STRUCTURE GEOTECHNICAL REPORT US 12/45 OVER ADDISON CREEK BRIDGE STRUCTURE EXISTING SN: 016-1036, PROPOSED SN: 016-1351 SECTION 464-B, CONTRACT 60V22 COOK COUNTY, ILLINOIS

> for HBM Engineering Group 4415 West Harrison Street Hillside, IL 60162 (708) 236-0900

submitted by Wang Engineering, Inc. 1145 North Main Street Lombard, IL 60148

> Original: March 6, 2017 Revised: October 9, 2017

WEI Ref. No. 616-02-04 US 12/45 over Addison Creek

	Technical Report Documentation Pa	ge
1. Title and Subtitle Structure Geotechnical Report US 12/45 over Addison Creek		2. Report Dates Original: March 6, 2017 Revised: October 9, 2017
Bridge Structure		3. Report Type ⊠ SGR □ RGR □ Draft ⊠ Final ⊠ Revised
4. Route / Section / County 330 / 464-B / Cook		5. IDOT Job / Contract No. C-91-007-12 / 60V22
6. PTB / Item No. 161/008	5. Existing Structure Number(s) 016-1036	6. Proposed Structure Number(s) 016-1351
7. Prepared by Wang Engineering, Inc. 1145 N Main Street Lombard, IL 60148	Contributor(s) Author: Mohammed Kothawala, P.E. PM: Mohammed Kothawala, P.E. QC/QA: Corina Farez, P.E., P.G.	Contact Phone Number (630) 953-9928 x 1036
9. Prepared for HBM Engineering Group 4415 W. Harrison Street Hillside, IL 60162	Project Manager Mahmoud Issa, P.E.	Contact Phone Number (708) 236-0900
 10. Abstract A new single span slab bridge Addison Creek in Cook Cou design of the proposed structur Below the pavement, the soils loam and loose to medium der feet of stiff to hard silty clay weathered bedrock overlying the It is understood that the prop embankment and H-piles foun structure. 	e structure will be constructed replacing nty, Illinois. This report provides geot re foundations. include up to 8 feet of fill materials cons use silt, sand to gravelly sand. Below fil to silty clay loam diamicton and 1 to 5 he dolostone bedrock. The seismic perfor osed bridge structure is recommended dation. The report provides geotechnical	the existing three cell culvert over technical recommendations for the disting of stiff to very stiff, silty clay l subgrade soil include 17.5 to 20.0 .5 feet of very dense gravelly sand rmance zone is 1. to be supported on steel sheet pile recommendations for the design of

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Existing and Proposed Structures	1
2.0	METHODS OF INVESTIGATION	2
2.1 2.2	SUBSURFACE INVESTIGATION LABORATORY TESTING	2
3.0	RESULTS OF FIELD AND LABORATORY INVESTIGATIONS	
3.1 3.2 3.3	Soil Conditions Groundwater Conditions Mining Activity	
4.0	ANALYSES AND RECOMMENDATIONS	4
4.1 4.2	SCOUR CONSIDERATIONS	
5.0	ANALYSIS AND RECOMMENDATIONS	6
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	APPROACH EMBANKMENTS AND SLABS BRIDGE STRUCTURE FOUNDATIONS ABUTMENTS ON DRIVEN PILES DOWNDRAG LOADS ON DRIVEN PILES PILE FOUNDATION SETTLEMENT LATERAL DESIGN PRESSURES RESISTANCE TO LATERAL LOADS PERMANENT STEEL SHEET PILING STAGE CONSTRUCTION CONSIDERATIONS	
6.0	CONSTRUCTION CONSIDERATIONS	14
6.1 6.2 6.3	EXCAVATION AND UTILITIES FILLING AND BACKFILLING GROUNDWATER	
/.U	QUALIFICATIONS	
EXH 1 2 3 APP B APP L APP S	HIBITS 2. Site Location Map 2. Boring Location Plan 3. Subsurface Soil Profile PENDIX A Boring Logs PENDIX B Laboratory Test Results PENDIX C Site Class Determination	

APPENDIX D TSL Plan

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

STRUCTURE GEOTECHNICAL REPORT US ROUTE 12/45 OVER ADDISON CREEK BRIDGE STRUCTURE EXISTING SN 016-1036, PROPOSED SN 016-1351 SECTION 464-B, CONTRACT 60v22 COOK COUNTY, ILLINOIS

FOR HBM ENGINEERING GROUP

1.0 INTRODUCTION

This report presents the results of the Wang Engineering, Inc. (Wang) geotechnical evaluations for the design and construction of a new structure carrying US Route 12/45 over Addison Creek located 0.1 miles north of the intersection of Lake Street with Mannheim Road in the City of Stone Park, Cook County, Illinois. The new structure, proposed to be a slab bridge structure, will replace the existing culvert at the same location. On the *USGS Elmhurst 7.5 Minute Series* map, the proposed structure is located in the SW ¹/₄ of Section 4, Tier 39 N, Range 12 E. A *Site Location Map* is presented as Exhibit 1.

1.1 Existing and Proposed Structures

The existing structure (S.N. 016-1036) was originally constructed in 1924 as a cast-in-place box culvert three cells 10' wide and 4' high and 38'-6" length. The culvert was extended at an unknown date to be 60' long. A second culvert extension in 1964 resulted in a 94'-6" long culvert. In 1969, the center cell of the culvert was removed and dredged to achieve a final middle cell depth of 7'-3" vertical clearance. The culvert was extended to the east in 1974 to become 103'-6" long. The existing structure is planned to be replaced with a slab bridge structure (S.N. 016-1351) supported on sheet piling abutments. The structure is 105'-8" out-to-out deck with a clear span of 44'-6" back-to-back abutments. The grade profile will not be raised. The final *TSL Plan* dated July 11, 2017 is included in Appendix D.

Preliminary service and factored loads provided by the designer, HBM Engineering Group (HBM), are shown in Table 1.

	Table 1: F	Preliminary Founda	tion Loads	
Substructure ID	Service Dead Load (kips)	Service Live Load (kips)	Combined Service Load (kips)	Estimated Total Factored Load (kips)
North Abutment	1366	367	1733	2378
South Abutment	1366	367	1733	2378

2.0 METHODS OF INVESTIGATION

2.1 Subsurface Investigation

Wang performed four soil borings between November 11 and 14, 2013 for the subsurface investigation of the Mannheim Road over Addison Creek structure in Stone Park, Illinois. Based on information received from Millennia Professional Services of Illinois (MPSI), dated November 11, 2013, Wang located the soil borings near the existing structure, as close as existing underground utilities permitted. A *Boring Location Plan* is attached as Exhibit 2.

The borings are designated as SB-01A, SB-01B, SB-02, and SB-03. Boring SB-01A encountered an obstruction at 10 feet bgs and was relocated and renamed as SB-01B and reached the designed depth of 32 feet. Borings SB-02 and SB-03 were terminated at 41 and 33 feet respectively. The as drilled boring locations were provided by MPSI. Boring location data are presented in the *Boring Logs* (Appendix A).

A truck-mounted drilling rig, equipped with hollow stem augers, was used to advance and maintain an open borehole to 10 feet. Mud rotary drilling technique was used from 10 to the top of bedrock. Soil sampling was performed according to AASHTO T 206, "*Penetration Test and Split Barrel Sampling of Soils*." The soil was sampled at 2.5-foot intervals to 30 feet bgs and at 5-foot intervals to boring termination depth. Bedrock cores, 5- and 10-foot long runs, were obtained from Borings SB-01B, SB-02, and SB-03 with an NWD4 size core barrel. Field boring logs prepared and maintained by a Wang field engineer, included lithological descriptions, visual-manual soil classifications, results of pocket penetrometer and Rimac unconfined compressive strength tests, and standard penetration tests (SPT) recorded per 6 inches of split-spoon penetration. After the completion of drilling, all soil samples were transported to Wang's geotechnical laboratory in Lombard, Illinois for further examination and laboratory testing.

Groundwater observations were made during and at the end of drilling operations. Due to safety considerations, the boreholes were backfilled immediately upon completion and the locations were restored as close as possible to their original conditions.

2.2 Laboratory Testing

Soil visual descriptions performed in the field were verified in the laboratory. The testing program included water content determination (AASHTO T 265) on all samples and particlesize analysis (AASHTO T 88) and Atterberg limits (AASHTO T89 and AASHTO T 90) tests on selected samples. The soils were classified according to the IDH Soil Classification System. The results of the laboratory analyses are presented in the *Boring Logs* (Appendix A).

3.0 RESULTS OF FIELD AND LABORATORY INVESTIGATIONS

3.1 Soil Conditions

Detailed descriptions of the lithological units encountered in the borings are presented on the attached *Boring Logs* (Appendix A). Please note that the strata contact lines shown on the *Boring Logs* (Appendix A) and *Subsurface Soil Profile* (Exhibit 3) represent approximate boundaries between soil types. In the field, the actual transition between soil types might be gradual in horizontal and vertical directions.

The pavement consists of 3.5- to 14.0-inch thick asphalt over granular base, except Boring SB-01B which encountered 8.0-inch thick concrete under the 3.5-inch thick asphalt pavement. In descending order, the general lithologic succession encountered beneath the pavement includes 1) man-made ground (fill); 2) stiff to hard stiff silty clay to silty clay loam; 3) very dense gravelly sand; and 4) dolostone bedrock.

(1) Man-made ground (fill)

Underneath the pavement structure, the borings encountered up to 8.0-foot thick granular and cohesive fill. The granular fill consists of loose to medium dense silt, sand, and gravelly sand which has SPT N values of 5 to 21 blows/foot and moisture content (MC) values of 7 to 23%. The cohesive fill consists of stiff to very stiff silty clay loam and has unconfined compressive strength (Qu) values of 1.5 to 2.5 tsf and MC values of 24 to 28%.

(2) Stiff to hard silty clay to silty clay loam

Underneath the fill, the borings encountered 17.5- to 20.0-foot thick of stiff to very stiff, brown and gray to gray silty clay to silty clay loam diamicton with Qu values of 1.5 to 9.7 tsf and MC values of 11 to 28%. Medium dense to very dense silty loam interbeds with SPT N-values of 26 to 58 blows/foot and MC values of 11 to 15% are present throughout.

(3) Very dense gravelly sand

At elevation 608.8 to 611.0 feet (25.5 to 27.0 feet bgs), the borings advanced through up to 5.5-foot thick, very dense, gravelly sand to sandy gravel weathered bedrock with SPT N values more than 50 blows/foot and MC values of 9 to 10%.

(4) Dolostone bedrock

Dolostone bedrock was cored for 5.0 to 10.0 feet from auger refusal at 605.5 to 609.0 feet elevation (27 to 31 feet bgs). The bedrock was described as strong, with very poor to poor rock quality, brown, horizontally bedded, moderately weathered, moderately fractured, slightly vuggy. The rock recovery ranges from 53 to 100% and the rock quality designation (RQD) ranges from 0 to 47%.

3.2 Groundwater Conditions

The groundwater was encountered at 3.0 and 5.5 feet bgs while drilling and was associated with the granular fill, more likely it is perched water.

3.3 Mining Activity

There was no past coal mining activity at the proposed structure location. Lake County is not identified as coal-producing area by Illinois State Geological Survey.

4.0 ANALYSES AND RECOMMENDATIONS

4.1 Scour Considerations

The TSL plan shows a Natural Design High Water Elevation (50-year) of 637.00 feet. Wang understand that the interim streambed elevation matches existing condition and future upstream and downstream elevations will be 626.28 and 626.13 feet, respectively. The Estimated Water Surface Elevation (EWSE) was not shown on TSL plan.

A hydraulic report was prepared for the Department in February 2017 by Atlas Engineering Group, Ltd. (AEG) and provided by HBM. The reduced design scour elevations as provided in the hydraulic report are presented in Table 2.

Table 2:	Design Scour El	levations	
	Design Scour l	Elevations (feet)	Item
Event/Limit State	North	South	113
	Abutment	Abutment	
Q100	617.90	617.40	
Q200	616.90	616.30	_
Design	617.90	617.40	5
Check	616.90	616.30	

As per the IDOT Bridge Manual, at open abutments protected with riprap, design scour is typically set not at predicted scour, but at the bottom of the abutment. From a geotechnical point of view considering preventing local erosion, we recommend providing stone riprap at both ends of the structure. This will also minimize long term maintenance and provide protection to the stream bed at the interface.

4.2 Seismic Design Considerations

The Seismic Site Class was determined using IDOT Design Guide AGMU Memo 09.01 LRFD Seismic Soil Site Class Definition dated January 7, 2009 and IDOT spreadsheet "Seismic Site Class Determination" dated December 13 2010. Based on the subsurface soil profile and bottom of cap established at elevation 630.97 feet, the site is in Seismic Site Class C. The results of Seismic Site Class Determination are presented in Appendix C.

The seismic spectral acceleration parameters were determined using the AASHTO computer program "*Seismic Design Parameters, version 2.10*" by specifying location by latitude and longitude. The location of the structure was considered at Latitude of 41.898837 and Longitude of -87.883679. The procedure for determining seismic design data is included in 2009 AASHTO LRFD Bridge Design Specifications. Considering seismic design spectrum values and Soil Site Class and based on Table 3.15.2-1 and Figure 2.3.10-2 in the IDOT 2012 Bridge Manual, the Seismic Performance Zone is 1. The recommended seismic design data for the spread footing foundation are summarized in Table 3.

Table 3: Seismic Design Parameters

Seismic Parameter	Value
Seismic Performance Zone (SPZ)	1
Design Spectral Acceleration at 1.0 sec. (S _{D1})	0.061g
Design Spectral Acceleration at 0.2 sec. (S _{DS})	0.113g
Soil Site Class	С

As per 2012 IDOT Bridge Manual, liquefaction analysis is not required for a site located in Seismic Performance Zone 1.

5.0 ANALYSIS AND RECOMMENDATIONS

It is understood that the slab bridge structure is proposed to be supported on steel sheet piling abutments with H-piles foundation. The bottom of the cap will be established at elevation 630.97 feet. It is understood that the bridge structure design will be based on 2014 AASHTO LRFD Bridge Design Specifications except as modified by the IDOT 2012 Bridge Manual. The following sections include geotechnical evaluations and recommendations for the bridge approach embankments, approach slabs, and foundations.

5.1 Approach Embankments and Slabs

Based on the TSL Plan included in Appendix D, Wang understands that the grade profile will only be slightly raised for the bridge approach embankments. The approach slabs can be supported on approach footings. IDOT standard design specifies a maximum applied service bearing pressure of 2.0 ksf for the approach footing. We estimate that the subgrade soils for the approach footing will have an allowable bearing resistance of 2.0 ksf based on the borings performed for the abutments.

5.2 Bridge Structure Foundations

Based on the soil conditions encountered during our investigation, design loads, scour depths, and construction feasibility and cost, the structure could be supported on driven H-piles with a steel sheet pile embankment as proposed by HBM. Foundation design data and recommendations pertaining to construction for the preferred foundation system are presented in subsequent sections of this report.

5.3 Abutments on Driven Piles

The abutments could be supported on driven piles. The most common types of piles used for a bridge structure are steel H-piles designed as friction piles and concrete piles consisting of metal shells filled with concrete either 12" or 14" diameter. Driving the metal shell pile through layers of hard cohesive soil and dense granular soils will be difficult and could possibly damage the pile toe and cause deformation at the pile head. Also due to shorter driven lengths, the metal shell piles will not achieve vertical capacity and may not develop the required fixity for the lateral load capacity. Therefore, we do not recommend using metal shell piles for the abutments support. Steel H-piles designed as friction or end bearing piles could be considered. We recommend considering H-piles with pile shoes if driven to maximum Nominal Required Bearing.

The estimated pile lengths at each abutment for various pile sizes and capacities are shown in Tables 4 through 6. Capacities other than shown in the tables can be provided if required during the design. The estimated pile lengths were calculated using the IDOT spreadsheet *Modified IDOT Static Method of Estimating Pile Length* dated October 18, 2011. The estimated pile lengths include two feet of embedment into the pile cap.

Table 4: Estin	mated Pile Le	ngths and Tip E	levation for 10-	inch Steel H-P	riles
	Proposed/ Assumed	Nominal	Factored	Total	Estimated
Structure	Pile	Required	Resistance	Estimated	Pile Tip
Unit (Boring Reference)	Cap Base	Bearing,	Available,	Pile Length	Elevation
(6)	Elevation	R_{N}	R _F		
	(feet)	(kips)	(kips)	(feet)	(feet)
		109	60	18	615
	630.55	145	80	20	613
		182	100	22	611
North Abutmont (SD 01D)		218	120	22	611
North Adutment (SB-01B)		255	140	23	610
		291	160	23	610
		335 ¹⁾	184	24	609
		454 ²⁾	250	24	609
South Abutment (SB-02,	630 55	109	60	20	614
SB-03)	030.33	145	80	23	610

	Proposed/	Nominal	Factored	Total	Estimated
Structure	Pile	Required	Resistance	Estimated	Pile Tip
(Boring Reference)	Cap Base	Bearing,	Available,	Pile Length	Elevation
(8)	Elevation	R_N	R _F		
	(feet)	(kips)	(kips)	(feet)	(feet)
		182	100	24	609
		218	120	24	609
		255	140	25	608
		279	160	25	608
		335 ¹⁾	184	26	607
		454 ²⁾	250	27	606

Maximum Nominal Required Bearing for HP 10 x 42
 Maximum Nominal Required Bearing for HP 10 x 57

Table 5: Estimated Pile Lengths and Tip Elevation for 12-inch Steel H-Piles

	Proposed/	Nominal	Factored	Total	Estimated
Charles a france	Assumed				
Unit	Pile	Required	Resistance	Estimated	Pile Tip
(Boring Reference)	Cap Base	Bearing,	Available,	Pile Length	Elevation
	Elevation	R_{N}	$R_{\rm F}$		
	(feet)	(kips)	(kips)	(feet)	(feet)
		109	60	14	619
		145	80	18	615
North Abutment (SB- 01B)	630.55	182	100	21	612
		218	120	22	611
		255	140	22	611
		291	160	23	611
		364	200	23	610
		418 ¹⁾	230	24	609
		497 ²⁾	273	24	609
		589 ³⁾	324	24	609
		664 ⁴⁾	365	24	609
South Abutment (SB-	630.55	109	60	15	618

	Proposed/ Assumed	Nominal	Factored	Total	Estimated
Structure	Pile	Required	Resistance	Estimated	Pile Tip
Unit (Boring Reference)	Cap Base	Bearing,	Available,	Pile Length	Elevation
(8)	Elevation	R _N	$R_{ m F}$		
	(feet)	(kips)	(kips)	(feet)	(feet)
02, SB-03)		145	80	22	611
		182	100	23	610
		218	120	24	609
		255	140	24	609
		291	160	25	608
		327	180	25	608
		419 ¹⁾	230	26	607
		497 ²⁾	273	27	606
		589 ³⁾	324	27	606
		664 ⁴⁾	365	28	605

1) Maximum Nominal Required Bearing for HP 12 x 53

2) Maximum Nominal Required Bearing for HP 12 x 63

3) Maximum Nominal Required Bearing for HP 12 x 74

4) Maximum Nominal Required Bearing for HP 12 x 84

Table 6: Estimated Pile Lengths and Tip Elevation for 14-inch Steel H-Piles

		0 1			
	Proposed/	Nominal	Factored	Total	Estimated
Structure	Pile	Required	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Available,	Pile Length	Elevation
(Boring Reference)	Elevation	R_{N}	$R_{\rm F}$		
	(feet)	(kips)	(kips)	(feet)	(feet)
		109	60	12	622
North Abutment (SB-01B)	_	145	80	15	619
		182	100	18	615
	_	218	120	21	612
	630.55	255	140	22	611
		291	160	22	611
		327	180	22	611
		364	200	23	610
		400	220	23	610

	Proposed/	Nominal	Factored	Total	Estimated
Structure	Pile	Required	Resistance	Estimated	Pile Tip
Unit	Cap Base	Bearing,	Available,	Pile Length	Elevation
(Boring Reference)	Elevation	R _N	R _F		
	(feet)	(kips)	(kips)	(feet)	(feet)
		578 ¹⁾	318	24	609
		705 ²⁾	388	25	608
		810 ³⁾	446	25	608
		929 ⁴⁾	511	26	607
South Abutment (SB-02, SB-03)		109	60	14	619
	630.55	145	80	17	616
		182	100	22	611
		218	120	23	610
		255	140	24	609
		291	160	24	609
		327	180	25	608
		364	200	25	608
		578 ¹⁾	318	26	607
		705 ²⁾	388	27	606
		810 ³⁾	446	28	605
		929 ⁴⁾	511	28	605

1) Maximum Nominal Required Bearing for HP 14 x 73

2) Maximum Nominal Required Bearing for HP 14 x 89

3) Maximum Nominal Required Bearing for HP 14 x 102

4) Maximum Nominal Required Bearing for HP 14 x 117

The most economical pile sizes should be selected. Due to shorter lengths and by driving only few feet more, H-piles will get maximum structural design capacity. Therefore, we recommend using H-piles driven to their maximum nominal required bearing in rock. The maximum structural design capacity of the pile and the spacing should be as per IDOT 2012 Bridge Manual. One test pile at each abutment should be identified on the plans which should be installed prior to production pile installation. There is no need for a full scale load test.

5.4 Downdrag Loads on Driven Piles

A relative settlement between the piles and surrounding soils of more than 0.4 inch would result in downdrag loads. We estimate the relative settlement at the abutments will be less than 0.4 inches. Thus, downdrag load allowances are not included on the piles supporting the abutments.

5.5 Pile Foundation Settlement

The driven pile foundations designed and constructed as recommended will undergo less than 0.5 inches of settlement.

5.6 Lateral Design Pressures

For design of the abutment walls, we recommend a linearly increasing unfactored lateral pressure of 40 pounds per square foot per foot of depth below horizontal finished grade. Additional lateral load from traffic should include a surcharge of 2 feet of soil considering a unit weight of 125 pounds per cubic foot as per AASHTO Specifications. A Geocomposite Wall Drain should be placed over the entire length of the back face of the abutment walls and connected to a 4" diameter perforated drain pipe in accordance with IDOT Bridge Manual.

5.7 Resistance to Lateral Loads

Lateral loads on piles should be analyzed for maximum moments and lateral deflections. A geotechnical resistance factor of 1.0 should be used. No allowance should be made for the frictional resistance of the concrete cap on soil. The lateral load capacity analysis can be performed using computer programs such as COMP 624P, L-pile, LATPILE or any other such program. The estimated soil parameters that may be used for the analysis of stresses and deflection under lateral loads are presented in Tables 7 and 8. Group action should be considered for piles in soils in calculating total lateral load resistance of the substructures.

Table 7:	Recommended Soil Parameters for Lateral Load Analysis
	North Abutment (SB-01B)

		Shear	Strength Prope	_			
	Effective	Undr	ained	Drained			
Soil Layer	Unit	Cohesion,	Estimated	Estimated	Estimated Lateral	Estimated Soil	
Elevation Range	Weight, (pcf)	Cu	Friction Angle, φ	Friction Angle, φ'	Parameter, k (pci)	Parameter, ε_{50}	
		(psf)	(Degree)	(Degree)			
Clay 630.9*-628.0	58	1500	0	31	500	0.007	
Silty Clay 628.0-620.5	58	2500	0	32	1000	0.005	
Silty Loam 620.5-618.0	58	0	36	36	130		
Silty Clay Loam 618.0-615.5	58	6000	0	32	2000	0.004	
Silty Loam 615.5-613.5	58	0	36	36	130		
Silty Clay Loam 613.5-610.5	63	8300	0	32	2000	0.004	

*Proposed bottom of pile cap base

Table 8: Recommended Soil Parameters for Lateral Load Analysis
South Abutment (SB-02 and SB-03)

	erties	_					
		Undr	ained	Drained			
Soil Louin	Effective	Cohesion,	Estimated	Estimated	Estimated Lateral	Estimated Soil	
Elevation Range	Weight, (pcf)	Cu	Friction Angle, φ	Friction Angle, φ'	Soil Modulus Parameter, k (pci)	Strain Parameter, ε_{50}	
		(nsf)	(Degree)	(Degree)			
0 1 01 1		(psi)					
630.9*-628.5	48	0	28	28	20		
Clay to Silty Clay 628.5-620.3	58	2300	0	32	1000	0.005	
Silty Loam 620.3-618.0	53	0	34	34	60		
Silty Clay Loam 618.0-608.8	63	6500	0	32	2000	0.004	
Gravelly Sand 608.8-605.5	63	0	36	36	135		

*Proposed bottom of pile cap base

5.8 Permanent Steel Sheet Piling

It is understood that steel sheet pile abutments without concrete facing will be used. The soil parameters shown in Tables 9 and 10 are recommended to be used for the design of the steel sheet pile walls. The parameters were determined based on the soil conditions encountered in the borings. The design of the wall should ignore 3 feet of riprap/soil in front of the wall measured from the finished streambed elevation in providing passive pressure due to frost-

heave conditions. In developing the design lateral pressure, the lateral pressure due to surcharge load should be added to the lateral earth pressure. We recommend using granular backfill, if required behind the wall. The water pressure should be added to the earth pressure if weep holes are not provided. The simplified earth pressure distribution shown in the 2012 AASHTO LRFD Design Specifications should be used. Other design details recommended by the IDOT should be followed. Design considerations should include effects from scour on the sheet piling embedment and deflection control at the top of the wall. We recommend considering minimum tip elevation of 615.0 feet.

It should be noted that the vibratory driving of steel sheet piling will very difficult below approximate elevation 619.0 feet. We recommend considering impact driving below elevation 619.0 feet. Driving with an impact hammer below elevation 615.0 feet will be very difficult. We recommend specifying pile point and use of impact hammer for driving steel sheet piles if the tip elevations are designed to be below elevation 619.0.

		North A	Abutment (S	B-01B)			
	-	Shear	Strength Prop	perties			
	Effective	Undra	ained	Drained	Lateral Earth	Lateral Earth	
Soil Layer	Unit	Cohesion,	Estimated	Estimated	Pressure	Pressure	
Elevation Range	Weight,	Cu	Friction	Friction	Cofficient	Cofficient	
	(pcf)	Cu	Angle, φ	Angle, φ'	Active (Ka)	Passive (Kp)	
		(psf)	(Degree)	(Degree)			
Clay		1500	0	31	0.32	3 12	
630.3*-628.0	50	1500	0	51	0.32	5.12	
Silty Clay	58	2500	0	32	0.31	3.25	
628.0-620.5			~				
Silty Loam	58	0	36	36	0.26	3.85	
620.5-618.0							
Silty Clay Loam	63	6000	0	32	0.31	3.25	
618.0-615.5			-				
Silty Loam	63	0	36	36	0.26	3.85	
615.5-613.5	33	3	20	20	0.20	2.00	
Silty Clay Loam	63	8300	0	32	0.31	3.25	
613.5-610.5	50		2		0.01	2.20	

*Proposed bottom of pile cap base

Table 10: Geotechnical Parameters for Design of Steel Sheet Pile Wall	
South Abutment (SB-02 and SB-03)	

		Shear	Strength Prop	perties		
	Effective - Unit Weight, (pcf)	Undra	ained	Drained		
Soil Layer Elevation Range		Cohesion, Cu	Estimated Friction Angle, φ	Estimated Friction Angle, φ'	Cofficient Active (Ka)	Cofficient Passive (Kp)
		(psf)	(Degree)	(Degree)		
Sandy Clay Loam 630.3*-628.5	48	0	28	28	0.36	2.77
Clay to Silty Clay 628.5-620.3	58	2300	0	32	0.31	3.25
Silty Loam 620.3-618.0	58	0	34	34	0.28	3.54
Silty Clay Loam 618.0-608.8	63	6500	0	32	0.31	3.25

*Proposed bottom of pile cap base

5.9 Stage Construction Considerations

Vehicular traffic on Mannheim Road will be maintained utilizing staged construction. It is understood that the structure will be constructed in three stages. Excavation to an approximate depth of 6 feet (approximate elevation 630.0 feet) below the existing grade will be required to construct pile cap. A temporary cantilever steel sheet piling will be feasible based on the charts included in *Design Guide 3.13.1* (IDOT Bridge Manual).

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Excavation and Utilities

Excavations should be performed in accordance with local, state, and federal regulations. The potential effect of ground movements upon nearby utilities should be considered during construction. Any open excavation to a depth of 5 feet should have a slope of 1.5:1 (H: V) for cohesive soils and 2:1 (H: V) for granular soils or flatter.

6.2 Filling and Backfilling

Embankment fill required to attain the final design subgrade elevations should be in accordance with Section 205 of the IDOT Standard Specifications. All fill and backfill materials should be preapproved by the site engineer. The fill should be free of organic materials and debris. The backfill behind the walls should be in accordance with IDOT Standard Specifications, Special Provisions, and the 2012 IDOT Bridge Manual.

6.3 Groundwater

Groundwater will be encountered in conjunction with some of the subgrade granular soil materials, and temporary dewatering of pile cap excavations will be required.

7.0 QUALIFICATIONS

The subsurface investigation was performed in accordance with accepted geotechnical engineering practice for the purpose of determining slab bridge structure design and construction recommendations only. Verification of the subsurface conditions for purposes of determining contamination, difficulty of excavation, and trafficability is beyond the scope of this investigation. In the event that any changes in the nature and design of the proposed structure are made, the conclusions and recommendations contained in this report should not be considered valid until the changes are reviewed and the conclusions and recommendations in this report have been modified or verified in writing.

The analysis and recommendations contained in this report are based on the soils encountered at the boring locations shown in Exhibit 2. This report does not reflect any variations that may occur between the borings or elsewhere on the site, variations whose nature and extent may not become evident until a later stage of construction. Should conditions encountered during excavation and construction operations differ from those encountered in the borings, Wang Engineering, Inc. should be notified so that recommendations can be reviewed and revised if necessary.

It has been a pleasure to assist HBM Engineering Group, Millennia Professional Services of Illinois and IDOT District One on this project. Please call if there are any questions, or if we can be of further service.

License Expires- 11-30-17 Respectfully Submitted,

WANG ENGINEERING, INC.

Mallohadala

Mohammed A. Kothawala, P.E., D.GE Sr. Project Manager/Sr. Geotechnical Engineer

Shin T. Farry

Corina T. Farez P.I Vice President

REFERENCES

AMERICAN ASSOCIATION OF STATE HIGHWAY TRANSPORTATION OFFICIALS (2014) *LRFD Bridge Design Specifications*. United States Department of Transportation, Washington, D.C.

ILLINOIS DEPARTMENT OF TRANSPORTATION (1999) *Geotechnical Manual*. IDOT Bureau of Materials and Physical Research, Springfield, IL.

ILLINOIS DEPARTMENT OF TRANSPORTATION (2015) *Standard Specifications for Road and Bridge Construction*. IDOT Division of Highways, Springfield, IL.

ILLINOIS DEPARTMENT OF TRANSPORTATION (2012) *Bridge Manual*. IDOT Bureau of Bridges and Structures, Springfield, IL.

EXHIBITS

ι2° 5.5 45 Mannheim Road over Addison Creek SW 1/4 Sec. 4, T 39N, R 12E of 3rd PM © 2013 Go

0	60	120 Yards

APPENDIX A

BORING LOG SB-01A

WEI Job No.: 616-02-04

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

ClientMillennia Professional Services of IllinoisProjectMannheim Road over Addison CreekLocationStone Park, Illinois

Datum: NAVD 88 Elevation: 635.74 ft North: 1906121.24 ft East: 1106698.68 ft Station: Offset:

Profile	Elovation	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCI DESCRIPTION	Depth A	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	6	1 <u>34.6</u> V	14-inch thick ASPHALT Medium dense, gray SILT, wi /ery fine sand FI	h - 		1	8 10 <u>11</u>	NP	15									
				5_		2	5 9 10	NP	15									
	6	27.7	/on.ctiff brown SILTY CLA	- - - - -		3	11 8 7	NR										
	6	L 25.7 E	OAM, trace gravel			4	5 6 7	2.25 P	21									
				- - -	-													
				15_	-													
				- - -	-													
				20_	-													
				- - -	-													
				25_												· A		
┣—	GENERAL NUIES								WAIE		LD		A					
Be	Begin Drilling 11-11-2013 Complete Drilling 11-11-2013							While Drilling										
Dr	Drilling Contractor VVAIIQ Lesser E Bozas Obstitut to DDAET								At Completion of Drilling	₹		N	IA					
	Drilling Method 3 25" HSA boring backfilled upon completion							Depth to Water	NA NΔ	• • • • •								
	Jrilling Method 3.25" HSA, boring backfilled upon completion										The stratification lines repr	esent the app al transition	roxima	ate b	oundary	/		

WANGENGINC 6160204.GPJ WANGENG.GDT 11/19/13

WANGENGINC 6160204.GPJ WANGENG.GDT 11/19/13

APPENDIX B

LAB.GDT 6160204.GPJ US ΗQ SIZE GRAIN

APPENDIX C

SEISMIC SITE CLASS DETERMINATION I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

630.20

636.46

630.26 ft.

3-02

Soil Site Class C <----Controls

N Qu Boundary (tsf)

Layer

Description

В

В

R

в B

В В R

inches

Modified on 12/10/10

ft

PROJECT TITLE===== Millennia Professional Services of Illinois SN 016-1351

							. 1						
Substructu	re 1							Substructu	ire 2				
Base of Subst	ruct. Elev. (o	or ground s	urf for	bents)	630.26	ft.		Base of Subst	truct. Elev. (or ground s	urf for	bents)	6
Pile or Shaft D	ia.					inches		Pile or Shaft I	Dia.				
Boring Numbe	r				SB-01B			Boring Numbe	er				SB-02
Top of Boring	Elev.				636.01	ft.		Top of Boring	Elev.				6
Approximate F	ixity Elev.				630.26	ft.		Approximate I	Fixity Elev.				e
Individual Site	e Class Def	inition:						Individual Sit	e Class Def	inition:			
N (bar):	53	(Blows/ft.)	Soil	Site Cl	ass C			N (bar):	51	(Blows/ft.)	Soil	Site C	lass C
N _{ch} (bar):	97	(Blows/ft.)	Soil	Site C	ass C			N _{ch} (bar):	98	(Blows/ft.)	Soil	Site C	lass C
s _u (bar):	4.42	(ksf)	Soil	Site Cl	ass C <co< td=""><td>ontrols</td><td></td><td>s_u (bar):</td><td>4.16</td><td>(ksf)</td><td>Soil</td><td>Site C</td><td>lass C</td></co<>	ontrols		s _u (bar):	4.16	(ksf)	Soil	Site C	lass C
Seismic	Bot. Of				Layer			Seismic	Bot. Of				La
Soil Column	Sample	Sample			Description			Soil Column	Sample	Sample			Descr
Depth	Elevation	Thick.	Ν	Qu	Boundary	_		Depth	Elevation	Thick.	Ν	Qu	Bour
(ft)		(ft.)		(tsf)				(ft)		(ft.)		(tsf)	
	633.0	3.00	12	2.50	В			-	633.5	3.00	11	2.25	E
	630.5	2.50	9	1.50					631.0	2.50	6	1.75	E
2.3	628.0	2.50	5	1.48	В			1.8	628.5	2.50	6	0.82	E
4.8	625.5	2,50	10	2.46		1		4.3	626.0	2,50	9	2.13	
7.3	623.0	2.50	23	3.12				6.8	623.5	2.50	17	2.79	E
9.8	620.5	2.50	16	2.13	В			93	621.0	2.50	11	1.89	F
12.3	618.0	2.50	48	20	B			11.8	618.5	2.50	58		
14.8	615.5	2.50	68	6.07	B			14.3	616.0	2.50	22	6.56	
14.0	612.5	2.00	100	0.07				14.0	612.5	2.50	52	5.00	
10.0	610.5	2.00	42	8.36	B			10.0	611.0	2.50	41	8.20	
13.0	600.0	1.50	100	0.50				13.5	609.5	2.50		0.20	
100.0	520.2	79.70	100	5.00				21.0	605 F	2.00	100		
100.0	000.0	70.70	100	5.00	ĸ			24.0	520.2	75.00	100	5.00	
								100.0	530.3	75.20	100	5.00	r
										-			

-							 -				
Substructu	re 3						Substructu	re 4			
Base of Substr	ruct. Elev. (d	or ground si	urf for	bents)	630.26	ft.	Base of Subst	ruct. Elev. (d	or ground s	urf for	bents
Pile or Shaft D	ia.					inches	Pile or Shaft D	ia.			
Boring Numbe	r				SB-03		Boring Numbe	r			
Top of Boring	Elev.				635.76	ft.	Top of Boring	Elev.			
Approximate F	ixity Elev.				630.26	ft.	Approximate F	ixity Elev.			
Individual Site	e Class Defi	inition:					Individual Site	e Class Def	inition:		
N (bar):	49	(Blows/ft)	Soil	Site C	lass D		N (bar):		(Blows/ft)	NΔ	
N (bar):	60	(Blowe/ft)	Soil	Sito C		ontrole	N. (bar):		(Blowe/ft)	NA	
s (bar):	4 77	(ksf)	Soil	Site C	lass C	1111013	s (bar):		(ksf)	NΔ	
			001	one o			o((, (, (, (, (, (, (, (, (, (, (, (, (,		(((3))		
Seismic	Bot. Of	0			Layer		Seismic	Bot. Of	0		
Soil Column	Sample	Sample		-	Description		Soil Column	Sample	Sample		-
Depth	Elevation	I hick.	Ν	Qu	Boundary		Depth	Elevation	Thick.	Ν	Qu
(ft)		(rt.)		(tSt)	_		(ft)		(rt.)	_	(tSf)
	632.8	3.00	18		В					_	
	630.3	2.50	6	_						_	-
2.5	627.8	2.50	5		В					_	-
5.0	625.3	2.50	18	3.77						_	-
7.5	622.8	2.50	15	2.95							
10.0	620.3	2.50	16	2.54	В						
12.3	618.0	2.30	26		В						
14.8	615.5	2.50	29	6.72							
17.3	613.0	2.50	52	9.68							
19.8	610.5	2.50	32	6.15							
22.5	607.8	2.70	/8	6.81	В						
100.0	530.3	77.50	100	5.00	R						
											-
											-
											-
											-
			_							_	
			_							_	
			_							_	
											-
											-
											-
			_							_	
			_							_	
				_							-

Dia. inches ber ig Elev. e Fixity Elev. ft. ite Class Definition: (Blows/ft.) NA (Blows/ft.) NA (ksf) NA Bot. Of Layer n Sample Sample Description Thick. N Qu Boundary Elevation (ft.) (tsf)

Global Site Class Definition: Substructures 1 through 3

N (bar):	51 ((Blows/ft.)	Soil Site Class C
N _{ch} (bar):	85 ((Blows/ft.)	Soil Site Class C <controls< td=""></controls<>
s _u (bar):	4.45 ((ksf)	Soil Site Class C

APPENDIX D

WATERWAY INFORMATION

'lev. =	635.06	at Sta. 8	3+30 N	lax. Record	ed H.W.E =	637.33
pening Sq. Ft.		Nat.	Head - Ft.		Headwater El.	
xist.	Prop.	H.W.E.	Exist.	Prop.	Exist.	Prop.
117	143	635.9	1.1	0.3	637.0	636.2
117	143	637.1	1.1	0.4	638.2	637.5
117	143	637.4	1.1	0.4	638.5	637.8
117	143	638.2	0.9	0.3	639.1	638.5

10-year velocity through the existing structure = 5.2 fps. 10-year velocity through the proposed structure = 3.6 fps.

CONSTRUCTION SEQUENCE FOR EACH STAGE CONSTRUCTION

1. Install temporary concrete barriers and temporary sheet piling.

2. Perform pavement removal and Structure Exoavation for the approach slab and the

-piles for the abutments. ing an

reinforcement and construct concrete abutments.

pavement and structure within limits of the current stage

PREPA

1. For limits of Stone Riprap, Class A4 and Porous Granular Embankmenk,

DESIGN SCOUR ELEVATION TABLE

imit	Design Scour	Itom 117		
	S. Abut.	N. Abut.	116111 115	
	617.40	617.90	5	
1	616.30	616.90		
n	617.40	617.90		
616.30		616.90		

Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0 sec. (SD1) = 0.061g Design Spectral Acceleration at 0.2 sec. (SDS) = 0.113g

DESIGN SPECIFICATIONS

2014 AASHTO LRFD Bridge Design Specifications, 7th Edition with 2015 and 2016 Interim Revisions.

fc = 4,000 psi (Superstructure Concrete) fy = 60,000 psi (Reinforcement) = 50,000 psi (AASHTO M270 Grade 50)

TO STA.

Aluminum I05'-8" Rolling.
to-Out Abutment 28'-0" 36'-11" / R-20
age I Construction
$\frac{\partial O(O(M-U))}{\partial O(O(M-U))} = \frac{\partial O(O(M-U))}{\partial O(O(M-U))}$
Steel H-piles
nent Sheet Piling
TMENT ELEVATION
105'-8" (Railing, Type L, Std.
to-Out Abutment / R-20 28'-0" 40'-9" と見て、
I Construction Stage II Construction
היה
Elev. 630.55
MENT FLEVATION
ooking South)
<u>Geocomposite</u> Granular Backfill / Wall Drain / for Structures
<u>1'-0"</u>
Structure
IT Excavation
French Drains
2 <u>4" \u00e9 Perforated</u> <u>Pipe Underdrain</u>
<u>LEGEND</u>
tt Steel H-Piles
<u>U ABUTMENT</u>
n For Clarity) <u>DETAILS (SHEET 1 OF 2)</u>
U.S. RTE. 12/45
ADDISON CREEK
<i>F.A.P. RTE.</i> 330 - SEC. 464-B
". <u>COOK COUNTY</u>
determined during final degree STATION 77+45.19
IF.A.P.
RTE. SECTION COUNTY SHEETS NO. 330 464-B COOK 3 2
CONTRACT NO. 60V22
TA. TO STA. ILLINDIS FED. AND PROJECT

