

January 4, 2017

SUBJECT: FAI Route 57 (I-57) Project ACNHPP-0057(404) Section (41, 1HB2)BR-1 Jefferson County Contract No. 78365 Item No. 77, January 20, 2017 Letting Addendum A

NOTICE TO PROSPECTIVE BIDDERS:

Attached is an addendum to the plans or proposal. This addendum involves revised and/or added material.

1. Revised pages 9-17 and 25-34 of the Special Provisions

Prime contractors must utilize the enclosed material when preparing their bid and must include any Schedule of Prices changes in their bidding proposal.

Bidders using computer-generated bids are cautioned to reflect any and all Schedule of Prices changes, if involved, into their computer programs.

Very truly yours,

Maureen M. Addis, P.E. Engineer of Design and Environment

Jutter abuchly . A.E.

By: Ted B. Walschleger, P. E. Engineer of Project Management

cc: Jeffrey Keirn, Region 5, District 9; Tim Kell; D. Carl Puzey; Estimates

CWR/ck

FIBER WRAP

Effective: May 31, 2007

Revised: December 6, 2016

Description

This work shall consist of furnishing and installing fiber-reinforced polymer (FRP) wraps at the locations shown in the plans. The FRP wraps shall be of the size, type, layer, materials, tension, and spacing shown in the plans. The Contractor shall submit drawings of the FRP wrap system, showing materials, components, and installation procedures to the Engineer for approval prior to ordering materials and commencing work.

All other concrete repairs and/or modifications shall be completed prior to performing this work. Concrete placed in areas receiving FRP wraps shall have a maximum moisture content of 4% before wrapping begins. All manufacturer's recommendations for surface preparation and installation of FRP wraps shall be followed.

Submittals

The following submittals, but not limited to, shall be required of the FRP system manufacturer, installation contractor and inspection agency. All submittals, except daily installation data logs, shall be given to the Engineer for review allowing at least 60 days for approval.

Submittals required of the *FRP* system manufacturer.

- Product information and data sheets indicating physical, mechanical and chemical properties and limitations of the FRP system and all its components.
- Net fiber and gross laminate tensile properties of the FRP system, all test techniques, methods and calculations used for determining properties.
- Durability test data and structural test reports of the FRP system for the proposed application in the expected environmental conditions.
- Installation and maintenance instructions and general recommendations regarding each material used in the FRP system. Note that surface preparation requirements shall be included in the installation procedures.
- Material Safety Data Sheets of each product used and certification that all materials abide by all local, state, and federal environmental and worker's safety laws and regulations.
- Quality control procedures for tracking FRP materials and material certifications.
- List of projects where similar FRP system has been implemented.

Submittals required of the FRP system installation Contractor:

- Documentation from the FRP system manufacturer stating the Contractor has been trained to install the FRP system shown on the design plans.
- List of completed projects by the Contractor where similar FRP system has been implemented. Include location, owner, engineer and contact numbers associated with each project.
- Documentation showing that the Contractor is experienced in surface preparation techniques required for the project.
- Quality control procedures, daily installation data logs, and any other inspection forms used by the Contractor.

Revised 01/04/17

If an independent inspection agency is used, the following submittals are required of the FRP *system inspection agency*:

- Qualifications and a list of each inspector used on the project.
- Sample inspection forms to be used during inspection.
- List of prior inspections performed by each inspector used on the project.

Material Requirements

The Contractor shall inspect and ensure all materials meet specifications, conform to design plans and are undamaged upon job-site arrival. All products shall be delivered to the job-site in their original, un-opened containers with the Manufacturer's name, labels, product identification, and batch numbers. Ensure FRP system materials are protected from chemicals, dirt, extreme temperatures, moisture, and physical damage, by storing, handling, and applying materials according to manufacturer and OSHA recommendations.

FRP shall be high modulus, high strength fiber fabric of the type, size, layer, materials, tension, spacing and location as specified on the design plans. FRP Reinforcement shall meet the requirements as listed below.

	Glass Fiber	, Carbon Fiber	
Property			ASTM Test Method
Prior to testing, laminate samples			
shall be cured at least 7 days at 70°F			
then post-cured at 140°F for 48 hours			
Laminate Tensile Strength	3240 lbs/layer	4160 lbs/layer	D3039
Laminate Tensile Modulus	3.5 x 10 ⁶ psi	9.4 x 10 ⁶ psi	D3039
Laminate Elongation at break	2.23%	0.98%	D3039
Dry Fabric Weight, Minimum, per	27 oz./yd ²	18 oz./yd ²	
square yard	-		
Percent Laminate Tensile Strength			
Retained after:			
7 days, 100% humidity, 100°F	90%	90%	
3,000 hrs exposure to alkali	90%	90%	
3,000 hrs exposure to salt water	90%	90%	
3,000 hrs exposure at 140°F	90%	90%	
Visual Defects	None	None	D2563

Minimum FRP Reinforcement Requirements

Fabric saturant (saturating resin) and concrete primer shall be two component, 100% solids, tolerant to moisture, high strength and high modulus epoxy. Manufacturer's recommendations for mixing shall be followed. Dilution of components will not be permitted and mixing of components shall not be divided into smaller units and shall be mixed using full units only. Mixtures shall be used within its pot life.

Properties	Minimum Requirement	ASTM Test Method
Tensile Strength, 7 day	3,600 psi	D638
Tensile Modulus, 7 day	6.5 x 10 ⁵ psi	D638
Elongation at Break, 7 day	1.0%	D638
Flexural Strength, 14 day	6,800 psi	D790
Shear Strength, 14 day	3,600 psi	D732
Heat Deflection Temperature	118°F	D648

Minimum Requirements for Concrete Primer

Minimum Requirements for Fabric Saturant

Properties	Minimum Requirement	ASTM Test Method
Tensile Strength	8,000 psi	D638
Tensile Modulus	250,000 psi	D638
Elongation at Break	3.0%	D638
Flexural Strength	11,500 psi	D790
Flexural Modulus	500,000 psi	D790
Heat Deflection Temperature	120°F	D648

A vapor permeable, UV resistant polymer or acrylic based protective coating shall be used. The protective coating shall be applied according to the manufacturer's recommendations.

Construction Requirements

A technical representative from the manufacturer shall be on site during installation of FRP wraps. All costs associated with providing a technical representative shall be the responsibility of the Contractor.

The Contractor shall maintain a Daily Installation Log. The log shall be available for review by the Engineer, and a copy shall be furnished to the Engineer at completion of installation and construction for each day's production. The Log shall provide material traceability and process records for each wrap and shall include all the following information:

- (a) Date, time and specific location of installation.
- (b) Construction and installation requirements, including plans and drawings and references thereto.
- (c) Surface preparation methods.
- (d) Widths and lengths of cracks not injected with epoxy.
- (e) Material information including product description, data of manufacturer, product and fiber batch numbers, mixture ratios, mixing times, appearance description of mixed resins (i.e. primers, putties, saturants, adhesives, and protective coatings used for the day)
- (f) Ambient temperatures, humidity, and general weather observations at the beginning, middle and end of each wrap installation shift.
- (g) Concrete surface temperature, concrete moisture content and surface cleanliness.
- (h) Heat sources used for increasing surface temperature or curing.

- (i) Number of FRP layers used, composite thickness measurements, curing progress of resins including full documentation of curing temperature ramping and final curing temperature and thickness measurements of protecting coating used.
- (j) Location and size of FRP debonding or air voids.
- (k) Documentation stating installation procedures were followed.
- (I) Pull off test results including bond strength, failure mode, and location.
- (m) Other general work progress.

Surface Preparation:

FRP wraps shall be placed on sound concrete having a maximum moisture content of 4%. All bond inhibiting and foreign materials, including but not limited to dust, laitance, paint, grease, curing compounds, impregnations and waxes, shall be removed from the concrete surface by blast cleaning or other appropriate mechanical means. All surface irregularities and deteriorated concrete shall be removed and repaired in such a manner as to not damage the existing structure. See special provision for Structural Repair of Concrete for concrete repair at bottom flanges of beams. See special provision for Polymer Modified Portland Cement Mortar for the concrete repair of exposed vertical reinforcement at side faces of beam. When wrapping FRP around corners of rectangular cross sections, the corners should be rounded to a minimum of ½" radius. After concrete surface preparation has been completed, adhesive strength of the concrete shall be verified by random pull-off testing according to ACI 503R as per the direction of the Engineer.

All cracks greater than 0.007 in. shall be injected with epoxy according to Section 590 of the Standard Specifications for Road and Bridge Construction. Cost included with Fiber Wrap.

Constituent Material Application:

All materials shall be applied according to conditions (i.e. surface temperature of the concrete, air temperature, relative humidity, and corresponding dew point) recommended by the FRP manufacturer.

Primer should be applied uniformly on the prepared surface to all areas of concrete receiving the FRP wrap according to the manufacturer's specifications. Primed surfaces shall be protected from all contaminants (e.g. dust, moisture, etc.) prior to the application of the FRP wraps. Any type of putty used for the FRP system shall follow the manufacturer's recommended thicknesses and sequences. Surface depressions/irregularities shall be filled with a system-compatible epoxy filler or ground smooth using appropriate means prior to the application of any other materials. Allow putty and primer to cure as per manufacturer's requirements before applying the saturating resin or adhesive.

Components of saturating resin may be proportioned and mixed by hand or by automatic equipment. Provision shall be made for checking the accuracy of proportions and mixing. The resin-to-fabric ratio shall be verified and documented on the daily installation data log. Saturating resin shall be applied uniformly to prepared surfaces. FRP-ply orientation shall not deviate from the orientation shown on the design plans. Fiber wraps shall be handled in a manner to maintain fiber straightness and prevent fiber damage. Any kinks, folds, or severe waviness should be reported to the Engineer. If multiple fabric layers are being placed, successive layers shall be placed before the complete curing of the previous layer to ensure complete bonding between layers. Entrapped air beneath each layer of fabric shall be rolled out before the saturating resin sets.

Subject to approval by the Engineer, the Contractor may provide suitable enclosures to permit application and curing of the fiber wrap during inclement weather. Provisions shall be made to control atmospheric conditions artificially within the enclosures within the limits specified for application and curing of the fiber wrap.

The FRP system shall be protected from rain, sand, dust, and other foreign particles during and after curing as per the Engineer and manufacturer's recommendations.

The Contractor shall inspect the cured FRP system to ensure saturating resin has completely cured. The Contractor must check for defects such as voids, delaminations, external cracks, chips, cuts, loose fibers, external abrasions, blemishes, foreign inclusions, depressible raised areas, or fabric wrinkles. All defects with a dimension greater than 1½ inch, or an area greater than one square inch, or defects with any dimension greater than 1 inch within one foot from another defect area of similar size, shall be repaired or replaced as determined by the Engineer. Repairs shall be made according to manufacturer's recommendations and as specified by the Engineer. For large defected areas, additional layers of FRP maybe required as per the Engineer.

A vapor permeable, UV resistant polymer or acrylic based protective coating shall be used. The protective coating shall be compatible with the FRP system and applied according to the manufacturer's recommendations. Any solvents used to clean the FRP surface prior to the application of the protective coating shall be approved by the FRP manufacturer since solvents can have harmful effects on the polymer fabric. Two layers of protective coating shall be applied to all surfaces of the fiber wrap. In addition, one layer of protective coating shall also be applied to the exterior vertical surface and bottom surface of the fascia beams in areas where the fiber wrap is not applied. The cost of the protective coating shall be paid for as Acrylic Coating.

Method of Measurement

FRP wraps will be computed for payment in place in square feet based on the surface area measurements of the substrate to be repaired. The measured quantity will not be modified for multiple layers of FRP needed as shown in the design plans.

The areas upon which the protective coat is applied will be measured for payment in place and the area computed in square yards.

Basis of Payment

This work will be paid for at the contract unit price per square foot for FIBER WRAP. Payment shall constitute full compensation for all materials, labor, tools, equipment, and incidentals necessary to complete the work.

Full compensation for any additional testing, materials, enclosures, or work required because of the use of a particular type of fiber wrap, shall be considered as included in the item FIBER WRAP.

Protective coat will be paid for at the contract unit price per square yard for ACRYLIC COATING.

Preparation work according to the special provisions for Polymer Modified Portland Cement Mortar and Structural Repair of Concrete will not be included in the cost for FIBER WRAP, but will be paid for according to Article 109.04.

POLYMER MODIFIED PORTLAND CEMENT MORTAR

Effective: June 7, 1994

Revised: December 6, 2016

<u>Description</u>. This work shall consist of furnishing all materials and labor required to remove and dispose of deteriorated concrete, and replace it with a polymer modified portland cement mortar at those locations shown on the plans or designated by the Engineer, in order to aid in surface preparation for installation of fiber wrap. The use of this mortar is intended to repair spalls between 3/8 in. (10 mm) and 2 in. (50 mm) deep on horizontal, vertical, and overhead surfaces.

Materials. Materials shall be according to the following.

Item	Article/Section
(a) Polymer Modified Portland Cement Concrete (Note 1)	
(b) Reinforcement Bars	1006.10
(c) Water	1002
(d) Cotton Mats	1022.02
(e) Protective Coat	1023
(f) Epoxy (Note2)	1025
(g) Mechanical Bar Splicers	508.08(c)

Note 1. Polymer modified portland cement mortar shall be a packaged product consisting of portland cement, fine aggregate, and a polymer modifier.

(1) The portland cement shall be according to Article 1001.01

- (2) The fine aggregate shall be an FA 1 or FA 2, according to Articles 1003.01 and 1003.02.
- (3) The polymer modified portland cement mortar shall meet the following physical requirements:

- a. The mortar shall be a workable mix capable of bonding and holding its own plastic weight, when mixed and placed according to manufacturer instructions, on vertical and overhead surfaces. The testing shall be according to Illinois Laboratory Test Procedure "Evaluation of Vertical and Overhead Adhesion for Polymer Modified Portland Cement Mortar".
- b. The mortar shall have a minimum compressive strength of 1,500 psi (10,300 kPa) at 24 hours, 3,000 psi (20,700 kPa) at 3 days, and 5,000 psi (34,500 kPa) at 28 days; according to ASTM C 109.
- c. The mortar shall have a minimum bond strength of 2,000 psi (13,800 kPa) at 28 days, according to the Illinois Laboratory Test Procedure "Evaluation of Bond Strength by Slant Shear".
- d. The mortar shall have a water soluble chloride ion content of less than 0.40 lb/cu yd (0.24 kg/cu m). The test shall be performed according to ASTM C 1218, and the mortar shall have an age of 28 to 42 days at the time of test. The ASTM C 1218 test shall be performed by an independent lab a minimum of once every two years, and the test results shall be provided to the Department.

The Department will maintain an Approved List of Polymer Modified Portland Cement Mortar.

Note 2. In addition ASTM C 881, Type IV, Grade 2 or 3, Class A, B, or C may be used.

Equipment. Equipment shall be according to Article 503.03 and the following:

(a) Chipping Hammer – The chipping hammer for removing concrete shall be a light-duty pneumatic or electric tool with a 15 lb (7 kg) class or less.

(b) Blast Cleaning Equipment – Blast Cleaning equipment for concrete surface preparation shall be the abrasive type, and the equipment shall have oil traps.

(c) Hydrodemolition Equipment – Hydrodemolition equipment for removing concrete shall be calibrated, and shall use water according to Section 1002.

<u>Concrete Removal</u>. The Contractor shall provide ladders or other appropriate equipment for the Engineer to mark the removal areas. Repair configurations will be kept simple, and squared corners will be preferred. The repair perimeter shall be sawed a depth of 3/8 in. (10 mm) or less, as required to avoid cutting the reinforcement. If the concrete is broken or removed beyond the limits of the initial saw cut, the new repair perimeter shall be recut. The areas to be repaired shall have all loose, unsound concrete removed completely by the use of chipping hammers, hydrodemolition equipment, or other methods approved by the Engineer. The concrete removal shall extend along the reinforcement bar until the reinforcement is free of bond inhibiting corrosion. The outermost layer of reinforcement bar within the repair area shall be undercut to a depth of 3/4 in. (19 mm) or the diameter of the reinforcement bar, whichever value is larger. The underlying transverse reinforcement bar shall also be undercut as previously described, unless the reinforcement is not corroded, and the reinforcement bar is encased and well bonded to the surrounding concrete.

If sound concrete is encountered before existing reinforcement bars are exposed, further removal of concrete shall not be performed unless the minimum repair depth is not met.

The repair depth shall be a minimum of 3/8 in. (10 mm) and a maximum of 2 in. (50 mm). The substrate profile shall be \pm 1/16 in. (\pm 1.5 mm). The perimeter of the repair area shall have a vertical face.

If a repair is located at the ground line, any excavation required below the ground line to complete the repair shall be included in this work.

The Contractor shall have a maximum of 14 calendar days to complete each repair location with mortar, once concrete removal has started for the repair.

<u>Surface Preparation</u>. Prior to placing the mortar, the Contractor shall prepare the repair area and exposed reinforcement by blast cleaning. The blast cleaning shall provide a surface that is free of oil, dirt, and loose material.

The repair area and perimeter vertical face shall have a rough surface. Care shall be taken to ensure the perimeter sawcut is roughened. Just prior to mortar placement, saturate the repair area with water to a saturated surface-dry condition. Any standing water shall be removed.

Mortar placement shall be done within 3 calendar days of the surface preparation or the repair area shall be prepared again.

<u>Reinforcement.</u> Exposed reinforcement bars shall be cleaned of concrete and corrosion by blast cleaning. After cleaning, all exposed reinforcement shall be carefully evaluated to determine if replacement or additional reinforcement bars are required.

Reinforcing bars that have been cut or have lost 25 percent or more of their original cross sectional area shall be supplemented by new in kind reinforcement bars. New bars shall be lapped a minimum of 32 bar diameters to existing bars. A mechanical bar splicer shall be used when it is not feasible to provide the minimum bar lap. No welding of bars shall be performed.

Intersecting reinforcement bars shall be tightly secured to each other using 0.006 in. (1.6 mm) or heavier gauge tie wire, and shall be adequately supported to minimize movement during mortar placement.

For reinforcement bar locations with less than 0.75 in. (19 mm) of cover, protective coat shall be applied to the completed repair. The application of the protective coat shall be according to Article 503.19.

<u>Placement.</u> Mix and place the polymer modified portland cement mortar according to the manufacturer's instructions. The mortar shall be placed and finished to the contours of the member, as originally constructed.

The mortar shall not be placed when the air temperature is below 45 °F (7 °C) and falling or below 40 °F (4 °C). Mortar shall not be placed when the air temperature is greater than 90 °F (32 °C). The mortar shall have a minimum temperature of 50 °F (10 °C) and a maximum temperature of 90 °F (32 °C). The mortar shall not be applied during periods of rain unless protective covers or enclosures are installed. The mortar shall not be applied when frost is present on the surface of the repair area, or the surface temperature of the repair area is less than 40 °F (4 °C).

<u>Curing.</u> Cotton mats shall be applied, according to Article 1020.13(a)(5), to the exposed layer of mortar within 10 minutes after finishing, and wet curing shall begin immediately. Curing shall be for a minimum of 3 days.

If temperatures below 45° F (7° C) are forecast during the curing period, protection methods shall be used. Protection Method I according to Article 1020.13(d)(1), or Protection Method II according to Article 1020.13(d)(2) shall be used during the curing period.

<u>Inspection of Completed Work</u>. The Contractor shall provide ladders or other appropriate equipment for the Engineer to inspect the repaired areas. After curing but no sooner than 28 days after placement of the mortar, the repair shall be examined for conformance with original dimensions, cracks, and delaminations. Sounding for delaminations will be done with a hammer or by other methods determined by the Engineer.

The repaired area shall be removed and replaced, as determined by the Engineer, for nonconformance with original dimensions, surface cracks greater than 0.01 in. (0.25 mm) in width, map cracking with a crack spacing in any direction of 18 in. (450 mm) or less, or delaminations.

If the repair is allowed to remain in place, cracks 0.01 in. (0.25 mm) or less shall be repaired with epoxy according to Section 590. For cracks less than 0.007 in. (2 mm), the epoxy may be applied to the surface of the crack.

<u>Method of Measurement.</u> Polymer modified portland cement mortar will not be measured for payment.

Basis of Payment. This work will be paid for according to Article 109.04.

The furnishing and installation of supplemental reinforcement bars, mechanical bar splicers, and protective coat will be paid according to Article 109.04.

Revised 01/04/17

STRUCTURAL REPAIR OF CONCRETE

Effective: March 15, 2006

Revised: December 6, 2016

<u>Description</u>. This work shall consist of structurally repairing concrete to prepare surfaces for installation of fiber wrap.

Materials. Materials shall be according to the following.

Item	Article/Section
(a) Portland Cement Concrete (Note 1)	
(b) R1 or R2 Concrete (Note 2)	
(c) Normal Weight Concrete (Notes 3 and 4)	
(d) Shotcrete (High Performance) (Notes 5 and 6)	
(e) Reinforcement Bars	
(f) Anchor Bolts	
(g) Water	
(h) Curing Compound	
(i) Cotton Mats	
(j) Protective Coat	
(k) Epoxy (Note 7)	
(I) Mechanical Bar Splicers	508.06(c)

- Note 1. The concrete shall be Class SI, except the cement factor shall be a minimum 6.65 cwt/cu yd (395 kg/cu m), the coarse aggregate shall be a CA 16, and the strength shall be a minimum 4000 psi (27,500 kPa) compressive or 675 psi (4650 kPa) flexural at 14 days. A high range water-reducing admixture shall be used to obtain a 5-7 in. (125-175 mm) slump, but a cement factor reduction according to Article 1020.05(b)(8) is prohibited. A self-consolidating concrete mixture is also acceptable per Article 1020.04, except the mix design requirements of this note regarding the cement factor, coarse aggregate, strength, and cement factor reduction shall apply.
- Note 2. The R1 or R2 concrete shall be from the Department's approved list of Packaged, Dry, Rapid Hardening, Cementitious Materials for Concrete Repairs. The R1 or R2 concrete shall comply with the air content and strength requirements for Class SI concrete as indicated in Note 1. Mixing shall be per the manufacturer's recommendations, except the water/cement ratio shall not exceed the value specified for Class SI concrete as indicated in Note 1. A high range water-reducing admixture shall be used to obtain a 5-7 in. (125-175 mm) slump, and a retarder may be required to allow time to perform the required field tests. The admixtures shall be per the manufacturer's recommendation, and the Department's approved list of Concrete Admixtures shall not apply.

- Note 3. The "high slump" packaged concrete mixture shall be from the Department's approved list of Packaged, Dry, Formed, Concrete Repair Mixtures. The materials and preparation of aggregate shall be according to ASTM C 387. The cement factor shall be 6.65 cwt/cu vd (395 kg/cu m) minimum to 7.05 cwt/cu vd (418 kg/cu m) maximum. Cement replacement with fly ash or ground granulated blast-furnace slag shall be according to Section 1020. The "high slump" packaged concrete mixture shall have a water soluble chloride ion content of less than 0.40 lb/cu yd (0.24 kg/cu m). The test shall be performed according to ASTM C 1218, and the "high slump" packaged concrete mixture shall have an age of 28 to 42 days at the time of test. The ASTM C 1218 test shall be performed by an independent lab a minimum of once every two years, and the test results shall be provided to the Department. The coarse aggregate shall be a maximum size of 1/2 in. (12.5 mm). The packaged concrete mixture shall comply with the air content and strength requirements for Class SI concrete as indicated in Note 1. Mixing shall be per the manufacturer's recommendations, except the water/cement ratio shall not exceed the value specified for Class SI concrete as indicated in Note 1. A high range water-reducing admixture shall be used to obtain a 5-7 in. (125-175 mm) slump. The admixture shall be per the manufacturer's recommendation, and the Department's approved list of Concrete Admixtures shall not apply. A maximum slump of 10 in. (250 mm) may be permitted if no segregation is observed by the Engineer in a laboratory or field evaluation.
- Note 4 The "self-consolidating concrete" packaged concrete mixture shall be from the Department's approved list of Packaged, Dry, Formed, Concrete Repair Mixtures. The materials and preparation of aggregate shall be according to ASTM C 387. The cement factor shall be 6.65 cwt/cu yd (395 kg/cu m) minimum to 7.05 cwt/cu yd (418 kg/cu m) maximum. Cement replacement with fly ash or ground granulated blast-furnace slag shall be according to Section 1020. The "selfconsolidating concrete" packaged concrete mixture shall have a water soluble chloride ion content of less than 0.40 lb/cu yd (0.24 kg/cu m). The test shall be performed according to ASTM C 1218, and the "self-consolidating concrete" packaged concrete mixture shall have an age of 28 to 42 days at the time of test. The ASTM C 1218 test shall be performed by an independent lab a minimum of once every two years, and the test results shall be provided to the Department. The concrete mixture should be uniformly graded, and the coarse aggregate shall be a maximum size of 1/2 in. (12.5 mm). The fine aggregate proportion shall be a maximum 50 percent by weight (mass) of the total aggregate used. The packaged concrete mixture shall comply with the air content and strength requirements for Class SI concrete as indicated in Note 1. Mixing shall be per the manufacturer's recommendations, except the water/cement ratio shall not exceed the value specified for Class SI concrete as indicated in Note 1. The admixtures used to produce self-consolidating concrete shall be per the manufacturer's recommendation, and the Department's approved list of Concrete Admixtures shall not apply. The packaged concrete mixture shall meet the self-consolidating requirements of Article 1020.04.

Note 5. Packaged shotcrete that includes aggregate shall be from the Department's approved list of Packaged High Performance Shotcrete, and independent laboratory test results showing the product meets Department specifications will be required. The product shall be a packaged, pre-blended, and dry combination of materials, for the wet-mix shotcrete method according to ASTM C 1480. A non-chloride accelerator may be used according to the shotcrete manufacturer's recommendations. The shotcrete shall be Type FA or CA, Grade FR, and Class I. The fibers shall be Type III synthetic according to ASTM C 1116.

The packaged shotcrete shall have a water soluble chloride ion content of less than 0.40 lb/cu yd (0.24 kg/cu m). The test shall be performed according to ASTM C 1218, and the hardened shotcrete shall have an age of 28 to 42 days at the time of test. The ASTM C 1218 test shall be performed by an independent lab a minimum of once every two years, and the test results shall be provided to the Department.

Each individual aggregate used in the packaged shotcrete shall have either a maximum ASTM C 1260 expansion of 0.16 percent or a maximum ASTM C 1293 expansion of 0.040 percent. However, the ASTM C 1260 value may be increased to 0.27 percent for each individual aggregate if the cement total equivalent alkali content (Na₂O + 0.658K₂O) does not exceed 0.60 percent. As an alternative to these requirements, ASTM C 1567 testing which shows the packaged shotcrete has a maximum expansion of 0.16 percent may be submitted. The ASTM C 1260, C 1293, or C 1567 test shall be performed a minimum of once every two years.

The 7 and 28 day compressive strength requirements in ASTM C 1480 shall not apply. Instead the shotcrete shall obtain a minimum compressive strength of 4000 psi (27,500 kPa) at 14 days.

The packaged shotcrete shall be limited to the following proportions:

The portland cement and finely divided minerals shall be 6.05 cwt/cu yd (360 kg/cu m) to 8.50 cwt/cu yd (505 kg/cu m) for Type FA and 6.05 cwt/cu yd (360 kg/cu. m) to 7.50 cwt/cu yd (445 kg/cu m) for Type CA. The portland cement shall not be below 4.70 cwt/cu yd (279 kg/cu m) for Type FA or CA.

The finely divided mineral(s) shall constitute a maximum of 35 percent of the total cement plus finely divided mineral(s).

Class F fly ash is optional and the maximum shall be 20 percent by weight (mass) of cement.

Class C fly ash is optional and the maximum shall be 25 percent by weight (mass) of cement.

Ground granulated blast-furnace slag is optional and the maximum shall be 30 percent by weight (mass) of cement.

Microsilica is required and shall be a minimum of 5 percent by weight (mass) of cement, and a maximum of 10 percent. As an alternative to microsilica, high-reactivity metakaolin may be used at a minimum of 5 percent by weight (mass) of cement, and a maximum of 10 percent.

Fly ash shall not be used in combination with ground granulated blast-furnace slag. Class F fly ash shall not be used in combination with Class C fly ash. Microsilica shall not be used in combination with high-reactivity metakaolin. A finely divided mineral shall not be used in combination with a blended hydraulic cement, except for microsilica or high-reactivity metakaolin.

The water/cement ratio as defined in Article 1020.06 shall be a maximum of 0.42.

The air content as shot shall be 4.0 - 8.0 percent.

Note 6 Packaged shotcrete that does not include pre-blended aggregate shall be from the Department's approved list of Packaged High Performance Shotcrete, and independent laboratory test results showing the product meets Department specifications will be required. The shotcrete shall be according to Note 5, except the added aggregate shall be according to Articles 1003.02 and 1004.02 in addition to each individual aggregate meeting the maximum expansion requirements of Note 5. The aggregate gradation shall be according to the manufacturer. The shotcrete shall be batched and mixed with added aggregate according to the manufacturer.

Note 7. In addition ASTM C 881, Type IV, Grade 2 or 3, Class A, B, or C may be used.

Equipment. Equipment shall be according to Article 503.03 and the following.

Chipping Hammer – The chipping hammer for removing concrete shall be a light-duty pneumatic or electric tool with a 15 lb. (7 kg) maximum class or less.

Blast Cleaning Equipment – Blast cleaning equipment for concrete surface preparation shall be the abrasive type, and the equipment shall have oil traps.

Hydrodemolition Equipment – Hydrodemolition equipment for removing concrete shall be calibrated, and shall use water according to Section 1002.

High Performance Shotcrete Equipment – The batching, mixing, pumping, hose, nozzle, and auxiliary equipment shall be for the wet-mix shotcrete method, and shall meet the requirements of ACI 506R.

Construction Requirements

<u>General</u>. The repair methods shall be either formed concrete repair or shotcrete. The repair method shall be selected by the Contractor with the following rules.

- (a) Rule 1. For formed concrete repair, a subsequent patch to repair the placement point after initial concrete placement will not be allowed. As an example, this may occur in a vertical location located at the top of the repair.
- (b) Rule 2. Formed concrete repair shall not be used for overhead applications.
- (c) Rule 3. If formed concrete repair is used for locations that have reinforcement with less than 0.75 in. (19 mm) of concrete cover, the concrete mixture shall contain fly ash or ground granulated blast-furnace slag at the maximum cement replacement allowed.
- (d) Rule 4. Shotcrete shall not be used for any repair greater than 6 in. (150 mm) in depth, except in horizontal applications, where the shotcrete may be placed from above in one lift.
- (e) Rule 5. Shotcrete shall not be used for column repairs greater than 4 in. (100 mm) in depth, unless the shotcrete mixture contains 3/8 in. (9.5 mm) aggregate.

<u>Temporary Shoring or Cribbing</u>. When a temporary shoring or cribbing support system is required, the Contractor shall provide details and computations, prepared and sealed by an Illinois licensed Structural Engineer, to the Department for review and approval. When ever possible the support system shall be installed prior to starting the associated concrete removal. If no system is specified, but during the course of removal the need for temporary shoring or cribbing becomes apparent or is directed by the Engineer due to a structural concern, the Contractor shall not proceed with any further removal work until an appropriate and approved support system is installed.

<u>Concrete Removal</u>. The Contractor shall provide ladders or other appropriate equipment for the Engineer to mark the removal areas. Repair configurations will be kept simple, and squared corners will be preferred. The repair perimeter shall be sawed a depth of 1/2 in. (13 mm) or less, as required to avoid cutting the reinforcement. Any cut reinforcement shall be repaired or replaced at the expense of the Contractor. If the concrete is broken or removed beyond the limits of the initial saw cut, the new repair perimeter shall be recut. The areas to be repaired shall have all loose, unsound concrete removed completely by the use of chipping hammers, hydrodemolition equipment, or other methods approved by the Engineer. The concrete removal shall extend along the reinforcement bar until the reinforcement is free of bond inhibiting corrosion. Reinforcement bar with 50 percent or more exposed shall be undercut to a depth of 3/4 in. (19 mm) or the diameter of the reinforcement bar, whichever is greater.

If sound concrete is encountered before existing reinforcement bars are exposed, further removal of concrete shall not be performed unless the minimum repair depth is not met.

The repair depth shall be a minimum of 1 in. (25 mm). The substrate profile shall be \pm 1/16 in. (\pm 1.5 mm). The perimeter of the repair area shall have a vertical face.

If a repair is located at the ground line, any excavation required below the ground line to complete the repair shall be included in this work.

The Contractor shall have a maximum of 14 calendar days to complete each repair location with concrete or shotcrete, once concrete removal has started for the repair.

The Engineer shall be notified of concrete removal that exceeds 6 in. (150 mm) in depth, one fourth the cross section of a structural member, more than half the vertical column reinforcement is exposed in a cross section, more than 6 consecutive reinforcement bars are

exposed in any direction, within 1.5 in. (38 mm) of a bearing area, or other structural concern. Excessive deterioration or removal may require further evaluation of the structure or installation of temporary shoring and cribbing support system.

<u>Surface Preparation</u>. Prior to placing the concrete or shotcrete, the Contractor shall prepare the repair area and exposed reinforcement by blast cleaning. The blast cleaning shall provide a surface that is free of oil, dirt, and loose material.

If a succeeding layer of shotcrete is to be applied, the initial shotcrete surface and remaining exposed reinforcement shall be free of curing compound, oil, dirt, loose material, rebound (i.e. shotcrete material leaner than the original mixture which ricochets off the receiving surface), and overspray. Preparation may be by lightly brushing or blast cleaning if the previous shotcrete surface is less than 36 hours old. If more than 36 hours old, the surface shall be prepared by blast cleaning.

The repair area and perimeter vertical face shall have a rough surface. Care shall be taken to ensure the sawcut face is roughened by blast cleaning. Just prior to concrete or shotcrete placement, saturate the repair area with water to a saturated surface-dry condition. Any standing water shall be removed.

Concrete or shotcrete placement shall be done within 3 calendar days of the surface preparation or the repair area shall be prepared again.

<u>Reinforcement.</u> Exposed reinforcement bars shall be cleaned of concrete and corrosion by blast cleaning. After cleaning, all exposed reinforcement shall be carefully evaluated to determine if replacement or additional reinforcement bars are required.

Reinforcing bars that have been cut or have lost 25 percent or more of their original cross sectional area shall be supplemented by new in kind reinforcement bars. New bars shall be lapped a minimum of 32 bar diameters to existing bars. A mechanical bar splicer shall be used when it is not feasible to provide the minimum bar lap. No welding of bars shall be performed.

Intersecting reinforcement bars shall be tightly secured to each other using 0.006 in. (1.6 mm) or heavier gauge tie wire, and shall be adequately supported to minimize movement during concrete placement or application of shotcrete.

For reinforcement bar locations with less than 0.75 in. (19 mm) of cover, protective coat shall be applied to the completed repair. The application of the protective coat shall be according to Article 503.19, 2nd paragraph, except blast cleaning shall be performed to remove curing compound.

The Contractor shall anchor the new concrete to the existing concrete with 3/4 in. (19 mm) diameter hook bolts for all repair areas where the depth of concrete removal is greater than 8 in. (205 mm) and there is no existing reinforcement extending into the repair area. The hook bolts shall be spaced at 15 in. (380 mm) maximum centers both vertically and horizontally, and shall be a minimum of 12 in. (305 mm) away from the perimeter of the repair. The hook bolts shall be installed according to Section 584.

<u>Repair Methods</u>. All repair areas shall be inspected and approved by the Engineer prior to placement of the concrete or application of the shotcrete.

(a) Formed Concrete Repair. Falsework shall be according to Article 503.05. Forms shall be according to Article 503.06. Formwork shall provide a smooth and uniform concrete finish, and shall approximately match the existing concrete structure. Formwork shall be mortar tight and closely fitted where they adjoin the existing concrete surface to prevent leakage. Air vents may be provided to reduce voids and improve surface appearance. The Contractor may use exterior mechanical vibration, as approved by the Engineer, to release air pockets that may be entrapped.

The concrete for formed concrete repair shall be a Class SI Concrete, or a packaged R1 or R2 Concrete with coarse aggregate added, or a packaged Normal Weight Concrete at the Contractor's option. The concrete shall be placed and consolidated according to Article 503.07. The concrete shall not be placed when frost is present on the surface of the repair area, or the surface temperature of the repair area is less than 40 °F (4 °C). All repaired members shall be restored as close as practicable to their original dimensions.

Curing shall be done according to Article 1020.13.

If temperatures below $45^{\circ}F$ (7°C) are forecast during the curing period, protection methods shall be used. Protection Method I according to Article 1020.13(d)(1), or Protection Method II according to Article 1020.13(d)(2) shall be used during the curing period.

The surfaces of the completed repair shall be finished according to Article 503.15.

(b) Shotcrete. Shotcrete shall be tested by the Engineer for air content according to Illinois Modified AASHTO T 152. The sample shall be obtained from the discharge end of the nozzle by shooting a pile large enough to scoop a representative amount for filling the air meter measuring bowl. Shotcrete shall not be shot directly into the measuring bowl for testing.

For compressive strength of shotcrete, a $18 \times 18 \times 3.5$ in. (457 x 457 x 89 mm) test panel shall be shot by the Contractor for testing by the Engineer. A steel form test panel shall have a minimum thickness of 3/16 in. (5 mm) for the bottom and sides. A wood form test panel shall have a minimum 3/4 in. (19 mm) thick bottom, and a minimum 1.5 in. (38 mm) thickness for the sides. The test panel shall be cured according to Article 1020.13 (a) (3) or (5) while stored at the jobsite and during delivery to the laboratory.

After delivery to the laboratory for testing, curing and testing shall be according to ASTM C 1140.

The method of alignment control (i.e. ground wires, guide strips, depth gages, depth probes, and formwork) to ensure the specified shotcrete thickness and reinforcing bar cover is obtained shall be according to ACI 506R. Ground wires shall be removed after completion of cutting operations. Guide strips and formwork shall be of dimensions and

a configuration that do not prevent proper application of shotcrete. Metal depth gauges shall be cut 1/4 in. (6 mm) below the finished surface. All repaired members shall be restored as close as practicable to their original dimensions.

For air temperature limits when applying shotcrete in cold weather, the first paragraph of Article 1020.14(b) shall apply. For hot weather, shotcrete shall not be applied when the air temperature is greater than 90°F (32°C). The applied shotcrete shall have a minimum temperature of 50°F (10°C) and a maximum temperature of 90°F (32°C). The shotcrete shall not be applied during periods of rain unless protective covers or enclosures are installed. The shotcrete shall not be applied when frost is present on the surface of the repair area, or the surface temperature of the repair area is less than 40°F (4°C). If necessary, lighting shall be provided to provide a clear view of the shooting area.

The shotcrete shall be applied according to ACI 506R, and shall be done in a manner that does not result in cold joints, laminations, sandy areas, voids, sags, or separations. In addition, the shotcrete shall be applied in a manner that results in maximum densification of the shotcrete. Shotcrete which is identified as being unacceptable while still plastic shall be removed and re-applied.

The nozzle shall normally be at a distance of 2 to 5 ft. (0.6 to 1.5 m) from the receiving surface, and shall be oriented at right angles to the receiving surface. Exceptions to this requirement will be permitted to fill corners, encase large diameter reinforcing bars, or as approved by the Engineer. For any exception, the nozzle shall never be oriented more than 45 degrees from the surface. Care shall be taken to keep the front face of the reinforcement bar clean during shooting operations. Shotcrete shall be built up from behind the reinforcement bar. Accumulations of rebound and overspray shall be continuously removed prior to application of new shotcrete. Rebound material shall not be incorporated in the work.

Whenever possible, shotcrete shall be applied to the full thickness in a single layer. The maximum thickness shall be according to Rules 4 and 5 under Construction Requirements, General. When two or more layers are required, the minimum number shall be used and shall be done in a manner without sagging or separation. A flash coat (i.e. a thin layer of up to 1/4 in. (6 mm) applied shotcrete) may be used as the final lift for overhead applications.

Prior to application of a succeeding layer of shotcrete, the initial layer of shotcrete shall be prepared according to the surface preparation and reinforcement bar cleaning requirements. Upon completion of the surface preparation and reinforcement bar treatment, water shall be applied according to the surface preparation requirements unless the surface is moist. The second layer of shotcrete shall then be applied within 30 minutes.

Shotcrete shall be cut back to line and grade using trowels, cutting rods, screeds or other suitable devices. The shotcrete shall be allowed to stiffen sufficiently before cutting. Cutting shall not cause cracks or delaminations in the shotcrete. For depressions, cut material may be used for small areas. Rebound material shall not be incorporated in the work. For the final finish, a wood float shall be used to approximately match the existing concrete texture. A manufacturer approved finishing aid may be used. Water shall not be used as a finishing aid. All repaired members shall be restored as close as practicable to their original dimensions.

Contractor operations for curing shall be continuous with shotcrete placement and finishing operations. Curing shall be accomplished using wetted cotton mats, membrane curing, or a combination of both. Cotton mats shall be applied according to Article 1020.13(a)(5) except the exposed layer of shotcrete shall be covered within 10 minutes after finishing, and wet curing shall begin immediately. Curing compound shall be applied according to Article 1020.13(a)(4), except the curing compound shall be applied as soon as the shotcrete has hardened sufficiently to prevent marring the surface, and each of the two separate applications shall be applied in opposite directions to ensure coverage. The curing compound shall be according to Article 1020.13 shall apply to the membrane curing method.

When a shotcrete layer is to be covered by a succeeding shotcrete layer within 36 hours, the repair area shall be protected with intermittent hand fogging, or wet curing with either burlap or cotton mats shall begin within 10 minutes. Intermittent hand fogging may be used only for the first hour. Thereafter, wet curing with burlap or cotton mats shall be used until the succeeding shotcrete layer is applied. Intermittent hand fogging may be extended to the first hour and a half if the succeeding shotcrete layer is applied by the end of this time.

The curing period shall be for 7 days, except when there is a succeeding layer of shotcrete. In this instance, the initial shotcrete layer shall be cured until the surface preparation and reinforcement bar treatment is started.

If temperatures below $45^{\circ}F$ (7°C) are forecast during the curing period, protection methods shall be used. Protection Method I according to Article 1020.13(d)(1), or Protection Method II according to Article 1020.13(d)(2) shall be used during the curing period

<u>Inspection of Completed Work</u>. The Contractor shall provide ladders or other appropriate equipment for the Engineer to inspect the repaired areas. After curing but no sooner than 28 days after placement of concrete or shooting of shotcrete, the repair shall be examined for conformance with original dimensions, cracks, voids, and delaminations. Sounding for delaminations will be done with a hammer or by other methods determined by the Engineer.

The acceptable tolerance for conformance of a repaired area shall be within 1/4 in. (6 mm) of the original dimensions. A repaired area not in dimensional conformance or with delaminations shall be removed and replaced.

A repaired area with cracks or voids shall be considered as nonconforming. Exceeding one or more of the following crack and void criteria shall be cause for removal and replacement of a repaired area.

- 1. The presence of a single surface crack greater than 0.01 in. (0.25 mm) in width and greater than 12 in. (300 mm) in length.
- 2. The presence of two or more surface cracks greater than 0.01 in. (0.25 mm) in width that total greater than 24 in. (600 mm) in length.
- 3. The presence of map cracking in one or more regions totaling 15 percent or more of the gross surface area of the repair.
- 4. The presence of two or more surface voids with least dimension 3/4 in. (19 mm) each.

A repaired area with cracks or voids that do not exceed any of the above criteria may remain in place, as determined by the Engineer.

If a nonconforming repair is allowed to remain in place, cracks greater than 0.007 in. (0.2 mm) in width shall be repaired with epoxy according to Section 590. For cracks less than or equal to 0.007 in. (0.2 mm) in width, the epoxy may be applied to the surface of the crack. Voids shall be repaired according to Article 503.15.

<u>Publications and Personnel Requirements</u>. The Contractor shall provide a current copy of ACI 506R to the Engineer a minimum of one week prior to start of construction.

The shotcrete personnel who perform the work shall have current American Concrete Institute (ACI) nozzlemen certification for vertical wet and overhead wet applications, except one individual may be in training. This individual shall be adequately supervised by a certified ACI nozzlemen as determined by the Engineer. A copy of the nozzlemen certificate(s) shall be given to the Engineer.

<u>Method of Measurement</u>. This work will not be measured for payment.

Basis of Payment. This work will be paid for according to Article 109.04.

When not specified to be paid for elsewhere, the work to design, install, and remove the temporary shoring and cribbing will be paid for according to Article 109.04.

With the exception of reinforcement damaged by the Contractor during removal, the furnishing and installation of supplemental reinforcement bars, mechanical bar splicers, hook bolts, and protective coat will be paid according to Article 109.04.