October 23, 2025

SUBJECT FAI Route 290 (I-290)

Project NHPP-1XTC(478)
Section FAI 290 22 KEELER BR
Cook County
Contract No. 62U41

Item No. 009, November 7th, 2025 Letting Addendum A

NOTICE TO PROSPECTIVE BIDDERS:

Attached is an addendum to the plans or proposal. This addendum involves revised and/or added material.

- 1. Revised the Schedule of Prices
- 2. Revised pages i-vi of the Table of Contents of the Special Provisions.
- 3. Revised pages 12, 68-70, 112-113, 258-276, and 303 of the Special Provisions.
- Added pages 482-511 to the Special Provisions.
- 5. Revised sheets 1-2, 5, 7, 9, 15-16, 18, 20-21, 21A, 21C, 51-53, 79-80, 119, 142, 145-146, 151-152, 156, 160-161, 163-165, 167-173, 175, 177-184, 187-188, and 191-195 of the Plans.
- 6. Added sheets 144A-144I to the Plans.

Prime contractors must utilize the enclosed material when preparing their bid and must include any changes to the Schedule of Prices in their bid.

Very truly yours,

Jack A. Elston, P.E.

Bureau Chief, Design and Environment

TABLE OF CONTENTS

LOCATION OF PROJECT	
DESCRIPTION OF PROJECT	1
COMPLETION DATE PLUS WORKING DAYS (D1)	2
STATUS OF UTILITIES (D-1)	2
MAINTENANCE OF ROADWAYS (D1)	
PUBLIC CONVENIENCE AND SAFETY (D1)	9
COOPERATION BETWEEN CONTRACTORS	9
COORDINATION WITH ADJACENT AND/OR OVERLAPPING CONTRACTS	10
TRAFFIC CONTROL PLAN (D1)	11
TRAFFIC CONTROL AND PROTECTION (ARTERIALS) (D1)	12
KEEPING THE EXPRESSWAY OPEN TO TRAFFIC	12
FAILURE TO OPEN TRAFFIC LANES TO TRAFFIC	15
TRAFFIC CONTROL AND PROTECTION (EXPRESSWAYS)	15
TRAFFIC CONTROL SURVEILLANCE, EXPRESSWAYS	19
DELINEATOR (SPECIAL)	19
EROSION CONTROL BLANKET, SPECIAL (NATIVE WILDLFLOWER FRIENDLY)	22
FAILURE TO COMPLETE PLANT CARE AND ESTABLISHMENT WORK ON TIME	23
GENERAL REQUIREMENTS FOR WEED CONTROL SPRAYING	24
LANDSCAPE CONSTRUCTION WORK AND LANDSCAPE ESTABLISHMENT WORK	26
FAILURE TO COMPLETE LANDSCAPE CONSTRUCTION	27
MOWING (SPECIAL)	29
MOWING	31
MULCH PLACEMENT FOR EXISTING WOODY PLANTS	32
PLANTING WOODY PLANTS	34
REQUIRED INSPECTION OF WOODY PLANT MATERIAL	44
SEEDING, CLASS 3 (SPECIAL) SHORT SAVANNA SLOPE MIX	44
SEEDING, CLASS 5 (MODIFIED) (SHORT SAVANNA SLOPE MIX)	50
SELECTIVE MOWING STAKES	57
SUPPLEMENTAL WATERING	57
TEMPORARY SEEDING (NATIVE RESTORATION)	
TREE REMOVAL (UNDER 6 UNITS DIAMETER)	60
WEED CONTROL, BASAL TREATMENT	60
WEED CONTROL, BROADLEAF IN TURF (POUND)	62
WEED CONTROL, AQUATIC	63

WEED CONTROL, NON-SELECTIVE AND NON-RESIDUAL	64
TEMPORARY INFORMATION SIGNING	65
TRAFFIC CONTROL FOR WORK ZONE AREAS	66
SPEED DISPLAY TRAILER (D1)	67
OVERHEAD SIGN STRUCTURE – BRIDGE MOUNTED	68
NIGHTTIME WORK ZONE LIGHTING (D-1)	68
STORM SEWERS AND SEWER CONNECTIONS TO CITY OF CHICAGO SEWERS	70
EMBANKMENT I (D1)	71
HOT-MIX ASPHALT BINDER AND SURFACE COURSE (D1)	
FRICTION AGGREGATE (D1)	78
HOT-MIX ASPHALT – MIXTURE DESIGN VERIFICATION AND PRODUCTION (D1)	
ADJUSTMENTS AND RECONSTRUCTIONS (D1)	82
DRAINAGE AND INLET PROTECTION UNDER TRAFFIC (D1)	82
AGGREGATE FOR CONCRETE BARRIER (D1)	84
DETECTABLE WARNINGS (SPECIAL) IN CITY OF CHICAGO (D1)	84
ENGINEER'S FIELD OFFICE TYPE A (SPECIAL) (D1)	84
RAISED REFLECTIVE PAVEMENT MARKER, REFLECTOR REMOVAL	86
RAISED REFLECTIVE PAVEMENT MARKER, REFLECTOR REPLACEMENT	86
SIGN SHOP DRAWING SUBMITTAL	87
TEMPORARY TRAFFIC SIGNAL TIMING (CITY OF CHICAGO)	87
FORM LINER TEXTURED SURFACE	89
PILE REMOVAL	
TEMPORARY SOIL RETENTION SYSTEM (SPECIAL)	92
REMOVAL AND DISPOSAL OF REGULATED SUBSTANCES (PROJECT SPECIFIC)	92
WATER SERVICE REMOVAL	
CATCH BASINS (CITY OF CHICAGO)	94
CONCRETE MEDIAN SURFACE, 5 INCH	95
DELINEATOR REMOVAL	95
CONCRETE BARRIER BASE (SPECIAL)	95
CONCRETE BARRIER WALL (SPECIAL)	96
CHAIN LINK FENCE, 4' ATTACHED TO STRUCTURE	96
TELEVISION INSPECTION OF SEWER, SPECIAL	97
TEMPORARY RAMP (SPECIAL)	102
BRIDGE APPROACH PAVEMENT CONNECTOR (SPECIAL)	103
TEMPORARY SIDEWALK RAMP	103
PAVEMENT REMOVAL (SPECIAL)	104
CONCRETE WEARING SURFACE	105

COMBINATION CONCRETE CURB AND GUTTER, TYPE B V12 (CDOT)	106
SIGN PANEL (SPECIAL)	107
INSTALL ROUND STEEL SIGN SUPPORT	108
METHYL METHACRYLATE PAVEMENT MARKINGS AND COLORIZATION, VARIOUS COLORS	111
CONCRETE TRUCK WASHOUT	112
APPROACH SLAB REMOVAL	113
DRILL AND GROUT TIE BARS	114
FENCE REMOVAL	114
TEMPORARY PAVEMENT	115
TRENCH AND BACKFILL WITH SCREENINGS	117
JUNCTION BOX, POLE OR POST MOUNTED	118
MANHOLE, ELECTRIC	119
ELECTRIC CABLE IN CONDUIT, 600V	120
POLE, STEEL, ANCHOR BASE, 34.5 FT	121
CONCRETE FOUNDATIONS	121
MAINTENANCE OF EXISTING TRAFFIC SIGNAL INSTALLATION (SPECIAL)	123
FOUNDATION, CONCRETE, SIGNAL CABINET	124
CONTROLLER, ATC, TRAFFIC, 16 LOAD BAY, "SUPER P" CABINET	125
INTERSECTION TECHNOLOGY ENHANCEMENTS	126
ELECTRIC CABLE IN CONDUIT, SIGNAL	130
TRAFFIC SIGNAL POST, ALUMINUM	131
MAST ARM, STEEL, MONOTUBE	132
SIGNAL HEAD, LED, 1-FACE	133
PEDESTRIAN SIGNAL HEAD, LED, 1-FACE, BRACKET MOUNTED WITH COUNTDOWN TIMER	135
ACCESSIBLE PEDESTRIAN SIGNAL	136
REMOVE EXISTING TRAFFIC SIGNAL EQUIPMENT	137
REMOVE EXISTING CONCRETE FOUNDATION	138
BREAKDOWN HANDHOLE OR MANHOLE	138
SHALLOW CONDUIT PROTECTION STEEL PLATE	139
SHALLOW CONDUIT PROTECTION FIBERGLASS PLATE	139
PEDESTAL WITH BASE: ALUMINUM, FOR TRAFFIC SIGNALS	140
POLE MOUNTED CAST ALUMINUM JUNCTION BOX FOR TRAFFIC SIGNALS	142
POLE: ANCHOR BASE, 3 AND 7 GAUGE, TAPERED TUBULAR STEEL, WITH HANDHOLE ENTR	ťΥ145
MAST ARM: TRAFFIC SIGNAL MONO-TUBE	154
ELECTRICAL MANHOLE FRAMES AND COVERS 24 INCH AND 30 INCH DIAMETER	159
RIGID STEEL CONDUIT (HOT DIPPED GALVANIZED)	161
TRAFFIC SIGNAL MOUNTING BRACKETS FOR MONOTUBE ARMS	166

GROUND RODS	168
ROD: ANCHOR, STEEL, WITH HARDWARE	170
CORD: TRAFFIC SIGNAL, NO. 16 AWG	171
TRAFFIC SIGNAL: VEHICULAR, TWELVE-INCH SINGLE FACE, SINGLE OR MULTIPLE-SECT	ΓΙΟΝ,
POLYCARBONATE, LED OR INCANDESCENT	174
TRAFFIC SIGNAL MOUNTING BRACKET POLYCARBONATE, SIDE OF POLE	180
PRECAST CONCRETE STRUCTURES	183
NON-METALLIC CONDUIT	185
CABLE: SINGLE-CONDUCTOR, COPPER 600 VOLT	186
CABLE: TRAFFIC SIGNAL, MULTIPLE CONDUCTOR, COPPER WIRE, 600 VOLT	189
PEDESTRIAN COUNTDOWN TRAFFIC SIGNAL LED, 16 INCH WITH SYMBOLIC WALK/DON'T W	/ALK,
POLYCARBONATE HOUSING	195
NEMA TS2-2 SUPER P CABINET WITH ADVANCED TRANSPORTATION CONTROLLER	AND
UNINTERRUPTIBLE POWER SUPPLY	201
ACCESSIBLE PEDESTRIAN SIGNAL	237
CABLE: FLEXIBLE CORD FOR ACCESSIBLE PEDESTRIAN SIGNAL	240
FIELD CABINET INTEGRATION EQUIPMENT AND DETECTION PROCESSOR WITH VIDEO CAM	1ERA
	242
CABLE: THREE COPPER CONDUCTORS IN JACKET, SHIELDED 600 VOLT	256
GENERAL ELECTRICAL REQUIREMENTS	258
LIGHT POLE, ALUMINUM, WITH MAST ARM, INSTALL ONLY	276
MAINTENANCE OF LIGHTING SYSTEMS	277
JUNCTION BOX EMBEDDED IN STRUCTURE	281
EXPOSED RACEWAYS	282
UNDERPASS LUMINAIRE, LED	285
UNIT DUCT	295
WIRE AND CABLE	296
ROD AND CLEAN EXISTING CONDUIT	297
REMOVE TEMPORARY WOOD POLE	298
TEMPORARY WOOD POLE, 50 FT, CLASS 4	298
REMOVAL OF UNDERPASS LIGHTING UNIT, NO SALVAGE	298
MAINTENANCE OF STREET LIGHTING SYSTEM	299
ELECTRIC UTILITY SERVICE CONNECTION	303
CLEANING EXISTING MANHOLE OR HANDHOLE	303
DRILL EXISTING MANHOLE, HEAVY DUTY HANDHOLE, OR MEDIAN WALL JUNCTION BOX	304
ELECTRIC CABLE IN CONDUIT, TRIPLEX, 2-1/C NO. 6, 1-1/C NO. 8 GROUND	304
LUMINAIRE, LED. COBRA HEAD	305

LUMINAIRE NODE, EXTERNAL	306
MAST ARM, STREET LIGHTING, STEEL	307
REMOVE EXISTING STREET LIGHTING EQUIPMENT	307
WIRE: SINGLE CONDUCTOR NO. 12 COPPER WITH CROSS LINKED POLYETHYLENE INSULA	
THERMAL MAGNETIC CIRCUIT BREAKER	
MAST ARMS: 4-, 8-, 12-, AND 15-FOOT: STEEL	
CABLE: SERVICE ENTRANCE, THREE INSULATED CONDUCTORS IN ONE OVERALL JACKET,	
VOLT	
ROADWAY LIGHTING CONTROL SMART NODES	
OUTDOOR LED LUMINAIRE SPECIFICATIONS: RESIDENTIAL STREETS, ALLEYS, & ARTE	RIAL
STREETS (COBRA HEAD)	324
WIRE: DUPLEX 2 - 1/C #8 ALUMINUM	336
BRIDGE DECK CONSTRUCTION	338
METALLIZING OF STRUCTURAL STEEL	339
DRILLED SHAFTS	353
PREFORMED PAVEMENT JOINT SEAL	363
CROSSHOLE SONIC LOGGING TESTING OF DRILLED SHAFTS	369
ERECTION OF BRIDGE GIRDERS OVER OR ADJACENT TO RAILROADS	372
BAR SPLICERS, HEADED REINFORCEMENT	373
AGGREGATE SUBGRADE IMPROVEMENT (BDE)	375
CEMENT, FINELY DIVIDED MINERALS, ADMIXTURES; CONCRETE, AND MORTAR (BDE)	377
COMPENSABLE DELAY COSTS (BDE)	387
CONCRETE BARRIER (BDE)	390
CONCRETE SEALER (BDE)	391
CONSTRUCTION AIR QUALITY – DIESEL RETROFIT (BDE)	391
DISADVANTAGED BUSINESS ENTERPRISE PARTICIPATION (BDE)	393
EROSION CONTROL BLANKET (BDE)	396
FUEL COST ADJUSTMENT (BDE)	398
HOT-MIX ASPHALT – LONGITUDINAL JOINT SEALANT (BDE)	400
PAVEMENT MARKING (BDE)	401
PAVEMENT PATCHING (BDE)	402
PERFORMANCE GRADED ASPHALT BINDER (BDE)	403
PREFORMED PLASTIC PAVEMENT MARKING (BDE)	407
RAILROAD PROTECTIVE LIABILITY INSURANCE (BDE)	408
CTA REQUIREMENTS	410
CTA EL AGGING AND COORDINATION	421

REMOVAL AND DISPOSAL OF REGULATED SUBSTANCES (BDE)	442
SEEDING (BDE)	443
SHORT TERM AND TEMPORARY PAVEMENT MARKINGS (BDE)	448
SIGN PANELS AND APPURTENANCES (BDE)	451
SOURCE OF SUPPLY AND QUALITY REQUIREMENTS (BDE)	452
STEEL COST ADJUSTMENT (BDE)	452
SUBCONTRACTOR AND DBE PAYMENT REPORTING (BDE)	454
SUBCONTRACTOR MOBILIZATION PAYMENTS (BDE)	454
SUBMISSION OF BIDDERS LIST INFORMATION (BDE)	455
SUBMISSION OF PAYROLL RECORDS (BDE)	455
SURVEYING SERVICES (BDE)	456
TRAINING SPECIAL PROVISIONS (BDE)	456
IDOT TRAINING PROGRAM GRADUATE ON-THE-JOB TRAINING SPECIAL PROVISION	459
VEHICLE AND EQUIPMENT WARNING LIGHTS (BDE)	461
WEEKLY DBE TRUCKING REPORTS (BDE)	461
WORK ZONE TRAFFIC CONTROL DEVICES (BDE)	461
PROJECT LABOR AGREEMENT	464
TRAFFIC SURVEILLANCE – GENERAL	482
UNDERGROUND RACEWAYS	487
CONDUIT RISER, GALVANIZED STEEL	487
MAINTENANCE OF EXISTING TRAFFIC SURVEILLANCE	488
TEMPORARY CONCRETE BARRIER (SPECIAL)	489
DRILL EXISTING JUNCTION BOX	
FIBER OPTIC CABLE, SINGLE MODE	491
FIBER OPTIC SPLICE	502
ELECTRIC CABLE, COMMUNICATION CABLE, NO. 19	504
REMOVE FIBER OPTIC CABLE FROM CONDUIT	506
WOOD POLE	506
REMOVAL OF ASBESTOS CEMENT CONDUIT	507

Failure to Open Traffic Lanes to Traffic
Traffic Control and Protection (Expressways)
Traffic Control Surveillance (Expressways)
Temporary Information Signing
Traffic Control for Work Zone Areas
Speed Display Trailer (D1)
Temporary Ramps (Special)
Short Term and Temporary Pavement Markings (BDE)
Vehicle and Equipment Warning Lights (BDE)
Work Zone Traffic Control Devices (BDE)

TRAFFIC CONTROL AND PROTECTION (ARTERIALS) (D1)

Effective: February 1, 1996 Revised: March 1, 2011

Specific traffic control staging or maintenance of traffic plan details have been prepared for this contract. This work shall include all labor, materials, transportation, handling, and incidental work necessary to furnish, install, maintain, and remove all traffic control devices required as indicated in the plans and as approved by the Engineer.

When traffic is to be directed over a detour route, the Contractor shall furnish, erect, maintain, and remove all applicable traffic control devices along the detour route according to the details shown in the plans.

<u>Method of Measurement</u>. All traffic control shown in the Traffic Staging or Maintenance of Traffic Plans (except Traffic Control and Protection (Expressways) and temporary pavement markings) will be measured for payment on a lump sum basis unless otherwise noted.

<u>Basis of Payment</u>: This work will be paid for at the contract unit price per LUMP SUM for TRAFFIC CONTROL AND PROTECTION, (SPECIAL).

Temporary pavement markings will be paid for separately unless shown on a standard.

KEEPING THE EXPRESSWAY OPEN TO TRAFFIC

Effective: March 22, 1996 Revised: October 9, 2020

Whenever work is in progress on or adjacent to an expressway, the Contractor shall provide the necessary traffic control devices to warn the public and to delineate the work zone as required in these special provisions, the Standard Specifications, the standards, and the district freeway details. All the Contractors' personnel shall be limited to these barricaded work zones and shall not cross the expressway.

The Contractor shall request and gain approval from the Illinois Department of Transportation's Expressway Traffic Operations Engineer at www.idotlcs.com 24 hours in advance of all daily lane, ramp and shoulder closures and seven days in advance of all permanent and weekend closures

25mph over the work zone speed limit shall not be displayed. On facilities with normal posted speed limit of less than 45 mph, the detected speeds of vehicles traveling more than 15 mph over the work zone speed limit shall not be displayed. On any roadway facility if detected speeds are less than 25 mph, speed shall not be displayed. The display shall include automatic dimming for nighttime operation.

The speed indicator measurement and display functions shall be equipped with the power supply capable of providing 24 hours of uninterrupted service."

OVERHEAD SIGN STRUCTURE - BRIDGE MOUNTED

Effective: July 1, 2015 Revised: March 1, 2017

Revise Article 733.10(b) of the Standard Specification to read:

"Sign Structure – Bridge Mounted. Bridge mounted overhead sign structures will be measured for by payment in feet of the overall width of the sign panel or total width of adjacent sign panels, including spacing between adjacent sign panels, to be installed on the sign structure."

NIGHTTIME WORK ZONE LIGHTING (D-1)

Effective: November 1, 2008 Revised: June 15, 2010

<u>Description</u>. This work shall consist of furnishing, installing, maintaining, moving, and removing lighting for nighttime work zones. Nighttime shall be defined as occurring shortly before sunset until after sunrise.

<u>Materials</u>. The lighting shall consist of mobile and/or stationary lighting systems as required herein for the specific type of construction. Mobile lighting systems shall consist of luminaires attached to construction equipment or moveable carts. Stationary lighting systems shall consist of roadway luminaires mounted on temporary poles or trailer mounted light towers at fixed locations. Some lighting systems, such as balloon lights, may be adapted to both mobile and stationary applications.

 $\underline{\text{Equipment}}$. The Contractor shall furnish an illuminance meter for use by the Engineer. The meter shall have a digital display calibrated to NIST standards, shall be cosine and color corrected, and shall have an accuracy of \pm 5%t. The sensor shall have a level indicator to ensure measurements are taken in a horizontal plane.

Construction Requirements

At the preconstruction conference, the Contractor shall submit the type(s) of lighting system to be used and the locations of all devices. Before nighttime construction may begin, the lighting system shall be demonstrated as being operational.

<u>Nighttime Flagging</u>. The requirements for nighttime flagging shall be according to Article 701.13 of the Standard Specifications and the glare control requirements contained herein.

 Λ

Lighting System Design. The lighting system shall be designed to meet the following.

- (a) Lighting Levels. The lighting system shall provide a minimum of 5 foot candles throughout the work area. For mobile operations, the work area shall be defined as 25 ft in front of and behind moving equipment. For stationary operations, the work area shall be defined as the entire area where work is being performed.
 - Lighting levels will be measured with an illuminance meter. Readings will be taken in a horizontal plane 3 ft above the pavement or ground surface.
- (b) Glare Control. The lighting system shall be designed and operated to avoid glare that interferes with traffic, workers, or inspection personnel. Lighting systems with flood, spot, or stadium type luminaires shall be aimed downward at the work and rotated outward no greater than 30° from nadir (straight down). Balloon lights shall be positioned at least 12 ft above the roadway.
 - As a large component of glare, the headlights of construction vehicles and equipment shall not be operated within the work zone except as allowed for specific construction operations. Headlights shall never be used when facing oncoming traffic.
- (c) Light Trespass. The lighting system shall be designed to effectively light the work area without spilling over to adjoining property. When, in the opinion of the Engineer, the lighting is disturbing adjoining property, the Contractor shall modify the lighting arrangement or add hardware to shield the light trespass.

<u>Construction Operations</u>. The lighting design required above shall be provided at any location where construction equipment is operating or workers are present on foot. When multiple operations are being carried on simultaneously, lighting shall be provided at each separate work area.

The lighting requirements for specific construction operations shall be as follows.

Installation or Removal of Work Zone Traffic Control. The required lighting level shall be provided at each truck and piece of equipment used during the installation or removal of work zone traffic control. Headlights may be operated in the work zone.

Guardrail, Fence, and High Tension Cable Barrier Median Repair. The required lighting level shall be provided by mounting a minimum of one balloon light to each piece of mobile construction equipment used in the work zone. This would include all machines but not include trucks used to transport materials and personnel or other vehicles that are continuously moving in and out of the work zone. The headlights of construction equipment shall not be operated within the work zone.

Pavement Marking and Raised Reflective Pavement Marker Removal/Installation. The striping truck and the attenuator/arrow board trucks may by operated by headlights alone; however, additional lighting may be necessary for the operator of the striping truck to perform the work.

For raised reflective pavement marker removal and installation and other pavement marking operations where workers are on foot, the required lighting level shall be provided at each truck and piece of equipment.

Sweeping. The required lighting level shall be mounted on the sweeping train vehicles during the sweeping operations. Headlights may be operated in the work zone.

Layout, Testing, and Inspection. The required lighting level shall be provided for each active area of construction layout, material testing, and inspection. The work area shall be defined as 15 ft in front and back of the individual(s) performing the tasks.

Nighttime work zone lighting will not be paid for as a separate item, but the cost shall be considered as included in the contract unit prices for the construction items involved. No additional compensation will be allowed.

STORM SEWERS AND SEWER CONNECTIONS TO CITY OF CHICAGO SEWERS

Created: September 30, 1985 Revised: March 10, 2021

This work consists of constructing storm sewers or sewer connections to City of Chicago sewers, in accordance with Section 550 of the Standard Specifications and the details shown in the plans at the locations shown on the plans.

All storm sewers and sewer connections 21 inches in diameter and smaller shall be best quality tile socket pipe conforming to the specifications for Extra Strength Clay Pipe, ASTM C 700, except as otherwise specified on the plans. Sewer pipes shall be gasketed in such a manner as to produce a compression type joint conforming to the requirements of ASTM C 425.

All storm sewer 24 inches in diameter or larger shall be reinforced concrete pipe conforming with ASTM Designation C76. All reinforced concrete pipe used must be gasketed. Each length of pipe must be provided with bell and spigot or tongue and groove ends of concrete formed on machined rings to ensure accurate joint surfaces. The physical properties of the gasket materials must conform to the requirements of those specified under ASTM Designation C443, ASTM Designation C361 and AASHTO Designation M198. Joints for catch basin and inlet connections shall be packed with oakum, caulked, and beveled off with portland cement mortar.

Ductile iron pipe shall be used to meet IEPA clearance requirements or other specific issues and must conform to the requirements of AWWA C151, class 52 and with the additions or substitutions specified in this section. Fittings must be gray or ductile iron conforming to AWWA C110. Polyethylene encasement must be installed around all buried pipe. Encasement material must be 4-mil, cross-laminated, high-density polyethylene tubing. The tubing must comply with AWWA C105.

<u>Basis of Payment</u>. This work will be measured and paid for at the contract unit price per FOOT for STORM SEWER in accordance with Articles 550.09 and 550.10 of the Standard Specifications.

Surface preparation shall include cleaning and preparation of the pavement surface using high pressure water, compressed air, sandblasting, or shot-blasting. Both asphalt and concrete surfaces shall be prepared and approved by the material manufacturer and the Engineer. Concrete surfaces shall require shot blasting preparation in addition to any other methods of preparation used. All surface damage shall be corrected by the Contractor at the Contractor's expense, as directed by the Engineer. Manufacturer recommended pavement and air temperatures must be followed.

New HMA shall have been placed 30 days prior to installation of the MMA acrylic colorized material and surface oils shall not be present. MMA acrylic colorized material applied on concrete surfaces shall receive a base coat application and shall be included in the pay item. Marking layout, material mixing, base coat application, and pigmented coat application shall comply with the manufacturer's installation procedures.

The Contractor shall protect the pavement markings from damage and allow them to fully cure prior to allowing traffic to drive over markings. Any damage shall be corrected by the Contractor at the Contractor's expense.

<u>Method of Measurement.</u> The quantity to be paid will be the area in square yards of methyl methacrylate pavement colorization of the color specified, measured in place, completed, and accepted.

<u>Basis of Payment.</u> This work will be paid for at the contract unit price per SQUARE YARD for METHYL METHACRYLATE PAVEMENT COLORIZATION of the color specified, which price will include all material, labor, equipment, and surface preparation needed for the installation.

CONCRETE TRUCK WASHOUT

<u>Description.</u> The Contractor shall take sufficient precautions to prevent pollution of streams, lakes, reservoirs, and wetlands with fuels, oils, bitumens, calcium chloride, or other harmful materials according to Article 107.23 of the Standard Specifications.

To prevent pollution by residual concrete and/or the by-product of washing out the concrete trucks, concrete washout facilities shall be constructed and maintained on any project which includes cast-in-place concrete items. The concrete washout shall be constructed, maintained, and removed according to this special provision. Concrete washout facilities shall be required regardless of the need for NPDES permitting. On projects requiring NPDES permitting, concrete washout facilities shall also be addressed in the Storm Water Pollution Prevention Plan.

The concrete washout facility shall be constructed on the jobsite in accordance with Illinois Urban Manual practice standard for Temporary Concrete Washout Facility (Code 654). The Contractor may elect to use a pre-fabricated portable concrete washout structure. The Contractor shall submit a plan for the concrete washout facility, to the Engineer for approval, a minimum of ten calendar days before the first concrete pour. The working concrete washout facility shall be in place before any delivery of concrete to the site. The Contractor shall ensure that all concrete washout activities are limited to the designated area.

The concrete washout facility shall be located no closer than 50 feet from any environmentally

/1

sensitive areas, such as water bodies, wetlands, and/or other areas indicated on the plans. Adequate signage shall be placed at the washout facility and elsewhere as necessary to clearly indicate the location of the concrete washout facility to the operators of concrete trucks.

The concrete washout facility shall be adequately sized to fully contain the concrete washout needs of the project. The contents of the concrete washout facility shall not exceed 75% of the facility capacity. Once the 75% capacity is reached, concrete placement shall be discontinued until the facility is cleaned out. Hardened concrete shall be removed and properly disposed of outside the right-of-way. Slurry shall be allowed to evaporate or shall be removed and properly disposed of outside the right-of-way. The Contractor shall immediately replace damaged basin liners or other washout facility components to prevent leakage of concrete waste from the washout facility. Concrete washout facilities shall be inspected by the Contractor after each use. Any and all spills shall be reported to the Engineer and cleaned up immediately. The Contractor shall remove the concrete washout facility when it is no longer needed.

<u>Basis of Payment.</u> The cost of all materials required and all labor necessary to comply with the above will be paid for at the contract unit price per LUMP SUM for WASHOUT BASIN. The unit price shall include all labor, equipment, and materials necessary to complete the work, regardless of the number washout facilities required.

APPROACH SLAB REMOVAL

<u>Description.</u> This work includes the removal and disposal of the existing approach slabs shown on the plans or as directed by the Engineer including approach slab pavement, bituminous overlays, reinforcement, stabilized sub-base, expansion joint material adjacent to the approach pavement, and sleeper slabs/footings. Approach slab removal and disposal shall be performed in accordance with Section 440 and Article 442.05(a) of the Standard Specifications and the following provisions.

Based on existing plans, the thickness of the existing pavement including subsequent resurfacing(s) is estimated at 10.5" PCC pavement. In the event the average combined thickness of the existing pavement and overlays in an area to be removed differs from the thickness shown on the plans, the Engineer will adjust the pay quantity, meeting this requirement as indicated by the following chart. Thickened haunches of the approach slab as well as any sleeper slab depth will be omitted from the average combined thickness calculation. The quantities will be increased when the thickness is greater and decreased when the thickness is less.

% Change of Thickness	% Change of Quantity
0 to less than 15	0
15 to less than 20	10
20 to less than 30	15
30 and greater	20

No other compensation will be allowed for variations in thickness from that shown on the plans.

against the entrance of moisture and other foreign matter by the use of clamp-on cable caps. The ends must be securely fastened so as not to become loose in transit. Before shipment, all reels must be wrapped with cardboard or other approved wrapping.

(b) Reel Marking. A metal tag must be securely attached to each reel indicating the reel number, contract number, date of shipment, gross and tare weights, description of the cable and the total footage.

GENERAL ELECTRICAL REQUIREMENTS

Effective: July 1, 2025

This special provision replaces Articles 801.01 - 801.07, 801.09 - 801-16 of the Standard Specifications.

<u>Definition</u>. Codes, standards, and industry specifications cited for electrical work shall be by definition the latest adopted version thereof, unless indicated otherwise.

Materials shall include electrical equipment, fittings, devices, motors, appliances, fixtures, apparatus, all hardware and appurtenances, and the like, used as part of, or in connection with, electrical installation.

<u>Standards of Installation.</u> Materials shall be installed according to the manufacturer's recommendations, the NEC, OSHA, the NESC, and AASHTO's Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals.

All like materials shall be from the same manufacturer. Listed and labeled materials shall be used whenever possible. The listing shall be according to UL or an approved equivalent.

<u>Safety and Protection</u>. Safety and protection requirements shall be as follows.

Safety. Electrical systems shall not be left in an exposed or otherwise hazardous condition. All electrical boxes, cabinets, pole handholes, etc. which contain wiring, either energized or non-energized, shall be closed or shall have covers in place and be locked when possible, during nonworking hours.

Protection. Electrical raceway or duct openings shall be capped or otherwise sealed from the entrance of water and dirt. Wiring shall be protected from mechanical injury.

Equipment Grounding Conductor. All electrical systems, materials, and appurtenances shall be grounded. Good ground continuity throughout the electrical system shall be assured, even though every detail of the requirements is not specified or shown. Electrical circuits shall have a continuous insulated equipment grounding conductor. When metallic conduit is used, it shall be bonded to the equipment grounding conductor, but shall not be used as the equipment grounding conductor.

Detector loop lead-in circuits, circuits under 50 volts, and runs of fiber optic cable will not require an equipment grounding conductor.

Where connections are made to painted surfaces, the paint shall be scraped to fully expose metal at the connection point. After the connection is completed, the paint system shall be repaired to the satisfaction of the Engineer.

Bonding of all boxes and other metallic enclosures throughout the wiring system to the equipment grounding conductor shall be made using a splice and pigtail connection. Mechanical connectors shall have a serrated washer at the contact surface.

All connections to structural steel or fencing shall be made with exothermic welds. Care shall be taken not to weaken load carrying members. Where connections are made to epoxy coated reinforcing steel, the epoxy coating shall be sufficiently removed to facilitate a mechanical connection. The epoxy coating shall be repaired to the satisfaction of the Engineer. Where connections are made to insulated conductors, the connection shall be wrapped with at least four layers of electrical tape extended 6 in. (150 mm) onto the conductor insulation.

<u>Submittals</u>. At the preconstruction meeting, the Contractor shall submit a written listing of manufacturers for all major electrical and mechanical items. The list of manufacturers shall be binding, except by written request from the Contractor and approval by the Engineer. The request shall include acceptable reasons and documentation for the change.

Within 30 calendar days after contract execution, the Contractor shall submit, for approval, through the method as directed in the pre-construction meeting. Submittals for the materials for each individual pay item shall be complete in every respect. Submittals which include multiple pay items shall have all submittal material for each item or group of items covered by a particular specification, grouped together and the applicable pay item identified. Various submittals shall, when taken together, form a complete coordinated package. A partial submittal will be returned without review unless prior written permission is obtained from the Engineer.

Submittals shall be provided for all items used, temporary and permanent, for review and approval.

Equipment which will be owned and maintained by a local agency other than the State shall be reviewed and approved by that agency prior to submittal to the State. The submittal to the State shall include any comments made by the local agency.

Each PDF document must be a vector format PDF from the originating supplier or program and not scanned images.

The submittal must clearly identify the specific model number or catalog number of the item being proposed. Submittals must be the Manufacturers current published information. Out of date submittal material will be grounds for rejection.

The submittal shall be properly identified by Contractor, Pay Item Number, route, section, county, and contract number. Example:

Contractor: Contractor Name

Pay Item: X0327607

Route: I-00

Section: 2013-xxx-yzx

County: Cook Contract: 12Z34

The Contractor shall have reviewed the submittal material and affixed the Contractor's stamp of approval, with date and signature, for each individual item prior to submittal. The Contractor's approval stamp shall be the first page of the submittal.

Illegible print, incompleteness, inaccuracy, or lack of coordination will be grounds for rejection.

Items from multiple disciplines shall not be combined on a single submittal and transmittal. Items for lighting, signals, surveillance, and CCTV must be in separate submittals since they may be reviewed by various personnel in various locations.

The Department may provide a list of pay items broken out by discipline upon request for a particular contract. In general, the disciplines are as follows:

Discipline	Typical Items		
ITS	CCTV CCTV structures Communication vaults Fiber optic Fiber optic duct Network equipment		
Breakaway devices Light poles Light tower Lighting Lighting cables Lighting controllers Luminaires Unit duct			
Pump Station	All pump station equipment		
Signing	Signing		
Surveillance	Loop cables Detector equipment & associated structures Ramp metering & associated structures Wireless pavement sensors and assoc. structures Radar detection Data Probing Handholes Dynamic Message Signs (DMS)		
Traffic Signal	Controllers/Cabinets Handholes Illuminated signs Pedestrian Push Buttons Signal Cable Signal Detectors Signal Heads Signal Loop Cable Signal Modules Signal Structures		
Local Roads Lighting	Same as lighting		
Local Roads Traffic Signal	Same as traffic signal		
Discipline with the predominate amount of work in contract or ask Engineer.	Raceways Electric cables Junction boxes		

The Engineer will review the submittals for conformance with the design concept of the project according to Article 105.04 and the following. The Engineer will stamp the drawings indicating their status as "Approved", "Approved as Noted", "Disapproved", "Incomplete", or "Information Only". Since the Engineer's review is for conformance with the design concept only, it shall be the Contractor's responsibility to coordinate the various items into a working system as specified. The Contractor shall not be relieved from responsibility for errors or omissions in the shop, working, or layout drawings by the Engineer's approval thereof. The Contractor shall still be in full compliance with contract and specification requirements.

All submitted items reviewed and marked "Disapproved", "Incomplete" or "Approved as Noted" shall be resubmitted by the Contractor in their entirety, unless otherwise indicated within the submittal comments.

Work shall not begin until the Engineer has approved the submittal. Material installed prior to approval by the Engineer, will be subject to removal and replacement at no additional cost to the Department.

Certifications. When certifications are specified and are available prior to material manufacture, the certification shall be included in the submittal information. When specified and only available after manufacture, the submittal shall include a statement of intent to furnish certification. All certificates shall be complete with all appropriate test dates and data.

Authorized Project Delay. See Article 801.08

Maintenance transfer and Preconstruction Inspection:

General. Before performing any excavation, removal, or installation work (electrical or otherwise) at the site, the Contractor shall request a maintenance transfer and preconstruction site inspection, to be held in the presence of the Engineer and a representative of the party or parties responsible for maintenance of any electrical systems (lighting, ITS, Pump Station, Surveillance, and traffic control systems) which may be affected by the work. The request for the maintenance transfer and preconstruction inspection shall be made no less than fourteen (14) calendar days prior to the desired inspection date. The maintenance transfer and preconstruction inspection shall:

Establish the procedures for formal transfer of maintenance responsibility required for the construction period.

Establish the approximate location and operating condition of the electrical systems which may be affected by the work.

Marking of Existing Cable Systems. The party responsible for maintenance of any existing electrical systems at the project site will, at the Contractor's request, mark and/or stake, once per location, all underground cable routes owned or maintained by the State. A project may involve multiple "locations" where separated electrical systems are involved (i.e. different controllers). The markings shall be taken to have a horizontal tolerance of at least 1 foot (304.8 mm) to either side. The request for the cable locations and marking shall be made at the same time the request for the maintenance transfer and preconstruction inspection is made. The Contractor shall exercise extreme caution where existing buried cable runs are involved. The markings of existing systems are made strictly for assistance to the Contractor and this does not relieve the Contractor of responsibility for the repair or replacement of any cable run damaged in the course of his work, as specified elsewhere herein. Note that the contractor shall be entitled to only one request for location marking of existing systems and that multiple requests may only be honored at the contractor's expense. No locates will be made after maintenance is transferred unless it is at the contractor's expense.

Condition of Existing Systems. The Contractor shall conduct an inventory of all existing electrical system equipment within the project limits, which may be affected by the work, making note of any parts which are found broken or missing, defective or malfunctioning. Megger and load readings shall be taken for all existing circuits which will remain in place or be modified. If a circuit is to be taken out in its entirety, then readings do not have to be taken. The inventory and test data shall be reviewed with and approved by the Engineer and a record of the inventory shall be submitted to the Engineer for the record. Without such a record, all systems transferred to the Contractor for maintenance during construction shall be returned at the end of construction in complete, fully operating condition."

Revised 10-21-2025

Maintenance and Responsibility During Construction.

Lighting Operation and Maintenance Responsibility. The scope of work shall include the assumption of responsibility for the continuing operation and maintenance of the existing, proposed, temporary, sign and navigation lighting, or other lighting systems and all appurtenances affected by the work as specified elsewhere herein. Maintenance of lighting systems is specified elsewhere and will be paid for separately.

The proposed lighting system must be operational prior to opening the roadway to traffic unless temporary lighting exists which is designed and installed to properly illuminate the roadway.

Electrical Infrastructure During Construction. The scope of work shall include locating and marking the proposed underground infrastructure installed in this contract.

Energy and Demand Charges. The payment of basic energy and demand charges by the electric utility for existing lighting which remains in service will continue as a responsibility of the Owner, unless otherwise indicated. Unless otherwise indicated or required by the Engineer duplicate lighting systems (such as temporary lighting and proposed new lighting) shall not be operated simultaneously at the Owner's expense and lighting systems shall not be kept in operation during long daytime periods at the Owner's expense. Upon written authorization from the Engineer to place a proposed new lighting system in service, whether the system has passed final acceptance or not, (such as to allow temporary lighting to be removed), the Owner will accept responsibility for energy and demand charges for such lighting, effective the date of authorization. All other energy and demand payments to the utility shall be the responsibility of the Contractor until final acceptance.

<u>Damage to Electrical Systems</u>. Should damage occur to any existing electrical systems through the Contractor's operations, the Engineer will designate the repairs as emergency or non-emergency in nature.

Emergency repairs shall be made by the Contractor, or as determined by the Engineer, the Department, or its agent. Non-emergency repairs shall be performed by the Contractor within six working days following discovery or notification. All repairs shall be performed in an expeditious manner to assure all electrical systems are operational as soon as possible. The repairs shall be performed at no additional cost to the Department.

Lighting. An outage will be considered an emergency when three or more lights on a circuit or three successive lights are not operational. Knocked down materials, which result in a danger to the motoring public, will be considered an emergency repair.

Temporary aerial multi-conductor cable, with grounded messenger cable, will be permitted if it does not interfere with traffic or other operations, and if the Engineer determines it does not require unacceptable modification to existing installations.

<u>Marking Proposed Locations.</u> The Contractor shall mark or stake the proposed locations of all poles, cabinets, junction boxes, pull boxes, handholes, cable routes, pavement crossings, and other items pertinent to the work. A proposed location inspection by the Engineer shall be requested prior to any excavation, construction, or installation work after all proposed installation

locations are marked. Any work installed without location approval is subject to corrective action at no additional cost to the Department.

<u>Inspection Of Electrical Work</u>. Inspection of electrical work shall be according to Article 105.12 and the following.

Before any splice, tap, or electrical connection is covered in handholes, junction boxes, light poles, or other enclosures, the Contractor shall notify and make available such wiring for the Engineer's inspection.

<u>Testing</u>. Before final inspection, the electrical work shall be tested. Tests may be made progressively as parts of the work are completed or may be made when the work is complete. Tests shall be made in the presence of the Engineer. Items which fail to test satisfactorily shall be repaired or replaced. Tests shall include checks of control operation, system voltages, cable insulation, and ground resistance and continuity.

The forms for recording test readings will be available from the Engineer in electronic format. The Contractor shall provide the Engineer with a written report of all test data including the following:

- Voltage Tests
- Amperage Tests
- Insulation Resistance Tests
- Continuity tests
- Resistance of Grounding Electrodes
- Detector Loop Tests

Lighting Systems. The following tests shall be made.

- (1) Voltage Measurements. Voltages in the cabinet from phase to phase and phase to neutral, at no load and at full load, shall be measured and recorded. Voltage readings at the last termination of each circuit shall be measured and recorded.
- (2) Insulation Resistance. Insulation resistance to ground of each circuit at the cabinet shall be measured and recorded with all loads disconnected. Prior to performance of the insulation resistance test, the Contractor shall remove all fuses within all light pole bases on a circuit to segregate the luminaire loads.

On tests of new cable runs, the readings shall exceed 50 megohms for phase and neutral conductors with a connected load over 20A and shall exceed 100 megohms for conductors with a connected load of 20A or less.

On tests of cable runs which include cables which were existing in service prior to this contract, the resistance readings shall be the same or better than the readings recorded at the maintenance transfer at the beginning of the contract. Measurements shall be taken with a megohm meter approved by the Engineer.

(3) Loads. The current of each circuit, phase main, and neutral shall be measured and recorded. The Engineer may direct reasonable circuit rearrangement. The current readings shall be within ten percent of the connected load based on material ratings.

Revised 10-21-2025

- (4) Ground Continuity. Resistance of the system ground as taken from the farthest extension of each circuit run from the controller (i.e. check of equipment ground continuity for each circuit) shall be measured and recorded. Readings shall not exceed 2.0 ohms, regardless of the length of the circuit.
- (5) Resistance of Grounding Electrodes. Resistance to ground of all grounding electrodes shall be measured and recorded. Measurements shall be made with a ground tester during dry soil conditions as approved by the Engineer. Resistance to ground shall not exceed 10 ohms.

Surveillance. The following tests shall be made in addition to the lighting system test above.

- (1) Detector Loops. Before and after permanently securing the loop in the pavement, the resistance, inductance, resistance to ground, and quality factor for each loop and lead-in circuit shall be tested.
- (2) The loop and lead-in circuit shall have an inductance between 20 and 2500 microhenries.
- (3) The resistance to ground shall be a minimum of 50 megohms under any conditions of weather or moisture.
- (4) The continuity test of the loop and loop lead-in shall not have a resistance greater than 2 ohms
- (5) The quality factor (Q) shall be 5 or greater.

Loops which fail to test satisfactorily shall be repaired or replaced.

Telecommunication Cable. Once the telecommunication cable is installed complete with all cable terminations complete the Contractor shall request an end-to-end test. The Contractor shall request the end-to-end test at least 7 days in advance to the TSC Engineer. Any lane closures and/or any other safety measures that need to be taken shall be provided for by the Contractor and shall be considered incidental to the cost of this item. The type of test performed shall be an end-to-end test with Halcyon type equipment transmitting and receiving at each end of the cable. Each pair shall be tested, and the results shall be recorded and submitted to the Engineer. If any results don't fall within the requirements set forth in (REA) PE-39, the Contractor shall correct and re-test that cable pair. Traffic Systems will tolerate only one pair out of every 100 pair of cable that doesn't meet or exceed specifications set forth in (REA) PE-39.

Wireless in-pavement detection systems shall be tested in accordance with the approved testing procedures provided in the catalog cut submittal.

<u>Fiber Optic Systems.</u> The Contractor shall submit detailed test procedures for approval by the Engineer. All fibers (terminated and un-terminated) shall be tested bi-directionally at both 1310 nm and 1550 nm with both an optical time domain reflectometer (OTDR) and a power meter with an optical source. For testing, intermediate breakout fibers may be concatenated and tested end-to-end. Any discrepancies between the measured results and these specifications will be resolved to the satisfaction of the Engineer.

Fibers which are not to be terminated shall be tested with a temporary fusion spliced pigtail fiber. Mechanical splice or bare fiber adapters are not acceptable.

The Contractor shall provide the date, time and location of any tests required by this specification to the Engineer at least five working (seven calendar) days before performing the test. Included with the notification shall be a record drawing of the installed fiber optic cable system. The drawings shall indicate actual installed routing of the cable, the locations of splices, and locations of cable slack with slack quantities identified.

Upon completion of the cable installation, splicing, and termination, the Contractor shall test all fibers for continuity, events above 0.1 dB, and total attenuation of the cable. The test procedure shall be as follows:

A certified technician utilizing an OTDR and optical source/power meter shall conduct the installation test. The test equipment used shall have been calibrated within the last two years. Documentation shall be provided. The technician is directed to conduct the test using the standard operating procedures defined by the manufacturer of the test equipment. All fibers installed shall be tested in both directions.

A fiber ring or fiber box shall be used to connect the OTDR to the fiber optic cable under test at both the launch and receive ends. The tests shall be conducted at 1310 and 1550 nm for all fibers.

All testing shall be witnessed by the Engineer, and a copy of the test results (CD ROM or USB Drive) shall be submitted on the same day of the test. Hardcopies shall be submitted as described herein with copies on CD ROM or USB Drive.

At the completion of the test, the Contractor shall provide copies of the documentation of the test results to the Engineer. The test documentation shall be submitted as two bound copies and three CD ROM, or USB drive copies, and shall include the following:

Cable & Fiber Identification:

- Cable ID
- Cable Location beginning and end point
- Fiber ID, including tube and fiber color
- Wavelength
- Pulse width (OTDR)
- Refractory index (OTDR)

- Operator Name
- Date & Time
- Setup Parameters
- Range (OTDR)
- Scale (OTDR)
- Setup Option chosen to pass OTDR "dead zone"

Test results shall include:

- OTDR Test results
 - Total Fiber Trace
- Splice Loss/Gain
- Events > 0.10 dB
- Measured Length (Cable Marking)
- Total Length (OTDR)
- Optical Source/Power Meter Total Attenuation (dB/km)

Sample Power Meter Tabulation:

	Power Meter Measurements (dB)								
Loc	ation	Fiber	Cable Length	Ι ΔΙΟΒ	B to A		Bidirectional Average		
Α	В	No.	(km)	1310 nm	1550 nm	1310 nm	1550 nm	1310 nm	1550 nm
		1							
		2							
		Maxi	mum Loss						
		Mini	mum Loss						

The OTDR test results file format must be Bellcore/Telcordia compliant according to GR-196-CORE Issue 2, OTDR Data Standard, GR 196, Revision 1.0, GR 196, Revision 1.1, GR 196, Revision 2.0 (SR-4731) in a ".SOR" file format. A copy of the test equipment manufacture's software to read the test files, OTDR and power, shall be provided to the Department. These results shall also be provided in tabular form, see sample below:

	Sample OTDR Summary				
Cable Designation:	TCF-IK-03	OTDR Location:	Pump Sta. 67	Date: 1/1/00	
Fiber	Event	Event	Event Lo	ss (dB)	
Number	Type	Location	1310 nm	1550 nm	
1	Splice	23500 Ft.	.082	.078	
1	Splice	29000 Ft.	.075	.063	
2	Splice	29000 Ft.	.091	.082	
3	Splice	26000 Ft.	.072	.061	
3	Bend	27000 Ft.	.010	.009	

The following shall be the criteria for the acceptance of the cable:

Upon completing all splicing operations for a cable span, the Contractor shall measure the mean bi-directional loss at each splice using an Optical Time Domain Reflectometer.

When splices are made between identical cables (same manufacturer and cable type) the average optical loss of each splice shall not exceed 0.10 dB. The average is determined by measuring the splice loss in both directions with an OTDR, adding the two readings, and dividing by two. Testing should be performed for both the 1310 and 1550 nm wavelengths. No individual splice loss measured in a single direction shall exceed 0.15 dB.

When splices are made between cables containing fibers of different mode field diameters, the average optical loss of each splice shall not exceed 0.50 dB. The average is determined by measuring the splice loss in both directions with an OTDR, adding the two readings, and dividing by two. Testing should be performed for both the 1310 and 1550 nm wavelengths. No individual splice loss measured in a single direction shall exceed 0.6 dB.

The Contractor shall measure the end-to-end attenuation of each fiber, from connector to connector, using an optical power meter and source. This loss shall be measured at from both directions and shall not exceed 0.5 dB per installed kilometer of single mode cable. Measurements shall be made at both 1300 and 1550 nm for single mode cable.

For multimode cable, power meter measurements shall be made at 850 and 1300 nm. The end-to-end attenuation shall not exceed 3.8 dB/installed kilometers at 850nm or 1.8 dB per installed kilometer at 1300nm for multimode fibers.

If the total loss exceeds these specifications, the Contractor shall replace or repair the cable run at the no additional cost to the state, both labor and materials. Elevated attenuation due to exceeding the pulling tension, or any other installation operation, during installation shall require the replacement of the cable run at no additional cost to the State, including labor and materials.

All test results shall be furnished to the Engineer seven working days before the date the inspection is scheduled.

<u>Contract Guarantee.</u> The Contractor shall provide a written guarantee for all electrical work provided under the contract for a period of six months after the date of acceptance with the following warranties and guarantees.

- (a) The manufacturer's standard written warranty for each piece of electrical material or apparatus furnished under the contract. The warranty for light emitting diode (LED) modules, including the maintained minimum luminance, shall cover a minimum of 120 months from the date of delivery.
- (b) The Contractor's written guarantee that, for a period of six months after the date of final acceptance of the work, all necessary repairs to or replacement of said warranted material or apparatus for reasons not proven to have been caused by negligence on the part of the user or acts of a third party shall be made by the Contractor at no additional cost to the Department.
- (c) The Contractor's written guarantee for satisfactory operation of all electrical systems furnished and constructed under the contract for a period of six months after final acceptance of the work.

The warranty for an UPS shall cover a minimum of two years from date the equipment is placed in operation; however, the batteries of the UPS shall be warranted for full replacement for a minimum of five years.

Record Drawings. Alterations and additions to the electrical installation made during the execution of the work shall be made on the PDF copy of the as-Let documents using a PDF editor. Hand drawn notations or markups and scanned plans are not acceptable. These drawings shall be updated daily and shall be available for inspection by the Engineer during the work. The record drawings shall include the following:

- Cover Sheet
- The Electrical Maintenance Contract Management System (EMCMS) location designation, i.e. "L", "TS", "S", "A" number.
- Summary of Quantities, electrical items only
- Legends, Schedules, and Notes
- Plan Sheets
- Final fiber assignment tables
- Pertinent Details
- Single Line Diagrams; electrical, communications, surveillance and fiber optic.
- Other useful information useful to locate and maintain the systems.

Any modifications to the details shall be indicated. Final quantities used shall be indicated on the Summary of Quantities. Foundation depths used shall also be listed.

As part of the record drawings, the Contractor shall inventory all materials, new or existing, on the project and record information on inventory sheets provided by the Engineer.

The inventory shall include:

- Location of Equipment, including rack, chassis, slot as applicable.
- Designation of Equipment
- Equipment manufacturer
- Equipment model number
- Equipment Version Number
- Equipment Configuration
 - o Addressing, IP or other
 - Settings, hardware or programming
- Equipment Serial Number

The following electronic inventory forms are available from the Engineer:

- Lighting Controller Inventory
- Lighting Inventory
- Light Tower Inspection Checklist
- ITS Location Inventory

The information shall be entered in the forms; handwritten entries will not be acceptable; except for signatures. Electronic file shall also be included in the documentation.

When the work is complete, and seven days before the request for a final inspection, the set of contract drawings, marked "**RECORD DRAWINGS**", shall be submitted to the Engineer for review and approval and shall be stamped with the date and the signature of the Contractor's supervising Engineer or Electrician. The record drawings shall be submitted in PDF format via a mutually agreed to electronic format for review and approval.

In addition to the record drawings, PDF copies of the final catalog cuts which have been Approved and Approved as Noted with applicable follow-up shall be submitted along with the record drawings. The PDF files shall clearly indicate either by filename or PDF table of contents (bookmarks) the respective pay item number. Specific part or model numbers of items which have been selected shall be clearly visible.

If the electric service is new or modified, documentation as required in the electric utility service connection shall be submitted.

During the final inspection, the Contractor shall provide three sets of electronically produced drawings in a moisture proof pouch to be kept on the inside door of the controller cabinet or other location approved by the Engineer. These drawings shall show the final as-built circuit orientation(s) of the project in the form of a single line diagram with all equipment designations and clearly identified.

Final documentation shall be submitted as a complete submittal package, i.e. record drawings, test results, inventory, etc. shall be submitted at the same time. Partial piecemeal submittals will be rejected without review.

A total of three hardcopies and two CD-ROMs or USB Drives of the final documentation shall be submitted. The identical material shall also be submitted in the same manner as the catalog cut submittals utilizing the following final documentation pay item numbers:

Pay Code	Description	Discipline
FDLRD000	Record Drawings - Lighting	Lighting
FDSRD000	Record Drawings - Surveillance	Surveillance
FDTRD000	Record Drawings - Traffic Signal	Traffic Signal
FDIRD000	Record Drawings - ITS	ITS
FDLCC000	Catalog Cuts - Lighting	Lighting
FDSCC000	Catalog Cuts – Surveillance	Surveillance
FDTCC000	Catalog Cuts – Traffic Signal	Traffic Signal
FDICC000	Catalog Cuts - ITS	ITS
FDLWL000	Warranty - Lighting	Lighting
FDSWL000	Warranty - Surveillance	Surveillance
FDTWL000	Warranty - Traffic Signal	Traffic Signal
FDIWL000	Warranty - ITS	ITS
FDLTR000	Test Results - Lighting	Lighting
FDSTR000	Test Results - Surveillance	Surveillance
FDTTR000	Test Results - Traffic Signal	Traffic Signal
FDITR000	Test Results - ITS ITS	
FDLINV00	Inventory - Lighting	Lighting
FDSINV00	Inventory - Surveillance	Surveillance
FDTINV00	Inventory - Traffic Signal	Traffic Signal
FDIINV00	Inventory - ITS	ITS
FDLGPS00	GPS - Lighting	Lighting
FDSGPS00	GPS - Surveillance	Surveillance
FDTGPS00	GPS - Traffic Signal Traffic Signal	
FDIGPS00	GPS - ITS ITS	
FDLES00	Electric Service - Lighting Lighting	
FDSES00	Electric Service - Surveillance Surveillance	
FDTES00	Electric Service - Traffic Signal	Traffic Signal
FDIES00	Electric Service - ITS	ITS

Record Drawings shall include marked up plans, controller info, electric service info, equipment settings, manuals, wiring diagrams for each discipline.

Test results shall be all electrical test results, fiber optic OTDR, and fiber optic power meter as applicable for each discipline.

GPS Documentation. In addition to the specified record drawings, the Contactor shall record GPS coordinates of the following electrical components being installed, modified or being affected in other ways by this contract:

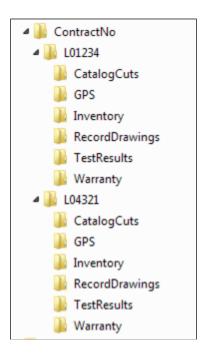
- All light poles and light towers.
- Handholes and vaults.
- Junction Boxes
- Conduit roadway crossings.
- Controllers.
- Control Buildings.
- Structures with electrical connections, i.e. DMS, lighted signs.
- Electric Service locations.
- CCTV Camera installations.
- Roadway Surveillance installations.
- Fiber Optic Splice Locations.
- Fiber Optic Cables. Coordinates shall be recorded along each fiber optic cable route every 200 feet.
- Fiber Optic Utility Markers
- All fiber optic slack locations shall be identified with quantity of slack cable included. When sequential cable markings are available, those markings shall be documented as cable marking into enclosure and marking out of enclosure.
- All wireless in-pavement vehicle detectors

Datum to be used shall be North American 1983.

Data shall be provided electronically. The electronic format shall be compatible with MS Excel. Latitude and Longitude shall be in decimal degrees with a minimum of 6 decimal places. Each coordinate shall have the following information:

- 1. District
- 2. Description of item
- 3. Designation
- 4. Use
- 5. Approximate station
- 6. Contract Number
- 7. Date
- 8. Owner
- 9. Latitude
- 10. Longitude
- 11. Comments

A spreadsheet template will be available from the Engineer for use by the Contractor.



Accuracy. Data collected is to be mapping grade. A handheld mapping grade GPS device shall be used for the data collection. The receiver shall support differential correction and data shall have minimum 5 meter accuracy after post processing.

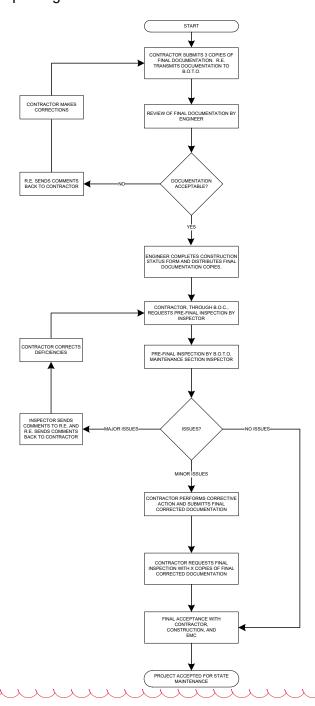
GPS receivers integrated into cellular communication devices, recreational and automotive GPS devices are not acceptable.

The GPS shall be the product of an established major GPS manufacturer having been in the business for a minimum of 6 years."

The documents on the CD ROM, or USB Drive shall be organized by the Electrical Maintenance Contract Management System (EMCMS) location designation. If multiple EMCMS locations are within the contract, separate folders shall be utilized for each location as follows:

Extraneous information not pertaining to the specific EMCMS location shall not be included in that particular folder and sub-folder.

The inspection will not be made until after the delivery of acceptable record drawings, specified certifications, and the required guarantees.


The Final Acceptance Documentation Checklist shall be completed and is contained elsewhere herein.

If CD's are used they shall be labeled as illustrated in the CD Label Template contained herein.

<u>Acceptance.</u> Acceptance of electrical work will be given at the time when the Department assumes the responsibility to protect and maintain the work according to Article 107.30 or at the time of final inspection.

When the electrical work is complete, tested, and fully operational, the Contractor shall schedule an inspection for acceptance with the Engineer no less than seven working days prior to the desired inspection date. The Contractor shall furnish the necessary labor and equipment to make the inspection.

A written record of the test readings taken by the Contractor according to Article 801.13 shall be furnished to the Engineer seven working days before the date the inspection is scheduled. Inspection will not be made until after the delivery of acceptable record drawings, specified certifications, and the required guarantees.

Final Acceptance Documentation Checklist

LOCATION			
Route	Common Name		
Limits	Section		
Contract #	County		
Controller Designation(s)	EMC Database Location Number(s)		

ITEM	Contractor (Verify)	Resident Engineer (Verify)
Record Drawings		
-Three hardcopies (11" x 17")		
-PDFs as required elsewhere		
Field Inspection Tests		
-Voltage		
-Amperage		
-Cable Insulation Resistance		
-Continuity		
-Controller Ground Rod Resistance		
(Three Hardcopies & PDFs as required)		
GPS Coordinates		
-Excel file (Check Special Provisions, Excel file required.)		
Job Warranty Letter		
(Three Hardcopies & PDFs as required)		
Catalog Cut Submittals		
-Approved & Approved as Noted		
(PDFs as required)		
Lighting Inventory Form		
(Three Hardcopies & PDFs as required)		
Lighting Controller Inventory Form		
(Three Hardcopies & PDFs as required)		_
Electric Service Documentation		
(Three Hardcopies & PDFs as required)		
Light Tower Inspection Form		
(If applicable, Three Hardcopies & PDFs as required)		

Three hardcopies & PDFs as required shall be submitted for all items above. If a CD ROM is used it shall be labeled as shown in the example contained herein.

General Notes:

Record Drawings – The record drawings should contain contract cover sheet, summary of quantities showing all lighting pay item sheets, proposed lighting plans and lighting detail sheets. Submit hardcopies shall be 11" x 17" size. Temporary lighting plans and removal lighting plans should not be part of the set.

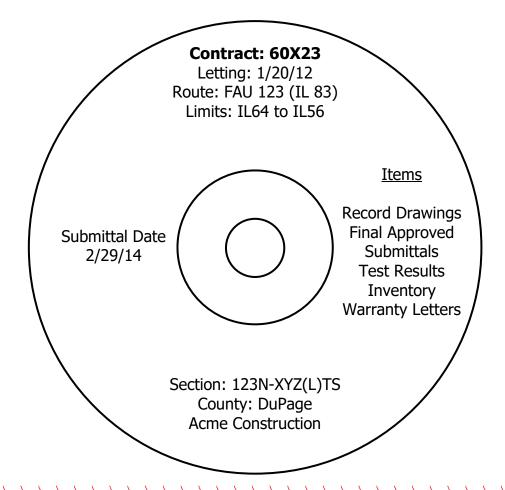
Field Inspection Tests – Testing should be done for proposed cables. Testing shall be per standard specifications. Forms shall be neatly filled out.

GPS Coordinates – Check special provisions "General Electrical Requirements". Submit electronic "EXCEL" file.

Job Warranty Letter – See standard specifications.

Cutsheet Submittal – See special provisions "General Electrical Requirements". Scan Approved and Approved as Noted cutsheets.

Lighting Inventory Form – Inventory form should include only proposed light poles, proposed light towers, proposed combination (traffic/light pole) lighting and proposed underpass luminaires.


Lighting Controller Inventory Form – Form should be filled out for only proposed lighting controllers.

Light Tower Safety Inspection Form – Form should be filled out for each proposed light tower.

CD LABEL FORMAT TEMPLATE.

Label must be printed; hand written labels are unacceptable and will be rejected.

LIGHT POLE, ALUMINUM, WITH MAST ARM, INSTALL ONLY

Description. This item will consist of installing and setting plumb an aluminum anchor base pole with aluminum davit arm and LED street light luminaire with node. The pole will be set on a foundation and affixed with anchor rods or bolts. The pole, davit arm, luminaire, and node will be furnished by the Chicago Department of Transportation (CDOT).

Material Specifications: 1351 Standard Drawings: 837, 949, 971

This item will consist of furnishing and installing a light pole complete with an arm of the length specified, and all hardware and accessories required for the permanent use of the pole.

ELECTRIC UTILITY SERVICE CONNECTION

Effective: March 9, 2024

<u>Description</u>. This work shall consist of providing a service connection from city cable to a Commonwealth Edison secondary cable. For an aerial service, this will be on a wood pole. For an underground service, this will be in a Commonwealth Edison manhole or ground mounted transformer enclosure.

<u>General Requirements</u>. This work shall consist of splicing or terminating city service cable to a Commonwealth Edison secondary cable, as directed by the Engineer. The Contractor must obtain permission from Edison for the service at the required location. The Contractor will inform Edison of the load required. Edison will make the connections unless Edison gives the Contractor permission to make the connections. All costs associated with the connection will be borne by the contractor.

Basis of Payment. This work will be paid for at the contract unit price per EACH for ELECTRIC UTILITY SERVICE CONNECTION.

SERVICE CONNECTION TO CECO LINE

<u>Description</u>. This work shall consist of providing a service connection from City cable to a Commonwealth Edison secondary cable. For an aerial service, this will be on a wood pole. For an underground service, this will be in a Commonwealth Edison manhole or ground mounted transformer enclosure.

General Requirements. This work shall consist of splicing or terminating City service cable to a Commonwealth Edison secondary cable, as directed by the Engineer. The contractor must obtain permission from Edison for the service at the required location. The contractor will inform Edison of the load required. Edison will make the connections unless Edison gives the contractor permission to make the connections. All costs associated with the connection will be borne by the contractor.

<u>Basis of Payment.</u> This work will be paid for at the contract unit price per EACH for SERVICE CONNECTION TO CECO LINE.

CLEANING EXISTING MANHOLE OR HANDHOLE

Effective: March 16, 2024

<u>Description.</u> This work shall consist of the removal and disposal of all foreign debris and liquids from the manhole or handhole. Manholes or handholes to be cleaned will be identified on the plans or by the Engineer.

<u>General Requirements.</u> The inside dimensions of handholes are typically 30" or 36" in diameter and 36" in depth. The inside dimensions of a manhole are typically $3' \times 4' \times 4'$ or $4' \times 6' \times 6'$. Handholes and manholes of other dimensions may be encountered.

Cleaning shall include opening the cover and placing the cover back in place after cleaning. Cables shall not be damaged or disturbed during the cleaning process. All debris removed from the hole shall be properly disposed of in an approved manner and not be left in the public way or dumped into the city sewer system. Guidelines outlined in Article 202.03 of the Standard Specifications for Road and Bridge Construction shall be followed.

<u>Basis of Payment</u>. This work will be paid at the contract unit price per EACH for CLEANING EXISTING MANHOLE OR HANDHOLE.

FAU 2420 (Keeler Avenue) Section FAI 290 22 KEELER BR Project 1XTC(478) Cook County Contract 62U41

TRAFFIC SURVEILLANCE - GENERAL

Effective: June 1, 1994 Revised: July 21, 2011

The following supplements applicable sections of Section 800 of the Standard Specifications for Road and Bridge Construction.

The intent of this special provision is to prescribe the materials and construction methods commonly used in traffic surveillance installations. All material furnished shall be new. The locations and the details of all installations shall be as indicated on the Plans or as directed by the Engineer.

When the road is open to traffic, except as otherwise provided, the Contractor may request a turn on and inspection of all complete traffic surveillance installations system. This request must be made to the Engineer a minimum of seven working days prior to the time of the requested inspection. Upon demonstration that all surveillance is operational, and all work is completed in accordance with the contract and to the satisfaction of the Bureau of Traffic Operations Electrical Engineer, The Bureau of Traffic Operations Electrical Engineer will then allow all of the surveillance to be placed in continuous operation. The agency that is responsible for the maintenance of the traffic surveillance installations will assume the maintenance upon successful completion of this inspection.

Projects which call for the storage and re-use of existing traffic surveillance equipment shall have a 30 day test period prior to project acceptance.

<u>Definition Of Terms.</u> Whenever in these Special Provisions the following terms are used, the intent and meaning shall be interpreted as follows:

Induction Loop - A continuous non-spliced wire, three turns, permanently placed and sealed in sawcuts in the roadway and adjacent area, used in conjunction with an induction loop detector sensor unit.

State Highway Communications Center - The main communication control facility of the Illinois Department of Transportation with present offices at 201 W. Center Court, Schaumburg, Illinois 60196-1096.

<u>Prosecution Of Surveillance Work.</u> The work shall be as indicated on the Plans and as required by the Specifications. Unless otherwise indicated, the Contractor shall furnish and install all required materials and equipment, including all associated appurtenances, to produce a complete and operational installation. The appurtenances shall be as indicated, and the costs shall be included in the unit prices bid for the pay items of this contract. The work shall be done in a workmanlike manner.

Connections To Existing Installations. Where new work connects to existing installations, the Contractor shall do all necessary cutting, fitting and foundation drilling to the existing installation and shall remove all existing work, as required, to make satisfactory connections, with the work to be performed under these Provisions, so as to leave the entire work in a finished and workmanlike manner, as approved by the Bureau of Traffic Operations Electrical Engineer. No raceways shall be allowed to enter cabinet through the sides or back walls.

Some contracted work which does not call for a complete rebuilding of a surveillance location but the replacement of detector loops and lead-in cable only in conjunction with work such as

FAU 2420 (Keeler Avenue) Section FAI 290 22 KEELER BR Project 1XTC(478) Cook County Contract 62U41

pavement overlay, cut and grind, curb and gutter replacement and other similar type work where existing appurtenances have been in place for several years. This at times has created pre-existing conditions (such as blocked/broken lead-in conduits, buried handholes) which the contractor may have to repair/replace to make the location fully functioning. The Contractor will be compensated for such work utilizing contract items after a complete inspection by the Bureau of Traffic Operations Electrical Engineer, Resident Engineer and Electrical Maintenance Contractor's Rep. with a full review on a case by case basis. Upon completing such work the Contractor shall notify the R.E. to contact the Bureau of Traffic Operations Electrical Engineer for checks and test to insure the location is on-line and working correctly.

The Contractor shall furnish all labor and material to the furtherance of this end, whether or not distinctly shown on the plans, in any of the "Standard Specifications" or in the Special Provisions.

Note that the Contractor shall be entitled to only one request for location marking of existing systems by the Electrical Maintenance Contractor and that multiple requests may only be honored at the Contractor's expense.

<u>Standard Guarantee.</u> Manufacturers' warranties or guarantees on all electrical and mechanical equipment consistent with those provided as customary trade practice shall be obtained and transferred to the State.

<u>In-Service Warranties Or Guarantees.</u> The Contractor shall provide warranties or guarantees that will provide for satisfactory in-service operation of the mechanical and electrical equipment and related components. These warranties or guarantees shall cover a period of two (2) years following project acceptance. The cost of these warranties and guarantees shall be considered incidental to the Contract.

Equipment Documents. The Contractor shall furnish five (5) diagrams of the internal and external connection of the equipment in each Bureau of Traffic Operations Electrical cabinet. Contractor shall also furnish the Operating and maintenance instructions for all equipment supplied. One copy of the wiring diagrams for each cabinet shall be retained in each field cabinet. A wiring diagram shall be contained in a plastic pouch that shall be permanently mounted to the door of each cabinet. Contractor shall permanently mark the cabinet for each termination and each terminal connection as to loop, tone, closure, phone, and lane function of each termination in the cabinet and provide a completed cable log and location as-built diagram at each location.

<u>Terminal Blocks.</u> Terminal blocks provided in field cabinets shall be the heavy duty barrier type. The terminal block shall be a minimum of 2 inches wide and 1-3/16 inch deep. Center to center of the terminal screws or studs shall be a minimum of 21/32 inch with barriers in between. Terminal blocks shall be rated at 45 amps 600 volts breakdown RMS line to line 11,000 V. and breakdown RMS line to ground 13,800 V. A marking strip shall be provided with each terminal block.

<u>1.8 Existing Equipment.</u> All existing equipment, replaced by new equipment shall remain the property of the State and shall be delivered to the Electrical Maintenance Contractor. The cost of removing and delivering the replaced equipment shall be paid for under separate pay item for Cabinet Housing Equipment - Removal.

<u>Telecommunication Cable.</u> When installing the telecommunication cable, the Contractor shall extend his installation and connections of the cable to the next adjacent Surveillance installations

Revised 10-21-2025

FAU 2420 (Keeler Avenue) Section FAI 290 22 KEELER BR Project 1XTC(478) Cook County Contract 62U41

or junction box, beyond the limits of his contract section. He shall be responsible for insuring that the cable is continuous and connected from one contract section to the other.

The Contractor shall comply with the agreement between the State of Illinois and IBT/Ameritech as to connections, locations, and terminations of the phone lines (Telephone Company, Engineering, General Service Engineering Division, Outside Plant Engineering Notes 14-36A., March 1971, Administrative Aids and Procedures).

Existing Surveillance Equipment And Appurtenances. Before starting work, the Contractor, in the presence of the Resident Engineer, Bureau of Traffic Operations Electrical Engineer and the State Electrical Maintenance Contractor's rep., shall inspect the existing equipment to be delivered or maintained by the Contractor and shall take an inventory of all defective, broken, and/or missing parts. Those parts found broken, defective, and/or missing shall be repaired or replaced by the State Electrical Maintenance contractor and shall be recorded as such. The Contractor shall be required to maintain all tone transmitters, tone receivers, tone power supplies, tone mounting frames, harnesses, controller and wiring. The Contractor shall be required to maintain all metering and surveillance cabinets, foundation, concrete handhole, vehicle detection equipment, all interconnecting cables and all Surveillance appurtenances including signal heads. Contractor shall number each cabinet as indicated on the plans, with reflective decals as those used on lighting pole standard.

Should damage occur to any surveillance items during the Contractor's contract period, the Contractor shall repair or replace all damaged equipment at his own expense. The Bureau of Traffic Operations Electrical Engineer shall determine what equipment shall be reusable and what shall be replaced. Replaced equipment shall be of equal or better quality and type.

The Contractor, prior to the commencement of his work, shall notify the Bureau of Traffic Operations Electrical Engineer for a pre-construction inspection. If construction begins prior to this meeting, the Contractor assumes maintenance responsibilities of the locations within his contract limits and shall make any repairs or replace any damaged equipment pre-existing or damaged as a result of his own negligence at his own expense. This also relieves the Electrical Maintenance Contractor of providing one free locate of the surveillance installations within the contract limits.

<u>As-Built Plans.</u> Upon completion of the work, the Contractor shall furnish one (1) copy of "as-built" drawings on CD compatible with Micro Station V8-2004 Edition software at the Bureau of Traffic Operations Electrical Design Section and four (4) full size sets of "as-built" plans to the Resident Engineer. The plans shall include definite locations and length of all cables, duct, conduit pushes, induction loop, lead-in, foundations, handhole and P-duct. The cost of the "as-built" plans shall be incidental to the contract. The Engineer will not authorize final inspection of any installations until the said plans are in his possession.

<u>Protection Of The Work.</u> Electrical work, equipment and appurtenances shall be protected from damage during construction until final acceptance. Electrical raceway or duct openings, shall be capped or sealed from the entrance of water and dirt. Wiring shall be protected from mechanical injury.

<u>Standards Of Installation.</u> Electrical work shall be installed in a neat and workmanlike manner in accordance with the best practices of the trade. Unless otherwise indicated, materials and equipment shall be installed in accordance with the manufacturer's recommendations.

Except as specified elsewhere herein, materials and equipment shall be in conformance with the requirements of Section 800 & 1088 of the Standard Specifications for Road and Bridge Construction.

In addition to the requirements of the Standard Specifications relating to control of materials, the Contractor shall comply with the following requirements.

The Contractor shall supply samples of all wire, cable, and equipment and shall make up and supply samples of each type of cable splice proposed for use in the work for the Engineer's approval.

Before equipment and/or material including cabinet, telemetry, and detectors are delivered to the job site, the Contractor shall obtain and forward to the Engineer a certified, notarized statement from the manufacturer, containing the catalog numbers of the equipment and/or material, guaranteeing that the equipment and/or material, after manufacture, comply in all respects with the requirements of the Specifications and these Special Provisions. Re-manufactured or modified equipment other than by the original manufacturer shall not be allowed. Original manufacturer shall certify that he made modification to the equipment.

All cost of work and materials required to comply with the above requirements shall be included in the pay item bid prices, under which the subject materials and equipment are paid, and no additional materials and equipment are paid, and no additional compensation will be allowed. Materials and equipment not complying with the above requirements that have been installed on the job will be done at the Contractor's own risk and may be subject to removal and disposal at the Contractor's expense.

<u>Procurement.</u> Materials and equipment shall be the products of established manufacturers, shall be new, and suitable for the service required. The Contractor is obligated to conduct his own search into the timely availability of the specified equipment and to ensure that all materials and equipment are in strict conformance with the contract documents. Materials or equipment items which are similar or identical shall be the product of the same manufacturer. The cost of submittals, certifications, any required samples and similar costs shall not be paid for extra but shall be included into the pay item bid price for the respective material or work.

Exceptions, Deviations And Substitutions. Exceptions to and deviations from the requirements of the Contract Documents shall not be allowed without approval by Engineer and Bureau of Traffic Operations Electrical Engineer. It is the Contractor's responsibility to note any deviations from contract requirements at the time of submittal and to make any requests for deviations in writing to the Engineer. In general, substitutions will not be acceptable. Requests for substitutions must demonstrate that the proposed substitution is superior to the material or equipment required by the Contract Documents. No substitutions shall be permitted without the approval of the Engineer, and Bureau of Traffic Operations Electrical Engineer.

<u>Submittals.</u> Within 30 days after contract award, the Contractor shall submit, for approval, complete manufacturer's product data (for standard products and components) and detailed shop drawings (for fabricated equipment). All of the submittal information shall be assembled by the Contractor and submitted to the Engineer at one time. All equipment samples shall be submitted at this time. Partial and sporadic submittals may be returned without review. The Contractor may request, in writing, permission to make a partial submittal. The Engineer will evaluate the circumstances of the request and may accept to review such a partial submittal. However, no additional compensation or extension of time shall be allowed for extra costs or delays incurred due to partial or late submittals.

<u>Testing.</u> Before final acceptance, the electrical equipment, material, induction loops and work provided under this contract shall be tested. Tests will not be made progressively, as parts of the work are completed they shall be all made at one time. Items which fail to test satisfactorily shall be repaired or replaced. Bureau of Traffic Operations Electrical Engineer will witness all testing.

<u>Installation/Inspection Procedures.</u> After <u>all</u> control boxes and equipment to be installed has been physically inspected and approved by Bureau of Traffic Operations Electrical Engineer, the equipment supplier shall then deliver <u>all</u> equipment to the job site. The Contractor shall then install/safeguard all the equipment which has been delivered prior to requesting an inspection. No unapproved equipment shall be on the job site or installed as part of the job. This does not relieve the Contractor from replacement/repairs of equipment found to be damaged or in noncompliance of these provisions.

Certain items such as conduit, wire, duct, anchor bolts, and junction boxes will be inspected and may be tested by the Department's Bureau of Materials and these items shall not be delivered to the job site without inspection approval. Items such as cabinets shall be inspected by the Engineer at the contractor's or manufacturer's shop and these items shall not be delivered to the job site without Bureau of Traffic Operations Electrical Engineer inspection approval. It shall be the Contractor's responsibility to arrange inspection activities with the Engineer thirty (30) days prior to installation. 30 days prior to installation of the tone equipment being supplied and, prior to request for a turn-on, the Bureau of Traffic Operations Electrical Engineer will be contacted for the correct frequencies, controller addresses and "DB" setting for each location to be installed. When the work is complete, all equipment fully operational, the Contractor shall schedule a turn-on inspection with the Engineer. Acceptance will be made as a total system, not as parts. The Contractor shall request the inspection no less than seven (7) working days prior to the desired inspection date.

No inspection shall be made until the delivery of acceptable "as built" drawings, specified certifications, and the required guarantees.

It will be the responsibility of the installing contractor to provide a qualified technician representing the tone equipment supplier to be at the turn-on inspection of each location to provide the technical expertise to bring each location on line.

The Contractor shall furnish the necessary manpower and equipment to make the Inspection. The Engineer may designate the type of equipment required for the inspection tests.

A written record of the loop analyzer readings shall be submitted to the Bureau of Traffic Operations Electrical Engineer prior to the final inspection.

Any part or parts of the installation that are missing, broken, defective, or not functioning properly during the inspection shall be noted and shall be adjusted, repaired, or replaced as directed by the Engineer and another inspection shall be made at another date. Only upon satisfaction of all points shall the installation be acceptable.

After the subject inspections are completed the Bureau of Traffic Operations Electrical Engineer will provide the contractor with a complete punch list of items necessary to be completed prior to final inspection and acceptance for maintenance.

The Contractor shall furnish a written guarantee for all materials, equipment and work performed under the contract for a period of not less than two (2) years from the date of final acceptance.

UNDERGROUND RACEWAYS

Effective: March 1, 2015

Revise Article 810.04 of the Standard Specifications to read:

"Installation. All underground conduits shall have a minimum depth of 30-inches below the finished grade."

Add the following to Article 810.04 of the Standard Specifications:

"All metal conduit installed underground shall be rigid steel conduit unless otherwise indicated on the plans."

Add the following to Article 810.04 of the Standard Specifications:

"All raceways which extend outside of a structure or duct bank but are not terminated in a cabinet, junction box, pull box, handhole, post, pole, or pedestal shall extend a minimum or 12" or the length shown on the plans beyond the structure or duct bank. The end of this extension shall be capped and sealed with a cap designed for the conduit to be capped.

The ends of rigid metal conduit to be capped shall be threaded, the threads protected with full galvanizing, and capped with a threaded galvanized steel cap.

The ends of rigid nonmetallic conduit and coilable nonmetallic conduit shall be capped with a rigid PVC cap of not less than 0.125" thick. The cap shall be sealed to the conduit using a room-temperature-vulcanizing (RTV) sealant compatible with the material of both the cap and the conduit. A washer or similar metal ring shall be glued to the inside center of the cap with epoxy, and the pull cord shall be tied to this ring."

CONDUIT RISER, GALVANIZED STEEL

<u>Description</u>. This work shall consist of furnishing and installing rigid steel conduit, including elbow, adjacent to a wood pole. Risers are intended to protect the cables inside from accidental or intentional damage.

<u>Materials</u>. Conduit shall meet the requirements of Article 1088.01 of the Standard Specifications. Fasteners and hardware shall meet the requirements of Article 1088.03 of the Standard Specifications.

<u>Construction Requirements.</u> A conduit sealing bushing shall be provided at the top of the riser to prevent water, debris, and insects from entering the riser.

<u>Basis of Payment.</u> This work will be paid for at the contract unit price per EACH for CONDUIT RISER, GALVANIZED STEEL.

MAINTENANCE OF EXISTING TRAFFIC SURVEILLANCE

Effective: June 1, 1994 Revised: May 29, 2015

This item shall consist of maintaining the existing Traffic Surveillance locations in place as shown on the plans and as described herein. The energy charges for the operation of the Traffic Surveillance Installation shall be paid for by others.

The maintenance of existing Traffic Surveillance Installation shall meet the requirements of Section Art. 801.11 of the Standard Specifications, except as follows:

Full maintenance responsibility shall start as soon as the General Contractor or Subs begins any physical work on the Contract or any portion thereof. The General Contractor shall maintain the existing surveillance Installations located within the Contract limits, in compliance with the current State Electrical Maintenance Contract by a qualified electrical Sub-Contractor.

At least five days prior to maintenance assumption of the existing Traffic Surveillance Installation(s) under this Contract, the Contractor shall request that the Resident Engineer contact TSC for an inspection of the Installation(s). The TSC Engineer shall establish a date and time of inspection and at that time shall check the Installation to determine if any corrective work should be done by the State's Electrical Maintenance Contractor prior to the Contractor taking over maintenance of the Installation. The Resident Engineer, TSC Engineer, and the Contractor shall mutually agree on the date of maintenance transfer to the Contractor for this section.

Maintenance Procedures: The electrical sub-contractor shall perform the following maintenance procedures for each existing Installation designated to remain in operation during Construction.

The electrical sub-contractor shall:

- Patrol and inspect each surveillance Installation every two weeks for general operation of the tone equipment and loop amplifiers to insure that they are functioning properly, check cabinet and or signal foundation tighten where necessary, check for proper alignment of signal heads (if applicable), lamp failures (if applicable), and shall be logged on the Surveillance Inspection and Repair Check List.
- Provide immediate corrective action to replace burned out lamps or damaged sockets.
 When lamps are replaced, the reflector and lens shall be cleaned. All replacement lamps shall meet the approval of the Resident Engineer. The electrical Sub-Contractor shall repair or replace all defective equipment from any cause whatsoever.
- 3. Maintain in stock at all times a sufficient amount of materials and equipment to provide effective temporary and permanent repairs.
- 4. Provide immediate corrective action when any part or parts of the system fail to function properly. Two heads facing each approach shall be considered the minimum acceptable signal operation.
- 5. Replace defective or damaged equipment.
- 6. A record tag shall be attached to each individual piece of equipment, with the date originally installed by the Engineer. The interval between successive dates of cleaning shall not exceed one year. Any component which fails in a manner which affects the intended operation of any Installation shall be repaired before it is returned to service. The

- electrical sub-contractor shall be required to maintain the existing type of equipment during the period of time that the original equipment is being repaired.
- 7. Provide the Engineer with the names, addresses, and telephone numbers of two persons qualified and assigned to the maintenance of the Traffic Surveillance Installation. These people must be made available 24 hours per day, each and every day of the year for emergency calls by the Engineer.
- 8. Respond to all emergency calls from the Department within one hour after notification and provide immediate corrective action. When equipment has been damaged or becomes faulty beyond repair, the Contractor shall replace it with new and identical equipment. The cost of furnishing and installing the replaced equipment shall be borne by the General Contractor at no additional charge to the State. The General Contractor may institute action to recover damages from a responsible third party. If at any time the Contractor fails to perform all work as specified herein to keep the Traffic Surveillance Installation in proper operating condition or if the Engineer cannot contact the Contractor's designated personnel, the Engineer shall have the State's electrical maintenance contractor perform the maintenance work required. The State's electrical maintenance contractor shall bill the General Contractor for the total cost of the work. The General Contractor shall pay this bill within 30 days of the date of receipt of the invoice or the cost of such work shall be deducted from the amount due the Contractor.
- 9. All dispatch tickets reporting malfunctions shall be responded to and cleared within one hour, and immediate corrective action shall be taken to correct the problem. He shall report back via telephone his findings and clear any dispatch tickets. If follow-up work is necessary, it shall commence within 10 days of notice, and permanent repairs shall be completed within 45 days!
- 10. The Contractor shall maintain all devices and appurtenances at the surveillance locations including but not limited to tone equipment, loop detectors, CB radios, inductance loops, flashing beacons, interconnecting cables, and wooden posts.
- 11. Upon completion of all Contract work, it shall be required prior to inspection that the cabinet be vacuumed and dusted and all handholes be pumped.

<u>Basis of Payment.</u> This item shall be paid for at the contract unit price per LUMP SUM for MAINTENANCE OF EXISTING TRAFFIC SURVEILLANCE, which price shall be payment in full for all materials, equipment, and labor needed to perform the work described herein.

TEMPORARY CONCRETE BARRIER (SPECIAL)

<u>Description</u>. This work shall consist of furnishing, placing, and maintaining precast concrete barrier at locations as shown on the Plans. This work shall be performed in accordance with Section and 704 of the Standard Specifications.

Barrier wall shall be pinned to the existing shoulder pavement to prevent movement and damage to conduit and cables to be attached to the wall.

At the completion of this contract, the barrier wall shall be left in place and shall become the property of the Department. Maintenance of barrier shall be transferred over to the Department.

<u>Method of Measurement.</u> Temporary Concrete Barrier (Special) will be measured for payment in feet, along the total length of the temporary concrete barrier.

<u>Basis of Payment.</u> This work will be paid for at the contract unit price per FOOT for TEMPORARY CONCRETE BARRIER (SPECIAL), which price shall include furnishing, placing, relocating, and maintaining temporary concrete barrier during construction.

Λ

DRILL EXISTING JUNCTION BOX

<u>Description.</u> This item consists of drilling a hole in an existing barrier wall and embedded junction box for the installation of a new conduit at the locations shown in the plans. General requirements must be in accordance with Section 801 of the Standard Specifications.

<u>Installation</u>. The size of the hole must be as close as possible to the size of the proposed conduit. Conduit openings must be fitted with the appropriate conduit fittings, nuts and accessories. The type and orientation of the conduit must be as shown in the plans.

<u>Materials</u>. All materials shall be in accordance with the requirements of Section 813 of the Standard Specification.

Installation for embedded junction box. Core drill through the existing barrier wall to reach the junction box. Use a knockout punch to make a hole into the side wall of the junction box. Do not disturb any existing cables within the junction box. Run a galvanized steel nipple through the hole.

Fill in any voids within the barrier wall around the conduit and seal the conduit entry point into the wall to prevent the collection of moisture. Sealer shall be detector loop sealer meeting the requirements of Article 1079.02(c) or an approved alternative.

Cleaning of the existing junction box (if required) will be included in this item.

<u>Method of Measurement.</u> Each hole that is drilled for a conduit (drilling the hole, furnishing and installing the conduit(s) and fitting(s)) including all necessary labor and material for a complete installation as indicated will be counted as a unit for payment.

<u>Basis of Payment.</u> This work will be paid for at the contract unit price per EACH for DRILL EXISTING JUNCTION BOX.

FIBER OPTIC CABLE, SINGLE MODE

Effective: September 1, 2024

<u>Description.</u> The Contractor shall furnish and install loose-tube, single-mode, fiber optic cable of the number of fibers specified as shown in the plans and as directed by the Engineer.

Other ancillary components, required to complete the fiber optic cable plant, including but not limited to, moisture and water sealants, cable caps, fan-out kits, etc., shall be included in the cost of fiber optic cable and will not be paid for separately.

<u>Materials.</u> The single-mode, fiber optic cable shall incorporate a loose, buffer-tube design. The cable shall be an accepted product of the United States Department of Agriculture Rural Utilities Service (RUS) 7 CFR 1755.900 and meet the requirements of ANSI/ICEA Standard for Fiber Optic Outside Plant Communications Cable.

<u>Fibers</u>. The cables shall use dispersion unshifted fibers. The optical and physical characteristics of the un-cabled fibers shall include:

The single-mode fiber shall meet EIA/TIA-492CAAA, "Detail Specification for Class IVa Dispersion-Unshifted Single-Mode Optical Fibers," and ITU recommendation G.652.D, "Characteristics of a single-mode optical fiber cable."

Physical Construction						
Requirement		Units	Value			
Cladding Diameter	(µm)	125.0 ± 0.7				
Core-to-Cladding Concentricity		(µm)	≤ 0.5			
Cladding Non-Circularity			≤ 0.7 %			
Mode Field Diameter	1310 nm	(µm)	9.2 ± 0.4			
	1550 nm		10.4 ± 0.5			
Coating Diameter		(µm)	245 ± 5			
Colored Fiber Nominal Diameter		(µm)	253 - 259			
Fiber Curl radius of curvature		(m)	> 4.0 m			

Optical Characteristics						
Requirement			Units	Value		
Cabled Fiber Attenuation		1310 nm 1550 nm	(dB/km)	≤ 0.4 ≤ 0.3		
Point discontinuity		1310 nm 1550 nm	(dB)	≤ 0.1 ≤ 0.1		
Macrobend Attenuation	Turns	Mandrel OD				
	1	32 ± 2 mm	(dB)	< 0.05 at 1550 nm		
	100	50 ± 2 mm		< 0.05 at 1310 nm		
	100	50 ± 2 mm		< 0.10 at 1550 nm		
	100	60 ± 2 mm		< 0.05 at 1550 nm		
	100	60 ± 2 mm		< 0.05 at 1625 nm		
Cable Cutoff Wavelength (λ ccf)			(nm)	< 1260		
Zero Dispersion Wavelength (λ _o)		(nm)	$1302 \le \lambda_o \le 1322$			
Zero Dispersion Slope (S _o)		(ps/(nm ² •km))	≤ 0.089			
Total Dispersion	1550 nm 1285-1330 nm 1625 nm		(ps/(nm•km))	≤ 3.5 ≤ 17.5 ≤ 21.5		
Cabled Polarization Mode Dispersion		(ps/km ⁻²)	≤ 0.2			
IEEE 802.3 GbE - 1300 nm Laser Distance		(m)	up to 5000			
Water Peak Attenuation: 1383 ± 3 nm			(dB/km)	≤ 0.4		

Cable Construction. The number of fibers in each cable shall be as specified on the plans.

Optical fibers shall be placed inside a loose buffer tube. The nominal outer diameter of the buffer tube shall be 3.0 mm. Each buffer tube shall contain up to 12 fibers. The fibers shall not adhere to the inside of the buffer tube.

Each fiber shall be distinguishable by means of color coding in accordance with TIA/EIA-598-B, "Optical Fiber Cable Color Coding." The fibers shall be colored with ultraviolet (UV) curable inks.

Buffer tubes containing fibers shall be color coded with distinct and recognizable colors in accordance with TIA/EIA-598-B, "Optical Fiber Cable Color Coding." Buffer tube colored stripes shall be inlaid in the tube by means of co-extrusion when required. The nominal stripe width shall be 1 mm.

For cables containing more than 12 buffer tubes, standard colors are used for tubes 1 through 12 and stripes are used to denote tubes 13 through 24. The color sequence applies to tubes containing fibers only, and shall begin with the first tube. If fillers are required, they shall be placed in the inner layer of the cable. The tube color sequence shall start from the inside layer and progress outward.

In buffer tubes containing multiple fibers, the colors shall be stable across the specified storage and operating temperature range and shall not be subject to fading or smearing onto each other. Colors shall not cause fibers to stick together.

The buffer tubes shall be resistant to external forces and shall meet the buffer tube cold bend and shrinkback requirements of 7 CFR 1755.900.

Fillers may be included in the cable core to lend symmetry to the cable cross-section where needed. Fillers shall be placed so that they do not interrupt the consecutive positioning of the buffer tubes. In dual layer cables, any fillers shall be placed in the inner layer. Fillers shall be nominally 2.5 mm or 3.0 mm in outer diameter.

The central member shall consist of a dielectric, glass reinforced plastic (GRP) rod (optional steel central member). The purpose of the central member is to provide tensile strength and prevent buckling. The central member shall be overcoated with a thermoplastic when required to achieve dimensional sizing to accommodate buffer tubes/fillers.

Each buffer tube shall contain a water-swellable yarn for water-blocking protection. The water-swellable yarn shall be non-nutritive to fungus, electrically non-conductive, and homogeneous. It shall also be free from dirt or foreign matter. This yarn will preclude the need for other water-blocking material; the buffer-tube shall be gel-free. The optical fibers shall not require cleaning before placement into a splice tray or fan-out kit.

Buffer tubes shall be stranded around the dielectric central member using the reverse oscillation, or "S-Z", stranding process.

Water swellable yarn(s) shall be applied longitudinally along the central member during stranding.

Two polyester yarn binders shall be applied contra-helically with sufficient tension to secure each buffer tube layer to the dielectric central member without crushing the buffer tubes. The binders shall be non-hygroscopic, non-wicking, and dielectric with low shrinkage.

For single layer cables, a water swellable tape shall be applied longitudinally around the outside of the stranded tubes/fillers. The water swellable tape shall be non-nutritive to fungus, electrically non-conductive, and homogenous. It shall also be free from dirt and foreign matter.

For dual layer cables, a second (outer) layer of buffer tubes shall be stranded over the original core to form a two layer core. A water swellable tape shall be applied longitudinally over both the inner and outer layer. The water swellable tape shall be non-nutritive to fungus, electrically non-conductive, and homogenous. It shall also be free from dirt and foreign matter.

The cables shall contain one ripcord under the sheath for easy sheath removal.

Tensile strength shall be provided by the central member, and additional dielectric yarns as required.

The dielectric yarns shall be helically stranded evenly around the cable core.

The cables shall be sheathed with medium density polyethylene (MDPE). The minimum nominal jacket thickness shall be 1.4 mm. Jacketing material shall be applied directly over the tensile

strength members (as required) and water swellable tape. The polyethylene shall contain carbon black to provide ultraviolet light protection and shall not promote the growth of fungus.

The MDPE jacket material shall be as defined by ASTM D1248, Type II, Class C, Category 4 and Grades J4, E7 and E8.

Fiber optic cables for 12 fibers used a lateral cable shall have a corrugated armored sheath.

The jacket or sheath shall be free of holes, splits, and blisters.

The cable jacket shall contain no metal elements and shall be of a consistent thickness.

Cable jackets shall be marked with the manufacturer's name, month and year of manufacture, sequential meter or foot markings, a telecommunication handset symbol as required by Section 350G of the National Electrical Safety Code (NESC), fiber count, and fiber type. The actual length of the cable shall be within -0/+1% of the length markings. The print color shall be white, with the exception that cable jackets containing one or more co-extruded white stripes, which shall be printed in light blue. The height of the marking shall be approximately 2.5 mm.

The maximum pulling tension shall be 2700 N (608 lbf) during installation (short term) and 890 N (200 lbf) long term installed.

The shipping, storage, and operating temperature range of the cable shall be -40 $^{\circ}$ C to +70 $^{\circ}$ C. The installation temperature range of the cable shall be -30 $^{\circ}$ C to +70 $^{\circ}$ C.

<u>General Cable Performance Specifications.</u> The fiber optic cable manufacturer shall provide documentation and certify that the fiber optic cable complies with the following EIA-455-xxx Fiber Optic Test Procedures (FOTP):

When tested in accordance with FOTP-3, "Procedure to Measure Temperature Cycling Effects on Optical Fibers, Optical Cable, and Other Passive Fiber Optic Components," the change in attenuation at extreme operational temperatures (-40°C and +70°C) shall not exceed 0.15 dB/km at 1550 nm for single-mode fiber and 0.3 dB/km at 1300 nm for multimode fiber.

When tested in accordance with FOTP-82, "Fluid Penetration Test for Fluid-Blocked Fiber Optic Cable," a one meter length of unaged cable shall withstand a one meter static head or equivalent continuous pressure of water for one hour without leakage through the open cable end.

When tested in accordance with FOTP-81, "Compound Flow (Drip) Test for Filled Fiber Optic Cable," the cable shall exhibit no flow (drip or leak) of filling and/or flooding material at 70°C.

When tested in accordance with FOTP-41, "Compressive Loading Resistance of Fiber Optic Cables," the cable shall withstand a minimum compressive load of 125 lbf/in applied uniformly over the length of the sample. The 125 lbf/in load shall be applied at a rate of 0.1 in per minute. The load shall be maintained for a period of 1 minute. The load shall then be decreased to 110 63 lbf/in. Alternatively, it is acceptable to remove the 125 lbf/in load entirely and apply the 110 63 lbf/in load within five minutes at a rate of 0.1 in per minute. The 63 lbf/in load shall be maintained for a period of 10 minutes. Attenuation measurements shall be performed before release of the 63 lbf/in load. The change in attenuation shall not exceed 0.15 dB at 1550 nm for single-mode fibers and 0.30 dB at 1300 nm for multimode fiber.

When tested in accordance with FOTP-104, "Fiber Optic Cable Cyclic Flexing Test," the cable shall withstand 25 mechanical flexing cycles around a sheave diameter not greater than 20 times the cable diameter. The change in attenuation shall not exceed 0.15 dB at 1550 nm for single-mode fiber and 0.30 dB at 1300 nm for multimode fiber.

When tested in accordance with FOTP-25, "Repeated Impact Testing of Fiber Optic Cables and Cable Assemblies," except that the number of cycles shall be two at three locations along a one meter cable length and the impact energy shall be atleast 4.4 Nm (in accordance with ICEA S-87-640)", the change in attenuation shall not exceed 0.15 dB at 1550 nm for single-mode fiber and 0.30 dB at 1300 nm for multimode fiber.

When tested in accordance with FOTP-33, "Fiber Optic Cable Tensile Loading and Bending Test," using a maximum mandrel and sheave diameter of 560 mm, the cable shall withstand a rated tensile load of 2670N (601 lbf) and residual load of 30% of the rated installation load. The axial fiber strain shall be \leq 60% of the fiber proof level after completion of 60 minute conditioning and while the cable is under the rated installation load. The axial fiber strain shall be \leq 20% of the fiber proof level after completion of 10 minute conditioning and while the cable is under the residual load. The change in attenuation at residual load and after load removal shall not exceed 0.15 dB at 1550 nm for single mode fiber and 0.30 dB at 1300 nm for multimode fiber.

When tested in accordance with FOTP-85, "Fiber Optic Cable Twist Test," a length of cable no greater than 2 meters shall withstand 10 cycles of mechanical twisting. The change in attenuation shall not exceed 0.15 dB at 1550 nm for single-mode fiber and 0.30 dB at 1300 nm for multimode fiber.

When tested in accordance with FOTP-37, "Low or High Temperature Bend Test for Fiber Optic Cable," the cable shall withstand four full turns around a mandrel of ≤ 20 times the cable diameter after conditioning for four hours at test temperatures of -30°C and +60°C. Neither the inner or outer surfaces of the jacket shall exhibit visible cracks, splits, tears, or other openings. The change in attenuation shall not exceed 0.30 dB at 1550 nm for single mode fiber and 0.50 dB at 1300 nm for multimode fiber.

<u>Quality Assurance Provision.</u> All cabled optical fibers > 1000 meters in length shall be 100% attenuation tested. The attenuation of each fiber shall be provided with each cable reel. The cable manufacturer shall be TL 9000 registered.

<u>Packaging.</u> Top and bottom ends of the cable shall be available for testing. Both ends of the cable shall be sealed to prevent the ingress of moisture. Each reel shall have a weather resistant reel tag attached identifying the reel and cable. The reel tag shall include the following information:

- Cable Number
- Gross Weight
- Shipped Cable Length in Meters
- Job Order Number
- Product Number
- Customer Order Number
- Date Cable was Tested
- Manufacturer Order Number
- Cable Length Markings

a: Top (inside end of cable)b: Bottom (outside end of cable)

The reel (one flange) marking shall include:

- Manufacturer
- Country of origin
- An arrow indicating proper direction of roll when handling
- Fork lift-handling illustration
- Handling Warnings.

Each cable shall be accompanied by a cable data sheet. The cable data sheet shall include the following information:

- Manufacturer Cable Number
- Manufacturer Product Number
- Manufacturer Factory Order Number
- Customer Name
- Customer Cable Number
- Customer Purchase Order Number
- Mark for Information
- Ordered Length
- Maximum Billable Length
- Actual Shipped Length
- Measured Attenuation of Each Fiber

The cable shall be capable of withstanding a minimum-bending radius of 20 times its outer diameter during installation and 10 times its outer diameter during operation without changing the characteristics of the optical fibers.

The cable shall meet all of specified requirements under the following conditions:

- Shipping/storage temperature: -58° F to +158° F
- Installation temperature: -22° F to +158° F
- Operating temperature: -40° F to +158° F
- Relative humidity from 0% to 95%, non-condensing

Optical Patch Cords and Pigtails. The optical patch cords and pigtails shall comply with the following:

- The optical patch cords shall consist of a section of single fiber, jacketed cable equipped with optical connectors at both ends.
- The factory installed connector furnished as part of the optical patch cords and pigtails shall meet or exceed the requirements for approved connectors specified herein.
- The fiber portion of each patch cord and pigtail shall be a single, jacketed fiber with optical properties identical to the optical cable furnished under this contract.
- The twelve fiber single-mode fiber optic cable shall be installed as a pigtail with factory installed ST compatible connectors.
- The patch cords shall comply with Telcordia GR-326-CORE

<u>Connectors</u>. The optical connectors shall comply with the following:

- All connectors shall be factory installed ST compatible connectors. Field installed connectors shall not be allowed.
- Maximum attenuation 0.4dB, typical 0.2dB.
- No more than 0.2dB increase in attenuation after 1000 insertions.
- Attenuation of all connectors will be checked and recorded at the time of installation with an insertion test minimum 5 times checked with an OTDR.
- All fibers shall be connectorized at each end.
- All fibers shall terminate at a fiber patch panel
- Unused fibers will be protected with a plastic cap to eliminate dust and moisture.
- Termination shall be facilitated by splicing factory OEM pigtails on the end of the bare fiber utilizing the fusion splicing method. Pigtails shall be one meter in length.

CONSTRUCTION REQUIREMENTS

<u>Experience Requirements.</u> Personnel involved in the installation, splicing and testing of the fiber optic cables shall meet the following requirements:

- A minimum of three years experience in the installation of fiber optic cables, including fusion splicing, terminating and testing single mode fibers.
- Install two systems where fiber optic cables are outdoors in conduit and where the systems
 have been in continuous satisfactory operation for at least two years. The Contractor shall
 submit as proof, photographs or other supporting documents, and the names, addresses
 and telephone numbers of the operating personnel who can be contacted regarding the
 installed fiber optic systems.
- One fiber optic cable system (which may be one of the two in the preceding paragraph), which the Contractor can arrange for demonstration to the Department representatives and the Engineer.

Installers shall be familiar with the cable manufacturer's recommended procedures for installing the cable. This shall include knowledge of splicing procedures for the fusion splicer being used on this project and knowledge of all hardware such as breakout (furcation) kits and splice closures. The Contractor shall submit documented procedures to the Engineer for approval and to be used by Construction inspectors.

Personnel involved in testing shall have been trained by the manufacturer of the fiber optic cable test equipment to be used, in fiber optic cable testing procedures. Proof of this training shall be submitted to the Engineer for approval. In addition, the Contractor shall submit documentation of the testing procedures and a copy of the test equipment operation manual for approval by the Engineer.

<u>Installation in Raceways.</u> Prior to installation, the Contractor shall provide a cable-pulling plan. The plan shall include the following information:

- Identify where each cable will enter the underground system and the direction each pull.
- Identify locations where the cable is pulled out of a handhole, coiled in a figure eight, and pulled back into the hand hole.

- The plan shall address the physical protection of the cable during installation and during periods of downtime.
- Identify the location of slack storage locations
- Identify the locations of splices.
- Identify distances between fiber access points and crossings.

The cable-pulling plan shall be provided to the Engineer for approval a minimum of 15 working days prior to the start of installation. The Engineer's approval shall be for the operation on the freeway and does not include an endorsement of the proposed procedures. The Contractor is responsible for the technical adequacy of the proposed procedures.

During cable pulling operations, the Contractor shall ensure that the minimum bending of the cable is maintained during the unreeling and pulling operations. Unless specified otherwise by the fiber optic cable manufacturer, the outside bend radius of the cable during installation shall be no less than 20 times the outside diameter of the fiber optic cable. Entry guide chutes shall be used to guide the cable into the handhole conduit ports. Lubricating compound shall be used to minimize friction. Corner rollers (wheels), if used, shall not have radii less than the minimum installation-bending radius of the cable. A series array of smaller wheels can be used for accomplishing the bend if the cable manufacturers specifically approve the array.

If figure-eight techniques are used during cable installation, the cable shall be handled manually and stored on the ground. The cable shall be placed on tarps to prevent damage from gravel, rocks, or other abrasive surfaces. Tarps should also be used in muddy conditions to keep the cable clean. Enough area to accommodate the cable length to be stored and sufficient personnel to maintain the required minimum-bending diameter as well as avoid kinking or otherwise damaging the cable shall be provided. If the cable has been figure-eighted in preparation for a forward feed, the figure-eight must be flipped over to access the outside cable end. Provide sufficient personnel to avoid kinking the cable as the figure-eight is flipped over. When removing the cable from the figure-eight, use care to avoid kinking the cable and violating the minimum-bending diameter.

Power assisted or figure-eight eliminator equipment, which is used to eliminate manual figure-eight procedures, shall not be used unless specifically allowed by the cable manufacturer in writing.

The pulling tension shall be continuously measured and shall not be allowed to exceed the maximum tension specified by the manufacturer of the cable. A dynamometer or in-line tensiometer shall be used to monitor tension in the pull-line near the winch. This device must be visible to the winch operator or used to control the winch. The pulling system shall have an audible alarm that sounds whenever a pre-selected tension level is reached. Tension levels shall be recorded continuously and shall be given to the engineer as well as included in the record drawing package.

The use of a breakaway link (swivel) may be used to ensure that the maximum tension of the cable is not exceeded. Breakaway links react to tension at the pulling eye and shall not be used in lieu of tension measuring devices. All pulling equipment and hardware which will contact the cable during installation must maintain the cable's minimum bend radius. Equipment including sheaves, capstans, bending shoes, and quadrant blocks shall be designed for use with fiber optic cable.

The cable shall be pulled into the conduit as a single component, absorbing the pulling force in all tension elements. The central strength member and Aramid yarn shall be attached directly to the pulling eye during cable pulling. "Basket grip" type attachments, which only attach to the cable's outer jacket, shall not be permitted. A breakaway swivel, rated at 95% of the cable manufacturer's approved maximum tensile loading, shall be used on all pulls. When simultaneously pulling fiber optic cable with other cables, separate grooved rollers shall be used for each cable.

To minimize the exposure of the backbone cable and to facilitate the longer lengths of fiber optic cable, the Contractor shall use a "blown cable" (pneumatically assisted) technique to place the fiber optic cable. A Compressed air cooler shall be used when ambient air temperatures reaches 90°F or more.

Where cable is to be pulled through existing conduit which contains existing cables, optical or other, the existing cables shall be removed and reinstalled with the fiber optic cable as indicated on the plans. The removal of the cable(s) shall be paid for separately. Reinstallation of the existing cables, if indicated on the plans, along with the fiber optic cable shall be included in this item for payment.

Armored fiber optic cables shall be grounded as shown on the plans.

<u>Tracer Wire.</u> Tracer wire shall be paid for separately and installed with all fiber optic cable runs as specified for Tracer Wire.

<u>Aerial Fiber Optic Cable.</u> Aerial fiber optic cable assemblies shall be of a self-supporting figure-8 design. The fiber optic cable shall be as described herein and shall be waterblocked utilizing water-swellable materials. The cable assembly shall be designed and manufactured to facilitate midspan access.

The submittal information must include a copy of the standard installation instructions for the proposed cable. Installed cable sag shall not exceed 1% of the span distance. The submittal information must also include catalog cuts for all hardware to be utilized in the installation.

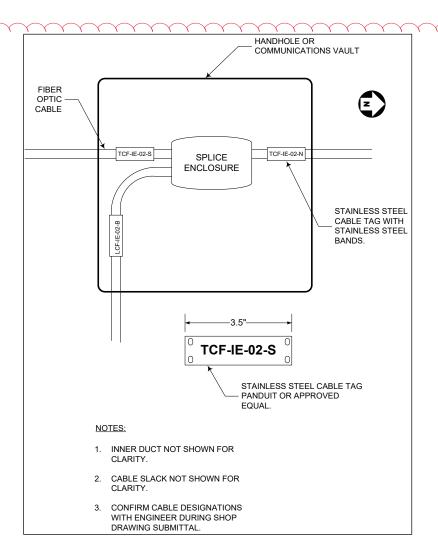
Construction Documentation Requirements

Installation Practices for Outdoor Fiber Optic Cable Systems . The Contractor shall examine the proposed cable plant design. At least one month prior to starting installation of the fiber optic cable plant, the Contractor shall prepare and submit to the Engineer for review and approval, ten (10) copies of the Contractor's "Installation Practices for Outdoor Fiber Optic Cable Systems" manual. This manual shall address the Contractor's proposed practices covering all aspects of the fiber optic cable plant. This submittal shall include all proposed procedures, list of installation equipment, and splicing and test equipment. Test and quality control procedures shall be detailed as well as procedures for corrective action.

<u>Operation and Maintenance Documentation.</u> After the fiber optic cable plant has been installed, ten complete sets of Operation and Maintenance Documentation shall be provided. The documentation shall, as a minimum, include the following:

 Complete and accurate as-built diagrams showing the entire fiber optic cable plant including locations of all splices.

- Final copies of all approved test procedures
- Complete performance data of the cable plant showing the losses at each splice location and each terminal connector.
- · Complete parts list including names of vendors.


<u>Testing Requirements.</u> The Contractor shall submit detailed test procedures for approval by the Engineer as specified in the General Electrical Provisions.

<u>Splicing Requirements. Splices</u> shall be made at locations shown on the Plans. Any other splices shall be permitted only with the approval of the Engineer. Splices will be paid for separately. All splice locations must be identified in the Record Drawings. Cable runs which dead-end at a handhole, communications vault, interconnect cabinet, or any other type of enclosure, shall be dead ended in a splice enclosure.

Slack Storage of Fiber Optic Cables. Included as a part of this item, slack fiber shall be supplied as necessary to allow splicing the fiber optic cables in a controlled environment, such as a splicing van or tent. After splicing has been completed, the slack fiber shall be stored underground in handholes or in the raised base adapters of ground mounted cabinets in accordance with the fiber optic cable manufacturer's guidelines. Fiber optic cable slack shall be 100 feet for each cable at each splice location, above or below ground. Fiber optic cable slack shall be 50 feet for each cable at access points, above or below ground, where splicing is not involved. If the innerduct is cut, the ends of the innerduct should extend beyond the first vertical rack so they can be secured at that point. This slack shall be measured for payment.

Fiber optic cable shall be tagged inside handholes with yellow tape containing the text: "CAUTION - FIBER OPTIC CABLE." In addition, permanent tags, as approved by the engineer, shall be attached to all cable in a hand hole or other break-out environment. These tags shall be stainless steel, nominally 0.75" by 1.72", and permanently embossed. These tags shall be attached with stainless steel straps, and shall identify the cable number, the number of fibers, and the specific fiber count. Tags and straps shall be Panduit or approved equal. See figure below:

Label the destination of each trunk cable onto the cable in each handhole, vault or cable termination panel.

Method of Measurement. Fiber optic cable will be measured for payment in feet in place installed and tested. Fiber optic cable will be measured horizontally and vertically between the changes in direction, including slack cable. The entire lengths of cables installed in buildings will be measured for payment

<u>Basis of Payment.</u> This work will be paid for at the contract unit price per FOOT for FIBER OPTIC CABLE of the number of fibers, SINGLE MODE; or FIBER OPTIC CABLE ARMORED of the number of fibers, SINGLE MODE specified. Payment shall not be made until the cable is installed, spliced and tested in compliance with these special provisions.

FIBER OPTIC SPLICE

Effective: June 1, 2014

<u>Description</u>. The Contractor will splice optical fibers from different cable sheaths and protect them with a splice closure at the locations shown on the Plans. Fiber splicing consists of in-line fusion splices for all fibers described in the cable plan at the particular location.

Two splices are identified. A mainline splice includes all fibers in the cable sheath. In a lateral splice, the buffer tubes in the mainline cable are dressed out and those fibers identified on the plans are accessed in and spliced to lateral cables.

Materials.

Splice Closures. Splice Closures shall be designed for use under the most severe conditions such as moisture, vibration, impact, cable stress and flex temperature extremes as demonstrated by successfully passing the factory test procedures and minimum specifications listed below:

<u>Physical Requirements</u>. The closures shall provide ingress for up to four cables in a butt configuration. The closure shall prevent the intrusion of water without the use of encapsulates.

The closure shall be capable of accommodating splice organizer trays that accept mechanical, or fusion splices. The splice closure shall have provisions for storing fiber splices in an orderly manner, mountings for splice organizer assemblies, and space for excess or un-spliced fiber. Splice organizers shall be re-enterable. The splice case shall be UL rated.

Closure re-entry and subsequent reassembly shall not require specialized tools or equipment. Further, these operations shall not require the use of additional parts.

The splice closure shall have provisions for controlling the bend radius of individual fibers to a minimum of 38 mm (1.5 in.).

Factory Testing.

Compression Test. The closure shall not deform more than 10% in its largest cross-sectional dimension when subjected to a uniformly distributed load of 1335 N at temperatures of –18 and 38 degrees Celsius (0 and 100 degrees Fahrenheit). The test shall be performed after stabilizing at the required temperature for a minimum of two hours. It shall consist of placing an assembled closure between two flat parallel surfaces, with the longest closure dimension parallel to the surfaces. The weight shall be placed on the upper surface for a minimum of 15 minutes. The measurement shall then be taken with weight in place.

Impact Test. The assembled closure shall be capable of withstanding an impact of 28 N-M at temperatures of –18 and 38 degrees Celsius (0 and 100 degrees Fahrenheit). The test shall be performed after stabilizing the closure at the required temperature for a minimum of 2 hours. The test fixture shall consist of 9 kg (20 lb) cylindrical steel impacting head with a 50 mm (2 in.) spherical radius at the point where it contacts the closure. It shall be dropped from a height of 305 mm (12 in.). The closure shall not exhibit any cracks or fractures to the housing that would

preclude it from passing the water immersion test. There shall be no permanent deformation to the original diameter or characteristic vertical dimension by more than 5%.

Cable Gripping and Sealing Testing. The cable gripping and sealing hardware shall not cause an increase in fiber attenuation in excess of 0.05 dB/fiber @ 1550 nm when attached to the cables and the closure assembly. The test shall consist of measurements from six fibers, one from each buffer tube or channel, or randomly selected in the case of a single fiber bundle. The measurements shall be taken from the test fibers before and after assembly to determine the effects of the cable gripping and sealing hardware on the optical transmission of the fibers.

Vibration Test. The splice organizers shall securely hold the fiber splices and store the excess fiber. The fiber splice organizers and splice retaining hardware shall be tested per EIA Standard FOTP-II, Test Condition 1. The individual fibers shall not show an increase in attenuation in excess of 0.1 dB/fiber.

Water Immersion Test. The closure shall be capable of preventing a 3 m (10 ft) water head from intruding into the splice compartment for a period of 7 days. Testing of the splice closure is to be accomplished by the placing of the closure into a pressure vessel and filling the vessel with tap water to cover the closure. Apply continuous pressure to the vessel to maintain a hydrostatic head equivalent 3 m (10 ft) on the closure and cable. This process shall be continued for 30 days. Remove the closure and open to check for the presence of water. Any intrusion of water in the compartment containing the splices constitutes a failure.

<u>Certification</u>. It is the responsibility of the Contractor to insure that either the manufacturer, or an independent testing laboratory has performed all of the above tests, and the appropriate documentation has been submitted to the Department. Manufacturer certification is required for the model(s) of closure supplied. It is not necessary to subject each supplied closure to the actual tests described herein.

CONSTRUCTION REQUIREMENTS

The closure shall be installed according to the manufacturer's recommended guidelines. For mainline splices, the cables shall be fusion spliced. 45 days prior to start of the fiber optic cabling installation, the Contractor shall submit the proposed locations of the mainline splice points for review by the Department.

The Contractor shall prepare the cables and fibers in accordance with the closure and cable manufacturers' installation practices. A copy of these practices shall be provided to the Engineer 21 days prior to splicing operations.

Using a fusion splicer, the Contractor shall optimize the alignment of the fibers and fuse them together. The Contractor shall recoat the fused fibers and install mechanical protection over them.

Upon completing all splicing operations for a cable span, the Contractor shall measure the mean bi-directional loss at each splice using an Optical Time Domain Reflectometer. This loss shall not exceed 0.1 dB.

The Contractor shall measure the end-to-end attenuation of each fiber, from connector to connector, using an optical power meter and source. This loss shall be measured at from both

directions and shall not exceed 0.5 dB per installed kilometer of single mode cable. Measurements shall be made at both 1300 and 1550 nm for single mode cable. For multimode cable, power meter measurements shall be made at 850 and 1300 nm. The end-to-end attenuation shall not exceed 3.8 dB/installed kilometers at 850nm or 1.8 dB per installed kilometer at 1300nm for multimode fibers.

As directed by the Engineer, the Contractor at no additional cost to the Department shall replace any cable splice not satisfying the required objectives.

The Contractor shall secure the Splice Closure to the side of the splice facility using cable support brackets. All cables shall be properly dressed and secured to rails or racks within the manhole. No cables or enclosures will be permitted to lie on the floor of the splice facility. Cables that are spliced inside a building will be secured to the equipment racks or walls as appropriate and indicated on the Plans.

<u>Method of Measurement</u>. Fiber optic splice of the type specified will be measured as each, completely installed and tested with all necessary splices completed within the enclosure, and the enclosure secured to the wall of the splice facility.

<u>Basis of Payment</u>. This item shall be paid at the contract unit price per EACH for FIBER OPTIC SPLICE, LATERAL or FIBER OPTIC SPLICE, MAINLINE of the type specified, which shall be payment in full for the work, complete, as specified herein.

ELECTRIC CABLE, COMMUNICATION CABLE, NO. 19

<u>Description</u>. This work shall consist of furnishing and installing multi-conductor communication cable in conduit or aerially at the locations shown in the plans and in accordance with Section 873 of the Standard Specifications.

<u>Materials.</u> Communication cable shall be suitable for underground or aerial use outdoor use based on the intended installation. Aerial installations shall be attached to messenger wire via lashing or other manufacturer approved methods.

Aerial cable shall meet the following requirements:

Conductors. Conductors shall be solid, annealed No. 19 copper.

Insulation. Insulation shall be high density polyethylene, color-coded in accordance with industry standards.

Twisted pairs. Insulated conductors shall be twisted into pairs with varying lay lengths to minimize crosstalk.

Core Assembly. Pairs shall be arranged in groups, with each group having a unique color-coded binder.

Core Wrap. The core wrap shall be a non-hygroscopic dielectric tape applied longitudinally with an overlap.

Aluminum Shield. The cable shield shall be a corrugated aluminum tape applied longitudinally with an overlap.

Jacket. The cable jacket shall be black, low-density polyethylene.

Compliance. The cable shall be compliant with Telcordia (Bellcore) Specification GR-421-CORE.

Underground cable shall meet the following requirements:

Conductors. Conductors shall be solid, annealed No. 19 copper.

Insulation. Insulation shall be high density polyethylene, color-coded in accordance with industry standards.

Twisted pairs. Insulated conductors shall be twisted into pairs with varying lay lengths to minimize crosstalk.

Core Assembly. Pairs shall be arranged in groups, with each group having a unique color-coded binder.

Filling Compound. The core assembly shall be filled with expanded thermal plastic rubber (ETPR) compound.

Core Wrap. The core wrap shall be a non-hygroscopic dielectric tape applied longitudinally with an overlap.

Copper Shield. The cable shield shall be a corrugated copper tape applied longitudinally with an overlap.

Jacket. The cable jacket shall be black, low-density polyethylene.

Compliance. The cable shall be compliant with Rural Development Utility Program (RDUP) 7 CFR 1755.390 (RUS PE-39).

<u>Testing.</u> Once the communication cable is installed complete with all cable terminations complete, the Contractor shall request an end-to-end test. The Contractor shall request the end-to-end test at least 7 days in advance to the TSC Engineer. Any lane closures and/or any other safety measures that need to be taken shall be provided for by the Contractor and shall be considered included in the cost of this item. The type of test performed shall be an end-to-end test with Halcyon type equipment transmitting and receiving at each end of the cable. Each pair shall be tested and the results shall be recorded and submitted to the Engineer. If any results don't fall within the requirements set forth in RUS PE-39, the Contractor shall correct and re-test that cable pair. Traffic Systems will tolerate one pair out of every 50 pairs of cable that doesn't meet or exceed specifications set forth in RUS PE-39.

<u>Installation.</u> The communication cable shall be installed in conduit or aerially, as indicated on the plans. The Contractor shall ensure that the communication duct is continuous, free of debris and not connected to the electrical lighting cable duct.

Splicing of cables shall be allowed only in junction boxes with moisture resistant connectors. These "splices" shall be held to a minimum and maximum cable lengths shall be used to reduce the number of connections.

<u>Method of Measurement.</u> Electric cable will be measured for payment in feet in place. The length of the measurement shall be the distance horizontally and vertically measured between changes in direction.

Basis of Payment. This work will be paid for at the contract price per FOOT for ELECTRIC CABLE IN CONDUIT, COMMUNICATION, NO. 19 or ELECTRIC CABLE, AERIAL SUSPENDED, COMMUNICATION, NO. 19 of the number of pairs specified.

REMOVE FIBER OPTIC CABLE FROM CONDUIT

<u>Description.</u> This work shall consist of removing and disposing of existing fiber optic cable in accordance with Section 895 of the Standard Specifications.

CONSTRUCTION REQUIREMENTS

Fiber optic cable shall be disconnected from splice enclosures prior to removal. Fiber optic cable shall be removed from conduit and junction boxes as shown in the plans and as directed by the Engineer. All cables removed as part of this work shall become the property of the Contractor and shall be disposed in accordance with Article 202.03.

<u>Method of Measurement.</u> Removal of existing fiber optic cable will be measured for payment in place in feet. If two or more cables in a conduit are to be removed, each cable will be measured for payment separately.

<u>Basis of Payment.</u> This work shall be paid for at the contract unit price per FOOT for REMOVE FIBER OPTIC CABLE FROM CONDUIT.

WOOD POLE

<u>Description.</u> This work shall consist of furnishing and installing wood poles complete with all hardware and accessories required to support aerial cable as shown on the plans in accordance with Section 830 of the Standard Specifications.

Materials. Materials shall be in accordance with Article 1069.04 of Standard Specifications.

<u>Basis of Payment.</u> Wood poles will be paid for at the contract unit price per EACH WOOD POLE, of the length and class specified.

REMOVAL OF ASBESTOS CEMENT CONDUIT

<u>Description:</u> This work consists of the removal and disposal of friable asbestos cement electrical conduits. The conduits shall be demolished including conduit supports and hangers. All work shall be done in accordance with the requirements of the U.S. Environmental Protection Agency (USEPA), the Illinois Environmental Protection Agency (IEPA), the Occupational Safety and Health Administration (OSHA), and as outlined herein.

Prior to any removal of any conduit material, the existing conduits must be tested for the presence of asbestos content by qualified personnel and/or qualified testing firm. Tests should be comprehensive, and include detailed visual inspection, sampling as determined by qualified testing firm or personnel and laboratory testing of samples in order to determine if conduits include asbestos cement. Each of the existing conduits should be independently reviewed due to unknown installation or maintenance improvement records. No separate payment for testing of the existing conduits will be made. The testing of existing conduits shall be included as part of REMOVAL OF EXISTING SUPERSTRUCTURES. All testing records and results shall be provided to the Engineer prior to any removal of existing conduits.

If testing identifies that asbestos cement is not present in the existing conduits, the conduits shall be demolished as part of REMOVAL OF EXISTING SUPERSTRUCTURES. If testing identifies that asbestos cement is present in the existing conduits, the removal of the conduits shall follow the procedures identified within this specification.

The work involved in the removal and disposal of friable or non-friable asbestos done prior to demolition of the Keeler Avenue bridge structure shall be performed by a qualified Contractor or Sub-Contractor.

The Contractor shall coordinate with the utility owner for the replacement of their ducts under this contract.

The Contractor shall provide a shipping manifest to the Engineer for the disposal of all asbestos containing material wastes.

<u>Permits:</u> The Contractor shall apply for permit(s) in compliance with applicable regulations of the Illinois Environmental Protection Agency. Any and all other permits required by other federal, state, or local agencies for carrying on the work will be the responsibility of the Contractor. Copies of these permits must be sent to the district office and the Engineer.

<u>Notifications:</u> The "Demolition/Renovation Notice" form, which can be obtained from the IEPA office, shall be completed and submitted to the agencies listed below at least 10 days prior to commencement of any asbestos removal or demolition activity.

 Asbestos Demolition/Renovation Coordinator Illinois Environmental Protection Agency Division of Air Pollution Control P. O. Box 19276 Springfield, Illinois 62794-9276 (217)785-1743

 B. U. S. Environmental Protection Agency Air Compliance Branch
 77 W. Jackson Blvd Chicago, Illinois 60604 Attention: Asbestos Coordinator

Notices must be updated if there is a change in the starting date or the amount of asbestos changes by more than 20 percent

Submittals

- A. All submittals and notices shall be made to the Engineer except where otherwise specified herein.
- B. Submittals that shall be made prior to start of work:
 - 1. Submittals required under <u>Asbestos Abatement Experience</u>.
 - 2. Submit documentation indicating that all employees have had medical examinations and instruction on the hazards of asbestos exposure, on use and fitting of respirators, on protective dress, on use of showers, on entry and exit from work areas, and on all aspects of work procedures and protective measures.
 - 3. Submit manufacturer's certification stating that vacuums, ventilation equipment, and other equipment required to contain airborne fibers conform to ANSI 29.2.
 - 4. Submit to the Engineer the brand name, manufacturer, and specification of all sealants or surfactants to be used. Testing under existing conditions will be required at the direction of the Engineer.
 - 5. Submit proof that all required permits, site locations, and arrangements for transport and disposal of asbestos-containing or asbestos-contaminated materials, supplies, and the like have been obtained (i.e., a letter of authorization to utilize designated landfill).
 - 6. Information about vehicles and equipment utilized for transport of material designated for disposal shall be submitted. This should include methods for restricting loose fibers from being released during travel.
 - 7. Submit a list of penalties, including liquidated damages, incurred through non-compliance with asbestos abatement project specifications.
 - 8. Submit a project specific Health and Safety plan for the removal operations. The Health and Safety Plan must be approved and signed by sub-contractor and Contractor personnel, and shall be provided to the Engineer prior to commencing site work activities. The Contractor shall be and remain liable for compliance by its employees, agents and subcontractors with the Contractor's Health and Safety Plan and procedures for the site and shall hold Engineer and Department harmless from all claims, damages, suits, losses and expenses in any way arising from noncompliance with the Health and Safety Plan.

- a. In particular, the Health and Safety Plan shall address personal protection from asbestos fiber releases during asbestos abatement.
- 9. Submit a detailed plan of the procedures proposed for use in complying with the requirements of this specification. Include in the plan the location and layout of decontamination units, the sequencing of work, the respiratory protection plan to be used during this work, a site safety plan, a disposal plan including the location of an approved disposal site, and a detailed description of the methods to be used to control pollution. The plan must be submitted to the Engineer prior to the start of work.
- 10. Submit proof of written notification and compliance with Paragraph "Notifications."
- C. Submittals that shall be made upon completion of abatement work:
 - 1. Submit copies of all waste chain-of-custodies, trip tickets, and disposal receipts for all asbestos waste materials removed from the work area;
 - 2. Submit daily copies of work site entry logbooks with information on worker and visitor access;
 - 3. Submit logs documenting filter changes on respirators. HEPA vacuums, negative pressure ventilation units, and other engineering controls; and
 - 4. Submit results of any bulk material analysis and air sampling data collected during the course of the abatement including results of any on- site testing by any federal, state, or local agency.

Certificate of Insurance:

The Contractor shall document general liability insurance for personal injury, occupational disease and sickness or death, and property damage.

The Contractor shall document current Workmen's Compensation Insurance coverage.

The Contractor shall supply insurance certificates as specified by the Department.

Asbestos Abatement Experience:

- A. Company Experience:
 - 1. Prior to start of work, the Contractor shall supply:
 - a. Evidence that he/she has been qualified with the State of Illinois and he/she has been included on the Illinois Department of Public Health's list of approved Contractors.
- B. Personnel Experience:
 - 1. For Superintendent, the Contractor shall supply:

- a. Evidence of knowledge of applicable regulations in safety and environmental protection is required as well as training in asbestos abatement as evidenced by the successful completion of a training course in supervision of asbestos abatement as specified in 40 CFR 763, Subpart E, Appendix C, EPA Model Contractor Accreditation Plan. A copy of the certificate of successful completion must be provided to the Engineer prior to the start of work.
- b. Documentation of experience with abatement work in a supervisory position as evidenced through supervising at least two asbestos abatement projects; provide names, contact, phone number, and locations of two projects in which the individual(s) has worked in a supervisory capacity.
- c. The superintendent shall be thoroughly familiar with and experienced at asbestos abatement, characterization, bulking, transportation, and disposal activities and other related work, and shall be familiar with and shall enforce the use of all applicable safety procedures and equipment.
- d. The Supervisor shall be knowledgeable of, and enforce, all applicable, USEPA, IEPA, and OSHA requirements and guidelines.
- 2. For Workers involved in the Removal of Friable and Nonfriable Asbestos the Contractor shall provide:
 - a. Training as evidenced by the participation and successful completion of an accredited training course for asbestos abatement workers as specified in 40 CFR 763, Subpart E, Appendix C, EPA Model Contractor Accreditation Plan. A copy of the certificate of successful completion must be provided to all employees who will be working on this project.
 - b. Workers shall be familiar with and experienced at asbestos abatement, characterization, bulking, transportation, and disposal activities and other related work; and Asbestos Workers shall be familiar with the use of applicable safety procedures and equipment.

Abatement Air Monitoring:

The Contractor shall comply with the following:

- A. Personal Monitoring:
 - 1. All personal monitoring shall be conducted per specifications listed in OSHA regulation, Title 29, Code of Federal Regulation 1926.58. All area sampling shall be conducted in accordance with 40 CFR Part 763.90. All air monitoring equipment shall be calibrated and maintained in proper operating condition. Excursion limits will be monitored daily. Personal monitoring is the responsibility of the Contractor. Additional personal samples may be required by the Engineer at any time during the project.
- B. Contained Work Areas for Removal of Friable Asbestos

1. Area samples shall be collected for the department within the work area daily. A minimum of one sample shall be taken outside of the abatement area removal operations. The Engineer will also have the option to require additional personal samples and/or clearance samples during this type of work.

\triangle

C. Air Monitoring Professional

- All air sampling will be conducted by a qualified Air Sampling Professional supplied by the Contractor. The Air Sampling Professional must submit documentation of successful completion of the National Institute for Occupational Safety and Health (NIOSH) course #582 – "Sampling and Evaluating Airborne Asbestos Dust".
- 2. Air Sampling will be conducted in accordance with NIOSH Method 7400. The results of these tests will be provided to the Engineer within 24 hours of the collection of air samples.

Method of Measurement: This work will be measured for payment per foot for REMOVAL OF ASBESTOS CEMENT CONDUIT, as shown for each individual conduit, which price shall include furnishing all labor, materials, equipment and services required to remove and dispose of the friable asbestos cement conduits, hangers, and conduit supports. No separate payment will be made for any testing of existing conduits for the presence of asbestos cement prior to the removal of any conduit material.

<u>Basis of Payment:</u> This work will be paid for at the contract unit price per FOOT for REMOVAL OF ASBESTOS CEMENT CONDUIT for all conduits identified to contain asbestos and removed in conformance with this specification and all current laws and regulations.