

Abbreviated Structure Geotechnical Report

Original Report Date: 4-24-18	Proposed SN:	053-0192	Route:	FAP 673 (IL 116)
Revised Date: 8-31-18	Existing SN:	053-0065	Section:	112-BR-2
Geotechnical Engineer: Jacob A. Sch	County:	Livingston		
Structural Engineer: Nathan Rick, GF	RAEF		Contract:	66E68

Indicate the proposed structure type, substructure types, and foundation locations (attach plan and elevation drawing): The proposed structure will be a 2-lane, 3-span girder bridge on open abutments, with an approximate length of 190.3 feet. The proposed structure width will be approximately 36 feet wide. The current Type, Size, and Location (TSL) drawing indicates that the abutments are proposed to be supported on driven piles and the interior piers will be supported on drilled shafts. Load information provided by GRAEF indicates factored loads of 891 kips at the abutments and 1,631 kips at the piers. Based on the preliminary information provided, it is our understanding that staged construction will be utilized for construction of the new bridge.

Discuss the existing boring data, existing plans foundation information, new subsurface exploration and need for any additional exploration to be provided with SGR Technical Memo (attach all data and subsurface profile plot): Three borings were drilled as part of a previous study that took place in October of 1966. It is unknown at this time the type of drill rig used to drill these borings.

Two additional borings were drilled on January 24 and 25, 2018. The borings were drilled using a CME-75 drill rig. The borings were advanced using hollow-stem auger drilling methods. Samples were obtained at 2.5-foot intervals in the 2018 borings until shale bedrock was encountered. The borings were then sampled using modified standard penetration tests (MSPT). Split-spoon samples were recovered using a 2-inch outside-diameter sampler, driven by a CME autohammer. This hammer has an energy efficiency rating of 93%.

Unconfined compression tests were performed on selected split-spoon samples using a Rimac field testing machine in the 1966 borings and pocket penetrometer readings were used on the 2018 borings. The resulting estimated unconfined compressive strengths are reported on the boring logs.

Approximately 9 to 13.5 feet of fill material was encountered at all of the boring locations, with the exception of Boring B-1 (1966). The fill generally consists of silty clay, silty clay loam, fine sand, and sandstone. Secondary materials consisting of construction debris was observed in Boring B-2 (2018). Moisture contents vary from 8 to 27%. The standard penetration test (N) values range from 5 to 18 blows per foot (bpf). Rimac unconfined compression test values on samples range from 0.2 to 2.0 tons per square foot (tsf). Pocket penetrometer values taken in the fill ranged from 2.0 to 4.0 tsf.

Natural soils consisting of silty clay loam, sandy loam, sandy clay loam, silty loam, silty clay, silt, and clay were observed beneath the fill and above the shale bedrock. Secondary materials consisting of gravel were observed within the strata. Moisture contents vary from 15 to 27%. The standard penetration test (N) values range 4 to 26 blows per foot (bpf). Rimac unconfined compression test values on samples range from 0.2 to 3.7 tons per square foot (tsf), with outlier values of 4.7 tsf. Pocket penetrometer values taken in the natural soil ranged from 1.5 to 4.0 tsf.

Shale or siltstone bedrock was encountered at all of the boring locations from depths ranging from 7.5 feet (Elev. 626.5) to 18.0 feet (Elev. 630.4) below the ground surface. A thin layer of shale-like clay was observed above the shale bedrock at boring B-3 (1966). N-values in the shale range from 153 blows for 6 inches of penetration to 100 blows for 1 inch of penetration. As previously mentioned, MSPT tests were performed on the shale samples at the borings drilled in 2018. The results of the tests are attached to this report.

Groundwater was encountered at all of the boring locations, with the exceptions of Borings B-3 (1966) and B-01 (2018) from Elev. 631.0 to 635 ft.

A review of undermining was made using the Illinois State Geological Survey (ISGS) website for mapped coal mines in Livingston County, Illinois. Based on this information, the project site is unlikely to be undermined.

Provide the location and maximum height of any new soil fill or magnitude of footing bearing pressure. Estimate the amount and time of the expected settlement. Indicate if further testing, analysis, and/or ground improvement/treatment is necessary:

The roadway profile will be raised slightly, with no more than 2 feet of fill anticipated near the abutments. No significant increase in embankment loading should result from the replacement of the bridges, other than beneath the side slopes where minimal amounts of new fill will be placed to widen the embankments near the abutments. In our opinion, this should not result in a significant additional load or issues related to settlement. Downdrag on pile foundations is not a concern based on the anticipated depths of fill placement.

Identify any new cuts or fill slope angles and heights. Estimate the factor of safety against slope failure. Indicate if further testing, analysis or ground improvement/treatment is necessary: The existing slope walls will be removed and the end slopes will be graded back to a 2-horizontal to 1-vertical (2H:1V) slope inclination. Roadway side slopes will range from approximately 6H:1V to 3H:1V inclinations.

A slope stability analysis was performed for the new abutment slopes of the bridges utilizing the STABL, a computer program developed for the Federal Highway Administration. In accordance with the IDOT Geotechnical Manual, Section 6.10.3, the minimum factor of safety (FOS) required is 1.5 for end-of-construction of fill slopes. Based on the preliminary plans, it is our understanding that fills along the side slopes will not exceed approximately 3 feet, and cuts along the side slopes will be a maximum of 5 feet. Based on that information, it is our opinion that slope stability along the side slopes is not a concern and an analyses of the side slopes was not performed. Analyses of these conditions indicate the slopes as designed are presented below. The output sheets for these analyses are attached to this report.

CALCULATED CRITICAL FACTOR OF SAFETY

LocationCalculated Factor of Safety
End-of-ConstructionWest Abutment1.71East Abutment1.82

The seismic condition was not evaluated for the abutment slopes since the site is located within Seismic performance zone 1 and the effects of seismicity should have little impact on the stabiility of the slopes.

Indicate at each substructure, the 100-year and 200-year total scour depths in the Hydraulics report, the nongranular scour depth reduction, the proposed ground surface, and the recommended foundation design scour elevations: Due to the of shale observed near the streambed elevation (Elev. 628.75, determined from TSL drawing provided by GRAEF) at the borings in relation to the proposed center pier locations, the scour should be assumed to be taken as 100 percent (%) of the scour predicted in the Hydraulic Report (0% reduction in scour depth) within the overburden and 10 percent (%) of the scour predicted in the Hydraulic Report (90% reduction in scour depth within the shale. Abutment slope protection should be included to protect against scour potential. Countermeasure options for scour at bridge locations include webwalls to eliminate debris collection between columns, riprap, partially grouted riprap, geotextile sand containers, and sheet piling. We recommend that at a minimum, riprap be placed to provide some protection for the pier locations. Skin friction and lateral load design values for piers and driven piles should be ignored in the scour zone. Based on information provided by IDOT, the design scour elevations for the 100-year, and 200-year events for the bridges are shown in the table below.

SUMMARY OF DESIGN SCOUR ELEVATIONS

Event/Limit State	Design	Design Scour Elevations (ft.)									
	W. Abut.	Pier 1	Pier 2	E. Abut.	113						
Q100	643.00	625.92	625.92	643.00	8						
Q200	643.00	625.28	625.28	643.00							
Design	643.00	625.92	625.92	643.00							
Check	643.00	625.28	625.28	643.00							

Determining the seismic soil site class, the seismic performance zone, the 0.2 and 1.0 second design spectral accelerations and indicate if that the soils are liquefiable: Although several significant areas of seismic activity are present in the central United States, the site area is most directly affected by the Wabash Seismic Zone, located in south and east-central Illinois. An assessment of seismic criteria in accord with AASHTO 2009 Guide Specifications for LRFD Seismic Bridge Design has been performed for the site. The IDOT Spreadsheet "Seismic Site Class Determination" was used to determine a Soil Site Class C for the abutments and intermediate piers. The United States Geological Survey (USGS) Design Maps Summary Report website was used with the Site Class C classification to provide acceleration coefficient values Sds of 0.133 g and Sd1 of 0.078 g. The results of the Site Class determination and the Design Maps Summary Report are attached to this abbreviated SGR. Based on the information provided in the boring logs, the soils on site are not considered to be potentially liquefiable.

Based on the guidelines in the IDOT All Geotechnical Manual Users (AGMU), including Table 3.15.2-1 in that manual, the Seismic Performance Zone is 1.

Confirm feasibility of the proposed foundation or wall type and provide design parameters. Attach a pile design table indicating feasible pile types, various nominal required bearings, factored resistances available and corresponding estimated lengths at locations where piles will be used. Provide factored bearing resistance and unit sliding resistance at various elevations and confirm no ground improvement/treatment is necessary where spread footings are proposed. Estimated top of rock elevations as well as preliminary factored unit side and tip resistance values shall be indicated when drilled shafts are proposed: Several potential foundation options were considered for the support of the new bridge structure, including steel H-piles, metal shell piles, drilled shafts, and shallow foundations. Metal shell piles are not recommended because of the proximity of bedrock and risks of pile damage. Based on the current TSL drawing, it is our understanding that steel H-piles are being considered to support the abutments and drilled shafts are being considered to support the interior piers. These options both appear to be suitable. In addition, shallow foundations may be considered as an alternative option for supporting the interior piers due to the elevation of shale bedrock being relatively shallow.

DRIVEN PILES

The bridge structure may be supported on driven pile foundations. Pile capacities and driving depths have been assessed using the IDOT pile design spreadsheet "Pile Capacity and Length Estimates," version 10/18/2011. Copies of a typical input spreadsheet giving the input parameters for each substructure, and the corresponding summary sheets for the various pile types that are analyzed by the spreadsheet, are attached to this report. These tables give the pile embedment length to develop various capacities, up to that approaching the factored design capacity of the pile. The tables were prepared for pile lengths corresponding to selected depths of the input stratigraphy. The piles exhibited in the tables are the piles that are readily available in accordance with the IDOT Geotechnical Manual. It should be noted that H-Piles driven into shale may run shorter than the IDOT pile design length spreadsheets estimate. Information regarding the elevation of ground surface against pile driving and pile cut off elevations were provided by GRAEF. MPS recommends a minimum driven pile spacing of three pile diameters, as recommended by the IDOT Bridge Manual. Due to the anticipated shallow depth of bedrock, as well as the boring indicating construction debris and gravel, we suggest using pile shoes when driving. We recommend at least one test pile at one of the abutments, preferrably at the location that will require greater pile lengths.

Based on the information provided in the All Bridge Designers Memorandum (ABD) 12.3 an integral abutment feasibility analysis shows that the following H-pile sizes may be utilized at the proposed abutments: HP 10x42, HP 12x53, HP 10x57, HP 12x63, HP 12x74, HP 14x73, HP 12x84, HP 14x89, HP 14x102, and HP 14x117

SHALLOW FOUNDATIONS

The field and laboratory data was used to assess the mean values of compressive strength for the shale. On this basis, spread footings bearing on competent shale bedrock may be designed for a factored bearing resistance of 15.0 ksf, based on a resistance factor of 0.45. Top of shale elevation may vary between approximately Elev. 626 to 628. A resistance factor of 0.50 may be used in analyzing resistance to sliding. Shallow foundations should be embedded below the anticipated scour depths.

Conditions may vary away from the boring locations. If designed for stiff soil support and soft material is encountered in some areas, the soft soil should be removed until stiffer materials are encountered. If designed for bedrock support and soil is instead encountered in some areas, then the soil should be removed until the competent shale surface is exposed, and the removed materials replaced with lean concrete fill. It is also possible that shale could be encountered away from the boring locations at elevations higher than anticipated. The contract documents should be prepared so that unit rates to handle such a situation are part of the bid evaluation process.

If the foundations are to bear upon shale, or if shale is encountered in excavations away from the boring locations at higher elevations than encountered at the borings, the moisture content of the materials must be maintained as near the natural state as possible. Water introduced to the shale may induce swelling. Conversely, if the shale is allowed to dry, the material may shrink during construction, and later cause damaging swell if a water source becomes available during or after the construction period.

Immediately after exposure, the shale should be observed for "slaking" behavior, which is the rapid disintegration of the material from rock-like to soil-like behavior. Under such circumstances, the stability of an excavation can be short-lived, as the disintegrating shale particles can begin cascading and slumping into the excavation. This can often be controlled by applying shotcrete over the excavation wall and floor immediately upon exposure at the planned grades and elevations; however, greater effort is sometimes required in situations where the shotcrete does not successfully

adhere to the shale.

DRILLED SHAFTS

MPS understands that drilled shafts have emerged as a possible option to support the new bridge structure at the pier locations. Drilled shafts may be designed to provide capacity from both side and tip resistance within the zone of the bedrock socket.

The contractor should be prepared to handle groundwater seepage into the pier excavations and the potential for sloughing or caving of the pier sidewalls. A temporary casing and pumps may be necessary for pier construction, as the fill soils are likely to cave if unsupported.

Each pier should be cast the same day it is completed and approved. For dry hole placement, the pier base should be continually pumped as necessary to prevent the accumulation of water. No more than 2 inches of water accumulation should be allowed at the time of concrete placement. Concrete should be placed in a manner to prevent segregation. If temporary casing is necessary to prevent caving or sloughing of the pier sides, it should be extended to the pier base and left in place until several feet of concrete is placed in the pier. A minimum of 5 feet of concrete should be maintained above the casing bottom as it is withdrawn during concrete placement. It is important that the pier excavations be observed by an experienced representative to verify the bearing conditions before being filled with concrete. During concrete placement, the geotechnical representative would also observe for proper placement to reduce the potential for voids in the concrete.

A factored side resistance value for the bedrock socket of 6.2 ksf is recommended for competent shales below an approximate elevation of Elev. 626.5 at the site. As previously mentioned, conditions may vary between boring locations. This value includes a geotechnical resistance factor of 0.5. It should be assumed that the upper 2 feet of the socket will not contribute to side resistance in consideration of uncertainties caused by the potential for weathering of the upper bedrock surface. Uplift resistance of the shaft should only rely on the bedrock socket side friction. An uplift resistance factor of 0.40 is recommended based on AASHTO LRFD Bridge Design Specifications (2010). A factored tip resistance value for the bedrock of 40.0 ksf is recommended for the competent shales.

If drilled shafts are chosen as the foundation support for the piers of the new bridge, MPS can provide parameters for use in design of the lateral capacity of the drilled piers based on the boring information, using L-PILE Version 2012-06. Lateral load resistance and induced lateral deflection are typically assessed using finite difference computer models based on the lateral modulus-of-subgrade reaction, such as LPILE 2012-06. Piers should be maintained at a spacing no closer than three pier diameters, center-to-center, so that stress overlap at the bearing level can be avoided, to reduce lateral capacity interaction, and so that possible installation problems associated with one structural member do not impact the integrity of the adjacent member.

Calculate the estimated water surface elevation and determine the need for cofferdams (type 1 or 2), and seal coat: Based on the understanding that drilled shafts with webwalls are planned, a cofferdam and seal coat are not needed at this time.

Assess the need for sheeting or soil retention or temporary construction slope and provide recommendation for other construction concerns: The construction activities should be performed in accordance with the current IDOT Standard Specifications for Road and Bridge Construction. Trenching, excavating, and bracing should be performed in accordance with Occupational Safety and Health Administration (OSHA) regulations, and other applicable regulatory agencies. In accordance with the OSHA excavation standards, the soil at the site is considered to be Type C, which requires a side slope for excavations no steeper than 1.5H:1.0V. However, worker safety and classification of the excavation soil is the responsibility of the contractor.

It is possible that the excavation side slopes for structure foundations may interfere with existing utilities in some areas, which could require a temporary soil retention system. In addition, temporary soil retention systems may be needed in front of the existing abutments. Cantilever sheet piling may be adequate where the height of the retained soil will be limited. However, because of the relatively shallow bedrock, sheet piles with tie-back anchors, soil nail walls, soil screw walls, or other potntial options may be needed for retained soil of greater heights. Selecting and designing the most appropriate retention methods for each specific situation is typically the responsibility of the contractor.

Traffic along IL-116 will be maintained by utilizing staged construction.

Existing Structure: Structure Number 053-0065 built in 1970 as F.A. 395 (Illinois Route 116), Section 112-BR-2. Existing structure consists of three span, reinforced concrete deck supported on steel WF beams. The beams are supported on stub abutments supported on steel HP piles and modified hammerhead type piers supported by spread footings. The back to back abutments measure is 151'-8" and the out-to-out bridge deck dimension is 46'-0" in the existing conditions. Structure is to be removed and replaced. Traffic is to be maintained utilizing staged construction.

DESIGN SPECIFICATIONS 2017 AASHTO LRFD Bridge Design Specifications, Customary U.S. Units, 8th Edition HIGHWAY CLASSIFICATION Rte: F.A.P. 673 (Illinois Rte. 116. Functional Class: Minor Arterial ADT:3,360 (2020); 4,000 (2040) ADTT: 390 (2020) ; 464 (2040) DESIGN STRESSES DHV: 320 FIELD UNITS Design Speed: 55 m.p.h. Posted Speed: 55 m.p.h. f'c = 3,500 psi Two-Way Traffic f'c = 4,000 psi (Superstructure) Directional Distribution: 50:50 fy = 60,000 psi (Reinforcement) fy = 50,000 psi (M270 Grade 50W) LOADING HL-93 Allow 50#/sq. ft. for future wearing surface. Stone Riprap Class A4 SEISMIC DATA Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0 sec. (Sp1) = 0.078g TRE Design Spectral Acceleration at 0.2 sec. (Sps) = 0.133g 20 gr Soil Site Class = C 4'-0" SECTION A-A Stone Riprap Class A4 8'-0" Streambed Elev. 628.75 Filter Fabric SECTION B-B E.W.S. Elev. 630.15 "0 EI. 628.75 ∇ Estimated Top of Rock El. 626.50 THEIT TIÉIII - T - 1 T T Number, Diameter, and Length of Shaft to be determined in final design PIER SKETCH GENERAL PLAN IL. RTE. 116 OVER ROOKS CREEK F.A.P. RTE. 673 - SEC. (112-BR-2)ES LIVINGSTON COUNTY STATION 852+23.33 STRUCTURE NO. 053-0192 COUNTY TOTAL SHEET NO. SECTION RTE. 673 (112-BR-2)ES 1 2 CONTRACT NO. 66E68

ILLINDIS FED. AID PROJECT

Opening	- Sq. Ft.	Nat.	Head	- Ft.	Head Water El.			
Exist.	Prop.	H.W.E.	Exist.	Prop.	Exist.	Prop.		
,047	1,431	641.6	0.5	0.5	642.1	642.1		
1,376	1,859	644.5	0.9	0.4	645.4	644.9		
1,376	2,008	645.4	1.0	0.5	646.4	645.9		
1,376	2,123	646.1	1.5	0.7	647.6	646.8		
,376	2,155	646.3	1.6	0.8	647.9	647.1		
1,376	2,185	646.9	1.3	0.7	648.2	647.6		

Event/Limit	Ĺ				
State	W. Abut	Pier 1	Pier 2	E. Abut	Item 113
0100	643.00	625.92	625.92	643.00	
0200	643.00	625.28	625.28	643.00	
Design	643.00	625.92	625.92	643.00	8
Check	643.00	625.28	625.28	643.00	1

<u>GENERAL PLAN</u>
IL. RTE. 116 OVER ROOKS CREEK
F.A.P. RTE. 673 - SEC. (112-BR-2)ES
LIVINGSTON COUNTY
<u>STATION 852+23.33</u>
CTRUCTURE NO DEZ DIO2

ND DETAILS	F.A.P. RTE.	SECTION	COUNTY	SHEETS	SHEET NO.				
DETAL	615	(112-BR-2)ES	LIVINGSTON	LIVINGSION 2 2					
		CONTRACT NO. 66E68							
	ILLINDIS FED. AID PROJECT								

(Illinois D	epartment	50		Page <u>1</u> of <u>1</u>
,	Of Irans	portation	30		Date10/17/66
	ROUTE SBI-116 (IL 116)	DESCRIPTION IL	116 over	Rooks Creek, 2.68 miles West of I-55	LOGGED BY
	SECTION112 BR-	2 LOCATION	SE 1/4	<u>SEC. 23, TWP. 28N, RNG. 4E, 3rd PM</u> te Longitude	3
	COUNTY Livingston	DRILLING METHOD	Holl	ow Stem Auger HAMMER TY	PE
	STRUCT. NO. 053-0065 Station 852+21.53 BORING NO. 1 Station 852+70 Offset 21.5 ft Lt. Ground Surface Elev. 634	D B U 9 P O S T W H S Qu 1.00 ft (ft) (/6") (tst)	M O I S J T	Surface Water Elev. 632.00 f Stream Bed Elev. f Groundwater Elev.: f First Encounter f Upon Completion 631.0 After 24 Hrs. 631.0	$ \begin{array}{ccccc} \mathbf{ft} & \mathbf{D} & \mathbf{B} & \mathbf{U} & \mathbf{M} \\ \mathbf{ft} & \mathbf{E} & \mathbf{L} & \mathbf{C} & \mathbf{O} \\ \mathbf{P} & \mathbf{O} & \mathbf{S} & \mathbf{I} \\ & \mathbf{T} & \mathbf{W} & & \mathbf{S} \\ \mathbf{ft} & \mathbf{H} & \mathbf{S} & \mathbf{Qu} & \mathbf{T} \\ \mathbf{ft} & & \\ $
	Medium Brownish Black to Buf Silty Clay to Clay Loam, Silt an Silty Loam (Silted In)	f		Very Dense Light Gray Silty Clay Shale & Clay Shale <i>(continued)</i>	
		9 1.0 <u> </u>	0 23		1"/100 15
		 	17		
		626.50 40	11		2"/100 7
	Shale & Clay Shale	ay	5 9	60 End of Boring	04.50 -30 1"/100 7
		S			
		3"/200	6		
JT 11/24/15		<u>15</u> 3"/200	14		-35
PJ IL_DOT.GD					
G 053-0065.G			6		
OIL BORIN		<u></u>	6		-40

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois Depa	artme	ent		9		Page	1	of <u>1</u>
Division of Highways IDOT	เลเเบ	1		30		Date	10/	19/66
ROUTE SBI-116 (IL 116)	DESCI	RIPTIO	N <u>IL 1</u>	16 ove	er Rooks Creek, 2.68 miles West of I-55 LOG	GED BY		
SECTION 112 BR-2		LOCA [.]	TION _	NE 1/ Latitu Ho	4, SEC. 26, TWP. 28N, RNG. 4E, 3 rd PM, Ide , Longitude			
STRUCT. NO. 053-0065 Station 852+21.59 BORING NO. 2 Station 853+34.5 Offset 30.5 ft Rt. Ground Surface Elev. 644.40	– D – P – T – H – ft (ft	B L O W S	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. 632.00 ft If Stream Bed Elev. ft If Groundwater Elev.: ft If First Encounter ft If Upon Completion 621.4 ft After 18 Hrs. 635.0 ft	D B E L P O T W H S ft) (/6")	U C S Qu (tsf)	M O I S T (%)
Soft Brownish Black & Yellowish Gray Silty Clay & Clay (Backfill)					Very Dense Light Gray Silty Clay Shale and Clay Shale <i>(continued)</i>			
		15	0.2 B	19	 	2"/100		5
		5 9	0.4	20	619.90	25 1"/100		5
		-	В					
		5	0.4 B	19				
6	35.40	-			-			
Hard Gray & Reddish Brown Clay and Silty Clay	⊻	28	4.7 S	15		30		
		24	47	13				
		-	S					
	-15	35	2.1 S	13		35		
62 Very Dense Light Gray Silty Clay Shale and Clay Shale	28.40	8"/200						
				J				
	-20	1 1"/100		3	-4			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

	Illinois Dep of Transpo	partr ortati	ne on	nt		SC	DIL BORING LOG		Page	<u>1</u>	of <u>1</u>
	Division of Highways IDOT	DE			1 11 1	16 000	r Pooks Creek 268 miles West of L55	000	Date		20/66
		DE-	<u>зск</u>				A SEC 26 THE 28N BNC 4E 2 rd BM	000		<u></u>	
	SECTION 112 BR-2		I		ION _		Ide , Longitude				
	COUNTY Livingston D	RILLING	S ME				IIOW Stem Auger HAMMER TYPE	1			
	STRUCT. NO. 053-0065 Station 852+21.59		D E P T	B L O W	U C S	M O I S	Surface Water Elev. 632.00 ft Stream Bed Elev ft	D E P T	B L O W	U C S	M O I S
	Station 3 Offset 20.5 ft Rt.		Ĥ	S	Qu	T	First Encounter ft Upon Completion ft	Н	S	Qu	Т
	Ground Surface Elev. 644.40) ft	(ft)	(/6")	(tsf)	(%)	After Hrs ft	(ft)	(/6'')	(tsf)	(%)
	(Backfill)						Shale and Clay Shale (continued)				
				10	1.6	13			1"/100		1
					S						
							619.90		11/1 00		
			-5	1	2.0 S	16	End of Boring	-25	17100		4
		637.90									
	Medium Yellowish Brown and Gray Fine Sand and Sandstone (Backfill)			14		10					
		635.90									
	Medium Browish Black & Yellowish Brown Silty Clay Loam and Clay Loam (Backfill)			0	0.4	26					
			-10	J	0.4 S	20					
				7	0.3	14					
		cao oo .	_		S						
/15	Dense Yellowish Brown Sandy	030.90					· ·				
T 11/24	Clay Loam to Shale-like Clay		-15	53		7		-35			
OT GD		628.40									
2 IL D	Very Dense Light Gray Silty Clay Shale and Clay Shale										
065.GF	Graid and Olay Ondie			1"/100		5					
3 053-0		-									
BORINC											
SOIL			-20	1"/100		6		-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page 1 of 1

(T) IIInois Dep	oartme	ent		S			raye		0 _
Division of Highways							Date	1/2	24/18
ROUTE FAP 673 (IL 116)	DESC	RIPTIO	N IL 1	16 ove	er Rooks Creek, 2,68 miles West of I-55	LOGG	ED BY	Larrv	Mve
				05.44					
SECTION		LOCA	HON _		4, SEC. 23, TWP. 28N, RNG. 4E, 3 PM, ude 40.872929, Longitude -88.722693				
COUNTY Livingston DF	RILLING M	ETHOD)	Но	Illow Stem Auger HAMMER TYPI	Ξ	CME A	utoma	tic
STRUCT. NO. 053-0065		В	U	M	Surface Water Elev629.64 ft	D	В	U	М
Station 852+21.83	E P		C S		Stream Bed Elev628.41 ft	E P		C S	0
BORING NO. 01 (W. Abut.)	T	W	0	S	Groundwater Elev.:	T	W	0.1	S
Offset 19.0 ft Lt.	— "	3	QU		First Encounter Dry ft Upon Completion Dry ft			QU	
Ground Surface Elev. 647.54	ft (ff) (/6'')	(tsf)	(%)	After Hrs ft	(ft)	(/6")	(tsf)	(%)
Augered Shoulder Stone, Black Silty Clay Loam Fill	-				Dense Gray Shale with Limestone Seams / Fingers around 25 ft.				6
	-	-			Modified Standard Penetration				
	645.04				boring. Results are on a separate				
Very Stiff Black, Gray & Brown		5	3.5	21	log sheet.				5
	-	6	P				-		
	-	e							
		4				-20			
		4	4.0	25					5
	-				-				[
		4	3.8	24					5
		4	Р		4				
	_ -1'					-30			
		4							_
		4	3.8 P	22					5
••••••••••••••••••••••••••••••••••••••	635.54								
Stiff Black Silty Clay Loam / Silty Loam	-	3							
		2	1.5	27					3
		2	P		613.	54			
	632.54 -1	5				-35			
Stiff to Very Stiff Gray / Black	-	3	20	15					
Sand Interbedded		7	2.0 P	1D					
	-								

3/27/18 053-0065.GPJ IL Buff Highly Weathered & Reworked Siltstone BORING SOIL

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

12

27

57

629.54

627.54 -20

10

-40

Rout	e:	L 116	Str	ucture I	No.: 05	3-0065	(Exist.)			(Prop.)	Date:	1/24/	18 Pa	ge:	1 of 1		
Sect	ion:	112	-BR-2		Desci	ription:	IL 116 over Rooks Creek, 2.68 miles West of I-55							55			
Cour	ntv:	Livingston Logged by:					L	arry My	yers		Sa	ampler	Tube Le	Tube Length: 24 in.			
Borir			1	Stat	ion: 8	51+92	Offset:	18' L	t. La	titude:			Longitu	Longitude:			
Drill		CME -	.75	Han	mer Ty	/pe:	Auto	Hamm	 er Effic	iency ("	%): 9	3 Su	urface E	levatio	on: 647.54		
	Drill Rig: CWE - 75 Haimler Type. Auto Haimler Emilioner (76), 22 Current Control Sampler Description: 1.5-in LD w/o Liner																
Bore	hole Diar	neter. (in.) <u>2.5</u>	10 4.5	Shirt	-parrer	Jample		iption.	1.0 11.	1.0. 001	C LIND	N	a	Young's		
Reasured Blows where exposed rod length is r								th is m	easured	d (blow:	s)		rate,90	Чu	Modulus		
Ttou	(ft)	0	10	20	30	40	50	60	70	80	90	100	(bpf)	(ksf)	(ksi)		
	20.00	2.38	2.14	2.01	1.95	1.93	1.84	1.78	1.73	1.69	1.65	1.63	217.5	20.9	4.66		
	22.50	2.4	2.24	2.16	2.09	2.04	1.98	1.94	1.91	1.88	1.86	1.84	386.6	37.1	8.67		
	25.00	24	2.36	2.34	2.33	2.31	2.3	2.29	2.27	2.26	2.25	2.24	1023	98.2	32.19		
	27.50	2.39	2.3	2.26	2.22	2.18	2.15	2.13	2.11	2.1	2.09	2.08	1036	99.4	32.84		
5	30.00	2.39	23	2.25	2.22	2.19	2.16	2.13	2.11	2.08	2.06	2.03	497.0	47.7	11.81		
ă;	32 50	2.37	2.32	2.28	2.26	2.24	2.22	2.21	2.2	2.19	2.18	2.17	1243	119	47.09		
S I	02.00	2.01	2.01		Sec. 1	19-24-34	Mar al		1.		NESS I						
Ξ				and the second	and the			1. 1. 57		State 2	States of	T. T. S.					
st	1000000		States .	V	1997		1	C. C.			275	Sec. 2	_				
ı ۳	To Allow and	Total State			275 112	Station of the	1000	State State			Sec. State						
		P.4 19-5-		1	122013				Deal Provide	1 States	in the second						
							122.00		2000		ES SAN						
	Contraction of the	12000			12124		and the second		24-501		SUS AT	The second second					

Note: "Values" indicates data used to calculate N_{rate,90}.

SOIL BORING 053-0065.GPJ IL_DOT.GDT 3/27/18

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 1/25/18

ROUTE FAP 673 (IL 116)		IPTIO	N <u>IL 1</u>	16 ove	r Rooks Creek, 2.68 miles W	/est of I-55 L	OGG	ED BY	Larry	Myers
SECTION 112 BR-2		LOCA	tion .	NE 1/4	4, SEC. 26, TWP. 28N, RNG.	4E, 3 rd PM,				
COUNTY Livingston DI		THOD	•	Hol	llow Stem Auger HA	MMER TYPE	(CME A	utoma	tic
STRUCT. NO. 053-0065 Station 852+21.83 BORING NO 02 (F. Abut)	D E P T	B L O W	U C S	M O I S	Surface Water Elev. 6	629.64 ft 628.40 ft	D E P T	B L O W	U C S	M 0 1 5
Station 853+25 Offset 18.0 ft Rt.	<u>н</u>	S	Qu	T	First Encounter Upon Completion	<u>632.9</u> ft⊻ <u>632.9</u> ft⊻	Ĥ	S	Qu	T
Ground Surface Elev. 647.86	ft (ft)	(/6")	(tsf)	(%)	After Hrs	ft	(ft)	(/ 6'')	(tsf)	(%)
Silty Clay Loam Fill					by chip recovery (Large Bo or Actual Rock?) (continued	ulder d) 626.36	3			
Very Offf Disels Offs Olau Lange	645.36	12			Probable Thin Limestone B Fingers in top 3 ft, and scat	eds / tered				
Fill with Construction Debris and 10" of CA6 @ 3 ft.		12	2.5 P	8	throughout entire sample de Modified Standard Penetral	epth. tion				5
	5	3			boring. Results are on a se log sheet.	eparate	-25			
		4	2.5 P	21						6
		3 3	2.0 P	22						7
	-10	1					-30			
		4 6	2.5 P	27						5
Stiff Black & Gray Silty Clay Loam / Sandy Loam with Sand & Gravel Layers	635.86	2	1.0	18						7
	633.36	3	Р		End of Boring	613.86				
Hard Brown Silty Clay Loam / Silty Loam Till with Large Gravel Pieces	<u></u> -15	6 11	4.0	15			-35			
	630.36	15	Ч			-	_			
Dense Gray Limestone identified by chip recovery (Large Boulder or Actual Rock?)		100/17								

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

-20

-40

Modified SPT Log

Rou	te:	IL 116	Str	ucture	No.: 05	3-0065	(Exist.)			(Prop.)	Date:	1/25/	18 Pa	age:	1 of 1
Sec	Section: 112-BR-2 Description:					IL 116 over Rooks Creek, 2.68 miles West of I-55									
Cou	nty:	Living	ston	Log	ogged by:			Larry Myers			Sa	Sampler Tube Leng			24 in.
Bori	ng No.:	C. A.	2	Stat	Station: 851+92		Offset: 18' Lt. Latitude:				Longitude:				
Drill	Rig:	CME	- 75	Han	Immer Type: Auto Hammer Efficiency (%): 93 Surf						urface E	ace Elevation: 647.86			
Bore	hole Diar	neter. ((in.) 2.5	to 4.5	Split	-barrel	Sample	er Desc	ription:	1.5-in.	I.D. w/	o Liner			
Me Rod	asured I Length		BI	ows wl	nere ex	posed i	rod lena	th is m	easure	d (blow	s)		N _{rate,90}	q _u	Young's Modulus
	(ft)	0	10	20	30	40	50	60	70	80	90	100	(bpf)	(ksf)	(ksi)
	22.50	2.36	2.3	2.26	2.24	2.23	2.23	2.22	2.21	2.21	2.21	2.21	1775	170	177.11
	25.00	2.32	2.21	2.15	2.1	2.06	2.02	1.98	1.96	1.93	1.91	1.89	540.3	51.9	13.18
	27.50	2.33	2.28	2.17	2.1	2.06	2.02	1.98	1.96	1.94	1.92	1.91	690.4	66.3	18.27
5	30.00	2.38	2.31	2.27	2.22	2.18	2.12	2.09	2.05	2.03	2.01	1.99	477.8	45.9	11.25
tio	32.50	2.35	2.3	2.25	2.22	2.18	2.16	2.13	2.1	2.07	2.04	2.02	419.2	40.2	9.54
Va	35.00	2.38	2.3	2.25	2.2	2.15	2.1	2.07	2.05	2.04	2.02	2.01	828.4	79.5	23.46
<u></u>				N. S. S. S.			The second			K. LARE	1.2.2.1				
1 L	13.15.12	AL AL	11月1日	E. Star		1	10000000		111 84	S. A.					
ĕ								11/10	a line	Cherry !!					
		Hard Start	The second second					all such	N. I. Star	1.337		THE A			
	12 2 Carrie										and mark	2044			
					No. of Street,							17 2.00			
	San Section and	en s	Sector Sector	State Parts		State State		Carl State	California and	No. of Street,	CTAL POR	P La La Martin			

Note: "Values" indicates data used to calculate N_{rate,90}.

East Abutment Undrained

١

INTEGRAL ABUTMENT FEASIBILITY ANALYSIS I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

STRUCTURE NUMBER====================================	053-0192
STRUCTURE TYPE ====================================	MULTI-SPAN
STRUCTURE SKEW====================================	24
TOTAL STRUCTURE LENGTH============	190.33
LONGEST END SPAN LENGTH ====================================	71.67

192	
I-SPAN	
	DEGREES
3	FT
	FT

B-2

643

ABUTMENT #1 DATA

ABUTMENT NAME ========================East ABUTMENT REFERENCE BORING======== BOTTOM OF ABUTMENT ELEVATION=======

FT

ABUTMENT #2 DATA

ABUTMENT REFERENCE BORING========= BOTTOM OF ABUTMENT ELEVATION======== ESTIMATED NUMBER OF PILES AT ABUT.======

		-
	E FI	
	100	
	100	

B-1

643

1.58

154.80

FT

6

	S	OIL DATA FOR 1	D FT BENEATH BOT	TOM OF ABUTMENT	ſ # 1		S	DIL DATA FOR 10) FT BENEATH BOT	TOM OF ABUTMEN	Γ#2
	BOT. OF LAYER ELEV. (FT)	LAYER THICKNESS (FT)	UNCONFINED COMPRESSIVE STRENGTH (TSF)	N S.P.T. VALUE (BLOWS/12 IN.)	Qu EQUIV. FOR N VALUE (TSF)		BOT. OF LAYER ELEV. (FT)	LAYER THICKNESS (FT)	UNCONFINED COMPRESSIVE STRENGTH (TSF)	N S.P.T. VALUE (BLOWS/12 IN.)	Qu EQUIV. FOR N VALUE (TSF)
	639.00	4.00		18	2.9		639.00	4.00	Constant of the second	12	2.6
	636.50	2.50		10	2.4		636.00	3.00	State Strangelington	8	2.3
	634.00	2.50		6	2.0		634.00	2.00	The strength of the	8	2.3
	631.50 2.50										2.3
			THE REAL PROPERTY.					Enders Contract	SOLE BARRIES	ADDRESS STATISTICS TAL	
										Second Statistical Contraction of the	
			120	Section 1 in the West				的复数的复数形式的		A CARLES AND A CARLES	
ENT WEIG	9.00 FT = TOTAL DEPTH ENTERED 11.50 FT = TOTAL DEPTH ENTERED NTER 10 FT OF SOIL DATA VEIGHTED AVERAGE QU FOR ABUTMENT #1======: 2.52 TSF WEIGHTED AVERAGE QU FOR ABUTMENT #2=====: 2.37 TSF										
PILE =	STIFFNESS M 1/(1.45-[0.3*	IODIFIER FOR ABU *2.52])======	TMENT #1 ========	1.44		PI	LE STIFFNESS M = 1/(1.45-[0.3*	ODIFIER FOR ABU	TMENT #2 =============	1.35	
	DISTA	NCE TO CENTROID	OF STIFFNESS FRO	M ABUTMENT #1 = [1	1.44*6*0+1.35*6*:	190.3	3]/[1.44*6+1.35	5*6]=======	92.16	FT	
	DISTANCE TO CENTROID OF STIFFNESS FROM ABUTMENT #2 = [1.35*6*0+1.44*6*190.33]/[1.35*6+1.44*6]======== 98.17 FT										
<u>EFFE</u>	EFFECTIVE EXPANSION LENGTH (EEL) CALCULATION										
CON	CONTROLLING ABUTMENT=========ABUT. #2 West										
CON	ROLLING EX	PANSION LENGTH	(DISTANCE TO CENT	ROID OF STIFFNESS	FROM CONTROLLI	NG AE	BUTMENT) ===:			98.17	FT
WEIG	/EIGHTED AVE. Qu FOR CONTROLLING ABUTMENT ====================================										

FEASIBLE PILE TYPES PER CHART IN ABD MEMO 12.3 BASED ON SKEW AND EEL OR MODIFIED EEL: PILE SIZES AT OR ABOVE THE LENGTH LINE AT THE INTERSECTION WITH THE SKEW LINE ARE ALLOWED FOR USE WITH THIS INTEGRAL ABUTMENT STRUCTURE

AVAILABLE PILE SIZES:

HP 10X42, HP 12X53, HP 10X57, HP 12X63, HP 12X74, HP 14X73, HP 12X84, HP 14X89, HP 14X102, HP 14X117

ESTIMATED NUMBER OF PILES AT ABUT.=====

Modified 1/7/2014

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBSTRUCTURE====================================	MAX. REQUIRED	BEARING & RESI	STANCE for Selected Pile,	<u>Soil Profile, & Losses</u>
LRFD or ASD or SEISMIC ====================================	Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
PILE CUTOFF ELEV. ====================================	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
GROUND SURFACE ELEV. AGAINST PILE DURING DRI 643.00 ft	418 KIPS	418 KIPS	230 KIPS	25 FT.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) None		····· ·		
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =================================				
TOP ELEV. OF LIQUEF. (so layers above apply DD) ==================================				
TOTAL EACTORED SUBSTRUCTURE LOAD				

Г

Approx. Factored Loading Applied per pile at 3 ft. Cts =====:

KIPS KIPS

5.800 FT. 0.108 SQFT.

BOT. OF		UNCONF.	S.P.T.	GRANULAR	NO	IINAL PLUG	GED	NOI	MINAL UNPLU	IG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER L	AYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV. TI	гніск.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
639.00	4.00	3.50	12		27.2		82.3	39.7		45.8	46	0	0	25	6
636.00	3.00	4.00	8		22.6	55.1	102.1	33.0	6.0	78.5	78	0	0	43	9
634.00	2.00	3.80	8		14.5	52.4	116.6	21.1	5.7	99.6	100	0	0	55	11
631.50 2	2.50	3.80	8		18.1	52.4	96.1	26.4	5.7	121.8	96	0	0	53	14
629.00	2.50	1.00	4		7.0	13.8	776.9	10.3	1.5	133.0	117	0	0	04	10
626.00	3.00	2.00	12	Herd Till	6.2	154.3	207.0	20.3	3.0	176.8	100	0	0	92	20
624.00	1.00		04 8/	Hard Till	6.2	154.3	238.0	9.0	16.9	182.3	182	0	ő	100	21
623.00	1.00		- 04	Shale	49.4	122.5	287.4	72.3	13.4	254.5	255	õ	õ	140	22
622.00	1.00			Shale	49.4	122.5	336.8	72.3	13.4	326.8	327	ō	Ō	180	23
621.00	1.00			Shale	49.4	122.5	386.2	72.3	13.4	399.0	386	Ō	0	212	24
620.00	1.00			Shale	49.4	122.5	435.6	72.3	13.4	471.3	436	θ	θ	2 40	25
619.00 1	1,00			Shale	49.4	122.5	485.1	72.3	13.4	543.5	485	θ	θ	267	26
618.00 1	1.00			Shale	49.4	122.5	534.5	72.3	13.4	615.8	534	0	0	294	-27
617.00 1	1.00			Shale	49.4	122.5	583.9	72.3	13.4	588.0	684	€ 0	Ð	324 240	2 0
616.00	1.00			Shale	49.4	122.5	DJJ.J 693.7	72.3	13.4	100.3	6633	Ū.	0	346	20
615.00	1.00			Shale	49.4 AQ A	122.0	732 1	72.3	13.4	904.8	732	۵ ۵	Ď	403	31
613.00	1.00			Shale	49.4	122.5	781 5	72.3	13.4	977.0	782	A	Â	430	32
612.00	1.00			Shale	49.4	122.5	831.0	72.3	13.4	1049.3	831	<i>o</i>	ě	457	33
611.00	1.00			Shale	10.1	122.5	00110	72.0	13.4	10 10.0		ũ.	·		

Pile Design Table for West Abutment utilizing Boring #B-1

	Nominal	Factored	Estimated		Nominal	Factored	Estimated	2	Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
1				Steel I	HP 10 X 57			Steel	HP 14 X 73		
					40	22	6		56	31	6
			ĺ		67	37	9		95	52	9
					80	44	14		117	64	14
					96	53	16		144	79	16
					145	80	19		205	113	19
					153	84	20		216	119	20
					157	86	21		222	122	21
					454	250	28		578	318	26
				Steel I	HP 12 X 53			Steel I	-IP 14 X 89		
					46	25	6		58	32	6
					78	43	9		98	54	9
					96	53	14		118	65	14
					117	64	16		146	81	16
					168	92	19		211	116	19
					177	97	20		222	122	20
					182	100	21		227	125	21
					418	230	25		705	388	28
				Steel H	IP 12 X 63			Steel H	IP 14 X 102		
					47	26	6		60	33	6
					81	44	9		100	55	9
					97	53	14		120	66	14
					118	65	16		148	82	16
					173	95	19		216	119	19
1					182	100	20		227	125	20
					187	103	21		231	127	21
				Stool L	49/ 10 42 V 74	213	21	Stool L	010 7 4 4 4 4 7	445 ,	30
				Sleer	40	07	c	Steerr	17 14 A 117	24	6
Stool HI	D 10 Y 12				49	Z1 45	0		102	54	0
Steel H	20	24	6		02	40 54	9		102	00 67	9
	30 66	21	0		90 120	04 66	14		121	07	14
	78	30	9 14		120	00	10		100	00 100	10
	70 Q3	51	16		187	30 103	20		223	122	20
	140	77	10		107	105	20		234	129	20
	140	81	20		580	324	21		237 020	511	21
	152	84	20	Steel H	IP 12 X 84	524	20		525	511	52
	335	184	25		50	28	6				
			20		84	46	9				
					100	55	14				
l					122	67	16				
				1	181	100	19				
				1	191	105	20				
					194	107	21				
					664	365	30				
				P							

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

LRFD 645.00 ft GROUND SURFACE ELEV. AGAINST PILE DURING DRI 643.00 ft GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) None BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ============= ft TOP ELEV. OF LIQUEF. (so layers above apply DD) =========== ft

Approx. Factored Loading Applied per pile at 8 ft. Cts =====: Approx. Factored Loading Applied per pile at 3 ft. Cts =====:

Plugged Pile End Bearing Area============

Г

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
418 KIPS	418 KIPS	230 KIPS	24 FT.

3.967 FT.

0.983 SQFT. Unplugged Pile End Bearing Area==== 0.108 SQFT.

KIPS

KIPS

5.800 FT.

BOT.		T			NO		CED	NO		IG'D		FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR	NON	NNAL PLUG	GED	101	MAL ON LC		NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(F1.)
639.00	4.00	2.50	18		21.4		55.8	31.2		35.0	35	0	0	19	6
636,50	2.50	2.50	10		13.4	34.5	62.3	19.5	3.8	53.8	54	0	0	30	9
634.00	2.50	2.00	6		11.5	27.6	80.7	16.9	3.0	71.4	/1	0	0	39	14
631.50	2.50	2.50	10		13.4	34.5	73.4	19.5	3.8	88.7	13	0	0	57	16
629.00	2.50	1.00	4		7.0	13.8	121.8	10.3	1.5	103.0	104	0	0	76	19
626.50	2,50	4.00	26		18.8	55.1	208.0	21.5	0.0	210.6	211	0	ő	116	19.5
625.50	1.00			Shale	49.4	122.5	207.4	72.3	13.4	282.9	283	ő	Ő	156	20.5
624.50	1.00			Shale	49.4	122.0	356.2	72.3	13.4	355.1	355	õ	ō	195	21.5
623.50	1.00			Shale	49.4	122.5	A05 6	72.3	13.4	427.4	406	0	0	223	22.5
622.50	1.00		Contraction of the second	Shale	49.4	122.5	455.0	72.3	13.4	499.6	455	θ	0	250	23.5
621.00	1.00			Shale	49.4	122.5	504.4	72.3	13.4	571.9	504	θ	0	277	24.5
619.50	1.00			Shale	49.4	122.5	553.9	72.3	13.4	644.1	55 4	0	θ	305	25.5
618.50	1.00			Shale	49.4	122.5	603.3	72.3	13.4	716.4	603	0	0	332	20,0 27.5
617.50	1.00			Shale	49.4	122.5	652.7	72.3	13.4	788.6	663	Ð	, and a second s	309	28.6
616.50	1.00			Shale	49.4	122.5	702.1	72.3	13.4	000.9	750	0	0	413	29.5
615.50	1,00			Shale	49.4	122.5	/51.5	72.3	13.4	1005 4	801	0	ő	441	30.5
614.50	1,00		2.2.	Shale	49.4	122.5	000.9	72.3	13.4	1003.4	850	Â	Å	468	31.5
613.50	1.00			Shale	49.4	122.5	800.5	72.3	13.4	1149.9	900	$\hat{\theta}$	0	495	32.5
612.50	1.00			Shale	49.4	122.5	033.0	72.0	13.4	1110.0		-			
611.50	1,00			Snale		142.5			10.1						
													1		
									1						
									1						
					I	1 I		1	I	I	1	I I	,	•	

Pile Design Table for East Abutment utilizing Boring #B-2

I	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Lenath		Bearing	Available	Length		Bearing	Available	Length
	(Kins)	(Kins)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
	(11)(3)	(14)07	(, ,,)	Steel	HP 10 X 57			Steel I	HP 14 X 73		
					30	17	6		43	24	6
					46	25	9		65	36	9
					61	33	14		87	48	11
					89	49	16		90	49	14
					120	66	19		126	69	16
					454	250	26		169	93	19
				Steel	HP 12 X 53				578	318	25
					35	19	6	Steel	HP 14 X 89		
					54	30	9		44	24	6
					71	39	11		67	37	9
					73	40	14		88	49	11
					104	57	16		91	50	14
					138	76	19		128	71	16
					418	230	24		174	96	19
				Steel	HP 12 X 63				705	388	27
					36	20	6	Steel	HP 14 X 10	2	
					55	30	9		45	25	6
					73	40	11		68	37	9
					74	41	14		90	49	11
					106	58	16		92	51	14
					143	78	19		130	72	16
					497	273	25		178	98	19
				Steel	HP 12 X 74				810	445	28
					37	20	6	Steel	HP 14 X 11	7	
					56	31	9		47	26	6
1					74	41	11		69	38	9
					75	41	14		91	50	11
					108	59	16		93	51	14
					146	80	19		133	73	16
					589	324	27		183	101	19
				Steel	HP 12 X 84				929	511	30
Steel I	HP 10 X 42	2			38	21	6				
	29	16	6		57	31	9				
	45	25	9		75	41	11				
	59	33	14		76	42	14				
	86	48	16		109	60	16				
	115	63	19		149	82	19				
	335	184	24		664	365	28	┨┠───			
								┨┠───			
1											
								11			

.

Project Name: IL Rte 116 over Rooks Creek Location: Livingston County, Illinois Existing Structure: 053-0065 Proposed Structure: 053-0065 MPS Project Number: ME17126

West Abutment Estimated Maximum Pile Elevations (Boring B-1, 2018)

Pile Type and Size	Estimated Pile Refusal Elevation (ft.)
HP 10 x 42	620.0
HP 10 x 57	617.0
HP 12 x 53	620.0
HP 12 x 63	618.0
HP 12 x 74	617.0
HP 12 x 84	615.0
HP 14 x 73	619.0
HP 14 x 89	617.0
HP 14 x 102	615.0
HP 14 x 117	613.0

East Abutment Estimated Maximum Pile Elevations (Boring B-2, 2018)

Pile Type and Size	Estimated Pile Refusal Elevation (ft.)
HP 10 x 42	621.5
HP 10 x 57	619.5
HP 12 x 53	621.5
HP 12 x 63	620.5
HP 12 x 74	618.5
HP 12 x 84	617.5
HP 14 x 73	620.5
HP 14 x 89	618.5
HP 14 x 102	617.5
HP 14 x 117	615.5