STRUCTURE GEOTECHNICAL REPORT

SN 003-0062
Existing SN: 003-0034
IL 143 over Shoal Creek
FAP Route 793
Section (40,112)BR-1
Bond County D-98-108-05 PTB \#169/035

Prepared By: Sarah L. Wiszkon, P.E. Geotechnical Investigations Engineer IDOT, Region 5, District 8
Geotechnical Unit
(618) 346-3309

Date: April 1, 2015
Revised: July 29, 2015
Revised: \quad August 31, 2015

Prepared For: Benjamin A. Nebel, P.E., S.E.
Hutchison Engineering, Inc.
Jacksonville, IL
(217) 245-7164

Attachments

- Preliminary TS\&L Plans
- Soil Profile
- Soil Boring Logs
- Drilled Shaft Analysis
- Pile Analysis

Project Description

This project consists of the complete replacement of existing structure 003-0034 with proposed structure 003-0062. The structure is located at the intersection of FAP 793 (IL 143) over Shoal Creek at Station 389+69.5 in Bond County. Specifically, the structure is located in the southwest quadrant of Section 24 , Township 4 North, Range 4 West, $3{ }^{\text {rd }}$ Principal Meridian. The location of the structure is 5.2 miles east of the Madison County Line. See Figure 1 for the Project Location Map.

Figure 1: Project Location Map

Existing and Proposed Structure Information

The existing structure consists of a 22-span reinforced concrete deck bridge with steel beams on concrete pile bent abutments, concrete pile bent piers, and solid wall concrete piers with pile supported footings. The existing structure is $1129^{\prime}-8.875^{\prime \prime}$ back-to-back abutments and 32 '-6" out-to-out deck. It was originally constructed in 1934 as FA 793, Section 112-BR, reconstructed in 1972, and beam repaired in 2011. The existing structure has been programmed for total replacement due to the severe deteriorated conditions of both the superstructure and the substructure.

The proposed structure will consist of a 9 -span composite plate girder beam bridge on stub abutments and eight solid wall piers on pile supported footings. The planned length is $1352^{\prime}-0^{\prime \prime}$ back-to-back abutments and $35^{\prime}-2^{\prime \prime}$ out-to-out deck. The proposed structure station is $385+04.50$, while the proposed stationing for the substructure units is as follows:

- W. Abut - Station 378+32
- Pier 1 - Station 379+62
- Pier 2 - Station 381+17
- Pier 3 - Station 382+72
- Pier 4 - Station 384+27
- Pier 5 - Station $385+82$
- Pier 6 - Station 387+37
- Pier 7 - Station 388+92
- Pier 8 - Station 390+47
- East Abut - Station 391+72

The proposed axial and lateral loads for each substructure unit, as provided by Hutchison Engineering, are as follows:

Substructure Unit	Axial Load (kips)	Lateral Load (kips)
East \& West Abutments	1,300	65
Piers $1,2,3,4, \& 6$	2,600	110
Piers $5,7, \& 8$	3,700	165

Soils Investigation

Area Geology

The proposed structure lies in the Springfield Plain physiographic province of Illinois and the Tills Plains Section of the Central Lowlands Province of the United States. The location consists of surficial materials from the Cahokia Formation. Bedrock is generally limestone, sandstone, shale, and underclay of the Modesto Formation, formed during the Pennsylvanian period. There is one coal layer in the Modesto Formation - the No. 8 Coal.

Based on a review of the Bond County Soil Survey, the primary soil type at the proposed structure is the Wakeland Silt Loam. This soil has $0-2$ percent slopes and is frequently flooded and somewhat poorly drained, and consists of alluvium formed on flood plains.

Subsurface Profile

Twenty-two boring logs were conducted by IDOT from April through June of 1971. The locations of the borings are as follows:

Location	Station	Offset (ft)
W Abut	379+88.20	13.0 Right
1 Bent \#2	$380+48.10$	21.0 Right
2 Bent \#3	- $380+97.72$	22.7 Right
3 Bent \#4	$381+49.12$	19.0 Right
4 Bent \#5	$382+00.49$	19.5 Right
5 Bent\#6	$382+51.69$	20.0 Right
6 Bent \#7	$383+03.07$	21.0 Right
7 Bent \#8	$383+61.37$	22.0 Right
8 Bent \#9	$384+00.73$	20.0 Right
9 Bent \#10	$384+58.00$	22.0 Right
10 Bent \#11	$385+08.63$	21.5 Right
11 Bent \#12	$385+59.91$	21.0 Right
12 Bent \#13	$386+13.35$	21.3 Right
13 Bent \#14	$386+64.63$	22.0 Right
14 Bent \#15	$387+15.01$	21.0 Right
15 Bent \#16	$387+66.46$	21.0 Right
16 Bent \#17	$388+16.89$	21.0 Right
17 Bent \#18	$388+69.23$	19.5 Right
18 Pier \#1	$389+00.40$	21.3 Right
19 Pier \#2	$390+39.66$	20.7 Left
20 Bent \#19	$390+74.09$	22.9 Left
EAbut	$391+33.00$	10.0 Left

Two borings were conducted by TSi for IDOT in October 2014. Boring B-1 was taken at Station $389+14,26.0$ feet Right, and Boring B-2 was taken at Station $390+20,26.0$ feet right.

These borings describe a soil profile of intermingling layers of clay, clay loam, clay till, loam, sandy clay, silt, silty clay, and silty sandy clay over sand and gravel, which overlies intermingling layers of clay, clay till, silt, silty sandy clay, silty clay, and silty clay loam. Sand was encountered in each boring between Elev. 441.7 and Elev. 417.1 (these elevations are the upper and lower bounds for all borings). A relatively thin (less than 4 feet) layer of sand overlies bedrock at borings West Abut, Bent 4, Bent 5, Bent 14, Bent 15, and B-2. Weathered shale was encountered at the following elevations:
-W. Abut - Elev. 404.4

- Bent \#2 - Elev. 402.0
- Bent \#3-Elev. 402.1
- Bent \#4 - Elev. 403.0
- Bent \#5 - Elev. 399.2
- Bent \#6 - Elev. 403.0
- Bent \#7 - Elev. 393.4
- Bent \#8 - Elev. 387.7
- Bent \#14 - Elev. 389.1
- Bent \#15 - Elev. 390.7
-B-1 - Elev. 394.5
-B-2-Elev. 391.5
- Bent \#19 - Elev. 391.6

Competent bedrock was encountered at Elev. 390.5 at B-1 (shale) and at Elev. 391.0 at B-2 (shale over limestone). Groundwater elevations varied between Elev. 429.0 and Elev. 449.6.

Geotechnical Evaluation

Liquefaction

The peak seismic ground acceleration $\left(A_{s}\right)$ for the project location is 0.093 . Based on AGMU Memo 10.1 (Liquefaction Analysis), areas within Seismic Performance Zone 2 with an A_{s} less than 0.15 do not require a liquefaction analysis.

Mining Activity

According to the Illinois State Geological Survey's collection of County Coal Mine Maps and Directories, there has been no recorded mining activity in the effective area of the project.

Scour

According to the Homer \& Shifrin Hydraulic Report dated January 2011, the proposed structure is subject to 10 feet of scour at Piers 1 through 7 (Right Overbank) at the 100 -year event level and 14 feet of scour at the 500 -year event level, while 7 feet of scour is expected at Pier 8 (Left Overbank) at the 100 -year event level and 5 feet of scour at the 500 -year event levels. Abutment scour depths were not calculated due to the tendency of equations to be overly conservative. The structure does not overtop through the 500 -year frequency.

The Design Scour Table provides the appropriate elevations at each of the substructure units. Note that the scour elevation at each of the abutments is at the bottom of the abutment cap. Assuming that the Class A4 niprap is an appropriate scour countermeasure, the abutment piles do not need to be designed for scour.

The proposed scour depths for Piers 1 and 5 can be reduced by 20\%, as per Section 2.3.6.3.2 of the Bridge Manual.

Design Scour Elevation (feet)										
	W. Abut	Pier 1	Pier 2	Pler 3	Pier 4	Pler 5	Pier 6	Pier 7	Pier 8	E Abut
Quto	458.0	447.5	443.5	442.5	443.0	446.7	446.8	445.0	449.0	457.4
Q500	458.0	443.5	439.5	438.5	439.0	444.7	442.5	441.0	451.0	457.4
Design	458.0	447.5	443.5	445.5	443.0	446.7	446.8	445.0	445.0	457.4
Check	458.0	443.4	439.5	438.5	439.0	444.7	442.5	441.0	445.0	457.4

Seismic

The area is within the Seismic Performance Zone 2. The site's soil profile is most accurately described as Soil Site Class D. The Design Spectral Acceleration at 1 second is 0.24 g and 0.55 g at 0.2 seconds.

Settlement

Approximately 2.3 feet of additional embankment is to be added to the East Abutment bridge cone, while 2.9 feet of additional embankment is to be added at the West Abutment bridge cones. Our calculations, utilizing split spoon boring data available at the site, estimate the settlement to be on the order of 0.40 inches at the abutments. As a result, the effect of downdrag does not need to be accounted for in the substructure design.

Slope Stability

Based on information obtained from the borings and recommendations from the IDOT Geotechnical Manual, slope stability calculations have been performed using the computer program Slide. The Factors of Safety (FOS) are acceptable for the side slopes with FOS values ranging from 2.491 for the static analysis to 1.767 for the seismic analysis for the east end of the structure ($3: 1 \mathrm{H}: \mathrm{V}$ slopes) and FOS values ranging from 3.513 for the static analysis to 2.644 for the seismic analysis for the west end of the structure ($2.5: 1 \mathrm{H}: \mathrm{V}$ slopes). The use of $2: 1(\mathrm{H}: \mathrm{V})$ end slopes results in acceptable Factors of Safety ranging from 4.863 for the static analysis to 3.735 for the seismic analysis.

Design Recommendations

The following top of rock elevations should be used for the drilled shaft and pile recommendations.

- West Abutment - 404.4 ft

Pier 1-404.4 ft
Pier 2-402.1 ft
Pier 3-403.0 ft
Pier 4-387.4 ft

- Pier $5-389.0 \mathrm{ft}$
- Pier 6-390.7 ft
- Pier 7-396.4 ft
- Pier 8-395.4 ft
- East Abutment - 400.1 ft

Spread Footings

Spread footings are not feasible at the structure, due to low soll strengths and relative densities.

Drilled Shafts
It appears that drilled shaft substructures should be feasible for all substructure locations given the preliminary axial loads provided by Hutchison Engineering, Inc.

With the soil conditions present, it appears that drilled shafts set in rock are a suitable pile type to be used at all substructures.

Drilled Shaft Design Table - West Abutment

Diameter (ft)	Tip Elevation (ft)	Factored Resistance Available (kips)	Mode of Resistance
3.0	401.40	177.93	Side
4.0	401.40	237.24	Side
5.0	401.40	296.55	Side

Drilled Shaft Design Table - Pier 1

Diameter (ft)	Tip Elevation (ft)	Factored Resistance Available (kips)	Mode of Resistance
3.0	397.35	444.83	Side
4.0	398.60	474.48	Side
5.0	399.85	444.83	Side

Drilled Shaft Design Table - Pier 2

Diameter (ft)	Tip Elevation (ft)	Factored Resistance Available (kips)	Mode of Resistance
3.0	388.35	517.32	Side
4.0	390.85	452.52	Side
5.0	390.85	565.65	Side

Drilled Shaft Design Table - Pier 3

Diameter (ft)	Tip Elevation (ft)	Factored Resistance Available (kips)	Mode of Resistance
3.0	393.00	489.89	Side
4.0	394.25	534.56	Side
5.0	395.50	519.93	Side

Drilled Shaft Design Table - Pier 4

Diameter (ft)	Tip Elevation (ft)	Factored Resistance Available(kips)	Mode of Resistance
3.0	379.90	459.85	Side
4.0	381.15	494.51	Side
5.0	382.40	469.86	Side

Drilled Shaft Design Table - Pier 5

Diameter (ft)	Tip Elevation (ft)	Factored Resistance Available(kips)	Mode of Resistance
3.0	384.00	281.92	Side
4.0	384.00	375.89	Side
5.0	385.25	321.59	Side

Drilled Shaft Design Table - Pier 6

Diameter (ft)	Tip Elevation (ft)	Factored Resistance Available (kips)	Mode of Resistance
3.0	383.20	459.85	Side
4.0	384.45	494.51	Side
5.0	385.70	469.86	Side

Drilled Shaft Design Table - Pier 7

Diameter (ft)	Tip Elevation (ft)	Factored Resistance Available (kips)	Mode of Resistance
3.0	391.40	355.86	Side
4.0	392.65	355.86	Side
5.0	393.90	296.55	Side

Drilled Shaft Design Table - Pier 8

Diameter $(f t)$	Tip Elevation $($ ft $)$	Factored Resistance Available (kips)	Mode of Resistance
3.0	387.90	311.96	Side
4.0	389.15	346.62	Side
5.0	390.40	346.62	Side

Drilled Shaft Design Table - East Abutment

Diameter (ft)	Tip Elevation (ft)	Factored Resistance Available (kips)	Mode of Resistance
3.0	396.35	155.98	Side
4.0	396.35	207.97	Side
5.0	397.60	173.31	Side

Piles

It appears that pile-supported substructures should be feasible for all substructure locations given the preliminary axial loads provided by Hutchison Engineering, Inc. With the soil conditions present, it appears that end-bearing steel H -piles are a suitable pile type to be used at all substructures. Metal shell piles were not considered as the majority of pile strength comes from end-bearing resistance.

Design Capacity Limitations

No geotechnical losses due to scour were taken into account in the design of the abutment piles because the end slopes have effective scour countermeasures. According to our analyses, scour appears to be applicable to the pier locations without pile supported footings. Geotechnical losses due to scour range from 4 to 5 kips at Piers 3 and 5 , and 3 kips at Pier 6.

The pile design tables assume two rows of piles for the abutment locations, three rows of piles at the pier locations; and pile cutoff elevations one foot into the footing or abutment cap.

Pile Design Table - West Abutment

$\begin{aligned} & \text { Est, } \\ & \text { Plie } \end{aligned}$	HP 10×42 Max Length: 56.1		HP 12×53 Max Length: 56.0		HP 12×63 Max Length: 57.5		HP 14×73 Max Length: 56.9		$\begin{gathered} \text { HP } 14 \times 89 \\ \text { Max Length: } \\ 58.9 \end{gathered}$		$\begin{gathered} \text { HP } 14 \times 117 \\ \text { Max Lengh: } \\ 62.3 \end{gathered}$	
(f)	$\begin{gathered} R_{N} \\ (k p s) \end{gathered}$	$\begin{gathered} R_{F} \\ (k i p s) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ (k ; p) \end{gathered}$	$\begin{gathered} R_{f} \\ \text { (kips) } \end{gathered}$	$\begin{gathered} R_{\mathrm{N}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ \text { (kips) } \end{gathered}$	$\begin{gathered} R_{H} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{k} \\ (k i p s) \\ \hline \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{n} \\ (\text { (kips) } \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$
33	123	68	147	81	151	83	179	98	182	100	189	104
38	146	80	183	100	186	100	221	121	225	124	231	127
43	141	78	173	97	177	98	216	119	219	120	225	124
48	171	94	213	117	215	118	263	144	266	146	273	150
53	260	143	311	171	320	176	379	209	390	215	409	225
Max	335	185	418	230	497	274	578	317	705	387	929	510

Pile Design Table - Pier 1

Est. Pile	HP 12×53 Max Length: 53.8		HP 12×63 Max Length: 55.3		$H P 14 \times 73$ Mex Length: 54.7		$\mathrm{HP} 14 \times 89$ Max Length: 56.7		HP 14×117 Max Length:60. 1	
Length (ft)	$\begin{aligned} & R_{4} \\ & (\mathrm{kips}) \end{aligned}$	$\begin{gathered} \text { RF } \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ \text { (kip) } \end{gathered}$	$\begin{gathered} R_{p} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{*} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{8} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{k}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ \text { (kips) } \end{gathered}$
38	137	75	139	76	169	93	171	94	175	97
41	161	89	163	90	199	110	202	111	207	114
44	182	100	184	101	224	123	227	125	233	128
47	202	111	204	112	249	137	252	139	259	143
50	290	160	299	165	354	195	365	201	383	211
53	381	209	385	212	467	257	475	261	559	307
Max	418	230	497	275	578	317	705	387	929	510

Pile Design Table - Pier 2

Est. Pile	HP 12×53 Max Length:57. 3		HP 12×63 Max Length:58.7		HP 14×73 Max Length:58.2		HP 14×89 Max Length 60.2		$\begin{gathered} \text { HP } 14 \times 117 \\ \text { Max Length: } 63.6 \end{gathered}$	
Length (ft)	$\begin{gathered} R_{N} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{F} \\ (k i p s) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ (\mathrm{k} \mathrm{ps}) \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{N} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{F}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ \text { (kips) } \end{gathered}$	$\begin{gathered} R_{N} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ (k i p s) \end{gathered}$
44	157	86	159	87	190	104	193	106	198	109
47	154	85	155	85	189	104	191	105	196	108
51	165	91	167	92	201	111	204	112	208	115
54	239	132	245	135	290	159	296	163	307	169
57	405	223	410	225	504	277	512	281	525	289
Max	418	231	497	272	578	318	705	387	929	511

Pile Design Table - Pier 3

Est. Pile	HP 12×53 Max Length:56. 6		HP 12×63 Max Length:58. 1		HP 14×73 Max Length:57.6		HP 14×89 Max Length: 59.6		HP 14×117 Max Length:63.0	
Length (ft)	$\begin{gathered} \mathrm{R}_{\mathrm{v}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{f} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{\mathrm{N}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ \text { (kips) } \end{gathered}$	$\begin{aligned} & R_{i} \\ & (\mathrm{kips}) \end{aligned}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ \text { (kips) } \end{gathered}$	$\begin{gathered} R_{\mathrm{N}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ (k i p s) \end{gathered}$
51	162	85	163	85	198	104	201	105	206	108
52	182	96	185	97	222	117	226	119	233	123
53	203	107	206	109	246	130	251	133	259	137
54	223	118	228	121	270	143	276	147	286	152
55	330	177	335	179	401	215	408	219	420	226
56	389	210	393	212	481	259	488	263	502	271
Max	418	226	497	270	578	314	705	384	929	508

Pile Design Table - Pier 4

Est. Pile	HP 12×53 Max Length:69.5		$\text { HP } 12 \times 63$ Max Length:71.1		$\begin{gathered} \text { HP } 14 \times 73 \\ \text { Max Length: } 70.5 \end{gathered}$		$\begin{gathered} \text { HP } 14 \times 89 \\ \text { Max Length: } 72.5 \end{gathered}$		HP 14×117 Max Length: 75.9	
Length (ft)	$\underset{\mathrm{R}_{\mathrm{N}}}{\mathrm{kips})}$	$\frac{R_{i}}{(k i p s)}$	$\underset{(\mathrm{kips})}{\mathrm{R}_{\mathrm{N}}}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{N} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{N} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ \text { (kips) } \end{gathered}$	$\begin{gathered} R_{N} \\ (\mathrm{k}) \end{gathered}$	$\begin{gathered} R_{F} \\ (\text { kips }) \end{gathered}$
45	192	105	194	106	234	129	237	131	243	134
50	212	116	214	118	257	141	260	143	266	146
55	243	134	245	135	295	162	299	164	306	168
60	274	151	276	152	333	183	337	185	345	190
65	276	152	279	153	331	182	335	184	342	188
70			444	245	548	301	556	306	571	314
Max	418	229	497	275	578	317	705	387	929	510

Pile Design Table - Pier 5

Est. Pile Length (ft)	HP 12×53 Max Length:63. 1		$\begin{gathered} \text { HP } 12 \times 63 \\ \text { Max Length: } 64.6 \end{gathered}$		$\begin{aligned} & \text { HP } 14 \times 73 \\ & \text { Max Length:64.0 } \end{aligned}$		$\begin{gathered} \text { HP } 14 \times 89 \\ \text { Max Length:66.0 } \end{gathered}$		HP 14×117 Max Length:69. 4	
	$\begin{aligned} & R_{N} \\ & (k i p s) \end{aligned}$	$\begin{gathered} R_{p} \\ (\text { kips }) \end{gathered}$	$\begin{gathered} R_{N} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{F} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{\mathrm{R}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{F}} \\ (\mathrm{kps}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{8} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{N} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{F} \\ (\text { (kips) } \end{gathered}$
50	228	121	230	123	277	148	281	150	288	154
54	240	128	242	129	291	155	294	157	301	161
58	267	143	269	145	324	174	328	176	336	180
62	365	197	370	199	446	241	453	245	466	251
64			469	254	577	313	585	317	601	326
Max	418	227	497	271	578	313	705	382	929	505

Pile Design Table - Pier 6

Est. Pile Length (ft)	$\begin{gathered} \text { HP } 12 \times 53 \\ \text { Max Length: } 65.6 \end{gathered}$		$\begin{gathered} \text { HP } 12 \times 63 \\ \text { Max Length:67.1 } \end{gathered}$		$\begin{gathered} \text { HP } 14 \times 73 \\ \text { Max Length: } 66.6 \end{gathered}$		$\begin{gathered} \text { HP } 14 \times 89 \\ \text { Max Length:.68.6 } \end{gathered}$		$\begin{gathered} \text { HP } 14 \times 117 \\ \text { Max Length:72.0 } \end{gathered}$	
	$\begin{gathered} R_{N} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{k} p \mathrm{p}) \end{gathered}$	$\begin{gathered} R_{\mathrm{x}} \\ \text { (kips) } \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{n} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \text { Re } \\ \text { (kips) } \end{gathered}$	$\begin{gathered} R_{N} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ (\mathrm{kps}) \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{Kips}) \end{gathered}$
48	158	84	160	85	196	105	199	106	204	109
52	164	88	166	89	200	107	202	108	207	111
56	166	89	168	89	199	106	202	108	206	110
60	229	123	232	126	276	149	281	151	288	155
64	333	181	340	185	404	219	411	223	423	229
66			442	240	544	296	552	300	568	309
Max	418	227	497	270	578	316	705	385	929	508

Pile Design Table - Pier 7

Est. Plle Length (fi)	HP 12×53 Max Length:51.7		$\mathrm{HP} 12 \times 63$ Max Length:53.2		$\mathrm{HP} 14 \times 73$ Max Length:52.6		HP 14×89 Max Length: 54.6		HP 14×117 Mex Length. 58.0	
	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ (\mathrm{kps}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{F}} \\ \text { (kips) } \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ (\mathrm{kips}) \end{gathered}$	R_{F} (kips)	RM (kips)	R_{F} (kips)	$\begin{aligned} & \mathrm{R}_{\mathrm{N}} \\ & \mathrm{kips}) \end{aligned}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{aligned} & R_{N} \\ & \text { (kips) } \end{aligned}$	RF (kips)
48	208	114	210	115	251	138	254	140	260	143
49	252	139	257	141	305	168	310	171	319	175
50	296	163	303	167	359	197	366	201	377	207
51	386	212	390	214	475	261	482	265	496	272
52			439	242	542	298	550	302	565	311
Max	418	231	497	275	578	317	705	387	929	510

Pile Design Table - Pier 8

$\begin{aligned} & \text { Est. } \\ & \text { Pile } \end{aligned}$	$\begin{gathered} \text { HP } 12 \times 53 \\ \text { Max Length: } 53.9 \end{gathered}$		$\begin{gathered} \text { HP } 12 \times 63 \\ \text { Max Length: } 55.4 \end{gathered}$		HP 14×73 Max Length:54.9		HP 14×89Max Length:56.9		HP 14×117 Max Length: 60.3	
Length (ft)	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ \text { (kips) } \end{gathered}$	$\begin{gathered} R_{F} \\ \text { (kips) } \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{\mathrm{R}} \\ \text { (kips) } \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ (\mathrm{kps}) \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{N} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ (k p s) \end{gathered}$
51	203	112	209	115	247	136	253	139	263	144
52	305	168	311	171	369	203	376	206	387	213
53	369	203	375	206	453	246	460	253	473	260
54			425	234	525	286	533	293	547	301
55			475	261			592	325	608	334
Max	418	228	497	272	578	318	705	387	929	510

Pile Design Table - East Abutment

Est. Plle Length (ft)					$\begin{gathered} \text { HP } 12 \times 63 \\ \text { Max Length: } \\ 62.5 \\ \hline \end{gathered}$		$\begin{gathered} \text { HP } 14 \times 73 \\ \text { Max Length: } \\ 61.9 \\ \hline \end{gathered}$		HP 14×89 Max Length: 64.0		HP 14×117 Max Length: 67.4	
	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ \mathrm{kips} \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{H}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{\mathrm{N}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{F} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{n} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{f} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} R_{n} \\ (k i p s) \end{gathered}$	$\begin{gathered} R_{F} \\ (\mathrm{kps}) \end{gathered}$	$\begin{gathered} R_{\mathrm{N}} \\ (\mathrm{kips}) \end{gathered}$	$\begin{gathered} \mathrm{Re}_{\mathrm{F}} \\ (\mathrm{kips}) \end{gathered}$
44	106	58	134	74	135	74	167	92	169	93	174	96
49	124	68	154	85	155	85	186	104	191	105	196	108
54	135	74	166	91	167	92	201	110	203	112	208	114
58	210	116	252	138	258	142	305	168	311	171	322	177
59	249	138	307	169	314	173	372	205	379	208	390	215
60	290	159	366	201	371	204	453	249	461	253	473	260
Max	335	184	418	229	497	274	578	316	705	389	929	512

Test Piles

Due to the varying depth to bedrock between the substructure units, we recommend that 4 test piles be driven, one each at Pier 3, Pier 4, Pier 7, and East Abutment, if piles are chosen as the substructure type.

Metal Shoes

No conditions exist which would require metal shoes to be installed on any of the piles at this site.

Lateral Loading

The factored lateral loading for all the substructure units is anticipated to exceed 3 kips per pile. However, the maximum exposed height of the piles at the substructure units is 1 foot, therefore, no lateral analysis should be necessary.

Construction Considerations

The structure will be closed for construction and stage construction will not be utilized. Therefore, temporary retention will not be necessary.

If Shoal Creek is experiencing flooding that overtops the top of bank elevation of 455.0 ft , cofferdams may be required to pour the footings in dry conditions; if pile supported footings are the chosen foundation type.

The $2^{\prime} \times 2^{\prime}$ box culvert at Station $378+30.4$ should be removed before constructing the foundation for the West Abutment.

Suluage: womis.

;
$16(810)^{3}$

WT

IL 143 over Shoal Creek - SN 003-0034 (E) / 003-0062 (P)

IL 143 over Shoal Creek - SN 003-0034 (E) / 003-0062 (P)

(H) иomenaly

IL 143 over Shoal Creek - SN 003-0034 (E) / 003-0062 (P)

IL 143 over Shoal Creek - SN 003-0034 (E) / 003-0062 (P)

COUNTY \qquad DRILLING METHOD
Hollow Stem Auger HAMMER TYPE Unknown STRUCT. NO. $\frac{003-0034(E) /}{003.0062(P)}$
Station $\frac{389+70}{}$
BORING NO.

D	B	U	M
E	L	C	0
P	O	S	1
T	W		S
H	S	$Q u$	T
(ft)	$\left(6^{\prime \prime}\right)$	(tsf)	$(\%)$

Surface Water Elev.
Stream Bed Elev.
Groundwater Elev:
First Encounter
Upon Completion
After \quad Hrs.

\qquad f
ft
ft
ft
ft
ft

D	B	U	M
E	L	C	O
P	O	S	I
T	W		S
H	S	$Q u$	T
(t)	$\left(/ 6^{\prime \prime}\right)$	(tsf)	$(\%)$

Brown Sily CLAY
Date 3/5/71
ROUTE FAP 793 (FA 149) DESCRIPTION
IL 143 over Shoal Creok LOGGED BY \qquad c. Hofman SECTION \qquad LOCATION
NW 14, SW 1/4, SEC. 24, TWP. 4N, RNG. 4W, 3 PM
Gray and Brown Slity Slightly Sandy CLAY continued

Gray Slightly Silty CLAY
4385
Gray Medium SAND
Brown and Gray Sightly Silty CLAY
Gray Slighty Sily CLAY
Gray and Brown Slightiy Sily CLAY
46.1
San

The Unconfned Compressive Strangth (UCS) Failure Mode is indicated by (B-Buge, S-Shear, P-Penetrometer) The SPT (M value) is the sum of the last two blow valuas in ach sampling zone (AASHTO T200)

The Uncontined Compressive Strengh (UCS) Faiture Mode is indicated by (S-Buige, \$-Shear, P. Penetrometer)
The SPT (N value) is the sum of the last two blow values in each samplng rone (AASHTO T206)

The Uncontined Compressive Strengh (UCS) Failure Mode is indicated by (B-Buige, S-Shear, P-Penetrometer)
The SPT (M value) is tha sum of the last two blow values im ach sampling zone (AASHTO T208)

[^0]

ROUTE FAP 793 (FA 149 DESCRIPTION \qquad LOGGED BY \qquad
SECTION \qquad LOCATION NW 1/4, SW 1/4, SEC. 24, TWP. 4N, RNG. 4N, 3 PM

COUNTY \qquad DRILLING METHOD \qquad Hollow Stem Aucer
HAMMER TYPE Unknown

STRUCT. NO. Station	$\begin{aligned} & 003-0034 \text { (E) } \\ & 003-0002 \text { (P) } \end{aligned}$
	$389+70$
BORING NO.	2 Bent 43
Station	$380+97.72$
Offset	22,70ft Right
Ground Surf	Elev. 454.0

D	B	U	M
E	L	C	0
P	O	S	1
T	W		S
H	S	$Q U$	T
(ft)	$\left(\sigma^{*}\right)$	(tsf)	$(\%)$

Brown and Gray Slighty Silty
CLAy

Surface Water Elev. Stream Bed Elev.	ft
Groundwater Elev.:	
First Encounter	44
Upon Completion	$\square \mathrm{ft}$
Atter Hrs.	

D	B	U	M
E	L	C	O
P	O	S	1
T	W		S
H	S	$Q u$	T
$(f t)$	$\left(6^{\prime \prime}\right)$	$(t s f)$	$(\%)$

[^1]

The Uncontnad Compressive Strangth (UCS) Falure Mode is indicated by (E-Buge, Shear, P-Penetrometer)
The SPT (N walue) the sum of the last wo blow values in each sampling zone (AASHTO T206)
(8) Illinois Department of Transportation
Swistan of Hightays
Wrove Droarmunt of tanspontation

ROUTE FAP 793 (FA 149) DESCRIPTION \qquad LOGGEDBY \qquad c. Hofiman SECTION \qquad LOCATION NW $1 / 4$, SW $1 / 4$, SEC. 24. TWP. 4N, RNG. 4W, 3 PM

COUNTY \qquad DRILLING METHOD \qquad Hollow Stem Auger HAMMER TYPE Unknown

[^2]The SPT (N value) is the sum of the last wo blow values in each samplng zone (AASHTO T206)

The SPT (\% vatue) is the sum of the lest two blow values in each samplng zone (AAsHTO T20G)

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B Buige, S-Shear, P-Penetrometer)
The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHO T200),

Illinois Department of Transportation

SOIL BORING LOG

Date 5/4/71
If 143 over Shoal Creok
NW 1/4, SW 1/4, SEC. 24. TWP. 4N. RNG. 4W, 3 PM
SECTION \qquad LOCATION \qquad

\qquad Hollow Stem Aucer \qquad HAMMER TYPE Unknown

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (E-Bulge, S-Shear, Pepenetrometer)
The SPT (N value) is the sum of the last two blow values in each samplng zone (AASHTO T206)

The Uncontined Compressive Strength (UCS) Falut Mode is indicated by (B-Suige, S-Shear, P-Penerrometer) The Spt (N value) : the sum of the last two blow values in each samping zone (AASHTO T206)

(7) Illinois Department of Transportation
Tiwision of hingrway

SOIL BORING LOG

Page 1 of 2

Date $5117 / 71$

ROUTE FAP 793 (FA 149) DESCRIPTION \qquad
II. 143 over Shoal Creek LOGGED BY C. Hofman SECTION \qquad LOCATION NW 1/4, SW 1/4, SEC. 24, TWP. 4N, RNG. 4W, 3 PM

COUNTY	Bond
	$003-0034(E)$ DRIL
STRUCT NO. $\quad 003-0062(P)$	
Station	$389+70$

BORING NO.	7 Bent 48
Station	$383+61.37$
Offset	22.00ft Right
Ground Sur	Elev. 454.6

D	B	U	M
E	L	C	O
P	O	S	1
T	W		S
H	S	$Q u$	T
$(f t)$	$\left(16^{\prime \prime}\right)$	(tsf)	$(\%)$

Hollow Stem Auger HAMMER TYPE Unknown \qquad

Surface Water Elev.
Stream Bed Elev.

Groundwater Elev.:
First Encounter
Upon Completion
After Hrs.

Gray Sighty Sily CLAY
Brown and Tan SLT (continued)

Gray Slightly Sily CLAY

Gray Clayey SUT

SOIL BORING LOG

Page 2 of
2

Date \qquad
ROUTE FAP 793 (FA 149) DESCRIPTION \qquad
IL 143 over Shoal Creek LOGGED BY \qquad C. Holfman

SECTION \qquad LOCATION NW 14, SW 14, SEC. 24, TWP, 4N, RNG. 4W, 3 PM

COUNTY \qquad ORILLING METHOD \qquad Hollow Stem Auger \qquad HAMMER TYPE Unknown
STRUCT. NO. $\frac{003-0034(E) / 003-0062(P)}{389+70}$
Station

BORING NO.	7 Bent 48
Station	$383+61.37$
Offset	22.00 f Right

Ground Surface Elev. 454.6 ft
Gray Clayey SLT (continued)

D	B	U	M
E	L	C	O
P	O	S	1
T	W		S
H	S	$Q u$	T
(ft)	$(6=)$	$(t s f)$	$(\%)$

Dark Brown SILT
(Highly Organce whth much Plant.
Material!

-	20	2.28	25
	s		

Dark Gray SILT (conthued)

Illinois Department of Transportation SOIL BORING LOG

Page 1 of 2
Date 511871
ROUTE FAP 793 (FA 149 DESCRIPTION \qquad LOGGEDBY \qquad
SECTION \qquad LOCATION NW $1 / 4$, SW $1 / 4$, SEC. 24, TWP. 4N, RNG. 4W, 3 PM
COUNTY \qquad DRILLING METHOD \qquad HAMMER TYPE
Unknown

The Uncontned Compressive Strengt (UCS) Failure Hode is indicated by (8.Buge, S-Shear, Pepenetrometer)
The SPT (N value) is tha sum of the last wo blow values in each sanyling zone (AASHTO T200)

The Spl H valuel hathe sum of he last wo blow values in eack samplng zone AASHTO Thet
Date $5 / 17 / 71$
ROUTE FAP793 FA 149 DESCRIPTION \qquad LOGGEDBY C. Hotman
SECTION \qquad LOCATION
NW 1/4, SW 1/4, SEC. 24, TWP. $4 N$ RNG. $4 W, 3$ PM
COUNTY \qquad DRILLING METHOD \qquad HAMMER TYPE Unknown
STRUCT. NO. $\frac{003-0034(E)\}}{003-0062(P)}$
Station $\frac{389+70}{}$
BORING NO. \qquad $384+58$

Station	$384+58$
Offset	$22.00 f t$ Right
ound	454.9

D	B	U	M
E	L	C	0
P	0	S	1
T	W		S
H	S	$Q u$	T
(ft)	$\left(/ 6^{\prime \prime}\right)$	(tsf)	$(\%)$

Brown Clayey SILT

The Unconined Compressive Strength (UCS) Fallure Mode is indicated by (B-Buige, S-Shear, P-Penetrometen) The SPT (N value) is the sum of the last two blow values in each sampllig zone (AASHTO T20G)
Page 2 of
Division of Highway

ROUTE FAP 793 (FA 149) DESCRIPTION \qquad
LL 143 over Shoal Creek NW 114 , SW 1/4, SEC. 24 , TWP. 4 N, RNG. $4 \mathrm{~W}, 3$ PM

[^3] The SPT (M value) is the sum of he last two blow walues in ach sampling zone (RASHTO Troe)

[^4]

[^5]SOIL BORING LOG
Page 1 of 2
ROUTE FAP 793 (FA 149) DESCRIPTION \qquad LOGGED BY C.Hoffman
SECTION \qquad
\qquad LOCATION NW 14, SW $1 / 4$ SEC. 24, TWP. 4N, RNG, 4W, 3PM
COUNTY \qquad DRILLING METHOD \qquad Hollow Stem Auger
HAMMER TYPE
Unknown
STRUCT. NO. $\frac{003.0034(E)!}{003.0062(P)}$
Station $\frac{389+70}{}$
BORING NO. $\frac{11 \text { Bent } 42}{385+59.91}$
Station
Offset

O	B	U	M
E	L	C	0
P	O	S	1
T	W		S
H	S	Qu	T
(ft)	$\left(16^{\prime \prime}\right)$	(tsf)	$(\%)$

Erown and Tan SILT
Brown Slity CLAY
Brown and Gray slly Clay

Brom and Gray Sily CLAY (with abundan pellets of Lmonite)

-

The Uncontned Compressiva Strenctir (UCS) Failure Mode is indicated by (B-Buige, S-Shear, p-penorometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO r200)

Ownow of highemas

ROUTE FAP 793 (FA 449) DESCRIPTION \qquad
IL 143 over Shoal Creek
LOCATION NW 14. SW 14, SEC. 24, TWP. 4N, RNG. 4W, 3PM
COUNTY \qquad DRILLING METHOD \qquad Hollow Stem Auger \qquad HAMMER TYPE
Unknown
Date 1128 R
BORING NO. \qquad

D	B	U	M
E	L	C	O
P	O	S	1
T	W		S
H	S	$Q u$	T
(f)	$\left(10^{\circ}\right)$	(tsf)	$(\%)$

Gray CLAY (continued)

Gray Slightly Ciayey SILT

Gray Coarse SAND and Fine GRAVEL

Gray
9
6
6
6
6

Gray Sily CLAY (TII)
(with small Pebbles)

Gray SLT
(Thixotropic)

Gray CLAy $5 / 21 / 71$ 0030034 (E) STRUCT NO. $\frac{003-0062(P)}{389+70}$ Station Ground Surface Elev. 455.7 it
Brown Silty Clay

Brown and Tan Clayey SUT

Grown Very Sandy CLAY

Brown and Gray Sandy Clayey SLIT

Gray CLA
436.2
-2

Gray Silty CLAY
(8)

Illinois Department of Transportation

ROUTE FAP 793 (FA 149) DESCRIPTION \qquad IL 143 over Shoal Croek LOCATIO NW 1/4, SW 1/4, SEC. 24. TWP. 4N, RNG. 4W, 3 PM

COUNTY \qquad DRILLING METHOD \qquad Hollow Stem Aucer \qquad HAMMER TYPE

Unknown
STRUCT. NO. $\frac{003-0034(E) /}{003-006(P)}$
Station $\frac{389+70}{}$
BORING NO. $\frac{12 \text { Bent } 713}{\text { Station } \frac{386+13.35}{21.30 f t ~ R i g h t ~}}=1$
Offset

D	B	U	M
E	L	C	O
P	O	S	I
T	W		S
H	S	$Q u$	T
(ft)	$\left(6^{\prime \prime}\right)$	(tsf)	$(\%)$

Gray CLAY (conthwed)
(with small Pebbles)

	14	0.98	19
		8	
-7			
	19	1.43	25

Page 2 of 2

SOIL BORING LOG

Date 5/21/71
\qquad C. Hofman

SECTION \qquad

End of Boring
NOTE. Value in "Blows" column is equal to the N -value.

Gray Clayey SIT (contrued)
Surface Water Elev.

Groundwater Elev:
First Encounter
Upon Completion 3943

$1(t)$	$\left(6{ }^{\prime \prime}\right)$	(tsf)	$(\%)$
	9	1.79	19
		6	

4042.

\qquad
ROUTE FAP 793 (FA 149) DESCRIPTION
IL 143 over Shoal Cresk \qquad LOGGED BY \qquad C. Hofiman
BORING NO
13 Bent 414
Station $\frac{386+64,63}{\text { Offset }}$
Ground Surface Elev. 45 E .1 it

Gray Clayey SANO (conlnued)
SOIL BORING LOG
Page 2 of 2
Date 6771
ROUTE FAP 793 (FA 149) DESCRIPTION
IL 143 over Shoal Creek LogGEDBY \qquad C. Hoffman
SECTION 112 BR LOCATION NW 1/4, SW 1/4, SEC. 24 TWP. 4N, RNG. $4 W, 3$ PM
COUNTY \qquad DRILLING METHOO \qquad Hollow Stem Auger HAMMER TYPE

Unknown

D	B	U	M
E	L	C	0
P	O	S	1
T	W		S
H	S	$Q u$	T
(ft)	$\left(6^{\prime \prime}\right)$	$(t s f)$	$(\%)$

	D	B	U	M
	E	L	C	O
	P	0	S	1
	T	W		S
ft	H	S	$Q u$	T
ft	(t)	$\left(\sigma^{\prime \prime}\right)$	(tsf)	$(\%)$

Gray Sily Sandy CLAY (continued)

The Unconined Compressive Strength (UCS) Failura Mode is indicated by (E-Buge, S-Shear, P. Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zona (AASHTO T206)

Illinois Department of Transportation
Wivishon thentways

SECTION \qquad LOCATION NW 14. SW 1/4, SEC. 24. TWP. 4N, RNG. 4W, 3PM

COUNTY	Bond DRIL
STRUCT.	$\begin{aligned} & 003-0034(\mathrm{E}) \\ & 0030002(\mathrm{P}) \end{aligned}$
Station	$389+70$
BORING	14 Eent 415
Station	387+15.04
Offset	21.00f Pight
Ground	Elev. 455.2

BORING NO. $\frac{14 \text { Eent } \# 15}{387+15.01}$
Station
Offset

Ground Surface Elev. _ 455.2 ft
Brown Clayey SITT

D	B	U	M
E	L	C	0
P	0	S	1
T	W		S
H	S	$Q u$	T
(ft)	$\left(6^{\prime \prime}\right)$	(tsf)	$(\%)$

Surface Water Elev.		ft
Stream Bed Elev.		f
Groundwater Elev.:		
First Encounter	443.4	ft
Upon Completion		ft
After \quad Hrs.	ft	

B	U	M
L	C	O
0	S	1
W		S
S	$Q u$	T
$\left(16^{\prime \prime}\right)$	$(t s f)$	$(\%)$

Gray Clayey Medium SAND
(continued)

4332
4307
Gray Clayey Medum SAND
428.2
Gray Sity Sandy CLAY
-420.7
Gray 81
(Thbotropic)
4232
Gray and Brown Medum GRAVEL

The Unconthed Compressive Strength (UCS) Falure Mode is indicated by (B-Bulge, S-Shear, P-penetrometer) The SpT (N valuelis the sum or the last two blow vaites in each samplng zone (AnsHTO T200)
SOIL BORING LOG
Page 2 of 2
Date
61871
ROUTE FAP 793 (FA 149) DESCRIPTION
IL 143 over Shoal Creek \qquad LOgGEDBy \qquad
SECTION \qquad LOCATION
0 \qquad Hollow Stem Auge: \qquad HAMMER TYPE

STRUCT. NO. $\frac{003-0034(E)}{} \frac{003-0062(\mathrm{E})}{}$	
Station	$389+70$

BORING NO. \qquad
Station
 f

D	B	U	M
E	L	C	O
P	O	S	1
T	W		S
H	S	$Q u$	T
(ft)	$\left(6^{\prime \prime}\right)$	$(t s f)$	$(\%)$

Gray Slighly Silly CLAY (Til)
(with small Pebbles) fontinued)
\qquad

-	5		
-			
16	150		

(with small Pebbles) foo
ark Brown SILT
(Highly Organic wh Plant Stams)
Gray Slighty sily CLAY

Gray Sandy Silly CLAY
continued
I'

[^6] The SPT (M value) is tha sum of the last wo blow values in each sampling zone (AksHTO T20at
illinois Department of Transportation
Divishon crinhoway
Mhors Devantruxat of Tamsportation
SOIL BORING LOG
Page 2 of 2
Date 6/10/71
ROUTE FAP 793 (FA 149 DESCRIPTION

- Il 143 over Shoal Creek \qquad LOGGEOBY C. Hoftman
SECTION \qquad LOCATION
NW $1 / 4$, SW $1 / 4$, SEC. 24 , TWP. $4 N$, RNG. $4 W, 3$ PM
 RILLING METHOD \qquad HAMMERTYPE

Unknown

D	B	U	M
E	L	C	O
P	O	S	1
T	W		S
H	S	$Q u$	T
(ft)	$\left(6^{\prime \prime}\right)$	(tsf)	$(\%)$

Gray Slighty Sily CLAY
fontinued

Gray SILT

	16	1.66	25
		5	
	72	1.46	25
		5	

Surface Water Elev.
Stream Bed Elev.
Groundwater Elev.:
First Encounter
Upon Completion
After \quad Hrs.

Gray Silty Sandy CLAX
(contmued)

equal value in "Blows" column is
\qquad
Gray Clay

	16	1.43	28
		B	

The Uncomimed Compressive Strength (UCSI Fature Mode is indicated by (B-Eulge, S.Shear, P.panetrometen) The SPT (N value) is the sum of the last two blow values in each samplng zone (AASHTO Tzuc)
Illinois Department
of Transportation SOIL BORING LOG
Page 1 of 2
Owishor of haywhys

ROUTE FAP 793 (FA 149) DESCRIPTION
IL 143 over Shoal Creck
LOGGEDBY \qquad
SECTION \qquad LOCATION NW 1/4, SW 1/4, SEC. 24. TWP. 4N, RNG. 4W, 3PM
 Brown Clayey SUT

D	B	U	M
E	L	C	O
P	O	S	1
T	W		S
H	S	$Q u$	T
(f)	$\left(6^{\prime \prime}\right)$	$(t s f)$	$(\%)$

Unknown

Brown sily Clay
Grown and Tan Sondy Sily CLAY
(Thixatropic)
Gray Sandy Sily Clay
(Thixotrople)
Cray Slighty Sny CTAY

The Unconthed Compressive Strength (UCS) Faiure Mode is indicated by (B-Buge, S-Shear, P-penetrometer) The SPT (N value) is the sum of the last wo blow values in each sampling zone (MASHTO T206)

IL 143 over Shoal Creek

Date $6 / 11 / 7$

SECTION 1128R LOCATION NW $1 / 4$, SW $1 / 4$, SEC. 24. TWP. 4N, RNG. 4W. 3PM

Ground Surface Elev. $\quad 450.6$ it
Gray Slight
(continued

SOIL BORING LOG

The Unconfned Compressive Strength (UCS) Fature Mode is mdicated by (B-Buige, S.Shear, p,Penetrometer)
The SPT (N value) is the sum of the last two blow values m each samping zone (AASHTO T206)

[^7] SOIL BORING LOG
Date \qquad
ROUTE FAP 793 (FA 149) DESCRIPTION \qquad LOGGED BY \qquad C. Hofman
SECTION \qquad LOCATION
NW $1 / 4$, SW $1 / 4$, SEC. 24 , TWP. 4 N , RNG. $4 \mathrm{~W}, 3 \mathrm{PM}$

COUNTY \qquad DRILLING METHOD \qquad HAMMER TYPE - Unknown $\begin{array}{cc} \\ \text { STRUCT. NO. } \frac{0030034(E)!}{003.0062(P)} \\ \text { Station } & 389+70\end{array}$
BORING NO.
17 Eent \#18 \qquad

Station
Offset

Ground Surface Elev. 456.9 ft
Gray Slighty Sily CLAY (TIII)
(with small Pebbles) (continued)

D	B	U	M
E	L	C	O
P	O	S	1
T	W		S
H	S	$Q u$	T
$(f t)$	$\left(10^{\prime}\right)$	$(t \operatorname{tsf})$	$(\%)$

Surface Water Elev. Stream Bed Elev.	ft
Groundwater Elev.;	
First Encounter	444.9
Upon Completion	
After Hrs.	

D	B	U	M
E	L	C	O
P	O	S	1
T	W		S
H	S	$Q u$	T
$(f t)$	$\left(\sigma^{\prime \prime}\right)$	(tsf)	$(\%)$

SOIL BORING LOG

Page 1 of
Date 6/22/7

The Uncommed Compressive Strength (UCS) Falure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometery The SPT (M value) is the sum of the last two blow values in each sampling zone (AASHTO R200)
ROUTE FAP 793 (FA 149) DESCRIPTION
IL 143 over Shoal Creek
SECTION \qquad LOCATION NM T/4. SW 1/4, SEC. 24. TWP. 4N, RNG. 4W. 3 PM COUNTY \qquad DRILLING METHOD

$$
003-0034(E)
$$

\qquad
STRUCT. NO.

$$
003-0062(p)
$$

BORING NO.	18 Pier ${ }^{\text {\% }} 1$
Station	389+00.4
Offset	21.30ft Right

ft
Gray SILT (cont
(Thixotropic)

(Thixotropic)

Station $389+70$

D	B	U	M
E	L	C	0
D	0	S	1
T	W		S
H	S	$Q u$	T
(t)	$\left(16^{\prime \prime}\right)$	(tsf)	$(\%)$

Gray Clayey SIL
405

U	M
C	O
S	1
	S
$Q u$	T
$(t s f)$	$(\%)$

COUNTY \qquad DRILLNG METHOO \qquad Hollow Stem Auge
hammer TYpe \qquad

The Uncontined Compressive Strength (UCS) Failure Mode is indlcated by (E BuIGe, S.Shear, pmenetrometer) The SPT (M value) is the sum of the last wo blow values in aach samplng zone (AASHTO T200)

The Unconfned Compressive Strength (UCS) Fallure Mode is indicated by (B-Buge, S-Shear, p, penetrometer) The SPT (N value) is the sum of the last kwo blow values in ach samping rone (AASHTO TOD)

SOIL BORING LOG

Il 143 over Shoal Creek
\qquad LOGGED BY Date $107 / 14$

ROUTE FAP 793 (FA 149) DESCRIPTION JPTSU \qquad SECTION \qquad LOCATION

NW 1/4, SW 1/4, SEC. 24, TWP. 4N, RNG. 4W. 3 PM
COUNTY \qquad ORILLING METHOD \qquad Hollow Stem Auger \qquad HAMMER TYPE $140 \#$ Automatic

Station $389+70$

BORING NO.
8-2 Station $\frac{390+20}{\text { Offset }} \begin{aligned} & \text { Ground Surface Elev. } \quad 450.0 \\ & \text { Gt Right }\end{aligned}$ Ground Surface Elev. 450.0 ft
Brown Clay LOAM with Trace
Weathered Limestone Pleces A-6(6)
Seeclass @ 1.5 f
\qquad
Brown Sity Clay LOAM A-4(6)
See Class © 5 ft

Brown LOAM
A-40) Class 915 s

Gray sily Clay

D	B	U	M
E	L	C	O
P	O	S	1
T	W		S
H	S	$Q U$	T
(ft)	$\left(6^{m}\right)$	$(t s f)$	$(\%)$

Gray Slly CLAY (continued _- 435.5

Gray SAND See Gradation (25 t

Rotary Wash

Gray Sity Clay Parting

Gray Fine to Coarse SAND with
Fine to Medium Grave!
See Gradation (0) 30 ft
-420.0

Gray
See
see
0

5	WH		
	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	NC	22
	2		
$.25$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	NC	22
	3		
	$\begin{aligned} & 3 \\ & 8 \end{aligned}$	NC	18
0	8		
-30	$\begin{array}{r} 13 \\ 16 \\ \hline \end{array}$	NC	15
	10		
-3	$\begin{array}{r} 15 \\ 16 \\ \hline \end{array}$	3.92	22
+ -7 -7	14		
-401	$\begin{aligned} & 17 \\ & 12 \end{aligned}$	1.83	22

The Uncomined Compressiva Strength (UCS) Falure Moce !s indicated by (E-Buge, S-Shear, P.Penetrometer)
The SPT (N valuelis the sum of the fast wo blow values meach zampling zone (AASHTO T200)

SOIL BORING LOG

Page 1 of 2
Date 6/2374

The Uncontred Compressives Strength (UcS) Fahure Moda is indicaled by (B-Bulge, S-Shear, p-penetroneter) The SPT (N valuel is the sum of the last wo blow values in each sampling zone (AASHTO T200)

The Mrconfined Compresshe Strangty (UGS) Fature Hode is inticated by (S-Buge, Shear, phenetrometer

The Unconfined Compressive Strength (UCS) Falure Mode is indicated by (Bu-Buge, S-shear, pepenetroneter)
The SPT (M valuel is the sum of the last two blow values m each tampling zone (AASHTO T206)

The Uncontined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S. Shear, p-penetrometer)
The SFT (N value) is the sum of the last two blow values in each samplng zone (AASHTO T200)

SOIL BORING LOG
ROUTE FAP 793 (FA 149) DESCRIPTION \qquad LOGGED By

Date $226 / 71$ SECTION \qquad LOCATION

NW 14, SW $1 / 4$, SEC. 24 , TWP. $4 N$, RNG. $4 N, 3$ PM

Ground Surface Elev. 465.9 ft
\qquad Hollow Stem Auger

HAMMER TYPE
Unknown

[^8]The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

COHESIVE SOIL SETTLEMENT ESTIMATE

100 T bes foundations and geotechaical unit Mersey izan.

COHESIVE SOIL SETTLEMENT ESTIMATE

$10.0 T$ B8S FOUNDATIONS ANO GEOTECHNICAL UNTT

SETTEMEMT=AWHCHES
\qquad

SETHENENTEQ2 MCHES

40
So Betterthted Shehes

W

SLOPE STABILITY - END SLOPES (STATIC)

Analysis Methods Used: Bishop Simplified, Janbu Simplified
Circular Surface Type
Grid Search
Number of Slices: 25
Tolerance: 0.005
Maximum Number of Iterations: 50
Materials Properties (from top to bottom in above graphic)

Material	Strength Type	Unsaturated Unit Weight ($\mathrm{Ib} / \mathrm{ft}^{3}$)	Saturated Unit Weight ($\mathrm{l} / \mathrm{f} / \mathrm{ft}^{3}$)	Cohesion (psf)	Friction Angle (deg)	Water Surface
1	Mohr-Coulomb	120	125	390	0	Above
2				1960	0	
3				390	0	
4				0	27.5	
5				0	27.5	Below
6				0	29.5	
7				0	30.5	
8				200	0	
9				0	37.5	
10				1940	0	
11				2320	0	
12				2175	0	
-13				2570	0	

Water Table: 449.2 feet (49.1 on above graphic)

Search Grid	
96.891	59.614
102.978	59.614
102.978	65.701
96.891	65.701

SLOPE STABILITY - END SLOPES (SEISMIC)

Analysis Methods Used: Bishop Simplified, Janbu Simplified
Circular Surface Type
Grid Search
Number of Slices: 25
Tolerance: 0.005
Maximum Number of Iterations: 50

Seismic Load Coefficient (Horizontal): 0.088
Materials Properties (from top to bottom in above graphic)

Material	Strength Type	Unsaturated Unit Weight $\left(1 \mathrm{~b} / \mathrm{ft}^{3}\right)$	Saturated Unit Weight ($1 \mathrm{~b} / \mathrm{ft}^{3}$)	Cohesion (psf)	Friction Angle (deg)	Water Surface
1		120	125	390	0	Above
2				1960	0	
3				390	0	
4				0	27.5	
5				0	27.5	Below
6				0	29.5	
7	ohr-Coulomb			0	30.5	
8				200	0	
9				0	37.5	
10				1940	0	
11				2320	0	
12				2175	0	
13				2570	0	

Water Table: 449.2 feet (49.1 on above graphic)

Search Grid

$96.891 \quad 59.614$
$102.978 \quad 59.614$
$102.978 \quad 65.701$
$96.891 \quad 65.701$

SLOPE STABILITY - 3:1 SIDE SLOPES - EAST END (STATIC)

Analysis Methods Used: Bishop Simplified, Janbu Simplified
Circular Surface Type
Grid Search
Number of Slices: 25
Tolerance: 0.005
Maximum Number of Iterations: 50
Materials Properties (from top to bottom in above graphic)

Material	Strength Type	Unsaturated Unit Weight ($16 / \mathrm{ft}^{3}$)	Saturated Unit Weight ($\mathrm{lb} / \mathrm{ft}^{3}$)	Cohesion (psf)	Friction Angle (deg)	Water Surface
1a-Fill	Mohr-Coulomb	120	125	1000	0	Above
1				600	0	
2				1960	0	
3				390	0	
4				0	28.5	
5				0	28.5	Below
6				0	29.5	
7				0	30.5	
8				200	0	
9				0	37.5	
10				1940	0	
11				2320	0	
12				2175	0	
13				2570	0	

Water Table: 449.2 feet (49.1 on above graphic)

Search Grid

$29.017 \quad 73.128$
$62.970 \quad 73.128$
$62.970 \quad 107.081$
$29.017 \quad 107081$

SLOPE STABILITY - 3:1 SIDE SLOPES EAST END (SEISMIC)

Analysis Methods Used: Bishop Simplified, Janbu Simplified
Circular Surface Type
Grid Search
Number of Slices: 25
Tolerance: 0.005
Maximum Number of Iterations: 50

Seismic Load Coefficient (Horizontal): 0.088

Material	Strength Type	Unsaturated Unit Weight $\left(16 / \mathrm{ft}^{3}\right)$	Saturated Unit Weight $\left(1 \mathrm{~b} / \mathrm{ft}^{3}\right)$	Cohesion (psf)	Friction Angle (deg)	Water Surface
1a-Fill		(2)	125	1000	0	Above
1				600	0	
2				1960	0	
3				390	0	
4				0	28.5	
5				0	28.5	Below
6	r-Coulom			0	29.5	
7				0	30.5	
8				200	0	
9				0	37.5	
10				1940	0	
11				2320	0	
12				2175	0	
				2570	0	

Water Table: 449.2 feet (49.1 on above graphic)

Search Grid	
29.017	73.128
62.970	73.128
62.970	107.08%
29.017	107.081

SLOPE STABILITY - 2.5:1 SIDE SLOPES - WEST END (STATIC)

Analysis Methods Used: Bishop Simplified, Janbu Simplified
Circular Surface Type
Grid Search
Number of Slices: 25
Tolerance: 0.005
Maximum Number of iterations: 50
Materials Propertles (from top to bottom in above graphic)

Material	Strength Type	Unsaturated Unit Weight ($16 / \mathrm{ft}^{3}$)	Saturated Unit Weight ($\mathrm{lb} / \mathrm{ft}^{3}$)	Cohesion (psf)	Friction Angle (deg)	Water Surface
Fill	Mohr-Coulomb	(\%)	(125	1000	0	Above
1				1110	0	
2				2846.7	0	
3				2350	0	
4				1110	0	
5				1460	0	Below
6				490	0	
7				1040	0	
8				200	0	
9				0	32	
10				0	36.9	
11				2370	0	
12				3035	0	
13				2700	0	
14				0	50	

Water Table: 449.0 feet (44.6 on above graphic)
Search Grid

15.108	67.391
45.422	67.391
45.422	97.705
15.108	97.705

SLOPE STABILITY - 2.5:1 SIDE SLOPES - WEST END (SEISMIC)

Analysis Methods Used: Bishop Simplified, Janbu Simplified
Circular Surface Type
Grid Search
Number of Slices: 25
Tolerance: 0.005
Maximum Number of Iterations: 50

Seismic Load Coefficient (Horizontal): 0.088
Materials Properties (from top to bottom in above graphic)

Material	Strength Type	Unsaturated Unit weight ($\mathrm{b} / \mathrm{ft}{ }^{3}$)	Saturated Unit Weight ($\mathrm{lb} / \mathrm{ft}^{3}$)	$\begin{gathered} \text { Cohesion } \\ \text { (psf) } \end{gathered}$	Friction Angle (deg)	Water Surface
Fill	Mohr-Coulomb	120	125	1000	0	Above
1				1110	0	
2				2846.7	0	
3				2350	0	
4				1110	0	
5				1460	0	Below
6				490	0	
7				1040	0	
8				200	0	
9				0	32	
10				0	36.9	
11				2370	0	
12				3035	0	
13				2700	0	
-14				0	50	

Water Table: 449.0 feet (44.6 on above graphic)

Search Grid	
15.108	67.391
45.422	67.391
45.422	97.705
15.108	97.705

DRILLED SHAFT AXIAL CAPACITY… ROCK

DRILLED SHAFT AXIAL CAPACITY－․－．ROCK

SHATDIANETER MROCKE＝＝＝＝5 30RT
BRFD OHLOWABLE STRESS $===$
ESTHATEOTOP OFROCKEUEV＝ 4 WM

sceked Cont \qquad	Fom Eise． （FT）	Bay＊ Fhot． $f F t$	Unotyof． comp． Stryman （GS\％	$\begin{gathered} R O D \\ \hline \% \end{gathered}$	```Nimt %yp mpaty ar closed```	$\begin{aligned} & \text { zuray } \\ & \text { (Ration }) \end{aligned}$	A䌽的 E raduct	Cumbluma Factored Stue Resis＊ （kips）	WOT Jont Spa 婁 Gorsition Ransking （娄，2，3，4，5）	$\begin{aligned} & \text { Fock } \\ & \text { Type } \\ & \text { A } \mathrm{A}, \mathrm{c} \end{aligned}$	R事茢 aser．	Factoryd End Eear 3 in Layer Conf．Coef．（kPs）	$2 \times$ Dia Factored End Eeaning （KPS）	Controning blode of Peststance Side，End	Controing Factored Pasistarce HRS
＋23	400.6	\％ 23	3^{3}	0	acea	0.05	0－\％	12.69	\％				36	Scra	12.58
2 5	39\％sod	523	答	0	\％exer	0.55	0．350	24．98	1	4	\％	0 Ot 000 000		Sude	24．13
375	393．35	125	\％	0	opant	08	2 450	33^{25}	\％	8	14	0.01300 ant	230		33.25
560	39？ 0	＋25	\％	6	gcent	0.05	2.438	43.39	1	3	4	0.31060 ad	$3{ }^{3} 4$	Suda	43．13
\％23	39z 8 J	185	\％	\％	－6．9\％	005	0495	\＄0．4\％	，	\％	14	0.01000 bat	43	Su＊	80， 4 \％
7 sa		123	3 \％	0	cemen	0.05	0450	72.85	\％	8	4	00t 000 bal	503	Sum	72.45
375	393.36	125	1500	92	pest	2．45	070		＊	3	32		503	318e	161．43
10to	382． 10	125	56at	\％	coch	$0 \cdot 45$	0.70	250．32	$\%$	8	謁	Ot $0^{40} 603$	502	5c\％	250．42
\％25	308.85	125	550	22	いれan	0.45	1．790	33539	\％	\％	$3{ }^{2}$		3.7	3em	
1280	36\％${ }^{\text {ch }}$	428	1504	92	geath	6．43	0.770	42858	\％	8	32		251	Sta	423.35
43.8	37 a 53	5．25	1500	92	cpat	0.45	Q，TP	\％17 32	＋	5	32	904 000 anel	126	Sue	517.32
1500	3 B 10	23	1560	9	pere	0.45	0770	803．20	？	5	32	$0 \cdot 4$ a， 0^{303}	$0 \cdot 0$	sce	¢03．39

DRILLED SHAFT AXIAL CAPACITY - ROCK

SHACT DIAMCTER U RQCK	30057
	AFP

DRILLED SHAFT AXIAL CAPACITY -... ROCK

$$
\begin{aligned}
& \text { LREOMALOWAES STRESS }====\text { GMO } \\
& \text { ESTMATEDTOPOFROCKELEV } 3 P \text { HOT }
\end{aligned}
$$

DRILLED SHAFT AXIAL CAPACITY -... ROCK

$$
\begin{aligned}
& \text { ESTMATDTOPOF ROCKELEV = WQ } \mathrm{F}
\end{aligned}
$$

T	
W\%	

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

\％axemmemem	边		Navtert 9 ing
Frat matagape			8xay
478×8	13×8	3 BC	86

Whatera or Rows or puesper sussiructura ：

Stexnm ：2 53

$\begin{gathered} \text { got } \\ \text { of } \\ \text { Brgp } \end{gathered}$	LAPR	vicotw compe	$\begin{gathered} S, \vec{F} \overline{7} \\ H \end{gathered}$	OR MOCK LAFGR	Nownem muccas						Noswan acab geating （xip			Facronte AnALABES （KPS）	```ESTMATED Pa LEvaty (F)```
					3：0	Cwa gray	Torac	scet	Exoserg	ratar					
Ev. FT:	HMEK $\left\langle E^{2}\right)$		$\begin{array}{r} \text { vabig } \\ \text { Bownt } \end{array}$	zescrammon	$\begin{aligned} & \text { AहSigy } \\ & \text { wesy } \end{aligned}$	$\begin{gathered} \text { pesct } \\ \text { nuposy } \end{gathered}$	Gesist （18253	$\begin{aligned} & \text { aEsist } \\ & \text { (fysy } \end{aligned}$	REsist （x）	zasist. RPS					
435\％	2嫁	$2^{7 \%}$	\％		32		48	93		23.3	24	0	3	13	$\stackrel{3}{3}$
453 50	280	30%	$2!$		134	23	5淮鱼	13.		12.4	4	0	0	$2{ }^{2}$	3
syy	28	23	\％		＋2．3030	324	64．	號		592	5%	0	\％	30	8
449300	206	\cdots	\％		6．		35．6	3		837	\％	0	0	35	10
$4{ }^{4}+0$	303	\％	3		142	20 ：	33.5	54	． 2	387	83	0	0	35	3
44320	20	$0 \cdot 6$	ξ		43	3		± 2		35．8	58	0	0	3%	18
4480	230	0.6	\％		$3{ }^{3}$	28	$7{ }^{\text {a }}$	\＄5	．	＊＊	\％	0	0	44	\％
4380	${ }^{2}$ \％	13\％	\％		\％	14.3	73.3	84	10	5043	74	0	0	4	34
4，000	2 s	0	\％		18	28	32.4	2.4	93	TORE	98	3	0	$5 \frac{3}{3}$	23
42320	28		\％		16	96\％	1473	2.	2.	186．3	17	0	3	88	$2{ }^{2}$
43070	2 c		5		3 ？	73.5	事衰 5	83	\％	125\％	123	0	0	\％	28
42820	2 Sa		$2{ }^{2}$	406um mack	＊ 2	78.8	\＆ 3	9.	85	13s．7	37	0	a	75	$3{ }^{3}$
23， 70	250		43	4，	90	400	1883	蔀：	\％ 7	147.4	47	0	0	8	33
42320	230		2		35	935	－473	03	\％${ }^{\text {a }}$	\＄53．7	\％e4	3	0	20	碞
42070	235		5	Hatume sara	\％ 3	1s＊＊	10	27%	10，	（1）2．3	13\％	a	0	10	38
419 枹	\％		a？	Fetume canc	34	ces	151．3	4.3	72	1853	52	0	0	营	49
4570	330	20%	23		153	28.	175.7	22%	3.1	2089	17	0	0	\％	43
41370	2×0	203	\％		112	\％s	16\％	6．	40	2234	解	0	0	103	45
44070	3 ch	27	3		40 5	378	213，2	$2{ }^{2}$ 名	4.	248	243	0	$\%$	1%	48
400．50	a 20	3 c	3		48	102\％	219.3	212	3 S	2094	220	0	0	24	5.
4820	230	2%	20		132	好2	43976	$1{ }^{2} 3$	42	3173	$3!$	D	6	¢7	53
464．40	130		16	Cemacarta	3	240	$3{ }^{3}$	4＊	2＊＊	34% \％	37	\％	0	\％	5，
draso	05			crate	24.7	12a．5	2\％等受	US：	18	2923	375	0	0	26	56
w\％	14			Spara	49.4	122.5	424．3	72.3	\％3．4	205 ？	＊ 6	\％	\％	\cdots	\％
4013	－\times			Sves	4.48	122.5	4340	72.3	134	绞3 3	\％	7	\％	\％	\because
40000	－ 0			5 c	硣 3	122		723	采動	気㘳合	20．	，	＊	4＊	\％
3595	－ 6			5	44^{4}	722	572．${ }^{\text {a }}$	723	部业	67\％	$3{ }^{3}$	\％	\％	34	4：
50\％	108			shm	\％${ }^{2}$	1225	622.2	723	134	7×4 \％	\％	\％	\％	B\％	6
3760	106			3	4， 4	122 ${ }^{\text {\％}}$	$5{ }^{515}$	723	134	8感 3	$\therefore 8$	\％	\therefore	\cdots	2：
30\％ 0	＋＋6				哏衰	1225	7210	\％${ }^{3}$	13．4．		\％	\％	\because	3	\cdots
3935	10			5ams	594	122%	\％ 70.4	723	＋34	ms3	$\because 3$	\％	\％	\cdots	6 ：
29\％	16			Smiet		－25			\％ 3						

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

Smethey 2x 53

$\begin{gathered} \text { sot } \\ \text { our } \\ \text { buse } \end{gathered}$	bivera MKCK （苳	जkerne ccume 榢采	$\begin{gathered} \text { spr } \\ \text { in } \\ \text { yLuE } \\ \text { ygisway } \end{gathered}$	Derocklay cescruphen											```##*amem #*** }**ac% #```
					\％\％	Extsat	76tah	3 SE	E40 3ats．	707k					
					$\begin{array}{r} \text { ress } \\ \text { cess } \end{array}$	$\begin{gathered} \text { pas妳 } \\ \text { pory } \end{gathered}$	$\begin{aligned} & \text { acsist } \\ & \text { wrase } \end{aligned}$	$\begin{aligned} & \text { gesis } \\ & \text { masi } \end{aligned}$	$\begin{aligned} & 7=5 s_{5} \\ & \text { ings } \end{aligned}$	$\begin{aligned} & \text { aesst } \\ & \text { gest } \end{aligned}$					
$44^{4} 50$	20	3 3	23		12		443	17%		273		3	$?$	12	3
， $4+\infty$	230	235	\％		\％8	2.4	42	78\％		3\％	3	\％	0	z	\％
		\％	\％		\％	\％3	312	\＄0		4t．	48	θ	0	80	e
49802	300	143	3		12	2 c ？	491	18．4	2.2	部 2	新	3	3	2 ？	1
4×30	238	5te	8		43	5	39.3	62	？	5月6）	33	3	0	27	13
4 5370	2 m	0．4	θ		35	6考	64.4			75	65	\bigcirc	9	＊	埼
43150	220	：${ }^{3}$	\％		64	14.8	59.3	34	．	833	60	\％	0	3	18
32900	235	030	？		\bigcirc	28	780	2 ：	3	37	73	0	8	43	24
32820	2 30		8	Wadum Sard	St	\％8	1336	24	2.	＊${ }^{\text {\％}}$	5	0	8	53	23
＋23．70	200		m		3%	135	184．	3^{3}	80	104．	103	0	0	\％	28
42：20	\cdots		3	Pextum Sma	82	78.4	1695		bs	115.5	116	8	0	部	28
4870	\％5		8 y	Sacker cant	9.0	90	1854	18	107	126．3	120	0	6	69	\％
4 40， 20	2 3		\％	\％athum sum	57	735	2335	5	80	142．5	143	8	0	\％	3
41370	250		\％	Mabum Saxt	183	5470	\％18	27．	14，	165．5	161	3	0	89	35
41200	\％		\％	Whisums Eand	3	令：	1072	4	12	特䞨2	4y	\％	0	\％	3年
40370	300	26	34		153	234	1513	2.7	$3{ }^{3}$	1459	161	0	0	83	4
We 70	30	2 骂	32		8		172．9	4.4	43	कृ ${ }^{\frac{5}{3}}$	178	0	3	35	43
50	30	2 ＂	s			8	tose	248	4	22\％\％	19	0	0	109	－${ }^{3}$
40500	20	cus	y		45	453	20\％	28	31	24.35	305	0	0	113	48
39420	204	$2 \geqslant 7$	20		132	382	4232	193	42	230.3	290	\％	0	\％\％	30
393 40	（0）		\％o		333	2400	3505		$2 ¢ 3$	225．8	$3{ }^{3}$	0	－	178	52
	03			S\％	3	1225	$3{ }^{3} 7$	Ss．\}	534	3618	泠！	0	0		82 3
2650	\％			tras	493	122.	410.5	723	134	＋3， 30	410	0	6	2 L	538
39430	\％			5 c	tes	122	459.3	32.3	\％34	S大き 3	\％		3	\cdots	38.
3as 3	： 0				404：		589	72	4	$5{ }^{5}$	\％\％	3	a	A	9\％\％
39200	\％				49 4	1228	S幏禹	723	13.	650．8	\cdots	\％	＂	＊＂	\％
391.38	10			son	49，	122．	\％ate	P3	334	7236	3	\％	d	\％	Br
39000	0			\％	49，4	1225	357.2	723		795	3		\because	\％	285
20앙ㅇㅇ	\cdots				424		7048	\％2．	13		\because		\％	\cdots	4．
$\begin{aligned} & 5 \sec \\ & 3 \pi y \end{aligned}$	\％			$\sin x$	494	122．		72%	$\begin{aligned} & 16.4 \\ & 13 \end{aligned}$	609	36	\％		csa	\％
	\％${ }^{\text {a }}$			spen											

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

4

418×8	4 岢 4，	23 k	57

？

$\begin{gathered} \text { bet } \\ \text { ove } \\ \text { LyER } \end{gathered}$	घsVER F4ck 147	 \＄r 	$\begin{gathered} s p r \\ \text { if } \\ \text { YALuE } \\ \text { geconsi } \end{gathered}$	b＊Focklaven DEscamon	Newhil Pevoces										```FH2 LE*GTM (FT)```
					30\％	ENO 3R\％	Thtac	Sios	ENO 2 KG	70742					
Evy					atsist Mress	$\begin{aligned} & \text { mess } \\ & \text { robsy? } \end{aligned}$	$\begin{aligned} & \text { Hesist. } \\ & \text { Hepsy } \end{aligned}$	$\begin{aligned} & \text { pasist. } \\ & \text { resesp } \end{aligned}$	$\begin{gathered} \text { acses } \\ 4 \cos 9 \end{gathered}$	$\begin{aligned} & \text { rasest } \\ & \text { gese } \end{aligned}$					
	Sm	3	3		31		43.9	33		14.1		3	．	8	7
4，40 6	260	0 时	3		愛	ab	23	5 5		12.3	25	0	0^{3}	\％	\％
$4{ }^{4} 5$	25	S	\％		4	5%	22.3	12	\％	25 5	22	e	0	4	8
4356		cs	s		23	5	23.9	3.		31.3	29	0	0	5	\％
4325	2 O	As	＊3		42	78	35.0	\％	\％	37	3䍃	σ	0	19	\％
430.10	2.10	08	？		\＄3	80.3	37.5			－445	38	0	θ	29	紫
4273	2 x ¢	6 蔟	4		4.4	7＊	35.3	64		50.5	37	0	0	20	22
425	25		\％	Fine Sand	02	2.4	10\％	0.	0.3	\＄3．5	st	0	0	32	25
42 c 3	250		3	Fras Esw	5	73.5	3	15	30	84.3	88	0	0	3	2
42016	246		α	Fresem	42	537	\％\％ 9	82	3	84	74	0	0	4	23
41750	2 Sc		38	Waxdy cara	12.6	93.1	130． 4	190	ta 2	91.2	91	\％	0	50	媇
4\％${ }^{\text {a }}$	250		3	3xackamd	36	735	236	\％\％	80	3012	101	0	0	3	35
41250	256		24	Sandy craver	57	532	1382	83	65	700．	110	0	0	81	37
41010	3 y		袗	3maty cran	S ${ }^{\text {\％}}$	33.7	115	85	15	U58	112	0	0	6 6	33
40850	200	$2{ }^{26}$	\％		440	－356	124.2	20\％	38	？ 0	124	0	0	53	42
40810		2.44	w		12.6	33．	57 1	28．4．	$t ?$	136．3	159	0	8	3	4
4025	200	38	z		182	539	153.7	2 k \％	5.9	8824	154	0	6	35	4
400 10	248	$2{ }^{2}$	so		125	＋13	151.0	7	34	188.4	15	0	0	8	43
39750	280	120	3		5\％	138	172． 0	124	13	2\％2	\％	0	5	25	s2
3解19	$\underline{2}$	$2 *$	28		118	29.	2×59	\％St	32	233，	23\％	0	6	32	54
394 to	\cdots			5ame	436	1225	3293	723	134	3014	3\％	0	－	17	354
39510	0			\＄tes		122 ${ }^{\text {a }}$	3t\％ 7	72		3e3	376	0	6	207	54
292 䉼	\％			crata	48	28．3	62．0．f	\％	134	483\％	\pm	8	\％	3	51
38510	300				4 c	1225	174.3	72.3	434	5，	4	\％	\because	m：	\％：
30016	15			कhaty	3 m 4	1223	323\％	723	13．4	5004	\pm	d	\％	\％	8
38910	0			8\％	493	1265	3ras	72.3	44	कt2	\％	，	a	\cdots	\cdots
38319	\％			Sratue	483	120.5	8727	72.3	13．${ }^{\text {a }}$	74	\％	γ	\％	\cdots	3：3
3 c 710	－a			smat	496	1225	572.2	72.3	德4	3tt	48	\therefore	\％	$3 \times$	\％
3ate	108			Ens	454	1225	721＊	723	134	8xa 4	\cdots	：	\cdots	3：	\％\％
38510	－ 0				434	122.5	7\％） 0	723	43.4	淬！ 5	\cdots	\％	$*$	$\cdots 3$	45
	\％			3 ym	494	1225	预感年	72	33.4	503\％	4	a	\％	\％	\％．
38310	：			Smat		1225			134						

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

Staky

 	ponasyayyby	Thantum zorman 	2rastavgncysy
4\% ${ }^{3}$	W13 x ${ }^{\text {a }}$	226×175	58

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

3

scertp 12x．3s

478	4 W kP	230 am	－773：

$\begin{gathered} \text { gor } \\ \text { or } \\ \text { them } \end{gathered}$	$\begin{aligned} & \text { GYyer } \\ & \text { Then } \\ & \text { ETH } \end{aligned}$			batock drat 							NCOKAR REOO gracka Mes3）	frerorebasorechLoss fantscounormRus			
					3．0E	Exceaga	retar	3\％8	2alsasa	7074t					
zyev.					$\begin{aligned} & \text { sesbr } \\ & \text { krssi } \end{aligned}$	$\begin{gathered} \text { Rasov, } \\ \text { gys } \end{gathered}$	$\begin{aligned} & \text { azsayt } \\ & \text { (Mes) } \end{aligned}$	AEs澺? ar	yesist 	aesst mest					
4， 3 2	9.00	\％${ }^{3}$	$\stackrel{3}{ }$		163		17	53		16.5	4	知	＝	7－1	－
W47， 0	2 ± 0	0	4		4.8	72	䦠等	53		221	\％	0	0	\％	30
${ }^{3}$		35	\％		36	45	新化	\％		73 3	$2:$	3	\bigcirc	2	20
，\％300	250	020	＊		E；	38	478	3.1	04	31.5	32	0	0	\％	\％
4280		20	40		ti	2 C .4	53.6	482	\％		43	a	0	25	？
48000	200	\％	\％		10 \％	22.5	53.7		33	823	30	θ	0	5	20
426．40	要多	： 0.8	\approx		20	14.3	73.3	$1{ }^{3} 8$		3	\％	0	b	62	4
423．30	\％			Wegum sate	，	2ats	1215		27	84.3	85	0	0	47	25
42250	248		－	Hadem send	3.6	\％act	1781	＋3		91.3	9	0	d	50	23
320．6	29		25	Satcy Crame	50	8%	1427	35	需	30\％ 9	102	5	0	58	30
St7\％ 60	2 5＊		3	Scmercray	89	$7{ }^{4}$	279 \％	13.	ds	122， 2	123	\％	0	\％	32
$4 * 500$	$2 \pm$		z	Sandy	224	$10^{4} 7$	132	47.4	䍃	1800	53	a	0	85	33
4250	25	3 3	s		的	47	新产		\％ 2	1818	\％	－	a	84	37
40850	3	2．${ }^{\text {\％}}$	涘		50	313	132.4	220	34	202：	52	0	0	34	8
40760	2 s	\％	3		7	－53	173．3	152	1.7	273\％	\％z	，	0	3	43
4 cay	z 5	24	\％		t3．1	33，	f963	182	37	2345	28	0	0	105	4
42 Cb	250	$2{ }^{2} 8$	13		432	318	260.6	123	35	254.4	211	9	\％	16	48
30\％ 50	205	23%	\％		\％	396	21＊）	2\％ 5	43	2ran	212	θ	3	15	50
\＄97．60	：\％	嗉	\％		7	250	2352	124	23	265 a	225	a	\％	129	52
39458	3 So	$z^{2} 82$	5		\％	33.3	253．3	2 ± 0	36	315	243	0	0	18．	新
36264	2 z	238	4		123	32.4	23t．3	197	35	329.3	258	0	3	189	53
36050	25	$8{ }^{2}$	10			23.4	273．3	172	3 ＊	3685	2 B	0	3	15	co
3870	290	2 \％	\％		4	203	874.5	23.	42		27\％	0	0	位	詨
365.40	\％	\％	14		6 \％	29	V7．3	0．	27	377	2\％	a	0	［5］	年
38250	\％ 3 年	\％	8		\％		27ay	12e	23	355	280	0	O	\％${ }^{\text {a }}$	at
		0%			7	18 \％	398.1	103	18	820	385	6	0	2%	89
373．40	＋6			803＊	454	22 5	4．46	723	73．4．	$4{ }^{4} 4$	$\square 6$	8	\％	$\therefore \therefore$	\％
37346 $3 \% 40$	109				4	22．	4\％ 5	「さ3	fend	50\％	04	\because	\％	\％	\because \％
3 yc a	0				182. 488	22.5	2483	\％	734	\％23	4	\cdots	\therefore	$\therefore 2$	\because ：
37548	－\％			\％－3	20	\％23	5 52\％	$\begin{array}{r}72 \\ -8 \\ \hline\end{array}$	134	720	\cdots	\％	\％	\％	as．
$37+40$	：03			8＊	$4{ }^{4}$	125	593．6	－ 3	\％36	＋73	8	－	\％	＊	\cdots
$33^{3} 40$	1.08			$3 \rightarrow$ a	48	＋2． 5		\％${ }^{\text {\％S }}$	\％3\％	3178	\％	\％	\％	\cdots	\％
3×2.4	$1 \times$			cras		122.5			\％	3%	－	\％	＊	w．	\％

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

MECUTCFEEVU

$\begin{gathered} 3 \% \\ \text { OF } \\ \text { ish } \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { LYY } \\ \text { THCK } \end{array} \\ & \text { FFY } \end{aligned}$	UHEOMF ccume （ ${ }^{5}$ 音）		genvelan ncscaprow	Wowtiat mbacce						$\begin{gathered} \text { veswink } \\ \text { Getana } \\ \text { spg } \end{gathered}$				
					\＄1．0\％	6a\％ang	Terat	310\％	EMD SRa，	Tat4					
$\frac{E}{H K}$					＜＜\％		resme （kys）	$\begin{gathered} \text { amsis } \\ \text { moss } \end{gathered}$	$\begin{aligned} & \operatorname{acsis} \\ & \operatorname{asp} \end{aligned}$	aspory NFTM					
SFE\％	3	13	12		7 \％		$3{ }^{3}$	103		137	，	4	\％	4	3
446%	250	23	$\%$		江等	31．3	$5{ }^{5}$	垎高	S	32.4	32	4	\％	\％	5
seate	令殓	$2{ }^{2}$	4		134	36	\％${ }^{2}$	䱏类	\％	3 3	骂	6	\％	25	\％
840.70	23	2×3	3		130	332	7 7\％	\％s．	8	71\％	78	4	0	25	\％
3se 20	235	135	8		？ 4	2言口	71.4	：	\＆	－ 3	7	4	3	33	\％
5\％\％ 10	238	104	8		\％3	143	\％\％ 6	30	3	\％ 5	78	4	0	33	\％
236．50		10 \％	5		古 4	483	73．1	3.4	18	\％类	13	4	\％	$3{ }^{4}$	18
430.72	236		\％	\％edury	02	24	92.8	03	3	10，	33	4	0	4	20
42323	23		3	Famy ersum	2．	220	16	30	4	712．${ }^{\text {\％}}$	14	4	0	59	效
425．72	2×3		2＊	Baxdy 6mum	g3	S3 \％	123	32	3	1230	25	4	\％	ss	25
203．20	23		3	Smathenat	100	83．3	173.3	146	\％	M3）	126	S	0	09	23
420.70	253	253	3		133	382	423．3	202	40	敉？	124	4	0	＊	30
49.28	259	130	2		9		1503	\％3	23	563	（3）	4	0	\％	33^{3}
$4: 40$	28	257	24		14.3	30．2	1834	2：0	42	结高，	183	4	0	30	33^{3}
\＄1320	2 cos	203	20		13\％	364	1660	203	40	ze？	485	4	\％	5	38
410.76	233	183	4		109	$25:$	＋ 15	8	2.7	285	188	4	$\%$	53	40
wat 20	20	25	5				1705	483	38	2420	17	4	0	30	$4{ }_{4}$
＋6540	230	033	2			54	1935	45	0	$2{ }^{2} 40$	15	4	o	104	45
40820	25	1930	\％		155	27.4	2142	103	36	2085	274	4	0	11.4	$4{ }^{4}$
war 76	253	209	30		13 \％	345	2ata	3 5	亨	2致	203	4	θ	\％	50
306．39		259	3		134	345	240.1	19\％	3 B	3063	240	4	0	126	33
3 ck 70	230	$2 * 4$	1		H2，	30.3	2：0．3	182	3 3	3\％34	2×6	4	\％	12 z	3
984．00	0	158	\％			20 ？	25＊2	3	2.3	$3{ }^{3} 3$	251	4	0	13.4	57
3 zat 50	35%	4 c	\％		Tos	25．	磷 2	3要	2 ${ }^{\text {c }}$	$3{ }^{3} 32$	20	4	0	＋6\％	50
306 ${ }^{\text {a }}$	20s		35	Saty	\＄8	382	365．4	87	48	3093	3 B	\％	0	＋	c_{2}
3em	－\％				304	$1{ }^{2} 5$	414．3	23	30.	Ancy	$4: 5$	4	0	223	83
3er 0	－				49.4	1225		723	＋3．4	E\％\％	46	＊	\％	\％ c	\％
30\％${ }^{3}$	： 0			\％	殓年	1223	513．7	\％23	134	585［	3	＂	3	\therefore	\％
30500	：\％			2\％	594040	1225		\％23	綰4	35t\％	31	3	\therefore	\％	\cdots
3atso	\％${ }^{2}$			5	${ }^{2} \times 4$	1225	\％faty	723	＊\％	720\％	\because	＊	：＂	）	\％
3×3	\％ 0				364	3225	35\％	123	3 ${ }^{4}$	ghe：	No．	\because	＂	（x）	4
32\％	\％			coma	898	22\％	71.8	728	123	3044	\because	；	8	\because	\cdots
	\because			Susay	＋6．4	1283	H60．	\％\％	3 s	\％里妥	\％	：	＊	： 3	\cdots
soma	\％			\％\％${ }^{\text {a }}$		1225			935						

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

WUABER OF TCNS GF phesper Susstrueture ：

$\begin{gathered} \text { at } \\ \text { W\% } \\ \text { AYGR } \end{gathered}$		WHob？ ce䋨多									Wexatal 950 P EEAR＊： Mrs）	FACPRza GE\％HEMA Loss fros sacua or 00 1548）		CESSTHACE （APS）	```P3, &aNGTH (F)```
					she	Cateray	FOTAL	30\％	Fthomat	7074					
$\frac{E L E}{F T}$	$\begin{aligned} & \text { HCX } \\ & \text { FT, } \end{aligned}$	shaswat 	vane		FまらE Kcos	azsst	$\begin{aligned} & \text { nesis! } \\ & \text { wey } \end{aligned}$	（6） 5	$\begin{aligned} & \text { Acsust } \\ & \operatorname{sip}+1 \end{aligned}$	$\begin{aligned} & \text { quster. } \\ & \text { fincty } \end{aligned}$					
44520	\％${ }^{3}$	\％	\％		3%		\％15	73		P	－9	3	0	$\stackrel{2}{4}$	$\stackrel{3}{ }$
445	25		\％		$5{ }^{5}$	125	\％e6	\％			18	3	0	？	＊
A4\％ 76	300	80	5		5.4	\％${ }^{\text {\％}}$	23．3	78		\＄22	23	3	0	\％	8
44020	2 az	0 Ca	4		z3	40	24.5	3.4	．	20.7	$2{ }^{2}$	3	0	\because	3
4377	758	93	\＆		$8 *$	54	33.5	45		358	彦	3	θ	等	$1{ }^{1}$
	2＊＊	08	＊		3 ${ }^{3}$	H2	39.4	83		428	3	3	0	8	18
432.6	2×6	881	＊		\＄9	12	4%	\％${ }^{4}$		507	42	3	0	20	13
43020	250	059	3		42	\％	47.7	62	0.8	3.3	43	3	0	24	21
427.7	2.0	008	2		3.	9.4	47.4	－ 4	3	cats	al	3	0	23	23
423 20	3 ${ }^{3}$	025	z		23	43	\％${ }^{2} .3$	34	．	b7．	50	3	\％	25	28
$42 \cdot 05$	3 ${ }^{\text {c }}$	0 处	2		3	5 5	88.4	5.	0.3	78.3	73	3	\square	39	23
42023	＋\％		\％	Smatraxe	2.5	322	1253	2.7	43	83． 7		3	－	43	31
49\％ 78	254		\％	Sumat cras	80	735	73.4	13%	80	895	79	3	0	4 ${ }^{4}$	$3{ }^{3}$
414	300	－14	呤		12.2	\％	210	1^{3}	22	167	6	3	0	81	37
$412+9$	200	18.3	\％		3	25 ？	1013	12	2.7	120.	105	3	0	53	38
41020	2 20	150	\％		z．＊	20.	109.3	123	2.3	12.4	19	3	9	39	\％
w6\％ 70	2.36	：54	4		95	29	112.5	138	23	1．53	换	3	0	碞	43
4020	28	43	\％		33	7	131．5	12.2	19	168．9	\％2	3	0	10	48
46x 70	275	\％ 3	\％ 3		10.7	23	158．4	15.	27	1784	86	3	0	8.	43
40020	230	2：4	40		150	40 5	753．3	239	4.4	isy	\％e？	3	0	38	5
99\％ 70	250	2∞	20		1	24		172	${ }^{3}$	2135	\％	3	0	38	8s
3585	$2 \leq 8$	：	\because		\％	22.3		14.3	28	27\％	68	3	0	ag	5
9xa 7	200	905	\％		，	1%	\％ry，	93	13	23日	172	3	0	92	5 s
393%	5.0	\％	\because		！	112	2333	104	12	2\％6，	257	3	0	$3{ }^{3}$	5
3sto	2.06		4	ames	13：	105	3285	荗要	115	\％76		3	0	150	83
3，	\％			Enas．	294	122.3		723	结年	3数3	380	3	0	\％ 0	$2{ }^{2}$
3 c 50	\％ 0			8	498	823	502．3	723		425	402	3	0	2＊9	553
38473	－mo				48， 4	22\％ 5	59\％．7	72	\％为	434．3	42	\％	＊	2\％	\％ 3
3630	： 0			ceme	检 4	taz 5	\＄91．2	723	84	发？	＂：	\％	\therefore	203	38
38270	180				酤 ${ }^{\text {a }}$	\％2． 2.5	\＄30．s	72	134	3， 3	5 \％	\％	\％	$2 \times$	18．
	100			3．3	紽缶	12.5	scous	723	834	1ヶ\％	\cdots	3	\％	＜	\cdots
3eny	1 mo			\％${ }^{\text {a }}$ ，	494	22］ 5		Y23	\％ 5	7ces	3	＊	\％	\％	\because
3780	06			2xax	$4{ }^{4} 8$	228．	＊${ }^{\text {\％\％}}$ ，	123	\％ 3	名感：	0	3	\％	48	$\therefore 3$
378	＋\％			59，	498	\％28	T3．${ }^{\text {che }}$	＋23		30\％	\％$\%$	\％	，	\％	\％
3776	\％6			Smas		22\％			13，${ }^{1}$						

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

4xamsoracer

	haxamum ramm 	Hanmur Mexary	
4 4	\％\％803	2364	83 7

3

Stemin $2 \times 2 \times 3$

	ByGz THCN解	 Costate 63		genavider CR POCKLAYER sescaphos				HO＊mat UNPUNT			NCHMath 5Eat Mry				
					368	Eworac	Totat	312	Evo eas	70742					
Es,					$\begin{aligned} & \text { acsist. } \\ & \text { sobst } \end{aligned}$	$\begin{aligned} & \text { mescris } \\ & \text { neps } \end{aligned}$	$\begin{array}{r} \text { azest } \\ +\cos 5 \\ \hline \end{array}$		$\begin{aligned} & \text { wesist } \\ & \text { (Gys) } \end{aligned}$	$\begin{aligned} & \text { agest. } \\ & \text { seres } \end{aligned}$					
4830	8	－${ }^{\text {a }}$	\％		04		2.8	06		89		0	\bigcirc	0	3
3060］	283	203	2		73	$2{ }^{2}$	है 3	18		3.1	3	ρ	0	2	3
家造17	z ${ }^{\text {\％}}$	0\％	3		23	$4{ }^{5}$	\％${ }_{6}$	38		\％	7	0	0	4	8
40560	25	cos	3		34	32	18.3	49		\％	\％	0	\％	5	\％
832．46	325	025	＊		2.7	3	268	39	4	170	17	0	0	\％	\％
480	＋63	1.9	4		3%		75.3	8	0	30．	30	0	0	17	$\%$
423．10	2.53		23	Cume comse Sama	48	5＊＊	178	70	3.4	41.3	$4{ }^{4}$	0	0	23	\％
425 ${ }^{\text {cha }}$	25		40	人mationsye	136	酸克	12 \％ 3	203	0	51．＊	51	5	0	34	20
428．90	258		39	Samay \＄ave	123	93.	1843	93	102	34.2	84	\％	0	48	25
＋20．60	250		58	sandy crava	237	1382	2084	420	560	125．	125	5	0	6曻	25
40．60	200		52		250	1274	127.3	356	123	9583	127	0	0	10	28
40350	250	\％${ }^{3}$	40		12	28.2	4343	㹉3	23	168.5	15	\％	0	7	\％
1030	25	\％	A		10%	22.3	\％43．4	－48	2 z	10，	40	0	0	7	33
4060		138	00		8.7	93	182.3	128	20	＋934	182	0	0	醇	35
$48 \leqslant 10$	23	288	20		12 응	34.4	164.5	1984	34	212.1	185	8	0	91	38
505 5	280	53	4		97	215	\％85 5	：4，	2.3	228	18	5	0	103	40
	2xo	z 42	23		\％	333	189%	13%	\％	2．55．3	100	0	0	104	43
wose	200	\％	0		104	2×4	200.4	182	2＊	200.8	200	0	0	110	45
39\％．10	200	3	：0		105	23	207\％	35	28	2759	200	8	3	14\％	4a
363.40	＋10	5	3		5	20.	$3: 6$	95	23	2965	23	0	0	園言	50
	56			8nay	498	122．	2185．5	723	154	3687	30 \％	\％	a	20.	506
354.45	100			5）${ }^{\text {a }}$ \％	34	122.3	414.9	72.8	［3－4	41.0	4\％	0	0	2 L	516
3ccest	－${ }^{\text {a }}$			asas	694	1285	484	723	标客	3032	\％	4	\therefore	\％	68
3×240	\cdots			33	208	1285	3t＊．7	723			$\therefore 4$	\％		\％	
3945	S				494	128	S6．3	72	198	337	82	\because	a	\cdots	38
35046	\％			53＊	4 c	222.5	\＄12．${ }^{5}$	23.3	12.8	750	8	\％	a	\％r	S 4
3ax 0	16			san	484	1223	6＊38	72	3，	B2\％	W2	3	a	\％	88
sag 40	0			5ns	49.4	1224	71／4	20	154	8743	\because	\because	\cdots	\％	83
3e\％＋6	10			F7ak	393	1225	730．8	723	368	3ै30．	\cdots	\％	\because	4%	88
36840	：6s					：22．5			13						

IDOT Static METHOD OF ESTIMATING PILE LENGTH

GROUND SURFMEELV MGANET PLEDURINGOR 4500 है

 Numet of ROWS OF plesper Substructure
35%

Stestre 4253

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

CEOTECHCHLLOSS TYPE Wona. Sova hnue DO None

 	Whatwh Nomo 	参参 	
418	418×8	230 mas	

Wumarr Of ROWS of pres per Susgructure :

Hutchison Engineering, Inc.

Since 1945
Jacksonville • Shorewood • Peoria

To: Files job No. 3515
From: Jim Hamilon

Subject: FAP 793 (IL 143) over Shoal Creek
Bond County
SN003-0062
P-98-011-13
PTB 169/035

SUBSTRUCTURE LOADING SGR REPORT

Based on the approved BCR and the approved Hydraulic Report, the existing bridge carrying il 143 over Shoal Creek will be replaced with a new structure. Traffic will be detoured during the construction. The estimated structure length is $1352^{\prime}-0^{\prime \prime}$ back to back abutments and $35^{\prime \prime}-2^{\prime \prime}$ out to out deck with 0 degree skew. The superstructure will be a nine span continuous steel plate girder ($54^{\prime \prime}$ web) and $8^{\prime \prime}$ slab with spans of $130^{\prime}-155^{\prime}-155^{\prime}-155^{\prime}-155^{\prime}-155^{\prime}-155^{\prime}-155^{\prime}-130^{\prime}$. The design loading is $\mathrm{HL}-93$ with 50 psf for future wearing surface. Bridge length and span lengths are subject to refinement during the final TSL preparation.

The substructure loadings are factored using LRFD. Maximum load factors are applied. The estimated dead load of the abutments, piers and approach slab are included in the calculated loadings.

The abutments are pile supported stub abutments. Piers 1, 2, 3, 4 and 6 are encased pile bent piers, and piers 5,7 and 8 are solid wall piers with cap and pile supported footing.

[^0]:

[^1]:

[^2]: The Uncomined Compressive Strength (UCS) Falure Mode is indicated by (E-sulge, S. Shear, Ppenerrometer)

[^3]: The Unconthed Gompressive Strength (ucs) Fallure Mode is indicated by (B-Eulge, S-Shear, P.Penetrometer)

[^4]: The Unconfined Comprassive Strength (UCS) Failure Mode is indicated by (E-Buge, Sheat, P. Penetrometer) The SPT (W value) ts the sum of the last two blow values in each sampling zone (AMSHTO Thoo)

[^5]: The Unconfined Compressive Strangth (UCS) Faitur Mode is indicated by (B-Eulge, S. Shear, P. Panetrometer) The SPT (N value) is the sum of the last two bow values in each samplng zone (AASHTO T200)

[^6]: The Unconfined Compressite Strength (UCS) Fahue Mode is indicated by (B-Buige, S-Shear, P-Penetrometer)

[^7]:

[^8]: The Uncontined Compressive Strength (UCS) Falure Mode is indicated by (B-Buige, S-Shear, P.Penetrometer)

