

11 Executive Drive, Suite 12, Fairview Heights, Illinois 62208 618-624-8610

Structural Geotechnical Report

Ramp A over Northbound LaGrange Road FAP 330 (IL 171) Section (10-30)BR Cook County, Illinois PTB195-015 Contract No. IDOT Job No. D-91-357-20 Proposed SN 016-2757 Existing SN 016-0518

Prepared For:

Garza Karhoff Engineering, LLC 120 N LaSalle Street Suite 1400 Chicago, Illinois 60602

Prepared By:

Millennia Professional Services, Ltd. 11 Executive Drive, Suite 12 Fairview Heights, Illinois 62208 618-624-8610

Authored By: Charles R. Graham <u>cgraham@millennia.pro</u> Millennia Project Number ME21043 January 26, 2023

Contents

1.0 PROJECT DESCRIPTION AND PROPOSED STRUCTURE INFORMATION. 1 1.1 Introduction 1 1.2 Project Description 1 1.3 Existing Bridge Information 1 1.4 Proposed Bridge Information 1	2 2 2 2 2
2.0 SUBSURFACE EXPLORATION AND LABORATORY TESTING	3 3 4
3.0 SUBSURFACE CONDITIONS 2 3.1 Generalized Subsurface Profile 2 3.2 Groundwater 2	4 5
4.0 FOUNDATION EVALUATIONS AND DESIGN RECOMMENDATIONS 6 4.1 Settlement Considerations 6 4.2 Seismic Considerations 6 4.3 Global Stability of MSE Walls 7 4.4 Pile Supported Foundations 8 4.5 Lateral Load Resistance 10 4.6 Lateral Earth Pressures 11 4.7 MSE Wall Foundations 12	5 5 5 7 8 0 1 2
5.0 CONSTRUCTION CONSIDERATIONS 13 5.1 Subgrade, Fill, and Backfill 13 5.2 Subgrade Protection 13 5.3 Site Excavations 13	3 3 3 3
6.0 CLOSING	5
Appendix A - Vicinity Map, Figure 1	

- Boring Location Plans, Figures 2.1 and 2.2
- Appendix B Type, Size, Location Plan Appendix C Soil Profiles (Figures 3.1 and 3.2), Boring Logs, and Rock Core Photographs
- Appendix D Summary Stability Profiles
- Appendix E Pile Length Estimate Spreadsheets

Ramp A over Northbound LaGrange Road FAP 330 (IL 171) Proposed SN 016-2757 Cook County, Illinois

1.0 Project Description and Proposed Structure Information

1.1 Introduction

This report summarizes the results of a geotechnical investigation performed for the design of the proposed new single span bridge, SN 016-2757, for Ramp A over northbound LaGrange Road in Cook County, Illinois. This report describes the exploration procedures used, presents the field and laboratory data, includes an assessment of the subsurface conditions in the area, and provides geotechnical recommendations for the construction. Based on subsurface conditions encountered at the borings performed by Millennia.

1.2 **Project Description**

The project consists of a complete bridge replacement of the existing Ramp A over northbound LaGrange Road structure (SN 016-0518) located in Lemont, Illinois. Also included in the project are two MSE walls located near the west and east abutments. The general site area is shown on the attached Vicinity Map, Figure 1 in Appendix A. Plans that show the approximate locations of the borings performed for this study are presented as Boring Location Plans, Figures 2.1 and 2.2, in Appendix A.

1.3 Existing Bridge Information

The original structure (SN 016-0518) was built in 1958. The superstructure consists of a reinforced concrete deck on three simply supported spans on steel beams. The structure is 179'-8.5" long and 36'-4" wide out-to-out on curved alignment having a radius of 700 feet.

1.4 Proposed Bridge Information

The proposed structure will consist of a single span bridge built on a varying skew from northbound LaGrange Road. The proposed structure will have an overall length of 126 feet-9 1/2-inches from back-to-back abutments. The out-to-out deck width is 42-feet-10-inches. The proposed structure will include two 12-foot-wide driving lanes with an eastbound shoulder width of 10-feet and a westbound shoulder width of 6-feet (As indicated on the TSL in Appendix B).

In addition, two MSE walls are anticipated as part of the project and are located near the proposed structure abutments. The first MSE wall is located near the west abutment with a proposed length of 189-feet-11 ¹/₂-inches with an approximate maximum height of 22-feet. The second wall is located at the east abutment with a proposed length of 271-feet-9 ¹/₄-inches with an approximate maximum height of 27-feet.

2.0 Subsurface Exploration and Laboratory Testing

2.1 Subsurface Exploration

From January 25 through February 8, 2022, Millennia conducted a subsurface exploration at the site, consisting of ten (10) soil test borings, designated as Borings B-1 through B-4 for the proposed structure and P-1 through P-6 for the roadway borings. The roadway borings are listed for reference, and will be discussed in further detail in a separate roadway geotechnical report. The approximate ground surface elevations at the boring locations were provided by Millennia's survey crew. The approximate locations of borings are indicated on the Boring Location Plans, Figures 2.1 and 2.2, Appendix A.

After the initial subsurface exploration was completed, it was determined that three (3) additional borings would be required for the addition of the MSE walls near the abutment locations. From January 12 through January 13, 2023, the additional borings were performed at the site, consisting of three (3) soil test borings, designated as Borings MSE-1, MSE-2, and MSE-3. The approximate ground surface elevations at the boring locations were estimated from the topographic survey of the site, performed by Millennia. The Borings were advanced to depths from 36.25 to 39.25-feet below ground surface (bgs). The approximate locations of borings are indicated on the Boring Location Plans, Figures 2.1 and 2.2, Appendix A.

The borings were advanced using hollow stem, mud-rotary, and continuous flight auger drilling methods. Split-spoon samples were recovered from the borings using a 2-inch outsidediameter, split-barrel sampler, driven by an automatic hammer, in accordance with ASTM D 1586. Samples were obtained at 2.5-foot intervals to a depth of 30 feet and 5-foot intervals thereafter. The split-spoon samples were placed in glass jars for later testing in the laboratory. The split-spoon samples were placed in containers for later testing in the laboratory. The sampling sequence for each boring is summarized on the boring logs in Appendix C.

Unconfined compression tests were performed on selected split-spoon samples using a Rimac field testing machine. The resulting unconfined compressive strengths are reported on the boring logs. Borings B-2 and B-3 were advanced below auger refusal into the underlying bedrock using rock coring methods. At B-2 bedrock was encountered at 56 feet bgs and 60 feet bgs at B-3. The material recovered was a light gray to gray dolomite, moderately hard to hard, and slightly to highly weathered. Boring MSE-2 encountered auger refusal at 36-feet below ground surface, and was terminated after a split-spoon was driven 3-inches with 50 blows from the automatic hammer.

2.2 Laboratory Testing

A laboratory testing program consisting of natural moisture contents, visual classifications, and unconfined compressive strength testing using a RIMAC, was conducted by Millennia to determine selected engineering properties of the obtained soil samples. The results of the individual tests are presented on the boring logs in Appendix C.

3.0 Subsurface Conditions

Details of the subsurface conditions encountered at the boring locations are shown on the boring logs. The general subsurface conditions encountered and their pertinent engineering characteristics are described in the following paragraphs. Conditions represented by the borings should be considered applicable only at the boring locations on the dates shown; the reported conditions may be different at other locations and at other times.

3.1 Generalized Subsurface Profile

The surficial material at the borings typically consists of either a pavement section or topsoil. Refer to the individual boring logs for the relevant pavement section and topsoil thicknesses.

Existing fill or possible fill materials related to the construction of the original interchange and embankments were encountered in three out of the four proposed structure borings, to depths ranging from approximately 3 to 10.5 feet. The fill soils typically consist of silty clay, silty clay loam, and sand. Trace amounts of sand, gravel sized rock, and brick fragments were observed in the fill. Moisture contents range from 9 to 22%. The standard penetration test (N) values range from 3 to 15 blows per foot (bpf). Rimac unconfined compression test values on samples range from 1.2 to 4.0 tons per square foot (tsf).

Natural cohesive soils were encountered either below the fill, the pavement surface, or at the existing ground surface at the site and are predominantly made up of silty clay, silty clay loam, silt, silt loam, clay loam, and sandy clay loam. The natural soils contain variable amounts of sand, sand seams, and gravel. Moisture contents vary from 7 to 24%. The standard penetration test (N) values range 7 bpf to 100 blows for 0.5-inches of penetration. Rimac unconfined compression test values on samples range from 1.7 to 3.8 tsf. The cohesive materials were generally stiff to hard. It should be noted that many of the cohesive soils were too disturbed to perform RIMAC testing.

Natural granular soils were encountered interbedded in the layers of cohesive materials. The granular soils generally consist of sand and sandy loam. N-values in the granular soils vary from 17 bpf to 100 blows per 1-inch of penetration. The thickness of the granular soil varies from about 5 to 7.5 feet, where encountered. Generally, the granular material was medium-dense to very dense. Cobbles were noted in Boring B-3.

The MSE wall borings encountered natural cohesive soils predominately composed of clay loam and sandy clay loam. These soils contained varying amounts of sand and gravel. N-values range from 7 bpf to 50 blows per 3-inches of penetration. Rimac or hand penetrometer

unconfined compression test values on intact samples range from 1.3 to 6.2 tsf. Moisture contents vary from 7 to 30 percent.

The natural granular soil, encountered in the MSE wall borings, consisted of a Sandy Loam material interbedded in the layers of cohesive materials. The N-values range from 7 bpf to 50 blows per 3-inches of penetration, and moisture contents between 7 and 26 percent.

Split-spoon refusal was encountered in all four of the structure borings, with a 5 or more consecutive blow counts of exceeding 100 blows for six inches of penetration. Boring MSE-2 encountered auger refusal at approximately 36-feet bgs. The split-spoon sample obtained after auger refusal contained trace amounts of fragmented rock. B-1 and B-4 were advanced to depths deep enough to show adequate pile capacity can be achieved, per the IDOT Geotechnical Manual, updated 2020. This typically occurred at depths from 28 to 30 feet below the ground surface. Two borings, B-2 and B-3, were advanced below auger refusal on bedrock at elevations 538.2 and 536.1, respectively. A moderately hard to hard, grey dolomite was encountered with 100 percent recovery on all runs and RQD values between 91 and 100 percent.

3.2 Groundwater

Groundwater was observed during drilling or at completion, at Borings B-1, B-3, B-4, MSE-1, MSE-2, and MSE-3. Groundwater was not encountered in boring B-2 prior to changing to mud rotary drilling techniques. The presence or absence of groundwater at a particular location does not necessarily indicate that groundwater will be present or absent at that location at other times. Groundwater levels may vary significantly over time due to the effect of seasonal variations in precipitation, or other factors not evident at the time of exploration. Table below ists the groundwater depths and elevations at the boring locations where groundwater was encountered.

Boring	Groundwate	r Depths (ft.)	Groundwater Elevations		
	During Drilling	Upon Completion	(ft.)		
B-1	18.0	18.0	592.3	592.3	
B-3	8.0		588.1		
B-4	23.0	23.0	596.2	596.2	
MSE-1	11.0		573.0		
MSE-2	16.5		567.5		
MSE-3	11.0		576.0		

4.0 Foundation Evaluations and Design Recommendations

4.1 Settlement Considerations

A substantial amount of new fill is anticipated to be needed for the construction of the proposed MSE wall structure for the east abutment. Fills from earthwork operations are anticipated to be approximately 23 to 25-feet thick. Due to the anticipated maximum fill height, a settlement analysis was performed using IDOT's spreadsheet, "Cohesive Soil Settlement Estimate", and soil characteristics from Boring MSE-3.

The load imposed by the new fill at the eastern MSE wall is anticipated to generate some compression of the supporting materials. Based on the conditions encountered at the east MSE wall boring locations, the anticipated condition of any new fill, and the structural loads, total settlement at the east abutment was calculated to be up to 1 inch, with differential settlements up to approximately half the total. As indicated from the borings, the anticipated foundation bearing soils are anticipated to be composed of stiff to hard cohesive soils. The majority of the settlement within the new fill should take place during construction, as the load is applied.

Based on this information, Millennia does not anticipate downdrag to be an issue for the abutment pile foundations.

4.2 Seismic Considerations

The determination of Seismic Site Class was based on the method described by IDOT AGMU Memo 09.1 - Seismic Site Class Definition and the IDOT provided spreadsheet titled: '*Seismic Site Class Determination*.' Using these resources, the controlling global site class for this project is Soil Site Class C.

Additional seismic parameters were calculated for use in design of the structure and evaluation of liquefaction potential. Published information and mapping, including software directly applicable to the AASHTO Guide Specifications for LRFD Seismic Bridge Design, was used to develop the parameters for the project site location. The values, based on Soil Site Class C, are summarized below.

Parameter	Value
Soil Site Class	С
Spectral Response Acceleration, 0.2 Sec, SDS	0.1187g (Site Class C)
Spectral Response Acceleration, 1.0 Sec, S _{D1}	0.0563g (Site Class C)
Seismic Performance Zone	1

As indicated in the table above, based on S_{D1} and Table 3.15.2 in the IDOT Bridge Manual, the Soil Site Class D, and Figure 2.3.10-2 in the IDOT Bridge Manual, the Seismic Performance Zone is 1. Since the proposed structure is located in Seismic Performance Zone 1, as per the IDOT Bridge Manual, 2012, liquefaction analysis is not required.

4.3 Global Stability of MSE Walls

A stability analysis using SLOPE/W was performed using the MSE wall geometry as per the TS&L details, provided by GKE, and soil characteristics from the borings performed for the initial subsurface exploration and the additional MSE wall borings. Three conditions were modeled: end of construction, long-term, and seismic stability. A critical factor of safety (FOS) was calculated for each condition. According to current standard of practice, the target FOS is 1.5 for static conditions and 1.0 for seismic. The slope stability analyses for the abutment walls and side slopes indicate that the required minimum FOS for all conditions were met.

The parameters used in the analysis were based on the results of the field and laboratory investigations, along with Millennia's experience in the area. In order to model the end of construction condition, full cohesion and a friction angle of 0 degrees were assumed. Nominal values for cohesion were used with full friction angle to model the long-term condition to analyze the theoretical condition where pore water pressure has dissipated. Nominal values were 100 psf for the cohesive soils, and friction angles ranged from 26 to 34 degrees.

The Bishop Circular Method, which generates circular-shaped failure surfaces was used to calculate the critical failure surfaces and FOS for the proposed conditions. The FOS obtained in the analysis are tabulated below. Slope/W program output from this analysis can be found in Summary Stability Profiles provided in Appendix D.

Analysis Location	Poringo	Assumed	Minimum Computed Factor of Safety			
Section	Borngs	Conditions	Short Term	Long- Term	Seismic	
West Abutment MSE Retaining Wall	MSE-1, B-1, & B-2	Maximum Wall Height = 22 ft.	3.3	1.6	1.4	
East Abutment MSE Retaining Wall Global	MSE-3, B-3, & B-4	Maximum Wall Height = 27 ft.	3.0	1.6	1.4	

The onsite soils can potentially be highly erosive, a mechanism of soil movement unrelated to global stability. Future erosion and shallow, superficial slumps are always a possibility, despite the results of advanced computer modeling for slope stability. Maintaining healthy vegetation, along with appropriate erosion control practices, will reduce the potential for these issues to become problematic. In addition, the abutment slopes will be almost entirely constructed from engineered fill. In order for the slopes to perform as modeled, proper compaction and construction specifications must be followed during construction.

Geotechnical conditions between the boring locations are essentially unknown, and there is potential for variation in elevations and soil composition across the proposed structure footprint. If the contractor exposes conditions during excavation and other earthwork activities that differ from those indicated at the boring locations, Millennia should be notified to assess the effect (if any) of the unanticipated conditions upon the findings of the global slope stability assessment. At the time of this report, there does not appear to be any new sideslopes associated with the

proposed structure. If any new side slopes located behind the proposed structure support slabs are utilized, they will be analyzed as part of the Roadway Geotechnical Report.

4.4 Pile Supported Foundations

The foundations supporting the proposed structure must provide sufficient support to resist dead and live loads, including seismic loading. Based on the encountered subsurface conditions, and information available to date, steel H-pile and metal shell piles are feasible options for support of the proposed structure. If metal shell piles are chosen, protective conical tips and care should be taken to prevent damage from driving through the very-stiff to hard till that is indicated on the boring logs. Based on the encountered subsurface conditions, Millennia utilized the Modified IDOT Static Method of Estimating Pile Length (Appendix E) provided by IDOT BBS Foundations and Geotechnical Unit, and the information available to date, to estimate the pile lengths.

The Maximum Nominal required Bearing (R_N) represents the resistance the pile will experience during driving, and will assist the contractor in selecting a proper hammer size. The Maximum Factored Resistance Available (R_F) documents the net long-term axial factored pile capacity available at the tip of the pile to support factored substructure loading. The maximum factored resistance available uses a LRFD Resistance Factor of 0.55. Millennia assumes that the piles will be driven to the maximum nominal bearing of the pile in cohesive or granular material and will not be driven to bedrock. Based on the geotechnical analysis performed for the proposed structure, the impacts of downdrag and liquefaction do not result in a need to reduce the axial factored pile capacity.

Location	R _N Maximum Nominal Required Bearing (kips)	R _F Maximum Factored Resistance Available (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)	
West Abutment B-1 & B-2	392	215	26	606.4	
East Abutment North Side B-3 & B-4	ast Abutment North Side 392 B-3 & B-4		16	605.8	

MS	12"	Φ	w/.25"	walls
----	-----	---	--------	-------

MS 14" Φ w/.312" wa	alls
---------------------	------

Location	R _№ Maximum Nominal Required Bearing (kips)	R _F Maximum Factored Resistance Available (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)	
West Abutment B-1 & B-2	570	313	34	606.4	
East Abutment North Side B-3 & B-4	570	313	16	605.8	

HP 12X53

Location	R _№ Maximum Nominal Required Bearing (kips)	R _F Maximum Factored Resistance Available (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)	
West Abutment B-1 & B-2	418	230	62	606.4	
East Abutment North Side B-3 & B-4	418	230	51	605.8	

HP 14X73

Location	R _№ Maximum Nominal Required Bearing (kips)	R _F Maximum Factored Resistance Available (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)	
West Abutment B-1 & B-2	578	318	68	606.4	
East Abutment North Side B-3 & B-4	578	318	57	605.8	

Other pile configurations are available and could be considered as substitutes for the sections summarized above. The pile group capacity may be designed as the sum of the individual piles with the understanding that a spacing of at least three pile widths is maintained between piles, center to center.

ASTM A 572 Grade 50 high-strength steel is recommended in order to be driven through the stiff soils, while minimizing potential bending, buckling, distortion, or curling of pile tips. The piles should be equipped with tip reinforcement/shoes to promote penetration through the stiff to hard layers. After the pile section and driving equipment have been selected, a termination driving criteria should be established using a wave equation analysis to help assure adequate capacity and reduce the potential for over stressing the piles during installation. Millennia recommends a test pile be performed at one of the abutments. Test piles are performed prior to production driving so that actual, on-site field data can be gathered to further evaluate pile driving requirements for the project. The test pile results will also provide data for use in assessing the contractor's proposed equipment and methodologies, previously identified in their Pile Installation Plan

Assuming that the piles are properly installed, as discussed herein, total settlement should be less than approximately one inch, with differential settlements up to approximately half the total.

4.5 Lateral Load Resistance

Lateral load resistance and induced lateral deflection for pile foundations are typically assessed using finite difference computer models based on the lateral modulus-of-subgrade reaction, such as LPILE. Based on the conditions encountered at the borings, the following parameters are recommended for use in the design of the abutment foundations:

	Elev. at Unit		Short Term		Long Term		Ν	к	
Boring	Bottom of Layer	Weight (pcf)	Φ (deg.)	c (psf)	Φ (deg.)	c (psf)	Value (bpf)	(pci)	ε50
	607.3	120	0	2,500	26	100	5	850	0.006
	604.8	120	0	2,200	26	100	7	650	0.006
B-1	599.8	120	0	1,750	26	100	8	500	0.007
	594.8	110	32	0	32	0	24	78	
	580.3	130	0	4,000	26	100	100	1,200	0.004
	591.2	110	32	0	32	0	15	78	
	578.7	120	0	2,000	28	100	36	650	0.006
B-2	571.2	120	0	2,500	28	100	61	850	0.006
	538.2	125	0	4,000	28	100	85	1,200	0.004
	522.8	145	45	7,000	45	7,000	RC		0.001
	593.1	120	0	1,800	26	100	35	550	0.007
B-3	580.6	125	0	2,750	28	100	73	850	0.006
	573.1	125	0	3,250	28	100	89	1,000	0.005
	566.1	125	0	2,750	28	100	76	850	0.006
	554.4	130	0	3,250	26	100	91	1,000	0.005
	549.4	130	0	3,500	29	100	100	1,100	0.005
	544.4	130	0	3,500	28	100	100	1,100	0.005

Denim	Elev. at	Total Unit	Short Term		Long	Term	Ν	к		
Boring	Bottom of Layer	Weight (pcf)	Ф (deg.)	c (psf)	Φ (deg.)	c (psf)	Value (bpf)	(pci)	850	
	539.4	120	36	0	36	0	100	157		
B-3	536.1	125	0	3,250	28	100	90	1,000	0.005	
	521.1	145	45	7,000	45	7,000	RC		0.001	
	611.2	120	0	2,500	26	100	9	850	0.006	
	608.7	120	0	1,200	250 28 100 90 1, 000 45 7,000 RC 500 26 100 9 8 200 26 100 3 4 4 4 4	425	0.008			
B-4	601.2	120	0	3,100	26	100	19	1,000	0.005	
	593.7	125	36	0	36	0	100	157		
	591.2	125	0	3,500	28	100	100	1,100	0.005	

pcf = pounds per cubic foot psf = pounds per square foot pci = pounds per cubic inch RC=rock core -unit weight not adjusted for groundwater

4.6 Lateral Earth Pressures

Lateral earth pressure parameters are provided for the design of the retaining wall structures. Structures that are restricted from movement at the top should be designed to resist at-rest earth pressures. Structures that are free to move and deflect at the top may be designed to resist active earth pressures. A horizontal deflection at the top of the structure of approximately 1% of the supported height is typically required to permit active pressure to develop. Earth pressures are a function of the excavation configuration and the backfill materials. The following design parameters are recommended for the indicated backfill materials:

Lateral Earth Pressure Parameters

Parameter		Crushed Limestone	Cohesive Soil
At-Rest Equivalent Fluid	Drained	55 pcf	65 pcf
Pressure	Submerged	90 pcf	95 pcf
Active Equivalent Fluid	Drained	35 pcf	45 pcf
Pressure	Submerged	80 pcf	85 pcf
Passive Equivalent Fluid	Drained	480 pcf	320 pcf
Pressure	Submerged	310 pcf	215 pcf
Soil Wet Unit Weight		130 pcf	120 pcf
Angle of Internal Friction		35°	27°
Assumed Surcharge Condition		None	None
Ground Surface Profile		Horizontal	Horizontal

No factor of safety has been applied to the values above. pcf = pounds per cubic foot

Submerged values should be used for the calculation of lateral pressures for those portions of the structure that extend below the highest level of anticipated groundwater. The values for undrained fluid pressure for active and at-rest conditions include hydrostatic pressures.

Significant movement would generally be necessary to develop the full values of passive pressures given; typically, the passive values stated are reduced by up to one-half for design. The effects of vertical surcharge loads or sloping ground behind the structures are not included for the stated fluid pressures. To use the lateral earth pressures recommended in Table for design, the backfill material should be placed within a zone defined by a line beginning at the bottom edge of the structure pad or foundation and extending up at a 45° inclination. Resistance to sliding of the structure base may be analyzed using the resistance factors displayed in Section 4.7.

4.7 MSE Wall Foundations

As previously mentioned, two MSE retaining walls, one at each abutment location, are planned as part of the overall project. Based on plans provided by GKE, Millennia understands the MSE walls will be designed with maximum exposed heights of approximately 22 to 27 feet. Along some portions of the east abutment wall footprint there are areas that will require placement of new fill.

While encountered in limited areas at the boring locations for this study, existing fill may be present elsewhere throughout the project area. In order to eliminate risks to the new structures, any existing fill should be removed and replaced with new structural fill within the planned foundation area. At this time, the depth and extent of any fill that might remain below the bearing level will not be known until the foundation excavations have been performed. Millennia suggests that unit rates for removal and replacement be included in the bid documents.

The MSE wall at the west abutment location was designed with a maximum fill height of approximately 22 feet and will have an overall length of 189-feet 11 ½-inches. The proposed bearing elevation is approximately 589.0. Borings B-1 and B-2 indicate that there is potential for encountering similar materials along the length of the wall. B-1 performed on the north side of the existing abutment encountered a stiff to very stiff silt at the proposed bearing elevation, while boring B-2 on the south side of the existing abutment encountered a stiff to very stiff silt at the proposed bearing elevation, while boring B-2 on the south side of the existing abutment encountered a hard to very hard silt. In order to obtain additional information about the subsurface conditions, additional borings, designated MSE-1 and MSE-2 were drilled at the north and south ends of the west MSE wall, respectively. The ground surface of the borings was estimated to be approximate EI. 594.5 and 594.0, and indicate that cohesive materials, primarily stiff to very-stiff clay loam, at and below the anticipated bearing elevation of the west MSE wall. The MSE wall located at the west abutment bearing on natural soil may be designed for a factored bearing resistance of 5.0 kips per square foot (ksf). For the soil conditions encountered at the site of the west MSE wall, a bearing resistance factor of 0.5 was used, and a sliding resistance factor for foundations bearing on clay of 0.85 may be used.

The MSE wall located at the east abutment with a proposed length of 271-feet 9 ¼-inches with an approximate maximum height of 27-feet. The proposed bearing elevation varies from approximately 612.4 to 591.4. Borings B-3, B-4, and MSE-3 indicate that the foundation bearing material are similar along of the wall. B-3 indicated a stiff to very stiff clay loam, B-4 indicates stiff to very-stiff materials composed of silt clay, silty clay loam, and silt loam, and MSE-3 indicates a medium-stiff to very-stiff clay loam. The MSE wall located at the east abutment

bearing on natural soil may be designed for a factored bearing resistance of 5.0 ksf. For the soil conditions encountered at the site of the east MSE wall, a bearing resistance factor of 0.5 was used, and a sliding resistance factor for foundations bearing on clay of 0.85 may be used.

Shallow foundations in soil should be excavated with a smooth-edged, clawless excavating bucket to reduce disturbance of the bearing surface. The excavations should be kept dry, and foot traffic should be kept to a minimum to limit disturbance. Any loose or soft material that accumulates or develops at the footing subgrade should be removed prior to the placement of concrete. If zones of soft soils are encountered at the foundation support level, they should be removed and replaced with properly compacted fill, or the footings should be deepened to bear on stiffer soil. Footings should be constructed at least 40 inches below the finish grade to provide protection against the detrimental effects of seasonal moisture variations and frost penetration.

Concrete should be placed as soon as practical after the excavation has been completed to avoid deterioration of the bearing surface due to excessive drying, or excessive wetting caused by precipitation. Alternately, a thin layer of lean concrete could be placed over the excavation floor to protect the bearing surface.

5.0 Construction Considerations

5.1 Subgrade, Fill, and Backfill

Earthwork activities including backfill and fill should be performed in accordance with Section 205 of the Standard Specifications.

5.2 Subgrade Protection

Construction areas should be properly drained in order to reduce or prevent surface runoff from collecting on the subgrade. Any ponded water on the exposed subgrade should be removed immediately. To prevent unnecessary disturbance of the subgrade soils, trucks and other heavy construction vehicles should be restricted from traveling through the finished subgrade area. If disturbed areas develop, they should be reworked and compacted as previously described.

If this project is constructed during the winter season, fill materials should be carefully observed to see that no ice or frozen soils are placed as fill or remain in the base materials upon which fill is placed.

5.3 Site Excavations

Millennia recommends that excavations be performed in accordance with Occupational Safety and Health Administration (OSHA) regulations, and any other applicable regulatory agencies. In accordance with the OSHA excavation regulations, the soil encountered in most of the boring

locations would be classified as Type C materials. Excavations in sands, gravels, or silts will likely need to be at gentler inclinations, particularly if the soils are saturated. According to OSHA requirements, any excavation extending to a depth of more than 20 feet must be designed by a registered professional engineer. All excavations for this project are anticipated to be less than 20 feet.

In some areas of the project, the retaining walls could be constructed in line with, near, or intersect with other existing utilities. Existing utility trenches could contain crushed limestone or other types of granular bedding and backfill. It is possible that such granular materials are saturated and will be unstable when excavating through or adjacent to them. Undermining of adjacent utilities and structures could occur due to flowing and caving of the granular bedding and backfill, along with any overlying soil. A properly designed retention system, underpinning, or other suitable means of support should be used to maintain the integrity of nearby utilities and other structures.

It is anticipated that groundwater encountered in the site excavations can be controlled by a sump and pump arrangement in most situations. The sump and pump should be of large enough size to handle a high volume of flow that could be encountered if water-bearing zones of soil with significant granular content are intersected. Surface water should be routed away from the top of the excavations and prevented from flowing into the excavations.

Worker safety and classification of the excavation classifications are ultimately the responsibility of the contractor. Where the excavation lies within the zone of influence of existing pavements, buildings, slabs, utilities, or other structures, the integrity of those elements must be maintained by a properly designed earth retention system, underpinning, or other suitable means.

6.0 Closing

This report has been prepared for the exclusive use of Garza Karhoff Engineering, LLC and the Illinois Department of Transportation for use in the design and construction of the proposed Ramp A over Northbound LaGrange Road structure project in Cook County, Illinois. This report has been prepared in accordance with generally accepted soil and foundation engineering practices. No other warranty, expressed or implied, is made to the professional advice and recommendations included herein. This report is not for use by parties other than those named or for purposes other than those stated herein. It may not contain sufficient information for the use of other parties or for other purposes.

If there is a substantial lapse of time between the submission of this report and the start of work at the site, or if conditions have changed due to natural causes or construction operations at or adjacent to the site, this report should be reviewed by Millennia to determine the applicability of the analyses and recommendations considering the changed conditions and time lapse. The report should also be reviewed by Millennia if changes occur in structure locations, sizes, and types, or in the planned loads, elevations, grading plans, and project concepts.

These analyses and recommendations are based on data obtained from site reconnaissance, the borings performed for this study and other pertinent information presented herein. This report does not reflect any variations between, beyond, or below the borings. Should such variations become evident, it may be necessary to re-evaluate the recommendations of this report after performing on-site observation during the construction period and noting the characteristics of any such variation.

We appreciate this opportunity to be of service to you and would be pleased to discuss any aspect of this report with you at your convenience.

Sincerely,

Millennia Professional Services, Ltd.

harlos

Charles R. Graham

Project No. ME21043

Page 15

Appendix A: Vicinity Map: Figure 1 Boring Location Plans: Figure 2.1 & 2.2

Project location designated by the black box at the center of the map	Drawn by:	R. Onesky	Checked by:	CRG						
Image obtained from TopoQuest *Not to scale	Project No.:	ME21043	Date:	1/10/2022						

	FAP 330 I
Ν	
Approximate Boring Location:	Drawn by:
Image obtained from Google Earth	Project No.:

Millennia Professional Services

6439 Plymouth Avenue W-129, St. Louis, MO

Phone: (618) 624-8610 Fax: (618) 624-8611 Project No.: ME21043

BORING LOCATION PLAN: Figure 2.1

Illinois Route 171 at US 12/20/45 (LaGrange Road) Interchange Cook County, Illinois

R. Onesky	Checked by:	CRG
ME21043	Date:	1/22/2022

	FAP	33	0
Drawn by:			
Project No.:			

Millennia Professional Services

6439 Plymouth Avenue W-129, St. Louis, MO

Phone: (618) 624-8610 Fax: (618) 624-8611 Project No.: ME21043

BORING LOCATION PLAN: Figure 2.2

Illinois Route 171 at US 12/20/45 (LaGrange Road) Interchange Cook County, Illinois

C. Graham	Checked by:	JAS
ME21043	Date:	1/20/2023

Appendix B: Type, Size, & Location Plan

Benchmark: Chiseled 🗌 on the east corner of the headwall on the south side of I-294 and east side of NB US 45 on the ramp.

Existing Structure: S.N. 016-0518 was built in 1959 as F.A.RT. 5, Section BR-H-6. The superstructure consists of a reinforced concrete deck on three simply supported spans on steel beams. The structure is $179'-8\frac{1}{2}''$ long and 36'-4" wide out-to-out on curved alignment having a radius of 700 feet at a 46° 16'-38" skew. In 1996, a new bridge rail was added, the exisitng bearings were replaced with elastomeric bearings, the deck was repaired and overlayed. In 2009, the fascia beam was replaced. Existing structure will be removed and replaced.

Ramp A Traffic will be detoured during construction. NB La Grange Rd will be maintained using stage construction.

No salvage

F.A.P. 330 - Ramp A Functional Class: Other Principal Arterial ADT: 22,900 (2018): 23,129 (2046) ADTT: 4122 (2018): 4163 (2046) DHV = 2519One-way Traffic Directional Distribution: 100% SB Design Speed: 35 mph Posted Speed: 35 mph

HIGHWAY CLASSIFICATION F.A.P. 330 -Northbound Functional Class: Other Principal Arterial f'c = 3,500 psi (Substructure) ADT: 43,000 (2019): 43,430 (2046) ADTT: 2580 (2019): 2606 (2046) DHV = 4636One-way Traffic Directional Distribution: 100% NB Design Speed: 45 mph Posted Speed: 45 mph

DESIGN STRESSES

FIELD UNITS

f'c = 4,000 psi (Superstructure, Anchorage Slab) fy = 60,000 psi (Reinforcement)fy = 50,000 psi (AASHTO M270, Grade 50)

PRECAST UNITS

f'c = 4,500 psi (MSE Wall Panels)

SEISMIC DATA

12/2/2022

3:07:00 PM

RAMP A OVER NB LA GRANGE RD F.A.P. 330 (US ROUTE 12/20/45)

						-	
TAILS	F.A.P. RTE	F.A. P. SECTION CC				TOTAL SHEETS	SHEET NO.
016_2757		2019-	187-B		СООК	119	69
010-2757	FAP. RTE. SECTION COUNTY SHEETS TOTAL N SHEETS SHE N 330 2019-187-B COOK 119 6 CONTRACT NO. 62K6 ILLINOIS FED. AID PROJECT	2K60					
5 SHEETS			ILLINOIS	FED. A	D PROJECT		

Benchmark: Chiseled 🗆 on the east corner of the headwall on the south side of I-294 and east side of NB US 45 on the ramp.

12/2/2022 3:07:02 PM

Benchmark: Chiseled 🗆 on the east corner of the headwall on the south side of I-294 and east side of NB US 45 on the ramp.

12/2/2022 3:07:04 PM

Appendix C: Soil Profile, Boring Logs, and Rock Core Photographs

IL ROUTE 171 - LA GRANGE ROAD

Approx. Elev	. (ft.)	B-1 (Approx. EL: 605 ft.)	B-2 (Approx. El.: 585 ft.)	B-2 B-3 (Approx. El.: 585 ft.) (Approx. El.: 585 ft.)					
610									
600		5-2-3 274 242 3.08 B, 21% 2-3-4 244 247 2.17 B, 18% 3-3-4 244 247 1.65 B, 19% 3-3-5 4 444 24 1.65 B, 19% 3-3-5 4 444 24 1.84 B, 24%			16-5-6 2-3-3 3-4-5 3-2-1				
590		3-0-11 5-9-22 6% 17-47-40/4" 47-50/4" 13% 16% 12%	22-11-4 9%	35-28-7 24%	3-3-0 4-4-5 3-22-17 100/17 100/27				
580		100/5" 12% 41-50/3" 14% 37-50/5" 15%	17-21-23 10-12-14 10-12-14 10-12-19 10-12-19 11-11-12 14% 14% 14%	32-24-31 10-15-22 14-23-50/5" 38€ 10/5-22 14% 14% 10%	100/3" 72-50/2" 100/0.5"				
570			20-24-30 27-50/5" 18-25-25 16 28 27 10%	34-50/2" 9% 29-39-44 9% 34-50/5" 9% 34-50/5" 9%					
560			18-41-30 - 14% 20-24-28 - 14% 19-29-27 - 14% 19-29-27 - 14% 8%	22-50/5" 14% 22-50/5" 14% 22-33-40 14% 11-33-44 15%					
550 -			57-50/2" ************************************	32-50/4" 33-51/5 100/5" 100/5" 100%					
540			100/3" 100/3" 100/ 100/5" 9%	83-50/5" 11%					
530 -			100/3" 9% Rec: 100%, RQD: 91	100/3" 11% 22-40-50/6" 11111 8% Rec: 100% POD:	08%				
520			Rec: 100%, RQD: 100	0%	10.0%				
510 -					100 /8				
500									
0.7.0			7						
			Note: Vertical elevations show	n are approximated from Google Earth					
CONCRETE			Conditions between bori Horizontal scale shown	ings are unknown, and subject to change. is only for reference.					
SANDY CLAY LOAM	SAN	IDY LOAM SILT			VE				
SILT LOAM			BORING	G DATA KEY:					
			N-Value (bpf) Stratigraphy	Pocket Penetrometer (tsf) , Moisture Content (%)					
PROJECT NAM	IE:	PROJECT No.:	DRAWN BY:	CHECKED BY:					
IL Route 171			B. FISHER	C. GRAHAM					
La Grange Road		ME21043	2/28/2022	2/28/2022					

	Millennia Professional Services	INDIS REE 171/L	SUBSURFACE DIAGRAM LaGrange Road MSE Wall Borings: Figure 3.2	asticity Clay	USCS Low Plastic Sandy Clay
00	WEST ABUTMENT MSE WALL			EAST ABUTME MSE-3	NT MSE WALL MSE-3 N Qu % TOP EL
T	OP EL 594.5				7 3.0P 13
95 · ·	N Qu %	N Qu % TO 26 5.0P 8	iE-2 P EL 594	CLAY LOAM: Brown, medium moist, trace sand	n stiff, 7 2.7S 30
0	CLAY LOAM: Brown, stiff to very stiff, moist, with gravel 33 3.75 10	45 6.2S 10	CLAY LOAM: Brown, very stiff to hard, moist, with sand, trace gravel	7	50/3" 5.0P 16
	34 26 SANDY LOAM: Brown, dense to very	52 4.0P 9	-app of Ea	roximate bearing elevation ast MSE Wall	78 5.0P 10
5	Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction	46 7 49 4.9S 12	SANDY LOAM: Brown, dense, moist, clayey	SANDY CLAY LOAM: Grey, moist	50/3" 10 hard, 50/3 4.0P 11"
	² 30 6.2S 16 CLAY LOAM: Brown, very stiff to hard, moist 90 3.5P. 8	83 2.3P 8	CLAY LOAM: Brown to grey, hard, moist, with sand		50/3" 4.5S 10
	64 5.3S 17	7 14	SANDY LOAM: Grey loose to medium		58 4.5P 14
	11 1.3P 18 28 9	28 13	dense, wet		37 2.0P 18 37 1.5P 19
	13 20	27 4.75 14 23 3 0P 12	CLAY LOAM: Grey, very stiff, moist, with sand and gravel	CLAY LOAM: Grey, hard, m	pist, ^{36 4.2S 19}
	38 9	52 19	SANDY LOAM: Grey, very dense,	trace gravel	38 4.5P 12
	28 5.0P 7	84 4.5P 11	saturated, gravelly, clayey		
	76 9	50/3" 8	-with weathered rock fragments below 33.5 ft CLAY LOAM: Grey, hard, moist, sandy with gravel	-with weathered rock fragme below 33.5 ft	50/3" 13
		50/3" 8			50/3" 10
	50/3" 8				
ŀ					

SOIL BORING LOG

B-1

Sheet <u>1</u> of <u>1</u>

COUNTY Cook SECTION N/A ROUTE IL-171 MPS PROJECT NO. ME21043 DATE 1/25/2022

DESCRIPTION	La Grange Road, Phase II					DISTR	STRICT 1									
LOCATION	Chica	go, Il	linoi	s		CONSI	SULTANT Millennia Professional Services									
DRILLED BY	1	rsc				LOGG	ED BY L. Williams			_ RIG TYPE CME 75					5	
DRILLING METHOD	Hollow Ste	m Aı	uger,	, CFA		НАММ	MER TYPE Auto				EFFICIENCY N/A					
BORING NO Notes Offset Northing185 Easting111 Ground Surface Elev.	B-1 o Offset ft 50215.17 15409.98 . 610.3 ft	E E V	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Stream Groundv First Er Upon C After	Water Elev. Bed Elev. vater Elev.: counter completion Hrs.	<u>592.3</u> 592.3	ft ft ft ft ft ft ft	E L E V	D E P T H	B L O W S	U C S Qu	M O I S T	
LITHOL	OGY	(ft)	(ft)	(/6")	(tsf)	(%)			DLOGY	_	(ft)	(ft)	(/6")	(tsf)	(%)	
CONCRETE (12.0")	609.3	30	1				SILT: G (Possible	rey, hard to v e Till) <i>(contin</i>	very hard, di ued)	ry						
SILTY CLAY LOAM: B dry (Possible Fill)	brown, soft,			5 2 3	3.1 B	21							82 \$0/0.5/		12	
SILTY CLAY: Brown to stiff, dry, with organics,	black, trace	30	3	2									100/5"		12	
gravel (Possible Fill)	604 9	80		3 4	2.2 B	18										
SILTY CLAY LOAM: B medium stiff to stiff, dry	004. Brown, V	<u> </u>		3	1.7 P	19							41 50/3"			
	599.8	80	 10.5	3 3 5	1.8 B	24	End of B	oring		580.3	0	30	37 50/5"			
SAND: Brown and gre dense to dense, dry wit	ey, medium h gravel			3 6 11		5		Ū								
				5 9 22		6										
SILT: Grey, hard to ver (Possible Till)	594.8 ry hard, dry	80	15.5	17 47 50/4"		13										
- drilling method switch Continuous Flight Auge	ed to er at 18.0 ft.	Ā	₹	47		16										

The Unconfined Compressive Strength (UCS) Qu column represents either the IDOT Rimac or AASHTO T 208 Test Procedure. The Qu failure mode is indicated by B for Bulge or S for Shear. P is a Pocket Penetrometer test. The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206. Printed 8/26/2022

B-2 SOIL BORING LOG Sheet <u>1</u> of <u>3</u> SECTION N// ROUTE IL-1

COUNTY

N/A IL-171

Cook

MPS PROJECT NO. ME21043 DATE 2/8/2022

DESCRIPTION	La Grange	Roa	d, Ph	iase II		DISTRICT 1										
LOCATION	Chica	go, Il	linois	6		CONSI	JLTANT _	N	/lillennia Pro	ofessi	onal	Ser	/ices			
DRILLED BY		ISC				LOGGI	ED BY	L. Wil	lliams	RIG	i TYI	PE	C	CME 75		
DRILLING METHOD	CFA, Mud Ro	otary	, Ro	ck Cor	e	HAMM	ER TYPE	Auto		_ EFFICIENC				N/A		
BORING NONotesN Offset Northing18 Easting11 Ground Surface Elev	B-2 ft 50130.95 15507.26 7. 594.2 ft	E E V	D E P T H	B L O W S	U C S Qu	M O I S T	Surface W Stream E Groundwa First Enc Upon Co After	/ater Elev. Bed Elev. ater Elev.: counter mpletion Hrs.	N/E N/A	ft ft ft ft ft	E L E V	D E P T H	B L O W S	U C S Qu	M O I S T	
LITHOL	.OGY	(11)	(11)	(,0)	(เรเ)	(70)		LITHO	LOGY		(11)	(11)	(/0)	((5))	(70)	
SAND: Grey, medium unsatruated (Possible	dense, Fill)			22 11		9	SILT: Gre	ey, hard, dry	ı (continuea	9			16 28		19	
				4									27			
SILT LOAM: Grey, ve hard, dry	591.: ry stiff to	20	3	17		9	SILT LOA	M: Grey, h	 ard, dry	571.2	20	23	18		14	
				23								_	30			
				10 12 14		12							20 24 28		9	
				10 12 19		12							19 29 27		8	
- drilling method switch Mud-Rotary at 10.0 ft.	ied to			11 11 12		14										
	570-	70		20 24 30		17							57 50/2"			
SILT: Grey, hard, dry	5/8.	/0	15. <u>5</u>	27 50/5"		18										
- with gravel above 17.	.5 ft.															
				18 25 25		20	- drilling m Continuou 38.0 ft. du	ethod switc is Flight Aug e to drilling	ched back to ger below issues	D			100/3"		_7	

The Unconfined Compressive Strength (UCS) Qu column represents either the IDOT Rimac or AASHTO T 208 Test Procedure. The Qu failure mode is indicated by B for Bulge or S for Shear. P is a Pocket Penetrometer test. The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

Printed 8/26/2022

B-2 SOIL BORING LOG

Sheet $\underline{2}$ of $\underline{3}$

COUNTY Cook SECTION N/A ROUTE IL-171 MPS PROJECT NO. ME21043 DATE 2/8/2022

DESCRIPTION	La Grange Ro	ad, Pl	hase II		DISTR	СТ		1	_	
LOCATION	Chicago	, Illinoi	s		CONSI	JLTANT	N	Millennia Pro	ofessional Service	es
DRILLED BY	TS	С			LOGGI	ED BY	L. Wi	lliams	RIG TYPE	CME 75
DRILLING METHOD	CFA, Mud Rota	ry, Ro	ock Co	re	HAMM	ER TYPE	A	uto		N/A
BORING NO Notes Offset Northing18 Easting11	B-2 lo Offset ft 50130.95 15507.26	E D E P 7 T	B L O W	U C S	M 0 - s	Surface Stream Groundw First En	Water Elev. Bed Elev. vater Elev.: counter	N/E	ft ft	
Ground Surface Elev	1. 594.2 ft	Н	S	Qu	T	Upon C	ompletion	N/A	ft	
	(f	t) (ff)	(/6")	(tsf)	(%)	After	Hrs.		<u>π</u>	
LITHOL	<u>-OGY</u>	9 (19	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(101)	(70)		LITHO	DLOGY		
(<i>continued</i>)	rd, dry		-							
			100/3'	}						
			100/5		9					
			100/0		\rightarrow					
			- - - - - - - - - - - - - - - - - - -		9_/					
Borehole continued wi coring	538.20 th rock	56	-							

The Unconfined Compressive Strength (UCS) Qu column represents either the IDOT Rimac or AASHTO T 208 Test Procedure. The Qu failure mode is indicated by B for Bulge or S for Shear. P is a Pocket Penetrometer test. The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

 $\underset{\text{Sheet } \underline{3} \text{ of } \underline{3}}{\text{ROCK CORE LOG}}$

B-2

 ROUTE
 IL-171

 MPS PROJECT NO.
 ME21043

 DATE
 2/8/22

Cook

N/A

DESCRIPTION	La Grange	Road, Phase II	DISTRICT		1			_			
LOCATION	Chicag	go, Illinois	CONSULTA	NT	M	illenr	nia Pr	ofessi	onal S	ervices	
DRILLED BY	Г	rsc	LOGGED B	(L. Wil	liams	6	RIG	TYPE	CM	E 75
CORING METHOD	Diamond tip	ped core barrel	-					R	D	CORE	S
BORING NO Notes No Offset Northing 1850130.95 Easting 1115507.26 Ground Surface Elev.	B-2 Offset 594.20 ft	CORING BARREL TYPE Core Diameter Top of Rock Elev Begin Core Elev	& SIZE i 	NQ n ft ft		D E P T H	C O R E (#)	ECOVERY (%)	к Q D	T I M E (min/ft)	I R E N G T H (tsf)
					538 20	56	1	100	01	((,
Grey, moderately hard t	o hard, moderat	ely fractured			330.20			100	91		
						01.5	2	100	100		
						 66.2					
					522.80		3	100	100		
End of Boring					522.00						

Color pictures of the cores

Cores will be stored for examination until

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Rock Core Photograph IL Route 171 at La Grange Rd. Project No.: ME21043

Boring: B-2

Run	Depth (ft.)	Recovery (%)	RQD (%)
1	56.0-61.5	100	91
2	61.5-66.2	100	100
3	66.2-71.4	100	100

B-3 SOIL BORING LOG

Sheet $\underline{1}$ of $\underline{3}$

 COUNTY
 Cook

 SECTION
 N/A

 ROUTE
 IL-171

 MPS PROJECT NO.
 ME21043

 DATE
 1/27/2022

DESCRIPTION	La Grange	Road	d, Ph	ase II		DISTR	ст _		1	_					
LOCATION	Chicag	go, Il	linois	S		CONSU	JLTANT	N	Millennia Pr	ofess	ional	Ser	vices		
DRILLED BY	٦	rsc				LOGG	ED BY	L. Wi	lliams	RIC	G TYI	PE	C	ME 7	5
DRILLING METHOD	CFA, Mud Ro	otary	, Ro	ck Cor	e	НАММ	ER TYPE	A	uto	_ EF	FICIE	ENC)		N/A	
BORING NO Notes Offset Northing18 Easting11 Ground Surface Elev	B-3 No Offset ft 350184.39 15517.95 v. 596.1 ft	E L E V	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Wa Stream Be Groundwat First Enco Upon Con After	ater Elev. ed Elev. er Elev.: ounter npletion Hrs.	588.1 N/A	ft ft ft ft ft	E L E V	D E P T H	B L O W S	U C S Qu	M O I S T
LITHO	LOGY	(ft)	(ft)	(/6")	(tsf)	(%)		LITHO	DLOGY		(ft)	(ft)	(/6")	(tsf)	(%)
CONCRETE (9.0") CLAY LOAM: Brown,	595.3 soft, dry	35 (0.7 5	35			SILT LOAN (Possible T	1: Grey, h ïll) <i>(contin</i>	nard, dry nued)				27		
	593.4	10	3	28 7		24				573.	10	23	50/5"		
SILT: Grey, hard, dry Till)	(Possible			32 24		8	SILT: Grey (Possible T	, very stif ill)	f, dry				22 50/5"		14
				31 10 15 22		12							22 33 40		14
		<u> </u>	!	14 23 50/5"		14	- drilling me Rotary at 30	ethod swite	ched to Muc	d 566 -	10	 ۵	11 33 44		15
				36 50/2"		10_/	COBBLE: recovery, re sampling	Attempted esumed sp	d to core, no plit-spoon)					
				34			SILT LOAM (Possible T	1: Grey, h ill)	nard, dry	563.	10	33	32		
	580.6	<u>60 </u>	15.5	50/2"		9							50/4"		_10
SILT LOAM: Grey, ha (Possible Till)	ard, dry			29 39 44		10									
				34 50/5"		9	- sandy belo	ow 38.5 ft	<u>.</u>				100/5"		_10_

The Unconfined Compressive Strength (UCS) Qu column represents either the IDOT Rimac or AASHTO T 208 Test Procedure. The Qu failure mode is indicated by B for Bulge or S for Shear. P is a Pocket Penetrometer test. The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

Printed 8/26/2022

B-3 SOIL BORING LOG

Sheet $\underline{2}$ of $\underline{3}$

COUNTY Cook SECTION N/A ROUTE IL-171 MPS PROJECT NO. ME21043 DATE 1/27/2022

Borehole continued with rock

The busconfined Compressive Strength (UCS) Qu column represents either the IDOT Rimac or AASHTO T 208 Test Procedure. The Qu failure mode is indicated by B for Bulge or S for Shear. P is a Pocket Penetrometer test. The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

DESCRIPTION

LOCATION

La Grange Road, Phase II

Chicago, Illinois

OCK	B- CC	.3)R	Ε	LC)G
Sheet	3	of	3	-	_

1

DISTRICT

CONSULTANT

COUNTY Cook SECTION N/A IL-171 ROUTE _ MPS PROJECT NO. ME21043 1/27/22 DATE ____ Millennia Professional Services

DRILLED BY	TSC	LOGGED BY	L. Will	iams		RIG		CM	E 75
CORING METHOD	iamond tipped core barrel	_				R	в	CORE	S
BORING NO. B-3 Notes No Offs Offset	et CORING BARREL TYPE Core Diameter Top of Rock Elev. Begin Core Elev.	1.9 in 536.10 ft 536.10 ft	NQ	D E P T H	C O R E	E C O V E R Y	к Q D	T I M E	- R E N G T H
				(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
DOLOMITE: Grey, moderately hard to har	d, moderately fractured, trace stylolit	es	536.10	60	1	100	98		
- Mohs' hardness = 3.5			-	_					
- mottled grey and light grey, trace clay-filled fractures belo	hard, highly weathered, slightly pitted ow 63.0 ft.	d, slightly vuggy,	-						
- Mohs' hardness = 4.5			-						
			-						
			-	70	2	100	100		
			-						
			-	_					
End of Boring			521.10						
			-						
			-						
			-						

Color pictures of the cores

Cores will be stored for examination until

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Rock Core Photograph IL Route 171 at La Grange Rd. Project No.: ME21043

Boring: B-3

Run	Depth (ft.)	Recovery (%)	RQD (%)
1	60.0-70.0	100	98
2	70.0-75.0	100	100

SOIL BORING LOG

B-4

COUNTYCookSECTIONN/AROUTEIL-171

Sheet $\underline{1}$ of $\underline{1}$

 MPS PROJECT NO.
 ME21043

 DATE
 1/26/2022

DESCRIPTION	La Grange	Roa	d, Ph	ase II		DISTR	СТ		1	_					
LOCATION	Chica	go, Il	llinois	5		CONS	JLTANT	N	Aillennia Pro	ofessi	onal	Ser	vices		
DRILLED BY	-	TSC				LOGG	ED BY	L. Wi	lliams	RIG	S TY	PE		CME 7	5
DRILLING METHOD		CFA				HAMM	ER TYPE	Au	uto	_ EFI	FICIE	ENC	(N/A	
BORING NO Notes Offset Northing18 Easting11 Ground Surface Elev	B-4 to Offset 50121.58 15618.96 . 619.2 ft	E E V	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Stream Groundv First Er Upon C After	Water Elev. Bed Elev. vater Elev.: counter completion Hrs.	<u> </u>	ft ft ft ft ft ft ft	E L E V	D E P T H	B L O W S	U C S Qu	M O I S T
LITHO	LOGY	(ft)	(ft)	(/6")	(tsf)	(%)		LITHC	DLOGY		(ft)	(ft)	(/6")	(tsf)	(%)
CONCRETE (11.0")	618.3	30	0.9				SANDY	LOAM: Brov	vn, very continued)						
SILTY CLAY: Brown,	very stiff to			16			- brown a	and arev belo	ow 21.0 ft.				100/2"		7
hard, dry (Possible Fil	1)			5		17									
				6											
											$\overline{\Delta}$				
			_	2									100/3"		7
				3	4.0	22									
				3	В										
				3 4 5	2.3 B	19	SILT LO gravel (F	AM: Grey, h Possible Till)	ard, dry, wit	<u>593.7</u> h	70	25. <u>5</u> 	72 50/2"		8/
	611 :	20	8	•	D					591 2	20	28			
SILTY CLAY: Black, s with organics, trace br fragments (Possible F	stiff, dry, ick ill)	70		3 2 1	1.2 B	19	End of B	oring		001.2		1 	00/0.5		
SILTY CLAY: Brown	to dark														
brown, stiff, dry				3											
				3	3.8 ©	24									
			_	-	5							_			
				4											
			_	4	3.4 R	17						_			
	603	70	15 5												
SILTY CLAY LOAM: dry, with gravel	Brown, soft,	<u> </u>		3 22 17	2.1 S	19									
	601.2	20	18												
SANDY LOAM: Brow dense, unsaturated	n, very			100/1											
- with gravel and poss above 20.0 ft.	ible cobbles														

The Unconfined Compressive Strength (UCS) Qu column represents either the IDOT Rimac or AASHTO T 208 Test Procedure. The Qu failure mode is indicated by B for Bulge or S for Shear. P is a Pocket Penetrometer test. The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

Printed 8/26/2022

MSE-1 SOIL BORING LOG

COUNTY

Cook N/A IL-171

Sheet <u>1</u> of <u>1</u>

MPS PROJECT NO. ME21043 DATE 1/12/2023

DESCRIPTION	La Grange R	oad	, Ph	ase II		DISTR	СТ		1	_					
LOCATION	Chicago, Illinois					CONSU	JLTANT		Millennia Pro	ofessio	nal	Ser	/ices		
DRILLED BY	TS	TSC				LOGG	ED BY	E. De	la Cruz	RIG	ΓΥΙ	PE		ME 7	5
DRILLING METHOD	CI	FA	A			HAMM	ER TYPE	Α	uto	EFFI	CIE	ENCY		N/A	
BORING NONotesN Offset Latitude Longitude Ground Surface Elev	MSE-1 lo Offset ft /	E L E V	DEPTH	B L O ≷ S	U C S Qu	M O I S T	Surface V Stream Groundw First En Upon Co After	Vater Elev. Bed Elev. ater Elev.: counter ompletion Hrs.	<u>583.5</u> N/A	ft ft ft ft ft	E L E V	D E P T H	B L O W S	U C S Qu	M O I S T
LITHOL	OGY (ft)	(ft)	(/6")	(tsf)	(%)			OLOGY	— (ft)	(ft)	(/6")	(tsf)	(%)
CLAY LOAM: Brown, stiff, moist, with gravel	stiff to very	-		4 6 9	3.8 P	14	CLAY LO hard, moi - grey and	AM: Brow st <i>(continue</i> d brown be	n, very stiff to ed) low 21.0 ft.)			13 13 15		9
	589.00	-	5	8 14 19	3.7 S	10							4 6 7		20
SANDY LOAM: Brown very dense, moist, with	n, dense to n gravel	' _ _		13 15 19		26	- very stif sand belo	f to hard, g ow 26.0 ft.	ravelly, with				19 18 20		9
		-		24 33 50/3"	1.5 P	7							28 18 10	5.0 P	7
CLAY LOAM: Brown, hard, moist	<u>584.00</u> very stiff to	1 	0.5	4 9 21	6.2 S	16									
- with gravel below 13.	5 ft.	-		13 39 51	3.5 P	8	- with weat below 33.	athered roc 5 ft.	k fragments				18 43 33		9
- trace gravel below 16	5.0 ft.	_		23 24 40	5.3 S	17									
- stiff to very stiff, sand 18.5 ft.	ly below	-		2 3 8	1.3 P	18	End of Bo	pring		555.25	3	9.25 	18 50/3"/		

The Unconfined Compressive Strength (UCS) Qu column represents either the IDOT Rimac or AASHTO T 208 Test Procedure. The Qu failure mode is indicated by B for Bulge or S for Shear. P is a Pocket Penetrometer test. The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

Printed 1/26/2023

MSE-2 SOIL BORING LOG

Sheet $\underline{1}$ of $\underline{1}$

COUNTY Cook SECTION N/A IL-171 ROUTE MPS PROJECT NO. ME21043 DATE 1/12/2023

DESCRIPTION	La Grange	Road,	, Ph	ase II		DISTR	ст		1	_				
LOCATION	Chicag	go, Illi	nois	6		CONSI	JLTANT		Millennia Pro	ofessior	al Se	ervices		
DRILLED BY	7	SC				LOGGI	ED BY	E. De	la Cruz	RIGT	YPE	(CME 7	5
DRILLING METHOD	(CFA				HAMM	ER TYPE	A	uto	_ EFFIC	IENG	CY	N/A	
BORING NO Notes Offset	MSE-2 No Offset ft	E L E	D E P	B L O	U C S	M O I	Surface Wa Stream Be Groundwate	ter Elev. d Elev. er Elev.:		ft E ft L	D E P	B L O	U C S	M O I
Longitude Ground Surface Ele	v. <u>594 ft</u>	v	T H	W S	Qu	S T	First Enco Upon Com After	unter pletion Hrs.	<u>577.5</u> N/A	<u>ft</u> <u>ft</u> ft	' T H	S S	Qu	S T
		(ft) ((ft)	(/6")	(tsf)	(%)				(f	t) (ft) (/6")	(tsf)	(%)
CLAY LOAM: Brown, hard, moist, with sand gravel	very stiff to , trace	-		7	5.0	8	CLAY LOAN moist, sand	 M: Grey, y, with gr	very stiff, avel	573.50	20.:	5 5	4.7	14
- grey and brown belo	w 3.5 ft.	-		14 8	P	10	- grey and b	prown, tra	ce gravel			14 7	S	10
		_		20 25	0.2 S			 AM [.] Gre		568.50	25.	17 5	9.0 P	12
- gravelly below 6.0 ft.		_		9 29 23	4.0 P	9	saturated, g	ravelly, c	layey	566.25	27.7	8 29 23		19
SANDY LOAM: Brow moist, clayey	<u>586.(</u> n, dense,		8	11 16 30		7	CLAY LOAN sandy, with	M: Grey, gravel	hard, moist,		 	14 33 51	4.5 P	11
CLAY LOAM: Brown hard, moist, with sand	583.5 to grey,	50 <u>1</u> (-	0.5	21 22 27	4.9 S	12								
		-		28 40 43	2.3 P	8	- with weath below 33.5 t	ered rocl ft.	< fragments			47 50/3"		8
SANDY LOAM: Grey medium dense, wet	<u>578.</u> , loose to	<u>00_1</u>	5.5	6 4 3		14	Auger Refu End of Borir	sal at 36. ng	0 ft.	557.75	<u>36.2</u>	5 <u>50/3"</u>		8
		_		4 13 15		13								

The Unconfined Compressive Strength (UCS) Qu column represents either the IDOT Rimac or AASHTO T 208 Test Procedure. The Qu failure mode is indicated by B for Bulge or S for Shear. P is a Pocket Penetrometer test. The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

MSE-3 SOIL BORING LOG

COUNTY SECTION Cook N/A

IL-171

ROUTE Sheet $\underline{1}$ of $\underline{1}$

MPS PROJECT NO. ME21043 DATE 1/13/2023

DESCRIPTION	La Grange l	d, Pł	nase II	II DISTRICT 1										
LOCATION	Chicago, Illinois					CONSI	JLTANT	I	Millennia Pro	fession	al Ser	vices		
DRILLED BY	1	rsc				LOGGI	ED BY	E. Del	la Cruz	RIG T	/PE		CME 7	5
DRILLING METHOD	(CFA				HAMM	ER TYPE	IENC	Y	N/A				
BORING NON NotesN Offset Latitude Longitude Ground Surface Elev	MSE-3 o Offset ft 596 ft	E L E V	D E P T H	B L O W S	U C S Qu	M O I S T	Surface V Stream Groundw First En Upon Co After	Vater Elev. Bed Elev. ater Elev.: counter ompletion Hrs.	585.0 N/A	ft E ft L E ft ▼ V ft ft	D E P T H	B L O W S	U C S Qu	M O I S T
	067	(ft)	(ft)	(/6")	(tsf)	(%)				(ft)) (ft)	(/6'')	(tsf)	(%)
CLAY LOAM: Brown, stiff, moist, trace sand	medium			3 4 3	3.0 P	13	SANDY (moist <i>(co</i>	CLAY LOAN ntinued)	1: Grey, har	<u>,</u>		10 17 20	2.0 P	18
- dark brown, with sand ft.	d below 3.5			3 3 4	2.7 S	30				570 50		9 16 21	1.5 P	19
- hard, with gravel belo	w 6.0 ft.			9 37 50/3"	5.0 P	16	CLAY LO trace grav	AM: Grey, vel	 hard, moist,	570.50		7 13 23	4.2 S	19
				27 50 28	5.0 P	10	- grey and fragments	d brown, tra s below 28.	ce rock 5 ft.			10 17 21	4.5 P	12
SANDY CLAY LOAM: moist	<u>585.5</u> Grey, hard,	50	10.5	23 35 50/3"		10								
- gravelly above 12.5 ft				10 35 50/3"	4.0 P	11	- with wea below 33	athered rock 5 ft.	< fragments			20 40 50/3"		13
				20 45 50/3"	4.5 S	10								
												1		
				5						557.25	38.7 5	50/3"		10
				20 38	4.5 P	14		oring						

The Unconfined Compressive Strength (UCS) Qu column represents either the IDOT Rimac or AASHTO T 208 Test Procedure. The Qu failure mode is indicated by B for Bulge or S for Shear. P is a Pocket Penetrometer test. The Standard Penetration Test (SPT) N value is the sum of the second and third Blows /6 in. values in each sample using AASHTO T 206.

Appendix D: Summary Stability Profiles

Name: Clay Loam Unit Weight: 120 pcf Cohesion: 3,500 psf

Name: Clay Loam (2) Unit Weight: 125 pcf Cohesion: 4,000 psf

Name: Concrete Unit Weight: 145 pcf

Name: Reinfored Backfill Unit Weight: 125 pcf Effective Cohesion: 0 psf Effective Friction Angle: 34 °

Name: Sand

IL Rte 171 LaGrange Road West MSE Wall Borings: MSE-1, B-1, & B-2 **Undrained Soil Parameter**

Name: Clay Loam Unit Weight: 120 pcf Effective Cohesion: 100 psf Effective Friction Angle: 26 °

Name: Clay Loam (2) Unit Weight: 125 pcf Effective Cohesion: 100 psf Effective Friction Angle: 28 °

Name: Concrete Unit Weight: 145 pcf

Name: Reinfored Backfill Unit Weight: 125 pcf Effective Cohesion: 0 psf Effective Friction Angle: 34 °

Name: Sand Unit Weight: 110 pcf Effective Cohesion: 0 psf Effective Friction Angle: 32 °

IL Rte 171 LaGrange Road West MSE Wall Borings: MSE-1, B-1, & B-2 Drained Soil Parameter

Name: Clay Loam Unit Weight: 120 pcf Effective Cohesion: 100 psf Effective Friction Angle: 26 °

Name: Clay Loam (2) Unit Weight: 125 pcf Effective Cohesion: 100 psf Effective Friction Angle: 28 °

Name: Concrete Unit Weight: 145 pcf

IL Rte 171 LaGrange Road East Abutment MSE Wall Borings: MSE-3, B-3, & B-4 Undrained Soil Parameters

IL Rte 171 LaGrange Road East Abutment MSE Wall Borings: MSE-3, B-3, & B-4 Drained Soil Parameters

Name: Clay Loam Unit Weight: 120 pcf Effective Cohesion: 100 psf Effective Friction Angle: 26 °

Name: Clay Loam (2) Unit Weight: 125 pcf Effective Cohesion: 100 psf Effective Friction Angle: 28 ° IL Rte 171 LaGrange Road East Abutment MSE Wall Borings: MSE-3, B-3, & B-4 Drained Soil Parameters Seismic PGA = 0.0635g

Name: Clay Loam Unit Weight: 120 pcf Effective Cohesion: 100 psf Effective Friction Angle: 26 °

Name: Clay Loam (2) Unit Weight: 125 pcf Effective Cohesion: 100 psf Effective Friction Angle: 28 °

Appendix E: Pile Length Estimate Spreadsheet

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

SUBSTRUCTURE====================================	West Abut	men
REFERENCE BORING ====================================	B-1 & B-2	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	606.40	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	603.40	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) =====	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ===========	===	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) ========	=====	ft

		_
TOTAL FACTORED SUBSTRUCTURE LOAD =========	:	kips
TOTAL LENGTH OF SUBSTRUCTURE (along skew)========		ft
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ======	4	

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of <u>Pile</u>	Req.d Bearing of <u>Boring</u>	Resistance Available in <u>Boring</u>	Driveable Length in <u>Boring</u>
418 KIPS	407 KIPS	224 KIPS	62 FT.

PILE TYPE AND SIZE ==========	Steel HP	12 X 53
Plugged Pile Perimeter=====		3.967

3.967	FT.	Unplugged Pile Perimeter==============	5.800	FT.
0.983	SQFT.	Unplugged Pile End Bearing Area======	0.108	SQFT.

BOT. OF		UNCONE	SPT	GRANIII AR	NOI	MINAL PLUG	GED	NOI	NOMINAL UNPLUG'D			FACTORED	FACTORED	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	0.1 11. N	OR ROCK LAYER	SIDE	END BRG.	ΤΟΤΑΙ	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
602.97	0.43	1.70			1.8		26.6	2.6		5.3	5	0	0	3	3
599.80	3.17	1.80			13.7	24.8	40.9	20.0	2.7	25.4	25	0	0	14	7
597.30	2.50		17	Medium Sand	3.1	25.4	83.8	4.5	2.8	34.2	34	0	0	19	9
594.80	2.50		31	Medium Sand	5.9	65.3	61.2	8.7	7.1	39.8	40	0	0	22	12
591.20	3.60		15	Medium Sand	3.9	36.7	109.2	5.7	4.0	50.3	50	0	0	28	15
588.70	2.50		44	Hard Till	5.2	80.8	81.4	7.6	8.8	54.3	54	0	0	30	18
586.20	2.50		26	Hard Till	2.8	47.8	93.4	4.1	5.2	59.5	59	0	0	33	20
583.70	2.50		31	Hard Till	3.3	57.0	82.0	4.9	6.2	62.7	63	0	0	35	23
581.20	2.50		23	Hard Till	2.5	42.3	141.4	3.6	4.6	72.6	73	0	0	40	25
578.70	2.50		54	Hard Till	7.1	99.2	190.8	10.4	10.9	87.6	88	0	0	48	28
576.20	2.50		77	Hard Till	13.1	141.5	154.4	19.2	15.5	101.4	101	0	0	56	30
573.70	2.50		50	Hard Till	6.3	91.9	171.7	9.2	10.1	111.9	112	0	0	62	33
5/1.20	2.50		56	Hard Till	7.6	102.9	206.8	11.1	11.3	125.9	126	0	0	69	35
568.70	2.50		/1 52	Hard Till	11.4 6.7	130.5	183.3	16.6	14.3	138.7	139	0	0	/6 82	38
500.20 563 70	2.50		56		0.7	102.0	285.7	9.0	10.5	149.3	149	0	0	02	40
553 70	2.30		100		85.5	183.7	200.7	125.0	20.1	201 3	294	0	0	93 162	43 53
552 70	1 00		100	Hard Till	85	183.7	379.8	12.5	20.1	306.8	307	0	0	169	54
551 70	1.00		100		8.5	183.7	388.3	12.0	20.1	319.3	319	0	0	176	55
550 70	1.00		100	Hard Till	8.5	183.7	396.9	12.5	20.1	331.8	332	0	0	182	56
549.70	1.00		100	Hard Till	8.5	183.7	405.4	12.5	20.1	344.3	344	0	0	189	57
548.70	1.00		100	Hard Till	8.5	183.7	414.0	12.5	20.1	356.8	357	0	0	196	58
547.70	1.00		100	Hard Till	8.5	183.7	422.5	12.5	20.1	369.3	369	0	0	203	59
545.70	2.00		100	Hard Till	17.1	183.7	439.6	25.0	20.1	394.3	394	0	0	217	61
544.70	1.00		100	Hard Till	8.5	183.7	448.2	12.5	20.1	406.8	407	0	0	224	62
543.70	1.00		100	Hard Till	8.5	183.7	456.7	12.5	20.1	419.3	419	θ	θ	231	63
538.70	5.00		100	Hard Till	42.7	183.7	560.7	62.5	20.1	488.5	4 88	0	θ	269	68
537.70	1.00			Limestone	98.8	245.0	659.6	144.5	26.8	633.0	633	θ	θ	348	68.7
536.70	1.00			Limestone	98.8	245.0	758.4	144.5	26.8	777.5	758	0	θ	417	69.7
535.70	1.00			Limestone	98.8	245.0	857.2	144.5	26.8	922.0	857	θ	θ	471	70.7
534.70	1.00			Limestone	98.8	245.0	956.0	144.5	26.8	1066.5	956	θ	Ð	526	71.7
533.70	1.00			Limestone	98.8	245.0	1054.9	144.5	26.8	1211.0	1055	0	0	580	72.7
532.70	1.00			Limestone	98.8	245.0	1153.7	144.5	26.8	1355.5	1154	0	0	635	73.7
531.70	1.00			Limestone	98.8	245.0	1252.5	144.5	26.8	1500.0	1253	0	θ	689	74.7
530.70	1.00			Limestone	98.8	245.0	1351.3	144.5	26.8	1644.5	1351	0	0	743	75.7
529.70	1.00			Limestone	98.8	245.0	1450.2	144.5	26.8	1789.0	1450	0	θ	798	76.7
529.30	0.40			Limestone		245.0			26.8						

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

SUBSTRUCTURE====================================	East Abutr	nen
REFERENCE BORING ====================================	B-3 & B-4	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	605.80	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	602.80	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) =====	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ============	===	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) ========	=====	ft

TOTAL FACTORED SUBSTRUCTURE LOAD ====================================	kips
TOTAL LENGTH OF SUBSTRUCTURE (along skew)========	ft
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ====== 4	

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of <u>Pile</u>	Req.d Bearing of <u>Boring</u>	Resistance Available in <u>Boring</u>	Driveable Length in <u>Boring</u>
418 KIPS	411 KIPS	226 KIPS	51 FT.

PILE TYPE AND SIZE ==========	Steel H
Plugged Pile Perimeter=====	

Steel HP 12 X 53

3.967	FT.	Unplugged Pile Perimeter===================================	5.800	FT.
0.983	SQFT.	Unplugged Pile End Bearing Area======	0.108	SQFT.

BOT.			S D T		NOI	MINAL PLUG	GED	NON	IINAL UNPLU	JG'D	NOMINAL	FACTORED	FACTORED	EACTORED	ESTIMATED
		COMPR	3.P.1. N		SIDE		ΤΟΤΛΙ	SIDE		τοται		GEOTECH.	GEOTECH.	PACIORED	BILE
		STRENGTU				END BRG.	DESIST	JIDE	END BRG.	DECIST				AVAILADIE	
ELEV. (ET)	I FICK.	JIRENGIA (TSE)		DESCRIPTION	KESISI.	KESISI.	KESISI. (KIDS)	KESISI. (KIDQ)	KESISI. (KIDS)	KESISI. (KIDS)	DEARING (KIDS)			AVAILADLE (KIDS)	LENGIA (ET)
(F1.) 601-20	(- 1.)	(137.)	(BLOW3)				<u>(NIF 3)</u>	$\frac{(RF3)}{11.1}$	(NF3)	(RF3)	(RF3)	(NF 3)	(NF3)	(NF3)	(- 1.)
509 70	1.00	2.10	100	Vong Eine Silty Sand	7.0	100.4	100.1	11.1	11.0	<i>22.1</i> 62.2	62	0	0	12	5
590.70	2.00		25		30.1 9.4	64.2	102.0	44.0	7.0	02.2	70	0	0	J4 42	12
595.20	0.00 0.50		55		0.4	101.1	147.2	12.3	7.0	70.0 95 7	79 86	0	0	43	15
590.70	2.50		00 27		7.5		121.0	10.7 6.0	74	00.7	00	0	0	47 54	10
500.20 505 70	2.50		37 72		4.1	124.1	191.0	0.0	7.4 14.7	90.9 121 0	99 100	0	0	04 67	10
503.70	2.50		100		21.4	104.1	200.0	17.0	14.7	121.0	122	0	0	07	20
505.20	2.50		100		21.4	103.7	214.1	31.3	20.1	100.1	100	0	0	04 100	23
500.00	2.00		100		22.2 15.1	163.7	200.7	32.5	20.1	102.2	102	0	0	100	20
576.10 EZE 60	2.50		03		15.1	152.5	202.0	22.0	10.7	204.4	204	0	0	112	20
575.00 572.40	2.50		84 77		10.4	104.3	200.1	22.5	16.9	223.3	220	0	0	124	30
575.10	2.50		71		13.1	141.0	209.1	19.2	15.5	243.7	244	0	0	134	33 25
570.00 569.10	2.50		12		11.0	132.3	302.0	17.0	14.3	201.0	201	0	0	144	30
565 10	2.00		73		15.8	1/1 5	3/6.8	23.1	14.7	279.2	219	0	0	167	30 //1
560 10	5.00		82	Hard Till	29.5	150.7	409.4	43.1	16.5	350.0	350	0	0	193	46
559 10	1.00		100	Hard Till	8.5	183.7	417.9	12.5	20.1	362.5	363	0	0	199	47
558 10	1.00		100	Hard Till	8.5	183.7	426.5	12.5	20.1	375.0	375	0	0	206	48
557 10	1.00		100	Hard Till	8.5	183.7	435.0	12.5	20.1	387.5	388	0	0	213	49
556 10	1.00		100	Hard Till	8.5	183.7	443.6	12.5	20.1	400.0	400	0	0	220	50
555 10	1.00		100	Hard Till	8.5	183.7	433 7	12.5	20.1	410.5	411	0 0	0	226	51
554 10	1.00		90	Hard Till	7.0	165.4	440.8	10.2	18.1	420.8	421	<u> </u>	<u>A</u>	231	52
536 10	18.00		90	Hard Till	126.2	165.4	646.5	184.5	18.1	613.9	614	С Д	а Д	338	70
535 10	1 00		00	Limestone	98.8	245.0	745.4	144 5	26.8	758.4	745	0	С Д	410	70-7
534 10	1.00			Limestone	98.8	245.0	844.2	144 5	26.8	902.9	844	Q	д Д	464	71 7
533 10	1.00			Limestone	98.8	245.0	943.0	144 5	26.8	1047 4	943	θ	С Д	519	72 7
532.10	1.00			Limestone	98.8	245.0	1041.8	144.5	26.8	1191.9	1042	θ	Ð	573	73.7
531.10	1.00			Limestone	98.8	245.0	1140.7	144.5	26.8	1336.4	1141	Q	Q Q	<u>627</u>	74.7
530.10	1.00			Limestone	98.8	245.0	1239.5	144.5	26.8	1480.9	1239	θ	θ	682	75.7
529.10	1.00			Limestone	98.8	245.0	1338.3	144.5	26.8	1625.4	1338	Q	Q	736	76.7
528.10	1.00			Limestone	98.8	245.0	1437.1	144.5	26.8	1769.9	1437	Q	Q	790	77.7
527 10	1.00			Limestone	98.8	245.0	1536.0	144 5	26.8	1914 5	1536	θ	А Д	845	78 7
526.10	1.00			Limestone	98.8	245.0	1634.8	144.5	26.8	2059.0	1635	Ģ	Ģ	899	79.7
525.10	1.00			Limestone	98.8	245.0	1733.6	144.5	26.8	2203.5	1734	0	Ð	953	80.7
524.10	1.00			Limestone	98.8	245.0	1832.4	144 5	26.8	2348.0	1832	θ	Ð	1008	81.7
523.10	1.00			Limestone	98.8	245.0	1931.3	144 5	26.8	2492 5	1931	Ģ	- D	1062	82.7
522 10	1.00			Limestone		245.0			26.8			-	-		5-11
									_0.0						
						1 I			1	1		1			