

Structure Geotechnical Report

Replacement of Dual Structures Carrying I-155 over Indian Creek Tazewell County, IL

August 11, 2022 Terracon Project No. MR215028

Prepared for:

IDOT Region 3 – District 4 Peoria, Illinois

Prepared by:

Terracon Consultants, Inc. Glendale Heights, Illinois

Joe Olson, PE IDOT D4 Geotechnical Engineer Peoria, Illinois

Environmental

Facilities

📒 🛛 🖌 🗧

Geotechnical

Materials

REPORT TOPICS

.

REPORT COVER PAGE	. 1
REPORT COVER LETTER TO SIGN	.1
REPORT TOPICS	1
INTRODUCTION	.1
PROJECT DESCRIPTION AND SCOPE	. 1
FIELD EXPLORATION	3
GEOTECHNICAL EVALUATIONS AND RECOMMENDATIONS	6
FOUNDATION RECOMMENDATIONS	8
CONSTRUCTION CONSIDERATIONS 1	13
APPENDIX	14

Note: This report was originally delivered in a web-based format. **Orange Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the *GeoReport* logo will bring you back to this page. For more interactive features, please view your project online at <u>client.terracon.com</u>.

Structure Geotechnical Report

Replacement of Dual Structures Carrying I-155 over Indian Creek Tazewell County, IL Terracon Project No. MR215028 August 11, 2022

PROJECT DESCRIPTION AND SCOPE

The geotechnical study summarized in this report was performed for the proposed replacement of dual structures that carry I-155 over Indian Creek in Tazewell County, Illinois. The site is located 1.8 miles west of Hopedale and is located in Section 29, Township 23 North, Range 3 West of the Third Principal Meridian. Each of the structures are identified on the map below, along with proposed IDOT Structure Numbers (SN).

EXISTING STRUCTURES

The original bridges were constructed in 1971 as FA Route 73, Section 108-B-2, each being a 3span, 42" Precast Prestressed Concrete (PPC) structure with a reinforced, cast-in-place concrete deck with open stub abutments on concrete piles and reinforced concrete piers on spread footings. Concrete slope walls extend down from each abutment to the edge of the Indian Creek channel. Both structures have a back-to-back abutment length of 177'-10" and an out-to-out deck width of 42'-0". The structures are built perpendicular to the channel of Indian Creek, with each structure offset 44'-0" from the centerline of I-155.

PROPOSED STRUCTURES

Complete structure replacements were recommended in the October 19, 2020 Bridge Condition Report (BCR) prepared by IDOT District 4. The proposed scope of work was approved by IDOT Bridges and Structures on November 16, 2020.

The Type, Size, and Location (TSL) plan prepared by Veenstra & Kimm, Inc. and approved on June 9, 2022 is included in the Appendix. Based on the TSL, each new bridge will be a 3-span structure with an 8" deck supported by 33" deep, rolled W-shape steel beams. Both structures will have back-to-back abutment length of 186'-10" and an out-to-out deck width of 42'-10". The proposed structures will be built perpendicular to the channel of Indian Creek, with each structure offset 44'-0" from the centerline of I-155. According to the BCR, the substructure for each bridge should consist of pile supported abutments and piers. The following table lists the LRFD factored loads at each foundation unit as calculated by Veenstra & Kimm.

Location	Foundation	Factored Load (kips)	
Southbound	Abutments	1,020	
I-155			
SN 090-0184	Piers	2,080	
Northbound	Abutments	1,020	
SN 090-0185	Piers	2,080	

Structure replacement is expected to include removal of the existing abutments, concrete slope walls, and piers. Existing abutment piles will be removed at least 12" below the excavation line for the proposed construction. Bridge replacement will be accomplished with cross-over lanes to avoid stage construction of either structure.

Structure Geotechnical Report Replacement of Dual Structures Carrying I-155 over Indian Creek Tazewell County, GeoReport

FIELD EXPLORATION

Subsurface Exploration and Testing

I-155 runs north and south and crosses over Indian Creek, which flows from east to west, about 0.5 miles south of the interchange of I-155 and IL 122 East. The site is mostly surrounded by wooded and grassy areas. Beyond the wooded area southwest of the bridge is part of the Indian Creek Landfill, approximately 650 feet from the west structure. Beyond the wooded area northeast of the bridge is a farm field. Drainage is primarily from the north and south towards Indian Creek, which flows from east to west. Based on the USDA Web Soil Survey, the areas adjacent to Indian Creek (flood plain) consist of nearly level, somewhat poorly to well drained soils. These soils are frequently flooded for brief periods from October through June.

To conduct the subsurface investigation for the proposed structures, Terracon directed drilling of four standard penetration test (SPT) borings. Terracon subconsultants included Geo Services, Inc. (GSI), Kaskaskia Engineering Group (KEG), and Rubino Engineering, Inc (Rubino). GSI drilled SB-1, SB-2, and SB-3 on March 9 and 10, 2021. KEG logged the borings and collected samples for laboratory testing. On April 28, 2021, Rubino drilled, logged, and sampled SB-4. On April 8, 2022, Rubino drilled, logged, and sampled SB-4a, which was drilled within ten feet of SB-4. SB-1 and SB-2 were drilled for the north and south abutments, respectively, each to a depth of 80 feet below existing grade. SB-3, SB-4, and SB-4a were drilled for the piers, respectively to depths of 50, 70, and 100 feet below grade. SB-4a was drilled to essentially extend the depth of SB-4 and confirm that bedrock was not present within the first 100 feet below the estimated bottom of pier encasement. The boring locations are shown below.

Structure Geotechnical Report

llerracon Replacement of Dual Structures Carrying I-155 over Indian Creek
Tazewell County, I **GeoReport** August 11, 2022
Terracon Project No. MR215028

SB-1, SB-2, and SB-3 were drilled with a truck-mounted rig. A smaller, track-mounted ATV rig was used to drill SB-4 and SB-4a. SB-1 and SB-2 were drilled with solid stemmed augers to about 10 feet below grade followed by mud-rotary techniques to the boring termination depths. SB-3 and SB-4 were advanced using hollow stem augers. SPT blow counts were measured with an automatic hammer on 2.5-ft intervals to 30 feet and then at 5-ft intervals to the boring termination depths. Corresponding split spoon samples were collected with each SPT. Mudrotary techniques were employed on SB-4a to blind drill to 63.5 feet followed by SPT and sampling on 5-ft intervals to the boring termination depth. KEG and Rubino field staff logged the soil samples and performed unconfined compressive strength (Q_u) tests on cohesive soil samples using a RIMAC spring tester. Representative samples were also collected and stored in glass jars to be returned to Terracon's soils lab for moisture content testing.

Subsurface Conditions

In addition to the following descriptions, subsurface conditions are presented on the Soil Boring Logs and Subsurface Data Profile included in the Appendix. Abutment borings SB-1 and SB-2 were drilled through the I-155 embankments on either side of Indian Creek. Embankment fill materials comprised primarily of stiff to very stiff clay loam with varying amounts of silt were encountered to about El. 565. These materials were observed with SPT N-values ranging from 6 to 24 blows per foot (bpf) with an average of 13 bpf, Qu values ranging from 0.7 to 4.5 tons per square foot (tsf) with an average of 2.4 tsf, and moisture contents ranging from about 11 to 60 percent with an average of 17 percent. Pier borings SB-3, SB-4, and SB-4a were drilled through Replacement of Dual Structures Carrying I-155 over Indian Creek
Tazewell County,
GeoReport.

The native soil encountered beneath the fill materials is primarily comprised of stiff to very stiff clay to clay loam to about El. 551. On the north side of the creek, a medium dense sand layer was encountered within this interval from El. 561 to El. 557. In all, these materials were observed with SPT N-values ranging from 1 to 34 bpf with an average of 13 bpf, Qu values ranging from 0.2 to 5.0 tsf with an average of 2.4 tsf, and moisture contents ranging from 11 to 31 percent with an average of 17 percent. The low end of the N and Qu ranges correlate with higher moisture contents, indicating a static water table level around El. 560.

Below this, very stiff to hard silty clay to clay was encountered to about El. 543. The bottom 4 feet of this interval at SB-3 is comprised of very dense silt loam. These materials were observed with SPT N-values ranging from 29 to 100+ bpf with an average of 63 bpf, Qu values ranging from 4.1 to 9.0 tsf with an average of 6.9 tsf, and moisture contents ranging from 7 to 12 percent with an average of 10 percent. Below this to about El. 533, the subsurface varies from dense to very dense sand on the north side of the creek to very stiff to hard silty clay loam on the south side of the creek. These materials were observed with SPT N-values ranging from 24 to 85 bpf with an average of 54 bpf, Qu values ranging from 3.0 to 4.9 tsf with an average of 4.2 tsf, and moisture contents ranging from 9 to 21 percent with an average of 14 percent. Below this, very dense silt loam was encountered to about El. 525. The silt loam was not encountered in SB-3. These materials were observed with SPT N-values ranging from 67 to 100+ bpf with an average of 84 bpf and moisture contents ranging from 13 to 23 percent with an average of 17 percent. Below this, medium dense to very dense sand with varying amounts of silt and gravel was noted to the boring termination depths (El. 518 to 469). These soils were observed with SPT N-values ranging from 12 to 100+ bpf with an average of 42 bpf and moisture contents ranging from about 7 to 25 percent with an average of 18 percent.

Boring Number	Foundation Element	Ground Surface Elevation (ft)	End of Boring Elevation (ft)	Groundwater Elevation (ft) ¹
SB-1	North Abutment	600.19	520.19	Not encountered
SB-2	South Abutment	598.78	518.76	Not encountered
SB-3	Pier 2	568.16	518.16	Not encountered
SB-4	Pier 1	568.73	498.73	562.23
SB-4a	Pier 1	568.73	468.73	Not applicable due to mud-rotary drilling
1. At t	he time of drilling.			•

The following table lists the boring elevations for existing ground surface, end of boring, and groundwater as observed at the time of drilling.

<u> Ilerracon</u>

GEOTECHNICAL EVALUATIONS AND RECOMMENDATIONS

Settlement

Minimal grade changes are proposed for the new structures and no grading changes are planned for the endslopes. Therefore, settlement is expected to be insignificant. No additional analysis or field treatment is warranted or recommended at this time.

Slope Stability

The embankment endslopes will remain at 2H:1V with a maximum vertical height of about 35 feet above streambed elevation. The existing concrete slope walls will be replaced with stone riprap. Slope stability under static and seismic loading was checked using Slide version 5.0, a 2D slope stability analysis program using limit equilibrium method.

Seismic loading was modeled by applying a horizontal acceleration coefficient 0.069g. This value was calculated using the USGS Seismic Design Maps Web Services and the 2009 AASHTO Guide Specifications. A circular failure was analyzed for short term (undrained) and long term (drained) conditions. The analyses were performed assuming a maximum vertical slope height of 35 feet and using the weakest soil conditions as represented by boring SB-2. Factors of safety (FOS) against slope failure exceeded 1.5 for static loading and 1.0 for seismic loading. No additional analysis or field treatment is necessary. The Appendix includes outputs from the Slide program showing the analyzed sections, input parameters, and resulting factors of safety.

Scour

An IDOT memorandum dated January 3, 2022 approved the hydraulic report and proposed unadjusted scour depths of 17', 19', and 20' for the 50-, 100-, and 200-year flood events, respectively. These scour depths are not applicable to the proposed abutments since the new slopewalls will be armored with Class A5 riprap. The A5 riprap will be placed in the channel of Indian Creek and extended up to the abutments. Therefore, the design scour elevations for the abutments listed in the table below are set at the bottom of each abutment.

In accordance with Section 2.3.6.3.2 of the Bridge Manual, the scour depths at the piers have been reduced by 50% based on very stiff to hard cohesive soil layers below the average streambed El. 558.6. The design scour elevations for the piers were calculated using the adjusted scour depths, i.e., 9.5' for the 100-year event and 10' for the 200-year event. The following tables summarize the design scour elevations for each structure.

Structure Geotechnical Report

<u>llerracon</u> Replacement of Dual Structures Carrying I-155 over Indian Creek
Tazewell County, I GeoReport. August 11, 2022
Terracon Project No. MR215028

SN 090-0184 (Southbound Structure)

SN 090-0185 (Northbound Structure)

Evont/Limit	Design Scour Elevations (ft)					
State	North Abutment	Pier 1	Pier 2	South Abutment	Item 113	
Q100	593.16	549.5	549.5	592.23		
Q200	593.16	549.0	549.0	592.23	5	
Design	593.16	549.5	549.5	592.23		
Check	593.16	549.0	549.0	592.23		

Seismic Considerations

Soil Site Class D controls for this site, as calculated using the IDOT Seismic Site Class Determination spreadsheet. Because Site Class D controls, Figure 2.3.10-3 from the IDOT Bridge Manual was used to determine the Seismic Performance Zone (SPZ). SPZ 1 is recommended for the site. Horizontal response spectral acceleration coefficients (SD1 and SDS) were calculated using the 2007 AASHTO Guide Specifications. The following table summarizes the recommended seismic design parameters.

Parameter	Value
Seismic Performance Zone	SPZ 1
Design Spectral Acceleration at 1.0 sec. (S_{D1})	0.122g
Design Spectral Acceleration at 0.2 sec. (S_{DS})	0.198g
Soil Site Class	D

These parameters are recommended so that the new bridges are designed for a seismic event with 7% probability of exceedance in 75 years, which is approximately a 1000-year return period. Because the site located in SPZ 1, liquefaction analysis was not performed.

FOUNDATION RECOMMENDATIONS

The foundations supporting the proposed structures must provide sufficient support to resist dead and live loads, including seismic loading. The factored loads calculated by Veenstra & Kimm are 1,020 kips at each abutment and 2,080 kips at each pier. Shallow foundations were considered for the piers since the existing piers are supported on spread footings and very stiff cohesive soils were identified at shallow depths in the pier borings. However, it was determined that shallow foundations are not feasible due to concerns with scour.

Deep foundations such as driven H-piles and metal shell piles were considered for the abutments and piers, and both of those are viable options. H-piles are less desirable since rock was not encountered in the borings. H-pile lengths at the piers are estimated to be around 100 feet. Metal shell piles at the abutments and piers will be shorter than H-pile and may be more cost-effective. There is concern with driving metal shell piles due to an 8-foot thick layer of hard cohesive soil within 10 feet of the streambed El. 558.71. Metal shell piles for the abutments are not expected to encounter the hard layer, but the pier piles will need to penetrate it without overstressing before reaching Nominal Required Bearing. This concern can be addressed by specifying a shoe (conical tip) on the end of the metal shell piles and using a minimum wall thickness of 0.312". Risk of damaging a metal shell pile can be further reduced by precoring through the hard soil at the piers. Based on the borings, the soils above the hard layers should be relatively easy to drill and are cohesive enough to stand open while the pile is inserted and driven to bearing. Another way to mitigate the risk of pile damage is limit the nominal required bearing to 75% of the maximum to provided sufficient steel strength while reducing the driving stresses due to the lower specified bearing.

The Modified IDOT Static Method of Estimating Pile Length spreadsheet was used to estimate pile lengths at various axial geotechnical resistances for driven piles per AGMU 10.2. The recommended pile design tables generated by the IDOT spreadsheets are summarized below. Estimated lengths and factored resistance available are provided for H-piles and metal shell piles. Precoring is assumed for metal shell piles at Piers 1 and 2. Geotechnical losses due to scour were applied to the pier piles using the adjusted scour elevations for the 100-year flood event. No geotechnical losses were applied to the abutment piles. For Pier 2, the data from boring SB-3 was supplemented with the subsurface information from SB-4 and SB-4a.

Four test piles are recommended: one at the southwest abutment, one at the northeast abutment, one at the southeast pier, and one at the northwest pier.

llerracon Replacement of Dual Structures Carrying I-155 over Indian Creek
Tazewell County, I GeoReport. August 11, 2022
Terracon Project No. MR215028

Substructure Unit	Nominal Required Bearing (kip)	Factored Resistance Available (kip)	Estimated Pile Length (ft)	Pile Cutoff Elevation (ft)
North Abutment (SB-1)	389	214	50	595
Pier 1 (SB-4 & 4a)	397	171	95	595
Pier 2 (SB-3, SB-4 & 4a)	393	194	101	594
South Abutment (SB-2)	394	216	68	594

Estimated Pile Lengths for Steel HP 12 X 53

Estimated Pile Lengths for Steel HP 12 X 74

Substructure Unit	Nominal Required Bearing (kip)	Factored Resistance Available (kip)	Estimated Pile Length (ft)	Pile Cutoff Elevation (ft)
North Abutment (SB-1)	564	310	65	595
Pier 1 (SB-4 & 4a)	498*	226	121	595
Pier 2 (SB-3, SB-4 & 4a)	476*	239	121	594
South Abutment (SB-2)	479*	263	73	594

*Maximum Nominal Required Bearing of pile may not be reached within the boring depth.

Estimated Pile Lengths for Steel HP 14 X 73

Substructure Unit	Nominal Required Bearing (kip)	Factored Resistance Available (kip)	Estimated Pile Length (ft)	Pile Cutoff Elevation (ft)
North Abutment (SB-1)	522	287	60	595
Pier 1 (SB-4 & 4a)	508	223	101	595
Pier 2 (SB-3, SB-4 & 4a)	482	239	101	594
South Abutment (SB-2)	556	306	71	594

<u>llerracon</u> Replacement of Dual Structures Carrying I-155 over Indian Creek
Tazewell County, I GeoReport. August 11, 2022
Terracon Project No. MR215028

Estimated Pile Lengths for Steel HP 14 X 102

*Maximum Nominal Required Bearing of pile may not be achieved within the boring depth.

Estimated Pile Lengths for Steel HP 14 X 117

Substructure Unit	Nominal Required Bearing (kip)	Factored Resistance Available (kip)	Estimated Pile Length (ft)	Pile Cutoff Elevation (ft)
North Abutment (SB-1)	785	432	72	595
Pier 1 (SB-4 & 4a)	613*	279	121	595
Pier 2 (SB-3, SB-4 & 4a)	587*	296	121	594
South Abutment (SB-2)	608	334	73	594

*Maximum Nominal Required Bearing of pile may not be achieved within the boring depth.

Estimated Pile Lengths for Metal Shell 12" \$\Phi w/.25" walls

Substructure Unit	Nominal Required Bearing (kip)	Factored Resistance Available (kip)	Estimated Pile Length (ft)	Pile Cutoff Elevation (ft)
North Abutment (SB-1)	292	161	40	595
Pier 1 Precore to El. 540 (SB-4 & 4a)	389	214	70	595
Pier 2 Precore to El. 540 (SB-3, SB-4 & 4a)	346	190	59	594
South Abutment (SB-2)	326	179	43	594

Structure Geotechnical Report

Replacement of Dual Structures Carrying I-155 over Indian Creek Tazewell County, Laure August 11, 2022 Terracon Project No. MR215028

Substructure Unit	Nominal Required Bearing (kip)	Factored Resistance Available (kip)	Estimated Pile Length (ft)	Pile Cutoff Elevation (ft)
North Abutment (SB-1)	345	189	40	595
Pier 1 Precore to El. 540 (SB-4 & 4a)	452	249	68	595
Pier 2 Precore to El. 540 (SB-3, SB-4 & 4a)	404	222	59	594
South Abutment (SB-2)	405	223	43	594

Estimated Pile Lengths for Metal Shell 14" \$\Phi w/.25" walls

Estimated Pile Lengths for Metal Shell 14" Φ w/.312" walls

Substructure Unit	Nominal Required Bearing (kip)	Factored Resistance Available (kip)	Estimated Pile Length (ft)	Pile Cutoff Elevation (ft)
North Abutment (SB-1)	526	289	45	595
Pier 1 Precore to El. 540 (SB-4 & 4a)	504	277	70	595
Pier 2 Precore to El. 540 (SB-3, SB-4 & 4a)	538	296	62	594
South Abutment (SB-2)	405	223	43	594

Estimated Pile Lengths for Metal Shell 16" Φ w/.312" walls

Substructure Unit	Nominal Required Bearing (kip)	Factored Resistance Available (kip)	Estimated Pile Length (ft)	Pile Cutoff Elevation (ft)
North Abutment (SB-1)	629	346	45	595
Pier 1 Precore to El. 540 (SB-4 & 4a)	575	316	68	595
Pier 2 Precore to El. 540 (SB-3, SB-4 & 4a)	521	287	59	594
South Abutment SB-2	491	270	43	594

<u>lleuscon</u> Replacement of Dual Structures Carrying I-155 over Indian Creek
Tazewell County, I **GeoReport** August 11, 2022
Terracon Project No. MR215028

Estimated Pile Lengths for Metal Shell 16" ϕ w/.375" walls

Lateral Analysis

Section 3.10.1.10 of the 2012 IDOT Bridge Manual requires detailed soil/structure interaction analysis if the factored lateral loading per pile exceeds 3 kips. The lateral response can be developed by modeling the soil/shaft interaction with the computer program LPILE. Discrete elements are used in LPILE to represent the shaft and non-linear soil using springs, commonly referred to as p-y curves. The table below provides soil modulus and soil strain parameters based on the encountered subsurface conditions that can be used for laterally loaded pile analysis using p-y curves.

Approximate Bottom Elevation (feet)	Soil Type	Cohesion (ksf)	Friction Angle (degres)	Unit Weight (pcf)	E50	Subgrade Modulus k (pci)
590	Clay	2.0		120	0.005	500
581	Clay	1.0		120	0.007	100
561	Clay	3.5		125	0.004	1,000
556	Sand		31	125		125
543	Clay	4.5		128	0.004	1,000
520	Sand		40	130		125

Structure Geotechnical Report Replacement of Dual Structures Carrying I-155 over Indian Creek Tazewell County, GeoR

CONSTRUCTION CONSIDERATIONS

Temporary soil retention will not be needed since stage construction is not planned for either of the bridge structures.

Cofferdams will not be needed since the proposed bottom of pier encasement El. 567.7 is 3.1 feet above the Estimated Water Surface El. 564.6.

APPENDIX

- Type, Size, and Location Plan
- Soil Boring Logs
- Subsurface Data Profile
- Slope Stability Analysis Results from SLIDE
- Selected Spreadsheets from IDOT Static Method of Estimating Pile Length

6/8/2022

3:02:03 PM

LOADING HL-93 Allow 50#/sq. ft. for future wearing surface.

DESIGN SPECIFICATIONS 2020 AASHTO LRFD Bridge Design Specifications, 9th Edition.

DESIGN STRESSES

FIELD UNITS

f'c = 3,500 psi(Substructure) $f'_{c} = 4,000 \text{ psi} (Superstructure Concrete)$ fy = 60,000 psi (Reinforcement) $f_y = 50,000 \text{ psi} (M270 \text{ Grade } 50)$ All new structural steel to be galvanized.

SEISMIC DATA

Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0 sec. (SD1) = 0.132 Design Spectral Acceleration at 0.2 sec. (SDS) = 0.155 Soil Site Class = D

HIGHWAY CLASSIFICATION

F.A.I. Route 155 – (I–155) Functional Class: Interstate ADT: 6100 (2019); 7450 (2039) ADTT: 1175 (2019); 1430 (2039) DHV: 610 Design Speed: 70 m.p.h. Posted Speed; 70 m.p.h. One-way traffic Directional Dist.: 100

500' V.C. +1.304% 749+48.00 -1.092% 48. Sta. 744+32.6 El. 601.65 VP.T. Sta. El. 602.01 V.P.C. Sta. El. 601.48 <u>I. St.</u> 598.7 S III PROFILE GRADE Along (Roadway (N.B. and S.B. Lanes) 3rd PM R 3 M <u>S.N. 090-0184 (S.B.) &</u> 090–0185 (N.B.) Locatior LOCATION SKETCH GENERAL PLAN & ELEVATION I-155 OVER INDIAN CREEK F.A.I. ROUTE 155 - SEC. (108-B-2)BR TAZEWELL COUNTY STA. 745+70.00 STRUCTURE NO. 090-0184 (S.B.) STRUCTURE NO. 090-0185 (N.B.) F.A.L TOTAL SHEE SHEETS NO. SECTION COUNTY 2 1 155 (108-B-2)BR TAZEWELL CONTRACT NO. 68E42

21									
N		USER NAME =	DESIGNED - K. Smith	REVISED -		DETAILS	F.A.I. PTE	SECTION	COUNTY TOTAL SHEET
Μ			CHECKED - M. Henderson	REVISED -	STATE OF ILLINOIS		155	(108-B-2)BR	TAZEWELL 2 2
ź	Veenstra & Kimm, Inc.	PLOT SCALE =	DRAWN - K. Fair	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 090 - 0184 (S.B.) & 090 - 0185 (N.B.)		. ,	CONTRACT NO. 68E42
FILE	IL Design Firm License No. 184.001939	PLOT DATE = 6-03-2022	CHECKED - V. Vootukuri	REVISED -		SHEET 02 OF 02 SHEETS		ILLINOIS FED. AI	D PROJECT
7	6/9/2022 3-16-27 PM								

6/8/2022 3:16:37 PM

WATERWAY INFORMATION

тı												
eq.	Q	Opening	Sq. Ft.	Nat.	Head	– Ft.	Headwater El.					
r.	C.F.S.	Exist.	Prop.	H.W.E.	Exist.	Prop.	Exist.	Prop.				
0	1800	400	400	568.5	1.4	1.4	569.9	569.9				
50	2980	481	481	569.8	1.4	1.4	571.2	571.2				
00	3510	513	513	570.4	1.4	1.4	571.8	571.8				
00	3800	530	530	570.6	1.4	1.4	572.0	572.0				
00	4830	587	587	571.5	1.6	1.6	573.1	573.1				

10 year velocity through existing bridge = 4.5 fps 10 year velocity through prop. bridge = 4.5 fps

SCOUR DESIGN TABLE - S.N. 090-0184 (S.B.)

mit	Des	ign Scour i	Elevations	(ft.)	
	N. Abut.	Pier 1	Pier 2	S. Abut.	Item 113
	593.16	548.9	548.9	592.23	
	593.16	548.4	548.4	592.23	F
	593.16	548.9	548.9	592.23	5
	593.16	548.4	548.4	592.23	

SCOUR DESIGN TABLE - S.N. 090-0185 (N.B.)

mit	Des	ign Scour i	Elevations	(ft.)	
	N. Abut.	Pier 1	Item 113		
	593.16	549.5	549.5	592.23	
	593.16	549.0	549.0	592.23	5
	593.16	549.5	549.5	592.23	J
	593.16	549.0	549.0	592.23	

<u>DETAILS</u>
I-155 OVER INDIAN CREEK
F.A.I. ROUTE 155 - SEC. (108-B-2)BR
TAZEWELL COUNTY
STA. 745+70.00
STRUCTURE NO. 090-0184 (S.B.)
<u>STRUCTURE NO. 090-0185 (N.B.)</u>

Illinois Department of Transportation

Division of Highways TERRACON Page <u>1</u> of <u>2</u>

Date 3/9/21

	ROUTE	FAI 155 (l-155)	DES	CRII	PTION		Stru	icture boring for north abutments	L(OGGE	ED BY	KEG	(CG)	
	SECTION	(108-B-2) BR					I-155 over Indian Creek, SEC. 29, TWP. 23N, RNG. 3W, 3 rd PM ,							
	COUNTY	Tazewell DF	RILLING I	ИЕТ	HOD		SFA to	10', then mud rotary HAMMER	TYPE	TYPE Automa				
	STRUCT. NO. Station	090-0093 (SB) 090-0094 (NB) 745+70		D E P	B L O	U C S	M 0 1 9	Surface Water Elev. None Stream Bed Elev.	_ ft _ ft	D E P T	B L O	U C S	M O − 0	
	Station	<u>5B-1</u> 744+59	_	н	S	Qu	T	Groundwater Elev.: First Encounter Not encountered	_ ft	н Н	S	Qu	Т	
	Ground Surfa	ace Elev	ft	(ft)	(/6'')	(tsf)	(%)	After Hrs.	_ n _ ft	(ft)	(/6'')	(tsf)	(%)	
	SILTY CLAY L	OAM, trace gravel,		_				CLAY LOAM, trace gravel, brown,						
	brown, very sti	ff (FILL)	-		Л			very stiff to hard (<i>continued</i>)			6			
					5	2.0	12				8	4.5	17	
			_		4	В					10	В		
			_											
				_	4						4			
			_		6	2.3	17				6	3.5	23	
			_	-5	4	В				-25	9	В		
			504 10											
	CLAYLOAM	trace gravel brown	594.19		5						5			
	very stiff	lace gratel, sterrit,			7	2.1	11				8	4.1	12	
			_		7	S				_	11	В		
			_											
					3						5			
			-		5	3.9	12				7	3.1	16	
				-10	4	В				-30	9	В		
7/21		trace gravel brown	589.69	_										
T 6/7	and gray, stiff	uace gravel, brown	_		2									
DT.GD			_		5	1.8	12							
					4	S								
GPJ			-											
DPY.(3						6			
2 - C			_		3	1.3	12				9	3.9	16	
# OM			-	-15	4	В				-35	13	В		
DOT			584 19											
028	SILTY CLAY, I	brown, very stiff			3									
1R215			_		4	2.0	21							
01_N			E00 40	_	Ø	В								
ED.		trace gravel brown	502.19											
RING	very stiff to har	d			4				561.19	9	5			
IL BO			_	_	6	4.3	17	SAND, fine grained, gray, medium			7		21	
SO				-20	Э	ΙВ		uense		-40	0			

Illinois Department

of Transportation

Division of Highways TERRACON Page <u>2</u> of <u>2</u>

Date 3/9/21

End of Boring

Illinois Department of Transportation

Division of Highways TERRACON Page <u>1</u> of <u>2</u>

Date 3/9/21

SECTION (108-B-2) BR LOCATION 1-155 over holdan Creats, SEC. 29, TWP 203, NS2 S41W COUNTY Tazewell DRILLING METHOD SEA to 10, flem mundation data (2000) Advertage 89'2724.92541W STRUCT. NO. 000-0003 (RB) 0090-0034 (NB) Station D B U M Surface Water Elev. None ft P L C 0.00-003 (ND 000, 000, 000) Station 745+70 P W S Cu O S T W S BORINO NO. SB-2 T W S Qu M Surface Water Elev. None ft H S Qu M SILTY CLAY, trace gravel and sand, brown, stiff - <th>ROUTE</th> <th>FAI 155 (l-155)</th> <th> DES</th> <th>SCRI</th> <th>PTION</th> <th></th> <th>Stru</th> <th>ucture boring for south abutments</th> <th> L</th> <th>oggi</th> <th>ED BY</th> <th>KEG</th> <th>6 (CG)</th>	ROUTE	FAI 155 (l-155)	DES	SCRI	PTION		Stru	ucture boring for south abutments	L	oggi	ED BY	KEG	6 (CG)
COUNTY Tazewell DRILLING METHOD SFA to 10, them and rols y HAMMER TYPE Automatic STRUCT. NO. 090-0003 (SB) B U C 0 P L Station Tazewell None ft P L Station Tazewell None ft F L Station Tazewell None ft F L CoundWater Elew: None ft F L CoundWater Elew: To CoundWater Elew: To CoundWater Elew: F L CoundWater Elew: F CoundWate	SECTION _	(108-B-2) BR		_ เ	OCAT		I-155 (over Indian Creek, SEC. 29, TWP. 231	N, RNG .	3W,	3 rd PM	l,	
STRUCT. NO. 000-003 (SB) 0090-0094 (NB) Station D B U C None Stram Bod Elev. None ft t D B U C None Stram Bod Elev. None ft t D B U C None Stram Bod Elev. None ft t D B U C None Stram Bod Elev. None ft t D B U C None Stram Bod Elev. T W S I Groundwater Elev. 598.76 ft (ft) (ff)		Tazewell DF	RILLING	MET	THOD		SFA to	10', then mud rotary HAMMER	27 24.8 TYPE		Auto	matic	
BORNO NO. SB-2: 19.0 ft RT Ground Surface Elev. T 19.0 ft RT 19.0 ft RT Ground Surface Elev. T 19.0 ft RT (ft) T (ft) W (ft) S (ft) Groundwater Elev.: ft T ft W K Cu T W M Cu T T M W S Cu T T M W S Cu T T M W M Cu T T M M Sultry CLAY, trace gravel, stiff T T M Sultry CLAY, trace gravel, stiff T T T T M Sultry CLAY, trace gravel, stiff T T T T M Sultry CLAY, trace gravel, stiff T T	STRUCT. NC Station	090-0093 (SB) 090-0094 (NB) 745+70		D E P	B L O	U C S	M O I	Surface Water Elev. None Stream Bed Elev.	_ ft _ ft	D E P	B L O	U C S	M O I
Ground Surface Elev. 598.76 ft (tt) (vs) (vs)<	BORING NO. Station Offset	SB-2 746+80 19.0 ft RT		T H	W S	Qu	S T	Groundwater Elev.: First Encounter Not encountered Upon Completion	_ ft _ ft	H	W S	Qu	S T
SILTY CLAY, trace gravel and sand, brown, stiff - <	Ground Su	face Elev. 598.76	ft	(π)	(/0)	(tst)	(%)	After Hrs	_ ft	(π)	(/0)	(tst)	(%)
2 - - 3 - - 3 - 3 1.1 13 6 B - - 4 1.8 15 595.26 6 - 6 - <t< td=""><td>SILTY CLAY sand, brown,</td><td>, trace gravel and , stiff</td><td></td><td></td><td></td><td></td><td></td><td>SILTY CLAY, trace gravel, stiff (<i>continued</i>)</td><td></td><td></td><td></td><td></td><td></td></t<>	SILTY CLAY sand, brown,	, trace gravel and , stiff						SILTY CLAY, trace gravel, stiff (<i>continued</i>)					
3 1.1 13 1.1 13 6 B - - 6 B 595.26 - <t< td=""><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td></t<>					2						3		
Site of the second se					3	1.1 B	13				4	1.8 B	15
SULTY CLAY, trace gravel, stiff 6 2.2 13 -													
CLAY LOAM, brown, stiff 6 - - - 5 - -			595.26							_	_		
-5 7 B -7 B 10 10 10	CLAY LOAM	l, brown, stiff			6	22	13				5	20	60
1 5 1.5 15 15 16 10 14 1 - - - - 9 14 - 1 -				-5	7	B				-25	9	2.0	
2 - - 572.76 5 - - - - - 9 - 14 - - - - - - 9 - 14 - - - - - - 10 - - 10 - - 10 - - 10 - - 10 - - - 10 - - - 10 - - - - - - 10 -													
1 5 1.5 15 15 16 9 14 - - 4 8 - - 9 3.2 19 - - - 4 8 -					2				572.7	6	5		
Image: Second problem					5	1.5	15	medium dense			9		14
SILTY CLAY, trace gravel, stiff 4 587.76 9 3.2 19 -10 4 B - - - - 9 3.2 19 587.76 - - - - - - - - - - - 9 3.2 19 587.76 -					4	S					10		
1 - 1 -					-				570.7	6			
No 2 0.7 15 -10 4 B - - 9 3.2 19 587.76 -					1			CLAY LOAM, trace gravel, brown, stiff to verv stiff			8		
-10 4 B 587.76 4 3 5 -4 1.7 -3 5 -2 -3 -3 1.2 -3 1.2 -5 -5 -6 -5 -7 -6 -4 -7 -15 6 -4 -7 -4 -7 -7 -7 -7 -7 -7 -7 -7 -7					2	0.7	15				9	3.2	19
587.76 4 - <td></td> <td></td> <td></td> <td>-10</td> <td>4</td> <td>В</td> <td></td> <td></td> <td></td> <td>-30</td> <td>10</td> <td>S</td> <td></td>				-10	4	В				-30	10	S	
SILTY CLAY, trace gravel, stiff 4 4 1.7 12 3 S - - - - - 2 - - - - - - - - 3 1.2 13 -	/21		597 76		-								
1 1 <td></td> <td>. trace gravel. stiff</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		. trace gravel. stiff			4								
00 3 S -	01.GD	, G			4	1.7	12						
					3	S		-					
- 2 - - 5 - - 3 1.2 13 - - - - - 8 1.2 19 - - 6 B - - - - - - - - - - 8 8 8 - <td< td=""><td>- L9</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	- L9				-								
0-7 3 1.2 13 -15 6 B - - - 8 1.2 19 -15 6 B -	OPY.(2						5		
-15 0 B -coal pieces in sample -35 6 B -4 - - - - - - - -3 1.8 15 - - - - - -3 1.8 15 - - - - - -3 1.8 15 - - - - - -3 - - - - - - - -3 - - - - - - - -3 - - - - - - - -3 - - - - - - - -3 - - - - - - - -3 - - - - - - - -3 - - - - - - - -3 - - - - - - - -3 - - - - - - - -3 - - - - - - -	- 0 2				3	1.2	13			_	8	1.2	19
4 - <td># ON</td> <td></td> <td></td> <td>-15</td> <td>0</td> <td>В</td> <td></td> <td>-coal pieces in sample</td> <td></td> <td>-35</td> <td>8</td> <td>В</td> <td></td>	# ON			-15	0	В		-coal pieces in sample		-35	8	В	
4 - <td>IDOT</td> <td></td>	IDOT												
3 1.8 15 5 P 3 5 3 SANDY CLAY, gray, soft 4 1.7 20 7 8	5028				4								
Jog Jog P	MR21				3	1.8	15						
3 560.26 4 1.7 20 7 8 40	01_0				5	Р		-					
3 SANDY CLAY, gray, soft WOH 4 1.7 12 -20 7 B	G IL				j				560.2	6			
$ \begin{vmatrix} 4 & 1.7 & 12 \\ \hline 6 & -20 & 7 & B \end{vmatrix} $	ORIN				3	4 7	10	SANDY CLAY, gray, soft			WOH		04
	OILB			-20	4	I./ B	12			_40	1	0.3 P	21

3/9/21

Date

Page 2 of 2

Structure boring for south abutments LOGGED BY KEG (CG) FAI 155 (I-155) DESCRIPTION ROUTE LOCATION 1-155 over Indian Creek, SEC. 29, TWP. 23N, RNG. 3W, 3rd PM, SECTION (108-B-2) BR Latitude 40°25'12.89960N, Longitude 89°27'24.92541W SFA to 10', then mud rotary **HAMMER TYPE** COUNTY _ Tazewell DRILLING METHOD Automatic 090-0093 (SB) STRUCT. NO. 090-0094 (NB) D В U Μ D В U Μ Surface Water Elev. None ft Ε L С 0 Е L С Ο 745+70 Stream Bed Elev. Station ft Ρ S S Ο L Ρ 0 L т W S т W S SB-2 BORING NO. Groundwater Elev.: н S т т Qu н S Qu First Encounter Not encountered ft Upon Completion ft (ft) (%) (ft) (/6") (%) (/6") (tsf) (tsf) Ground Surface Elev. 598.76 ft After _ Hrs. ft SANDY CLAY, gray, soft CLAY, trace gravel, gray, very stiff (continued) to hard (continued) 555.26 6 17 CLAY, trace gravel, gray, very stiff 5 17 to hard 3.0 13 4.9 11 12 В 50 S -45 -65 530.26 10 29 SILT, gray, very dense 12 7.6 11 50 23 22 S -50 -70 BORING ILDOT_MR215028 IDOT WO #2 - COPY.GPJ IL_DOT.GDT 6/7/21 525.26 20 36 SILTY SAND, with gravel, dense to 50 4.5 9 very dense 20 16 20 Ρ -55 -75 39 24 45 4.1 10 29 19 SOIL 40 S 31 -60 518.76 -80

Illinois Department

of Transportation

Division of Highways TERRACON

End of Boring

Illinois Department of Transportation Division of Highways TERRACON

Page <u>1</u> of <u>2</u>

Date 3/10/21

	ROUTE	FAI 155 (I-155)	DES	CRI	PTION			Structure boring for west piers	L(oggi	ED BY	KEG	6 (CG)
	SECTION	(108-B-2) BR		_ L	.OCAT	10N _	I-155 d	over Indian Creek, SEC. 29, TWP. 231	N, RNG.	3W,	3 rd PM	l,	
	COUNTY	Tazewell DR	RILLING	MET	HOD		Latitu Ho	de 40°25'13.61102N, Longitude 89' llow Stem Auger HAMMER	°27'26.1 TYPE	4916	SW Auto	omatic	
	STRUCT. NO. Station	090-0093 (SB) 090-0094 (NB) 745+70 SB-3		D E P T	B L O W	U C S	M O I S	Surface Water Elev. None Stream Bed Elev. Groundwater Elev.:	_ ft _ ft	D E P T	B L O W	U C S	M O I S
	Station	746+00 112.0 ft RT		н	S	Qu	1	First Encounter Not encountered	_ ft ff	н	S	Qu	
	Ground Surfa	ace Elev. 568.16	ft	(ft)	(/6'')	(tsf)	(%)	After Hrs.	ft	(ft)	(/6'')	(tsf)	(%)
-	CONCRETE F SILTY CLAY, t	PAD [5 inches] prown, stiff (FILL)	567.74					CLAY, trace gravel, gray, very stiff to hard <i>(continued)</i>					
					2	12	12				10	80	10
			-		3	P	13				28	в В	10
			-		1				544.66	<u> </u>	5		
ł	SILTY SAND.	dark grav. fine	504.10	_	6		15	dense			6		7
	grained, mediu	ım dense [FILL]	-	-5	5			SILT LOAM, trace gravel, gray, dense	543.16	6 -25	12		
			562.16						J				
	SILTY CLAY L	OAM, dark gray, soft			1	0.6	22			_	12		11
	נרובבן		-		1	0.6 B	22				40		11
			-						539.66	<u> </u>			
			-		1 WOH	0.2	31	SILTY CLAY LOAM, trace gravel, trace sand, gray, very stiff to hard			23 17	3.0	11
			-	-10	1	В				-30	18		
3/7/21			557.16										
3DT (CLAY, trace gr	avel, gray, very stiff			2	3.5	12						
DOT.	to hard		-		8	B	12						
			_										
PY.GF					15						19		
- CO			-		18	5.0	12	-			35	4.7	9
VO #2			-	-15	16	В				-35	50	s	
DOTV													
5028			-		8								
MR21			-		15	3.5	11						
201					10	В							
IG ILI			-	_					529.66	5			
30RIN			-		9 15	30	11	SAND with gravel, gray, dense			19		7
SOILE				-20	22	B				-40	34		'

Illinois Department of Transportation Division of Highways TERRACON

Page <u>2</u> of <u>2</u>

Date 3/10/21

	ROUTE	FAI 155 (I-155) DES		CRI	PTION		Structure boring for west piers LOGGED BY KEG (CG)	
	SECTION	(108-B-2) BR		_ L	OCAT	'ION _	l-155 d	over Indian Creek, SEC. 29, TWP. 23N, RNG. 3W, 3 rd PM , de 40°25'13.61102N Longitude 89°27'26.14916W
	COUNTY	Tazewell DF	RILLING	МЕТ	HOD		Но	llow Stem Auger HAMMER TYPE Automatic
	STRUCT. NO. Station BORING NO. Station Offset	090-0093 (SB) 090-0094 (NB) 745+70 SB-3 746+00 112.0 ft RT		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. None ft Stream Bed Elev. ft Groundwater Elev.: ft First Encounter Not encountered ft Upon Completion ft
	Ground Surfa	ace Elev. 568.16	ft	(ft)	(/6")	(tsf)	(%)	After Hrs ft
	SAND with gra (continued)	avel, gray, dense	524.66		0			
	SILTY SAND,	trace gravel, dense	-		8 20		25	
				-45	26		20	
			518.16		11 18 20		24	
SOIL BORING ILDOT_MR215028 IDOT WO #2 - COPY.GPJ IL_DOT.GDT 6/7/21	End of Boring		-					

Illinois Department of Transportation Division of Highways TERRACON

Page <u>1</u> of <u>2</u>

Date 4/28/21

	ROUTE	FAI 155 (l-155)	_ DES	SCRI	PTION			Structure boring for east piers	L(oggi	ED BY	RUBI	NO (JL
	SECTION	(108-B-2) BR		_ เ			I-155 d	over Indian Creek, SEC. 29, TWP. 23N	N, RNG .	<u>3W,</u>	3 rd PM	l,	
		Tazewell DF	RILLING	MET	THOD		Ho	llow Stem Auger HAMMER	27 23.2 TYPE		Auto	omatic	
	STRUCT. NO. Station	090-0093 (SB) 090-0094 (NB) 745+70		D E P T	B L O W	U C S	M 0 1 5	Surface Water Elev6.5' Stream Bed Elev	_ ft _ ft	D E P T	B L O W	U C S	M O I S
	Station	745+34		Ĥ	S	Qu	T	First Encounter	_ ft	Ĥ	S	Qu	T
	Offset Ground Surfa	118.0 π L I ace Elev. 568.73	ft	(ft)	(/6'')	(tsf)	(%)	After Hrs.	_nt ft	(ft)	(/6'')	(tsf)	(%)
[CONCRETE F	PAD [8 inches]	568.07					SILTY CLAY, trace gravey, gray,					
	SILTY CLAY,	trace gravel, brown,			2			very stiff to hard (continued)			47		
	stiff [FILL]				2	18	16	-			47		
					5	B		-no recovery			50		
			565.73										
	SILTY CLAY L	OAM, trace roots,			1						56		
	dan biown [i				2	3.9	18	-small rock fragments recovered			50		
				-5	5	В		[<1"]		-25			
					-					_			
			562 23		0				542.2	3	11		
	CLAY LOAM,	with sand lenses,			1	1.2	21	SAND, fine to coarse, medium	072.20		22	3.7	13
	dark brown, st	liff			2	В		dense		_	30	В	13
					-								
			559 73		0						6		
	SILTY CLAY,	brown and gray, soft			1	0.3	27	-			7		17
				-10	1	В		-		-30	17		
/21		aroval brown	558.23							_			
T 6/7	SAND, Some	glavel, blown	557.23		1		14						
1.GD	SILTY CLAY,	trace gravel, brown			3	2.1	16						
	and gray, very	stiff			4	B							
GPJ													
DPY.0					3						6		
2 - C					6	2.9	13		534.23	3	13	4.5	15
# OM			FF2 02	-15	9	В		SILTY CLAY LOAM, trace gravel,		-35	14	Р	10
DOT	SILTY CLAY.	trace gravey, grav.	553.23					gray, hard					
028	very stiff to ha	rd			5								
IR215					12	8.8	11						
P P					17	В							
Ë					1				530.23	3			
RING					36			SILT, gray, very dense			24		
IL BC				_	12	9.0	11			_	27		18
S				-20	22	ΙВ				-40	43		

Page <u>2</u> of <u>2</u>

Date 4/28/21

	ROUTE	FAI 155 (l-155)	DES	CRIF	PTION			Structure boring for east piers	L	oggi	ED BY	RUBI	10 (JL
	SECTION	(108-B-2) BR		_ L	OCAT	10N _	l-155 c	over Indian Creek, SEC. 29, TWP. 23N	I, RNG .	. <u>3W,</u>	3 rd PM	l,	
		Tazewell DF	RILLING I	МЕТ	HOD		Ho	low Stem Auger HAMMER	Z7 23.2 TYPE	20002	Auto	matic	
	STRUCT. NO. Station BORING NO. Station	090-0093 (SB) 090-0094 (NB) 745+70 SB-4 745+34		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. 6.5' Stream Bed Elev. Groundwater Elev.: First Encounter	_ ft _ ft _ ft	D E P T H	B L O W S	U C S Qu	M O I S T
	Offset Ground Surfa	<u>118.0 ft LT</u> ace Elev. 568.73	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs.	_ ft ft	(ft)	(/6'')	(tsf)	(%)
	SILT, gray, ver	ry dense <i>(continued)</i>	[_				SAND, fine to medium grain, trace gravel, medium dense <i>(continued)</i>	507.7	3			
	SILT LOAM. tr	race gravel and sand	526.73					SAND, fine to medium grained, trace gravel, gray, dense to very dense					
	lenses, gray, d	lense	-		0.4						40		
			-	_	21 25		15				48 _50		_17
	SAND, fine to	medium grain, trace	523.73	-45	42					-65			
	gravel, median		_	_									
			_	_									
			_	_	5						7		
			-	-50	10 17		20		498.73	3 -70	18 18		20
6/7/21			_					End of Boring					
DT.GDT			_										
PJ IL D			-	_									
COPY.G			_	_	3		19						
- WO #2 -			_	-55	16					-75			
028 IDOT			-	_									
F_MR215			-										
IG ILDO			_										
IL BORIN			-	_	9 4 8		20						
S				-60	0					-80			

Illinois Department of Transportation Division of Highways TERRACON

Illinois Department of Transportation SC

SOIL BORING LOG

Date 4/8/22

Page <u>1</u> of <u>3</u>

SECTION (108-B-2) BR LOCATION I-155 over Indian Creek, SEC. 29, TWP. 23N, RNG. 3W, 3 rd PM, Latitude 40.4206717, Longitude -89.456447 COUNTY Tazewell DRILLING METHOD Mud Rotary HAMMER TYPE Automat STRUCT. NO. 090-0093 (SB) D B U M Surface Water Elev. ft D B U M Station 745+70 E L C O S I First Encounter ft H S Qu BORING NO. SB-4a 745+49 H S Qu T First Encounter ft H S Qu						-			g.o. e.e.p.			·	FIION				(1-133)	1711100				
COUNTY TazewellDRILLING METHODMud RotaryHAMMER TYPEAutomat090-0093 (SB)DBUMud RotaryHAMMER TYPEAutomatSTRUCT. NO.090-0093 (SB)DBUMud RotaryHAMMER TYPEAutomatSTRUCT. NO.090-0094 (NB)DBUMStation745+70DBUMBORING NO.SB-4aTWSGroundwater Elev.TWStation745+49HSQuTWSStation745+49HSQuTWSStationT45+49HSQuTWSStationT45+49HSGroundwater Elev.:First EncounterTWS <th col<="" th=""><th></th><th>M,</th><th>3rd P</th><th>٧,</th><th>G. 3W</th><th>RNC</th><th>3N, R</th><th>, TWP. 23</th><th>ek, SEC. 29</th><th>ver Indian Cre</th><th>l-155 c</th><th></th><th>OCAT</th><th>_ เ</th><th></th><th>BR</th><th>8-B-2) E</th><th>(10</th><th></th><th>CTION</th><th>SE</th></th>	<th></th> <th>M,</th> <th>3rd P</th> <th>٧,</th> <th>G. 3W</th> <th>RNC</th> <th>3N, R</th> <th>, TWP. 23</th> <th>ek, SEC. 29</th> <th>ver Indian Cre</th> <th>l-155 c</th> <th></th> <th>OCAT</th> <th>_ เ</th> <th></th> <th>BR</th> <th>8-B-2) E</th> <th>(10</th> <th></th> <th>CTION</th> <th>SE</th>		M,	3 rd P	٧,	G. 3W	RNC	3N, R	, TWP. 23	ek, SEC. 29	ver Indian Cre	l-155 c		OCAT	_ เ		BR	8-B-2) E	(10		CTION	SE
Ogo-0093 (SB) 090-0094 (NB) D B U M Surface Water Elev. ft D B U Station 745+70 E L C O Stream Bed Elev. ft E L C O Stream Bed Elev. ft Ft E L C O Stream Bed Elev. ft Ft E L C O S I Ft Ft E L C O S I Ft Ft Ft E L C O S I Ft Ft Ft L C C S S C Ft Ft Ft Ft Ft S C C S S C S S S Groundwater Elev.: Ft H S Qu T First Encounter ft H S Qu S S S S S S S S S	atic	m	Auto			E	TYPE			Mud Rotary	Lantu		THOD	S ME	LING	DRIL		Tazewe		UNTY	С	
BORING NO. SB-4a T W S Groundwater Elev.: T W Station 745+49 H S Qu T First Encounter ft H S Qu	U I C (S		B L O		D E P		_ ft _ ft		er Elev d Elev	Surface Wate Stream Bec	M O I	U C S	B L O	D E P	-	B) B)	0093 (SI <u>0094 (NI</u> 45+70	090-(090-(7	NO	RUCT.	ST S	
Offset 1180 ft I I I I I I I I I I I I I I I I I I	Qu	C	W S		T H		_ ft ft		r Elev.: Inter	Groundwate First Encou	S T	Qu	W S	T H	-		B-4a 45+49 3.0.ft T	S 74 118	10	RING N tation	BC S	
Ground Surface Elev. 568.73 ft (ft) (/6") (tsf) (%) After Hrs. ft (ft) (/6") (tsf)	sf) (%	(t	/6")	((ft)		ft		_ Hrs	After	(%)	(tsf)	(/6")	(ft)	ft	73	568.	ce Elev.	Surfa	round §	Ģ	
CONCRETE - approximate 567.83								R TO -4	LED - REFE BORING SE	BLIND DRILL PREVIOUS I (continued)					57.93	56	ER TO B-4	D - REFI	TE - 6 of 8" RILLE S BC	INCRE kness IND DR EVIOU	CC thi BL PF	

Illinois Department of Transportation SOII

SOIL BORING LOG

Date 4/8/22

Page 2 of 3

SECTION	ROUTE	FAI 155 (I-155)	DE	SCR	PTION	I		Structure boring for east piers	L(OGGI	ED BY	RUBIN	<u>IO (PP</u>
COUNTY Tazevell DRILLING METHOD Mud Rolary HAMMER TYPE Automatic Station 745+70 P L C 0 S 1 COUNTY Tazevell D B U Mud Rolary HAMMER TYPE Automatic Station 745+70 P L C 0 S T S		(108-B-2) BR		L			I-155 d	over Indian Creek, SEC. 29, TWP. 2	3N, RN	G. 3W	/, 3 rd F	PM,	
STRUCT. NO. 0000003 (SB) 0000004 (NB) Station D B U M Surface Water Elev. ft D B U M BORING NO. SB-4a T W S Groundwater Elev. ft T W S I Offset 118.0 ft LT T W S S Fright Encounter ft H S Qu T BUND DRILED - REFER TO PREVIOUS BORING SB-4 -	COUNTY	Tazewell DRIL	LING	G ME	THOD		Latitu	Mud Rotary HAMMER	5447 TYPE		Auto	matic	
Statution 113.01-13 t (f) <	STRUCT. NO. Station BORING NO.	090-0093 (SB) 090-0094 (NB) 745+70 SB-4a 745+40	_	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev Stream Bed Elev Groundwater Elev.:	_ ft _ ft	D E P T H	B L O W S	U C S Qu	M O I S T
Ground Surface Elev. 568.73 ft (ft) (ft) <th< td=""><td>Offset</td><td>118 0 ft T</td><td>-</td><td>1</td><td></td><td></td><td></td><td>Upon Completion</td><td>_π ff</td><td> </td><td>•</td><td></td><td>•</td></th<>	Offset	118 0 ft T	-	1				Upon Completion	_π ff		•		•
BLIND DRILLED - REFER TO - </td <td>Ground Surf</td> <td>ace Elev. 568.73</td> <td>ft</td> <td>(ft)</td> <td>(/6")</td> <td>(tsf)</td> <td>(%)</td> <td>After Hrs.</td> <td>_ ft</td> <td>(ft)</td> <td>(/6")</td> <td>(tsf)</td> <td>(%)</td>	Ground Surf	ace Elev. 568.73	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	_ ft	(ft)	(/6")	(tsf)	(%)
	BLIND DRILLI PREVIOUS B (continued)	ED - REFER TO ORING SB-4	_					BLIND DRILLED - REFER TO PREVIOUS BORING SB-4 (continued)					
SANDY LOAM, trace gravel, gray, 46 46 46 46 46 46 46 46 46 46					-				505.23		15		
45 - - 21 21 - - - - - - - - -					-			SANDY LOAM, trace gravel, gray,			21		21
				_15	-					-65	25		21
				-40	-					-00			
]								
					-								
					-								
					-								
											14		
-50 -70 20 -70 20 -75 26 -75 27 -75 27 -75 27 -75 27 -75 27 -75 27 -75 27 -											18		26
				-50						-70	20		
]								
					-								
					-								
					-								
					-								
					1						21		
											24		24
- - - - - <td></td> <td></td> <td></td> <td>-55</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-75</td> <td>26</td> <td></td> <td></td>				-55	-					-75	26		
- - - - - <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-								
					1								
490.23 SAND, trace gravel, gray, dense 18 to very dense, wet 16 21]								
SAND, trace gravel, gray, dense 18 to very dense, wet 16 21				_					490.23	_			
16 21					-			SAND, trace gravel, gray, dense			18		04
					-			li to very dense, wet			10 15		21

Illinois Department of Transportation

Date 4/8/22

Page $\underline{3}$ of $\underline{3}$

ROUTE	FAI 155 (I-155)	DE	SCR	PTION	I	5	Structure boring for east piers	L0	oggi	ED BY	RUBIN	<u>IO (PP</u>)
	(108-B-2) BR		I	-OCAT		l-155 c	over Indian Creek, SEC. 29, TWP. 23 de 40.4206717, Longitude -89.456	3N, RN 3447	G. 3V	/, 3 rd P	M,	
COUNTY	Tazewell D	RILLING	6 ME	THOD			Mud Rotary HAMMER	TYPE		Auto	matic	
STRUCT. NC Station	090-0093 (SB) 090-0094 (NB) 745+70		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	_ ft _ ft	D E P	B L O	U C S	M O I
BORING NO. Station Offset	SB-4a 745+49 118.0 ft LT		T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	_ ft _ ft	T H	W S	Qu	S T
Ground Su	face Elev. 568.73	ft	(ft)	(/6'')	(tsf)	(%)	After Hrs	_ ft	(ft)	(/6")	(tsf)	(%)
SAND, trace to very dense	gravel, gray, dense e, wet <i>(continued)</i>			23			End of Boring					
			95	29 35		16			105			
		480.23										
SAND, trace dense, very i	gravel, gray, medium noist	1		24 15		14						
SAND, trace very moist	gravel, gray, dense,	475.23	 	21 21 14		14			- <u>-110</u> 			
SAND, with g	gravel, gray, medium noist			24 12		10						
		468.73	-100	16					-120			

	600				5 74 2 60	6B-1 4+59 3 L 20.19																SB- 746+ 19	2 80				
	595	; ;			9/2.0B/12 10/2.3B/17	SILTY CLAY															<u> </u>	598. /1.18/13	76 SILTY C (FIL)				
	590)			-14 7 2. 1 5/11 9/3.98/12															1	SLAY LOAM	/1.55/15 /0.78/15					
FIAL SHEET ROOM	585	<u>,</u>			9/1.85/12 7/1.3B/12			/		<u> </u>											·	/1.75/12 /1.28/13					
COUNTY SHI AZEWELL	580)			1574.38717 1874.58717		SILTY CLAY	(FILL)		<u> </u>									SILTY C	LAY (FILL)	8	/1.8P/15 /1.7B/12					
N BR 1 INOIS FED. AD PI	575	5			15/3.5B/23							.4				Ź					10	/1.8B/15 16/2/60					
SECTIO (108-B-2)	570)			16/3 . 1B/16		CLAY	(LOAM (F	ILL)		745+ 118 568- 7/1.88/16	-34 73			SE 746 117 56	8-16	<u>↓</u>		SILT	LOAM (FIL	L) 7	3.25/19					
FA <u>L</u> RTE	565	<u>)</u>			22/3.9B/16		CLA	Y LOAM			GLAY - 7/3 .9 8/18 3/1.28/21 NA/NA/21	<u> </u>			3/0.6B/22	(FILL						<u> </u>					
D STA. 747+20	560)			8+2.1B/13		SAN	D	• = = = •		2/G.38/27 - 7/278/NA - NAVNA/16				- <u>1/0</u> .2B/31 14/3.5B/12	• • • • • •	+					'0.3P/21 -					
ILE CREEK 44+20 to	550)			3 4/ 1 .48/12		CLAY LOA	M			15/2.9B/13 29/8.8B/11				34/5.08/12 33/3.58/11						17	3.0B/13 -					
E PROF NDIAN (545	· · · · · · · · · · · · · · · · · · ·			50/4.5P/10		SILTY	CLAY			81/NA/NA		SILTY CLAY		37/3.9B/11 43/8.9B/10 				CLAY +0 SILTY CL	AY.	5	/4.5P/9					· · · · · · · · · · · · · · · · · · ·
SURFAC OVER I OF	540)							•		- 52/3.78/13 Na/Na/13 24/Na/17				86/NA/11	SILT to SILT LO					85	/4.15/10					
I-155	535	5			39/NA/21			SAND			27/4.5P/15 NA/NA/10		SILTY CL	AY LOAM	85/4.75/9		`	<u>````</u>	· -	· · · · ·	67	/4.95/11					
E.	530)			50/NA/13	SILT L				 S					67/NA/7		SILTY CLA	Y LOAM			SILT	0/NA72 3-	· · · · · · · · · · · · · · · · · · ·				
SCAL	525	5			5 0 /NA/ 15		 SAND		·		67/NA/15	SILT LOAM			46/NA/25-	S/	AND 			- <u></u>		D∕₩A/16= -		<u> </u>			
and the second	520)			55/NA/20						27/NA/20	Si	ND		38/NA/24	SILTY	SAND					0/NA/19					
	515	5									25/NA/19																
the succession of the second succession of the	<u>510</u> 505	<u>)</u>									12/NA/20																
MODEL: Default	500)									36/NA/20																

IDOT STATIC	C METHOD O	F ESTIMATING	PILE LENGTH

SUBSTRUCTURE====================================	= Pier 1_Pre	core
REFERENCE BORING ====================================	= SB-4 & 4a	
LRFD or ASD or SEISMIC ====================================	= LRFD	
PILE CUTOFF ELEV. ====================================	= 595.16	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING	= 540.00	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) =====	== Scour	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ===========	= 549.00	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======		ft
TOTAL FACTORED SUBSTRUCTURE LOAD =======	= 2080	kips
TOTAL LENGTH OF SUBSTRUCTURE (along skew)=======	= 40.00	ft
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE =====	1	
Approx. Factored Loading Applied per pile at 8 ft. Cts ==		416.00 I

 Approx. Factored Loading Applied per pile at 8 ft. Cts
 416.00 KIPS

 Approx. Factored Loading Applied per pile at 3 ft. Cts
 156.00 KIPS

PILE TYPE AND SIZE ===== Metal Shell 14"Ф w/.312" walls Pile Perimeter===== 3.665 FT.

ВОТ.						NOMINAL				FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR		HOMMAAL			NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL		REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.		BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
537.50	2.50		52	Hard Till	31.3		100.5		101	0	0	55	58
535.00	2.50		24	Medium Sand	20.2	69.2	155.4		155	0	0	85	60
532.50	2.50		24	Medium Sand	20.2	103.8	208.1		208	0	0	114	63
530.00	2.50		27	Hard Till	13.6	136.3	221.7		222	0	0	122	65
527.50	2.50		27	Hard Till	13.6	136.3	452.4		452	0	0	249	68
525.00	2.50		70	Hard Till	51.7	353.3	504.1		504	0	0	277	70
522.50	2.50		70	Hard Till	51.7	353.3	540.7		541	0	0	297	73
520.00	2.50		67	Very Fine Silty Sand	70.6	338.2	611.3		611	θ	θ	336	-75
517.50	2.50		67	Very Fine Silty Sand	70.6	338.2	525.4		525	0	0	289	78
515.00	2.50		27	Fine Sand	21.4	181.7	546.8		547	0	0	301	80
512.50	2.50		27	Fine Sand	21.4	181.7	554.8		555	0	0	305	83
510.00	2.50		25	Fine Sand	19.8	168.2	574.6		575	Ð	0	316	-85
507.50	2.50		25	Fine Sand	19.8	168.2	507.0		507	0	0	279	88
505.00	2.50		12	Fine Sand	9.5	80.8	510.5 1112 5		1112	0	0	284	90
501 50	2.50		100	Medium Sand	101 1	672.9	1303 5		1304	0	, 0	717	9/
100 00	2.50		100	Medium Sand	101.1	672.0	1063.0		1064	0	0	585	96
496 50	2.50		36	Medium Sand	35.0	242.3	1005.5		1009	р Д	۵ ۵	604	90
495 50	1.00		36	Medium Sand	14.0	242.3	1207.2		1207	ں م	ں م	664	100
490.50	5.00		50	Medium Sand	126.1	336.5	1205.4		1205	д Д	а Д	663	105
485 50	5.00		31	Medium Sand	55.5	208.6	1483.0		1483	д Д	Â	816	110
480.50	5.00		64	Medium Sand	197.3	430.7	1438.1		1438	Q	,	791	115
475.50	5.00		28	Medium Sand	48.2	188.4	1533.5		1533	Q	0	843	120
470.50	5.00		35	Medium Sand	66.9	235.5	1553.3		1553	Ð	0	854	125
465.50	5.00		28	Medium Sand		188.4							

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
570 KIPS	504 KIPS	277 KIPS	70 FT.

SUBSTRUCTURE	Pier 2 prec	ore 540
REFERENCE BORING ====================================	SB-3, SB-4	1 & 4a
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	594.23	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	540.00	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	Scour	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =========	549.00	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======		ft
TOTAL FACTORED SUBSTRUCTURE LOAD =========	2080	kips
TOTAL LENGTH OF SUBSTRUCTURE (along skew)=======	40.00	ft

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
570 KIPS	538 KIPS	296 KIPS	62 FT.

Approx. Factored Loading Applied per pile at 8 ft. Cts ======== 416.00 KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts ========= 156.00 KIPS

1

PILE TYPE AND SIZE ==========	Metal Shell 14"Φ w/.31	2" walls	
Pile Perimeter========		3.665	FT.

TOTAL LENGTH OF SUBSTRUCTURE (along skew)======== NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ======

> 1.069 SQFT.

BOT. OF		UNCONF.	S.P.T.	GRANULAR		NOMINAL			NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL		REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.		BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(F1.)	(F1.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(F1.)
537.50	2.50		35	Hard Till	17.9	100.0	118.9		119	0	0	65	57
535.00	2.50		35	Hard Till	17.9	100.9	403.5		404	0	0	222	59
532.50	2.50		85	Hard Till	73.6	367.7	538.4		538	0	0	296	62
530.00	2.50		85	Hard III	/3.6	429.0	633.8		634	÷	ų o	349	6 4
527.50	2.50		67	Medium Sand	106.4	450.9	740.2		740	÷	U	407	0/
525.00	2.50		67	Medium Sand	106.4	450.9	705.2		700	e e e e e e e e e e e e e e e e e e e	U	388 410	09 70
522.50	2.50		40	Medium Sand	53.9	309.0	759.1		758	0	v	410	74
520.00	2.50		40	Medium Sand	202	255.7	759.1		708	0	0	200	74
517.50	2.00		05	Fine Send	10.0	169.0	710.0		710	0	0	401	70
512.00	2.00		20	Fine Sand	19.0	169.2	729.0		666	0	0	266	78 92
500.00	3.00		10	Fine Sand	23.0	00.2	677.5		679	0	0	272	95
506.50	2.50		12	Fine Sand	9.5	80.8	1279.2		1279	а Д	д Д	704	<u>88</u>
504.00	2.50		100	Medium Sand	191.1	672.9	1470.3		1470	Ð	Ð	809	90
501.50	2.50		100	Medium Sand	191.1	672.9	1230.7		1231	θ	θ	677	-93
499.00	2.50		36	Medium Sand	35.0	242.3	1265.7		1266	θ	θ	696	.95
498.04	0.96		36	Medium Sand	13.4	242.3	1373.4		1373	θ	θ	.755	96
493.04	5.00		50	Medium Sand	126.1	336.5	1371.6		1372	θ	θ	754	101
488.04	5.00		31	Medium Sand	55.5	208.6	1649.2		1649	θ	θ	907	-106
483.04	5.00		64	Medium Sand	197.3	430.7	1604.3		1604	θ	θ	882	111
478.04	5.00		28	Medium Sand	48.2	188.4	1699.7		1700	θ	θ	935	116
473.04	5.00		35	Medium Sand	66.9	235.5	1719.5		1719	θ	θ	946	121
468.04	5.00		28	Medium Sand		188.4							
						1			1				

MAX REQUIRED REARING &	& RESISTANCE for	Selected Pile	Soil Profile	8 1 00000
MAX. HEGOMED DEAMING				<u>a E03303</u>

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
810 KIPS	755 KIPS	415 KIPS	67 FT.

TOTAL LENGTH OF SUBSTRUCTURE (along skew)======== 40.00 ft NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ======= 1

SUBSTRUCTURE====== North Abutments

Approx. Factored Loading Applied per pile at 3 ft. Cts ======== 76.50 KIPS

PILE TYPE AND SIZE ====== Steel HP 14 X 102

GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING = 593.16 ft GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) =====

TOP ELEV. OF LIQUEF. (so layers above apply DD) ========

Plugged Pile Perimeter====== 4.800 FT.

LRFD 595.16 ft

None

ft

ft

 4.800
 FT.
 Unplugged Pile Perimeter==========
 7.058
 FT.

 1.439
 SQFT.
 Unplugged Pile End Bearing Area=======
 0.208
 SQFT.

BOT. OF		UNCONF.	S.P.T.	GRANULAR	NOI	MINAL PLUG	GED	NOI	MNAL UNPLU	IG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
593.02	0.14	3.90	9		1.2		79.9	1.8		13.2	13	0	0	7	2
590.52	2.50	3.90	9		22.3	78.6	59.9	32.8	11.4	39.9	40	0	0	22	5
588.02	2.50	1.80	9		13.1	36.3	62.8	19.2	5.3	57.6	58	0	0	32	7
585.52	2.50	1.30	7		10.4	26.2	87.4	15.3	3.8	75.0	75	0	0	41	10
583.02	2.50	2.00	10		14.0	40.3	147.7	20.5	5.8	102.3	102	0	0	56	12
580.52	2.50	4.30	15		24.1	86.7	175.8	35.4	12.6	138.2	138	0	0	76	15
578.02	2.50	4.50	18		24.9	90.7	180.6	36.7	13.1	172.0	172	0	0	95	17
575.52	2.50	3.50	15		20.6	70.6	213.3	30.2	10.2	204.0	204	0	0	112	20
573.02	2.50	4.10	19		23.2	82.7	216.3	34.1	12.0	235.2	216	0	0	119	22
570.52	2.50	3.10	16		18.8	62.5	235.1	27.6	9.0	262.8	235	0	0	129	25
568.02	2.50	3.10	16		18.8	62.5	270.0	27.6	9.0	292.8	270	0	0	149	27
563.02	2.50	3.90	22		22.3	78.6 78.6	292.3	32.8	11.4	325.6	292	0	0	161	30
560.52	2.50	0.00	13	Fine Sand	27	46.6	285.3	3.9	6.7	357.7	285	0	0	157	35
558.02	2.50		13	Fine Sand	2.7	46.6	283.7	3.9	6.7	361.0	284	õ	õ	156	37
555.52	2.50	2.10	8		14.4	42.3	298.1	21.2	6.1	382.2	298	0	0	164	40
553.02	2.50	2.10	8		14.4	42.3	361.6	21.2	6.1	410.5	362	0	0	199	42
550.52	2.50		34	Hard Till	4.5	91.4	366.0	6.6	13.2	417.1	366	0	0	201	45
548.02	2.50		34	Hard Till	4.5	91.4	548.0	6.6	13.2	449.4	449	0	0	247	47
545.52	2.50		100	Hard Till	25.9	268.9	573.8	38.0	38.9	487.4	487	0	0	268	50
543.02	2.50		100	Hard Till	25.9	268.9	603.3	38.0	38.9	525.9	526	0	0	289	52
540.52	2.50		76	Fine Sand	28.2	272.5	631.5	41.5	39.4	567.4	567	0	0	312	55
538.02	2.50		76	Fine Sand	28.2	272.5	527.1	41.5	39.4	589.7	527	0	0	290	57
535.52	2.50		39	Fine Sand	9.1	139.8	536.1	13.3	20.2	603.0	536	0	0	295	60
533.02	2.50		39	Fine Sand	9.1	139.8	674.3	13.3	20.2	635.1	635	0	0	349	62
530.52	2.50		100	Very Fine Silty Sand	36.4	268.9	710.7	53.6	38.9	688.6	689	0	0	379	65
528.02	2.50		100	Very Fine Silty Sand	36.4	268.9	836.8	53.6	38.9	755.2	755	0	0	415	67
525.52	2.50		100	Medium Sand	49.5	358.5	886.3	72.8	51.9	828.0	828	θ	θ	455	-70
523.02	2.50		100	Medium Sand	49.5	358.5	774.5	72.8	51.9	877.5	774	0	0	426	72
521.02	2.00		55	Medium Sand		197.2			28.5						

SUBSTRUCTURE====================================	North Abut	ments
REFERENCE BORING ====================================	SB-1	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV	595.16	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	593.16	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ==========		ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======	=====	ft
TOTAL FACTORED SUBSTRUCTURE LOAD ===========	1020	kips
TOTAL LENGTH OF SUBSTRUCTURE (along skew)=======	40.00	ft

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
570 KIPS	526 KIPS	289 KIPS	45 FT.

 NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ======
 1

 Approx. Factored Loading Applied per pile at 8 ft. Cts ========
 204.00 KIPS

 Approx. Factored Loading Applied per pile at 3 ft. Cts =======
 76.50 KIPS

PILE TYPE AND SIZE ==========	Metal Shell 14"Φ	w/.312" walls	
Pile Perimeter=======		3.665	FT.

ВОТ.						ΝΟΜΙΝΔΙ				FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR		HOMMAL			NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL		REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.		BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(F1.)	(F1.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(F1.)
593.02	0.14	3.90	9		1.5	45 7	47.2		47	0	0	26	2
590.52	2.50	3.90	9		26.7	45.7	49.3		49	0	0	27	э 7
585.02	2.50	1.80	9		10.0	15.2	59.0 70.7		59	0	0	32	10
592.02	2.50	2.00	10		16.7	22.5	122.2		100	0	0	44 69	10
580 52	2.50	4 30	10		28.8	23.J 50.4	123.5		154	0	0	85	12
578.02	2.50	4.50	18		29.8	52.8	172 5		173	ů 0	0	95	17
575.52	2.50	3.50	15		24.6	41.0	204.2		204	ő	0	112	20
573.02	2.50	4.10	19		27.7	48.1	220.1		220	0 0	0	121	22
570.52	2.50	3.10	16		22.5	36.3	242.6		243	0	0	133	25
568.02	2.50	3.10	16		22.5	36.3	274.5		274	0	0	151	27
565.52	2.50	3.90	22		26.7	45.7	301.1		301	0	0	166	30
563.02	2.50	3.90	22		26.7	45.7	369.5		370	0	0	203	32
560.52	2.50		13	Fine Sand	10.3	87.5	379.9		380	0	0	209	35
558.02	2.50		13	Fine Sand	10.3	87.5	327.3		327	0	0	180	37
555.52	2.50	2.10	8		17.2	24.6	344.5		345	0	0	189	40
553.02	2.50	2.10	8		17.2	24.6	508.7		509	0	0	280	42
550.52	2.50		34	Hard Till	17.3	1/1.6	526.0		526	0	0	289	45
040.02 E4E E0	2.50		34		17.3	F04 7	076.4		076	4	v	402 527	47 50
543.52	2.50		100	Hard Till	99.0	504.7	970.2 1082.8		370 1083	0	0	596	52
540.52	2.50		76	Fine Sand	108.8	5114	1101.6		1102	0	0	655	55
538.02	2.50		76	Fine Sand	108.8	511.4	1051.4		1051	а Д	д Д	578	57
535 52	2.50		39	Fine Sand	35.0	262.4	1086.5		1086	д Д	д Д	598	60
533.02	2.50		39	Fine Sand	35.0	262.4	1363.7		1364	0	Q	750	62
530.52	2.50		100	Very Fine Silty Sand	140.6	504.7	1504.3		1504	Ð	Ð	<u>827</u>	65
528.02	2.50		100	Very Fine Silty Sand	140.6	504.7	1813.1		1813	Ð	Ð	997	67
525.52	2.50		100	Medium Sand	191.1	672.9	2004.2		2004	Ð	Ð	1102	.70
523.02	2.50		100	Medium Sand	191.1	672.9	1892.5		1892	θ	θ	1041	.72
521.02	2.00		55	Medium Sand		370.1							1
													1
												1	1
												1	1
												1	1
												1	1
												1	1
												1	l
						1							

SUBSTRUCTURE====================================	South Abu	tments
REFERENCE BORING	SB-2	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	594.23	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	592.23	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ==========		ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======		ft

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
810 KIPS	599 KIPS	329 KIPS	*** Below Boring

1020 kips TOTAL FACTORED SUBSTRUCTURE LOAD ========== TOTAL LENGTH OF SUBSTRUCTURE (along skew)======= 40.00 ft NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ====== 1

Approx. Factored Loading Applied per pile at 3 ft. Cts ======== 76.50 KIPS

PILE TYPE AND SIZE ====== Steel HP 14 X 102

Г

Plugged Pile Perimeter====== 4.800 FT.

1.439 SQFT. Unplugged Pile End Bearing Area=======

0.208 SQFT.

BOT.					NON	MINAL PLUG	GED	NO	MNAL UNPLL	IG'D		FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR			415				NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH (TSF)	VALUE (BLOWS)	DESCRIPTION	RESIST.	(KIPS)	(KIPS)	RESIST.	RESIST. (KIPS)	RESIST.	BEARING (KIPS)	SCOUR or DD	FROM DD	AVAILABLE (KIPS)	LENGTH (FT)
591.00	1 23	1 50	(DEOWS)		5.7	(KIF 3)	19.8	8.4	(RIF 3)	10.4	10	(KIF3)	0	(KIF3)	3
588 50	2.50	0.70	6		6.3	14.1	46.3	9.3	20	22.6	23	0	0	12	6
586.00	2.50	1 70	7		12.6	34.3	48.8	18.5	5.0	39.6	40	0	0 0	22	8
583.50	2.50	1.20	. 9		9.8	24.2	70.7	14.5	3.5	55.8	56	0	0	31	11
581.00	2.50	1.80	8		13.1	36.3	81.7	19.2	5.3	74.7	75	0	0	41	13
578.50	2.50	1.70	11		12.6	34.3	96.3	18.5	5.0	93.5	93	0	0	51	16
576.00	2.50	1.80	10		13.1	36.3	113.4	19.2	5.3	113.3	113	0	0	62	18
573.50	2.50	2.00	16		14.0	40.3	138.1	20.5	5.8	135.4	135	0	0	74	21
571.00	2.50		19	Very Fine Silty Sand	3.6	51.1	155.1	5.2	7.4	142.5	143	0	0	78	23
568.50	2.50	3.20	19		19.2	64.5	174.3	28.3	9.3	170.8	171	0	0	94	26
566.00	2.50	3.20	19		19.2	64.5	153.3	28.3	9.3	193.3	153	0	0	84	28
563.50	2.50	1.20	16		9.8	24.2	163.1	14.5	3.5	207.7	163	0	0	90	31
561.00	2.50	1.20	16		9.8	24.2	154.8	14.5	3.5	219.6	155	0	0	85	33
558.50	2.50	0.30	2		2.9	6.0	157.7	4.3	0.9	223.8	158	0	0	8/	36
556.00	2.50	0.30	2		2.9	6.0	215.0	4.3	0.9	236.0	215	0	0	118	38
553.50 EE1.00	2.50	3.00	17	Lloyd Till	18.4	60.5	204.3	27.0	8.8	207.0	264	0	0	145	41
551.00	2.50		34		4.5	91.4	200.0	0.0	13.2	2/4.1	209	0	0	140	43
546.00	2.50		100		4.5	268.0	430.7	20.0	13.2	244 4	306	0	0	100	40
543.50	2.50		100	Hard Till	25.9	268.9	462.1	38.0	38.9	376.6	377	0	0	207	51
541.00	2.50		85	Hard Till	19.1	228.5	481.2	28.0	33.1	404.6	405	0	0	207	53
538 50	2.50		85	Hard Till	19.1	228.5	451.9	28.0	33.1	425.6	426	0	0	234	56
536.00	2.50		67	Hard Till	12.4	180.1	464.3	18.2	26.1	443.9	444	0	0	244	58
533.50	2.50		67	Hard Till	12.4	180.1	565.4	18.2	26.1	475.0	475	0 0	õ	261	61
531.00	2.50		100	Hard Till	25.9	268.9	591.3	38.0	38.9	513.0	513	0	0	282	63
528.50	2.50		100	Hard Till	25.9	268.9	491.7	38.0	38.9	532.9	492	0	0	270	66
526.00	2.50		40	Fine Sand	9.5	143.4	501.1	13.9	20.8	546.8	501	0	0	276	68
523.50	2.50		40	Fine Sand	9.5	143.4	582.3	13.9	20.8	571.1	571	0	0	314	71
521.00	2.50		60	Fine Sand	18.8	215.1	601.1	27.6	31.1	598.7	599	0	0	329	73
519.50	1.50		60	Fine Sand		215.1			31.1						

Maximum Factored

Resistance Available in Boring

223 KIPS

Maximum Pile

Driveable Length in Boring
43 FT.

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal

Req.d Bearing of <u>Boring</u>

405 KIPS

SUBSTRUCTURE====================================	South Abu	tments
REFERENCE BORING ====================================	SB-2	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	594.23	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	592.23	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ==========		ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======		ft

 TOTAL FACTORED SUBSTRUCTURE LOAD
 1020
 kips

 TOTAL LENGTH OF SUBSTRUCTURE (along skew)
 40.00
 ft

 NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ======
 1

 Approx. Factored Loading Applied per pile at 8 ft. Cts
 204.00 KIPS

 Approx. Factored Loading Applied per pile at 3 ft. Cts
 76.50 KIPS

 PILE TYPE AND SIZE =====
 Metal Shell 14"Ф w/.312" walls

 Pile Perimeter=====
 3.665
 FT.

Pile End Bearing Area====== 1.069 SQFT.

BOT.						NOMINAL				FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR		NOMINAL			NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL		REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.		BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
591.00	1.23	1.50	9		6.8		15.0		15	0	0	8	3
588.50	2.50	0.70	6 7		7.6	8.2	34.3		34	0	0	19	0
586.00	2.50	1.70	<i>'</i>		15.0	19.9	43.4		43	0	0	24	8
503.00	2.50	1.20	9		11.0	21.1	76.6		02 77	0	0	34 42	12
578 50	2.50	1.00	11		15.0	10.0	92.8		93	0	0	42 51	15
576.00	2.50	1.70	10		15.6	21.1	110.8		111	0	0	61	18
573 50	2.50	2.00	16		16.7	23.5	199.9		200	0	0	110	21
571.00	2.50	2.00	19	Very Fine Silty Sand	13.7	95.9	155.2		155	0 0	0	85	23
568.50	2.50	3.20	19		23.0	37.5	178.2		178	0	0	98	26
566.00	2.50	3.20	19		23.0	37.5	177.8		178	0	0	98	28
563.50	2.50	1.20	16		11.8	14.1	189.5		190	0	0	104	31
561.00	2.50	1.20	16		11.8	14.1	190.7		191	0	0	105	33
558.50	2.50	0.30	2		3.5	3.5	194.2		194	0	0	107	36
556.00	2.50	0.30	2		3.5	3.5	229.3		229	0	0	126	38
553.50	2.50	3.00	17		21.9	35.2	387.7		388	0	0	213	41
551.00	2.50		34	Hard Till	17.3	1/1.6	405.0		405	0	0	223	43
548.50	2.50		34	Hard Till	17.3	1/1.6	755.4		755	Đ Q	U	415 470	46
546.00	2.50		100	Hard Till	99.8	504.7	833.2		800	÷	U	470	48
543.50	2.50		100	Hard Till	99.8 70.6	504.7 420.0	879.3		8/9	Ð	4	484	01 52
538 50	2.50		60 85	Hard Till	73.6	429.0	952.9		936	0	U	515	56
536.00	2.50		67	Hard Till	17.0	338.2	983.5		983	0	0	541	58
533.50	2.50		67	Hard Till	47.9	338.2	1197.9		1198	д Д	д Д	659	61
531.00	2.50		100	Hard Till	99.8	504.7	1297.7		1298	а Д	д Д	714	63
528.50	2.50		100	Hard Till	99.8	504.7	1162.0		1162	а Д	θ.	639	66
526.00	2.50		40	Fine Sand	36.5	269.2	1198.5		1198	Ð	Ð	659	-68
523.50	2.50		40	Fine Sand	36.5	269.2	1369.6		1370	Ð	Ð	753	71
521.00	2.50		60	Fine Sand	72.5	403.8	1442.1		1442	Ð	Ð	.793	-73
519.50	1.50		60	Fine Sand		403.8							

Maximum Nominal

Req'd Bearing of Pile

570 KIPS

Printed 3/17/2022