+		
Selenium, Total	ND	ND	0.22 J	ND	1.3	1000
Silver, Total	ND	ND	0.033 J	ND	4.4	1000
Sodium, Total	97	90	760	170		
Thallium, Total	ND	ND	0.72	ND	2.6	160
Vanadium, Total	22	21	19	18	550	1400
Zinc, Total	26 J-	25 J-	11 J-	26 J-	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.84	0.81	0.15 J	0.45 J	2	
Cadmium, TCLP	ND	ND	ND	0.0031 J	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND	ND	1	
Copper, TCLP	0.028	0.023 J	0.072	0.03	0.65	
Iron, TCLP	0.3	ND	ND	ND	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	
Manganese, TCLP	0.23	0.26	0.78	0.55	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	ND	0.034	0.015 J	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.05 J	0.043 J	0.052 J	0.05 J	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.13 J	0.16 J	ND	0.1 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.016 J	0.015 J	ND	0.02 J	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	0.032	0.028	0.029	0.037	0.65	
Iron, SPLP	9 J+	10 J+	0.81 J+	10 J+	5	
Lead, SPLP	0.0083	0.0082	ND	0.0097	0.0075	
Manganese, SPLP	0.057	0.081	0.015 J	0.059	0.15	
Mercury, SPLP	ND	ND	ND	ND	0.002	
Nickel, SPLP	ND	0.01 J	ND	0.013 J	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND 0.067 I	ND 0.06 I	ND 0.045 L	ND 0.065 L	0.05	
Zinc, SPLP	0.067 J	0.06 J	0.045 J	0.065 J	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VI 1-10/5-10\-040014	VL2-1(0-5.5)-040714	VI 2-2(0-5 5)-040714	VI 2-3(0-5 5)-040714		
Sample Date	4/9/2014	4/7/2014	4/7/2014	4/7/2014		Soil Remediation
Location ID	VL1-19	VL2-1		VL2-3	Soil Reference	Objectives for
	5 - 10	0 - 5.5	VL2-2 0 - 5.5	0 - 5.5	Concentrations ^A	Construction
Depth Parameter	5 - 10	0 - 5.5	0 - 5.5	0 - 5.5		Workers ^B
Laboratory pH	8.09	7.42	7.58	8.15	<6.25,>9.0	
Total Metals (mg/kg)	0.00	7.12	7.00	0.10	40.20,20.0	
Antimony, Total	ND	ND	ND	ND	5	82
Arsenic, Total	2.9 J	6.9 J	4.7 J	4.3 J	11.3 / 13	61
Barium, Total	23	83 J	76 J	110 J	1500	14000
Beryllium, Total	0.17 J	0.5 J	0.56 J	0.46 J	22	410
Cadmium, Total	0.15 J-	0.72 J	0.48 J	0.5 J	5.2	200
Calcium, Total	2300 J	13000 J	3500 J	5900 J		
Chromium, Total	25 J	14 J+	23 J+	14 J+	21	690
Cobalt, Total	2 J	6.3 J	7 J	6.6 J	20	12000
Copper, Total	20 J-	23 J	20 J	14 J	2900	8200
Iron, Total	13000 J	16000 J	19000 J	15000 J	15000 / 15900	
Lead, Total	13 J	80 J	7.8 J	32 J	107	700
Magnesium, Total	690 J	3400 J	3000 J	2300 J	325000	730000
Manganese, Total	170 J	460	400	720	630 / 636	4100
Mercury, Total	0.01 J	0.13 J	0.048 J	0.03 J	0.89	0.1
Nickel, Total	38 J	17 J	17 J	12 J	100	4100
Potassium, Total	290 J+	1100 J	1300 J	970 J		
Selenium, Total	0.41 J	0.23 J	0.33 J	ND	1.3	1000
Silver, Total	ND	0.049 J	ND	0.029 J	4.4	1000
Sodium, Total	77	520 J	640 J	210 J		
Thallium, Total	ND	0.61	0.63	0.73	2.6	160
Vanadium, Total	9.9	23	33	22	550	1400
Zinc, Total	26 J-	110 J	51 J	59 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.3 J	0.62	0.42 J	0.6	2	
Cadmium, TCLP	ND	0.0029 J	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	0.013 J	ND	ND	ND	1	
Copper, TCLP	0.04	0.014 J	0.017 J	ND	0.65	
Iron, TCLP	4.9	ND	ND	ND	5	
Lead, TCLP	ND	ND	ND	ND	0.0075	
Manganese, TCLP	1.7	0.97	0.067	0.28	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.11	0.011 J	ND	ND	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.13	0.22	0.034 J	0.027 J	5	
SPLP Metals (mg/l)					2.25	
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.055 J	ND	0.29 J	0.11 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND ND	ND	0.005	
Chromium, SPLP	ND	ND	ND ND	ND	0.1	
Copper SPLP	ND	ND 0.011 L	ND 0.030	ND ND		
Copper, SPLP Iron, SPLP	0.027 0.58 J+	0.011 J	0.029	0.55	0.65 5	
Lead, SPLP	0.58 J+ ND	0.23 ND	2.2 0.01	0.55 ND	0.0075	
	0.029	ND ND	0.01	0.019 J	0.0075	
Manganaca CDI D	0.029		0.00026	0.019 J ND	0.002	
Manganese, SPLP	_P ND			שוו		
Mercury, SPLP		ND ND				
Mercury, SPLP Nickel, SPLP	ND	ND	ND	ND	0.1	
Mercury, SPLP						

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VI 2-3(0-5 5)-040714D	VI 2-4(0-5 5)-040714	VL2-5(0-5.5)-040814	VI 2-6(0-5 5)-040814		
Sample Date		4/7/2014	4/8/2014	4/8/2014		Soil Remediation
Location ID	VL2-3	VL2-4	VL2-5	VL2-6	Soil Reference	Objectives for
Depth	0 - 5.5	0 - 5.5	0 - 5.5	0 - 5.5	Concentrations ^A	Construction
Parameter	0 - 5.5	0 - 5.5	0 - 5.5	0 - 5.5		Workers ^B
Laboratory pH	ry pH 8.25		7.92	5.1	<6.25,>9.0	
Total Metals (mg/kg)	0.20	8.06	1.02	0.1	VO.20,70.0	
Antimony, Total	ND	0.49 J	ND	ND	5	82
Arsenic, Total	4.4 J	5 J	3 J	3.9 J	11.3 / 13	61
Barium, Total	81 J	85 J	53 J	86 J	1500	14000
Beryllium, Total	0.43 J	0.44 J	0.36 J	0.67 J	22	410
Cadmium, Total	0.43 J	0.68 J	0.32 J	0.5 J	5.2	200
Calcium, Total	5000 J	14000 J	3300 J	2600 J		
Chromium, Total	12 J+	11 J+	14 J+	33 J+	21	690
Cobalt, Total	5.9 J	5.5 J	5 J	6.5 J	20	12000
Copper, Total	12 J	36 J	15 J	26 J	2900	8200
Iron, Total	12000 J	17000 J	13000 J	23000 J	15000 / 15900	
	27 J	74 J	9.7 J	6.4 J	107	700
Lead, Total Magnesium, Total	1900 J	5500 J	9.7 J 2000 J	4600 J	325000	730000
•	1900 J 520	290	2000 J 240	4600 J 230	630 / 636	4100
Manganese, Total		0.23 J				
Mercury, Total Nickel, Total	0.029 J 13 J	0.23 J 12 J	0.021 J 12 J	0.025 J 18 J	0.89	0.1 4100
Potassium. Total	870 J	760 J	870 J	2000 J		4100
,	0.28 J	0.26 J	0.21 J	0.23 J	1.3	1000
Selenium, Total		0.26 J 0.04 J				
Silver, Total	0.02 J		ND	ND	4.4	1000
Sodium, Total	190 J	260 J	130 J 0.34 J	100 J		
Thallium, Total	0.55 21	0.4 J		0.45 J 42	2.6	160
Vanadium, Total	42 J	19 96 J	23 37 J	42 42 J	550	1400
Zinc, Total TCLP Metals (mg/l)	42 J	96 J	37 J	42 J	5100	61000
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.68	0.72	0.56	0.29 J	2	
Cadmium, TCLP	ND	0.0025 J	ND	0.29 J	0.005	
Chromium, TCLP	ND ND	0.0023 3 ND	ND ND	ND ND	0.003	
Cobalt, TCLP	ND	ND	ND	ND ND	1	
Copper, TCLP	ND	0.027	0.012 J	0.014 J	0.65	
Iron, TCLP	ND ND	ND	0.012 3 ND	0.014 3 ND	5	
Lead, TCLP	ND ND	ND ND	ND ND	ND ND	0.0075	
Manganese, TCLP	0.25	3.2	0.34	0.13	0.0073	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	0.026	ND	0.015 J	0.1	
Selenium, TCLP	ND	ND	ND	0.013 3 ND	0.05	
Zinc, TCLP	0.027 J	0.18	0.07 J	0.027 J	5	
SPLP Metals (mg/l)	0.027	0.10	0.07 0	0.027		
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.11 J	0.09 J	0.11 J	0.065 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	ND	ND	ND	ND	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	0.017 J	0.018 J	0.024 J	ND	0.65	
Iron, SPLP	0.78	0.77	0.76	0.91	5	
Lead, SPLP	ND	0.017	0.0094	ND	0.0075	
Manganese, SPLP	0.019 J	0.038	0.025	0.021 J	0.15	
Mercury, SPLP	ND	ND	ND	ND	0.002	
MEICULY, OFLE				ND	0.1	
•	ND	ND	INI)			
Nickel, SPLP	ND ND	ND ND	ND ND			
•	ND ND ND	ND ND ND	ND ND ND	ND ND	0.05 0.05	<u> </u>

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VL2-7(0-5.5)-040814	VL2-8(0-5)-040814	VL2-8(5-10)-040814	VL2-8(5-10)-040814D		Sail Remodiation	
Sample Date	4/8/2014	4/8/2014	4/8/2014	4/8/2014	Soil Reference	Soil Remediation	
Location ID	VL2-7	VL2-8	VL2-8	VL2-8	Concentrations ^A	Objectives for Construction	
Depth	0 - 5.5	0 - 5	5 - 10	5 - 10	Concentrations	Workers ^B	
Parameter						TTOTAGE	
Laboratory pH	7.63	8.34	7.81	7.9	<6.25,>9.0		
Total Metals (mg/kg)							
Antimony, Total	ND	ND	9.2 J-	0.66 J	5	82	
Arsenic, Total	3.5 J	6.5 J	6.3 J	6.4	11.3 / 13	61	
Barium, Total	100 J-	66 J	92 J-	110	1500	14000	
Beryllium, Total	0.89 J	0.48 J	0.86 J	0.78	22	410	
Cadmium, Total	0.62 J	1.1 J	1.5 J	1.8	5.2	200	
Calcium, Total	9700 J	32000 J	12000 J	92000			
Chromium, Total	27	13 J+	13	12	21	690	
Cobalt, Total	13	5.3 J	5.5	4.7	20	12000	
Copper, Total	30 J	21 J	25 J	20	2900	8200	
Iron, Total	23000 J	15000 J	22000 J	19000	15000 / 15900		
Lead, Total	11 J	33 J	110 J	46	107	700	
Magnesium, Total	6500 J	14000 J	1600 J	2300	325000	730000	
Manganese, Total	360 J	330	1000 J	480 B	630 / 636	4100	
Mercury, Total	0.017 J	0.036 J	0.087 J	0.1	0.89	0.1	
Nickel, Total	24	14 J	13	12	100	4100	
Potassium, Total	2400 J+	860 J	900 J+	1100			
Selenium, Total	1.1 J-	ND	0.78 J-	0.47 J	1.3	1000	
Silver, Total	ND	0.031 J	0.17 J	0.071 J	4.4	1000	
Sodium, Total	360 J	260 J	260 J	330			
Thallium, Total	0.41 J	0.51 J	1.1 J-	0.33 J	2.6	160	
Vanadium, Total	40	20	18	18	550	1400	
Zinc, Total	67 J	130 J	220 J	200	5100	61000	
TCLP Metals (mg/l)							
Arsenic, TCLP	ND	ND	ND	ND	0.05		
Barium, TCLP	0.48 J	0.53	0.71	0.76	2		
Cadmium, TCLP	ND	ND	0.0031 J	0.0033 J	0.005		
Chromium, TCLP	ND	ND	ND	ND	0.1		
Cobalt, TCLP	ND	ND	0.026	0.02 J	1		
Copper, TCLP	0.1 B	0.013 J	ND	0.011 JB	0.65		
Iron, TCLP	ND	ND	ND	ND	5		
Lead, TCLP	0.0088	ND	0.0088	ND	0.0075		
Manganese, TCLP	0.43	0.022 J	7.3	8.7	0.15		
Mercury, TCLP	ND	ND	ND	ND	0.002		
Nickel, TCLP	0.015 J	ND	0.018 J	0.02 J	0.1		
Selenium, TCLP	ND	ND	ND	ND	0.05		
Zinc, TCLP	ND	0.09 J	0.57 B	0.53 B	5		
SPLP Metals (mg/l)							
Arsenic, SPLP	ND	ND	ND	ND	0.05		
Barium, SPLP	0.079 J	0.12 J	0.091 J	0.096 J	2		
Beryllium, SPLP	ND	ND	ND	ND	0.004		
Cadmium, SPLP	ND	ND	ND	ND	0.005		
Chromium, SPLP	ND	ND	0.017 J	0.012 J	0.1		
Cobalt, SPLP	ND	ND	ND	ND	1		
Copper, SPLP	ND	0.022 J	ND	0.049 JB	0.65		
Iron, SPLP	3.4 J+	1.6	10 J	4.3	5		
Lead, SPLP	0.011	0.026	0.019	0.017	0.0075		
Manganese, SPLP	ND	0.074	0.22 B	0.16 B	0.15		
Mercury, SPLP	ND	ND	ND	ND	0.002		
Nickel, SPLP	ND	ND	0.012 J	ND	0.1		
Selenium, SPLP	ND	ND	ND	ND	0.05		
Silver, SPLP	ND	ND	ND	ND	0.05		
Zinc, SPLP	ND	0.12	ND	0.11 B	5		

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Field Sample ID	VL2-9(0-5)-040714	VL2-9(5-10)-040714	VL2-10(0-5)-040714	VL2-10(5-10)-040714		Soil Remediation
Sample Date	4/7/2014	4/7/2014	4/7/2014	4/7/2014	Soil Reference	Soil Remediation Objectives for
Location ID	VL2-9	VL2-9	VL2-10	VL2-10	Concentrations ^A	Construction
Depth	0 - 5	5 - 10	0 - 5	5 - 10	Concentrations	Workers ^B
Parameter						TTOTAGE
Laboratory pH	7.95	7.97	8.31	8.36	<6.25,>9.0	
Total Metals (mg/kg)						
Antimony, Total	0.44 J	ND	ND	ND	5	82
Arsenic, Total	4.9	4.8	4.8 J	6.5 J	11.3 / 13	61
Barium, Total	95	88	44 J	47 J	1500	14000
Beryllium, Total	0.53	0.53	0.36 J	0.35 J	22	410
Cadmium, Total	0.74	0.51	0.28 J	0.47 J	5.2	200
Calcium, Total	5700	3700	2700 J	24000 J		
Chromium, Total	11	18	14 J+	12 J+	21	690
Cobalt, Total	4.8	8.8	5.2 J	4.9 J	20	12000
Copper, Total	31	13	9.1 J	9.9 J	2900	8200
Iron, Total	16000	16000	14000 J	14000 J	15000 / 15900	
Lead, Total	140 B	12 B	6.8 J	5.3 J	107	700
Magnesium, Total	1300	2400	1600 J	13000 J	325000	730000
Manganese, Total	300	590	260	180	630 / 636	4100
Mercury, Total	0.052	0.03	0.018 J	0.021 J	0.89	0.1
Nickel, Total	11	21	10 J	10 J	100	4100
Potassium, Total	830	1200	750 J	740 J		
Selenium, Total	0.59	0.2 J	0.3 J	ND	1.3	1000
Silver, Total	0.044 J	ND	ND	ND	4.4	1000
Sodium, Total	140	100	130 J	220 J		
Thallium, Total	0.38 J	0.69	0.51 J	ND	2.6	160
Vanadium, Total	17	27	24	21	550	1400
Zinc, Total	120	43	28 J	25 J	5100	61000
TCLP Metals (mg/l)						
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.45 J	0.25 J	0.27 J	0.49 J	2	
Cadmium, TCLP	0.0083	ND	ND	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	ND	ND	ND	1	
Copper, TCLP	0.018 J	ND	ND	0.016 J	0.65	
Iron, TCLP	ND	ND	ND	ND	5	
Lead, TCLP	0.18	ND	ND	ND	0.0075	
Manganese, TCLP	1.1	0.067	0.42	0.47	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	0.021 J	ND	ND	ND	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	2	ND	ND	ND	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.08 J	0.081 J	0.12 J	0.054 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	0.019 J	ND	ND	ND	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	0.027	0.02 J	0.013 J	0.014 J	0.65	
Iron, SPLP	1.2	0.38	0.88	0.34	5	
Lead, SPLP	0.14	ND	ND	ND	0.0075	
Manganese, SPLP	0.23	0.014 J	0.046	ND	0.15	
Mercury, SPLP	ND	ND	ND	ND	0.002	
Nickel, SPLP	0.48	ND	ND	ND	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	0.12	0.021 J	ND	ND	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

				WP-2(0-4.9)-040714		Soil Remediation Objectives for
Sample Date	4/7/2014	4/7/2014	4/7/2014	4/7/2014	Soil Reference	
Location ID	WI-1	WP-1	WP-1	WP-2	Concentrations ^A	Construction
Depth	0 - 5.5	0 - 4.9	0 - 4.9	0 - 4.9	Concentrations	Workers ^B
Parameter						
Laboratory pH	7.94	8.19	8.43	8.48	<6.25,>9.0	
Total Metals (mg/kg)	ND	0.54.1	0.70.1			
Antimony, Total	ND	0.54 J	0.78 J	ND	5	82
Arsenic, Total	6	4.2	4	4.2	11.3 / 13	61
Barium, Total	68	72	60	59	1500	14000
Beryllium, Total	0.47	0.41	0.63	0.45	22	410
Cadmium, Total	0.59	0.5	1.1 93000	0.68	5.2	200
Calcium, Total	8700 15	21000 9.1	10	76000 13	21	690
Chromium, Total	5.7	3.8	5	5	20	1
Cobalt, Total Copper, Total	14	17	26	19	2900	12000 8200
Iron, Total	15000	11000	16000	13000	15000 / 15900	6200
Lead, Total	28 B	65 B	98 B	43 B	107	700
Magnesium, Total	5500	1800	4600	4900	325000	730000
Manganese, Total	430	250	380	400	630 / 636	4100
Mercury, Total	0.097	0.62	0.34	0.31	0.89	0.1
Nickel, Total	15	9.3	15	13	100	4100
Potassium, Total	1000	1100	1600	950		
Selenium, Total	ND	0.33 J	ND	ND	1.3	1000
Silver, Total	ND	0.022 J	0.083 J	0.059 J	4.4	1000
Sodium, Total	160	390	520	390		
Thallium, Total	0.56 J	0.29 J	0.35 J	0.49 J	2.6	160
Vanadium, Total	26	15	16	17	550	1400
Zinc, Total	58	88	170	73	5100	61000
TCLP Metals (mg/l)			-			
Arsenic, TCLP	ND	ND	ND	ND	0.05	
Barium, TCLP	0.69	0.91	0.69	0.52	2	
Cadmium, TCLP	ND	0.0053	0.0063	ND	0.005	
Chromium, TCLP	ND	ND	ND	ND	0.1	
Cobalt, TCLP	ND	0.025	ND	ND	1	
Copper, TCLP	0.014 J	ND	0.011 J	ND	0.65	
Iron, TCLP	ND	ND	ND	ND	5	
Lead, TCLP	ND	0.04	0.039	ND	0.0075	
Manganese, TCLP	0.12	6.7	3.3	0.63	0.15	
Mercury, TCLP	ND	ND	ND	ND	0.002	
Nickel, TCLP	ND	0.031	0.015 J	ND	0.1	
Selenium, TCLP	ND	ND	ND	ND	0.05	
Zinc, TCLP	0.11	0.74	0.58	0.068 J	5	
SPLP Metals (mg/l)						
Arsenic, SPLP	ND	ND	ND	ND	0.05	
Barium, SPLP	0.17 J	0.097 J	0.1 J	0.19 J	2	
Beryllium, SPLP	ND	ND	ND	ND	0.004	
Cadmium, SPLP	ND	ND	ND	ND	0.005	
Chromium, SPLP	ND	ND	ND	ND	0.1	
Cobalt, SPLP	ND	ND	ND	ND	1	
Copper, SPLP	0.017 J	0.015 J	0.023 J	0.032	0.65	
Iron, SPLP	0.81	3.1	1.4	1.2	5	
Lead, SPLP	0.037	0.052	0.1	0.057	0.0075	
Manganese, SPLP	0.038	0.12	0.12	0.088	0.15	
Mercury, SPLP	ND	ND	ND	0.00026	0.002	
Nickel, SPLP	ND	ND	ND	ND	0.1	
Selenium, SPLP	ND	ND	ND	ND	0.05	
Silver, SPLP	ND	ND	ND	ND	0.05	
Zinc, SPLP	0.092 J	0.1	0.12	0.11	5	

Comparison of Detected Constituents to Applicable Reference Concentrations Soil Analytical Results - Inorganics Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street Moline, Rock Island County, Illinois

Notes:

- --- not applicable or value not available.
- ^A Soil reference concentrations from the MAC Table; the second value, if applicable, is the Background values for MSA counties.
- ^B Soil Remediation Objective for Construction Worker, most stringent of the *Ingestion or Inhalation* exposure route.
- ND Constituent not detected above the reporting limit.
- B Constituent detected in the blank and investigative sample.
- J Estimated concentration.
- J- Estimated concentration biased low.
- J+ Estimated concentration biased high.
- Shaded values indicate concentration **exceeds** Reference Concentration.
 - Shaded values indicate concentration exceeds the Soil Remediation Objective for Construction Workers.

Shaded values indicate concentration exceeds Reference Concentration and Soil Remediation Objective for Construction Workers.

Table 4-4

Comparison of Detected Constituents to Applicable TACO Screening Levels

Groundwater Analytical Results

Illinois Department of Transportation

FAI 74: Interstate 74 from 19th Street to 23rd Street

Moline, Rock Island County, Illinois

Field Sample ID Sample Date Location ID ISGS Site No Parameter	CB-4-040814 4/8/2014 CB-4 1314V2-6	MC-1-040814 4/8/2014 MC-1 1314V2-7	SM-1-040814 4/8/2014 SM-1 1314V2-8	SR-2-040714 4/7/2014 SR-2 1314V2-10	SR-2-040714D 4/7/2014 SR-2 1314V2-10	VL1-17-040914 4/9/2014 VL1-17 1314V2-12	TB-01-040714 4/7/2014 TB-01 NA	TB-02-040814 4/8/2014 TB-02 NA	Groundwater Remediation Objectives for Class 1 Groundwater
VOCs (ug/l)									
Acetone	ND	ND	7.9	ND	ND	ND	ND	ND	6300
Benzene	ND	ND	ND	0.29 J	0.3 J	ND	ND	ND	5
Toluene	0.27 J	0.39 J	ND	0.35 J	ND	ND	ND	ND	1000
Trichloroethene	ND	ND	ND	0.25 J	ND	ND	ND	ND	5
SVOCs (ug/l)									
Acenaphthene	ND	ND	ND	ND	ND	5.8 J	na	na	420
Anthracene	ND	ND	ND	ND	ND	3.7 J	na	na	2100
Dibenzofuran	ND	ND	ND	ND	ND	2.5 J	na	na	
Fluorene	ND	ND	ND	ND	ND	10	na	na	280
Phenanthrene	ND	ND	ND	ND	ND	16	na	na	
Total Metals (mg/l)									
Antimony, Total	0.0017 J	ND	0.0011 J	0.0012 J	0.0012 J	0.0033	na	na	0.006
Arsenic, Total	0.21	0.25	0.01	0.04 J	0.092 J	0.041	na	na	0.05
Barium, Total	25	2.1	0.42	0.68 J	1.2 J	0.8	na	na	2
Beryllium, Total	0.0073	0.017	0.00066 J	0.00089 J	0.002 J	0.0025	na	na	0.004
Cadmium, Total	0.027	0.0053	0.00063	0.0014 J	0.0032 J	0.0039	na	na	0.005
Calcium, Total	610 B	620 B	300 B	410 B	430 B	230 B	na	na	
Chromium, Total	0.16	0.49	0.019	0.038 J	0.071 J	0.1	na	na	0.1
Cobalt, Total	0.43	0.66	0.0091	0.035 J	0.077 J	0.036	na	na	1
Copper, Total	1	0.97	0.029	0.061 J	0.13 J	0.83	na	na	0.65
Iron, Total	880 B	640 B	29 B	69 J	150 J	160 B	na	na	5
Lead, Total	1.1 B	0.28 B	0.13 B	0.024 J	0.052 J	0.58 B	na	na	0.0075
Magnesium, Total	98 B	95 B	40 B	130 B	150 B	65 B	na	na	
Manganese, Total	140	27	1.8	7.6 J	16 J	8.1	na	na	0.15
Mercury, Total	0.013	0.0014	0.0022	0.00016 J	0.0003	0.0014	na	na	0.002
Nickel, Total	2.1	1.6	0.02	0.098 J	0.21 J	0.084	na	na	0.1
Potassium, Total	8.6 J	20	14	8.5	8.9	15	na	na	
Selenium, Total	0.037 J	0.062	0.0018 J	0.0033 J	0.006 J	0.0062	na	na	0.05
Silver, Total	0.0066	0.0015	0.00013 J	0.0003 J	0.00051	0.00058	na	na	0.05
Sodium, Total	130 B	430 B	120 B	500 B	530 B	28 B	na	na	
Thallium, Total	0.0099	0.0073	ND	0.0014 J	0.0028	0.00053 J	na	na	0.002
Vanadium, Total	0.5	0.75	0.025	0.059 J	0.12 J	0.084	na	na	0.049
Zinc, Total	2.4	2.7	0.23	0.23 J	0.52 J	3.1	na	na	5
PCBs				None D	etected				

Notes:

- --- not applicable or value not available.
- na Constituent not analyzed.
- ND Constituent not detected above the reporting limit.
- J Estimated concentration.
- B Constituent detected in the blank and investigative samples.
- Shaded values indicate concentration exceeds Groundwater Remediation Objective for Class I

Uncontaminated Soil Certification Forms (on CD-ROM)