STRUCTURAL GEOTECHNICAL REPORT

Richards Street Bridge Over Hickory Creek

Existing SN 099-0123

Superstructure Replacement and Widening

Contract No.: 62380

IDOT Job No. P-91-185-09 / PTB 194-09

Joliet, Will County, IL

Prepared for:

EXP US Services Inc. 205 North Michigan Avenue Suite 3600 Chicago, Illinois 60601

Prepared by:

Geo Services, Inc. 805 Amherst Court Suite 204 Naperville, Illinois 60565 (630) 305-9186

JOB NO. 20012

March 17th, 2022 Revised: June 6th, 2022

March 17, 2022 Revised: June 6, 2022

EXP US Services Inc. 205 North Michigan Avenue, Suite 3600 Chicago, Illinois 60601-5924

Attn: Mr. Thomas Hough, P.E., Email: Thomas.Hough@exp.com

Job No. 20012

Re: Structure Geotechnical Report Richards Street Bridge over Hickory Creek Existing SN 099-0123 Contract No.: 62380 Approximate Stationing: 64+86.52 to 66+39.47 IDOT Job Number P-91-185-09 / PTB 194-09 Joliet, Will County, Illinois

Dear Mr. Hough:

The following report presents the geotechnical analysis and recommendations for the proposed construction of the Richards Street Bridge over Hickory Creek between the on and off ramps to and from westbound (WB) Interstate 80 (I-80) and 5th Avenue in Will County, IL. The Richards Street Bridge (existing structure number is 099-0123) is a three (3) -span with a total length of 149.8-ft (back-to-back of abutment) and the width varies from 84.0-ft to 87.8-ft (out-to-out of the deck) on the northbound (eastside) of the bridge only. The superstructure is to be reconstructed and widened with same span configuration as the original while keeping the existing piers and piles. The eight (8) borings were completed at the site by Geo Services, Inc. (GEO). Copies of these boring logs, along with soil profiles, are included in this report.

If there are any questions regarding the information submitted herein, please do not hesitate to contact us.

Very truly yours,

GEO SERVICES, Inc.

San Jun

Samuel Plummer Project Manager

enc.

and Ath

Andrew J. Ptak, P.E. Principal

TABLE OF CONTENTS

SECTION 01: INTRODUCTION	2
SECTION 02: PROJECT DESCRIPTION	2
SECTION 03: SUBSURFACE INVESTIGATION PROCEDURES	3
SECTION 04: LAB TESTING PROGRAM	
SECTION 05: SUBSURFACE CONDITIONS	4
SECTION 06: ANALYSES	6
SECTION 07: RECOMMENDATIONS	8
SECTION 08: CONSTRUCTION CONSIDERATIONS	12
SECTION 09: GENERAL QUALIFICATIONS	13

APPENDIX A – General Notes

APPENDIX B – Site Location Map

APPENDIX C – Boring Location Plan & Profiles

APPENDIX D – Boring Logs

APPENDIX E – Lab Test Results

APPENDIX F – Slope Stability Output (STABL)

APPENDIX G – Pile Tables for Bridge

APPENDIX H – Progress Set Drawings for the Richards Street Bridge Over Hickory Creek

SECTION 01: INTRODUCTION

This report presents the results of the geotechnical investigation for the Richards Street Bridge over Hickory Creek between the ramps to/from westbound Interstate 80 (WB I-80) and 5th Avenue in Joliet, Will County IL. The results of the eight (8) structure borings completed by Geo Services, Inc. (GEO) are included with this report. Two (2) soil borings at each pier (total four (4)); two (2) are located at each abutment (total four (4)). This report includes descriptions of soil and groundwater conditions, recommendations pertaining to the design and construction of foundations for the bridge abutments, general construction considerations for the site, site location map, boring location diagram and boring logs.

SECTION 02: PROJECT DESCRIPTION

The existing bridge (SN 099-0123) was built in 1966 and is a 3-span bridge with a total length (back-to-back abutment) of 149.8-ft and varies in width from 84.0-ft to 87.8-ft (out-to-out of the deck). The rehabilitated bridge (SN 099-0123) will consist of the same span configuration reusing the existing piles, piers, and abutments. The structure will have a total length of 152.4-ft (back-to-back abutment) and a variable width from 90.4-ft to 93.9-ft. In order to accommodate the wider cross section, the piers and abutments will be widened to the east. Most of the bridge will be supported on the existing piers and pile abutments. The abutment extensions will be supported on new piles. The pier extensions may be supported by the existing footing alone or by new footing extensions as determined in final design.

The bottom of abutment elevations are shown on the following **Table 1**:

Location	Existing Ground Surface for Abutments & Pier (Elevation)	Proposed Bottom of Abutment Elev. / Proposed Grade Elev. at Pier
Northwest Abutment	536.8	527.19
Northeast Abutment	538.4	527.19
North Pier	538	516 71
South Pier	538.0	516.71
Southwest Abutment	536.4	527.16
Southeast Abutment	538.3	527.10

TABLE 1 – EXISTING GRADE ELEVATION AT ABUTMENTS

SECTION 03: SUBSURFACE INVESTIGATION PROCEDURES

Boring locations were selected by GEO and were reviewed and approved by the EXP design team. Boring locations were laid out in the field by GEO personnel at the proposed locations. Elevations were taken using a survey grade GPS and can be seen on the boring logs.

The borings were performed between December 2021 through January 2022 with a truck-mounted drilling rig and were advanced by means of hollow stem augers and rotary drilling techniques. Representative soil samples were obtained employing split spoon sampling procedures in accordance with AASHTO Method T-206. Samples obtained in the field were returned to GEO laboratory for further examination and testing.

Split spoon sampling involves driving a 2.0-in outside diameter split-barrel sampler into the soil with a 140-pound weight falling freely through a distance of 30-in. Blow counts are recorded at 6-in intervals and the blow counts are shown on the boring logs. The number of blows required to advance the sampler the last 12-in is termed the Standard Penetration Resistance (N). The N value is an indication of the relative density of the soil.

All split-spoon samples obtained from the drilling operation were visually classified in the field. Cohesive samples were tested for unconfined compressive strength using an IDOT modified RIMAC test device and/or calibrated penetrometer in the field.

Rock coring was performed by the dual tube method using NX size, 10-ft length core barrel seated approximately 2-ft into bedrock for all the eight (8) soil brings on either side of the bridges (east and west side) and near each of the bridge footings. The full length of the boring was cased using 3-in diameter casing which was seated approximately 6-in into bedrock to prevent cave-in of the boring while coring.

SECTION 04: LAB TESTING PROGRAM

The test procedures were performed in accordance with test procedures discussed in the IDOT Geotechnical Manual. All split-spoon samples obtained from the drilling operation were visually classified in the field. Cohesive samples were tested for unconfined compressive strength using an IDOT modified RIMAC test device and/or calibrated penetrometer in the field.

The soil testing program included performing water content, density and either unconfined compression and/or calibrated penetrometer tests on the cohesive samples recovered. Water content tests were performed on the non-cohesive samples recovered. These tests were performed upon representative portions of the samples obtained in the field. The results of the above testing, along with a visual classification of the material based upon both the Illinois textural classification and the AASHTO Soil Classification System, are indicated on the boring logs. Rock cores were analyzed for Rock Quality Designations (RQD), percent recovery and compressive strength, cores were photographed. All laboratory testing can be found in **Appendix E**.

SECTION 05: SUBSURFACE CONDITIONS

The following sections provide general descriptions of the typical soil profile encountered at the proposed bridge abutments for each of the bridges. Specific soil conditions can be found in the boring logs located in the **Appendix D** of this SGR.

5.1 Soil and Groundwater Conditions

Eight (8) structure borings were drill along the Richards Street Bridge to determine the subsoils in the project area for the bridge widening and reconstruction. Two (2) soil borings were drilled at each bridge pier and abutment. Four (4) soil borings (BSB-060 thru BSB-063) are drilled on and through the existing bridge deck on both sides of the bridge on the southbound and northbound outside lanes. There are four (4) soil borings at the abutments on the northside and southside of the Richards Street Bridge (soil borings BSB-059, BSB-058, BSB-064 and BSB-065).

The soils in the approach soil borings (BSB-059, BSB-058, BSB-064 and BSB-065) that were encountered included, at the surface, a foot of topsoil or 2-in to 2-ft of asphalt with a subbase of 13-in to 2-ft of concrete or stone. A stiff to very stiff clay loam to sandy clay loam with brick and gravel fill was underlying the asphalt, stone and concrete. This cohesive fill layer is 5-ft to 7.5-ft thick. Below the fill is a clay, clay loam to silty clay layer that is medium stiff and very stiff in consistency with a trace of gravel. This layer is 2.5-ft to 12-ft thick. The final soil layer above bedrock is a dense to very dense sandy loam or sand, gravel and fractured rock that is 2.5-ft to 9-ft in thickness.

There are layers of high moisture contents in two (2) of the borings BSB-058 & BSB-064 (south and north abutments, respectively, on the east side of the bridge). In BSB-058 from 10.5-ft to 13-ft (EL. 525.9 to EL 523.4) below grade is buried topsoil with a moisture of 36%. In BSB-064 from a depth of 11.5-ft to 15-ft (EL. 525.3 to EL 521.8) in the silty clay fill layer has reported moistures of 30% to 33%.

The other soil borings (BSB-060 thru BSB-063) drilled through the concrete bridge deck that was approximately 0.7-ft to 0.8-ft thick, with an average of 0.75-ft (or 9-in). The water surface of the creek is approximately 19.2-ft to 21.3-ft from the base of the bridge deck. Visible under the creek water below the bridge, is bedrock. No soil samples were obtained from these soil borings.

All soil borings terminated in bedrock. All bedrock was observed to be Silurian System, Niagaran Services Dolomite. A total rock core length of 15-ft was obtained from each soil borings. The first run was obtained as 10-ft run and the second run as a 5-ft run. All rock cores had a high percentage of recovery from 92% to 100%, with an average of 98.4%. The RQDs of the cores were high at 71% to 100%, with an average of 86.8% which is a designation of excellent by RQD standards. Below, **Table 2**, illustrates the percentage recovery, RQDs, and compressive strength of the cores from each soil boring location.

	Boring(s)	Grade Elevation (ft)	Top of Bedrock Elevation (ft)	No. of Run	Top Depth of Run (ft)	Length of Core (ft)	Recovery (%)	RQD (%)	Compressive Strength (tsf)
	BSB-058	536.4	518.4	1	18.5	10	98	75	724
	B3B-030	550.4	510.4	2	28.5	5	92	92	1,118
	BSB-059	538.3	520.3	1	20.5	10	100	52	696
r	DOD-009	536.3	520.5	2	30.5	5	100	96	761
Pier 1 - W	BSB-060	536.5	E1E E	1	22	10	99	77	763
	DOD-000	536.5	515.5	2	32	5	100	100	713
	DOD 061	538.0	E16 O	1	24	10	99	71	479
Pier 1 - E BSB-061	538.0	516.0	2	34	5	100	92	828	
Pier 2 - W	BSB-062	536.6	500.0	1	21.5	10	100	86	639
Piel 2 - W	DOD-002	030.0	515.6	2	31.5	5	100	100	742
Pier 2 - E	BSB-063	528.0		1	23.5	10	97	87	725
	B2B-003	538.0	515.5	2	33.5	5	100	100	693
-		E26 9	510.2	1	18.5	10	98	83	719
	BSB-064	536.8	519.3	2	28.5	5	100	100	967
		500 (500.0	1	18.5	10	97	84	315
	BSB-065	538.4	520.9	2	28.5	5	94	94	675

TABLE 2 – ROCK CORE SUMMARY

For the borings on the bridge deck (BSB-60 thru BSB-063), Hickory Creek was encountered. The water surface of the creek was encountered at elevations 516.4 to 516.6, approximately 19.1-ft to 20.7-ft from the base of the bridge deck. The creek varies in depth (0.4-ft to 1.1-ft) with bedrock visible beneath the water surface. Based on the coloration change of the soils from brown and gray to gray, we estimate the long-term water table at elevations 537 to 517. The water level of the creek annually is approximately 11.0-ft. Fluctuations in the amount of water accumulated and in the

hydrostatic water table can be anticipated depending upon variations in precipitation, and surface runoff.

SECTION 06: ANALYSES

6.1 Seismic Analysis

The seismic parameters shown below were determined per AASHTO LRFD Bridge Design Specifications (2002). The existing substructure will be reused, therefore seismic data is provided according to the 2002 AASHTO Standard Specifications. The project site is considered to be in a low seismic area and liquefiable layers and scour are not expected to impact the design of the new structure. We recommend that Site Coefficient (S) of 1.0 be used for seismic design based on site specific SPT tests, RIMAC tests, and the laboratory shear strength measurements of recovered soil samples. **Table 3 – Seismic Design** contains a summary of the seismic data to be used for design.

TABLE 3SEISMIC DESIGN (APPROXIMATELY 475-YEAR RETURN PERIOD)

Description	Туре	Value
Seismic Performance Category (SPC)	-	А
Soil Profile Type	-	Ι
Horizontal Bedrock Acceleration Coefficient	А	0.040 g
Site Coefficient	S	1.0

AASHTO LRFD Bridge Design Specifications was used to determine the design coefficients for the project site. Liquefiable layers are not expected to impact the design of retaining wall structure.

6.2 Settlement Analysis

Using soil conditions which indicate stiff to very stiff clay loam fill in the borings BSB-058, BSB-059 and BSB-064 and BSB-065 (the north and south abutments), we calculate settlement up to be minimal on the approach slabs with settlements calculated to be under 0.5-in. The pier locations (with soil borings BSB-060 thru BSB-063) only have bedrock in their locations and the settlement is calculated to also be less than 0.5-inches.

6.3 Slope Stability Analysis

Based on the slope stability analyses, the FOS for both short-term (undrained) and long-term (drained) conditions at the abutments are greater than 1.5 and meet the FOS requirements for a fill embankment per IDOT requirements. There are no slope stability concerns for the middle piers of Richards Street Bridge over Hickory Creek.

Graphical outputs are shown in **Appendix F** of this report. The following **Table 4** shows the summary of the global stability factor of safety (FOS) calculated for the short-term and long-term soil conditions of the proposed abutments.

Soil Boring Used for		Factor of Safety (FOS) ²				
Slope Stability Analysis ¹	Location on Bridge	Undrained Condition	Drained Condition			
BSB-058	SW Corner	2.73	1.69			
BSB-059	SE Corner	3.11	1.56			
BSB-064	NW Corner	2.13	1.63			
BSB-065	NE Corner	2.89	1.74			

TABLE 4 – SUMMARY OF SLOPE STABILTY

Notes: 1. Boring used for Slope Stability Analysis was based on the apparent worst-case soil profile within the proposed roadway station limits.

2. STABL (v.3.0) – Bishop Method was used for Global Slope Stability analysis.

6.4 Bearing Capacity

Proposed footing elevations for the piers have been determined based on the progress drawings provided by EXP. See pile calculation tables and graphs in **Appendix G**. GEO assumes the abutment piles will be driven to the top of rock or refusal of the pile.

6.5 Scour Estimation at Bridge Foundation

The existing abutments are protected by retaining walls. Therefore, the Design Scour Elevations for the abutments are recommended to be the existing bottom of abutment elevations:

South Abutment: EL 527.16 North Abutment: EL 527.19

The existing piers have pier scour protection systems. The Design Scour Elevations for the piers is the bottom of the protection system which is EL 514.71 for both piers.

SECTION 07: RECOMMENDATIONS

7.1 Deep Foundation H-Pile Recommendations

Presently for the abutments, HP 10 x 42 steel piles are used and extend to refusal (approximately 14-ft below grade). Steel H-piles are still recommended option for the deep foundation system for the Richards Street Bridge to widen the structure. These steel H-piles should be according to AASHTO M270 Grade 50. Due to the presence of fractured rock below 13-ft to 15.5-ft depths, per the soil boring logs, pile shoes are recommended for pile driving. The results of the calculations for factored resistance available (FRA) and nominal required bearing (NRB) corresponding to various estimated pile lengths are shown in **Appendix G** of this report.

Considering so few piles will be required, test piles may be omitted if the provided pile lengths are 5-ft greater than what is required per this report. This will be reduce the material acquisition time during construction.

The pile size and capacity selected should be based on economic considerations and the loads imposed on the structures. No downdrag on the piles is anticipated.

Regarding pile spacing, the minimum pile spacing should be 3 times the pile diameter. The maximum pile spacing should be limited to 3.5 times the effective footing thickness plus 1-ft and not exceeding 8-ft. This range for pile spacing is according to the IDOT Bridge Manual (2012) section 3.10.1.11. For piles placed in accordance with the aforementioned pile spacing, group effect should be ignored.

7.2 Spread Footing Recommendation

The existing two (2) piers are reinforced concrete wall-type piers that have spread footings on rock with additional footing protection keyed into rock, which were added as part of the channel improvement in 2000. The existing footings have been placed at minimum depth 2-feet into the bedrock. The present spread footing is 4-ft wide. The existing maximum applied load on the pier footing per the original plans is 3-tsf.

If soils with less than adequate bearing strength are noted at the foundation level during footing construction, the weaker soils encountered at the base of the footings should be undercut to reach suitable bearing soils, and the undercut area filled with lean concrete or a suitable compacted crushed stone structural fill material. Suitable crushed stone fill materials include materials meeting the gradation requirements of IDOT CA-1, CA-6 and CA-7. Estimated settlement on properly prepared subgrade is calculated to be on the order of 1/2 inch. The horizontal limits of any undercuts should extend 2-ft beyond the footprints of the pier spread footing in the north, south and east directions. Undercutting is not needed beneath the existing pier spread footing.

7.3 Approach Slab Recommendations

The new approach slab will be supported on footings 10-in thick and level out to out per the IDOT Bridge Manual (2012) section 3.2.12. The recommended maximum factored bearing resistance for the approach slabs was calculated to be 3-tsf for the north approach slab and 6-tsf for the south abutment. The factored bearing resistance used for the calculations for the approach slab was 0.50 for footing on medium stiff to very stiff clay loam fill per AASHTO 4th Edition Article 10.5.5.2.2. For design of the approach slab footing ("sleeper slab") system, the bearing soils, may be considered to be the new embankment fill which should consist of an inorganic approved material, compacted to a minimum 95% of AASHTO T-99 (ASTM D-698), standard proctor method. Moisture levels for fill material should be maintained within a maximum +/- 3% of the optimal moisture content or as directed by the engineer. An experienced engineer should oversee the placement and compaction of embankment fill to ensure proper lift thickness, moisture content and densities are achieved in order to reduce the potential for settlement.

7.4 Embankment Recommendations

The majority of the subgrade consists of silty clay/clay loam soils interstratified with sand/sandy clay loam/silty loam/sand, gravel and fractured rock soils. The new fill is expected to consist of cohesive and non-cohesive material. We recommend a shrinkage factor of 15% for cohesive or granular soils.

Settlement for the north and south abutments was calculated to be 0.5-in or less.

Provided the construction schedule allows sufficient time for settlements to occur prior to paving, one option would be to place the embankment fill well in advance of the bridge construction and monitor settlements to confirm that 90% of the total settlement occurs before paving.

Prior to placing any borrow fill at the site, it is recommended that the exposed surface at or near grade be proof-rolled with the heaviest available equipment to determine if there are any localized deposits of soft or unsuitable materials. During the proof-rolling procedure, the exposed surface is rolled with the heaviest piece of construction equipment available at the site, such as a heavily loaded tandem axle dump truck having a gross weight of not less than 25-tons. Any such deposits, as observed by deflection of the subgrade under the wheels of the proof-rolling equipment, should be removed and replaced with an approved fill free of organic matter and debris. The silt and silty clay loam soils are sensitive to moisture changes and some softening/disturbance of the exposed soils should be expected following periods of precipitation. If any remediation is required at the time of construction, it may include undercutting and placement of a stabilization stone such as IDOT gradation CA-1 or PGEs materials or approved fill material.

In addition, borrow and excavation material should be in accordance with Section 6.2 of the IDOT Geotechnical Manual.

Fill materials placed at the site should consist of an inorganic approved material, compacted to a minimum 95% of AASHTO T-99 (ASTM D-698), standard proctor method. Moisture levels for fill material should be maintained within a maximum +/- 3% of the optimal moisture content or as directed by the engineer.

Construction of the proposed roadway improvements should be performed in accordance with the current Illinois Department of Transportation (IDOT) 2022 Standard Specifications for Road and Bridge Construction and 2015 Geotechnical Manual. In particular, refer to Section 202, "Earth and Rock Excavation", Section 205, "Embankment" and Section 301, "Subgrade Preparation".

7.5 Lateral Resistance Recommendations

For design of the lateral forces on the drilled shafts or piles, the following tables may be used for design of the deep foundation system or temporary earth retaining systems.

TABLE 5 – SOIL PARAMETERS FROM LATERAL EARTH PRESSURES/RESISTANCE North Abutment (BSB-064 & BSB-065)

		North Abutment (BSB-064 & BSB-0								
Material (Approx. Elevation, ft)	Unit Weight (pcf)	Undrained Friction Angle (°)	Undrained Cohesion (psf)	Drained Friction Angle (°)	Drained Cohesion (psf)	Lateral Modulus of Subgrade Reaction (pci) ¹	Strain	K₀	KA	K₽
Asphalt & Concrete (537 to 535)					0					
Very Loose FILL Clay Loam & Stone to Clayey Gavel & Stone (535 to 533)	115	27		27	0	25		0.5	0.38	2.7
Medium Stiff to Stiff FILL Clay Loam to Silty Clay with Stone (533 to 520)	120	0	1,300	26	0	375	0.008	0.6	0.39	2.6
Very Stiff Silty Clay (520 to 517)	125	0	2,500	28	0	800	0.006	0.5	0.36	2.8
Medium Dense to Very Dense Sand & Gravel to Gravel to Fractured Rock (517 to 515)	130	30		30	0	150		0.5	0.33	3.0

Notes: 1. Values recommended for use in design from L-pile Software Manual.

2. Lateral earth pressure co-efficient as per AASHTO 3.11.5.8

3. Top of bedrock is observed to the EL. 520-ft

TABLE 6 – SOIL PARAMETERS FROM LATERAL EARTH PRESSURES/RESISTANCE South Abutment (BSB-058 & BSB-069)

Material (Approx. Elevation, ft)	Unit Weight (pcf)	Undrained Friction Angle (°)	Undrained Cohesion (psf)	Drained Friction Angle (°)	Drained Cohesion (psf)	Lateral Modulus of Subgrade Reaction (pci) ¹	Strain	K₀	KA	Κ _P
Stiff to Very Stiff FILL Clay to Clay Loam (537 to 528)	125	0	3,000	28	0	975	0.005	0.5	0.36	2.8
Stiff Silty Clay to Buried Topsoil (528 to 525)	120	0	1,700	27	0	600	0.006	0.5	0.37	2.7
Medium Dense to Very Dense Sandy Loam to Sand & Gravel & Fractured Rock (525 to 520)	130	30		30	0	150		0.5	0.33	3.0

Notes: 1. Values recommended for use in design from L-pile Software Manual.

2. Lateral earth pressure co-efficient as per AASHTO 3.11.5.8.

3. Top of bedrock is observed below EL. 519-ft.

SECTION 08: CONSTRUCTION CONSIDERATIONS

For safety reasons and construction purposes, a temporary, tradition cofferdam should be utilized. A Type 1 Cofferdam is recommended because the Estimated Water Surface Elevation (EWSE) is higher than the bottom elevation of the substructure by six feet or less (per IDOT Bridge Manual, January 2012). As the water surface elevation is approximately 518.6-ft, this project does fall in Type 1 category. This type of cofferdam can be constructed by sandbagging or with a fabric membrane and steel metal frame. A concrete seal coat should be considered for design in case the bedrock exposed is very fractured and porous. If a concrete seal coat is used, a Type 2 cofferdam will be used.

IDOT temporary sheet pile wall design tables may not be used for temporary soil retention, and the designer should inform the contractor for the need of a temporary soil retention system.

During excavation for the proposed improvements, movement of adjacent soils into the excavation should be prevented. All excavations should be performed in accordance

with the latest Occupational Safety and Health Administration (OSHA) requirements. Allowances should be made for any surcharge loads adjacent to the retaining structures.

We anticipate the groundwater level to be typically above the bottom of the pier footings, and that typically sump pump and pit procedures should keep the site in the dry; however, should Hickory Creek water surface elevation exceed 16-ft, the site may need more advanced means of dewatering as rainfall increases in wet weather seasons.

SECTION 09: GENERAL QUALIFICATIONS

The analysis and recommendations presented in this report are based upon the data obtained from the soil borings performed at the indicated locations and from any other information discussed in this report. This report does not reflect any variations that may occur between borings or across the site. In addition, the soil samples cannot be relied on to accurately reflect the strata variations that usually exist between sampling locations. The nature and extent of such variations may not become evident until construction. If variations appear evident, it will be necessary to reevaluate the recommendations of the report. In addition, it is recommended that Geo Services Inc. be retained to perform construction observation and thereby provide a complete professional geotechnical engineering service through the observational method.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are intended or made. In the event that any changes in the nature, design or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and the conclusions of this report modified or verified in writing by the geotechnical engineer. Also note that Geo Services Inc. is not responsible for any claims, damages, or liability associated with any other party's interpretation of this report's subsurface data or reuse of the report's subsurface data or engineering analyses without the express written authorization of Geo Services Inc.

APPENDIX A GENERAL NOTES

GENERAL NOTES

CLASSIFICATION

American Association of State Highway & Transportation Officials (AASHTO) System used for soil classification.

Cohesionless Soils

Relative

Density

Loose

Dense Very Dense

Very Loose

TERMINOLOGY

Streaks are considered to be paper thick. Lenses are considered to be less than 2 inches thick. Layers are considered to be less than 6 inches thick. Stratum are considered to be greater than 6 inches thick.

Cohesive Soils

Medium Dense

<u>Consistency</u>	Unconfined Compressive Strength - qu (tsf)
Very Soft	Less than 0.25
Soft	0.25 - 0.5
Medium Stiff	0.5 - 1.0
Stiff	1.0 - 2.0
Very Stiff	2.0 - 4.0
Hard	Over 4.0

No. of Blows

per foot N

0 to 4

4 to 10

10 to 30

30 to 50

Over 50

DRILLING AND SAMPLING SYMBOLS

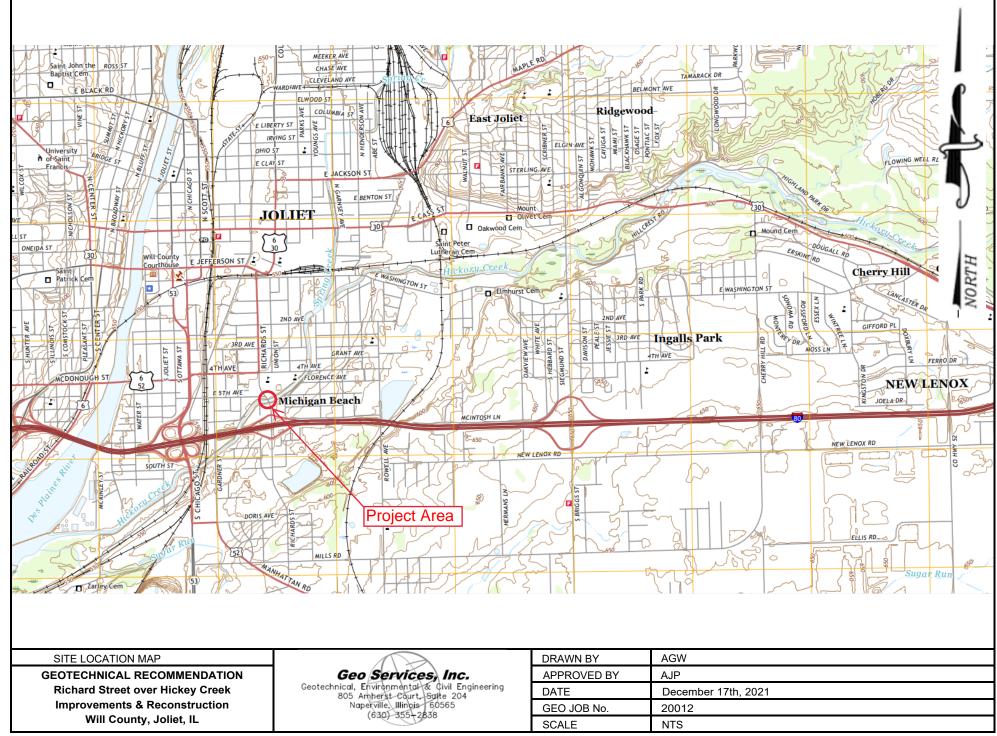
SS:	Split Spoon 1-3/8" I.D., 2" O.D.
OT.	

- ST: Shelby Tube 2" O.D., except where noted
- AS: Auger Sample
- DB: Diamond Bit NX: BX: AX
- CB: Carboloy Bit NX: BX: AX
- OS: Osterberg Sampler

Standard "N" Penetration: Blows per foot of a 140 lb. hammer falling 30" on a 2" O.D. Split Spoon

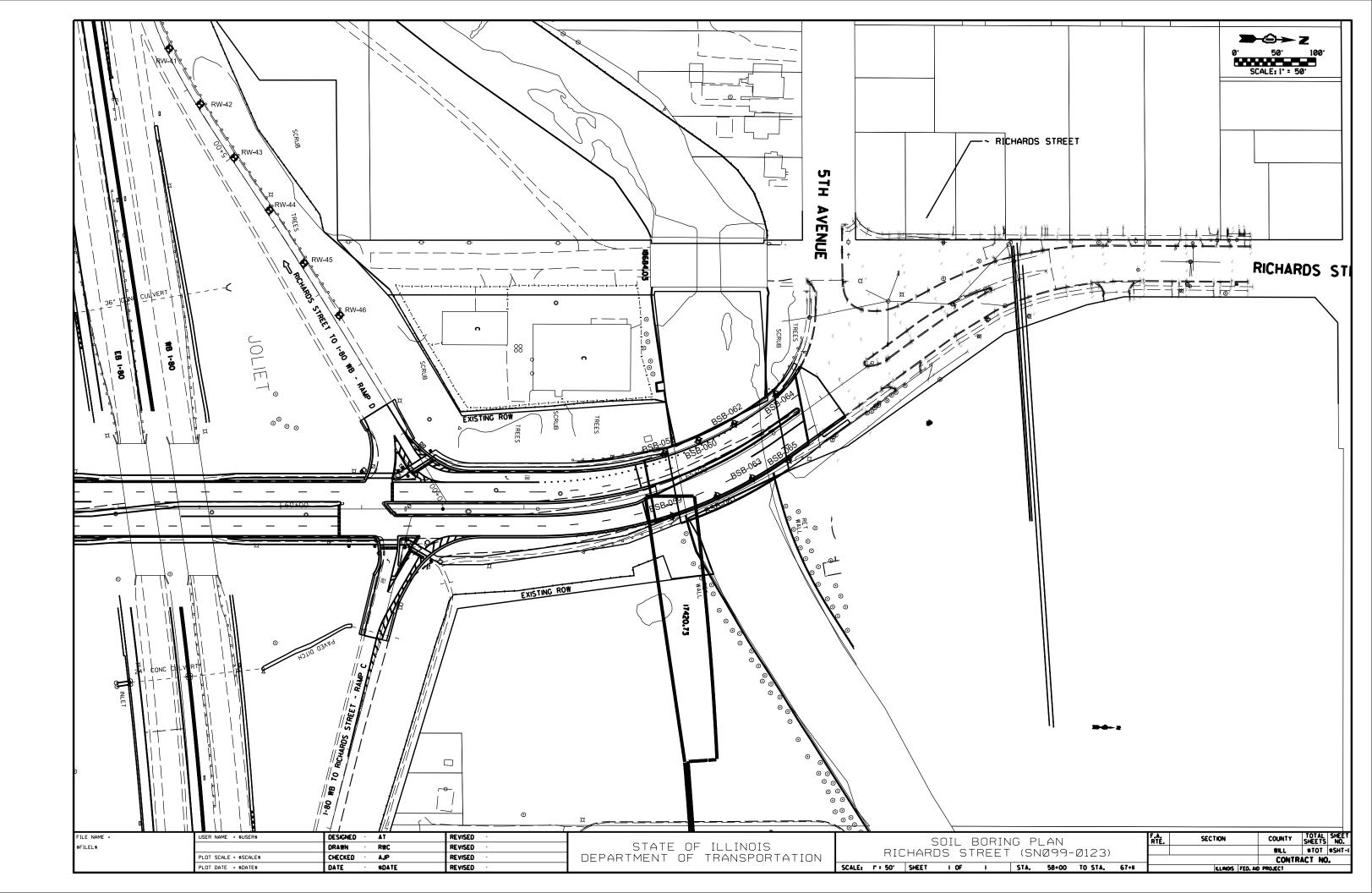
WATER LEVEL MEASUREMENT SYMBOLS

WL:	Water	WD:	While Drilling
WCI:	Wet Cave In	BCR:	Before Casing Removal
DCI:	Dry Cave In	ACR:	After Casing Removal
WS:	While sampling	AB:	After Boring


Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils, the accurate determination of ground water elevations is not possible in even several days observation, and additional evidence on ground water elevations must be sought.

WS: Wash Sample FT: Fish Tail RB: Rock Bit WO: Wash Out

Housel Sampler


HS:

APPENDIX B SITE LOCATION MAP

© Geo Services, Inc.

APPENDIX C BORING LOCATION PLAN & PROFILE

5555 550 545 545 540 535 535 530 530	EXIŞTING' CROLIND' PCL		RDS ST PGL BSB 058 64-90 40.9' Left 535.4 CRAVEL CRAVEL SIL TY GRAVEL CLAY LOAM 1/4 (FILL) SIL TY GRAVEL CLAY LOAM 1/4 (FILL) SIL TY CLAY (4) SIL TY CLAY (4) SIL TY CPSOIL 9 10-55	65-39. t 39.8 eft 5355 W% BRICE N. OU W% C		BSB-064 BSB-064 BSB-064 BSB-064 BSB-064 BSB-064 BSB-064 BSB-064 BSB-064 BSB-064 BSD-0 BSD	
520	ALUE BORNIC NUMBER STATION OFF SET ELEVATION	SOIL STRENGTH (TSF) B-BUIGE S-SHEAR P-POCKEL PENE ROMET	SAND & 41. GRAVEL 35. BEDROCK			10 0.5F - 30 CRAVE 326 BEDROCK 26 BEDROCK 10 10.5F - 30 26 10 10 10 10 10 10 10 10 10 10 10 10 10 1	
495 495 495 490 490 490 485 485 485 485 485 485 485 485	536.35 536.58 535.75 535.49 535.60 535.60 50 50 50 50 50 50 50 50 50 50 50 50 50	MOISTURE CONTENT IZ NR=ND RECOVER IZ SECOVER SECOVER IZ SECOVER SECOVER		535.6.1 537.01 536.98 537.01 536.98 537.22 537.43 537.43 516.49 516.49 537.53 537.53 537.53	537.47 537.08 537.24 537.24 59		

APPENDIX D BORING LOGS

Geo Services, Inc. Geotechnical Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Ulitotis (00565 (630) 355-2838

I-80 from Chicago Street to US Route 30

GSI Job No. 20012

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 1/4/22

PROJE	ЕСТ
-------	-----

LOCATION DRILLING METHOD COUNTY Will Hollow Stem Auger/Rotary HAMMER TYPE **CME** Automatic D В PR U Μ Surface Water Elev. n/a **ft** CLIENT Е L С 0 Stream Bed Elev. n/a **ft** Ρ 0 DELZS S I BORING NO. BSB-058 т W S Groundwater Elev.: Northing 1765845 н S Qu Т First Encounter Dry to -10.0' ft Easting 1055464 **Upon Completion** n/a **ft** Ground Surface Elev. 5<u>36.4</u> ft After Hrs. ft (ft) (tsf) (%) (pcf) -(/6") -**CLAYEY GRAVEL & STONE-dark** gray 11 535.4 CLAY LOAM-brown-very stiff (Fill) 4 10 24 4 533.4 SILTY SAND, GRAVEL & STONE-dark brown & 4 black-medium dense (Fill) 5 3.50 13 5 Р 1/20/22 530.4 PTB 194-9/20012 BORING LOGS/20012_LOG.GPJ CLAY LOAM-brown & gray-very 7 stiff (Fill) 11 14 6 528.4 SILTY CLAY with Stone-dark gray to black-stiff (Fill) 3 6 2.50 15 8 Ρ -10 525.9 **TOPSOIL-black-loose** 4 5 1.50 36 TO RT 30, 4 Ρ 523.4 SAND & GRAVEL-brown & PROJECTS\2020\20012 EXP, I-80 FROM CHICAGO ST. gray-dense 21 25 10 16 15 16 20 10 15 518.4 **Drillers Observation: Apparent** 517.9 Bedrock Borehole continued with rock coring. -20

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206), GP-Geoprobe Hand Auger BBS, from 137 (Rev. 8-99)

ROCK CORE LOG

GSI Job No. _____20012____

Page $\underline{1}$ of $\underline{1}$

Date 1/4/22

PROJECT						
LOCATION I-80 from Chicago Street to US Route 30					1	
COUNTY Will CORING METHOD Rotary Wash			R E	Б	CORE	S T
CLIENT CORING BARREL TYPE & SIZE NX Double Swivel-10 ft	- D	С	C O	R Q	T	R E
BORING NO.BSB-058Core Diameter2inNorthing1765845Top of Rock Elev.518.38ftBegin Core Elev.517.88ft	E P T	O R E	V E R	D	M E	N G T
Northing 1765845 Begin Core Elev. 517.88 ft Easting 1055464	Ĥ	-	Y	•		Ĥ
Ground Surface Elev. 536.4 ft	(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
RUN 1 (-18.5' to -28.5') 517. SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE Light gray mottled gray & porous with horizontal bedding & rust staining to -24.0' becoming light gray & fined grained with some chert replacement nodules. Some horizontal fractures throughout.	9 		98	75		724.00
507						
507. RUN 2 (-28.5' to -33.5') SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE Light gray & fine grained with horizontal bedding. Some horizontal fractures throughout. 502.	 	2	92	92		1118.00
End Of Boring @ -33.5'. Boring backfilled with cuttings.						

 Color pictures of the cores
 Yes

 Cores will be stored for examination until
 5 yrs after const.

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

ROCK CORE PHOTO

Page <u>1</u> of <u>1</u>

Date 1/4/22

	I-80 from Chicago S	Street to US Route 30
COUNTY	Will COF	RING METHOD Rotary Wash
		NX Double CORING BARREL TYPE & SIZE Swivel-10 ft
BORING NO.	BSB-058	Core Diameter <u>2</u> in — Top of Rock Elev. <u>518.4</u> ft
Northing	1765845	Begin Core Elev. <u>517.9</u> ft
Easting	1055464	
Ground Surfa	ace Elev. 536.4	_ ft
		20012 BHB-058 RUN 1 - 185'b-285' TOP

 Color pictures of the cores
 Yes

 Cores will be stored for examination until 5 yrs after const.
 Even of the core sample (ASTM D-2938)

 The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

GSI Job No. _____20012____

ROCK CORE PHOTO

Page $\underline{1}$ of $\underline{1}$

Date 1/4/22

	I-80 from (Chicado Str	eet to US Route 30
	Will		
	VVIII		ING METHOD Rotary Wash NX Double
			CORING BARREL TYPE & SIZE Swivel-10 ft
BORING NO.	BSF	3-058	Core Diameter <u>2</u> in — Top of Rock Elev. <u>518.4</u> ft
Northing		5845	 Top of Rock Elev. <u>518.4</u> ft Begin Core Elev. <u>517.9</u> ft
Easting	105	5464	
Ground Sur	face Elev	536.4	_ ft
			20012 B3B-058 RUN 2 - 285 4 - 335 TOP
		1	
		1	

Geo Services, Inc. Geotechnical Environmental & Civil Engineering 805 Amherst Court, Swite 204 Naperville, Ulikots 60565 (630) 355-2888

GSI Job No. 20012

SOIL BORING LOG

HAMMER TYPE

Page <u>1</u> of <u>1</u>

Date 12/28/22

CME Automatic

PROJE	ЕСТ
-------	-----

 LOCATION
 I-80 from Chicago Street to US Route 30

 COUNTY
 Will
 DRILLING METHOD
 Hollow Stem Auger/Rotary

 D
 B
 U
 M
 B
 Surface Water Ele

	BORING NO. BSB-059 Northing 1765856 Easting 1055541 Ground Surface Elev. 538.3		D E P T H	B L O W S	U C S Qu (tsf)		DRY DWZS-TY (pcf)	Surface Water Elev.n/aftDBUMPStream Bed Elev.n/aftELCOYGroundwater Elev.:TWSIPFirst EncounterDry to -10.0'ftHSQuTIUpon Completionn/aftftKVVVAfter-ft(ft)(/6")(tsf)(%)(pcf)
	1.25" ASPHALT, 14.75" CONCRETE	E27.0						517.8 Borehole continued with rock
	CRUSHED STONE	537.0		3 2 1		9		
	CLAY LOAM with Stone-gray-very stiff to hard (Fill)	535.3		7	0.00	10		
1/20/22			-5	6	2.00 P	13		
2_LOG.GPJ				6 8 16	4.00 P	17		
RT 30, PTB 194-9/20012 BORING LOGS/20012_LOG.GPJ 1/20/22	SILTY CLAY-dark brown to black-very stiff	530.3		3				
9\20012 BORI	SANDY LOAM-brown	527.8	-10	2	2.00 P	24		
30, PTB 194-				3 3 4		17		
OM CHICAGO ST. TO RT	SAND, GRAVEL & FRACTURED ROCK-brown	525.3		8				
FROM CHICA			-15	27 50/5"		7		
Z:\PROJECTS\2020\20012 EXP, I-80 FR				14 10 16		12		
ECTS\2020\20	Drillers Observation: Apparent Bedrock	520.3		50/1"				
Z:\PROJ			-20			8		-40

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206), GP-Geoprobe Hand Auger BBS, from 137 (Rev. 8-99)

ROCK CORE LOG

GSI Job No. _____20012____

Page <u>1</u> of <u>1</u>

Date 12/28/22

PROJECT																
	I-80 fr	om Chicag	o Stre	et to US	Route 30										1	
COUNTY	Will	COF	RING N	IETHOD	_Rotary	Wash	۱						R E	R	CORE	S T
			c	ORING E	BARREL T	YPE &			(Doub ivel-10		D	С	C O	Q	T	R E
BORING NO Northing		3-059 5856			ameter Rock Elev. ore Elev.		2 520.31 517.81	in ft ft			E P T	O R E	V E R	D	E	N G T
Easting	105	5541	_	Degin Co	ore ciev.	`	517.01				н		Y			н
Ground Surfa	ce Elev	538.3	_ ft								(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
RUN 1 (-20.5' to SILURIAN SYS Light gray & find fractures throug	TEM, NIA e grained v	GARAN SE	ERIES ntal be	DOLOM dding. Ni	ITE umerous h	iorizor	ntal & ve	ertical		517.8 - - - - - - - - - - - - - - - - - - -	25 	1	100	52		696.00
RUN 2 (-30.5' to SILURIAN SYS Light gray & fine throughout.	TEM, ŃIA(e grained v	vith horizor	ntal be	dding. So	ome horizo	ontal fr	ractures	i		- - - 502.8	-35	2	100	96		761.00
End Of Boring (<u>@</u> -35.5'. В	oring back	filled v	vith cuttir	ıgs.											

 Color pictures of the cores
 Yes

 Cores will be stored for examination until
 5 yrs after const.

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

ROCK CORE PHOTO

GSI Job No. 20012

Page <u>1</u> of <u>1</u>

Date 12/28/22

OCATION	I-80 from Chicago	Street to US Route 30
	Will COF	RING METHOD Rotary Wash
		NX Double
LIENT		CORING BARREL TYPE & SIZE
		Core Diameter <u>2</u> in
ORING NO Northing	BSB-059 1765856	Top of Rock Elev. <u>520.3</u> ft Begin Core Elev. <u>517.8</u> ft
Easting	1055541	Begin Core Elev. 517.8 ft
Ground Surfa		ft
		BSB-059 RUNI -205' to -30.5
		TOP

ROCK CORE PHOTO

GSI Job No. <u>20012</u>

Page <u>1</u> of <u>1</u>

Date 12/28/22

PROJECT		
	I-80 from Chicago	Street to US Route 30
	Will C	CORING METHOD Rotary Wash
CLIENT		NX Double CORING BARREL TYPE & SIZE Swivel-10 ft
BORING NO.	BSB-059	Core Diameter <u>2</u> in Top of Rock Elev. <u>520.3</u> ft
Northing	1765856	Top of Rock Elev. <u>520.3</u> ft Begin Core Elev. <u>517.8</u> ft
Easting	1055541	
Ground Surf	ace Elev. 538.3	<u>}</u> ft
		B5B-059 20012 RUNZ 305' & 35.5'

 Color pictures of the cores
 Yes

 Cores will be stored for examination until
 5 yrs after const.

 The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Geo Services, Inc. Geotechnical Environmental & Civil Engineering 805 Amhrefst Court, Stutie 204 Naperville, Juliotis (005665 (630) 355-2848
--

SOIL BORING LOG

GSI Job No. 20012

Page <u>1</u> of <u>1</u>

Date 12/29/21

PROJECT

LOCATION I-80 from Chicago Street to US Route 30

CONCRETE BRIDGE DECK 535.7	E L C P O S T W H S Qu (ft) (/6") (tsf	CO SI DE SSS
CONCRETE BRIDGE DECK 535.7 VOID		
VOID VOID VOID VOID VOID State State		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206), GP-Geoprobe Hand Auger BBS, from 137 (Rev. 8-99)

ROCK CORE LOG

Page <u>1</u> of <u>1</u>

Date 12/29/21

PROJECT				
LOCATION I-80 from Chicago Street to US Route 30				
COUNTY Will CORING METHOD Rotary Wash	R E	R	CORE	S T
CLIENTCORING BARREL TYPE & SIZENX Double Swivel-10 ftBORING NO.BSB-060 1765886 EastingCore Diameter Top of Rock Elev.2 515.48 514.48InD 	- C O V E R Y (%)	Q D	T I M E (min/ft)	R E N G T H (tsf)
RUN 1 (-22.0' to -32.0') 514.5 1	99	77	(,	
SILURIÁN SYSTEM, ŃIAGARAN SERIES DOLOMITE Light gray & fine grained with horizontal bedding. Some horizontal fractures throughout.				763.00
RUN 2 (-32.0' to -37.0')2 2 SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE Light gray & fine grained with horizontal bedding. Some horizontal fractures & chert nodules throughout 	100	100		713.00
End Of Boring @ -37.0'. Boring backfilled with cuttings.				

 Color pictures of the cores
 Yes

 Cores will be stored for examination until
 5 yrs after const.

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

ROCK CORE PHOTO

Page <u>1</u> of <u>1</u>

Date 12/29/21

	1-00 11011		Street to US Route 30			
	Will	COF	RING METHOD Rotary W	ash		
CLIENT			CORING BARREL TYP	E & SIZE _	NX Double Swivel-10 ft	
			Core Diameter	2	in	
BORING NO.		3-060	_ Top of Rock Elev	515.5	ft	
Northing		5886	Begin Core Elev	514.5	ft	
Easting Ground Surfa	105	5446	ft			
			858-060 RVNI -23.0'-			

ROCK CORE PHOTO

GSI Job No. 20012

Page <u>1</u> of <u>1</u>

Date 12/29/21

PROJECT			
	I-80 from (Chicago Stre	et to US Route 30
	Will	CORII	NG METHOD Rotary Wash
			NX Double CORING BARREL TYPE & SIZE Swivel-10 ft
BORING NO. Northing		<u>3-060</u> 5886	Core Diameter2inTop of Rock Elev.515.5ftBegin Core Elev.514.5ft
Easting	105	5446	
Ground Sur	face Elev.	536.5	ft
			BSB-060 RUNZ -32.0'6-370' AMAR-TOD 3T

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Annherst Court; Stutte 204 Naperville, Julidols 60565 (630) 355-2848

SOIL BORING LOG

GSI Job No. 20012

-40

Page 1 of 1

Date 12/21/21

PROJECT

(PROJECTS)2020/20012 EXP, 1-80 FROM CHICAGO ST. TO RT 30, PTB 194-9/20012 BORING LOGS/20012 LOG.GPJ 1/20/22

I-80 from Chicago Street to US Route 30 LOCATION COUNTY Will DRILLING METHOD Hollow Stem Auger/Rotary HAMMER TYPE **CME** Automatic D PR D В PR В U Μ Surface Water Elev. 21.33 ft U Μ CLIENT Е Е L С Ο Stream Bed Elev. 22.00 ft L С 0 Ρ Ρ 0 0 S I DHZS S L DENSITY BORING NO. BSB-061 Т W S Groundwater Elev.: т w S Northing 1765911 н S Т н S Qu **First Encounter** Qu Т n/a ft ţ Easting 1055514 **Upon Completion** n/a ft Ground Surface Elev. 538.0 ft After Hrs. ft (ft) (/6") (pcf) (tsf) (%) (pcf) (ft) (/6") -_ (tsf) (%) CONCRETE BRIDGE DECK VOID (continued) 537.3 VOID 516.4 CREEK 516.0 **Drillers Observation: Apparent** Bedrock 514.0 Borehole continued with rock coring. -25 -10 -15

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206), GP-Geoprobe Hand Auger BBS, from 137 (Rev. 8-99)

-20

ROCK CORE LOG

GSI Job No. _____20012____

Page <u>1</u> of <u>1</u>

Date 12/21/21

PROJECT				
LOCATION I-80 from Chicago Street to US Route 30		1		
COUNTY Will CORING METHOD Rotary Wash	R	R	CORE	S T
CLIENT CORING BARREL TYPE & SIZE NX Double Swivel-10 ft D C	C O	Q	T I	R E
BORING NO.BSB-061 Top of Rock Elev.Core Diameter 516.022in ftEO PR R TENorthing1765911 1055514Begin Core Elev.514.02ftTE	V E R Y	D	M E	N G T H
Ground Surface Elev. 538.0 ft (ft) (#)	(%)	(%)	(min/ft)	(tsf)
RUN 1 (-24.0' to -34.0') SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE Light gray & fine grained with horizontal bedding. Some horizontal fractures & chert nodules throughout.	99	71		479.00
RUN 2 (-34.0' to -39.0') SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE Light gray & fine grained with horizontal bedding. Some horizontal fractures & chert nodules throughout.	100	92		828.00
End Of Boring @ -39.0'. Boring backfilled with cuttings.				

 Color pictures of the cores
 Yes

 Cores will be stored for examination until
 5 yrs after const.

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

GSI Job No. <u>20012</u>

Page $\underline{1}$ of $\underline{1}$

Date 12/21/21

	-80 from Chicago St	reet to US Route 30	
	Will CORI	NG METHOD Rotary Wash	
		CORING BARREL TYPE & SIZE	NX Double Swivel-10 ft
		Core Diameter 2	in
ORING NO	BSB-061 1765911	Top of Rock Elev. <u>516.0</u>	ft
Northing Easting	1055514	Begin Core Elev. 514.0	ft
Ground Surface	Elev. 538.0	ft	
		BSB-061 RUN I - 240' - 5-34.0' TDP	

GSI Job No. _____20012____

Page <u>1</u> of <u>1</u>

Date 12/21/21

PROJECT			
	I-80 from Ch	icago Street to US Route 30	
	Will	CORING METHOD Rotary Wash	
		CORING BARREL TYPE & SIZE NX Double Swivel-10 ft	
BORING NO. Northing	17659	11 Begin Core Elev. 514.0 ft	
Easting Ground Surfa	10555	14	
		BSB-061 RUN Z - 340' to 390' TOP	

Geo Services, Inc. Geotechnical Environmental & Civil Engineering 805 Amhrefst Court, Stutie 204 Naperville, Juliotis (005665 (630) 355-2848
--

SOIL BORING LOG

GSI Job No. 20012

Page <u>1</u> of <u>1</u>

Date 12/30/21

PROJECT

LOCATION I-80 from Chicago Street to US Route 30

	COUNTY		Will	DF	RILLING	ME	тно	D	Ho	ollow	Stem Auger/Rota	iry HAMI	MER T	YPE		ME	Auto	matio	C
	CLIENT BORING I Northing Easting Ground		1765 1055	5930 5425	ft	D E P T H	B L O W S	U C S Qu (tsf)		DRY DENS TY (pcf)	Surface Water F Stream Bed El Groundwater E First Encounte Upon Complet After - H	ilev. 22	20.00 21.00 n/a n/a	ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	DRY DUZS-TY (pcf)
	CONCRE	TE BRID	GE DE	СК	535.8			. ,			CREEK					(-)	. ,		
Z:/PROJECTS/2020/20012 EXP, I-80 FROM CHICAGO ST. TO RT 30, PTB 194-9/20012 BORING LOGS/20012_LOG.GPJ 1/20/22	VOID				<u></u>						Drillers Observat Bedrock Borehole continu coring.		it ∏	515.6					
Z:\PROJE					516.6	-20	-								-40				

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206), GP-Geoprobe Hand Auger BBS, from 137 (Rev. 8-99)

GSI Job No. _____20012____

Page <u>1</u> of <u>1</u>

ROCK CORE LOG

Date 12/30/21

LOCATION I-80 from Chicago Street to US Route 30	
COUNTY Will CORING METHOD Rotary Wash R E R	S T
CLIENT CORING BARREL TYPE & SIZE NX Double C C T D C O Q I	R E N
BORING NO. BSB-062 Top of Rock Elev. 515.57 ft P R E D E Northing 1765930 Begin Core Elev. 515.07 ft T E R .	G T
Easting 1055425 H Y Ground Surface Elev. 536.6 ft (ft) (#) (%) (%)	H (tsf)
RUN 1 (-21.5' to -31.5') 515.1 1 100 86	(131)
SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE Light gray & fine grained with horizontal bedding. Some horizontal fractures throughout.	639.00
RUN 2 (-31.5' to -36.5') 2 100 100 SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE	742.00
End Of Boring @ -37.0'. Boring backfilled with cuttings.	

 Color pictures of the cores
 Yes

 Cores will be stored for examination until
 5 yrs after const.

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

GSI Job No. <u>20012</u>

Page $\underline{1}$ of $\underline{1}$

Date 12/30/21

CATION	I-80 from Chicago S	Street to US Route 30
DUNTY	Will COR	RING METHOD Rotary Wash
IENT		NX Double CORING BARREL TYPE & SIZE Swivel-10 ft
DRING NO lorthing	BSB-062 1765930 1055425	Core Diameter2inTop of Rock Elev.515.6ftBegin Core Elev.515.1ft
round Surfa		ft
		BSB-062 Ruill 21.5' to 31.5' TOP

 Color pictures of the cores
 Yes

 Cores will be stored for examination until
 5 yrs after const.

 The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

GSI Job No. _____20012____

Page <u>1</u> of <u>1</u>

Date 12/30/21

BORING NO. BSB-062 Core Diameter 2 in Northing 1765930 Top of Rock Elev. 515.6 ft Basting 1055425 Begin Core Elev. 515.1 ft	
CLIENTCORING BARREL TYPE & SIZESwivel-10 ftBORING NO.BSB-062Core Diameter2inNorthing1765930Top of Rock Elev.515.6ftBegin Core Elev.515.1ft	
BORING NO. BSB-062 Core Diameter 2 in Northing 1765930 Top of Rock Elev. 515.6 ft Basting 1055425 Begin Core Elev. 515.1 ft	
BORING NO. BSB-062 Top of Rock Elev. 515.6 ft Northing 1765930 Begin Core Elev. 515.1 ft Easting 1055425 Top of Rock Elev. 515.1 ft	
Northing 1765930 Begin Core Elev. 515.1 ft Easting 1055425 6<	
Easting 1055425	
Ground Surface Elev. 536.6 ft	
BS B-062 RUN 2 -315' 6-36.5' TOP 	

Geo Services, Inc. Geotechnical Environmental & Civil Engineering 805 Amhrefst Court, Stutie 204 Naperville, Juliotis (005665 (630) 355-2848
--

SOIL BORING LOG

GSI Job No. 20012

Page <u>1</u> of <u>1</u>

Date 12/21/21

PROJECT

LOCATION I-80 from Chicago Street to US Route 30

		Wil	I	DRILLING	6 ME	тноі	D _	Но	ollow	Stem Auger/Rotary	HAMMER TYPE	CME	E Auto	matio	c
	CLIENT BORING NC Northing Easting Ground Su		BSB-063 1765954 1055491 v. 538	. <u></u> ft	D E P T H	B L O W S	U C S Qu (tsf)		DRY DENS-TY (pcf)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After - Hrs.		D B E L P O T W H S (ft) (/6"	Qu		DRY DWZS-TY (pcf)
	CONCRETE	BRIDGE	DECK	537.3		e 5 /)	. ,		VOID (continued)				. ,	
Z:/PROJECTS/2020/20012 EXP, I-80 FROM CHICAGO ST. TO RT 30, PTB 194-9/20012 BORING LOGS/20012_LOG.GPJ 1/20/22	VOID									CREEK Drillers Observation: A Bedrock Borehole continued wi coring.	514.5				
VPROJECTS/2020/2001					 							 			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206), GP-Geoprobe Hand Auger BBS, from 137 (Rev. 8-99)

ROCK CORE LOG

GSI Job No. _____20012____

Page <u>1</u> of <u>1</u>

Date 12/21/21

PROJECT				
LOCATION I-80 from Chicago Street to US Route 30				
COUNTY Will CORING METHOD Rotary Wash	R E	R	CORE	S T
CLIENT CORING BARREL TYPE & SIZE NX Double Swivel-10 ft D C Core Diameter in E O	C O V	Q	T I M	R E N
BORING NO. BSB-063 Top of Rock Elev. 515.51 ft P R Northing 1765954 Begin Core Elev. 514.51 ft T E Easting 1055491 H H H H H	E R Y	D	E	G T H
Ground Surface Elev. <u>538.0</u> ft (ft) (#)	(%)	(%)	(min/ft)	(tsf)
RUN 1 (-23.5' to -33.5') 514.5 1 SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE Light gray & fine grained with horizontal bedding. Some horizontal fractures throughout.	97	87		725.00
RUN 2 (-33.5' to -38.5') 2 SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE Light gray & fine grained with horizontal bedding. Some horizontal fractures & chert nodules throughout35 -499.5	100	100		693.00
End Of Boring @ -38.5'. Boring backfilled with cuttings.				

 Color pictures of the cores
 Yes

 Cores will be stored for examination until
 5 yrs after const.

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

GSI Job No. <u>20012</u>

Page $\underline{1}$ of $\underline{1}$

Date 12/21/21

CATION I-80 fron	m Chicago Street to US Route 30
OUNTY Will	CORING METHOD Rotary Wash
	NX Double CORING BARREL TYPE & SIZE Swivel-10 ft
	Core Diameter2 in
	<u>B-063</u> Top of Rock Elev. <u>515.5</u> ft
	65954 Begin Core Elev. 514.5 ft
Easting105 Ground Surface Elev	55491 ft
	B5B-063 30012
	RUN 1 - 23.5' to "33.5'

GSI Job No. _____20012____

Page <u>1</u> of <u>1</u>

Date 12/21/21

PROJECT				
	I-80 from C	hicago Stre	eet to US Route 30	
	Will	CORI	ING METHOD Rotary Wash	
			NX Double CORING BARREL TYPE & SIZE Swivel-10 ft	
BORING NO. Northing Easting Ground Surfa	176 105	3-063 5954 5491 538.0	Core Diameter 2 in Top of Rock Elev. 515.5 ft Begin Core Elev. 514.5 ft ft	
			B5B-063 RUN 2335 -6-385 TOP	

Geo Services, Inc. Geotechnical Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Ulitotis (00565 (630) 355-2838

I-80 from Chicago Street to US Route 30

GSI Job No. 20012

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 12/29/21

	JECT
PRU	JECI

1/20/22

(PROJECTS)2020/20012 EXP, 1-80 FROM CHICAGO ST. TO RT 30, PTB 194-9/20012 BORING LOGS/20012 LOG.GPJ

LOCATION DRILLING METHOD COUNTY Will Hollow Stem Auger/Rotary HAMMER TYPE **CME** Automatic D В D R Y U Μ Surface Water Elev. n/a **ft** CLIENT Е L С 0 Stream Bed Elev. n/a **ft** Ρ 0 S I DENSITY BORING NO. BSB-064 т W S Groundwater Elev.: Northing 1765980 н S Qu Т First Encounter Dry to -10.0' ft Easting _ 1055387 **Upon Completion** n/a **ft** Ground Surface Elev. 536.8 ft After Hrs. ft (ft) (pcf) -(/6") (tsf) (%) -2.0" ASPHALT, 14.0" CONCRETE 535.5 0 **CLAYEY GRAVEL &** 0 26 STONE-brown-very loose 0 533.8 CLAY LOAM-brown & gray-medium stiff (Fill) 1 2 0.70 17 6 В 531.3 SILTY CLAY with Stone-dark brown & black-medium stiff to stiff 4 (Fill) 2 1.20 23 4 в 4 2 0.60 24 3 В -10 2 4 1.00 33 5 Ρ 1 2 0.50 30 8 Ρ 521.3 GRAVEL with Sand-brown & gray-very dense 50/5' 520.3 **Drillers Observation: Apparent** 26 Bedrock 518.3 Borehole continued with rock coring.

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206), GP-Geoprobe Hand Auger BBS, from 137 (Rev. 8-99)

-20

ROCK CORE LOG

GSI Job No. _____20012____

Page <u>1</u> of <u>1</u>

Date 12/29/21

PROJECT						
LOCATION I-80 from Chicage	o Street to US Route 30					
	ING METHOD Rotary Wash		R E	R	CORE	S T
BORING NO. BSB-064 Northing 1765980 Easting 1055387		Double vel-10 ft D C E O P R T E H	C O V E R Y	Q D	T I M E	R E N G T H
Ground Surface Elev. 536.8	ft	(ft) (#)	(%)	(%)	(min/ft)	(tsf)
Highly fractured throughout with som	avy bedding. Weathered with rust staining.		98	83		719.00
-57.0'. Highly fractured throughout wi	vavy bedding. Weathered with rust staining to th some chert nodules.	2 	100	100		967.00
End Of Boring @ -33.5'. Boring back	filled with cuttings.					

 Color pictures of the cores
 Yes

 Cores will be stored for examination until
 5 yrs after const.

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

GSI Job No. <u>20012</u>

Page $\underline{1}$ of $\underline{1}$

Date 12/29/21

	I-80 from Chicago S	Street to US Route 30
	Will COR	RING METHOD Rotary Wash
CLIENT		NX Double CORING BARREL TYPE & SIZE Swivel-10 ft
		Core Diameter <u>2</u> in
BORING NO Northing	BSB-064 1765980	— Top of Rock Elev. <u>519.3</u> ft — Begin Core Elev. <u>518.3</u> ft
Easting	1055387	_ Begin Core Elev. <u>518.3</u> ft
Ground Surfa	ce Elev. 536.8	ft

GSI Job No. _____20012____

Page <u>1</u> of <u>1</u>

Date 12/29/21

PROJECT	
LOCATION	I-80 from Chicago Street to US Route 30
COUNTY	Will CORING METHOD Rotary Wash
	NX Double CORING BARREL TYPE & SIZE Swivel-10 ft
BORING NO. Northing Easting Ground Surf	1765980 Begin Core Elev. 518.3 ft
	B5B-064 RUN2 7285'6-335 TDP FE TDP FE

Geo Services, Inc. Geotechnical Environmental & Civil Engineering 805 Amherst Court, Suite 204 Naperville, Ulitotis (00565 (630) 355-2838

GSI Job No. 20012

SOIL BORING LOG

Page <u>1</u> of <u>1</u>

Date 1/18/22

PROJECT

PTB 194-9/20012 BORING LOGS/20012_LOG.GPJ 1/28/22

TO RT 30,

1-80 FROM CHICAGO ST.

VPROJECTS\2020\20012 EXP.

coring.

I-80 from Chicago Street to US Route 30 LOCATION DRILLING METHOD COUNTY Will Hollow Stem Auger/Rotary HAMMER TYPE **CME** Automatic D В PR U Μ Surface Water Elev. n/a **ft** CLIENT Е L С 0 Stream Bed Elev. n/a **ft** Ρ 0 S I DHINH BORING NO. BSB-065 т W S Groundwater Elev.: Northing 1765998 н S Qu Т First Encounter Dry to -10.0' ft Easting 1055467 **Upon Completion** n/a **ft** Ground Surface Elev. 538.4 ft After Hrs. ft (ft) (pcf) -(/6") (tsf) (%) _ 2.25" ASPHALT, 13.25" CONCRETE 537.1 1 CLAY LOAM & 2 18 STONE-gray-loose (Fill) 3 535.4 CLAY LOAM-brown & gray spotted black-stiff to very stiff (Fill) 4 3.00 19 4 6 Ρ 4 9 2.50 14 9 Р 2 3 1.50 17 5 Ρ -10 527.9 SILTY CLAY-black-very stiff 3 5 2.50 23 8 Ρ 525.4 SAND & GRAVEL-brown-medium dense 5 9 9 13 522.9 FRACTURED ROCK-brown-medium dense 7 5 13 6 520.9 **Drillers Observation: Apparent** Bedrock 519.9 Borehole continued with rock

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206), GP-Geoprobe Hand Auger BBS, from 137 (Rev. 8-99)

-20

ROCK CORE LOG

GSI Job No. _____20012____

Page <u>1</u> of <u>1</u>

Date 1/18/22

PROJECT									
LOCATION I-80 from Chicago Street to US Route	30								
COUNTY Will CORING METHOD Ro	tary Wash	l				RE	R	CORE	S T
CLIENT CORING BARRE			NX Doub Swivel-10		C O	C O V	Q	T I M	R E N
BORING NO. BSB-065 Top of Rock E Northing 1765998 Begin Core Ele	lev5	2 520.89 519.89	in ft ft	P	R	E R	D	E	G
Easting 1055467 Ground Surface Elev. 538.4 ft	GV			H	(#)	Y	(0/)	(mains / f t)	H
RUN 1 (-18.5' to -28.5')				(ft) 519.9	(#)	(%) 97	(%) 84	(min/ft)	(tsf)
SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE Light gray mottled gray & porous with horizontal bedding to grained with some chert replacement nodules. Some horiz	o -21.8' be zontal fract	ecoming t	fine oughout.						315.00
RUN 2 (-28.5' to -33.5') SILURIAN SYSTEM, NIAGARAN SERIES DOLOMITE Light gray & fine grained with horizontal bedding, some ch	nert replace	ement no	odules.		2	94	94		675.00
End Of Boring @ -33.5'. Boring backfilled with cuttings.									

 Color pictures of the cores
 Yes

 Cores will be stored for examination until
 5 yrs after const.

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

GSI Job No. ________

Page <u>1</u> of <u>1</u>

Date 1/18/22

	I-80 from	Chicago Street to US Route 30	
	Will	CORING METHOD _ Rotary Wash	
		NX Double CORING BARREL TYPE & SIZE Swivel-10 ft	
BORING NO. Northing Easting	BSB- 1765 1055	5998 Begin Core Elev. 519.9 ft	
Ground Surfa	ace Elev	<u>538.4</u> ft	
		858-065 RUNI -18.5'-6-28.5' TOP	

GSI Job No. _____20012____

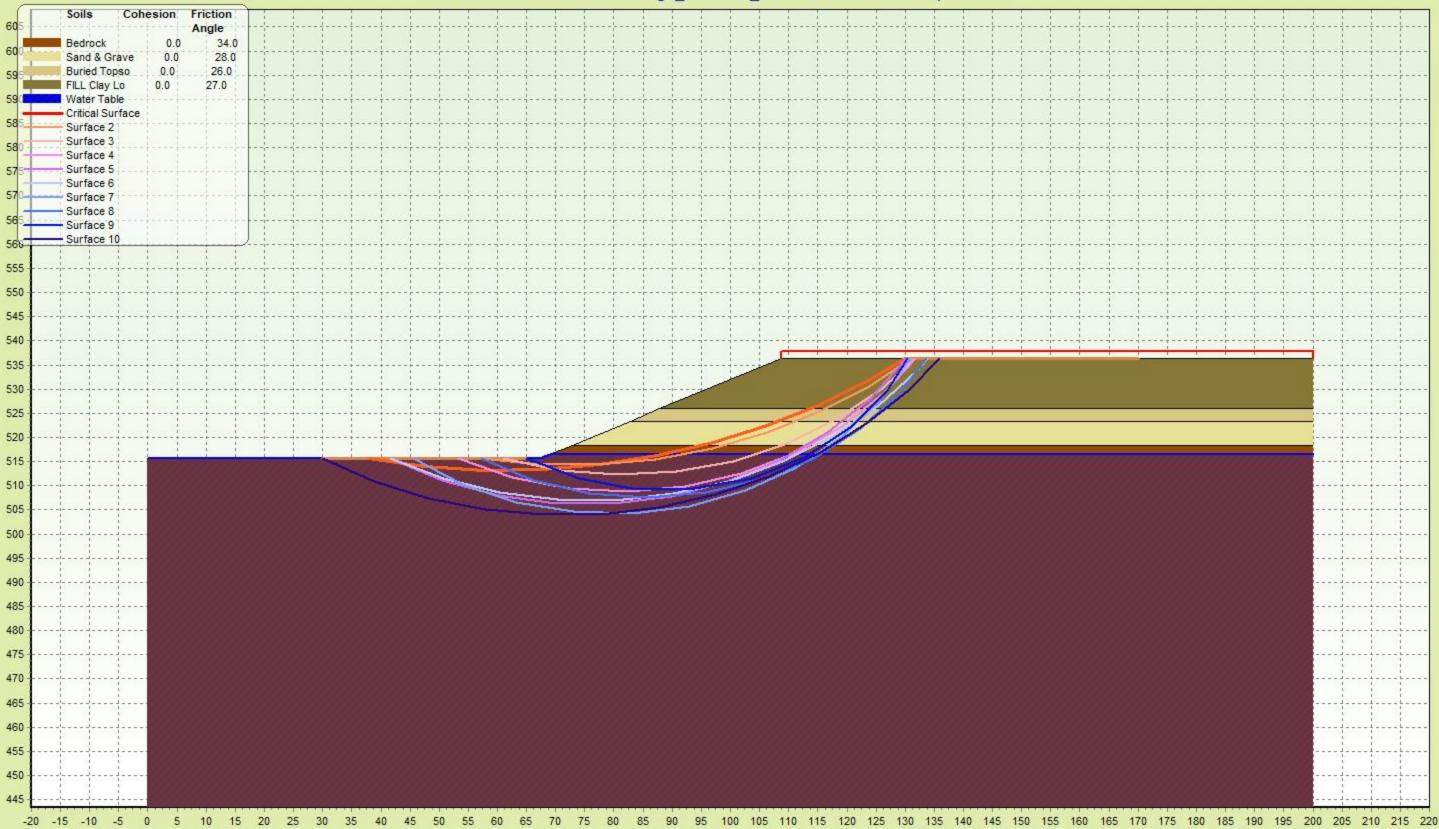
Page <u>1</u> of <u>1</u>

Date 1/18/22

			eet to US Route 30
	Will		RING METHOD Rotary Wash
			CORING BARREL TYPE & SIZE NX Double
ORING NO.	BSB	-065	Core Diameter <u>2</u> in — Top of Rock Elev. <u>520.9</u> ft
Northing		5998	Top of Rock Elev. <u>520.9</u> ft Begin Core Elev. <u>519.9</u> ft
Easting	105	5467	
Ground Surfa	ce Elev	538.4	_ ft
			838-065 RUN 2 28.5' to 33.5' TOP 33.5

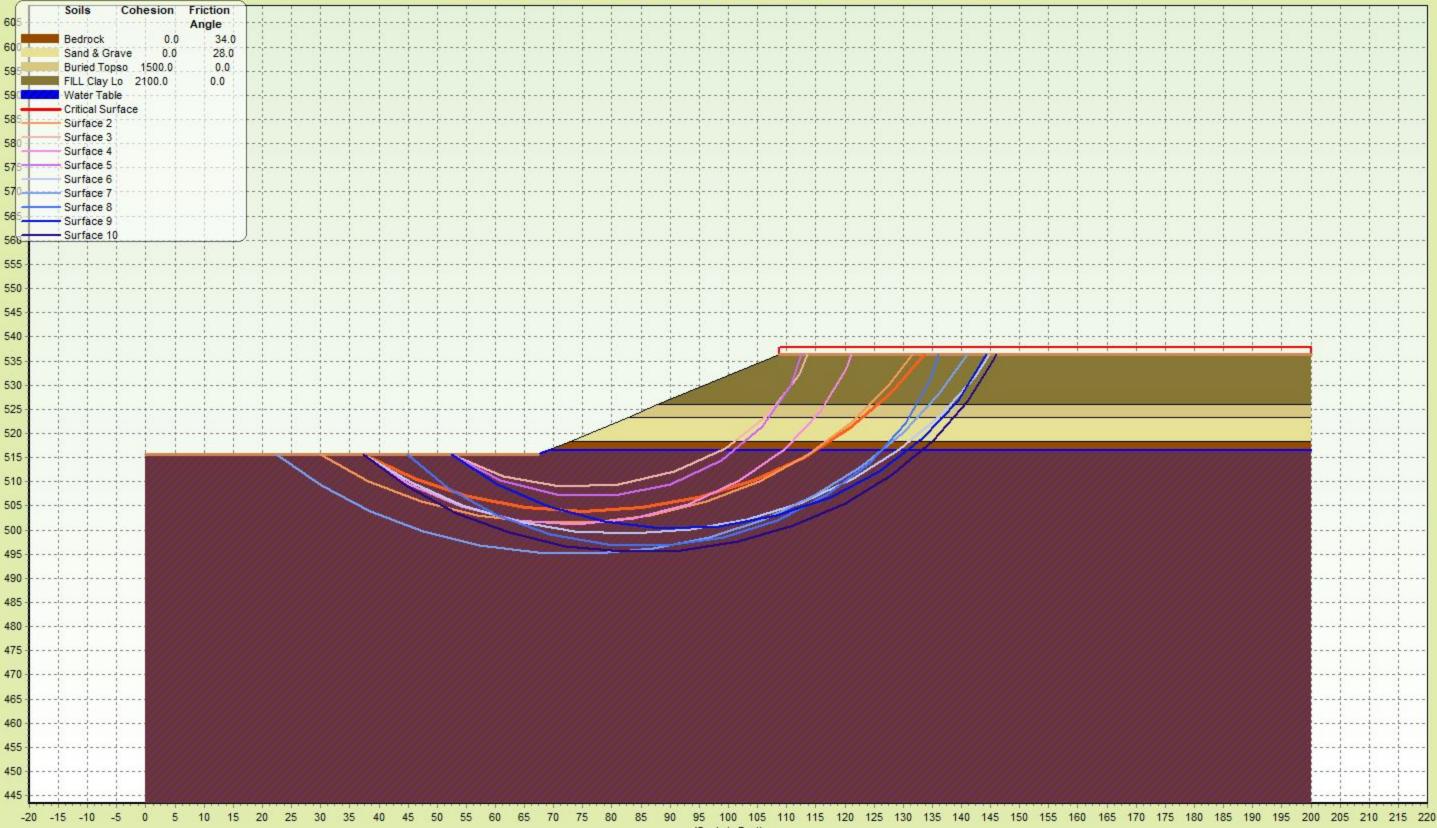
<u>APPENDIX E</u> LABORATORY TEST RESULTS

1235 E. Davis Street Arlington Heights, Illinois 60005 Phone: (847) 253-3845 Fax: (847) 253-0482

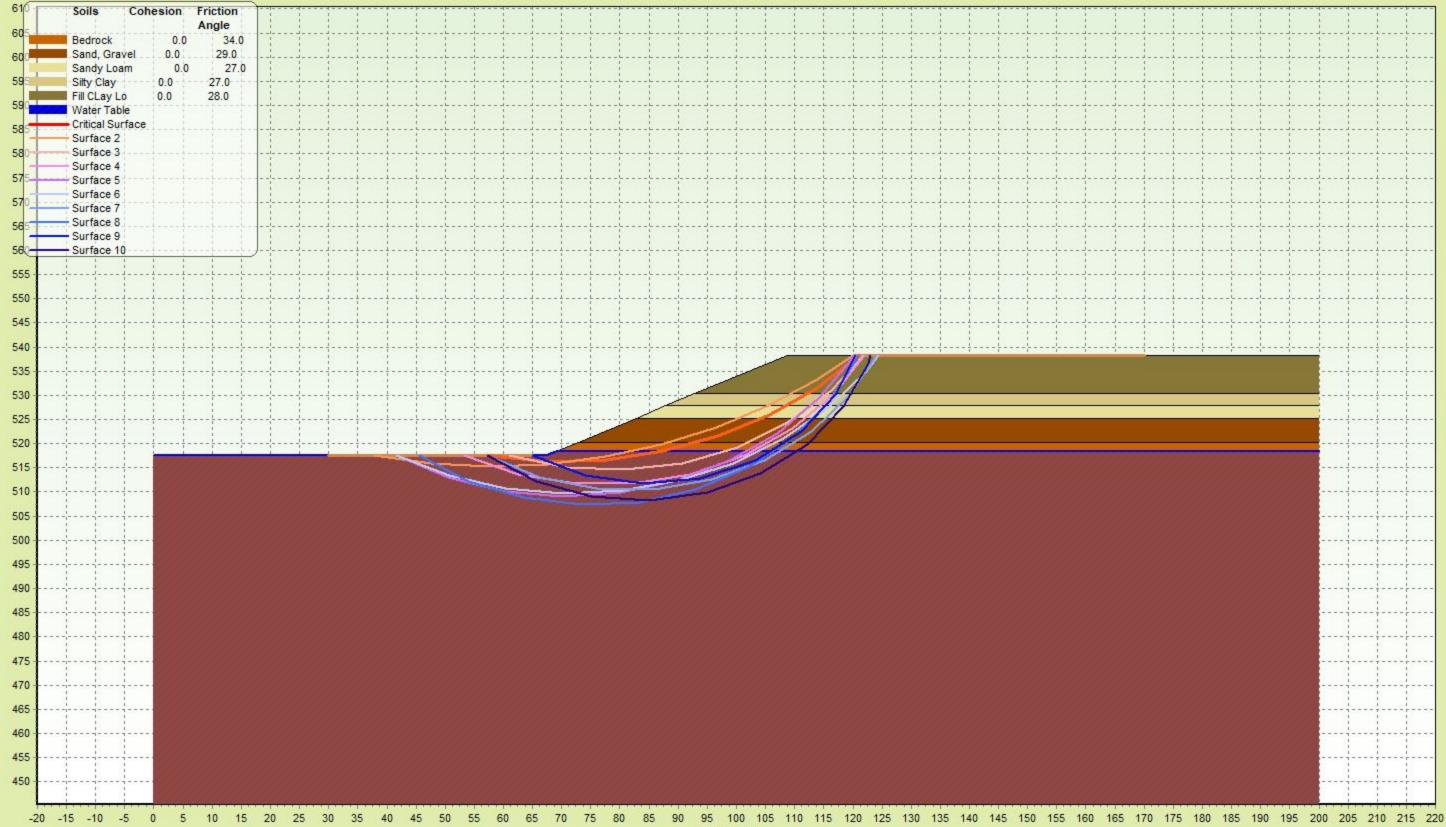

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS - ASTM D 7012

Project Name	I-80 Phase 2	Date	2/15/22
Location	Richard Street Bridge (SN 099-0123)	Job No	20012
County	Will	Tested By: _	AGW
Sample Type	Drilled Bedrock Core Sample		

Sample	Depth	Length	Diameter	Weight	Load	Area	Unit Weight	Compressive Strength		
No.	(ft)	(in)	(in)	(g)	(lbs)	(in ²)	(lbs ft ³)	(tsf)	(psi)	
BSB-058 Run 1	19.1	4.084	2.046	578.3	33060	3.29	164.0	724	10055	
BSB-058 Run 2	29.4	4.090	2.040	595.9	50770	3.27	169.7	1118	15533	
BSB-059 Run 1	20.6	4.104	2.061	585.0	32240	3.34	162.7	696	9664	
BSB-059 Run 2	33.9	4.108	2.056	599.3	35070	3.32	167.3	761	10563	
BSB-060 Run 1	22.3	4.124	2.048	593.9	34890	3.29	166.5	763	10591	
BSB-060 Run 2	32.5	4.127	2.045	594.0	32520	3.28	166.9	713	9901	
BSB-061 Run 1	24.8	4.163	2.047	598.4	21890	3.29	166.3	479	6651	
BSB-061 Run 2	34.1	4.099	2.049	542.1	37930	3.30	152.7	828	11503	
BSB-062 Run 1	21.8	4.089	2.044	587.5	29120	3.28	166.7	639	8874	
BSB-062 Run 2	31.9	4.083	2.045	577.6	33860	3.28	164.0	742	10309	
BSB-063 Run 1	33.6	4.119	2.048	599.5	33150	3.29	168.2	725	10063	
BSB-063 Run 2	34.4	4.105	2.044	599.3	31590	3.28	169.4	693	9627	
BSB-064 Run 1	18.8	4.059	2.059	586.6	33270	3.33	165.3	719	9992	
BSB-064 Run 2	28.6	4.088	2.057	605.2	44620	3.32	169.6	967	13427	
BSB-065 Run 1	19.8	4.081	2.048	579.9	14410	3.29	164.2	315	4374	
BSB-065 Run 2	29.1	4.084	2.043	588.1	30730	3.28	167.3	675	9374	

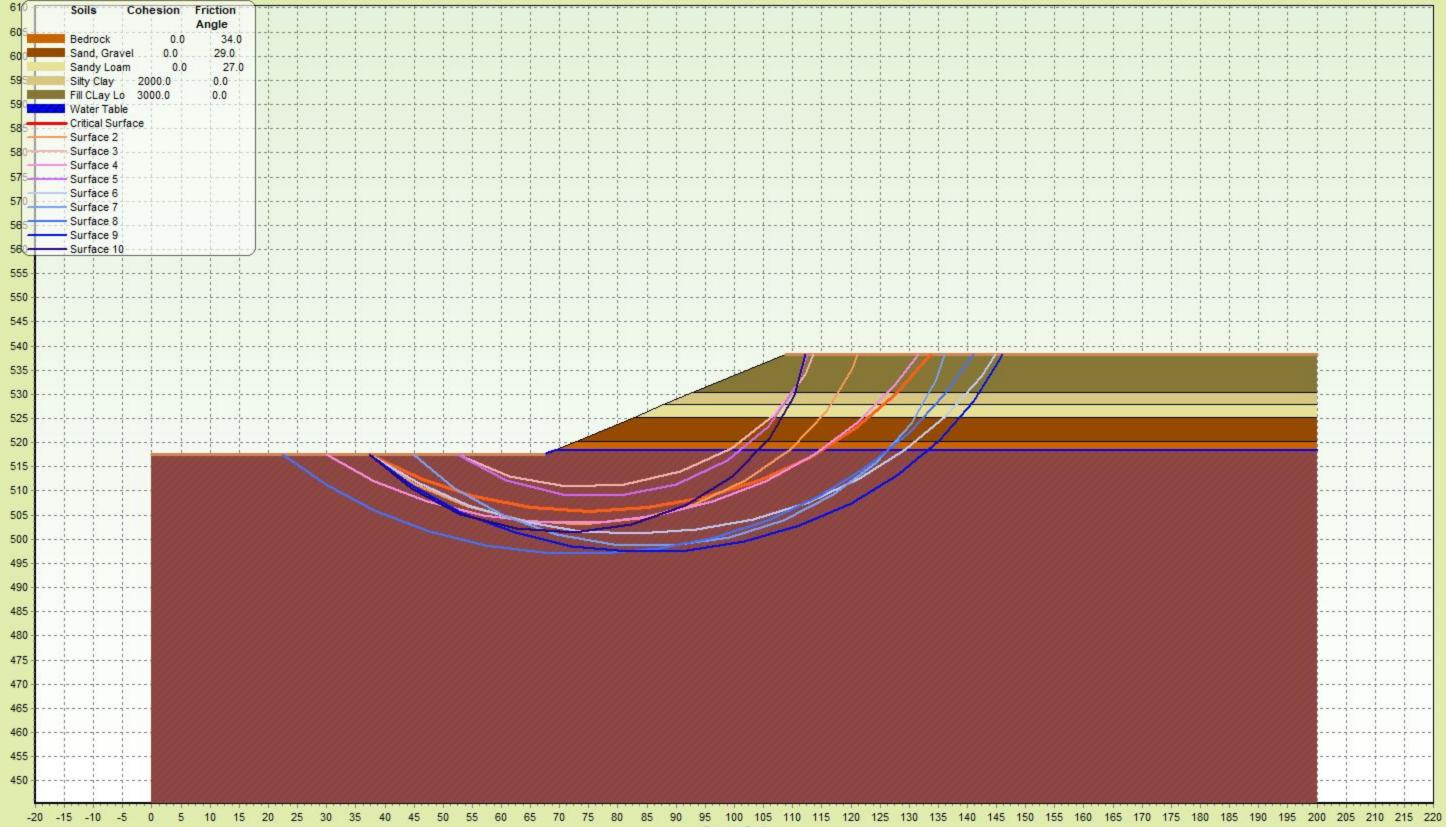

<u>APPENDIX</u> F SLOPE STABILITY OUTPUT (STABL)

Problem: 20012 Richard St Bridge_BSB-058_Drained - FS Min- Bishop = 1.691

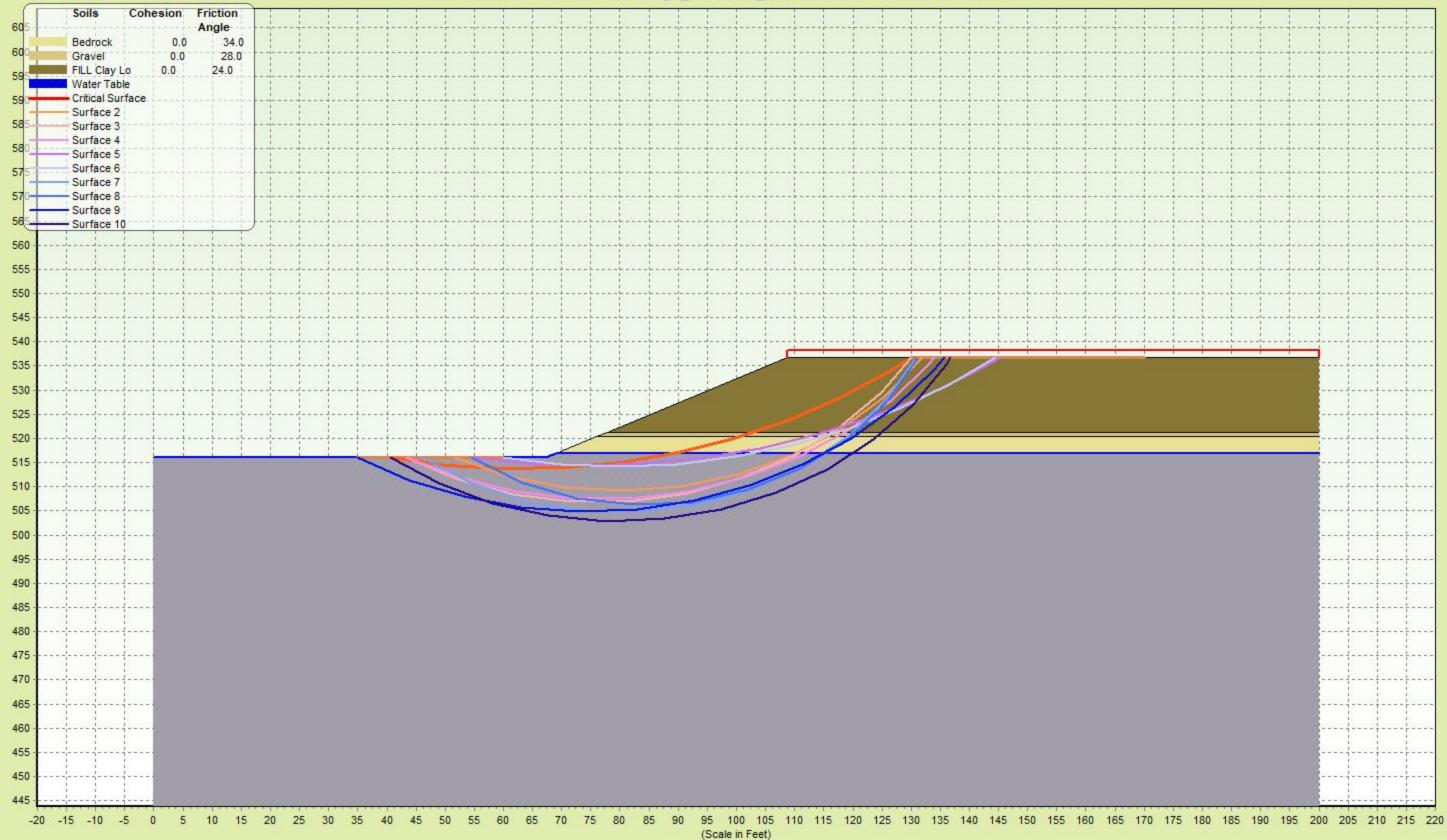


(Scale in Feet)

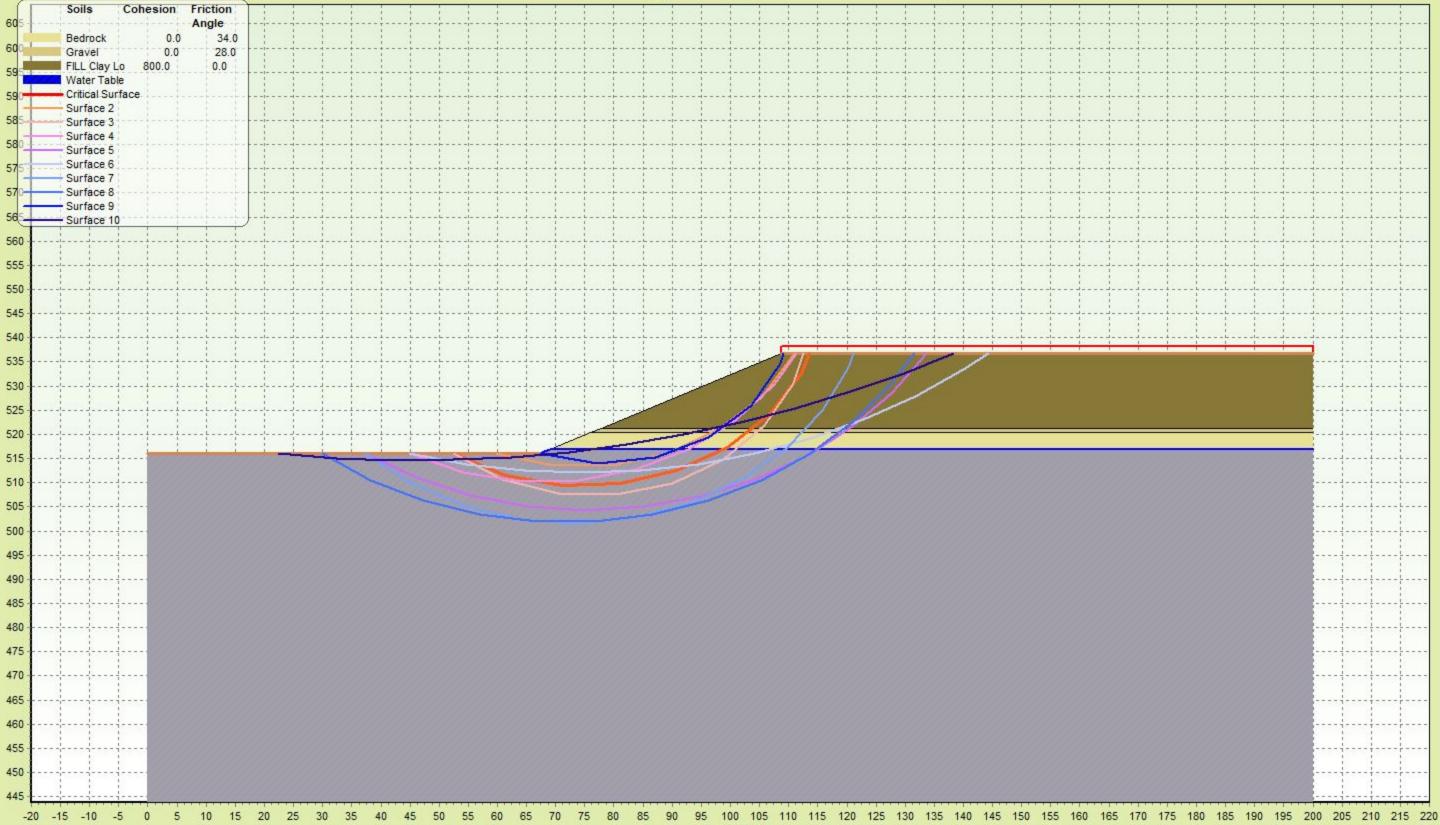
Problem: 20012 Richard St Bridge_BSB-058_Undrained - FS Min- Bishop = 2.727

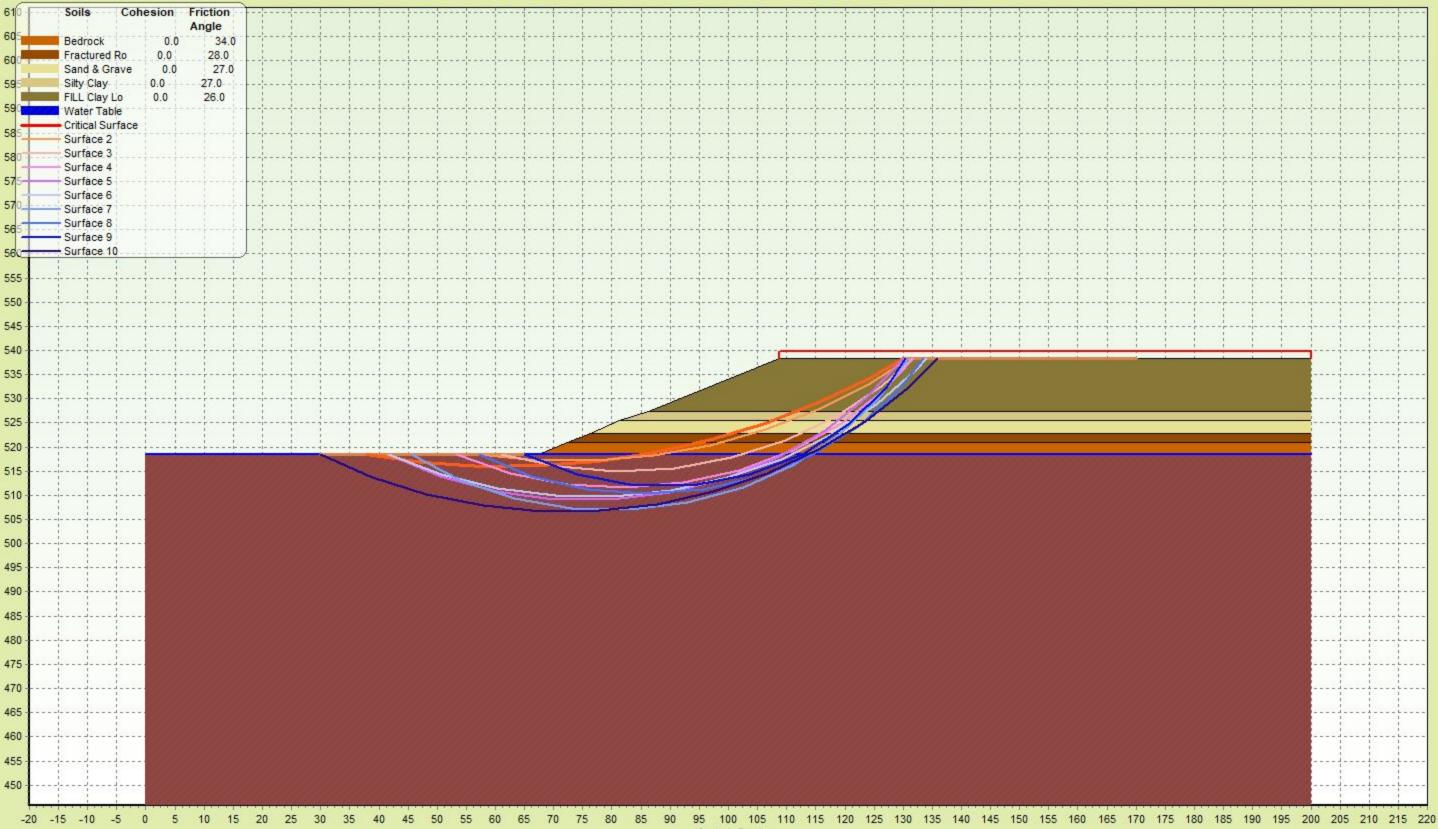


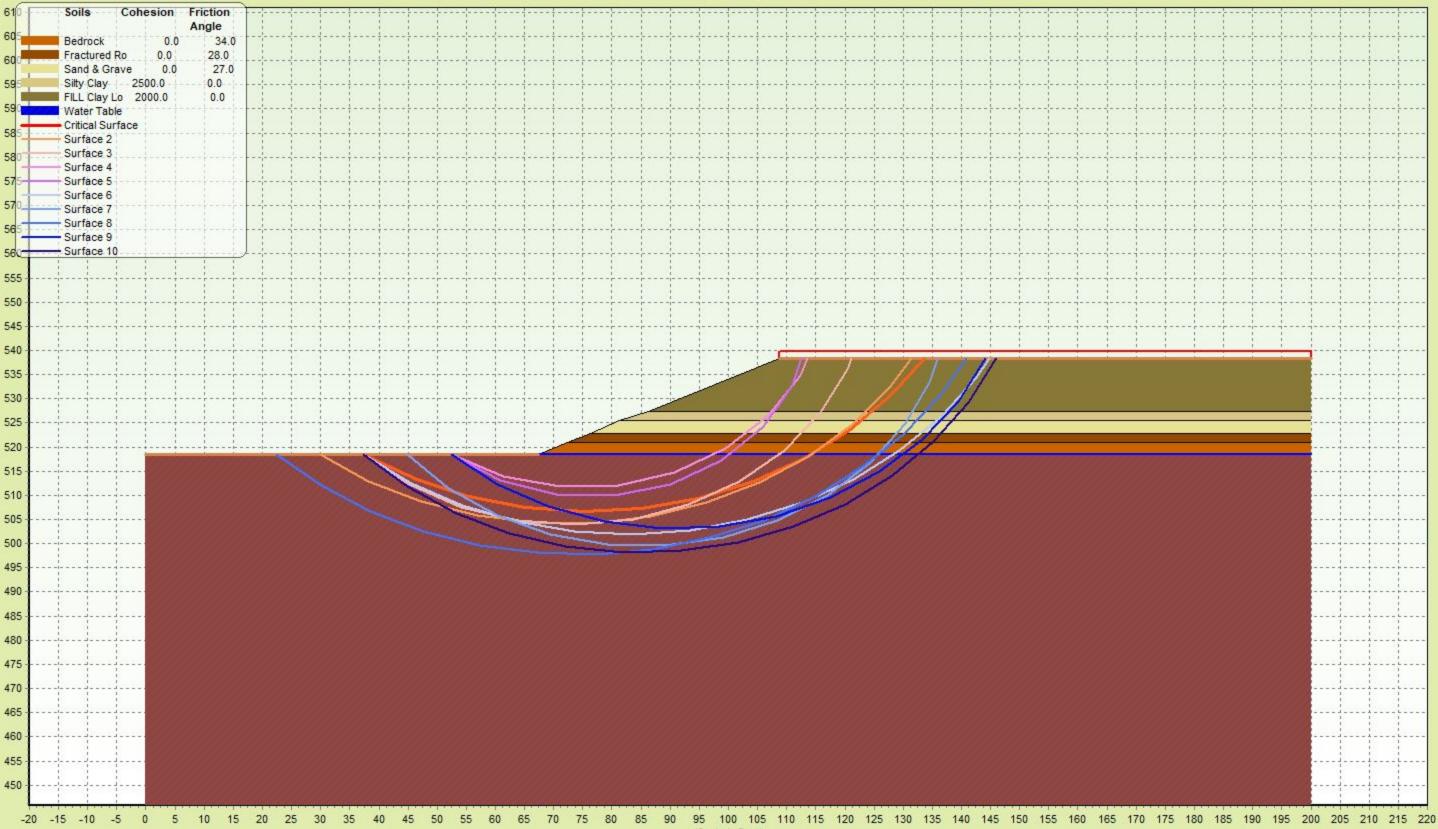
Problem: 20012 Richard St Bridge_BSB-059_Drained - FS Min- Bishop = 1.555



(Scale in Feet)

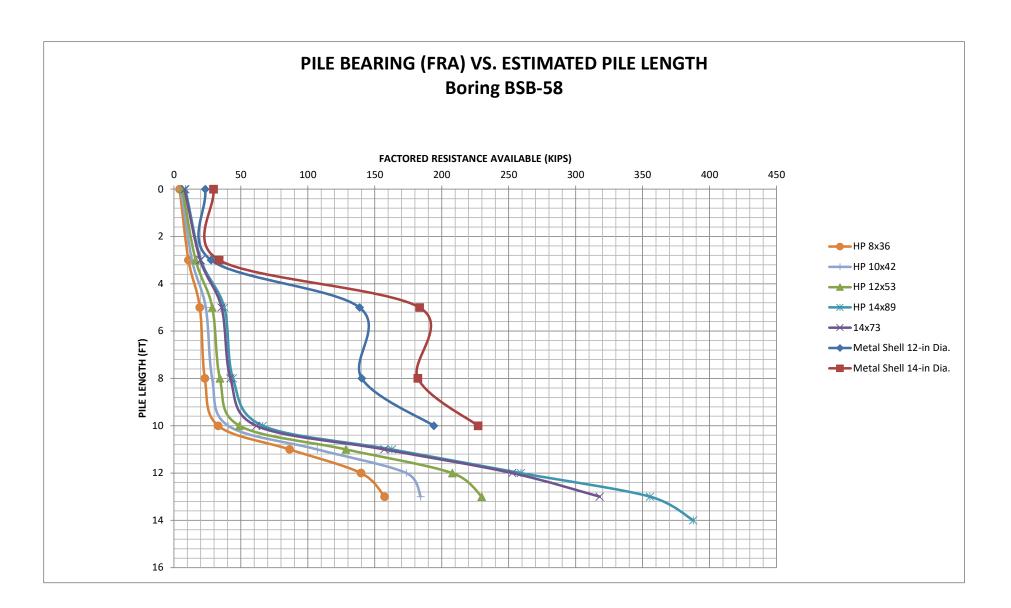

Problem: 20012 Richard St Bridge_BSB-059_Undrained - FS Min- Bishop = 3.114

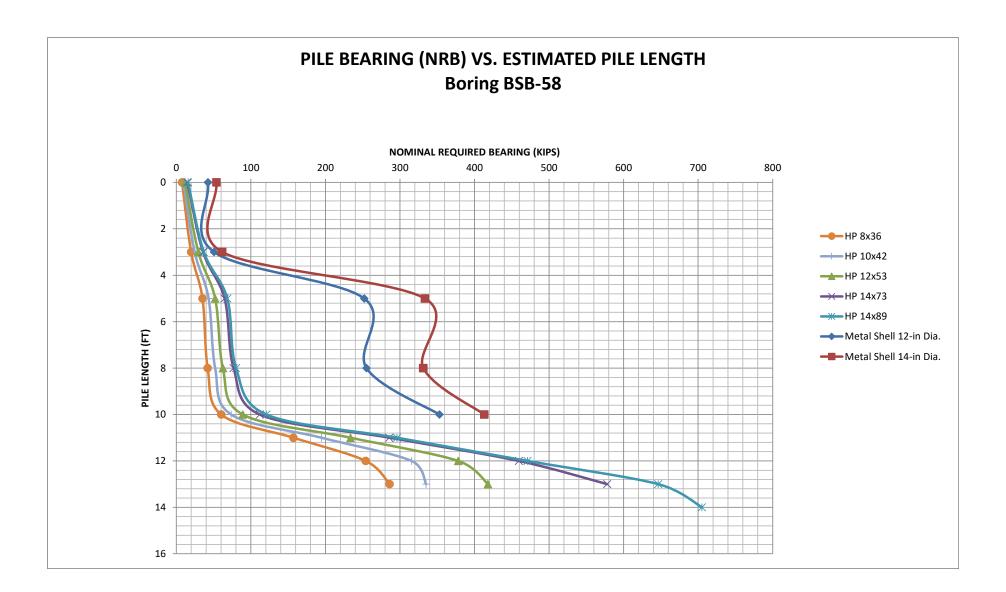

Problem: 20012 Richard St Bridge_BSB-064_Drained - FS Min- Bishop = 1.633


Problem: 20012 Richard St Bridge_BSB-064_Undrained - FS Min- Bishop = 2.127

Problem: 20012 Richard St Bridge_BSB-065_Drained - FS Min- Bishop = 1.742

Problem: 20012 Richard St Bridge_BSB-065_Undrained - FS Min- Bishop = 2.892

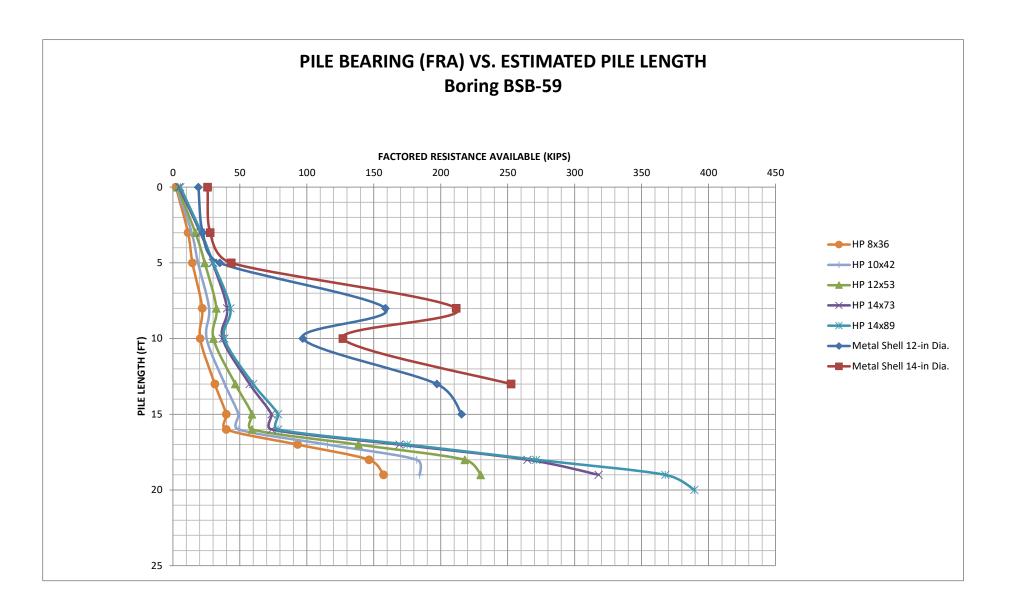

<u>APPENDIX G</u> PILE ANALYSIS TABLES & GRAPHS

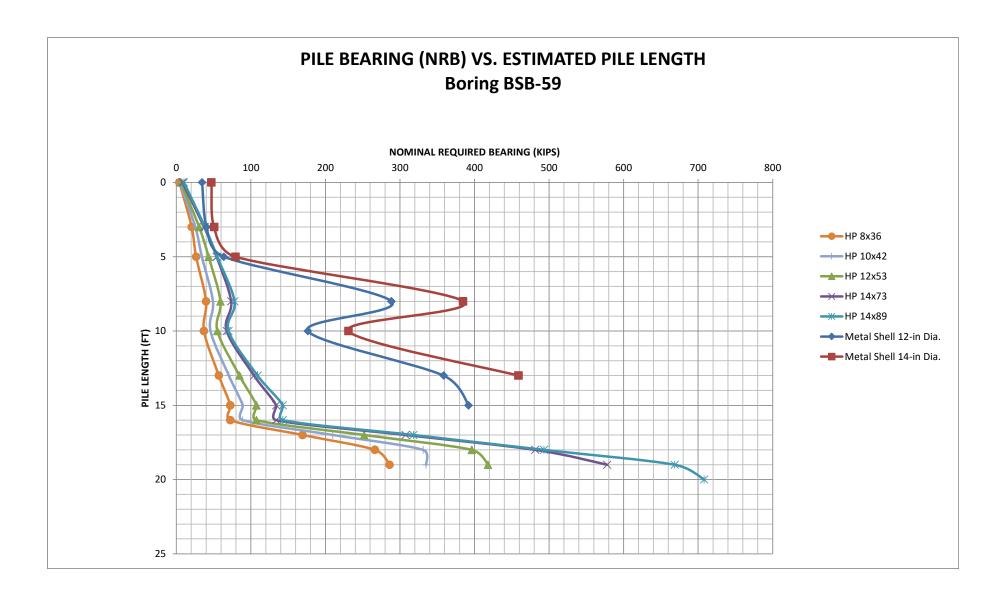


	Boring BSB-58 (Ground Surface Elevation against Pile during driving = 536.4, Pile Cutoff Elevation = 531.4)													
	HP 8x36 HP 10x42		x42	HP 12x53		HP 14x73		HP 14x89		Metal She	ell 12" ¹	Metal She	ell 14" ²	
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)
0	4	8	5	9	6	11	8	14	9	16	23	43	30	54
3	11	20	14	25	16	29	20	36	20	37	28	50	34	61
5	19	35	24	43	29	52	36	65	38	68	139	252	183	334
8	23	42	29	52	34	62	42	77	44	80	140	255	182	331
10	33	60	40	74	49	89	62	112	66	121	194	353	227	413
11	86	157	107	195	128	234	157	286	163	296				
12	140	254	174	316	208	378	253	459	259	471				
13	157	286	184	335	230	418	318	578	356	646				
14									388	705				
1 Matel Chall Dila														

1 Metal Shell Pile 12" diameter with 0.25" walls

² Metal Shell Pile 14" diameter with 0.250" walls

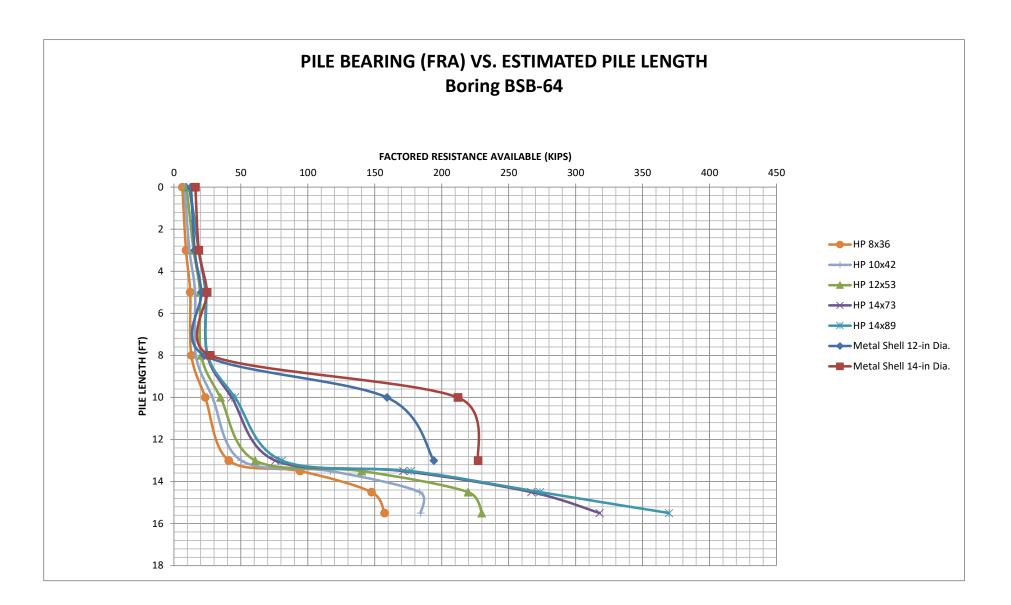


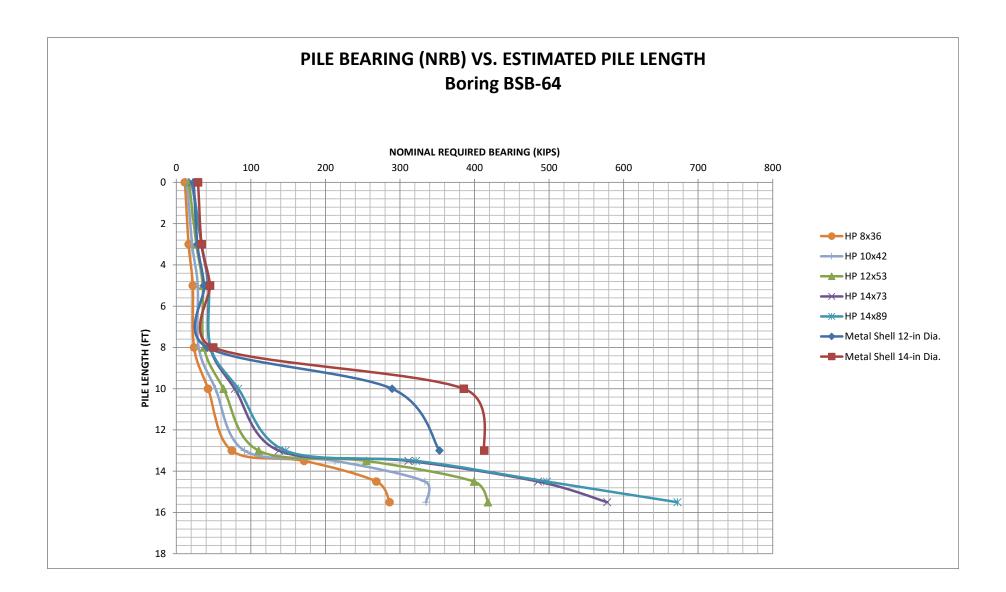


	Boring BSB-53 (Ground Surface Elevation against Pile during driving = 538.3, Pile Cutoff Elevation = 533.3)													
	HP 8	x36	HP 102	x42	HP 12x53		HP 14x73		HP 14x89		Metal Shell 12" ¹		Metal Shell 14" ²	
	Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)		NRB (Kips)		Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)
0	2	4	3	5	3	6	5	8	6	10	19	34	26	47
3	11	21	14	25	17	31	20	37	21	38	22	41	28	51
5	15	27	19	34	24	43	30	54	30	55	35	64	44	79
8	22	40	27	49	33	59	40	73	43	78	159	289	212	385
10	20	37	25	46	30	55	37	67	39	70	97	176	127	231
13	31	57	39	70	47	85	57	104	60	109	197	359	252	459
15	40	72	49	89	59	107	74	134	79	143	216	392		
16	40	72	49	89	59	107	74	134	79	143				
17	93	169	115	210	139	252	169	308	175	318				
18	146	266	182	331	218	396	265	481	271	493				
19	157	286	184	335	230	418	318	578	368	669				
20									389	708				

1 Metal Shell Pile 12" diameter with 0.25" walls

² Metal Shell Pile 14" diameter with 0.250" walls

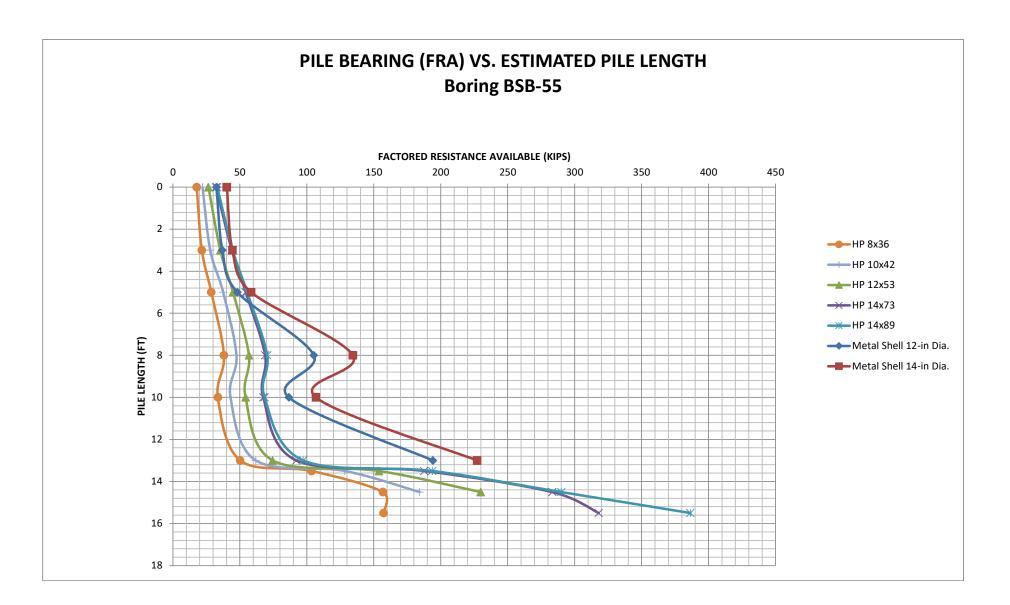


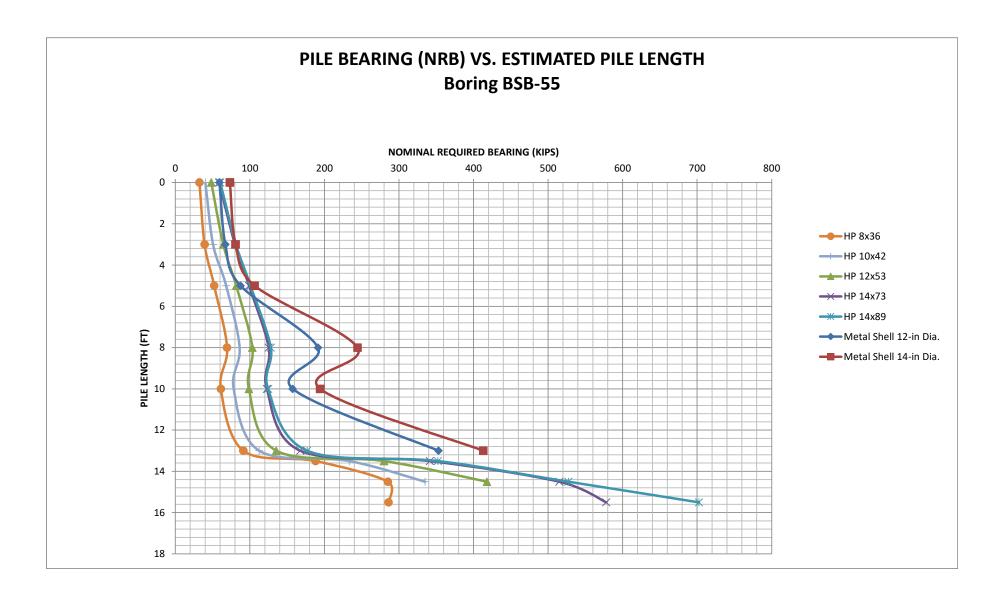


	Boring BSB-64 (Ground Surface Elevation against Pile during driving = 536.8, Pile Cutoff Elevation = 531.8)													
	HP 8x36		HP 10	HP 10x42		HP 12x53		HP 14x73		HP 14x89		ell 12" ¹	Metal Shell 14" ²	
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)
0	6	11	8	14	9	17	11	21	12	22	13	23	16	29
3	9	16	12	21	15	27	18	34	19	34	16	28	19	34
5	12	22	16	29	19	35	24	43	24	44	21	37	25	45
8	13	24	16	30	20	37	25	45	25	46	23	42	27	49
10	23	43	29	52	35	63	43	78	46	83	159	289	212	386
13	41	74	50	92	61	110	76	138	81	147	194	353	227	413
14	94	171	117	213	140	255	171	311	177	322				
15 16	148 157	268 286	183 184	334 335	220 230	399 418	267 318	485 578	273 370	497 672				
16	157	286	184	335	230	418	318	578	370	705				
									566	705				
		-				-				-				

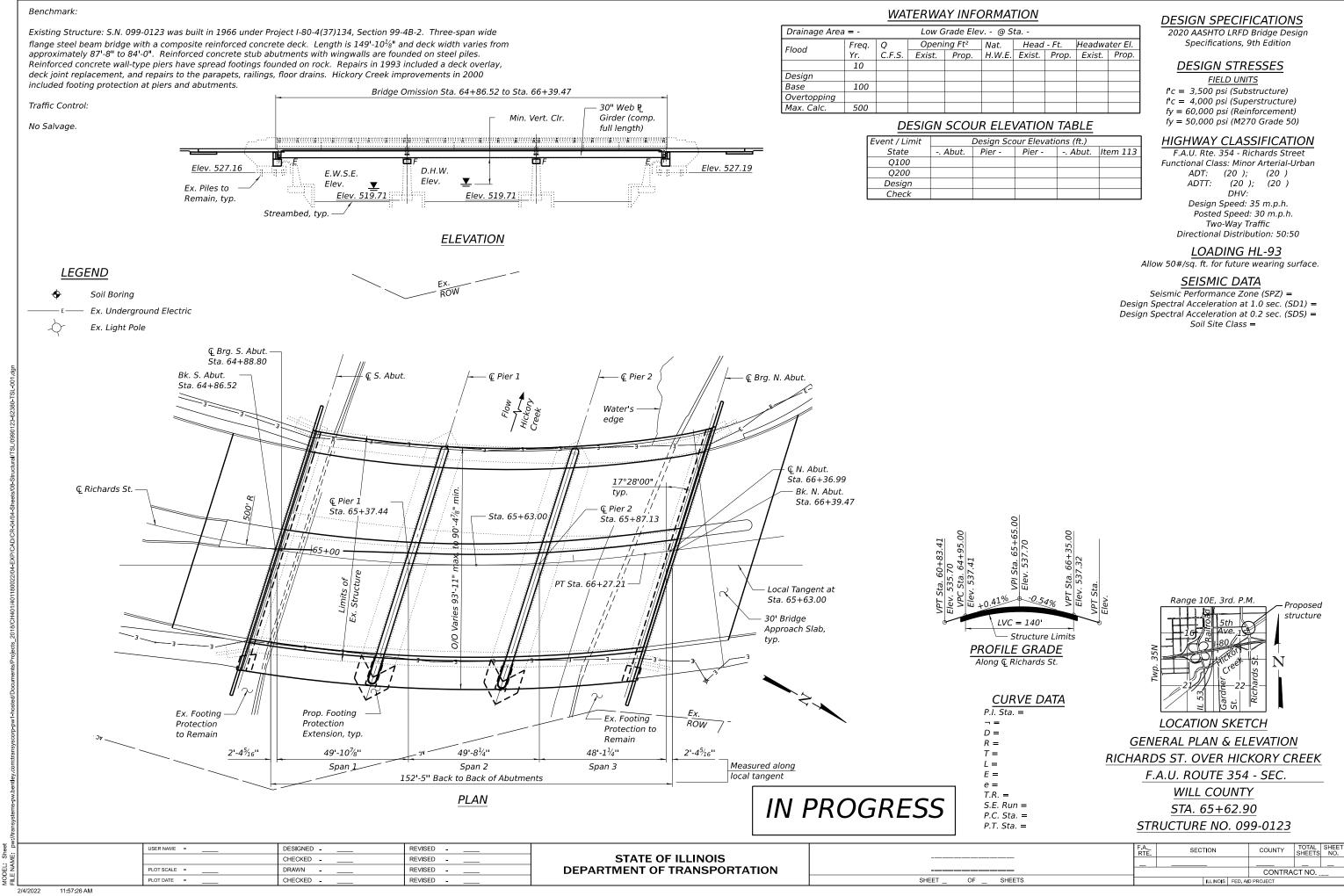
1 Metal Shell Pile 12" diameter with 0.25" walls

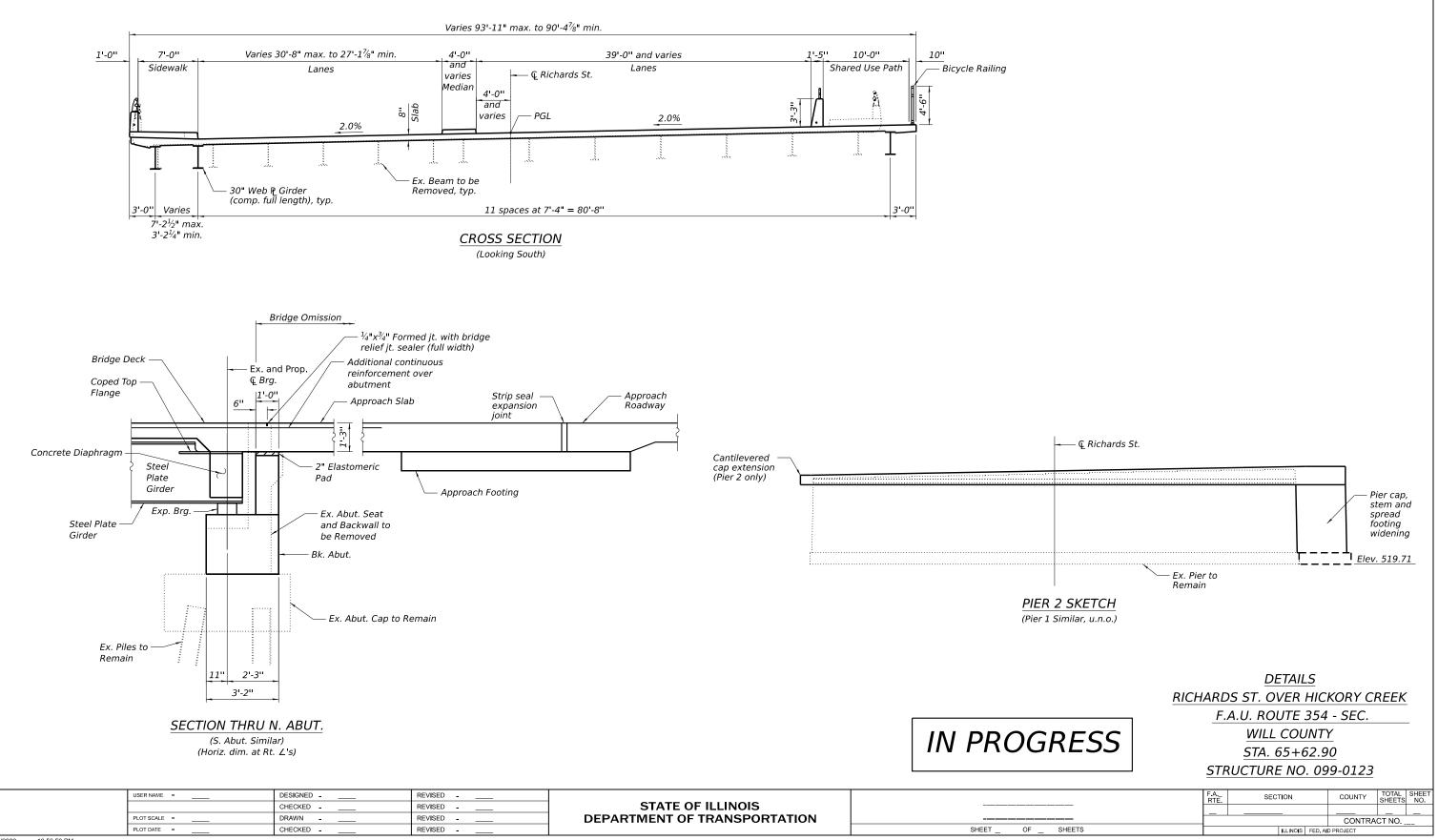
² Metal Shell Pile 14" diameter with 0.250" walls





	Boring BSB-65 (Ground Surface Elevation against Pile during driving = 538.4, Pile Cutoff Elevation = 533.4)														
	HP 8x36		HP 102	HP 10x42		HP 12x53		HP 14x73		HP 14x89		Metal Shell 12" ¹		Metal Shell 14" ²	
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	NRB (Kips)		Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	
0	18	32	22	40	26	48	32	59	33	60	33	59	40	73	
3	22	39	28	51	35	64	44	80	45	81	37	67	44	81	
5	29	52	37	68	45	82	54	99	55	101	48	88	58	106	
8	38	69	47	86	57	103	69	125	70	128	105	191	134	244	
10	34	61	43	78	54	99	68	123	68	124	87	157	107	194	
13	50	91	62	112	74	135	92	168	97	177	194	353	227	413	
14	103	188	128	233	154	280	188	341	194	352					
15	157	285	184	335	230	418	283	515	290	527					
16	157	286					318	578	386	703					
									388	705					
								 							
								1							
								1							


1 Metal Shell Pile 12" diameter with 0.25" walls $^{\rm 2}$ Metal Shell Pile 14" diameter with 0.250" walls


APPENDIX H

PROGRESS SET DRAWINGS

- @ Sta									
Nat.	Head	- Ft.	Headwater El.						
H.W.E.	Exist.	Prop.	Exist.	Prop.					

ign Scour Elevations (ft.)										
ier -	Pier -	Abut.	Item 113							

2/4/2022 12:56:59 PM

FILE NO