

ESCA CONSULTANTS, INC.	USER NAME = kah	DESIGNED - SHL	07/13	REVISED -	STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION	STEEL FRAMING DETAILS STRUCTURE NO. 035–0017	F.A.P.	SECTION	COUNTY TOTAL	L SHEET
	ESCA PROJECT NO. 1035.03	CHECKED - RDP	09/13	REVISED -			782	115B-1	HARDIN 70	39
	PLOT SCALE = 0:2 ':' / IN.	DRAWN - KAH		REVISED -			_		CONTRACT NO. 7	78263
	PLOT DATE = 1/22/2014 5:23:27 PM	1 CHECKED - SHL	08/13	REVISED -		SHEET NO. 16 OF 29 SHEETS	ILLINOIS FED. AID PROJECT			

N NODE

		Is, Ss:	Non-composite moment of inertia and section modulus of the
er	0.5 Sp. 2	2	steel section used for computing f_s (Service II) due to
,, 50	2,850		non-composite dead loads (in. ⁴ and in. ³).
59	8,859	$- I_c(n), S_c(n):$	Composite moment of inertia and section modulus of the steel
89	6,589		and deck based upon the modular ratio, "n", used for computing
85	-	—	f_s (Service II) in uncracked sections due to short-term composite live loads (in. ⁴ and in. ³).
3	213	$ I_{\alpha}(3\alpha) = S_{\alpha}(3\alpha)$	Composite moment of inertia and section modulus of the steel
3 19	339		and deck based upon 3 times the modular ratio, "3n", used for
16	306		computing f_s (Service II) in uncracked sections, due to long-term
7	-		composite (superimposed) dead loads (in. ⁴ and in. ³).
15	0.715	Ic(cr), Sc(cr):	Composite moment of inertia and section modulus of the steel
.0	62.2		and longitudinal deck reinforcement, used for computing f_s
50	0.150		(Service II) in cracked sections, due to both short-term composite
.4	13.0		live loads and long-term composite (superimposed) dead loads
67	0.267		(in. ⁴ and in. ³).
.5	23.1		Un-factored non-composite dead load (kips/ft.).
7.0	334.5		Un-factored moment due to non-composite dead load (kip-ft.).
).9	714.2	DC2:	Un-factored long-term composite (superimposed excluding future
3.9	1,767.8		wearing surface) dead load (kips/ft.).
66	3.50	MDC2:	Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead load (kip-ft.).
!!	0.51		Un-factored long-term composite (superimposed future wearing
98 52	0.91	<i>Dw:</i>	surface only) dead load (kips/ft.).
52	11.86	Mow:	Un-factored moment due to long-term composite (superimposed
44	20.34		future wearing surface only) dead load (kip-ft.).
50	47.50	M4_ + IM3	Un-factored live load moment plus dynamic load allowance (impact)
77	20.77		(kip-ft.).
		Mu (Strength I):	Factored design moment (kip-ft.).
			1.25 (MDC1 + MDC2) + 1.5 MDW + 1.75 M & + IM
		$\phi_f M_n$:	Compact composite positive moment capacity computed according
			to Article 6.10.7.1 or non-slender negative moment capacity
			according to Article A6.1.1 or A6.1.2 (kip-ft).
		ts DCI:	Un-factored stress at edge of flange for controlling steel
Flai	nae splice	- M270 Grade 50	flange due to vertical non-composite dead loads as calculated
		3'-1'2" (NTR)	below (ksi).
top	and bottor	$m = f_{a} DC2$	M _{DCL} / S _{nc} Un-factored stress at edge of flange for controlling steel
		13 DC2.	flange due to vertical composite dead loads as calculated
			below (ksi).
	+		M_{DC2} / $S_c(3n)$ or M_{DC2} / $S_c(cr)$ as applicable.
	_ ่่่่	fs DW:	Un-factored stress at edge of flange for controlling steel
	i li		flange due to vertical composite future wearing surface
			loads as calculated below (ksi).
			Mpw / Sc(3n) or Mpw / Sc(cr) as applicable.
<u>л. at</u> 1′- З'	$-1^{3}4''$	f _s (4+IM):	Un-factored stress at edge of flange for controlling steel
1-5			flange due to vertical composite live load plus impact loads as
			calculated below (ksi).
		f (Convino II)	$M_{\frac{1}{2}} + IM / S_c(n)$ or $M_{DW} / S_c(cr)$ as applicable.
		is (Service II):	Sum of stresses as computed below (ksi).
		0 05 P. F. f.	f_{sDC1} + f_{sDC2} + f_{sDW} + 1.3 f_{s} (4 + 1M) Composite stress capacity for Service II loading according
		U.JJAATYI:	to Article 6.10.4.2 (ksi).
		Vf:	Maximum factored shear range in span computed according
		.,.	to Article 6.10.10.

Pier

2,850

8,859

6,589

4.185

213

339

306

257

0.715

136.0

0.150

28.4

0.267

50.5

297.0

800.9

1,353.9

7.66

1.11

1.98

10.52

24.44

47.50

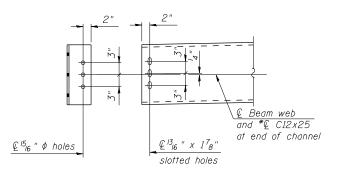
20.77

5 Spa. at

W27x84 (NTR)

134"

<u>2 Spa. at</u> 3'' = 0''


4''

M270 Grade 50

3'' = 1'-3

max.

4''

<u>DETAIL B</u>