STRUCTURE GEOTECHNICAL REPORT

F.A.P. Route 778 (IL 34) over Spring Valley Creek

S.N. 083-0022(E) S.N. 083-0070 (P)

F.A.P. ROUTE 778 SALINE COUNTY, ILLINOIS PTB 148/34 WO#17 KEG NO. 08-0061.17

> Authored By: Matt D. Masterson, P.E.

Charles R. Graham Kaskaskia Engineering Group, LLC 208 East Main Street, Suite 100 Belleville, IL 62220 (618) 233-5877

mmasterson@kaskaskiaeng.com

Prepared for: Crawford, Murphy & Tilly, Inc. 2750 West Washington Street Springfield, IL 62702-3465

April 13, 2015 Revised September 28, 2015

Kaskaskia Engineering Group, LLC

EXECUTIVE SUMMARY

IL 34 over Spring Valley Creek F.A.P. 778 Saline County, Illinois Job No. D-99-032-13 PTB 148/34 WO #17 Existing Structure No. 083-0022 Proposed Structure No. 083-0070

The project includes the replacement of an existing single span bridge (SN 083-0022) located in Saline County, Illinois. The existing superstructure will be removed and replaced with a single span wide flange beam bridge. The abutments will be removed and replaced with integral abutments. Traffic will be staged during construction.

The results of the stability analysis indicates that an acceptable FOS will exist at the east and west abutments during the end-of-construction and long term conditions. For the seismic conditions it was necessary to include the abutment piling in the model in order to achieve an acceptable FOS. As the model indicates, an acceptable FOS was achieved in the Seismic condition using an 8 ft. pile spacing.

TABLE OF CONTENTS

1.0	Project Description and Proposed Structure Information1
1.1	Introduction1
1.2	Project Description1
1.3	Existing Structure1
1.4	Proposed Bridge Information1
2.0	Site Investigation, Subsurface Exploration, and Generalized Subsurface Conditions 1
2.1	Subsurface Conditions2
2.2	Groundwater 2
3.0	Geotechnical Evaluations
3.1	Settlement3
3.2	Slope Stability
3.3	Seismic Considerations
3.4	Scour 4
3.5	Mining Activity5
3.6	Liquefaction5
4.0	Foundation Evaluations and Design Recommendations
4.1	General Feasibility6
4.2	Pile Supported Foundations 6
4.3	Lateral Pile Response9
5.0	Construction Considerations11
5.1	Construction Activities11
5.2	Temporary Sheeting and Soil Retention11
5.3	Site and Soil Conditions11
5.4	Foundation Construction11
6.0	Computations11
7.0	Geotechnical Data11
8.0	Limitations12

TABLES

<u>Page</u>

3
4
5
7
7
8
8
9
0

EXHIBITS

- Exhibit A USGS Topographic Location Map Exhibit B Type, Size, and Location Plan (TS&L) Exhibit C Boring Logs Exhibit D Subsurface Profile

- Exhibit E SLOPE-W Slope Stability Analysis Exhibit F Pile Length/Pile Type

1.0 **Project Description and Proposed Structure Information**

1.1 Introduction

The geotechnical study summarized in this report was performed for the proposed replacement of the single-span bridge carrying IL 34 over Spring Valley Creek in Saline County, Illinois. The purpose of this report is to present design and construction recommendations for the proposed structure.

1.2 **Project Description**

The project includes the replacement of the existing single-span bridge (SN 083-0022) located in Saline County, Illinois. The existing superstructure will be removed and replaced with a single span wide flange beam bridge. The abutments will be removed and replaced with integral abutments. Traffic will be staged during construction. The general location of the structure is shown on a USGS Topographic Location Map, Exhibit A. The site lies within the limits of the Third Principal Meridian, (T. 7S R. 7E Section 24). The location borders the Shawnee Hills Section of the Interior Low Plateaus Province and the Mt. Vernon Hill Country of the Till Plains section of the Central Lowland Province.

1.3 Existing Structure

The existing structure was constructed in 1924 as a single-span P.P.C. deck-beam bridge, on closed abutments, supported with untreated timber piles on spread footings. Back to back abutments measure 43 ft. – 2.5 in. with an out to out width of ± 33 ft. – 5.0 in. There are two 12 ft. driving lanes with 4 ft. – 3.0 in. shoulders.

1.4 Proposed Bridge Information

The proposed structure (SN 083-0070) located at F.A.P. Route 778 (IL 34) over Spring Valley Creek will consist of a single span wide flange beam bridge. An approximate \pm 7.5 in. grade raise is proposed to accommodate a deeper superstructure. The structure will have a width of 39 ft. – 2.0 in. out to out deck, and maintain a zero degree skew. The structure will measure 74 ft. – 8.0 in., measured parallel to the centerline of IL 34, from back to back of abutments.

The structure will be located at approximate station 408+75.00 (IL 34), and will support two 12-ft. lanes, with shoulder widths of 6 ft. Further substructure details will be based on the findings of this SGR.

2.0 Site Investigation, Subsurface Exploration, and Generalized Subsurface Conditions

The site investigation plan was developed and performed by KEG. KEG representatives observed the field exploration, including logging of the soil samples during drilling.

Two standard penetration test (SPT) borings, designated B-1 and B-2 were drilled between December 22 and December 23, 2014. Table 2.0 – Boring Summary below, lists specifics of each boring. In addition, the boring locations are shown on the Type, Size, and Location plan (TS&L), Exhibit B, as provided by Crawford, Murphy and Tilly, Inc. (CM&T). Detailed information regarding the nature and thickness of the soils encountered and the results of the field sampling and laboratory testing are shown on the Boring Logs, Exhibit C. A soil profile can be found under Subsurface Profile, Exhibit D.

Boring Location	Station	Offset	Ground Surface Elevation
B-1	408+28	11.4 RT	380.27 ft.
B-2	409+21	11.3 LT	380.19 ft.

Table 2.0 – Boring Summary

2.1 Subsurface Conditions

Boring B-1 consisted of approximately 1.7 ft. of asphalt and concrete from the ground surface to approximate EI. 378.6. A medium to stiff sandy silt followed to EI. 374.2, with a driving resistance (N-value) of 5 blows per foot (bpf) and an unconfined compressive strength (Q_u) of 1.5 tons per square foot (tsf). The moisture content was 16 percent. A layer of medium to stiff silt followed to EI. 371.7 with an N-value of 6 bpf and a Q_{μ} of 2.0 tsf. The moisture content was 17 percent. Soft silty clay followed to El. 366.7 with N-values ranging from 3 to 4 bpf and Q_u values between 0.4 and 0.8 tsf. The moisture contents varied from 23 to 26 percent. A soft sandy silty clay followed to El. 363.7 with an N-value of 3 bpf and a Q_u of 0.25 tsf. The moisture content was 21 percent. A layer of very loose, clayey sand followed to El. 361.7, with an N-value of 4 bpf. The moisture content was 23 percent. A very soft clay followed to El. 356.7 with N-values ranging from 0 to 5 bpf and Q_u values between 0.4 and 0.7 tsf. The moisture contents varied from 23 to 30 percent. A soft silty clay followed to El. 346.7 with N-values ranging from 0 to 3 bpf and Q_u values between 0.1 and 0.4 tsf. The moisture contents varied from 25 to 28 percent. Stiff to medium stiff silty clay followed to auger refusal at EI. 343.4 with an N-value of 13 bpf and a Qu of 0.9 tsf. The moisture content was 17 percent. Highly weathered sandstone followed with a blow count of 50 blows for 2 in. and a moisture content of 8 percent. Rock coring below this depth revealed a sandstone with Q_u values of 249.6 tsf and 64.0 tsf, and moisture contents between 4.2 and 4.4 percent.

Boring B-2 consisted of approximately 1 ft. of asphalt and concrete from the ground surface to approximate El. 379.1. A medium stiff silty clay followed to El. 376.6 with an N-value of 6 bpf and a Q_u of 1.5 tsf. The moisture content was 19 percent. Below the silty clay, a soft silt was encountered to El. 374.1 with an N-value of 4 bpf and a Q_u of 1.75 tsf. The moisture content was 20 percent. A layer of soft sandy silt followed to El. 371.6. The sandy silt had an N-value of 3 bpf and a Q_u of 1.0 tsf. The moisture content was 16 percent. Below the sandy silt a layer of very soft silty clay was encountered to El. 365.6 with an N-value between 1 and 2 bpf and Q_u values between 0.25 and 0.6 tsf. The moisture contents varied from 20 and 25 percent. A loose sand followed to El. 361.6 with an N-value of 5 bpf and a moisture content of 21 percent. A stiff to very soft clay followed to auger refusal at El. 343.1. N-values ranged from 0 to 14 bpf and Q_u values between 0.3 to 1.3 tsf. The moisture contents varied from 21 to 33 percent. Highly weathered sandstone followed with driving resistance of 50 blows for 3.5 in. The moisture content was 11 percent.

2.2 Groundwater

Groundwater was encountered during drilling in Boring B-1 at El. 362.3 and El. 365.2 in Boring B-2. It should be noted that the groundwater level is subject to seasonal and climatic variations. In addition, without extended periods of observation, measurement of true groundwater levels may not be possible.

3.0 Geotechnical Evaluations

3.1 Settlement

Since grading and changes to the existing approach embankments are anticipated to raise the proposed grade by less than one foot, it is estimated that settlement magnitudes of less than 0.5 inches will be experienced. Therefore, no settlement calculations were performed for the proposed structure and downdrag was not included in the pile capacity calculations.

3.2 Slope Stability

The construction of the proposed structure will result in new end-slopes at the abutment locations.

The proposed end-slope at the east and west abutments are composed of 2 Horizontal to 1 Vertical slopes (2H:1V) to the toe in the creek-bed. Slope stability of the end-slopes was analyzed using SLOPE-W; the soil properties at the site, including those in Borings 1-S and 2-S; and the end-slope geometrics. Three conditions were modeled: end-of-construction, long-term, and a design seismic event. A critical factor of safety (FOS) was calculated for each condition. According to current standards of practice, the target FOS is 1.5 for end-of-construction and long-term slope stability and 1.0 for the design seismic event.

In order to model the end-of-construction condition, un-drained soil parameters were used with a friction angle of 0 degrees assumed for cohesive soils. Drained soil parameters with an assumed friction angle of 26 to 30 degrees were used to model the long-term and seismic conditions and to analyze the condition where excess pore water pressure from construction has dissipated. For non-engineered cohesive materials, a nominal cohesion value between 50 and 100 psf was included in the drained strength parameters.

The Modified Bishop Method, which generates circular-arc failure surfaces, was used to calculate the critical failure surfaces and FOS for the analyzed conditions. The FOS obtained in the analysis are shown in Table 3.2. SLOPE-W program output from this analysis can be found in SLOPE-W Slope Stability Analysis, Exhibit E.

Location	Slope	End-of- Construction	Long- Term	Seismic	Seismic w/ Pile Reinforcement
East Abutment	1V:2H	2.4	1.6	0.8	1.0
West Abutment	1V:2H	1.6	1.6	0.8	1.0

Table 3.2 – Slope Stability Critical FOS

The results of the analysis, as provided in Table 3.2, indicates that an acceptable FOS will exist at the east and west abutments during the end-of-construction and long term conditions. For the

seismic conditions it was necessary to include the abutment piling in the model in order to achieve an acceptable FOS. As the model indicates, an acceptable FOS was achieved in the Seismic condition using an 8 ft. pile spacing.

3.3 Seismic Considerations

The determination of Seismic Site Class was based on the method described by IDOT AGMU Memo 09.1 - Seismic Site Class Definition and the IDOT-provided spreadsheet titled: *Seismic Site Class Determination*. Using these resources, the controlling global site class for this project is Soil Site Class D.

Additional seismic parameters were calculated for use in design of the structure and evaluation of liquefaction potential. The USGS published information and mapping (<u>http://earthquake.usgs.gov/</u>), including software directly applicable to the *AASHTO Guide Specifications for LRFD Seismic Bridge Design*, was used to develop the parameters for the project site location. The values, based on a 1000-Year Return Period with a Probability of Exceedance (PE) of 7 percent in 75 years and Soil Site Class D, are summarized below.

Parameter	Value
Soil Site Class	D
Spectral Response Acceleration, 0.2 Sec, S _{DS}	0.815 g (Site Class D)
Spectral Response Acceleration, 1.0 Sec, S _{D1}	0.344 g (Site Class D)
Seismic Performance Zone	3

Table 3.3 – Summary of Seismic Parameters

As indicated in the table above, the Seismic Performance Zone is 3, based on S_{D1} and Table 3.15.2-1 in the IDOT Bridge Manual, the Soil Site Class D, and Figure 2.3.10-4 in the IDOT Bridge Manual.

3.4 Scour

The design scour elevations for the proposed structure are shown in Table 3.4. Class A5 stone riprap will be placed on the surface of the proposed abutment endslopes and streambed, to reduce the potential for future scour.

Event/Limit State	Design Scour (ft.)	Elevations	Item 113
	W. Abut.	E. Pier	
Q100	372.6	372.6	
Q200	372.6	372.6	8
Design	372.6	372.6	
Check	372.6	372.6	

Table 3.4 – Design Scour Elevations

3.5 Mining Activity

The Illinois State Geological Survey (ISGS) website indicates that coal mining has occurred in Saline County. According to the Saline County, Illinois Coal Mines and Underground Industrial Mines Map, dated September 18, 2013, obtained from the Illinois Geological Survey website (<u>http://www.isgs.illinois.edu/maps-data-pub/coal-maps.shtml</u>), the project site was not undermined.

The listed disclaimer indicates the locations of some features on the mine map may be offset by 500 ft. or more due to errors in the original source maps, the compilation process, digitizing, or a combination of these factors.

No visual indications were noted on the boring logs of apparent depressions, which could be due to mine subsidence or shafts beneath the site.

3.6 Liquefaction

A liquefaction analysis was performed using the liquefaction worksheet provided by IDOT BBS Central Geotechnical Unit (Mod. 5/24/2010). The Peak Horizontal Ground Acceleration value in the spreadsheet was set equivalent to the PGA (0.234 g for CEUS which was higher than the NMSZ PGA), as determined based on information from the USGS website and the 2009 AASHTO Guide Specifications for LRFD Seismic Bridge Design. The Design Earthquake Mean Magnitude (8 for CEUS) was determined using the USGS data and deaggregation methods provided at http://earthquake.usgs.gov/. The soil profile for Boring B-1 and B-2 was analyzed.

Plasticity Index (PI) and liquid limits (LL) are a required input in the liquefaction spreadsheet. However, Atterberg limits testing was only available for one sample in each boring; therefore, these values were estimated based off of the visual classifications provided on the boring logs.

Groundwater was encountered between 15 and 18 ft. below the ground surface. As previously mentioned, groundwater elevations will vary with climatic and seasonal conditions. The liquefaction analysis assumed that the depth to groundwater observed during the subsurface exploration, would be the same. The liquefaction spreadsheets indicated that there is one layer susceptible to liquefaction in boring B-1 and there are three layers susceptible to liquefaction in B-2; therefore, liquefaction was considered as a reduction for pile design capacity.

4.0 Foundation Evaluations and Design Recommendations

4.1 General Feasibility

According to the IDOT All Bridge Designers (ABD) Memo 12.3 dated July 25, 2012 by IDOT, 12 and 14 in. Metal Shell (MS) and HP 8X36 or larger H-piles are feasible pile types for foundation support of the proposed Integral abutments. The average shear strength ($Q_{u avg}$) within the critical depth zone is approximately 0.9 tsf.

The Modified IDOT Static Method of Estimating Pile Length, provided by IDOT BBS Foundations and Geotechnical Unit, was used to calculate the design length of the piles. According to ABD 12.3, MS piles are a feasible option for foundation support; however, the relatively shallow bedrock and presence of potentially liquefiable soil layers limits the available capacity that can be achieved using MS piles. Drilled shafts were not considered due to cost and the depth to bedrock.

4.2 Pile Supported Foundations

The foundations supporting the proposed bridge must provide sufficient support to resist dead and live loads, including seismic loadings. Based on the encountered subsurface conditions, the Modified IDOT Static Method of Estimating Pile Length provided by IDOT BBS Foundations and Geotechnical Unit, and the information available to date, H-piles are acceptable for use at the abutment locations. The Modified IDOT Static Method uses the LRFD Pile Design Guide Procedure to estimate the pile lengths (Pile Length/Pile Type, Exhibit F).

The abutment loads were provided by CM&T. The abutments will each experience a Total Factored Load of 872 kips. The estimated pile lengths for the recommended pile types are shown in Tables 4.2.1 through 4.2.7, below.

The Nominal Required Bearing (R_N) represents the resistance the pile will experience during driving, and will assist the contractor in selecting a proper hammer size. The Factored Resistance Available (R_F) documents the net long-term axial factored pile capacity available at the top of the pile to support factored substructure loadings. The Seismic Resistance Available documents the pile capacity available during an Extreme (Seismic) event, including geotechnical loss due to liquefaction during such an event. Estimated pile lengths and capacities of other feasible pile types that may be considered for the proposed structure are included in Pile Length/Pile Type, Exhibit F.

	Estimated Pile Tip Elevation (ft.)	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Seismic Resistance Available (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut- off Elevation (ft.)
	342.6	156	86	145	32	374.6
West Abutment	341.6	257	141	246	33	374.6
	340.6	335	184	324	34	374.6
East	342.6	140	77	130	32	374.6
Abutment	341.6	236	130	226	33	374.6
	340.6	335	184	325	34	374.6

Table 4.2.1 – Estimated Pile Lengths for HP 10X42 H-pile

Table 4.2.2 – Estimated Pile Lengths for HP 12X53 H-pile

	Estimated Pile Tip Elevation(ft.)	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Seismic Resistance Available (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut- off Elevation (ft.)
	342.6	187	103	174	32	374.6
West Abutment	341.6	308	169	295	33	374.6
	340.6	418	229	405	34	374.6
Fast	342.6	169	93	157	32	374.6
Abutment	341.6	283	156	271	33	374.6
	340.6	418	229	406	34	374.6

	Estimated Pile Tip Elevation(ft.)	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Seismic Resistance Available (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut- off Elevation (ft.)
	341.6	322	177	309	33	374.6
vvest Abutment	340.6	445	245	431	34	374.6
	339.6	589	324	575	35	374.6
	341.6	297	163	285	33	374.6
East Abutment	340.6	419	231	407	34	374.6
	339.6	589	324	577	35	374.6

Table 4.2.3 – Estimated Pile Lengths for HP 12X74 H-pile

Table 4.2.4 – Estimated Pile Lengths for HP 14X73 H-pile

	Estimated Pile Tip Elevation (ft.)	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Seismic Resistance Available (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
	342.6	229	126	214	32	374.6
VVest Abutment	341.6	374	206	359	33	374.6
	340.6	578	318	563	34	374.6
East	342.6	207	114	192	32	374.6
Abutment	341.6	344	189	330	33	374.6
	340.6	578	318	564	34	374.6

	Estimated Pile Tip Elevation (ft.)	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Seismic Resistance Available (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut- off Elevation (ft.)
	339.6	732	402	716	35	374.6
West Abutment	338.6	864	475	848	36	374.6
	337.6	929	511	913	37	374.6
	339.6	701	386	687	35	374.6
East Abutment	338.6	843	464	829	36	374.6
	337.6	929	511	915	37	374.6

Table 4.2.5 – Estimated Pile Lengths for HP 14X117 H-pile

Due to the anticipated hard driving conditions and likelihood of the H-piles developing a majority of their capacity in hard rock (sandstone), KEG recommends the use of pile shoes to reduce the risk of damaging the piles during installation.

4.3 Lateral Pile Response

Generally, the geotechnical engineer provides soil parameters to the structural engineer so that an L-Pile program or other approved software can be used for the lateral or displacement analysis of the foundations. Table 4.3 is included for the structural engineer's use in evaluating lateral pile response. The values were estimated based on the descriptions as listed on the boring logs. No specific hydrometer analyses were performed on the site soils for estimation of parameters.

	Elev. At		Short-term		Long-term				Assumed	
Boring	Bottom of Layer	Y (pcf)	C'	⊉ (degrees)	c'	Ф (degrees)	K (pci)	N	% fines < #200	<mark>٤</mark> 50
	376.7	120	1500	0	100	26	500	6	80	0.007
	374.2	115	1800	0	100	28	500	4	65	0.007
	371.7	115	1000	0	100	29	100	3	65	0.007
East	365.7	120	425	0	50	26	30	2	80	0.020
Abutment (B-2)	361.7	110	0	30	0	30	20	5	3	n/a
	357.2	125	950	0	50	26	100	9	85	0.010
	352.2	125	400	0	50	26	30	1	85	0.020
	343.2	125	1050	0	100	26	500	7	85	0.007
	342.4	145	0	45	0	45	n/a	100+	n/a	n/a
	374.3	115	1500	0	100	29	500	5	60	0.007
	371.8	115	2000	0	100	28	500	6	65	0.007
	363.8	120	500	0	50	26	30	3	80	0.020
West	361.8	110	0	30	0	30	25	4	3	n/a
Abutment (B-1)	356.8	125	550	0	50	26	100	3	85	0.010
	346.8	120	233	0	50	26	30	1	80	0.020
	343.6	120	900	0	50	26	100	13	80	0.010
	343.4	145	0	45	0	45	n/a	100+	n/a	n/a

 Table 4.3 – Soil Parameters for Lateral Pile Load Analysis

5.0 Construction Considerations

5.1 Construction Activities

Construction activities should be performed in accordance with the current IDOT Standard Specifications for Road and Bridge Construction and any pertinent Special Provisions or Policies.

5.2 Temporary Sheeting and Soil Retention

Temporary shoring may be required at the substructure units during construction, as well as along the embankment, as a raise in grade and stage construction is anticipated for this project. The average unconfined compressive strength for an assumed embedment depth of 20 ft. is 0.9 tsf. The IDOT Temporary Sheet Piling Design Guide and Charts indicates that a Cantilevered Sheet Piling System would be feasible for retained heights up to 15 ft. However, if the retained height exceeds 15 ft., the design charts will no longer be feasible and a soil retention system will be required. An Illinois-licensed structural engineer is required to seal the design of the temporary soil retention system, if deemed necessary.

5.3 Site and Soil Conditions

Should any bridge or embankment design considerations assumed by either IDOT or KEG change, KEG should be contacted to determine if the recommendations stated in this report still apply.

5.4 Foundation Construction

Conventional pile-driving equipment and methodologies should be assumed.

Prior to construction, a JULIE locate shall be conducted to determine if any underground utilities are present in the area of the proposed structure. IDOT shall also be contacted to locate any private utilities. If utilities become a problem during construction, the appropriate owner shall be contacted immediately.

6.0 Computations

Computations and analyses for special circumstances, if any, are included as exhibits. Please refer to each section of the report for reference to the exhibit containing any such calculations or analysis used.

7.0 Geotechnical Data

Soil boring logs can be found in Exhibit C. The Subsurface Profile can be found in Exhibit D.

8.0 Limitations

The recommendations provided herein are for the exclusive use of CM&T and IDOT. They are specific only to the project described and are based on the subsurface information obtained by IDOT at two boring locations in 2014, KEG's understanding of the project as described herein, and geotechnical engineering practice consistent with the standard of care. No other warranty is expressed or implied. KEG should be contacted if conditions encountered during construction are not consistent with those described.

EXHIBIT A

USGS TOPOGRAPHIC LOCATION MAP

EXHIBIT B

TYPE, SIZE, AND LOCATION PLAN (TS&L)

EXHIBIT C

BORING LOGS

SOIL BORING LOG

Date <u>12/26/1</u>4

Page <u>1</u> of <u>2</u>

ROUTE	F.A.P. 778	_ DE	SCR	PTION	l		Structure Boring	L(LOGGED BY			EG
	2		_ เ	OCAT		IL Rou	te 34 over Spring Valley Creek					
	Saline DR	RILLING	ME	THOD		CI	ME 550 w/HSA HAMMER 1	YPE		Auto	matic	
STRUCT. NO. Station	083-0022		D E P T	B L O W	U C S	M 0 1 5	Surface Water Elev Stream Bed Elev	ft ft	D E P T	B L O W	U C S	M 0 S
Station Offset	408+28 11.4 ft Right		Ĥ	S	Qu	T	First Encounter 362.3	ft ft	Ĥ	S	Qu	Ť
Ground Surfa	ce Elev. 380.27	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	ft	(ft)	(/6")	(tsf)	(%)
14" ASPHALTI	C CONCRETE	379.1					CLAY: Gray, fat, very soft, moist <i>(continued)</i>			WOL		
6" CONCRETE SANDY SILT: medium to stiff	Brown, moist,	378.6	. — —				Becomes medium to stiff			3 2	0.7 B	23
				2			SILTY CLAY: Gray, trace sand	356.8		WOH		
			5	3 2	1.5 P	16	and coal deposits, moist, soft			1 2	0.1 B	26
		374.3	_						_			
SILT: Brown, t stains, moist, n	race sand and iron nedium to stiff			4 4 2	2.0 P	17				WOH WOH WOH	0.2 B	28
				-								
		371.8	·	WOH					_	WOH		
moist, soft	Reduisii-brown,			2	0.4 B	26				WOH WOH	0.4 B	25
				1								
Trace iron depo	osits and sand			1	0.8 S	23						
		366.8						346.8				
SANDY SILTY gray, moist, sol	CLAY: Brown to			1 1 2	0.3 P	21	SILTY CLAY: Greenish-gray, iron nodules and trace pebbles, with sand, stiff to medium stiff		 	6 5 8	0.9 B	17
		363.8		WOH				242.0				
CLAYEY SANE very loose, trac fragments and	D: Gray, moist, e sandstone iron deposits			1 3		23	Auger Refusal at 36 .7 ft SANDSTONE: Brown, highly weathered	343.6 343.4	:	50/2"		8
		361.8	<u> </u>				Borehole continued with rock					
CLAY: Gray, fa	at, very soft, moist			WOH WOH WOH	0.4 B	30	g.					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

ROCK CORE LOG

Date 12/26/14

Page <u>2</u> of <u>2</u>

ROUTE	F.A.P. 778		Structure Bori	ng	L	OGGEE	BY	KEG
	2		Route 34 over Spring V	alley Creek		-		
COUNTY	Saline COR				R	R	CORE	S T
STRUCT. NO. Station	083-0022 	CORING BARREL T Core Diameter Top of Rock Elev.	YPE & SIZE in 343.60 ft	D E P	C O V R E	Q D	T I M E	R E N G
Station	408+28	Begin Core Elev.	<u> 343.44 </u> ft		E R	•		H H
Offset Ground Surf	11.4 ft Right ace Elev. 380.27	_ ft		(ft)	(#) (%)	(%)	(min/ft)	(tsf)
SANDSTONE and sand sea	: Light brown and gray ms.	, fine, highly weathered,	soft, banded, trace clay	343.44	1 87	33	2.62	
Thin graphite Becomnes gra	seam, with slickened si ay, thinnly to medium be	ides edded						
Unconfined co Thin graphite Thin graphite	ompression test at 40.2 seam, with slickened si seam, with slickened si	feet. ides ides		40 				249.6
End of Boring	Simplession test at 41.5	leel		338.44				64.0

BORING B-1

RUN NO.	BORI	NG B-2	RQD %
1	117.5-128.0	87	33

SOIL BORING LOG

Date 12/26/14

Page <u>1</u> of <u>2</u>

ROUTE	F.A.P. 778	DE	SCR	IPTION	L	LOGGED BY			EG						
SECTION	2		_ เ		ION _	IL Rou	te 34 over Spring Valley Creek								
COUNTY	Saline DR	RILLING	6 ME	THOD		CI	ME 550 w/HSA HAMMER TYP			Automatic					
STRUCT. NO. Station	083-0022		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	ft ft	D E P	B L O	U C S	M O I			
BORING NO. Station Offset	B-2 409+21 11.3 ft Left 280 19		H (ft)	W S (/6")	Qu (tsf)	S Т (%)	Groundwater Elev.: First Encounter 365. Upon Completion	2_ft⊻ ft	H (ft)	W S (/6")	Qu (tsf)	с Т (%)			
4" ASPHALTI	C CONCRETE	IL 379.9			(101)	(70)	CLAY: Gray, lean, moist, soft	n	(,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(101)	(/0)			
9" CONCRET SILTY CLAY: medium to sti	EBrown, moist, ff, with crushed rock	379.1		5 4 2	1.5 P	19				WOH 1 3	1.0 S	26			
SILT: Brown, gravel	moist, soft, trace	376.7		2	1.8	20				WOH WOH	0.3	33			
			5	2	P		Becomes very soft		25	WOH	В				
SANDY SILT:	Brown, moist, soft			1 1 2	1.0 P	16				WOH WOH WOH	0.5 B	26			
SILTY CLAY: soft, trace sar	Brown, moist, very	371.7		WOH WOH 1	0.6 S	25	Becomes soft, trace pebbles and	i		WOH 1 2	0.8 B	21			
Trace iron sta	ins, some nodules		10 	1	<0.25	20	Iron stains		30 						
		005 7		1		21				2	1.2	25			
SAND: Brown	n, fine, moist, loose	364.2	▼-15	2		<u> </u>	Becomes brown, with sandstone fragments		35 	6	B	20			
SAND: Brown and crushed r	n and gray, with clay ock, loose			3 4 1		21	Auger Refusal at 37 ft. SANDSTONE: Gray, highly weathered	343.2 342.9		50/3.5	·				
CLAY: Gray,	fat, moist, stiff	<u>361.7</u> 360.2		WOH 12 2	0.9 B	25	Borehole continued with rock coring.		 						

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

ROCK CORE LOG

Date 12/26/14

Page <u>2</u> of <u>2</u>

ROUTE	F.A.P. 778		Structure Boring			_ LO	GGED	BY	KEG
SECTION	2	LOCATION IL RO	oute 34 over Spring Valley Cre	eek					
COUNTY	Saline COF	RING METHOD NX				R	Б	CORE	S T
STRUCT. NO. Station	083-0022	CORING BARREL TYF	PE & SIZE in 343.19 ft	D E P	C O R	L C V E	R Q D	T I M E	- R E N G
Station	409+21	Begin Core Elev.	342.89 ft	Т	Е	R	•		Т
Offset	11.3 ft Left 380 19	#		(ft)	(#)	· (%)	(%)	(min/ft)	(tsf)
SANDSTONE	: Light brown and grav	•• y, fine, highly weathered, so	ft, banded, trace clay 342.89		1	89	0	4.31	()
and sand sean	ns.		/342.39						
				-45					
				_					
				50_					
				-55					
				_					

BORING B-2

EXHIBIT D

SUBSURFACE PROFILE

	385
	380
	375
	370
	365
	360
	355
	350
	345
	340
PROFILE IL 34 over Spring Valley	v Creek

EXHIBIT E

SLOPE-W SLOPE STABILITY ANALYSIS

Name: Sandstone

Name: Clay (3) Unit Weight: 125 pcf Cohesion': 50 psf Phi': 26 °

Name: Sandstone

Name: Sandstone

EXHIBIT F

PILE LENGTH/PILE TYPE

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBSTRUCTURE====================================	West Abut	tment	мл
REFERENCE BORING ====================================	B-1		<u>IWIA</u>
LRFD or ASD or SEISMIC ====================================	LRFD		Max
PILE CUTOFF ELEV. ====================================	374.60	ft	Req
GROUND SURFACE ELEV. AGAINST PILE DURING DR	369.60	ft	ļ
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD	None	-	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =======		ft	
TOP ELEV. OF LIQUEF. (so layers above apply DD) ====		ft	

ИАХ.	REQUIRED	BEARING &	RESISTANCE for	Selected Pile,	Soil Profile,	& Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
589 KIPS	567 KIPS	312 KIPS	35 FT.

TOTAL LENGTH OF SUBSTRUCTURE (along skew)=== NUMBER OF ROWS OF PILES PER SUBSTRUCTURE = Approx. Factored Loading Applied per pile at 8 ft. Cts ===== 177.96 KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts ===== 66.73 KIPS

andstone

Sandstone

21.0

207.5

207.5

659.5

30.7

30.6

30.6

690.0

659

Ð

PILE TYPE AND SIZE ======= Steel HP 12 X 74

Plugged Pile End Bearing Area========

вот.

OF

LAYER

ELEV.

(FT.)

369.30

366.80

363.80

359.30

354.30

351.80

343.40

343.15

342.90

342 65

342.40

341.65

341.15

340.90

340.40

339.65

338.90

338.65

338.40

0.25

0.25

TOTAL FACTORED SUBSTRUCTURE LOAD =======

4 050 FT

872 kips

39.20 ft

Unplugged Pile Perimeter======== 1.025 SQFT. Unplugged Pile End Bearing Area===== 5.908 FT 0.151 SQFT.

FACTORED FACTORED NOMINAL PLUGGED NOMINAL UNPLUG'D UNCONF. S.P.T. GRANULAR NOMINAL GEOTECH. GEOTECH. FACTORED ESTIMATED LAYER COMPR N OR ROCK LAYER SIDE END BRG τοται SIDE END BRG ΤΟΤΑΙ REQ'D LOSS FROM LOSS LOAD RESISTANCE PILE тніск. STRENGTH VALUE DESCRIPTION RESIST. RESIST. RESIST. RESIST. RESIST. RESIST. BEARING SCOUR or DD FROM DD AVAILABLE LENGTH (FT.) (TSF.) (BLOWS) (KIPS) (FT.) 0.30 0.4 04 11.9 0.6 2.3 5 2.50 0.80 6.0 11.5 10.7 8.7 1.7 9.9 10 0 0 5 8 3.00 0.30 2.9 4.3 17.0 4.3 0.6 14.7 15 0 0 8 11 7.7 361.80 Very Fine Silty Sand 15.2 2.00 4 0.5 15.6 0.7 1.1 15 0 0 13 8 2.50 0.40 3.2 5.7 23.1 4.7 0.8 20.5 20 0 0 11 15 356.80 0.70 5.3 10.1 19.8 7.8 20 0 0 11 18 2.50 1.5 27.0 1.4 2.9 22 27 20 23 2.50 0.10 0.8 22.1 1.2 0.2 28.4 0 0 12 2.50 0.20 1.7 26.6 2.4 0.4 31.3 0 0 15 346.80 0.40 40 0 0 22 28 5.7 40.2 9.4 41.7 5.00 6.4 0.8 343.60 12.9 3.20 0.90 8.4 243.3 12.3 1.9 82.8 83 0 0 46 31 343.50 0.10 Sandstone 8.4 207.5 251.7 12.3 30.6 95.1 95 0 0 52 31.1 Sandstone 8.4 207.5 107.3 0 0 0 0.10 260.1 12.3 30.6 107 59 31.2 Sandstone 0 0 0.25 21.0 207.5 281.1 30.7 30.6 138.0 138 76 31.5 0.25 21.0 207.5 ō 31.7 andstone 302.1 30.7 30.6 168.7 169 93 0.25 Sandstone 21.0 207 5 323 1 30.7 30.6 199.3 199 0 0 110 32 0 0 32.2 0.25 Sandstone 21.0 207.5 344.2 30.7 30.6 230.0 230 126 342.15 207.5 260.7 261 32.5 0.25 21.0 365.2 30.7 30.6 0 0 143 Sandstone 341.90 21.0 207.5 386.2 30.7 30.6 291.3 291 0 0 160 32.7 0.25 Sandstone 207.5 322.0 0 0 33 0.25 andstone 21.0 407.2 30.7 30.6 322 177 341.40 0.25 Sandstone 21.0 207.5 428.2 30.7 30.6 352.7 353 0 0 194 33.2 0.25 0.25 Sandstone 21.0 207.5 449.3 30.7 30.6 383.3 383 0 0 0 0 211 33.5 21.0 207.5 470.3 414.0 414 228 33.7 Sandstone 30.7 30.6 340.65 21.0 207.5 30.7 444.7 445 0 0 245 34 0.25 Sandstone 491.3 30.6 0.25 Sandstone 21.0 207.5 512.3 30.7 30.6 475.3 475 0 0 261 34.2 340.15 21.0 207.5 533.4 30.7 30.6 506.0 506 0 0 278 34.5 0.25 Sandstone 339.90 0.25 Sandstone 21.0 207.5 554.4 30.7 30.6 536.7 537 0 0 295 34.7 0.25 Sandstone 21.0 207.5 575 4 30.7 30.6 567.3 567 0 0 312 35 339.40 207.5 596.4 Sandstone 21.0 30.7 30.6 598.0 Ð 35.2 596 θ 328 339.15 0.25 Sandstone 21.0 207.5 617.4 30.7 30.6 628.7 617 θ Ð 340 35.5 0.25 Sandstone 21.0 207.5 638.5 30.7 30.6 659.3 638 θ Ð 351 35.7

Ð

363

36

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

	West Abutment	MAX. REQUIRED	BEARING & RESI	STANCE for Selected Pile,	Soil Profile, & Losses
LRFD or ASD or SEISMIC ====================================	SEISMIC	Maximum Nominal	Maximum Nominal	Maximum Seismic	Maximum Pile
PILE CUTOFF ELEV. ====================================	374.60 ft	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
GROUND SURFACE ELEV. AGAINST PILE DURING DR	369.60 ft	589 KIPS	589 KIPS	575 KIPS	35 FT.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD	Liquef.				
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ======	364.27 ft				
TOP ELEV. OF LIQUEF. (so layers above apply DD) ===	366.27 ft				
TOTAL SEISMIC SUBSTRUCTURE LOAD =======	872 kips				
TOTAL LENGTH OF SUBSTRUCTURE (along skew)===	39.20 ft				
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE =	1				
Approx. Seismic Loading Applied per pile spaced	at 8 ft. Cts 177.96 KIPS				
Approx. Seismic Loading Applied per pile spaced	at 3 ft. Cts 66.73 KIPS				

PILE TYPE AND SIZE ========== Steel HP 12 X 74

Plugged Pile End Bearing Area========

4.050 FT.

Unplugged Pile Perimeter====== 5.908 FT. 1.025 SQFT. Unplugged Pile End Bearing Area===== 0.151 SQFT.

BOT. OF		UNCONF.	S.P.T.	GRANULAR	ULT	IMATE PLUC	GGED	ULTIN	IATE UNPLU	GGED	NOMINAL	NOMINAL GEOTECH.	FACTORED GEOTECH.	SEISMIC	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	LIQUEF. & DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
369.30	0.30	0.40			0.4		11.9	0.6		2.3	2	0	0	1	5
366.80	2.50	0.80			6.0	11.5	10.7	8.7	1.7	9.9	10	6	7	-3	8
363.80	3.00	0.30			2.9	4.3	17.3	4.3	0.6	14.8	15	6	7	1	11
361.80	2.00		4	Medium Sand	0.6	8.0	15.6	0.9	1.2	15.3	15	6	7	2	13
359.30	2.50	0.40			3.2	5.7	23.2	4.7	0.8	20.6	21	6	7	7	15
356.80	2.50	0.70			5.3	10.1	19.9	7.8	1.5	27.1	20	6	7	6	18
354.30	2.50	0.10			0.8	1.4	22.2	1.2	0.2	28.6	22	6	7	9	20
351.80	2.50	0.20			1.7	2.9	26.7	2.4	0.4	31.4	27	6	1	13	23
346.80	5.00	0.40			6.4	5.7	40.3	9.4	0.8	41.8	40	6	/	27	28
343.60	3.20	0.90			8.4	12.9	243.3	12.3	1.9	82.9	83	6	7	70	31
343.50	0.10			Sandstone	8.4	207.5	251.8	12.3	30.6	95.2	95	6	1	82	31.1
343.40	0.10			Sandstone	8.4	207.5	260.2	12.3	30.6	107.4	107	6	7	94	31.2
343.15	0.25			Sandstone	21.0	207.5	281.2	30.7	30.6	138.1	138	6	7	125	31.5
342.90	0.25			Sandstone	21.0	207.5	302.2	20.7	30.6	100.0	109	6	7	100	31.7
342.00	0.25			Sandstone	21.0	207.5	344.2	30.7	30.6	230.1	230	6	7	217	32.2
342.15	0.25			Sandstone	21.0	207.5	365.3	30.7	30.6	260.8	261	6	7	247	32.5
341.90	0.25			Sandstone	21.0	207.5	386.3	30.7	30.6	201.0	201	6	7	278	32.7
341.65	0.25			Sandstone	21.0	207.5	407.3	30.7	30.6	322.1	322	6	7	309	33
341.00	0.25			Sandstone	21.0	207.5	428.3	30.7	30.6	352.8	353	6	7	339	33.2
341 15	0.25			Sandstone	21.0	207.5	449.4	30.7	30.6	383.5	383	6	7	370	33.5
340.90	0.25			Sandstone	21.0	207.5	470.4	30.7	30.6	414.1	414	6	7	401	33.7
340.65	0.25			Sandstone	21.0	207.5	491.4	30.7	30.6	444.8	445	6	7	431	34
340.40	0.25			Sandstone	21.0	207.5	512.4	30.7	30.6	475.5	475	6	7	462	34.2
340.15	0.25			Sandstone	21.0	207.5	533.4	30.7	30.6	506.1	506	6	7	493	34.5
339.90	0.25			Sandstone	21.0	207.5	554.5	30.7	30.6	536.8	537	6	7	523	34.7
339.65	0.25			Sandstone	21.0	207.5	575.5	30.7	30.6	567.5	567	6	7	554	35
339.40	0.25			Sandstone	21.0	207.5	596.5	30.7	30.6	598.1	597	6	7	583	35.2
339.15	0.25			Sandstone	21.0	207.5	617.5	30.7	30.6	628.8	618	6	7	604	35.5
338.90	0.25			Sandstone	21.0	207.5	638.5	30.7	30.6	659.5	639	6	7	625	35.7
338.65	0.25			Sandstone	21.0	207.5	659.6	30.7	30.6	690.1	660	6	7	646	-36
338.40	0.25			Sandstone		207.5			30.6						

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBSTRUCTURE====================================	East Abutr	nent
REFERENCE BORING ====================================	B-2	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	374.60	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DR	369.60	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =======		ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) ===		ft

MAX. REQUIRED BEARING	&	RESISTANCE for	r.	Selected Pile	,	Soil Profile,	&	Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
589 KIPS	573 KIPS	315 KIPS	35 FT.

TOTAL LENGTH OF SUBSTRUCTURE (along skew)=== NUMBER OF ROWS OF PILES PER SUBSTRUCTURE = 1 Approx. Factored Loading Applied per pile at 8 ft. Cts ===== 178.14 KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts ===== 66.80 KIPS

PILE TYPE AND SIZE ======= Steel HP 12 X 74

TOTAL FACTORED SUBSTRUCTURE LOAD =======

Plugged Pile End Bearing Area===== 1.025 SQFT. Unplugged Pile End Bearing Area==== 0.151 SQFT.

Г

872 kips

39.16 ft

Unplugged Pile Perimeter==== 156 5.908 FT.

BOT.					NON		GED	NOMINAL UNPLUG'D			FACTORED	FACTORED			
OF		UNCONF.	S.P.T.	GRANULAR	Non	INTAL I LOC	IGED			NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED	
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
369.20	0.40	0.60			0.7		4.3	1.1		1.6	2	0	0	1	5
365.70	3.50	0.25			2.9	3.6	6.4	4.2	0.5	5.7	6	0	0	3	9
364.20	1.50		2	Fine Sand	0.2	2.8	13.9	0.3	0.4	7.1	7	0	0	4	10
361.70	2.50		5	Fine Sand	0.9	10.1	17.6	1.3	1.5	8.8	9	0	0	5	13
359.20	2.50	0.90			6.6	12.9	25.7	9.6	1.9	18.6	19	0	0	10	15
356.70	2.50	1.00			7.2	14.4	22.8	10.5	2.1	27.6	23	0	0	13	18
354.20	2.50	0.30			2.5	4.3	28.1	3.6	0.6	31.6	28	0	0	15	20
351.70	2.50	0.50			3.9	1.2	36.4	5.8	1.1	38.0	36	0	0	20	23
349.20	2.50	0.80			6.0	11.5	49.6	8.7	1.7	47.8	48	0	0	26	25
344.20	5.00	1.30			17.6	18.7	67.2	25.7	2.8	/3.5	67	0	0	37	30
343.20	1.00	1.30		Orandatara	3.5	18.7	259.5	5.1	2.8	106.5	107	0	0	59	31
343.10	0.10			Sandstone	8.4	207.5	207.9	12.3	30.6	110.0	121	0	0	00 72	31.5
343.00	0.10			Sandstone	8.4	207.5	284.8	12.3	30.6	1433	143	0	0	72	31.0
342.80	0.10			Sandstone	8.4	207.5	293.2	12.3	30.6	155.6	156	0	0	86	31.8
342.70	0.10			Sandstone	8.4	207.5	301.6	12.3	30.6	167.9	168	0	0	92	31.9
342.60	0.10			Sandstone	8.4	207.5	310.0	12.3	30.6	180.1	180	0	0	99	32
342.50	0.10			Sandstone	8.4	207.5	318.4	12.3	30.6	192.4	192	0	0	106	32.1
342.40	0.10			Sandstone	8.4	207.5	326.8	12.3	30.6	204.7	205	0	0	113	32.2
342.15	0.25			Sandstone	21.0	207.5	347.8	30.7	30.6	235.3	235	0	0	129	32.5
341.90	0.25			Sandstone	21.0	207.5	368.8	30.7	30.6	266.0	266	0	0	146	32.7
341.65	0.25			Sandstone	21.0	207.5	389.9	30.7	30.6	296.7	297	0	0	163	33
341.40	0.25			Sandstone	21.0	207.5	410.9	30.7	30.6	327.3	327	0	0	180	33.2
341.15	0.25			Sandstone	21.0	207.5	431.9	30.7	30.6	358.0	358	0	0	197	33.5
340.90	0.25			Sandstone	21.0	207.5	452.9	30.7	30.6	388.7	389	0	0	214	33.7
340.65	0.25			Sandstone	21.0	207.5	473.9	30.7	30.6	419.3	419	0	0	231	34
340.40	0.25			Sandstone	21.0	207.5	495.0	30.7	30.6	450.0	450	0	0	247	34.2
340.15	0.25			Sandstone	21.0	207.5	516.0	30.7	30.6	480.7	481	0	0	264	34.5
339.90	0.25			Sandstone	21.0	207.5	537.0	30.7	30.6	511.3	511	0	0	281	34.7
339.65	0.25			Sandstone	21.0	207.5	558.0	30.7	30.6	542.0	542	0	0	298	35
339.40	0.25			Sandstone	21.0	207.5	579.1	30.7	30.6	572.7	573	0	0	315	35.2
339.15	0.25			Sandstone	21.0	207.5	600.1	30.7	30.6	603.3	600	θ	θ	-330	35.5
338.90	0.25			Sandstone	21.0	207.5	621.1	30.7	30.6	634.0	621	θ	. 0	342	35.7
338.65	0.25			Sandstone	21.0	207.5	642.1	30.7	30.6	664.7	642	Ð	Ð	353	-36
338.40	0.25			Sandstone		207.5			30.6						
						1		1	1						

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBSTRUCTURE====================================	East Abutment			STANCE for Solootod Bilo	Sail Brafila & Lassas
REFERENCE BORING ====================================	B-2	MAX. REQUIRED	DEARING & RESI	STANCE for Selected File,	Soli Fiolile, & Losses
LRFD or ASD or SEISMIC ====================================	SEISMIC	Maximum Nominal	Maximum Nominal	Maximum Seismic	Maximum Pile
PILE CUTOFF ELEV. ====================================	374.60 ft	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
GROUND SURFACE ELEV. AGAINST PILE DURING DR	369.60 ft	589 KIPS	589 KIPS	577 KIPS	35 FT.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD	Liquef.		-		
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =======	359.19 ft				
TOP ELEV. OF LIQUEF. (so layers above apply DD) ====	369.19 ft				
TOTAL SEISMIC SUBSTRUCTURE LOAD ========	872 kips				
TOTAL LENGTH OF SUBSTRUCTURE (along skew)===	39.16 ft				
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE =	1				
Approx. Seismic Loading Applied per pile spaced	at 8 ft. Cts 178.14 KIPS				
Approx. Seismic Loading Applied per pile spaced	at 3 ft. Cts 66.80 KIPS				

PILE TYPE AND SIZE ======= Steel HP 12 X 74

======== 4.050 FT.

 4.050
 FT.
 Unplugged Pile Perimeter===========

 1.025
 SQFT.
 Unplugged Pile End Bearing Area=====

5.908 FT. 0.151 SQFT.

вот. NOMINAL FACTORED ULTIMATE PLUGGED ULTIMATE UNPLUGGED OF UNCONF. S.P.T. GRANULAR NOMINAL GEOTECH. GEOTECH. SEISMIC ESTIMATED LAYER LAYER COMPR N OR ROCK LAYER SIDE END BRG τοται SIDE END BRG ΤΟΤΑΙ REQ'D LOSS FROM LOSS LOAD RESISTANCE PILE ELEV. тніск. STRENGTH VALUE DESCRIPTION RESIST. RESIST. RESIST. RESIST. RESIST. RESIST. BEARING LIQUEF. & DD FROM DD AVAILABLE LENGTH (FT.) (FT.) (TSF.) (BLOWS) (KIPS) (FT.) 369.20 0.40 0.6 0.7 43 1.1 1.6 5 365.70 3.50 0.25 2.9 3.6 6.4 4.2 0.5 5.7 6 4 1 1 9 0.3 364.20 1.50 2 Fine Sand 0.2 2.8 13.9 0.4 7.1 7 4 1 2 10 361.70 10.1 17.6 1.5 2.50 5 Fine Sand 0.9 1.3 8.8 9 5 3 13 1 359.20 2.50 0.90 6.6 12.9 25.7 9.6 1.9 18.6 19 11 6 15 1 356.70 1.00 7.2 14.4 22.8 10.5 2.1 27.6 23 11 11 18 2.50 1 0.30 0.50 20 23 354.20 2.50 2.5 4.3 28.1 3.6 0.6 31.6 28 11 1 16 351.70 2.50 3.9 7.2 36.4 5.8 1.1 38.0 36 11 1 24 1.7 48 36 25 349.20 0.80 11.5 49.6 8.7 47.8 11 2.50 6.0 1 344.20 5.00 1.30 17.6 18.7 67.2 25.7 2.8 73.5 67 11 55 30 1 343.20 1.00 1.30 3.5 18.7 259.5 5.1 2.8 106.5 107 11 1 94 31 343.10 207.5 267.9 12.3 118.8 119 107 31.5 0.10 andstone 8.4 30.6 11 Sandstone 207.5 343.00 0.10 8.4 276.3 12.3 30.6 131.1 131 11 11 1 119 31.6 342.90 andstone 8.4 207.5 284.8 12.3 30.6 143.3 143 31.7 0.10 1 131 342 80 0.10 Sandstone 8.4 207.5 293.2 12.3 30.6 155.6 156 11 143 31.8 1 342.70 0.10 Sandstone 8.4 207.5 301.6 12.3 30.6 167.9 168 11 1 156 31.9 342.60 207.5 0.10 310.0 12.3 30.6 180.1 180 11 168 32 Sandstone 8.4 1 342.50 8.4 207.5 318.4 12.3 192.4 192 11 180 32.1 Sandstone 30.6 0.10 1 342.40 8.4 207.5 12.3 204.7 11 32.2 0.10 andstone 326.8 30.6 205 1 193 342.15 0.25 Sandstone 21.0 207.5 347.8 30.7 30.6 235.3 235 11 223 32.5 1 0.25 0.25 266 297 341.90 Sandstone 21.0 207.5 368.8 30.7 30.6 266.0 11 1 254 32.7 341.65 21.0 207.5 30.6 296.7 11 285 33 Sandstone 389.9 30.7 1 341.40 21.0 207.5 410.9 30.7 30.6 327.3 327 315 33.2 0.25 Sandstone 11 1 341.15 0.25 Sandstone 21.0 207.5 431.9 30.7 30.6 358.0 358 11 1 346 33.5 340.90 Sandstone 21.0 207.5 452.9 30.7 30.6 388.7 389 11 377 33.7 0.25 1 340.65 0.25 Sandstone 21.0 207.5 473.9 30.7 30.6 419.3 419 11 1 407 34 34.2 340 40 0.25 Sandstone 21.0 207.5 495.0 30.7 30.6 450.0 450 11 1 438 340.15 207.5 480.7 481 469 34.5 0.25 Sandstone 21.0 516.0 30.7 30.6 11 1 339.90 0.25 Sandstone 21.0 207.5 537.0 30.7 30.6 511.3 511 11 1 499 34.7 339.65 0.25 andstone 21.0 207.5 558.0 30.7 30.6 542.0 542 11 1 530 35 339.40 0.25 Sandstone 21.0 207.5 579.1 30.7 30.6 572.7 573 11 561 35.2 1 339.15 0.25 Sandstone 21.0 207.5 600.1 30.7 30.6 603.3 600 44 4 588 35.5 338.90 207.5 35.7 0.25 Sandstone 21.0 621.1 30.7 30.6 634.0 621 44 4 609 0.25 21.0 11 338.65 Sandstone 207.5 642.1 30.7 30.6 664.7 642 4 630 36 338.40 0.25 andstone 207.5 30.6