April 16, 2010

SUBJECT: FAI Route 55 (I-55)

Project ESP-055-6 (238) 241 Section 88 (B & B-1)BR

Will County

Contract No. 62930

Item No. 379, April 23, 2010 Letting

Addendum A

NOTICE TO PROSPECTIVE BIDDERS:

Attached is an addendum to the plans or proposal. This addendum involves revised and/or added material.

- 1. Replaced the Schedule of Prices.
- Revised the Table of Contents to the Special Provisions.
- 3. Revised pages 2, 10, 11, 14 21, 28 33, 43 51 & 96 98 of the Special Provisions.
- 4. Added pages 129 131 to the Special Provisions.
- 5. Revised sheets 1, 4, 4A, 11, 13 & 14 of the Plans.

Prime contractors must utilize the enclosed material when preparing their bid and must include any Schedule of Prices changes in their bidding proposal.

Bidders using computer-generated bids are cautioned to reflect any and all Schedule of Prices changes, if involved, into their computer programs.

Very truly yours,

Scott E. Stitt. P.E.

Acting Engineer of Design and Environment

By: Ted B. Walschleger, P. E.

Tete alselye P.E.

Engineer of Project Management

cc: Diane O'Keefe, Region 1, District 1; Mike Renner; R. E. Anderson; Estimates

TBW:MS:ic

State Job # - C-91-166-05

PPS NBR - 1-75969-0100

County Name - WILL- - Code - 197 - -

District - 1 - -

Section Number - 88(B&B-1)BR

Project Number

ESP-0556/238/241

* Revised: April 16, 2010

Route

ltem Number	Pay Item Description	Unit of Measure	Quantity	X	Unit Price	=	Total Price
X0320887	POLYMER CONCRETE	CU FT	0.500				
X0322185	BR DK LTX C OLY 2 1/4	SQ YD	8,611.000				
X0322256	TEMP INFO SIGNING	SQ FT	1,414.000				
X0322729	MATL TRANSFER DEVICE	TON	10,138.000				
X0324685	TEST STRIP SMA	EACH	2.000				
X0324744	REM EX PRECAST UNITS	SQ FT	180.000				
X0325085	TEMP PAVT INTERSTATE	SQ YD	7,044.000				
X0325303	STR REP CON DP OVER 5	SQ FT	17.000				
X0325305	STR REP CON DP = < 5	SQ FT	621.000				
X0325349	TEMP CON BAR (PERM)	FOOT	1,038.000				
X0325416	TRAF CONT/PROT DETOUR	L SUM	1.000				
X0325426	PCC SUR REM 1 3/4	SQ YD	850.000				
X0325590	HT CBL MED BAR TERM	EACH	4.000				
X0325775	WET RF TEM TAPE T3 4	FOOT	37,110.000				
X0326676	REPL SUR SEN TEMP PRB	L SUM	1.000				

State Job # - C-91-166-05

PPS NBR - 1-75969-0100

County Name - WILL- - Code - 197 - -

District - 1 - -

Section Number - 88(B&B-1)BR

Project Number

ESP-0556/238/241

* Revised: April 16, 2010

Route

ltem Number	Pay Item Description	Unit of Measure	Quantity	x	Unit Price	=	Total Price
X0326677	REM HT CBL MEDIAN BAR	FOOT	2,390.000				
X0326888	CLEAN & RELAMP EX LUM	EACH	57.000				
X4067107	POL LB MM IL4.75 N50	TON	56.000				
X5010522	REM CONC END SEC	EACH	1.000				
X5121800	PERM STEEL SHT PILING	SQ FT	468.000				
X7011015	TR C-PROT EXPRESSWAYS	L SUM	1.000				
X7013820	TR CONT SURVEIL EXPWY	CAL DA	80.000				
Z0001050	AGG SUBGRADE 12	SQ YD	7,044.000				
Z0006201	BR DECK HY-SCAR 1	SQ YD	8,611.000				
Z0013798	CONSTRUCTION LAYOUT	L SUM	1.000				
Z0014700	CULVERT TO BE CLEANED	EACH	14.000				
Z0016001	DECK SLAB REP (FD-T1)	SQ YD	6.000				
Z0016002		SQ YD	238.000				
Z0018500		EACH	14.000				
Z0030150	IMPACT ATTEN NRD TL3	EACH	4.000				

State Job # - C-91-166-05

PPS NBR - 1-75969-0100 County Name - WILL- -

County Name - WILL- - Code - 197 - -

District - 1 - -

Section Number - 88(B&B-1)BR

Project Number

ESP-0556/238/241

* Revised: April 16, 2010

Route

ltem Number	Pay Item Description	Unit of Measure	Quantity	x	Unit Price	=	Total Price
Z0030250	IMP ATTN TEMP NRD TL3	EACH	2.000				
* Z0030350	IMP ATTN REL NRD TL3	EACH	4.000				
Z0040530	PIPE UNDERDRAIN REMOV	FOOT	4,000.000				
Z0043800	P P CONC I-BM REPAIR	SQ FT	11.500				
Z0065740	SLOT DR 12" W/VAR SL	FOOT	466.000				
Z0065760	SLOT DR 15" W/VAR SL	FOOT	573.000				
Z0076600	TRAINEES	HOUR	1,000.000		0.800		800.000
Z0076870	UNDR CONNECT TO STR	EACH	4.000				
20200100	EARTH EXCAVATION	CU YD	3,610.000				
20201200	REM & DISP UNS MATL	CU YD	500.000				
20400800	FURNISHED EXCAVATION	CU YD	200.000				
20800150	TRENCH BACKFILL	CU YD	120.000				
25000210	SEEDING CL 2A	ACRE	0.560				
25000400	NITROGEN FERT NUTR	POUND	50.000				
25000500	PHOSPHORUS FERT NUTR	POUND	50.000				

State Job # - C-91-166-05

PPS NBR - 1-75969-0100

County Name - WILL- - Code - 197 - -

District - 1 - -

Section Number - 88(B&B-1)BR

Project Number

ESP-0556/238/241

* Revised: April 16, 2010

Route

Item Number	Pay Item Description	Unit of Measure	Quantity	x	Unit Price	=	Total Price
25000600	POTASSIUM FERT NUTR	POUND	50.000				
25100630	EROSION CONTR BLANKET	SQ YD	2,713.000				
28000500	INLET & PIPE PROTECT	EACH	4.000				
40600300	AGG PR CT	TON	223.000				
40600895	CONSTRUC TEST STRIP	EACH	1.000				
40600982	HMA SURF REM BUTT JT	SQ YD	144.000				
40601005	HMA REPL OVER PATCH	TON	530.000				
40603085	HMA BC IL-19.0 N70	TON	2,286.000				
40603148	P HMA BC SMA N80	TON	5,069.000				
40603153	P HMA SC SMA N80	TON	5,069.000				
40603340	HMA SC "D" N70	TON	1,524.000				
40800020	BIT MATLS PR CT	TON	45.000				
42001300	PROTECTIVE COAT	SQ YD	8,802.000				
44000164	HMA SURF REM 3 3/4	SQ YD	18,147.000				
44000165	HMA SURF REM 4	SQ YD	37,548.000				

State Job # - C-91-166-05

PPS NBR - 1-75969-0100

County Name - WILL- - Code - 197 - -

District - 197 -

Section Number - 88(B&B-1)BR

Project Number

ESP-0556/238/241

* Revised: April 16, 2010

Route

Item Number	Pay Item Description	Unit of Measure	Quantity	x	Unit Price	=	Total Price
44002216	HMA RM OV PATCH 4	SQ YD	2,366.000				
44004250	PAVED SHLD REMOVAL	SQ YD	2,670.000				
44201765	CL D PATCH T2 10	SQ YD	901.000				
44201769	CL D PATCH T3 10	SQ YD	676.000				
44201771	CL D PATCH T4 10	SQ YD	676.000				
44300900	STRIP REF CR CON TR A	FOOT	10,915.000				
48203003	HMA SHOULDERS 11/2	SQ YD	10,680.000				
50102400	CONC REM	CU YD	93.000				
50104400	CONC HDWL REM	EACH	10.000				
50200100	STRUCTURE EXCAVATION	CU YD	10.000				
50300225	CONC STRUCT	CU YD	46.800				
50300255	CONC SUP-STR	CU YD	90.800				
50300260	BR DECK GROOVING	SQ YD	8,306.000				
50500505	STUD SHEAR CONNECTORS	EACH	19.000				
50800205	REINF BARS, EPOXY CTD	POUND	18,740.000				

State Job # - C-91-166-05

PPS NBR - 1-75969-0100

County Name - WILL- - Code - 197 - -

District - 1 - -

Section Number - 88(B&B-1)BR

Project Number

ESP-0556/238/241

* Revised: April 16, 2010

Route

Item Number	Pay Item Description	Unit of Measure	Quantity	x	Unit Price	=	Total Price
52000110	PREF JT STRIP SEAL	FOOT	92.000				
52000325	NEOPRENE EXP JT 2 1/2	FOOT	97.000				
52000340	NEOPRENE EXPAN JT 4	FOOT	191.000				
542A0217	P CUL CL A 1 12	FOOT	339.000				
542A0220	P CUL CL A 1 15	FOOT	475.000				
542A0223	P CUL CL A 1 18	FOOT	30.000				
54213657	PRC FLAR END SEC 12	EACH	2.000				
54213660	PRC FLAR END SEC 15	EACH	1.000				
54247090	GRATING-C FL END S 12	EACH	2.000				
54247100	GRATING-C FL END S 15	EACH	1.000				
55039700	SS CLEANED	FOOT	850.000		-		
59000200	EPOXY CRACK INJECTION	FOOT	902.000				
60100060	CONC HDWL FOR P DRAIN	EACH	4.000				
60107600	PIPE UNDERDRAINS 4	FOOT	4,000.000				
60236200	INLETS TA T8G	EACH	3.000				

State Job # - C-91-166-05

PPS NBR - 1-75969-0100

County Name - WILL- - Code - 197 - -

District - 1 - -

Section Number - 88(B&B-1)BR

Project Number

ESP-0556/238/241

* Revised: April 16, 2010

Route

ltem Number	Pay Item Description	Unit of Measure	Quantity	x	Unit Price	=	Total Price
60615400	PAVED DITCH TA-15	FOOT	517.000				
63500105	DELINEATORS	EACH	133.000				
63801200	MOD GLARE SCRN SYS	FOOT	4,300.000				
64200105	SHOULDER RUMBLE STRIP	FOOT	16,053.000				
67000400	ENGR FIELD OFFICE A	CAL MO	12.000				
67100100	MOBILIZATION	L SUM	1.000				
70106800	CHANGEABLE MESSAGE SN	CAL MO	12.000				
70300240	TEMP PVT MK LINE 6	FOOT	12,250.000				
70301000	WORK ZONE PAVT MK REM	SQ FT	12,370.000				
* 70400100	TEMP CONC BARRIER	FOOT	5,965.000				
* 70400200	REL TEMP CONC BARRIER	FOOT	11,830.000				
78000200	THPL PVT MK LINE 4	FOOT	20,080.000				
78000500	THPL PVT MK LINE 8	FOOT	2,690.000				
78000600	THPL PVT MK LINE 12	FOOT	660.000				
78003120	PREF PL PM TB LINE 5	FOOT	4,450.000				

State Job # - C-91-166-05

PPS NBR - 1-75969-0100

County Name - WILL- - Code - 197 - -

District - 1 - -

Section Number - 88(B&B-1)BR

Project Number

ESP-0556/238/241

* Revised: April 16, 2010

Route

Item Number	Pay Item Description	Unit of Measure	Quantity	x	Unit Price	=	Total Price
* 78005110	EPOXY PVT MK LINE 4	FOOT	29,087.000				
* 78005120	EPOXY PVT MK LINE 5	FOOT	2,902.000				
* 78005140	EPOXY PVT MK LINE 8	FOOT	3,860.000				
* 78005150	EPOXY PVT MK LINE 12	FOOT	121.000				
78100100	RAISED REFL PAVT MKR	EACH	350.000				
* 78300100	PAVT MARKING REMOVAL	SQ FT	7,470.000				
78300200	RAISED REF PVT MK REM	EACH	350.000				

TABLE OF CONTENTS

LOCATION OF PROJECT	1
DESCRIPTION OF PROJECT	1
STATUS OF UTILITIES TO BE ADJUSTED	1
MAINTENANCE OF ROADWAYS	2
COMPLETION DATE PLUS WORKING DAYS	2
INTERIM COMPLETION DATE	2
WORK RESTRICTIONS (INDEPENDENCE DAY WEEKEND / NASCAR RACES)	2
SLOTTED DRAIN (SPECIAL)	3
TRAFFIC CONTROL PLAN	3
TRAFFIC CONTROL AND PROTECTION FOR TEMPORARY DETOUR	4
KEEPING THE EXPRESSWAY OPEN TO TRAFFIC	4
FAILURE TO OPEN TRAFFIC LANES TO TRAFFIC	6
TRAFFIC CONTROL AND PROTECTION (EXPRESSWAYS)	6
TRAFFIC CONTROL SURVEILLANCE (EXPRESSWAYS)	10
TRAFFIC CONTROL FOR WORK ZONE AREAS	10
EPOXY COATING ON REINFORCEMENT (DISTRICT ONE)	11
FINE AGGREGATE FOR HOT- MIX ASPHALT (HMA) (D-1)	11
COARSE AGGREGATE FOR HOT-MIX ASPHALT (HMA) (D-1)	12
USE OF RAP (DIST 1)	
TEMPORARY PAVEMENT	21
REPLACEMENT OF SENSORS FOR ROADWAY WEATHER INFORMATION SYSTEM (RWIS)	21
TEMPORARY CONCRETE BARRIER (TO REMAIN PERMANENTLY)	22
REMOVE HIGH TENSION CABLE MEDIAN BARRIER	23
TEMPERATURE CONTROL FOR CONCRETE PLACEMENT (DISTRICT ONE)	23
TYPE III TEMPORARY TAPE FOR WET CONDITIONS	
TEMPORARY INFORMATION SIGNING	
CLEAN, RELAMP AND MAINTENANCE OF EXISTING LUMINAIRE	25
CLEANING EXISTING DRAINAGE STRUCTURES	25
REMOVAL OF EXISTING PRECAST CONCRETE UNITS	26
PERMANENT STEEL SHEET PILING	26
DECK SLAB REPAIR	
BRIDGE DECK LATEX CONCRETE OVERLAY	
STRUCTURAL REPAIR OF CONCRETE	43

AMERICAN RECOVERY AND REINVESTMENT ACT PROVISIONS (BDE)	51
AMERICAN RECOVERY AND REINVESTMENT ACT SIGNING (BDE)	52
ALKALI-SILICA REACTION FOR CAST-IN-PLACE CONCRETE (BDE)	
APPROVAL OF PROPOSED BORROW AREAS, USE AREAS, AND/OR WASTE AR	
ILLINOIS STATE BORDERS (BDE)	60
CEMENT (BDE)	61
CONCRETE ADMIXTURES (BDE)	63
CONSTRUCTION AIR QUALITY - DIESEL VEHICLE EMISSIONS CONTROL (BDE)	66
CONSTRUCTION AIR QUALITY - IDLING RESTRICTIONS (BDE)	67
DISADVANTAGED BUSINESS ENTERPRISE PARTICIPATION (BDE)	
ENGINEER'S FIELD OFFICE TYPE A (BDE)	
EQUIPMENT RENTAL RATES (BDE)	78
HIGH TENSION CABLE MEDIAN BARRIER (BDE)	79
HMA - HAULING ON PARTIALLY COMPLETED FULL-DEPTH PAVEMENT (BDE)	81
HOT-MIX ASPHALT – ANTI-STRIPPING ADDITIVE (BDE)	82
HOT-MIX ASPHALT - DENSITY TESTING OF LONGITUDINAL JOINTS (BDE)	83
HOT-MIX ASPHALT – DROP-OFFS (BDE)	
HOT-MIX ASPHALT – PLANT TEST FREQUENCY (BDE)	84
HOT-MIX ASPHALT – QC/QA ACCEPTANCE CRITERIA (BDE)	85
HOT-MIX ASPHALT – TRANSPORTATION (BDE)	85
IMPACT ATTENUATORS (BDE)	86
IMPACT ATTENUATORS, TEMPORARY (BDE)	87
LIQUIDATED DAMAGES (BDE)	89
MONTHLY EMPLOYMENT REPORT (BDE)	89
NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM / EROSION AND	SEDIMENT
CONTROL DEFICIENCY DEDUCTION (BDE)	90
NIGHTTIME WORK ZONE LIGHTING (BDE)	91
NOTIFICATION OF REDUCED WIDTH (BDE)	93
PAYMENTS TO SUBCONTRACTORS (BDE)	93
PERSONAL PROTECTIVE EQUIPMENT (BDE)	94
RAISED REFLECTIVE PAVEMENT MARKERS (BDE)	94
REFLECTIVE SHEETING ON CHANNELIZING DEVICES (BDE)	95
REINFORCEMENT BARS - STORAGE AND PROTECTION (BDE)	95
SEEDING (BDE)	98
SUBCONTRACTOR MOBILIZATION PAYMENTS (BDE)	101
SURFACE TESTING OF PAVEMENTS (BDE)	101

,	FAI 55 (I-55) 055-6 (238) 241 on 88(B&B-1)BR Will County
TEMPORARY EROSION CONTROL (BDE)	Contract 62930
THERMOPLASTIC PAVEMENT MARKINGS (BDE)	
TRAINING SPECIAL PROVISIONS	110
BITUMINOUS MATERIALS COST ADJUSTMENTS (BDE) (RETURN FORM WITH BID)	112
FUEL COST ADJUSTMENT (BDE) (RETURN FORM WITH BID)	115
STONE MATRIX ASPHALT (SMA)(DIST 1)	119
MATERIAL TRANSFER DEVICE (BDE)	127
CONCRETE MIX DESIGNS (BDE)	129
PAVEMENT MARKING REMOVAL (BDE)	130
HOT MIX ASPHALT MIXTURES, EGA MODIFIED PERFORMANCE GRADED (PG) ASF	PHALT BINDER
	130
Revis	sed 04/16/2010

The above represents the best information available to the Department and is included for the convenience of the bidder. The applicable portions of Articles 105.07 and 107.31 of the Standard Specifications shall apply.

MAINTENANCE OF ROADWAYS

Effective: September 30, 1985 Revised: November 1, 1996

Beginning on the date that work begins on this project, the Contractor shall assume responsibility for normal maintenance of all existing roadways within the limits of the improvement. This normal maintenance shall include all repair work deemed necessary by the Engineer, but shall not include snow removal operations. Traffic control and protection for maintenance of roadways will be provided by the Contractor as required by the Engineer.

If items of work have not been provided in the contract, or otherwise specified for payment, such items, including the accompanying traffic control and protection required by the Engineer, will be paid for in accordance with Article 109.04 of the Standard Specifications.

COMPLETION DATE PLUS WORKING DAYS

Effective: September 30, 1985 Revised: January 1, 2007

Revise Article 108.05 (b) of the Standard Specifications as follows:

"When a completion date plus working days is specified, the Contractor shall complete all contract items and safely open all roadways to traffic by 11:59 PM on, October 22, 2010, except as specified herein.

The Contractor will be allowed to complete all clean-up work and punch list items within $\underline{10}$ working days after the completion date for opening the roadway to traffic. Under extenuating circumstances the Engineer may direct that certain items of work, not affecting the safe opening of the roadway to traffic, may be completed within the working days allowed for clean up work and punch list items. Temporary lane closures for this work may be allowed at the discretion of the Engineer.

Article 108.09 or the Special Provision for "Failure to Complete the Work on Time", if included in this contract, shall apply to both the completion date and the number of working days.

INTERIM COMPLETION DATE

The Contractor shall complete the following items of work and safely open all roadways to traffic by 11:59 PM on October 15, 2010:

- Median crossovers.
- Rehabilitation to S.N. 099-0001(NB).
- Mainline pavement, shoulder and ramp resurfacing from Station 27+50 NB to Station 90+70 NB.
- Restore pavement markings with paint within the Contract Limits. Markings will be removed in 2011 in advance of Stage III MOT. Relocate the temporary barrier to close the crossovers.

WORK RESTRICTIONS (INDEPENDENCE DAY WEEKEND / NASCAR RACES)

As NASCAR holds a weekend of racing at the nearby Chicagoland Speedway, one week after the Independence Day weekend (July 4 is a Sunday in 2010), the Contractor shall be subject to the following work restrictions.

From Noon Friday, July 2, 2010 to 5:00 AM Monday, July 12, 2010, no broken pavement, open holes, trenches, barricades, cones or drums shall remain on or adjacent to the travelled way, and 2 lanes of traffic shall be open in each direction without dropoffs next to the mainline pavement.

The Contractor will not be allowed to work between October 16, 2010 and March 31, 2011 and all lanes shall be opened to traffic during this duration.

TRAFFIC CONTROL SURVEILLANCE (EXPRESSWAYS)

Effective: 10/25/95 Revised: 1/9/98

The contractor shall provide a person with a vehicle to survey, inspect and maintain all temporary traffic control devices when a lane is closed to traffic and when hazards are present adjacent to or within 10 foot of the edge of pavement for more than 24 hours.

The surveillance person is required to drive through the project, to inspect all temporary traffic control devices, to correct all traffic control deficiencies, if possible, or immediately contact someone else to make corrections and to assist with directing traffic until such corrections are made, at intervals not to exceed 4 hours. This person shall list every inspection on an inspection form, furnished by the Engineer, and shall return a completed form on the first working day after the inspections are made.

The Contractor shall supply a telephone staffed on a 24-hour-a-day basis to receive any notification of any deficiencies regarding traffic control and protection or receive any request for improving, correcting or modifying traffic control, installations or devices, including pavement markings. The Contractor shall dispatch additional men, materials and equipment as necessary to begin to correct, improve or modify the traffic control as directed, within one hour of notification by this surveillance person or by the Department. Upon completion of such corrections and/or revisions, the Contractor shall notify the Department's Communication Center at (847) 705-4612.

Method of Measurement.

Traffic Control Surveillance will be measured on calendar day basis. One calendar day is equal to a minimum of six (6) inspections. The inspections shall start within 4 hours after the lane is closed to traffic or a hazard exists within 10 foot from the edge of pavement and shall end when the lane closure or hazard is removed.

Basis of Payment.

Surveillance will be paid for at the contract unit price per calendar day or fraction thereof for TRAFFIC CONTROL SURVEILLANCE (EXPRESSWAYS). The price shall include all labor and equipment necessary to provide the required inspection and maintenance on the expressway and on all cross streets which are included in the project. The cost of the materials for the maintenance of traffic control devices shall be included in the traffic control pay items.

TRAFFIC CONTROL FOR WORK ZONE AREAS

Effective: 9/14/95 Revised: 1/1/07

Work zone entry and exit openings shall be established daily by the Contractor with the approval of the Engineer. All vehicles including cars and pickup trucks shall exit the work zone at the exit openings. All trucks shall enter the work zone at the entry openings. These openings shall be signed in accordance with the details shown elsewhere in the plans and shall be under flagger control during working hours.

The Contractor shall plan his trucking operations into and out of the work zone as well as on to and off the expressway to maintain adequate merging distance.

Merging distances to cross all lanes of traffic shall be no less than 1/2 mile. This distance is the length from where the trucks enter the expressway to where the trucks enter the work zone. It is also the length from where the trucks exit the work zone to where the trucks exit the expressway. The stopping of expressway traffic to allow trucks to change lanes and/or cross the expressway is prohibited.

Failure to comply with the above requirements will result in a Traffic Control Deficiency charge. The deficiency charge will be calculated as outlined in Article 105.03 of the Standard Specifications. The Contractor will be assessed this daily charge for each day a deficiency is documented by the Engineer.

EPOXY COATING ON REINFORCEMENT (DISTRICT ONE)

Effective: January 1, 2007

For work outside the limits of bridge approach pavement, all references in the Highway Standards and Standard Specifications for reinforcement, dowel bars, tie bars and chair supports for pavement, shoulders, curb, gutter, combination curb and gutter and median shall be epoxy coated, unless noted on the plan.

FINE AGGREGATE FOR HOT- MIX ASPHALT (HMA) (D-1)

Effective: May 1, 2007 Revised: January 15, 2010

Add the following to the gradation tables of Article 1003.01(c) of the Standard Specifications:

	FINE AGGREGATE GRADATIONS								
Sieve Size and Percent Passing									
Grad No.	3/8	No. 4	No. 8	No. 16	No. 200				
FA 22	100	6/	6/	8±8	2±2				

FINE AGGREGATE GRADATIONS (metric)					
	Sieve Size and Percent Passing				
Grad No.	9.5 mm	4.75 mm	2.36 mm	1.16 mm	75 μm
FA 22	100	6/	6/	8±8	2±2

^{6/} For the fine aggregate gradations FA 22, the aggregate producer shall set the midpoint percent passing, and the Department will apply a range of ± ten percent. The midpoint shall not be changed without Department approval.

Revise Article 1003.03(a) of the Standard Specifications to read:

"(a) Description. Fine aggregate for HMA shall consist of sand, stone sand, chats, slag sand, or steel slag sand. For gradation FA 22, uncrushed material will not be permitted."

Revise Article 1003.03 (c) of the Standard Specifications to read:

"(c) Gradation. The fine aggregate gradation for all HMA shall be FA1, FA 2, FA 20, FA 21 or FA 22. When Reclaimed Asphalt Pavement (RAP) is incorporated in the HMA design, the use of FA 21 Gradation will not be permitted.

Gradation FA 1, FA 2, or FA 3 shall be used when required for prime coat aggregate application for HMA."

Revised 04/16/2010

HMA High ESAL	IL-25.0	CA 7 ^{1/} or CA 8 ^{1/}
_	IL-19.0	CA 11 ^{1/}
	IL-12.5	CA 16 and/or CA 13
	IL-9.5	CA 16
HMA Low ESAL	IL-19.0L	CA 11 ^{1/}
	IL-9.5L	CA 16
HMA All Other	Stabilized Subbase	2/
	or Shoulders	CA 6 ² , CA 10, or CA 12

- 1/ CA 16 or CA 13 may be blended with the gradations listed.
- 2/ CA 6 will not be permitted in the top lift of shoulders.

USE OF RAP (DIST 1)

Effective: January 1, 2007 Revised: July 1, 2009

In Article 1030.02(g) of the Standard Specifications, delete the last sentence of the first paragraph in (Note 2).

Revise Section 1031 of the Standard Specifications to read:

"SECTION 1031. RECLAIMED ASPHALT PAVEMENT

1031.01 Description. Reclaimed asphalt pavement (RAP) results from the cold milling or crushing of an existing hot-mix asphalt (HMA) pavement. The Contractor shall supply written documentation that the RAP originated from routes or airfields under federal, state, or local agency jurisdiction. The contractor can also request that a processed pile be tested by the Department to determine the aggregate quality as described in Article 1031.04, herein.

1031.02 Stockpiles. The Contractor shall construct individual, sealed RAP stockpiles meeting one of the following definitions. No additional RAP shall be added to the pile after the pile has been sealed. Stockpiles shall be sufficiently separated to prevent intermingling at the base. Stockpiles shall be identified by signs indicating the type and size as listed below (i.e. "Homogenous Surface").

Prior to milling or removal of an HMA pavement, the Contractor may request the District to provide verification of the existing mix composition to clarify appropriate stockpile.

- (a) Homogeneous. Homogeneous RAP stockpiles shall consist of RAP from Class I, Superpave (High ESAL), HMA (High ESAL), or equivalent mixtures and represent: 1) the same aggregate quality, but shall be at least C quality; 2) the same type of crushed aggregate (either crushed natural aggregate, ACBF slag, or steel slag); 3) similar gradation; and 4) similar asphalt binder content. If approved by the Engineer, combined single pass surface/binder millings may be considered "homogenous" with a quality rating dictated by the lowest coarse aggregate quality present in the mixture.
- (b) Conglomerate 5/8. Conglomerate 5/8 RAP stockpiles shall consist of RAP from Class I, Superpave (High ESAL), HMA (High ESAL), or equivalent mixtures. The coarse aggregate in this RAP shall be crushed aggregate and may represent more than one aggregate type and/or quality but shall be at least C quality. This RAP may have an inconsistent gradation and/or asphalt binder content prior to processing. All conglomerate 5/8 RAP shall be processed prior to testing by crushing to where all RAP shall pass the 5/8 in. (16 mm) or smaller screen.
- (c) Conglomerate 3/8. Conglomerate 3/8 RAP stockpiles shall consist of RAP from Class I, Superpave (High ESAL), HMA (High ESAL), or equivalent mixtures. The coarse aggregate in this RAP shall be crushed aggregate and may represent more than one aggregate type and/or quality but shall be at least B quality. This RAP may have an inconsistent gradation and/or asphalt binder content prior to processing. All conglomerate 3/8 RAP shall be processed prior to testing by crushing to where all RAP shall pass the 3/8 in (9.5 mm) or smaller screen.

- (d) Conglomerate Variable Size. Conglomerate variable size RAP shall consist of RAP from Class I, Superpave (High ESAL), HMA (High ESAL), or equivalent mixtures. The coarse aggregate in this RAP shall be crushed aggregate and may represent more than one aggregate type and/or quality but shall be at least B quality. This RAP may have an inconsistent gradation and/or asphalt binder content prior to processing. All conglomerate variable size RAP shall be processed prior to testing by crushing and screening to where all RAP is separated into various sizes. All the conglomerate variable size RAP shall pass the 3/4 in. (19 mm) screen and shall be a minimum of two sizes.
- (e) Conglomerate "D" Quality (DQ). Conglomerate DQ RAP stockpiles shall consist of RAP from Class I, Superpave (High or Low ESAL), HMA (High or Low Esal), or equivalent mixtures. The coarse aggregate in this RAP may be crushed or round but shall be at least D quality. This RAP may have an in consistent gradation and/or asphalt binder content.
- (f) Non-Quality. RAP stockpiles that do not meet the requirements of the stockpile categories listed above shall be classified as "Non-Quality".

RAP containing contaminants, such as earth, brick, sand, concrete, sheet asphalt, bituminous surface treatment (i.e. chip seal), pavement fabric, joint sealants, etc., will be unacceptable unless the contaminants are removed to the satisfaction of the Engineer. Sheet asphalt shall be stockpiled separately.

1031.03 Testing. When used in HMA, the RAP shall be sampled and tested either during or after stockpiling.

For testing during stockpiling, washed extraction samples shall be run at the minimum frequency of one sample per 500 tons (450 metric tons) for the first 2000 tons (1800 metric tons) and one sample per 2000 tons (1800 metric tons) thereafter. A minimum of five tests shall be required for stockpiles less than 4000 tons (3600 metric tons).

For testing after stockpiling, the Contractor shall submit a plan for approval to the District proposing a satisfactory method of sampling and testing the RAP pile either in-situ or by restockpiling. The sampling plan shall meet the minimum frequency required above and detail the procedure used to obtain representative samples throughout the pile for testing.

Before extraction, each field sample shall be split to obtain two samples of test sample size. One of the two test samples from the final split shall be labeled and stored for Department use. The Contractor shall extract the other test sample according to Department procedure. The Engineer reserves the right to test any sample (split or Department-taken) to verify Contractor test results.

(a) Testing Conglomerate 3/8 and Conglomerate Variable Size. In addition to the requirements above, conglomerate 3/8 and variable size RAP shall be tested for maximum theoretical specific gravity (G_{mm}) at a frequency of one sample per 500 tons (450 metric tons) for the first 2000 tons (1800 metric tons) and one sample per 2000 tons (1800 metric tons) thereafter. A minimum of five tests shall be required for stockpiles less than 4000 tons (3600 metric tons).

(b) Evaluation of Test Results. All of the extraction results shall be compiled and averaged for asphalt binder content and gradation and, when applicable G_{mm} . Individual extraction test results, when compared to the averages, will be accepted if within the tolerances listed below.

Parameter	Homogeneous/ Conglomerate	Conglomerate "D" Quality
1 in. (25 mm)		± 5 %
3/4 in. (19mm)		
1/2 in. (12.5mm)	± 8 %	± 15 %
No. 4 (4.75 mm)	±6 %	± 13 %
No. 8 (2.36 mm)	±5 %	
No. 16 (1.18 mm)		± 15 %
No. 30 (600 μm)	± 5. %	
No. 200 (75 μm)	± 2.0 %	± 4.0 %
Asphalt Binder	± 0.4 % ^{1/}	± 0.5 %
Gmm	±0.02 % ^{2/}	
Gmm	±0.03 % ^{3/}	

- 1/ The tolerance for conglomerate 3/8 shall be \pm 0.3 %.
- 2/ Applies only to conglomerate 3/8. When variation of the G_{mm} exceeds the \pm 0.02 % tolerance, a new conglomerate 3/8 stockpile shall be created which will also require an additional mix design.
- 3/ Applies only to conglomerate variable size. When variation of the G_{mm} exceeds the \pm 0.03 tolerance, a new conglomerate variable size stockpile shall be created which will also require an additional mix design.

If more than 20 percent of the individual sieves are out of the gradation tolerances, or if more than 20 percent of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile. All test data and acceptance ranges shall be sent to the District for evaluation.

With the approval of the Engineer, the ignition oven may be substituted for extractions according to the Illinois Test Procedure, "Calibration of the Ignition Oven for the Purpose of Characterizing Reclaimed Asphalt Pavement (RAP)".

1031.04 Quality Designation of Aggregate in RAP. The quality of the RAP shall be set by the lowest quality of coarse aggregate in the RAP stockpile and are designated as follows.

- (a) RAP from Class I, Superpave (High ESAL), or HMA (High ESAL) surface mixtures are designated as containing Class B quality coarse aggregate.
- (b) RAP from Superpave (Low ESAL)/HMA (Low ESAL) IL-19.0L binder and IL-9.5L surface mixtures are designated as Class D quality coarse aggregate.

- (c) RAP from Class I, Superpave (High ESAL), or HMA (High ESAL) binder mixtures, bituminous base course mixtures, and bituminous base course widening mixtures are designated as containing Class C quality coarse aggregate.
- (d) RAP from bituminous stabilized subbase and BAM shoulders are designated as containing Class D quality coarse aggregate.

Aggregate Quality Testing of RAP:

The processed pile shall have a maximum tonnage of 5,000 tons (4500 metric tons). The pile shall be crushed and screened with 100 percent of the material passing the 3/4 in. (19mm) sieve. The pile shall be tested for AC content and gradation and shall conform to all requirements of Article 1031.03 Testing, herein. Once the uniformity of the gradation and AC content has been established, the Contractor shall obtain a representative sample with district oversight of the sampling. This sample shall be no less than 50 lbs (25 kg) and this sample shall be delivered to a Consultant Lab, prequalified by the Department for extraction testing according to Illinois Modified AASHTO T 164. After the AC has been extracted, the Consultant Lab shall submit the test results along with the recovered aggregate to the District Office. The cost for this testing shall be paid directly by the Contractor. The District will forward the sample to the BMPR Aggregate Lab for MicroDeval Testing, according to Illinois Modified AASHTO T 327. A maximum loss of 15.0 percent will be applied for all HMA applications.

1031.05 Use of RAP in HMA. The use of RAP in HMA shall be as follows.

- (a) Coarse Aggregate Size. The coarse aggregate in all RAP shall be equal to or less than the nominal maximum size requirement for the HMA mixture to be produced.
- (b) Use in HMA Surface Mixtures (High and Low ESAL). RAP stockpiles for use in HMA surface mixtures (High and Low ESAL) shall be either homogeneous or conglomerate 3/8 or variable size in which the coarse aggregate is Class B quality or better.
- (c) Use in HMA Binder Mixtures (High and Low ESAL), HMA Base Course, and HMA Base Course Widening. RAP stockpiles for use in HMA binder mixtures (High and Low ESAL), HMA base course, and HMA base course widening shall be homogeneous, conglomerate 5/8, or conglomerate 3/8, conglomerate variable size, in which the coarse aggregate is Class C quality or better.
- (d) Use in Shoulders and Subbase. RAP stockpiles for use in HMA shoulders and stabilized subbase (HMA) shall be homogeneous, conglomerate 5/8, conglomerate 3/8, conglomerate variable size, or conglomerate DQ.
- (e) The use of RAP shall be a contractor's option when constructing HMA in all contracts. When the Contractor chooses the RAP option, the percentage of RAP shall not exceed the amounts indicated in the table for a given N Design.

Maximum Mixture RAP Percentage

HMA Mixtures 1/3/		Maximum % Rap	
Ndesign	Binder/Leveling Binder	Surface	Polymer Modified
30	30/40 ^{2/}	30	10
50	25/40 ^{2/ 4/}	15/25 ^{2/}	10 4/
70	25/30 ^{2/}	10/20 ^{2/}	10
90	10/15 ^{2/}	10/15 ^{2/}	10
105	10/15 ^{2/}	10/15 ^{2/}	10

- 1/ For HMA Shoulder and Stabilized Sub-Base (HMA) N-30, the amount of RAP shall not exceed 50% of the mixture.
- 2/ Value of Max % RAP If 3/8 Rap or conglomerate variable size RAP is utilized.
- 3/ When RAP exceeds 20% the AC shall be PG58 -22. However, when RAP exceeds 20% and is used in full depth HMA pavement the AC shall be PG58 -28.
- 4/ Polymerized Leveling Binder, IL-4.75 is 15 %

1031.06 HMA Mix Designs. At the Contractor's option, HMA mixtures may be constructed utilizing RAP material meeting the above detailed requirements.

RAP designs shall be submitted for volumetric verification. If additional RAP stockpiles are tested and found that no more than 20 percent of the results, as defined under "Testing" herein, are outside of the control tolerances set for the original RAP stockpile and HMA mix design, and meets all of the requirements herein, the additional RAP stockpiles may be used in the original mix design at the percent previously verified.

1031.07 HMA Production. The coarse aggregate in all RAP used shall be equal to or less than the nominal maximum size requirement for the HMA mixture being produced.

To remove or reduce agglomerated material, a scalping screen, crushing unit, or comparable sizing device approved by the Engineer shall be used in the RAP feed system to remove or reduce oversized material. If material passing the sizing device adversely affects the mix production or quality of the mix, the sizing device shall be set at a size specified by the Engineer.

If the RAP control tolerances or QC/QA test results require corrective action, the Contractor shall cease production of the mixture containing RAP and either switch to the virgin aggregate design or submit a new RAP design. When producing mixtures containing conglomerate 3/8 or conglomerate variable size RAP, a positive dust control system shall be utilized.

HMA plants utilizing RAP shall be capable of automatically recording and printing the following information.

- (a) Drier Drum Plants
 - (1) Date, month, year, and time to the nearest minute for each print.

- (2) HMA Mix number assigned by the Department
- (3) Accumulated weight of dry aggregate (combined or individual) in tons (metric tons) Accumulated weight of dry aggregate (combined or individual) in tons (metric tons) to the nearest 0.1 ton (0.1 metric ton)
- (4) Accumulated dry weight of RAP in tons (metric tons) to the nearest 0.1 ton (0.1 metric ton)
- (5) Accumulated mineral filler in revolutions, tons (metric tons), etc. to the nearest 0.1 unit.
- (6) Accumulated asphalt binder in gallons (liters), tons (metric tons), etc. to the nearest 0.1 unit.
- (7) Residual asphalt binder in the RAP material (per size) as a percent of the total mix to the nearest 0.1 unit.
- (8) Aggregate and RAP moisture compensators in percent as set on the control panel (Required when accumulated or individual aggregate and RAP are printed in wet condition).
- (b) Batch Plants
 - (1) Date, month, year, and time to the nearest minute for each print.
 - (2) HMA mix number assigned by the Department.
 - (3) Individual virgin aggregate hot bin batch weights to the nearest pound (kilogram)
 - (4) Mineral filler weight to the nearest pound (kilogram).
 - (5) Individual RAP Aggregate weight to the nearest pound (kilogram).
 - (6) Virgin asphalt binder weight to the nearest pound (kilogram)
 - (7) Residual asphalt binder of each RAP size material as a percent of the total mix to the nearest 0.1 percent.

The printouts shall be maintained in a file at the plant for a minimum of one year or as directed by the Engineer and shall be made available upon request. The printing system will be inspected by the Engineer prior to production and verified at the beginning of each construction season thereafter.

1031.08 RAP in Aggregate Surface Course and Aggregate Shoulders. The use of RAP in aggregate surface course and aggregate shoulders shall be as follows.

- (a) Stockpiles and Testing. RAP stockpiles may be any of those listed in Article 1031.02, except "Other". The testing requirements of Article 1031.03 shall not apply.
- (b) Gradation. One hundred percent of the RAP material shall pass the 1 1/2 in. (37.5 mm) sieve. The RAP material shall be reasonably well graded from coarse to fine. RAP material that is gap-graded or single sized will not be accepted."

TEMPORARY PAVEMENT

Effective: March 1, 2003 Revised: April 10, 2008

<u>Description.</u> This work shall consist of constructing a temporary pavement at the locations shown on the plans or as directed by the engineer.

The contractor shall use either Portland cement concrete according to Sections 353 and 354 of the Standard Specifications according to Sections 355, 356, 406 of the Standard Specifications, and other applicable HMA special provisions as contained herein. The HMA mixtures to be used shall be specified in the plans. The thickness of the Temporary Pavement shall be as described in the plans. The contractor shall have the option of constructing either material type if both Portland cement concrete and HMA are shown in the plans.

Articles 355.08 and 606.11 of the Standard Specifications shall not apply.

The removal of the Temporary Pavement, if required, shall conform to Section 440 of the Standard Specifications.

<u>Method of Measurement.</u> Temporary pavement will be measured in place and the area computed in square yards (square meters).

<u>Basis of Payment.</u> This work will be paid for at the contract unit price per square yard (square meter) for TEMPORARY PAVEMENT or TEMPORARY PAVEMENT (INTERSTATE). Removal of temporary pavement will be paid for at the contract unit price per square yard (square meter) for PAVEMENT REMOVAL.

REPLACEMENT OF SENSORS FOR ROADWAY WEATHER INFORMATION SYSTEM (RWIS)

Description

The work shall consist of furnishing, installing, connecting, calibrating and replacing roadway surface sensors at the existing Roadway Weather Information System (RWIS) station site. The remainder of the RWIS station site shall be preserved in good working condition throughout the project.

Maintenance Contractor (Manufacturer) Coordination

The RWIS station and associated sensors are maintained by State contract currently awarded to Quixote Transportation Technologies, Inc. (QTT), St. Louis, MO Telephone: (314) 569-1002, Fax: (314) 569-3567. The Contractor shall contact and coordinate both, the work required, and the timing of the installation with the manufacturer.

The Contractor shall be responsible for determining the appropriate equipment necessary to drive the sheeting to the tip elevation(s) specified on the plans or according to the Contractor's approved design. The sheet piling shall be driven, as a minimum, to the tip elevation(s) specified, prior to commencing any related construction. If unable to reach the minimum tip elevation, the adequacy of the sheet piling design will require re-evaluation by the Department prior to allowing construction adjacent to the sheet piling in question.

<u>Method of Measurement</u>. This work will be measured in place in square feet (square meters). Sheet piling associated with other work in this contract or for permanent sheet piling that is cut off or driven beyond those dimensions shown on the plans will not be measured for payment. <u>Basis of Payment</u>. This work will be paid for at the contract unit price per square foot (square meter) for PERMANENT STEEL SHEET PILING at the location shown on the plans.

DECK SLAB REPAIR

Effective: May 15, 1995 Revised: January 22, 2010

This work shall consist of hot-mix asphalt surface removal, when required, the removal and disposal of all loose and deteriorated concrete from bridge deck and the replacement with new concrete to the original top of deck. The work shall be done according to the applicable requirements of Sections 501, 503 and 1020 of the Standard Specifications and this Special Provision.

Deck slab repairs will be classified as follows:

- (a) Partial-Depth. Partial-depth repairs shall consist of removing the loose and unsound deck concrete, disposing of the concrete removed and replacing with new concrete. The removal may be performed by chipping with power driven hand tools or by hydroscarification equipment. The depth shall be measured from the top of the concrete deck surface, at least 3/4 in. (20 mm) but not more than 1/2 the concrete deck thickness.
- (b) Full-Depth. Full-depth repairs shall consist of removing concrete full-depth of the deck, disposing of the concrete removed, and replacing with new concrete to the original concrete deck surface. The removal may be performed with power driven hand tools, hydraulic impact equipment, or by hydro-scarification equipment. Full-depth repairs shall be classified for payment as Full-Depth, Type I and Full-Depth, Type II according to the following:
 - Type I Full-depth patches less than or equal to 5 sq. ft. (0.5 sq m) in area. The minimum dimensions for a patch shall be 1 ft. x 1 ft. (300 mm x 300 mm).
 - Type II Full-depth patches greater than 5 sq. ft. (0.5 sq. m) in area.

Materials.

Materials shall be according to Article 1020.02.

Portland cement concrete for partial and full-depth repairs shall be according to Section 1020. Class PP-1, PP-2, PP-3, PP-4, PP-5 or BS concrete shall be used at the Contractor's option unless noted otherwise on the contract plans. For Class BS concrete, a CA 13, 14, or 16 shall be used. If the BS concrete mixture is used only for full depth repairs, a CA-11 may be used.

Revised 04/16/2010

In Section 1020, revise the second sentence of Note 10 for Table 1 of Article1020.04 to read as follows for Class PP concrete: "The bridge deck patching mix design strength shall be increased to 4000 psi (27,500 kPa) compressive or 675 psi (4650 kPa) flexural, and the mixture shall have 72 hours to obtain the required strength."

Grout. The grout for bonding new concrete to old concrete shall be proportioned by weight (mass) and mixed at the job site, or it may be ready-mixed if agitated while at the job site. The bonding grout shall consist of one part portland cement and one part sand, mixed with sufficient water to form a slurry. The bonding grout shall have a consistency allowing it to be scrubbed onto the prepared surface with a stiff brush or broom leaving a thin, uniform coating that will not run or puddle in low spots. Grout that cannot be easily and evenly applied or has lost its consistency may be rejected by the Engineer. Grout that is more than two hours old shall not be used.

Equipment:

The equipment used shall be subject to the approval of the Engineer and shall meet the following requirements:

- (a) Surface Preparation Equipment. Surface preparation and concrete removal equipment shall be according to the applicable portions of Section 1100 and the following:
 - (1) Sawing Equipment. Sawing equipment shall be a concrete saw capable of sawing concrete to the specified depth.
 - (2) Blast Cleaning Equipment. The blast cleaning may be performed by wet sandblasting, high-pressure waterblasting, shotblasting or abrasive blasting. Blast cleaning equipment shall be capable of removing rust and old concrete from exposed reinforcement bars, and shall have oil traps.
 - (3) Power-Driven Hand Tools. Power-driven hand tools will be permitted including jackhammers lighter than the nominal 45 lb. (20 kg) class. Chipping hammers heavier than a nominal 15 lb. (6.8 kg) class shall not be used for removing concrete from below any reinforcing bar for partial depth repairs, or for removal within 1 ft (300 mm) of existing beams, girders or other supporting structural members that are to remain in service or within 1 ft (300 mm) of the boundaries of full-depth repairs. Jackhammers or chipping hammers shall not be operated at an angle in excess of 45 degrees measured from the surface of the slab.
 - (4) Hydraulic Impact Equipment. Hydraulic impact equipment with a maximum rated striking energy of 360 ft-lbs (270 J) may be permitted only in areas of full depth removal more than 1 ft (300 mm) away from existing beams, girders or other supporting structural members that are to remain in service or more than 1 ft (300 mm) from the boundaries of full-depth repairs.
 - (5) Hydro-Scarification Equipment. The hydro-scarification equipment shall consist of filtering and pumping units operating with a remote-controlled robotic device. The equipment may use river, stream or lake water. Operation of the equipment shall be performed and supervised by qualified personnel certified by the equipment manufacturer. Evidence of certification shall be presented to the Engineer.

The equipment shall be capable of removing concrete to the specified depth and removing rust and concrete particles from exposed reinforcing bars. Hydroscarification equipment shall be calibrated before being used and shall operate at a minimum of 18,000 psi (124 MPa).

- (b) Concrete Equipment: Equipment for proportioning and mixing the concrete shall be according to Article 1020.03.
- (c) Finishing Equipment: Finishing equipment shall be according to Article 1103.17. Adequate hand tools will be permitted for placing and consolidating concrete in the patch areas and for finishing small patches.

<u>Construction Requirements:</u> Sidewalks, curbs, drains, reinforcement and/or existing transverse and longitudinal joints which are to remain in place shall be protected from damage during removal and cleaning operations. All damage caused by the Contractor shall be corrected, at the Contractor's expense, to the satisfaction of the Engineer.

The Contractor shall control the runoff water generated by the various construction activities in such a manner as to minimize, to the maximum extent practicable, the discharge of construction debris into adjacent waters, and shall properly dispose of the solids generated according to Article 202.03. Runoff water will not be allowed to constitute a hazard on adjacent or underlying roadways, waterways, drainage areas or railroads nor be allowed to erode existing slopes.

(a) Hot-Mix Asphalt Surface Removal.

The hot-mix asphalt surface course and all waterproofing membrane shall be removed and disposed of according to applicable portions of Articles 440.04 and 440.06, except milling equipment will not be allowed if the deck is to receive a waterproofing membrane system. If the overlay or waterproofing membrane contains asbestos fibers, removal shall be in accordance with the Special Provision for "Asbestos Waterproofing Membrane or Asbestos Hot-mix Asphalt Surface Removal". Removal of the hot-mix asphalt surface by the use of radiant or direct heat will not be permitted.

(b) Surface Preparation:

All loose, disintegrated and unsound concrete shall be removed from portions of the deck slab shown on the plans or as designated by the Engineer. The Engineer will determine the limits of removal as the work progresses.

The Contractor shall take care not to damage reinforcement bars or expansion joints which are to remain in place. Any damage to reinforcement bars or expansion joints shall be corrected at the Contractor's expense. All loose reinforcement bars, as determined by the Engineer, shall be retied at the Contractor's expense.

(1) Partial-Depth. Areas to be repaired will be determined and marked by the Engineer. A concrete saw shall be used to provide vertical edges approximately 3/4 in. (20 mm) deep around the perimeter of the area to be patched when a concrete overlay is not specified. Where high steel is present, the depth may be reduced as directed by the Engineer.

A saw cut will not be required on those boundaries along the face of the curb, parapet or joint or when sharp vertical edges are provided by hydro-scarification.

The loose and unsound concrete shall be removed by chipping, with power driven hand tools or by hydro-scarification equipment. All exposed reinforcing bars and newly exposed concrete shall be thoroughly blast cleaned. Where, in the judgment of the Engineer, the bond between existing concrete and reinforcement steel within the patch area has been destroyed, the concrete adjacent to the bar shall be removed to a depth that will permit new concrete to bond to the entire periphery of the exposed bar. A minimum of 1 in. (25 mm) clearance will be required. The Engineer may require enlarging a designated removal area should inspection indicate deterioration beyond the limits previously designated. In this event, a new saw cut shall be made around the extended area before additional removal is begun. The removal area shall not be enlarged solely to correct debonded reinforcement or deficient lap lengths.

(2) Full-Depth. Concrete shall be removed as determined by the Engineer within all areas designated for full-depth repair and in all designated areas of partial depth repair in which unsound concrete is found to extend below half the concrete deck thickness. Full depth removal shall be performed according to Article 501.05 except that hydraulic impact equipment may be permitted in areas of full depth removal more than 1 ft (300 mm) away from the edges of existing beams, girders or other supporting structural members or more than 1 ft (300 mm) from the boundaries of full-depth repairs. Saw cuts shall be made on the top of the deck, except those boundaries along the face of curbs, parapets and joints or where hydro-scarification provided sharp vertical edges. The top saw cut may be omitted if the deck is to receive an overlay.

Forms for full-depth repair may be supported by hangers with adjustable bolts or by blocking from the beams below. When approved by the Engineer, forms for Type 1 patches may be supported by No. 9 wires or other devices attached to the reinforcement bars.

All form work shall be removed after the curing sequence is complete and prior to opening to traffic.

(3) Reinforcement Treatment. Care shall be exercised during concrete removal to protect the reinforcement bars and structural steel from damage. Any damage to the reinforcement bars or structural steel to remain in place shall be repaired or replaced to the satisfaction of the Engineer at the Contractor's expense. All existing reinforcement bars shall remain in place except as herein provided for corroded bars. Tying of loose bars will be required. Reinforcing bars which have been cut or have lost 25 percent or more of their original cross sectional area shall be supplemented by new in kind reinforcement bars. New bars shall be lapped a minimum of 32 bar diameters to existing bars. An approved mechanical bar splice capable of developing in tension at least 125 percent of the yield strength of the existing bar shall be used when it is not feasible to provide the minimum bar lap. No welding of bars will be permitted.

(4) Cleaning. Immediately after completion of the concrete removal and reinforcement repairs, the repair areas shall be cleaned of dust and debris. Once the initial cleaning is completed, the repair areas shall be thoroughly blast cleaned to a roughened appearance free from all foreign matter. Particular attention shall be given to removal of concrete fines. Any method of cleaning which does not consistently produce satisfactory results shall be discontinued and replaced by an acceptable method. All debris, including water, resulting from the blast cleaning shall be confined and shall be immediately and thoroughly removed from all areas of accumulation. If concrete placement does not follow immediately after the final cleaning, the area shall be carefully protected with well-anchored polyethylene sheeting.

Exposed reinforcement bars shall be free of dirt, detrimental scale, paint, oil, or other foreign substances which may reduce bond with the concrete. A tight non-scaling coating of rust is not considered objectionable. Loose, scaling rust shall be removed by rubbing with burlap, wire brushing, blast cleaning or other methods approved by the Engineer.

- (c) Placement & Finishing of Concrete Repair:
 - (1) Grout Placement. After the repair areas have been cleaned and immediately prior to concrete placement, the grout shall be applied to a dampened surface. A thin layer of grout shall be thoroughly scrubbed into the deck surface. All vertical as well as horizontal surfaces shall receive a thorough, even coating. The rate of grout placement shall be limited so the brushed grout does not dry out before it is covered with concrete. Grout that has become dry and chalky shall be blast cleaned and replaced at the Contractor's expense. No concrete shall be placed over dry grout.
 - (2) Concrete Placement.

The concrete shall be placed and consolidated according to Article 503.07 and as herein specified. Article 1020.14 shall apply.

When an overlay system is not specified, the patches shall be finished according to Article 503.16 (a), followed by a light brooming.

(d) Curing and Protection.

Concrete patches shall be cured by the Wetted Burlap or Wetted Cotton Mat Method according to Article 1020.13 (a)(3) or Article 1020.13 (a)(5). The curing period shall be 3 days for Class PP-1, PP-2, PP-3, PP-4, and PP-5 concrete. The curing period shall be 7 days for Class BS concrete. In addition to Article 1020.13, when the air temperature is less than 55° F (13° C), the Contractor shall cover the patch according to Article 1020.13 (d)(1) with minimum R12 insulation. Insulation is optional when the air temperature is 55° F. - 90° F (13° C - 32° C). Insulation shall not be placed when the air temperature is greater than 90° F (32° C). A 72-hour minimum drying period shall be required before placing waterproofing or hot-mix asphalt surfacing.

(e) Opening to Traffic.

No traffic will be permitted on a patch until after the specified cure period, and the concrete has obtained a minimum compressive strength of 4000 psi (27.6 MPa) or flexural strength of 675 psi (4.65 MPa).

Construction equipment will be permitted on a patch during the cure period if the concrete has obtained the minimum required strength. In this instance, the strength specimens shall be cured with the patch.

Method of Measurement.

When specified, hot-mix asphalt surface removal and full or partial depth repairs will be measured for payment and computed in square yards (square meters).

Basis of Payment.

The hot-mix asphalt surface removal will be paid for at the contract unit price per square yard (square meter) for HOT-MIX ASPHALT SURFACE REMOVAL (DECK). Areas removed and replaced up to and including a depth of half the concrete deck thickness will be paid for at the contract unit price per square yard (square meter) for DECK SLAB REPAIR (PARTIAL). Areas requiring removal greater than a depth of half the concrete deck thickness shall be removed and replaced full depth and will be paid for at the contract unit price per square yard (square meter) for DECK SLAB REPAIR (FULL DEPTH, TYPE I) and/or DECK SLAB REPAIR (FULL DEPTH, TYPE II).

When corroded reinforcement bars are encountered in the performance of this work and replacement is required, the Contractor will be paid according to Article 109.04.

No payment will be allowed for removal and replacement of reinforcement bars damaged by the Contractor in the performance of his/her work or for any increases in dimensions needed to provide splices for these replacement bars.

Removal and disposal of asbestos waterproofing and/or asbestos bituminous concrete will be paid for as specified in the Special Provision for "Asbestos Waterproofing Membrane or Asbestos Hot-Mix Asphalt Surface Removal".

BRIDGE DECK LATEX CONCRETE OVERLAY

Effective: May 15, 1995 Revised: May 11, 2009

This work shall consist of the preparation of the existing concrete bridge deck and the construction of a latex overlay to the specified thickness. The minimum thickness of the overlay shall be 2 1/4 in. (60 mm).

Materials. Materials shall meet the following Articles of Section 1000:

Item	Section	
(a) Latex/Portland Cement Concrete (Note 1) (Note 2) (b) Grout (Note 3)	1020	
(c) Packaged Rapid Hardening Mortar or Concrete (d) Concrete Curing Materials	1018 1022.02	
•		Revised 04/16/2010

The volume will be determined by subtracting the theoretical volume of the overlay from the ticketed volume of overlay delivered minus the volume estimated by the Engineer left in the last truck at the end of the overlay placement. The theoretical cubic yard (cubic meter) quantity for the overlay will be determined by multiplying the plan surface area of the overlay times the specified thickness of the overlay.

<u>Basis of Payment</u>. Concrete scarification of the bridge deck using mechanical scarification equipment will be paid for at the contract unit price per square yard (square meter) for CONCRETE BRIDGE DECK SCARIFICATION of the depth specified. Concrete scarification of the bridge deck using hydro-scarification equipment will be paid for at the contract unit price per square yard (square meter) for BRIDGE DECK HYDRO-SCARIFICATION of the depth specified.

Latex concrete overlay will be paid for at the contract unit price per square yard (square meter) for BRIDGE DECK LATEX CONCRETE OVERLAY, of the thickness specified. When hydroscarification is specified, the additional volume of overlay required to fill all depressions below the specified thickness will be paid for at the Contractor's actual material cost for the latex concrete per cubic yard (cubic meter) plus 15 percent.

When mechanical scarification is specified, additional partial depth patches poured monolithically with the overlay will be paid for at the contract unit price bid per square yard (square meter) for DECK SLAB REPAIR (PARTIAL).

When the Engineer conducts pull-off tests on the overlay and they are acceptable, Contractor expenses incurred due to testing and for filling core holes will be paid according to Article 109.04. Unacceptable pull-off tests will be at the Contractor's expense.

When specified on the plans, the Contractor has the option of choosing the type of overlay. The options will be limited to those specified in the plans and will be paid for at the contract unit price per square yard (square meter) for BRIDGE DECK CONCRETE OVERLAY OPTION, of the thickness specified.

Overlay material placed off the deck in abutment backwalls, and/or other locations will not be measured for payment but will be included in the pay item involved.

STRUCTURAL REPAIR OF CONCRETE

Effective: March 15, 2006 Revised: January 22, 2010

<u>Description</u>. This work shall consist of structurally repairing concrete.

Materials. Materials shall be according to the following.

Item	Article/Section
(a) Portland Cement Concrete (Note 1)	1020
(b) R1 or R2 Mortar (Note2)	
(c) Normal Weight Concrete (Note 3)	
(d) Shotcrete (High Performance) (Note 4)	
(e) Reinforcement Bars	1006.10
(f) Anchor Bolts	1006.09
	Revised 04/16/2010

(g) Water	1002
(h) Curing Compound (Type I)	
(i) Cotton Mats	
(j) Protective Coat	
(k) Epoxy (Note 5)	1025
(I) Mechanical Bar Splicers (Note 6)	

- Note 1. The concrete shall be Class SI, except the cement factor shall be a minimum 6.65 cwt/cu. yd. (395 kg/cu. m), the coarse aggregate shall be a CA 16, and the strength shall be a minimum 4000 psi (27,500 kPa) compressive or 675 psi (4650 kPa) flexural at 14 days. A high range water-reducing admixture shall be used to obtain a 5-7 in. (125-175 mm) slump, but the cement factor shall not be reduced. This cement factor restriction shall also apply if a water-reducing admixture is used.
- Note 2. The R1 or R2 mortar shall be from the Department's approved list of Packaged, Dry, Rapid Hardening, Cementitious Materials for Concrete Repairs with coarse aggregate added. The amount of coarse aggregate added to the R1 or R2 Mortar shall be per the manufacturer's recommendations. The coarse aggregate gradation shall be CA 16 from an Aggregate Gradation Control System source or a packaged aggregate meeting Article 1004.02 with a maximum size of 1/2 in. (12.5 mm). The R1 or R2 Mortar and coarse aggregate mixture shall comply with the air content and strength requirements for Class SI concrete as indicated in Note 1. Mixing shall be per the manufacturer's recommendations, except the water/cement ratio shall not exceed the value specified for Class SI concrete as indicated in Note 1. A high range water-reducing admixture shall be used to obtain a 5-7 in. (125-175 mm) slump.
- Note 3. The packaged concrete mixture shall be from the Department's approved list of Packaged, Dry, Formed, Concrete Repair Mixtures. The materials and preparation of aggregate shall be according to ASTM C 387. Proportioning shall be according to ASTM C 387, except the minimum cement factor shall be 6.65 cwt/cu. yd. (395 kg/cu. m). Cement replacement with fly ash or ground granulated blast-furnace slag shall be according to Section 1020. The coarse aggregate shall be a maximum size of 1/2 in. (12.5 mm). The packaged concrete mixture shall comply with the air content and strength requirements for Class SI concrete as indicated in Note 1. Mixing shall be per the manufacturer's recommendations, except the water/cement ratio shall not exceed the value specified for Class SI concrete as indicated in Note 1. A high range water-reducing admixture shall be used to obtain a 5-7 in. (125-175 mm) slump.
- Note 4. A packaged, pre-blended, and dry combination of materials, for the wet-mix shotcrete method shall be provided according to ASTM C 1480. An accelerator is prohibited, except the shotcrete may be modified at the nozzle with a non-chloride accelerator for overhead applications. The shotcrete shall be Type FA or CA, Grade FR, and Class I. The fibers shall be Type III synthetic according to ASTM C 1116.

The packaged shotcrete shall have a maximum water soluble chloride ion content of 0.06 % by weight (mass) of cement. The test shall be performed according to ASTM C 1218, and the hardened shotcrete shall have an age of 28 to 42 days at the time of test. The test shall be performed a minimum of once every two years.

Each individual aggregate used in the packaged shotcrete shall have either a maximum ASTM C 1260 expansion of 0.16 percent or a maximum ASTM C 1293 expansion of 0.040 percent. However, the ASTM C 1260 value may be increased to 0.27 percent for each individual aggregate if the cement total equivalent alkali content (Na2O + 0.658K2O) does not exceed 0.60 percent. As an alternative to these requirements, ASTM C 1567 testing which shows the packaged shotcrete has a maximum expansion of 0.16 percent may be submitted. The ASTM C 1260, C 1293, or C 1567 test shall be performed a minimum of once every two years.

The 7 and 28 day compressive strength requirements in ASTM C 1480 shall not apply. Instead the shotcrete shall obtain a minimum compressive strength of 4000 psi (27,500 kPa) at 14 days.

The packaged shotcrete shall be limited to the following proportions:

The portland cement and finely divided minerals shall be 6.05 cwt/cu. yd. (360 kg/cu. m) to 8.50 cwt/cu. yd (505 kg/cu. m) for Type FA and 6.05 cwt/cu. yd. (360 kg/cu. m) to 7.50 cwt/cu. yd. (445 kg/cu. m) for Type CA. The portland cement shall not be below 4.70 cwt/cu. yd. (279 kg/cu. m) for Type FA or CA.

The finely divided mineral(s) shall constitute a maximum of 35 percent of the total cement plus finely divided mineral(s).

Class F fly ash is optional and the maximum shall be 20 percent by weight (mass) of cement.

Class C fly ash is optional and the maximum shall be 25 percent by weight (mass) of cement.

Ground granulated blast-furnace slag is optional and the maximum shall be 30 percent by weight (mass) of cement.

Microsilica is required and shall be a minimum of 5 percent by weight (mass) of cement, and a maximum of 10 percent. As an alternative to microsilica, high-reactivity metakaolin may be used at a minimum of 5 percent by weight (mass) of cement, and a maximum of 10 percent.

Fly ash shall not be used in combination with ground granulated blast-furnace slag. Class F fly ash shall not be used in combination with Class C fly ash. Microsilica shall not be used in combination with high-reactivity metakaolin. A finely divided mineral shall not be used in combination with a blended hydraulic cement, except for microsilica or high-reactivity metakaolin.

The water/cement ratio as defined in Article 1020.06 shall be a maximum of 0.42.

The air content as shot shall be 4.0 - 8.0 percent.

Note 5. In addition ASTM C 881, Type IV, Grade 2 or 3, Class A, B, or C may be used.

Revised 04/16/2010

Note 6. Mechanical bar splicers shall be from the approved list of Mechanical Reinforcing Bar Splicers / Coupler Systems, and shall be capable of developing in tension at least 125 percent of the yield strength of the existing reinforcement bar.

Equipment. Equipment shall be according to Article 503.03 and the following.

Chipping Hammer – The chipping hammer for removing concrete shall be a light-duty pneumatic or electric tool with a 15 lb. (7 kg) maximum class or less.

Blast Cleaning Equipment – Blast cleaning equipment for concrete surface preparation shall be the abrasive type, and the equipment shall have oil traps.

Hydrodemolition Equipment – Hydrodemolition equipment for removing concrete shall be calibrated, and shall use water according to Section 1002.

High Performance Shotcrete Equipment – The batching, mixing, pumping, hose, nozzle, and auxiliary equipment shall be for the wet-mix shotcrete method, and shall meet the requirements of ACI 506R.

Construction Requirements

<u>General</u>. The repair methods shall be either formed concrete repair or shotcrete. The repair method shall be selected by the Contractor with the following rules.

- (a) Rule 1. For formed concrete repair, a subsequent patch to repair the placement point after initial concrete placement will not be allowed. As an example, this may occur in a vertical location located at the top of the repair.
- (b) Rule 2. Formed concrete repair shall not be used for overhead applications.
- (c) Rule 3. Shotcrete shall not be used for column repairs greater than 4 in. (100 mm) in depth, or any repair location greater than 8 in. (205 mm) in depth. The only exception to this rule would be for a horizontal application, where the shotcrete may be placed from above in one lift.
- (d) Rule 4. If formed concrete repair is used for locations that have reinforcement with less than 0.75 in. (19 mm) of concrete cover, the concrete mixture shall contain fly ash or ground granulated blast-furnace slag at the maximum cement replacement allowed.

<u>Temporary Shoring or Cribbing.</u> When a temporary shoring or cribbing support system is required, the Contractor shall provide details and computations, prepared and sealed by an Illinois licensed Structural Engineer, to the Department for review and approval. Whenever possible the support system shall be installed prior to starting the associated concrete removal. If no system is specified, but during the course of removal the need for temporary shoring or cribbing becomes apparent or is directed by the Engineer due to a structural concern, the Contractor shall not proceed with any further removal work until an appropriate and approved support system is installed.

<u>Concrete Removal</u>. The Contractor shall provide ladders or other appropriate equipment for the Engineer to mark the removal areas. Repair configurations will be kept simple, and squared corners will be preferred. The repair perimeter shall be sawed a depth of 1/2 in. (13 mm) or less, as required to avoid cutting the reinforcement. Any cut reinforcement shall be repaired or replaced at the expense of the Contractor.

If the concrete is broken or removed beyond the limits of the initial saw cut, the new repair perimeter shall be recut. The areas to be repaired shall have all loose, unsound concrete removed completely by the use of chipping hammers, hydrodemolition equipment, or other methods approved by the Engineer. The concrete removal shall extend along the reinforcement bar until the reinforcement is free of bond inhibiting corrosion. The outermost layer of reinforcement bar within the repair area shall be undercut to a depth of 3/4 in. (19 mm) or the diameter of the reinforcement bar, whichever value is larger. The underlying transverse reinforcement bar shall also be undercut as previously described, unless the reinforcement is not corroded, and the reinforcement bar is encased and well bonded to the surrounding concrete.

If sound concrete is encountered before existing reinforcement bars are exposed, further removal of concrete shall not be performed unless the minimum repair depth is not met.

The repair depth shall be a minimum of 1 in. (25 mm). The substrate profile shall be \pm 1/16 in. (\pm 1.5 mm). The perimeter of the repair area shall have a vertical face.

If a repair is located at the ground line, any excavation required below the ground line to complete the repair shall be included in this work.

The Contractor shall have a maximum of 14 calendar days to complete each repair location with concrete or shotcrete, once concrete removal has started for the repair.

The Engineer shall be notified of concrete removal that exceeds 6 in. (150 mm) in depth, one fourth the cross section of a structural member, more than half the vertical column reinforcement is exposed in a cross section, more than 6 consecutive reinforcement bars are exposed in any direction, within 1.5 in. (38 mm) of a bearing area, or other structural concern. Excessive deterioration or removal may require further evaluation of the structure or installation of temporary shoring and cribbing support system.

<u>Surface Preparation</u>. Prior to placing the concrete or shotcrete, the Contractor shall prepare the repair area and exposed reinforcement by blast cleaning. The blast cleaning shall provide a surface that is free of oil, dirt, and loose material.

If a succeeding layer of shotcrete is to be applied, the initial shotcrete surface and remaining exposed reinforcement shall be free of curing compound, oil, dirt, loose material, rebound (i.e. shotcrete material leaner than the original mixture which ricochets off the receiving surface), and overspray. Preparation may be by lightly brushing or blast cleaning if the previous shotcrete surface is less than 36 hours old. If more than 36 hours old, the surface shall be prepared by blast cleaning.

The repair area and perimeter vertical face shall have a rough surface. Care shall be taken to ensure the perimeter sawcut is roughened. Just prior to concrete or shotcrete placement, saturate the repair area with water to a saturated surface-dry condition. Any standing water shall be removed.

Concrete or shotcrete placement shall be done within 3 calendar days of the surface preparation or the repair area shall be prepared again.

<u>Reinforcement.</u> Exposed reinforcement bars shall be cleaned of concrete and corrosion by blast cleaning. After cleaning, all exposed reinforcement shall be carefully evaluated to determine if replacement or additional reinforcement bars are required.

Reinforcing bars that have been cut or have lost 25 percent or more of their original cross sectional area shall be supplemented by new in kind reinforcement bars. New bars shall be lapped a minimum of 32 bar diameters to existing bars. A mechanical bar splicer shall be used when it is not feasible to provide the minimum bar lap. No welding of bars shall be performed.

Intersecting reinforcement bars shall be tightly secured to each other using 0.006 in. (1.6 mm) or heavier gauge tie wire, and shall be adequately supported to minimize movement during concrete placement or application of shotcrete.

For reinforcement bar locations with less than 0.75 in. (19 mm) of cover, protective coat shall be applied to the completed repair. The application of the protective coat shall be according to Article 503.19, 2nd paragraph, except blast cleaning shall be performed to remove curing compound.

The Contractor shall anchor the new concrete to the existing concrete with 3/4 in. (19 mm) diameter hook bolts for all repair areas where the depth of concrete removal is greater than 8 in. (205 mm) and there is no existing reinforcement extending into the repair area. The hook bolts shall be spaced at 15 in. (380 mm) maximum centers both vertically and horizontally, and shall be a minimum of 12 in. (305 mm) away from the perimeter of the repair. The hook bolts shall be installed according to Section 584.

Repair Methods. All repair areas shall be inspected and approved by the Engineer prior to placement of the concrete or application of the shotcrete.

(a) Formed Concrete Repair. Falsework shall be according to Article 503.05. Forms shall be according to Article 503.06. Formwork shall provide a smooth and uniform concrete finish, and shall approximately match the existing concrete structure. Formwork shall be mortar tight and closely fitted where they adjoin the existing concrete surface to prevent leakage. Air vents may be provided to reduce voids and improve surface appearance. The Contractor may use exterior mechanical vibration, as approved by the Engineer, to release air pockets that may be entrapped.

The concrete for formed concrete repair shall be a Class SI Concrete, or a packaged R1 or R2 Mortar with coarse aggregate added, or a packaged Normal Weight Concrete at the Contractor's option. The concrete shall be placed and consolidated according to Article 503.07. The concrete shall not be placed when frost is present on the surface of the repair area, or the surface temperature of the repair area is less than 40 °F (4 °C). All repaired members shall be restored as close as practicable to their original dimensions.

Curing shall be done according to Article 1020.13.

If temperatures below 45°F (7°C) are forecast during the curing period, protection methods shall be used. Protection Method I according to Article 1020.13(d)(1), or Protection Method II according to Article 1020.13(d)(2) shall be used during the curing period.

Revised 04/16/2010

The surfaces of the completed repair shall be finished according to Article 503.15.

(b) Shotcrete. Shotcrete shall be tested by the Engineer for air content according to Illinois Modified AASHTO T 152. Obtain the sample in a damp, non-absorbent container from the discharge end of the nozzle.

For compressive strength of shotcrete, a 18 x 18 x 3.5 in. (457 x 457 x 89 mm) test panel shall be shot by the Contractor for testing by the Engineer. A steel form test panel shall have a minimum thickness of 3/16 in. (5 mm) for the bottom and sides. A wood form test panel shall have a minimum 3/4 in. (19 mm) thick bottom, and a minimum 1.5 in. (38 mm) thickness for the sides. The test panel shall be cured according to Article 1020.13 (a) (3) or (5) while stored at the jobsite and during delivery to the laboratory. After delivery to the laboratory for testing, curing and testing shall be according to ASTM C 1140.

The method of alignment control (i.e. ground wires, guide strips, depth gages, depth probes, and formwork) to ensure the specified shotcrete thickness and reinforcing bar cover is obtained shall be according to ACI 506R. Ground wires shall be removed after completion of cutting operations. Guide strips and formwork shall be of dimensions and a configuration that do not prevent proper application of shotcrete. Metal depth gauges shall be cut 1/4 in. (6 mm) below the finished surface. All repaired members shall be restored as close as practicable to their original dimensions.

For air temperature limits when applying shotcrete in cold weather, the first paragraph of Article 1020.14(b) shall apply. For hot weather, shotcrete shall not be applied when the air temperature is greater than 90°F (32°C). The applied shotcrete shall have a minimum temperature of 50°F (10°C) and a maximum temperature of 90°F (32°C). The shotcrete shall not be applied during periods of rain unless protective covers or enclosures are installed. The shotcrete shall not be applied when frost is present on the surface of the repair area, or the surface temperature of the repair area is less than 40°F (4°C). If necessary, lighting shall be provided to provide a clear view of the shooting area.

The shotcrete shall be applied according to ACI 506R, and shall be done in a manner that does not result in cold joints, laminations, sandy areas, voids, sags, or separations. In addition, the shotcrete shall be applied in a manner that results in maximum densification of the shotcrete. Shotcrete which is identified as being unacceptable while still plastic shall be removed and re-applied.

The nozzle shall normally be at a distance of 2 to 5 ft. (0.6 to 1.5 m) from the receiving surface, and shall be oriented at right angles to the receiving surface. Exceptions to this requirement will be permitted to fill corners, encase large diameter reinforcing bars, or as approved by the Engineer. For any exception, the nozzle shall never be oriented more than 45 degrees from the surface. Care shall be taken to keep the front face of the reinforcement bar clean during shooting operations. Shotcrete shall be built up from behind the reinforcement bar. Accumulations of rebound and overspray shall be continuously removed prior to application of new shotcrete. Rebound material shall not be incorporated in the work.

Whenever possible, shotcrete shall be applied to the full thickness in a single layer. The maximum thickness shall be 4 in. (100 mm) unless the shotcrete is applied from above on a horizontal surface, or a thicker application is approved by the Engineer. When two or more layers are required, the minimum number shall be used and shall be done in a manner without sagging or separation. A flash coat (i.e. a thin layer of up to 1/4 in. (6 mm) applied shotcrete) may be used as the final lift for overhead applications.

Prior to application of a succeeding layer of shotcrete, the initial layer of shotcrete shall be prepared according to the surface preparation and reinforcement bar cleaning requirements. Upon completion of the surface preparation and reinforcement bar treatment, water shall be applied according to the surface preparation requirements unless the surface is moist. The second layer of shotcrete shall then be applied within 30 minutes.

Shotcrete shall be cut back to line and grade using trowels, cutting rods, screeds or other suitable devices. The shotcrete shall be allowed to stiffen sufficiently before cutting. Cutting shall not cause cracks or delaminations in the shotcrete. For depressions, cut material may be used for small areas. Rebound material shall not be incorporated in the work. For the final finish, a wood float shall be used to approximately match the existing concrete texture. All repaired members shall be restored as close as practicable to their original dimensions.

Contractor operations for curing shall be continuous with shotcrete placement and finishing operations. The Engineer may require modification of operations to ensure satisfactory results are obtained. Cotton mats shall be applied according to Article 1020.13(a)(5) except the exposed layer of shotcrete shall be covered within 10 minutes after finishing, and wet curing shall begin immediately. As an alternative to this method, Type I curing compound shall be applied according to Article 1020.13(a)(4) within 10 minutes and moist curing with cotton mats shall begin within 3 hours. For overhead applications where the final shotcrete layer has been applied, the Contractor has the option to use Type I curing compound in lieu of the cotton mats. Note 5 of the Index Table in Article 1020.13 shall apply to the membrane curing method. The curing compound shall be applied according to Article 1020.13(a)(4).

When a shotcrete layer is to be covered by a succeeding shotcrete layer within 36 hours, the repair area shall be protected with intermittent hand fogging, or wet curing with either burlap or cotton mats shall begin within 10 minutes. Intermittent hand fogging may be used only for the first hour. Thereafter, wet curing with burlap or cotton mats shall be used until the succeeding shotcrete layer is applied. Intermittent hand fogging may be extended to the first hour and a half if the succeeding shotcrete layer is applied by the end of this time.

The curing period shall be for 7 days, except when there is a succeeding layer of shotcrete. In this instance, the initial shotcrete layer shall be cured until the surface preparation and reinforcement bar treatment is started.

If temperatures below 45°F (7°C) are forecast during the curing period, protection methods shall be used.

Protection Method I according to Article 1020.13(d)(1), or Protection Method II according to Article 1020.13(d)(2) shall be used during the curing period

<u>Inspection of Completed Work.</u> The Contractor shall provide ladders or other appropriate equipment for the Engineer to inspect the repaired areas. After curing but no sooner than 28 days after placement of concrete or shooting of shotcrete, the repair shall be examined for conformance with original dimensions, cracks, voids, and delaminations. Sounding for delaminations will be done with a hammer or by other methods determined by the Engineer.

The repaired area shall be removed and replaced, as determined by the Engineer, for nonconformance with original dimensions, surface cracks greater than 0.01 in. (0.25 mm) in width, map cracking with a crack spacing in any direction of 18 in. (0.45 m) or less, voids, or delaminations.

If a nonconforming repair is allowed to remain in place, cracks 0.01 in. (0.25 mm) or less shall be repaired with epoxy according to Section 590. For cracks less than 0.007 in. (2 mm), the epoxy may be applied to the surface of the crack. Voids shall be repaired according to Article 503.15.

<u>Publications and Personnel Requirements</u>. The Contractor shall provide a current copy of ACI 506R to the Engineer a minimum of one week prior to start of construction.

The shotcrete personnel who perform the work shall have current American Concrete Institute (ACI) nozzlemen certification for vertical wet and overhead wet applications, except one individual may be in training. This individual shall be adequately supervised by a certified ACI nozzlemen as determined by the Engineer. A copy of the nozzlemen certificate(s) shall be given to the Engineer.

<u>Method of Measurement</u>. This work will be measured for payment in place and the area computed in square feet (square meters). For a repair at a corner, both sides will be measured.

<u>Basis of Payment</u>. This work will be paid for at the contract unit price per square foot (square meter) for STRUCTURAL REPAIR OF CONCRETE (DEPTH GREATER THAN 5 IN. (125 MM), STRUCTURAL REPAIR OF CONCRETE (DEPTH EQUAL TO OR LESS THAN 5 IN. (125 MM).

When not specified to be paid for elsewhere, the work to design, install, and remove the temporary shoring and cribbing will be paid for according to Article 109.04.

With the exception of reinforcement damaged by the Contractor during removal, the furnishing and installation of supplemental reinforcement bars, mechanical bar splicers, hook bolts, and protective coat will be paid according to Article 109.04.

AMERICAN RECOVERY AND REINVESTMENT ACT PROVISIONS (BDE)

Effective: April 1, 2009

Required Contract Provision to Implement ARRA Section 902:

Section 902 of the American Recovery and Reinvestment Act (ARRA) of 2009 requires that each contract awarded using ARRA funds allow the U.S. Comptroller General and his representatives with the authority to:

Epoxy coated bars shall be stored on wooden or padded steel cribbing and all systems for handling shall have padded contact areas. The bars or bundles shall not be dragged or dropped.

When epoxy coated bars are stored in a manner where they will be exposed to the weather more than 60 days prior to use, they shall be protected from deterioration such as that caused by sunlight, salt spray, and weather exposure. The protection shall consist of covering with opaque polyethylene sheeting or other suitable opaque material. The covering shall be secured and allow for air circulation around the bars to minimize condensation under the cover.

Covering of the epoxy coated bars will not be required when the bars are installed and tied, or when they are partially incorporated into the concrete."

SEEDING (BDE) Effective: July 1, 2004 Revised: January 1, 2010

Revise the following seeding mixtures shown in Table 1 of Article 250.07 of the Standard

Specifications to read:

"Table 1 - SEEDING MIXTURES			
Class – Type	Seeds	lb/acre (kg/hectare)	
1A Salt Tolerant Lawn Mixture 7/	Bluegrass Perennial Ryegrass Red Fescue (Audubon, Sea Link, or Epic)	60 (70) 20 (20) 20 (20)	
	Hard Fescue (Rescue 911, Spartan II, or Reliant IV) Fults Salt Grass 1/ or Salty Alkaligrass	20 (20) 60 (70)	

CONCRETE MIX DESIGNS (BDE)

Effective: April 1, 2009

Add the following to Article 1020.05(c) of the Standard Specifications:

- "(5) Performance Based Finely Divided Mineral Combination. For Class PV and SI concrete a performance based finely divided mineral combination may be used. The minimum cement factor, maximum cement factor, and water cement ratio of Article 1020.04 shall be replaced with the values below, and the performance based finely divided mineral combination herein is an alternative to Articles 1020.05(c)(1), (c)(2), (c)(3), and (c)(4). The mix design shall meet the following requirements and the Engineer may request a trial batch.
 - a. The mixture shall contain a minimum of 375 lbs/cu yd (222 kg/cu m) of portland cement. For a blended cement, a sufficient amount shall be used to obtain the required 375 lbs/cu yd (222 kg/cu m) of portland cement in the mixture. For example, a blended cement stated to have 20 percent finely divided mineral, ignoring any ASTM C 595 tolerance on the 20 percent, would require a minimum of 469 lbs/cu yd (278 kg/cu m) of material in the mixture. When the mixture is designed for cement content from 375 lbs/cu yd (222 kg/cu m) to 400 lbs/cu yd (237 kg/cu m), the total of organic processing additions, inorganic processing additions, and limestone addition in the cement shall not exceed 5.0 percent.
 - b. The mixture shall contain a maximum of two finely divided minerals. The finely divided mineral in a blended cement shall count toward the total number of finely divided minerals allowed. The finely divided mineral(s) shall constitute a maximum of 35.0 percent of the total cement plus finely divided mineral(s). The fly ash portion shall not exceed 30.0 percent for Class C fly ash or 25.0 percent for Class F fly ash. The Class C and F fly ash combination shall not exceed 30.0 percent. The ground granulated blast-furnace slag portion shall not exceed 35.0 percent. The microsilica or high-reactivity metakaolin portion used together or separately shall not exceed 5.0 percent. The finely divided mineral in the blended cement shall apply to the maximum 35.0 percent, and shall be determined as discussed in a. above for determining portland cement in blended cement.
 - c. For central mixed Class PV and SI concrete, the mixture shall contain a minimum of 535 lbs/cu yd (320 kg/cu m) of cement and finely divided mineral(s) summed together, and a water-reducing admixture shall be used. The value shall be 565 lbs/cu yd (335 kg/cu m) without a water-reducing admixture.

For truck mixed or shrink mixed Class PV and SI concrete, the mixture shall contain a minimum of 575 lbs/cu yd (345 kg/cu m) of cement and finely divided mineral(s) summed together, and a water-reducing admixture shall be used. The value shall be 605 lbs/cu yd (360 kg/cu m) without a water-reducing admixture.

Added 04/16/2010

- d. The mixture shall contain a maximum of 705 lbs/cu yd (418 kg/cu m) of cement and finely divided mineral(s) summed together.
- e. The mixture shall have a water/cement ratio of 0.32 0.44.
- f. The mixture shall not be used for placement underwater.
- g. The combination of cement and finely divided mineral(s) shall have an ASTM C 1567 expansion value ≤ 0.16 percent, and shall be performed on the aggregate in the concrete mixture with the highest ASTM C 1260 test result. The ASTM C 1567 test will be valid for two years, unless the Engineer determines the materials have changed significantly.

If during the two year time period the Contractor needs to replace the portland cement, and the replacement portland cement has an equal or lower total equivalent alkali content ($Na_2O + 0.658K_2O$), a new ASTM C 1567 test will not be required. However, replacement of a blended cement with another cement will require a new ASTM C 1567 test."

PAVEMENT MARKING REMOVAL (BDE)

Effective: April 1, 2009

Add the following to the end of the first paragraph of Article 783.03(a) of the Standard Specifications:

"The use of grinders will not be allowed on new surface courses."

HOT MIX ASPHALT MIXTURES, EGA MODIFIED PERFORMANCE GRADED (PG) ASPHALT BINDER

Effective: March 16, 2009

<u>Description</u>. This work shall consist of constructing Hot Mix Asphalt (HMA) mixtures containing ethylene-glycidyl-acrylate (EGA) Modified Performance Graded (PG) Asphalt Binder. Work shall be according to Sections 406, 1030, and 1032 of the Standard Specifications, except as modified herein.

The asphalt binder shall meet the following requirements:

EGA Modified Performance Graded (PG) Asphalt Binder. The asphalt binder shall meet the requirements of AASHTO M 320, Table 1 "Standard Specification for Performance Graded Asphalt Binder" for the grade shown on the plans. An ethylene-glycidyl-acrylate (EGA) terpolymer with a maximum of 0.3 percent polyphosphoric acid by weight of asphalt binder, shall be added to the base asphalt binder to achieve the specified performance grade. Asphalt modification at hot-mix asphalt plants will not be allowed. The modified asphalt binder shall be smooth, homogeneous, and be according to the requirements shown in the following table for the grade shown on the plans.

Added 04/16/2010

Ethylene-Glycidyl-Acrylate (EGA) Modified Asphalt Binders			
Test	Asphalt Grade EGA PG 70-22 EGA PG 70-28	Asphalt Grade EGA PG 76-22 EGA PG 76-28	
Separation of Polymer Illinois Test Procedure, "Separation of Polymer from Asphalt Binder" Difference in °F (°C) of the softening point between top and bottom portions.	4 (2) max.	4 (2) max.	
TEST ON RESIDUE FROM ROLLING THIN FILM OVEN TEST (AASHTO T 240)			
Elastic Recovery ASTM D 6084, Procedure A, 77 °F (25 °C), 100 mm elongation, %	60 min.	70 min.	

Added 04/16/2010