STRUCTURE GEOTECHNICAL REPORT

Interstate 80 Bridge over FAU Route 354 (Richards Street) Station 730+57.48, Section 2013-008B IDOT Job Number D-91-061-09 (PTB 152, Item 004) Proposed SN 099-0900 (EB) & SN 099-0901 (WB) Existing SN 099-0064 (EB) & SN 099-0065 (WB) Joliet, Will County, Illinois

Submitted to:

HBP Illinois Partners, JV c/o HNTB One South Wacker Drive Suite 900 Chicago, Illinois 60606

Prepared by:

Geo Services, Inc. 805 Amherst Court Suite 204 Naperville, Illinois 60565 (630) 305-9186

GSI Job No. 13125

October 3, 2014

Revised: October 3, 2014 September 22, 2014 April 30, 2014

HBP Illinois Partners, JV c/o HNTB One South Wacker Drive, Suite 900 Chicago, Illinois 60606

Attn: Mr. Bob Tessiatore, P.E., S.E. Patrick Engineering

Job No. 13125

Re: Structure Geotechnical Report Interstate 80 Bridge over FAU Route 354 (Richards Street) Station 730+57.48, 2013-008B, Existing SN 099-0064 (EB) and 099-0065 (WB) Proposed SN 099-0900 (EB) and 099-0901 (WB) Joliet, Will County, Illinois IDOT Job Number: D-91-061-09 (PTB 152, Item 004)

Dear Mr. Tessiatore:

The following report presents the geotechnical analysis and recommendations for the reconstruction and widening of the existing bridge structures carrying Interstate 80 Bridge over Richards Street. A total of eight (8) structural soil borings (BSB-25 through BSB-32) were completed. Copies of these boring logs, along with plan and profiles are included in this report.

If there are any questions regarding the information submitted herein, please do not hesitate to contact us.

Very truly yours,

GEO SERVICES, Inc.

Richard Realeza Staff Engineer richard@geoservicesinc.net

h Kt.

Andrew J. Ptak, P.E. Office Manager drew@geoservicesinc.net

enc.

TABLE OF CONTENTS

SECTION 01: INTRODUCTION2
SECTION 02: PROJECT DESCRIPTION2
SECTION 03: SUBSURFACE INVESTIGATION PROCEDURES
SECTION 04: LAB TESTING PROGRAM3
SECTION 05: SUBSURFACE CONDITIONS4
SECTION 06: WATER TABLE CONDITIONS5
<u>SECTION 07: ANALYSIS5</u>
Mining Activity5
Site Seismic Parameters6
Settlement6
Slope Stability6
SECTION 08: RECOMMENDATIONS7
Foundation Recommendations7
Shallow Spread Footing Recommendations7
Straight-Shaft Rock-Socketed Caissons Recommendations
(West Abutment portion of the proposed bridges only)
Approach Slab Recommendations9
SECTION 09: GENERAL CONSTRUCTION CONSIDERATIONS
SECTION 10: GENERAL QUALIFICATIONS11

APPENDIX A – General Notes

APPENDIX B – Site Location Map

APPENDIX C – Soil Boring Plan APPENDIX D – Boring and Rock Core Logs

APPENDIX E – Lab Testing Data

SECTION 01: INTRODUCTION

This report presents the results of the geotechnical investigation for the bridge widening of the Interstate 80 Bridge over Richards Street Project, IDOT Job Number: D-91-061-09 (PTB 152, Item 004). The results of the eight (8) structure borings (BSB-25 through BSB-32) completed by Geo Services, along with plan and profile drawings, are included with this report.

Boring locations were selected by Geo Services, Inc. and were reviewed and approved by HBP Illinois Partners, JV and the Illinois Department of Transportation (IDOT). Boring locations were located in the field by Geo Services, Inc. (GSI) personnel after review of accessibility and utility locations. Estimated elevations of the as-drilled borings were taken from the topographic and cross-section drawings provided by HBP. The asdrilled locations for the borings are shown on the Boring Location Diagram found in Appendix C section of the report.

This report includes a description of subsurface conditions, location diagram, profiles and boring logs, as well as recommendations pertaining to the design and construction of the new bridge foundations, earth embankment, and general construction considerations for the site.

SECTION 02: PROJECT DESCRIPTION

The existing bridges (SN 099-0064 EB and SN 099-0065 WB) were built in 1963 and were repaired in 1990, 1998, and 2001. The existing dual bridges each consist of three simple spans measuring approximately 166 feet from back to back of abutments. Out to out deck width of the existing bridges is approximately 36 feet at 8°-36'-00" left forward skew that is supported by two exterior W36 beams and four interior W30 beams at the end spans, and six W36 beams at the middle span. The spans are supported on concrete stub abutments bearing on bedrock, and piers and wingwalls are founded on spread footings bearing on bedrock.

It is intended to remove and replace the entire bridge superstructure. The existing bridges are proposed to be widened at each side of the median and outer lanes/shoulders to approximately 13 feet for the eastbound structure (SN 099-0064) and westbound structure (SN 099-0065). Based on the TSL drawings, no wingwalls are proposed. The approximate bottom of bearing elevations are shown in Table 4 of the report.

Based on the foundation loads provided by HBP, the total -æst@{ |^å loads at the top of foundation are shown on the following Table 1 - Ò•æ] æsta Factored Loads for the Bridge Substructures:

Table 1 – Estimated Factored Loads for the Bridge Substructures

	Factored Loads (kips)
West Abutment	1,460
Pier 1	3,430
Pier 2	3,430
East Abutment	1,460

SECTION 03: SUBSURFACE INVESTIGATION PROCEDURES

The borings were performed during the months of October and November, 2013, with a truck-mounted drilling rig. Borings performed near the abutments (BSB-25, BSB-26, BSB-31, and BSB-32) were advanced by means of hollow stem augers and continued with rotary drilling techniques. The remainder of the borings (BSB-27 thru BSB-30) were performed below the bridge abutments along Richards Street using hollow stem augers and continued with rotary drilling techniques. Representative soil samples were obtained employing split spoon sampling procedures in accordance with AASHTO Method T-206. Bedrock cores were obtained in the bridge structure borings using an NX-size double tube core barrel with a diamond impregnated bit. Samples obtained in the field were returned to our laboratory for further examination and testing.

Split spoon sampling involves driving a 2.0-inch outside diameter split-barrel sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. Blow counts are recorded at 6" intervals and the blow counts are shown on the boring logs. The number of blows required to advance the sampler the last 12 inches is termed the Standard Penetration Resistance (N). The N value is an indication of the relative density of the soil.

SECTION 04: LAB TESTING PROGRAM

The test procedures were performed in accordance with test procedures discussed in the IDOT Geotechnical Manual. All split-spoon samples obtained from the drilling operation were visually classified in the field. Cohesive samples were tested for unconfined compressive strength using an IDOT modified RIMAC test device and/or calibrated penetrometer in the field. The soil testing program included performing water content, density and either unconfined compression and/or calibrated penetrometer tests on the cohesive samples recovered. Water content tests were performed on the non-cohesive samples recovered. These tests were performed upon representative portions of the samples obtained in the field. In addition, unconfined compressive testing was performed on rock cores obtained from the field and are indicated on the rock core logs.

The results of the above testing, along with a visual classification of the material based upon both the Illinois textural classification and the AASHTO Soil Classification System, are indicated on the boring logs.

SECTION 05: SUBSURFACE CONDITIONS

Boring logs can be found in Appendix C. The stratification lines shown on the boring logs represent the approximate boundary between soil types, and the actual transition may be gradual.

Surface conditions at the boring locations along the roadway or shoulder areas of Interstate 80 varied from existing asphalt and/or concrete pavement to crushed stone to underlying mixed topsoil, stiff to very stiff clay loam, and dense to very dense sand, gravel and crushed stone fill materials (ranging from 5 to 16 feet deep) for borings performed at the existing abutments, At the median area of Interstate 80 where borings BSB-31 and BSB-32 were drilled, surficial soils consisted of topsoil and stone fill to depths of approximately 1 to 3 feet. A stratum of very stiff clay loam was encountered beneath the fill materials at borings BSB-31 and BSB-32 to varying depths at approximately 6 feet below ground surface.

Surface conditions at boring locations along the roadway or shoulder areas of Richards Street (below the existing bridge abutments) consisted of 4 to 12 inches of concrete underlain by fill materials consisting of very dense sand, gravel, crushed stone and fractured rock, and stiff clay loam soils (ranging from 1 to 4 feet deep).

The stiff clay loam fill soils had moisture contents within the range of 14% to 23% with an average of 18%. The dense to very dense granular fill soils had moisture contents within the range of 1% to 14% with an average of 6%.

Below the surface and fill materials, shallow bedrock was encountered at depths ranging from 1 to 16 feet below ground surface. The rock cores obtained indicated Silurian System, Niagaran Dolomite. A summary of the bedrock information obtained during our exploration is tabulated in Table 2.

Boring	Station	Offset	Top of Bedrock Elevation (feet)	RQD	Compressive Strength (tsf)
BSB-25	Sta. 729+67	42.6' Left	538.0	84.0%	932
BSB-26	Sta. 729+47	43.2' Right	541.0	26.0%	1,136
BSB-27	Sta. 730+31	74.6' Left	533.2	34.0%	806
BSB-28	Sta. 730+30	5.0' Right	535.3	31.0%	1,380
BSB-29	Sta. 731+09	64.2' Left	534.2	21.0%	1,110
BSB-30	Sta. 730+88	61.8' Right	533.8	31.0%	1,608
BSB-31	Sta. 731+59	0.4' Left	548.0	44.0%	847
BSB-32	Sta. 731+51	59.8' Right	551.9	27.0%	910

Table 2 – Bedrock Information Summary

SECTION 06: WATER TABLE CONDITIONS

Groundwater was not encountered in the borings above the top of bedrock and before switching to rotary drilling techniques. Due to the nature of rotary-wash drilling, it was not possible to obtain accurate water levels below 10 feet of depth or after drilling. Perched water levels may occur within granular layers above the rock or the upper zone of weathered and broken rock. Fluctuations in the amount of water accumulated and in the hydrostatic water table can be anticipated depending on variations in precipitation and surface runoff.

SECTION 07: ANALYSIS

<u>Mining Activity</u>

According to readily available ISGS sources, there are no documented coal mining operations in near vicinity to the project site and seismic activity is noted to be very low.

Site Seismic Parameters

For LFRD design, according to the AASHTO LRFD Bridge Design Specification 2012 (with 2013 Interims), the project site has a horizontal Response Spectral Acceleration of 0.039 at a period of 1.0 second and 5% critical dampening (S_1). The site also has a horizontal Response Spectral Acceleration of 0.11 at a period of 0.2 seconds and 5% critical dampening (S_s). The following table shows recommended seismic design data in accordance to the AASHTO LRFD Bridge Design Specification 2012 (with 2013 Interims).

Table 3 – Seismic Design (Approximately 1000-Year Return Period)

Seismic Performance Zone (SPZ)	1
Spectral Acceleration at 1 second (S _{D1})	0.066
Design Spectral Acceleration at 0.2 seconds (S _{Ds})	0.132
Soil Site Class	С

The project site is considered to be in a low seismic area and is considered a nonextreme event. Liquefiable layers, scour and downdrag are not expected to impact the design of the new bridge.

<u>Settlement</u>

Based on the TSL/cross-sections, the proposed bridge profile will be raised an estimated height of 1 foot. For this purpose, we estimate about 1 foot of fill is anticipated for the abutments over the stiff to very stiff clay and medium dense to dense sand, gravel and crushed stone fill soils at the abutments. Settlement is calculated to be less than 0.4 inches at the abutments. For the piers founded on shallow bedrock, settlement is estimated to be less than 0.4 inches. No settlement issues are expected for the bridge structure.

<u>Slope Stability</u>

The semi-integral abutments will be supported with the use of spread footings or drilled caissons at the West Abutment, and shallow spread footing on rock at the East Abutment. The proposed bridge core will match the existing 2H:1V slopes. Pier spread footings will be founded shallow bedrock. No slope stability issues are associated with the bridge structures founded on rock.

SECTION 08: RECOMMENDATIONS

Foundation Recommendations

It is proposed that the bridge structures will have semi-integral abutments. Based on the results of the borings, type of structure, and estimated loading, feasible foundations for support include shallow spread footings (with footing extensions bearing to bedrock) for the Piers, and both East and West Abutments, and/or a deep foundation system consisting of end-bearing, rock-socketed, drilled caissons at both abutments section of the bridges. End-bearing, rock-socketed H-piles with individual pile encasements may be feasible at the West Abutment portion of the bridges; however, per AASHTO LRFD Bridge Design criteria, the use of H-piles is not recommended due to short pile lengths (less than 10 feet).

We recommend that an economic analysis for each foundation option presented below be considered before choosing a foundation system for the design.

Shallow Spread Footing Recommendations

Based on the information obtained from the borings and estimated loadings anticipated for the proposed structures, the new bridge may be supported on shallow spread footing foundations bearing on sound bedrock as summarized in the following Table 3. Due to the variation of the bedrock elevation, footing extensions at the West Abutments (similar to the concrete pedestal structure of the existing bridge), may be needed to extend the foundations to bear on sound bedrock material. The spread footing foundations may be socketed into the sound bedrock at elevations tabulated in Table 4, and can be designed for a factored bearing resistance of 125 ksf. which is anticipated to be adequate for the anticipated bridge loads. A bearing resistance factor of 0.45 was used to calculate the factored bearing resistance at strength limit according to AASHTO LRFD Bridge Design Specifications (Article 10.5.5.2.2). We recommend using a resistance factor against sliding of 0.8 for cast in-place concrete on sand and 0.50 for passive earth pressure component against sliding resistance for LRFD design per AASHTO LRFD Bridge Design Specifications (Article 10.5.5.2.2). A coefficient of friction of 0.67 is recommended for use to calculate the nominal sliding resistance value per AASHTO LRFD Bridge Design Specifications (Article 10.6.3.4).

Substructure (Boring)	Top of Bedrock Elevation (feet)	Recommended Minimum Bearing Elevation/ Elevation to Sound Bedrock (feet) ¹
NW Abutment (BSB-25)	538.0	538.0
SW Abutment (BSB-26)	541.0	540.0
NW Pier (BSB-27)	533.2	533.0
SW Pier (BSB-28)	535.3	534.5
NE Pier (BSB-29)	534.2	534.0
SE Pier (BSB-30)	533.8	533.0
NE Abutment (BSB-31)	548.0	547.0
SE Abutment (BSB-32)	551.9	550.0

Table 4 - Elevation of Sound Bedrock at the Substructure Areas

Note: 1. verify in field

Note that the bedrock typically had numerous vertical and horizontal fractures and the transition from the fractured and/or weathered rock to the sound bedrock may not be pronounced. It is strongly recommended that an experienced geotechnical engineer be onsite during the foundation excavation to make the final determination on fractured and/or sound bedrock elevations during construction.

If materials with less than adequate bearing strength are noted at the foundation level during footing construction, the weaker material encountered at the base of the footings should be undercut to reach suitable rock, and the undercut area filled with lean concrete.

To provide adequate frost protection, we recommend that footing foundations be situated at a minimum depth of 4 feet below final grade with the exception that if pressure grouting of the bedrock is performed beneath the footing foundations to "seal" the fractured bedrock from water infiltration, then minimum embedment to prevent frost heave may not need to be adhered to for design.

Straight-Shaft Rock-Socketed Caissons Recommendations

(West Abutment portion of the proposed bridges only)

The foundations at the West Abutment portion of the proposed bridges may be constructed using a foundation system of drilled straight-shaft rock-socketed caissons. Drilled shaft in rock should be designed for end-bearing resistance or side resistance per Bridge Manual Section 3.10.2.1. A factored end-bearing resistance of 125 ksf is

recommended for design for rock-socketed caissons, socketed 3 feet into sound bedrock. The factored bearing resistance of the bedrock is anticipated to be adequate for the anticipated bridge loads. From the AASHTO LRFD Bridge Design Specifications Manual Table 10.4.6.4-1, the bedrock is considered fair to good quality. The Carter and Kulhawy equation was used to compute the bearing and an Φ b=0.5 was used for the factor of safety. To the extent rock-socketing is provided, factored resistance value of 3.0 tsf/ft for side resistance can be used for rock-socketed caissons over the depth of the rock-socket to resist uplift loads. A minimum diameter of 24 inches for the rock-socket size is recommended.

For the unit skin friction at the upper strata of the borings, the medium dense to dense sand and gravel will have estimated factored resistances of 500 psf per foot (or can be ignored). Note that the factored skin friction values will need to be neglected since temporary casing or drilling will be used for caisson installation. In addition, the overburden side resistance in soil will be ignored for drilled shafts in rock per Bridge Manual Section 3.10.2.1.

An experienced, geotechnical engineer should be present during excavation to check that suitable sound rock has been reached. The temporary casing should be extended beneath the granular strata to top of bedrock elevation at approximate elevation 538.

Based on the estimated bearing pressures and the magnitude of the loads expected, we estimate a maximum settlement of 0.40 inches or less for rock-socketed caisson foundations supported on bedrock as described above. Differential settlements would be dependent on the adjacent loads but is typically 1/2 to 2/3 of the total settlement. It should be noted that these settlement values are for compression of the bearing materials only and that elastic compression of the caisson concrete should be added to these values.

Approach Slab Recommendations

The new approach slab will be supported on either new or existing embankment fill. Shallow footings for the "sleeper" below the slab should be designed for a maximum applied service bearing pressure of 2,000 psf situated on new embankment fill. The new fill should be compacted per IDOT specifications for earth embankment. Any organics or soft, yielding subgrade (if any) should be removed prior to new fill placement. A qualified geotechnical engineer should observe the subgrade prior to any base course is placed. Settlement of the approach slab is calculated on the order of less than 0.4 inches.

SECTION 09: GENERAL CONSTRUCTION CONSIDERATIONS

Traffic will be maintained utilizing staged construction. Due to high blow count loams, sands, gravels, stone, and shallow bedrock, the IDOT Temporary Sheet Piling Design Charts may not be used. The contractor will likely need to design and install a temporary soil retention system. The soil and bedrock parameters for lateral resistance shown in Tables 5 and 6 below may be used for design of temporary retention system.

Material (elevation, feet)	Unit Weight (pcf)	Drained (Long- term) Friction Angle (°)	Undrained (Short- term) Cohesion (psf)	Lateral Modulus of Subgrade Reaction (pci) ¹	Strain ¹
Clay Loam Fill (Top to 535)	125	30	2,000	700	0.006
Dense to Very Dense Sand, Gravel, and Crushed Stone Fill, and Fractured Rock (535 to 561)	135	34	-	250	_

Table 5 – Soil Parameters for Lateral Resistance

Note: 1. Values recommended for use in design from L-pile Software Manual.

Table 6 – Bedrock Parameters for Lateral Resistance

Material (elevation, feet)	Unit Weight (pcf)	Young's Modulus (psi)	Uniaxial Compressive Strength (psi)	RQD (%)	Strain (k _m)
Bedrock (548-538)	150	2 x 10 ⁶	See Lab Data on Rock Core Logs	21% to 84%	0.0001

At the abutments, it is recommended that a lateral active earth pressure of 40 psf per foot of depth be used above the water table assuming a free-draining granular backfill is utilized. For non-yielding walls with granular backfill, a lateral at-rest pressure of 60 psf per foot should be used, assuming proper drainage. Allowances should be made for any surcharge loads adjacent to the retaining structure. Drainage should be provided behind the abutment.

All soils which become softened or loosened at the base of foundation excavation areas or subgrade areas should be carefully recompacted or removed prior to placement of foundation concrete or fill material. No foundation concrete or structural fill should be placed in areas of ponded water or frozen soil. During excavation for the proposed improvements, movement of adjacent soils into the excavation should be prevented. All excavations should be performed in accordance with the latest Occupational Safety and Health Administration (OSHA) requirements. Allowances should be made for any surcharge loads adjacent to the retaining structures.

SECTION 10: GENERAL QUALIFICATIONS

The analysis and recommendations presented in this report are based upon the data obtained from the soil borings performed at the indicated locations and from any other information discussed in this report. This report does not reflect any variations that may occur between borings or across the site. In addition, the soil samples cannot be relied on to accurately reflect the strata variations that usually exist between sampling locations. The nature and extent of such variations may not become evident until construction. If variations appear evident, it will be necessary to reevaluate the recommendations of the report. In addition, it is recommended that Geo Services, Inc. be retained to perform construction observation and thereby provide a complete professional geotechnical engineering service through the observational method.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are intended or made. In the event that any changes in the nature, design or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and the conclusions of this report modified or verified in writing by the geotechnical engineer. Also note that Geo Services, Inc. is not responsible for any claims, damages, or liability associated with any other party's interpretation of this report's subsurface data or reuse of the report's subsurface data or engineering analyses without the express written authorization of Geo Services, Inc.

APPENDIX A

GENERAL NOTES

GENERAL NOTES

CLASSIFICATION

American Association of State Highway & Transportation Officials (AASHTO) System used for soil classification.

Cohesionless Soils

Relative

Density

Loose

Dense Very Dense

Very Loose

TERMINOLOGY

Streaks are considered to be paper thick. **Lenses** are considered to be less than 2 inches thick. **Layers** are considered to be less than 6 inches thick. **Stratum** are considered to be greater than 6 inches thick.

Cohesive Soils

Medium Dense

<u>Consistency</u>	<u>Strength - qu (tsf)</u>
Very Soft	Less than 0.25
Soft	0.25 - 0.5
Medium Stiff	0.5 - 1.0
Stiff	1.0 - 2.0
Very Stiff	2.0 - 4.0
Hard	Over 4.0

No. of Blows

per foot N

0 to 4

4 to 10

10 to 30

30 to 50

Over 50

DRILLING AND SAMPLING SYMBOLS

SS:	Split Spoon 1-3/8" I.D., 2" O.D.	
OT.	Challey Type OILOD average under a	

- ST: Shelby Tube 2" O.D., except where noted
- AS: Auger Sample
- DB: Diamond Bit NX: BX: AX
- CB: Carboloy Bit NX: BX: AX
- OS: Osterberg Sampler

WS:	Wash Sample
FT:	Fish Tail
RB:	Rock Bit
WO:	Wash Out

Housel Sampler

HS:

Standard "N" Penetration: Blows per foot of a 140 lb. hammer falling 30" on a 2" O.D. Split Spoon

WATER LEVEL MEASUREMENT SYMBOLS

WL:	Water	WD:	While Drilling
WCI:	Wet Cave In	BCR:	Before Casing Removal
DCI:	Dry Cave In	ACR:	After Casing Removal
WS:	While sampling	AB:	After Boring

Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils, the accurate determination of ground water elevations is not possible in even several days observation, and additional evidence on ground water elevations must be sought.

APPENDIX B

SITE LOCATION MAP

APPENDIX C

BORING LOCATION PLAN & PROFILE

APPENDIX D

BORING & ROCK CORE LOGS

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amherst Court: Suite 204 Naperville, Ullivois 505665 (630) 355-2848
--

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date <u>11/7/13</u>

	ROUTE	F.A.I RTE. 80	DES	SCRI	PTION	F	.A.I. R	TE. 80 Over F.A.U. 354	4 (Richards St.) LC	DGGED BY	TZ
	SECTION	99-4HB-1		L		ION	SW 1/	4. SEC. 15. TWP. T351	N. RNG. R10F. 3 rd PM		
		00 1110 1		_ •	-00/1		011 1/				
	COUNTY	Will DF	RILLING	MET	THOD		Hollow	Stem Auger/Rotary	HAMMER TYPE	CME Auto	omatic
				_	_						
	STRUCT. NO.	W.B. 099-0065			В	U	M	Surface Water Elev.	<u> </u>		
	Station	/30+57.48		P	0	S		Stream Bed Elev.	n/aft		
		BSB-25		Т	w		s	Groundwater Elev :			
	Station	729+67		н	S	Qu	Т	First Encounter	Drv to 18.5' ft		
	Offset	42.60ft Left						Upon Completion			
	Ground Surfac	Elev. 556.00	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	ft		
	11.0" ASPHAL	Г									
			555.08	. —							
	CLAY LOAM-br	own & gray-very			6]			
					7	2.5	14				
					8	P					
			553.00		-						
	CRUSHED ST	ONE-dense to very			47						
					1/		4	-			
					23		4				
					20			-			
				_	-						
					50/5"						
							1	-			
1/14					1						
J 5/			548.00								
G.GF	SAND, GRAVE	L & STONE-dense									
Lo Lo	(FIII)				19			-			
3125					23		5				
GS/1				-10	21			-			
ΟC			545.50	·	-						
RINO	BRICK-medium	dense (Fill)			5						
5 BO					6		9	-			
1312					8						
SM)			543.00								
2 TEF	SAND, GRAVE	L, STONE &]						
IEAF	BRICK-brown &	gray-medium			5						
-					6		9				
HASE				- <u>15</u>	1			-			
30 Pt					-						
ц Ц			E20 E0		7						
HNT	Drillers Observa	tion: Weathered &	539.50		, 50/5"		8				
3125	fractured rock										
13/15			538 00					1			
S\20	Drillers Observa	ation: Apparent			1						
ECT.	Bedrock		537.00]			
ROJ	Borehole contin	ued with rock		_							
Ξ	coring.			-20							

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amherist Court: Suite 204 Naperville, Illinois 50565 (630) 355-2848
--

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date ______11/7/13__

ROUTE F.A.I RTE. 80	DESCI	RIPTION	F.	A.I. R	TE. 80 Over F.A.U. 354	(Richards St.) LC	GGED BY TZ
SECTION 99-4HB-1		LOCAT	10N _	SW 1/	4, SEC. 15, TWP. T35N	N, RNG. R10E, 3 rd PM	
COUNTY Will D	RILLING M	ethod		Hollow	Stem Auger/Rotary	HAMMER TYPE	CME Automatic
STRUCT. NO. E.B. 099-0064 Station 730+57.48	D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	ft n/aft	
BORING NO. BSB-26 Station 729+47 Offset 43.20ft Right	Н	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	<u>Dry to 15.0'</u> ft <u>n/a</u> ft	
Ground Surface Elev. 556.00) ft (11	l) (/b)	(tst)	(%)	After Hrs.	ft	
4.0" ASPHALT					-		
8.0" CONCRETE	555.00	_					
CLAY LOAM-brown & gray-stiff to	-	6	4.5				
		8	4.5	14			
	-	10	Р		-		
		/	10	40	-		
	-	9	1.0	18			
		-5 10	P		-		
	550.50	_					
to dense (Fill)	e	27					
	-	25		2			
4		20		2			
5/1/	-	21					
		_					
0.0	-	10					
		12		6	-		
312	-	9		0			
CONT CONTRACT		10 9			-		
SANDY CLAY LOAM dark brown	545.50	_					
to black-medium dense (Fill)		6					
	-	7		1/	-		
3125				17			
<u>11</u>	-				-		
	543.00						
	-	50/2"					
Z Z		00,2		2			
	- 541.00	15		-			
Borehole continued with rock	<u>041.00 -'</u>	13			1		
ଛି coring.	-						
Σ Ξ	-						
1125							
3/13	-	-					
1201							
CIS	-						
OOL		-					
	-2	20					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of _1		
Geo Services, Inc.	ROCK	CORE	LOG	DATE _	11/7,	/2013	3		
Geotechnical, Environmental & Çivil Engineering 805 Amberst Court, Suite 204				LOGGED	ΒY	JK			
(630) 355+2838				GSI JOE	3 No.	_13	125		
ROUTE F.A.I RTE. 80	DESCRIPTION I-80) Reconstruc	tion (Near Term Phas	e 2)					
SECTION 99-4HB-1	LOCATION SEC 15	. T35N. R10	E. SW 1/4. 3rd PM	·					
COUNTY WIII	CORING METHOD	Rotary Wash	n						
STRUCT. NO. E.B.099-0064	CORING BARREL T	YPE & SIZE	NX Double Swivel-1	D D ft F	C O	R F	R	C O	S T
Station _730+57.48	Core Diameter	2.0 in		Р Т	R		Q	R	R
BORING NO. BSB-26	lop of Rock Elev Begin Core Elev.	· <u>541.0</u> 541.0		— н	R		D		N
Station <u>729+47</u> Offset <u>43.2</u> ' Right	5			_	U N	R	•	Ē	T
Ground Surface Elev556.0				(ft)	(#)	(%)	(%)	(min /ft)	⊢ (tsf)
SILLIPIAN SYSTEM NIACADAN SEDIES					1	100.0	26.0	n/a	1136 @
RUN 1 $(-15.0' \text{ to } -25.0')$	DOLOMITE								-16.6
Light gray with horizontal bedding. H	lighly fractured to	-23.0' with	numerous intersectir	g —					
				_					
				-25					
	358-26 RUN 1 -1 TOP	15.0'40-	13125						

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amherst Court: Suite 204 Naperville, Ulthors 50565 (630) 355-2848
--

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date	10/17/13
Date	

	ROUTE	F.A.I RTE. 80	DESC	RIPTION	F.	.A.I. R	TE. 80 Over F.A.U. 354	(Richards St.) LO	GGED BY TZ
	SECTION	99-4HB-1		LOCAT	10N _	SW 1/	4, SEC. 15, TWP. T35N	I, RNG. R10E, 3 rd PM	
	COUNTY	Will	DRILLING MI	ethod		Hollow	Stem Auger/Rotary	HAMMER TYPE	CME Automatic
	STRUCT. NO. Station BORING NO.	<u>W.B. 099-006</u> 730+57.48 BSB-27 730+31	5 C E P T	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.:	<u>n/a</u> ft <u>n/a</u> ft	
	Offset	74.60ft Left	(e		4-6	(0/)	Upon Completion	n/aft	
Г	Ground Surfa	ce Elev. 536.2	<u>20</u> ft (†	:) (/6")	(tsf)	(%)	After Hrs.	ft	
	GRAVEL & FR	ACTURE	535.83	25					
	ROCK-very de	nse		50/4"		5			
			-	_					
	Borehole conti	nued with rock	533.20						
	coring.								
			-	_					
				-5					
			-	_					
1/14									
-) 2/-									
DG.GF				_					
25_L(_					
S\131				10					
50G			-	_					
RING				_					
25 BC									
1)\131			-						
TERN									
IEAR									
<u>Е</u> П			-	_					
PHAS				15					
I-80									
INTB			-	_					
31251				_					
013/1;			- 						
CTS/2									
SOJEC				-					
Z:\PF				20					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Geo Services, Inc. ROCK CORE LOG DATE 10/17/2013 Geotechnical, Environmental & Givil Engineering 805 Amberst Court, Suite 204 Naperville, Illinois 60565 (630) 355-2838 DATE 10/17/2013 ROUTE F.A.I RTE, 80 DESCRIPTION I-80 Reconstruction (Near Term Phase 2)		
Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Ultinois 60565 (630) 355 2838 ROUTE F.A.I RTE, 80 DESCRIPTION I-80 Reconstruction (Near Term Phase 2)		
ROUTE F.A.I RTE. 80 DESCRIPTION I-80 Reconstruction (Near Term Phase 2)		
ROUTE F.A.I RTE. 80 DESCRIPTION I-80 Reconstruction (Near Term Phase 2)		
SECTION 99-4HB-1 LOCATION SEC 15. T35N, R10E, SW 1/4, 3rd PM		
COUNTY Will CORING METHOD Rotary Wash		
STRUCT. NO. W.B.099-0065 CORING BARREL TYPE & SIZE NX Double Swivel-10 ft F O F	C	S T
Station 730+57.48 Core Diameter 2.0 in	R	R
BORING NO. BSB-27 Begin Core Elev. 533.2 H R V D		Ň
Station 730+31 Offset 74.6' Left	E	
Ground Surface Elev(ft) (#) (%) (%)	(min /ft)	(tsf)
SILURIAN SYSTEM NIAGARAN SERIES DOLOMITE) n/a	806 @
RUN 1 (-3.0' to -13.0')		-3.5
Light gray to gray with horizontal to wavy bedding. Porous with some small vugs Weathered with rust staining becoming highly weathered & fractured from -5.9' with		
some chert replacement nodules.		
85B-27 13125		
DIX11 -2011-120'		
TAD		
TOP		
Alexander and the state of the second		

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amherst Court: Suite 204 Naperville, Illikotis 50665 (690) 355-2886
--

GSI Job No. 13125

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date ______10/17/13__

	ROUTE	F.A.I RTE. 80	DES	SCRI	PTION	F.	A.I. R	TE. 80 Over F.A.U. 354	(Richards St.) LO	GGED BY TZ
	SECTION	99-4HB-1		_ L		ION _	SW 1/	4, SEC. 15, TWP. T35N	I, RNG. R10E, 3 rd PM	
		Will D	RILLING	MET	HOD		Hollow	Stem Auger/Rotary	_ HAMMER TYPE _	CME Automatic
	STRUCT. NO. Station	E.B. 099-0064 730+57.48		D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/aft n/aft	
	BORING NO Station	BSB-28 730+30		н	S	Qu	T	Groundwater Elev.: First Encounter	Dry to 2.5' ft	
	Offset	5.00ft Right						Upon Completion	n/a ft	
	Ground Surfa	ce Elev. 536.80	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	ft	
Г	12.0" CONCRE	ETE								
			E2E 00							
ŀ		ark brown-stiff (Fill)	505.00		7					
ŀ		ation: Apparent	535.30		, 50/5"	15	15	-		
	Bedrock				50/5	т.5 П	15			
-	Developed		534.30			Р		-		
	Borenole contir	nued with rock								
	conng.									
				-5						
14										
5/1										
GPJ										
Ö.										
2										
312										
SS/1				-10						
ĕ										
ŊŊ										
ORI										
25 B										
131										
(W)										
臣					1					
AR										
Z										
ШШ										
HAS				- <u>15</u>						
20 P										
<u>~</u>										
ĪNTE										
25 H										
131										
013/										
S\2(_						
ECI										
Sol			·							
Z:\PF				-20	1					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of _1		
Geo Services Inc.	ROCK	CORE	LOG	DATE _	10/17	7/20 ⁻	13		
Geotechnical, Environmental & Civil Engineering 805 Amberst Court, Suite 204				LOGGEE	BY	JK			
(630) 355-2838				GSI JOI	3 No.	_13	125		
ROUTE F.A.I RTE. 80	DESCRIPTION 1-80) Reconstruc	tion (Near Term Phas	se 2)					
SECTION _99-4HB-1	LOCATION SEC 15	, T35N, R10	E, SW 1/4, 3rd PM						
COUNTY WIII	CORING METHOD	Rotary Wasl	h				_	_	
STRUCT. NOE.B.099-0064	CORING BARREL T	YPE & SIZE	NX Double Swivel-1	D Oft E	00	RШ	R	C O	S T
Station _730+57.48	Core Diameter	2.0 in		Р Т	R F	Ċ	Q	R	R
BORING NO. BSB-28	• Begin Core Elev.	535.3 534.3		— н	R	V F	D		Ň
Offset 5.0' Right				_	U N	R	•	Ē	T
Ground Surface Elev536.8				(ft)	(#)	(%)	(%)	(min /ft)	ı∣⊓ (tsf)
SILURIAN SYSTEM, NIAGARAN SERIES	DOLOMITE				1	100.0	31.0	n/a	1380 ¢
RUN 1 (-2.5' to -12.5')		0	41						
nodules. Highly fractured & weather	o wavy bedding. Po ed from —4.5' with	intersecting	thered with some ch g horizontal & vertice	ert al					
fractures.				_					
				_					
		- U.B		12.0	4			1	<u> </u>
			COLUMN TRANSFORME						
	B3B-28		13125						
	QUIT	11 10		1					
	RUNI 72	5 to 12:							
	10-11-								
	TOP	-							
	Statement Provide	-711	Variation A	-					
	• 71	1-2	and the second s	100					
	the second second	the last	- I took						
	A 1	11	the last the	1					
		Real Property							
		地方学校		BLE:					

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amherist Court: Suite 204 Naperville, Illihois 60665 (690) 355-2838
--

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

ROUTE	F.A.I RTE. 80	DESC	RIPTION	F.	.A.I. R	TE. 80 Over F.A.U. 354	(Richards St.) LO	GGED BY	TZ
SECTION _	99-4HB-1		LOCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	I, RNG. R10E, 3 rd PM		
	Will D		ING METHOD Ho			Stem Auger/Rotary	HAMMER TYPE	CME Autom	atic
STRUCT. NO Station BORING NO. Station	W.B. 099-0065 730+57.48 BSB-29 731+09	; C E F F) B L O W I S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter	<u>n/a</u> ft <u>n/a</u> ft Dry to 2.5'ft		
Offset	64.20ft Left	e, (f	f) (/6")	(tsf)	(%)	Upon Completion			
Ground Sur	TACE EIEV. <u>536.20</u> FTF	<u>, π</u> <u></u>		(131)	(70)	After Hrs.	π		
SAND & STO	NE-brown (Fill)								
	~ /		7			-			
		534.20	50/5"		7				
Drillers Obse Bedrock	rvation: Apparent	533.70							
DJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 5/1/14	tinued with rock								

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of _1		
Geo Services, Inc.	ROCK	CORE	LOG	DATE	10/18	<u>3/20'</u>	13		
Geotechnical, Environmental & Çivil Engineering 805 Amberst Court, Suite 204				LOGGED	BY	_JK_			
(630) 355-2838				GSI JOE	3 No.	_13	125		
ROUTE F.A.I RTE. 80	DESCRIPTION 1-80) Reconstruc	tion (Near Term Phase	2)					
SECTION 99-4HB-1	LOCATION SEC 15	. T35N. R10	E, SW 1/4, 3rd PM						
COUNTY WIII	CORING METHOD	Rotary Wash	י <u>ר</u> ז						
STRUCT. NO. W.B.099-0065	- CORING BARREL T	YPE & SIZE	NX Double Swivel-10	ft E	C O	R E	R	C O	S T
Station _730+57.48	Core Diameter	2.0 in			R	Ē	Q	R	R
BORING NO. BSB-29	 Top of Rock Elev Begin Core Elev. 	533.7 533.7		— Ĥ	R	V V	D		Ň
Offset 64.2' Left	-			-	U N	R	•	E	T
Ground Surface Elev536.2				(ft)	(#)	(%)	(%)	(min /ft)	∣⊓ (tsf)
SILURIAN SYSTEM NIAGARAN SERIES	DOLOMITE				1	100.0	21.0	n/a	1110 @
RUN 1 $(-2.5' \text{ to } -12.5')$					-				<u> </u> ./
Light gray & porous with horizontal fractured throughout with vertical fr	bedding. Weathere actures from -2.5	d & cherty 'to -4.0'.	with some vugs. Highl	у —]				
-									
				-7.5					
					1				
					1				
				_12.5					
				-12.3	1				
		Contraction of	10/10						
	RSB-29		13125 1						
			251-1						
	KUNI -	2.5 to 1	20	-					
	TOD			-					
6	LIOP	-							
		-21	V more as	1					
		1.7	A DESCRIPTION OF THE OWNER	1					
	and the second second		2 months						
	7.4 18	24	1 miles	100					
	Contraction of the second	A	1/2	-					
	the state	· Sect		1					
	1 martine	- Annie							

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amherst Court: Suite 204 Naperville, Ulthors 50565 (630) 355-2848
--

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date	10/18/13
Dale	10/10/13

	ROUTE	F.A.I RTE. 80	DES	SCRI	PTION	F.	.A.I. R	TE. 80 Over F.A.U. 354	(Richards St.) LC	GGED BY	ΤZ
	SECTION	99-4HB-1		_ L	OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	I, RNG. R10E, 3 rd PM		
	COUNTY	Will Di	RILLING	MET	HOD		Hollow	Stem Auger/Rotary	HAMMER TYPE	CME Auto	matic
	STRUCT. NO. Station	E.B. 099-0064 730+57.48		D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/aft n/aft		
	BORING NO Station Offset	BSB-30 730+88 61.80ft Right		T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	Dry to 4.5'ft n/aft		
ſ	Ground Surfa	ce Elev. <u>538.30</u>	ft	(π)	(/6)	(tst)	(%)	After Hrs.	ft		
	4.0" CONCRE		_537.97_								
	to dense (Fill)	ONE-mealum dense			7						
					1		2				
					11		3				
					14						
					r						
					26						
			533.80		50/3"		3				
	Borehole contir	nued with rock	000.00	-5							
	coring.										
4											
5/1/1											
G					τ.						
0.0											
5_L0											
1312											
)GS/				- <u>10</u>							
СU					r.						
RIN											
25 B(
/131			·								
R M					τ.						
ШЧ											
NEA											
=											
HAS				- <u>15</u>	τ.						
80 P											
ЦВ, Н											
HN											
3125											
13/1											
⁻ S\20											
L L L											
RO											
ž				-20							

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of _1		
Geo Services, Inc.	ROCK	CORE	LOG	DATE _	10/18	<u>8/20′</u>	3		
Geotechnical, Environmental & Civil Engineering 805 Amberst Court, Suite 204				LOGGED) BY	_JK			
(630) 355-2838				GSI JOI	3 No.	13	125		
ROUTE _ F.A.I RTE. 80	DESCRIPTION 1-80) Reconstruc	tion (Near Term Phas	e 2)					
SECTION _99-4HB-1	LOCATION <u>SEC 15</u>	, T35N, R10E	E, SW 1/4, 3rd PM						
COUNTY Will	CORING METHOD	Rotary Wash	n						
STRUCT. NOE.B.099-0064	CORING BARREL T	YPE & SIZE	NX Double Swivel-10	D D ft E	C O	R E	R ·	C O	S T
Station _730+57.48	Core Diameter	2.0 in		— Р — Т	R F	C	Q	R F T	R
BORING NO. BSB-30	· Begin Core Elev.	. <u>533.8</u> 533.8		— H	R	V F	D	i M	N N
Offset 61.8' Right				_	U N	R	·	E	T
Ground Surface Elev538.3				(ft)	(#)	(%)	(%)	(min /ft)	∣⊓ (tsf)
SILLIRIAN SYSTEM NIAGARAN SERIES					1	100.0	31.0	n/a	1608 ¢
RUN 1 $(-4.5')$ to $-14.5'$	DOLOMITE				_				-5.2
Light gray & with horizontal bedding horizontal fractures throughout. Ver	becoming cherty, tical fracture with	porous & w intersecting	veathered with numero horizontal fractures f	ous <u> </u>	-				
-12.6' to -14.5'.		J		_					
					-				
				<u>-9.5</u>					
				_					
					-				
				_					
5 - T- 40 KP				-14.5	>				
		ALL DATE							
	058-20		12120	- Second					
	82830		13125	10					
	PULL -11-	11 111-1		7-1					
	KUNI 9.5	to 14.5	- Andrewson and the						
	TAP	- 10-		1					
1 des a	101	and the second							
	" Andrew I	A REPORT OF	STATISTICS.						
	Ten and a second	A CONTRACTOR							
180	A TALAN		1 zoloci						
			1-1-	· 19					
	26 200		and the second second	1					
	Statistics of the second	Contraction of the	Carlles and a						
		and the second second	A STATE OF THE REAL PROPERTY OF	0					

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amhetist Court: Suite 204 Naperville, Illivois Doc665 (630) 355-2838

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date	11/7/13

	ROUTE	F.A.I RTE. 80	DES	SCRI	PTION	F	.A.I. R	TE. 80 Over F.A.U. 354	(Richards St.) LO	GGED BY	ΤZ
	SECTION	99-4HB-1		L		ION	SW 1/	4. SEC. 15. TWP. T35N	. RNG. R10E. 3 rd PM		
		WillD	RILLING	MET	HOD		Hollow	Stem Auger/Rotary	HAMMER TYPE	CME Auto	matic
	STRUCT. NO. Station	W.B. 099-0065 730+57.48		D E	BL	U C	M O	Surface Water Elev. Stream Bed Elev.	n/a ft n/a ft		
	BORING NO	BSB-31 731+59		Р Т Н	W S	Qu	S T	Groundwater Elev.: First Encounter	ft		
	Ground Surfa	ce Flev. 556.00	ft	(ft)	(/6'')	(tsf)	(%)	After Hrs.	It		
		20 2.001 000.000		. /	. ,	. ,			N		
			EEE 00				12	-			
	TOPSOIL-dark	brown to black	555.00		6			-			
					5	3.0	26				
					4	P					
			553.00		-			-			
	CLAY LOAM-b	rown & gray-very	000.00								
	stiff	0, ,			3						
					4	1.0	19				
				-5	4	Р					
					5						
4					6	2.5	23				
5/1/1					14	P					
ΓĴ			548.00		-						
G.G	Drillers Observa	ation: Apparent									
5_LC	Deulock				-						
312					-						
GS/1	Borehole contir	ued with rock	546.00	- <u>10</u>				-			
ΡC	coring.				-						
RING	een ig										
BOI											
3125											
M)/1					-						
TER											
EAR											
II (N					1						
ASE				-15							
PH/]						
I-80											
NTB,											
25 H.					ļ						
\131;					-						
2013					ł						
STS/2											
DJEC					-						
:\PR(20							
NI				-∠∪	1	1	1	11			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of <u>1</u>		
Geo Services Inc.	ROCK	CORE	LOG	DATE _	11/7	/2013	3		
Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204				LOGGED) BY	_JK			
(630) 355-2838				GSI JOE	3 No.	_13	125		
ROUTE F.A.I RTE. 80) Reconstruc	tion (Near Term Phase	e 2)					
SECTION _99-4HB-1	LOCATION SEC 15	<u>, T35N, R10E</u>	<u>E, SW 1/4, 3rd PM</u>						
COUNTY WIII	CORING METHOD	Rotary Wash	n						
STRUCT. NO. <u>W.B.099-0065</u>	CORING BARREL T	YPE & SIZE	NX Double Swivel-10	<u>) ft</u> E		R E	R	C O	S T
Station <u>730+57.48</u>	Core Diameter _ Top of Rock Elev	2.0 in 548.0		— T	R E		Q ·	R E T	E
BORING NO. BSB-51 Station 731+59	Begin Core Elev.	546.0		— H —	R	E V	D ·	I M	G N
Offset <u>0.4' Left</u>					N	R Y		E (min	Т Н
Ground Surface Elev. 556.0				(ft)	(#)	(%)	(%)	/ft)	(tsf)
SILURIAN SYSTEM, NIAGARAN SERIES	DOLOMITE				1	99.0	44.0	n/a	847 @ -15.0'
RUN 1 (-10.0' to -20.0') Light gray & slightly porous with he	rizontal beddina. Li	ight rust sta	aining to -13.5'.						
Numerous horizontal fractures throu	ghout.	5	5		_				
				_					
				15	ò				
				_					
					-				
				-20)				
			12125						
	328-31		13125						
	RUNI -100	5-1-700	y'						
		10 20.0		5					
	TOP		2/1						
	101	-							
F		T		0					
		-	1						
	1	-	. it						
		-	the second	-					
(Market)	I Norma	-		C.					
		11	and the second of the						

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amherst Court: Suite 204 Naperville, Ullivois 505665 (630) 355-2848
--

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date	10/21/13

ROU	TE	F.A.I RTE. 80	DES	SCRI	PTION	F.	.A.I. R	TE. 80 Over F.A.U. 354	(Richards St.) LO	OGGED BY	ΤZ
SEC	TION	99-4HB-1		_ L	.OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E, 3 rd PM		
COU	INTY	Will D	RILLING	MET	HOD		Hollow	Stem Auger/Rotary	HAMMER TYPE	CME Auto	omatic
STRI Sta	UCT. NO. tion	E.B. 099-0064 730+57.48		D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a ft n/a ft		
BOR Sta Offs	tion set	BSB-32 731+51 59.80ft Right		T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	<u>Dry to 6.0'</u> ft <u>n/a</u> ft		
Gro	ound Surfac	ce Elev. 556.40	ft	(π)	(/6**)	(tst)	(%)	After Hrs.	ft		
12.0	" TOPSOIL	-black									
			555.40				22				
CLA	Y LOAM-da	ark brown &			10						
black	k-hard (Fill)				10	4.5	13				
					15	Р					
			553.40								
SILT	Y GRAVE	& FRACTURED									
ROC	CK-brown-n	nedium dense			13						
			551.90		16		5				
Drille	ers Observa	ation: Apparent	-	-5	50/3"						
Bear	OCK										
			550.40								
Bore	hole contin	ued with rock									
	ig.		-								
5/1/1											
G			-								
0.0											
			-								
3125											
SV1:			-	- <u>10</u>							
SING											
BOF											
125											
A)\13											
ERN											
AR 1											
U N			-								
=				45							
HAS			-	-15							
80 F											
19,1			-								
H											
3125			-								
13/1:											
3/20			-								
ECT											
SOLE			-		1						
Z:/Pf				-20	1						

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of <u>1</u>		
Geo Services Inc.	ROCK	CORE	LOG	DATE _	10/2	1/20 [.]	13		
Geotechnical, Environmental & Civil Engineering 805 Amherst Court Suite 204				LOGGED	BY	_JK_			
(630) 355+2838				GSI JOE	3 No.	<u> 13</u>	125		
ROUTE F.A.I RTE. 80	DESCRIPTION 1-80) Reconstruc	tion (Near Term Phase	2)					
SECTION _99-4HB-1	LOCATION SEC 15	<u>, T35N, R10E</u>	E, SW 1/4, 3rd PM						
COUNTY WIII	CORING METHOD	Rotary Wash	n						
STRUCT. NO. <u>E.B.099-0064</u>	CORING BARREL T	YPE & SIZE	NX Double Swivel-10	ft E		R E C	R · O	C O R	S T R
BORING NO BSB-32	Top of Rock Elev	<u>2.0 m</u> 4. <u>551.9</u>			Ē	Ŏ	D	ET	EN
Station 731+51	· Begin Core Elev.	550.4		_	R U	Ē	•	, M F	G
Offset <u>59.8' Right</u>					N	Ý		(min	H
				(ft)	(#) 1	100.0	(%) 27.0	/ft)	(tsf) 910 @
SILURIAN SYSTEM, NIAGARAN SERIES RUN 1 $(-6.0'$ to $-16.0'$)	DOLOMITE				1 '		27.0	n/u	-11.2
Light gray & fine grained with horiz fractures throughout.	ontal bedding. Wea	thered with	numerous horizontal						
					1				
					-				
					1				
				-11.0)				
					1				
				_					
				_					
				-16.0)				
				-					
	RCR 72		12175						
	675-54		12122						
	RUNI -6	0 to 76	2.0'	1					
	TOP								
			Variation of the second second						
				-					
		71	and the second second						
	2 1 1								
		1-21		-					
				-					
1000	- Section -	11111	Constanting of the						
1									

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for ______ The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) APPENDIX E

LAB TEST RESULTS

Grain Size in Millimeters

CRAVEL	S	AND	011 T	
GRAVEL	COARSE	FINE	SILT	CLAT

Boring No.	BSB-31	CLASSIFICATION	PARTICLE SIZE ANALYSIS-AASHTO T88
Sample No.	2		
Depth	1.0'-2.5'	SILTY CLAY LOAM	I-80 Phase II
Liquid Limit	28	A-6	Will County, Illinois
Plastic Limit	16	brown	
Plasticity Index	12	Group Index 7	
Test By	МТ	% Gravel 6.3	Geo Services, Inc.
Date	11/26/13	% Sand 18.9	Geotechnical, Environmental and Civil Engineering An MBE - DBE Firm
Reviewed By	RR	% Silt 50.4	1235 E. Davis St., Arlington Heights, IL 60005
Job No	13125	% Clay 24.4	Phone 847-253-3845 • Fax 847-253-0482

1235 E. Davis Street Arlington Heights, Illinois 60005 Phone: (847) 253-3845 Fax: (847) 253-0482

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS - ASTM D 7012

Project	I-80 Reconstruction (Near Term Phase 2)	Date_	11/7/13
Location	Various	Job No	13125
County	Will	Tested By:	RWC
IDOT Job No.	D-91-196-09		
Sample Type	Drilled Bedrock Core Sample		

Sample	Depth	Length	Diameter	Weight	Load	Area	Unit Weight	Compressi	ve Strength
No.	(ft)	(in)	(in)	(g)	(lbs)	(in ²)	(lbs ft ³)	(tsf)	(psi)
BSB-25 Run 1	19.4	4.102	2.055	583.0	42920	3.32	163.2	932	12940
BSB-26 Run 1	16.6	4.106	2.050	585.6	52070	3.30	164.5	1136	15776
BSB-27 Run 1	35.0	4.110	2.051	566.3	36990	3.30	158.8	806	11196
BSB-28 Run 1	3.0	4.109	2.048	572.7	63140	3.29	161.1	1380	19167
BSB-29 Run 1	4.7	4.111	2.050	578.7	50880	3.30	162.4	1110	15415
BSB-30 Run 1	5.2	4.093	2.050	584.4	73700	3.30	164.7	1608	22329
BSB-31 Run 1	15.0	4.112	2.061	589.0	39260	3.34	163.5	847	11768
BSB-32 Run 1	11.2	4.103	2.051	576.5	41770	3.30	161.9	910	12643

Liquid Limit, Plastic Limit, and Plasticity Index of Soils AASHTO T89/T90

Project Name	I-80 Phase II	Job No 13125
		· · · · · · · · · · · · · · · · · · ·

Location Will County, Illinois

Date 11/27/13

SAMPLE NO.	BSB-31			
DEPTH	1.0'-2.5'			
LIQUID LIMIT (LL)	28			
PLASTIC LIMIT (PL)	16			
PLASTICITY INDEX (PI)	12			

MT