43-45

INDEX	0F	SHEETS

1	COVER SHEET
2-3	SUMMARY OF QUANTITIES
4	GENERAL NOTES
5-6	TYPICAL SECTIONS
7	BUTT-JOINT DETAILS
8-9	SCHEDULE OF QUANTITIES
10-11	HORIZONTAL & VERTICAL CONTROL
12-13	ROADWAY PLAN SHEETS
14-17	STAGING DETAILS
18	EROSION CONTROL DETAIL
19-27	BRIDGE PLAN AND DETAILS FOR
	PLUM RIVER (SN # 043-0040)
28-39	BRIDGE PLAN AND DETAILS FOR
	DAVIS CREEK (SN # 043-0042)
40	DELINEATOR AND POST (37.4)
40	WITNESS MARKER FOR PERMANENT
	SURVEY MARKERS TYPE 2 (38.4)
40	INFORMATIONAL WARNING SIGN
	(FOR NARROW TRAVEL LANES) 39.4
40	STOP LINE FOR TEMPORARY SIGNAL (99.4)
41-42	TYPICAL PAVEMENT MARKINGS (41.1)

CROSS SECTIONS

	STATE STANDARDS
001001	AREAS OF REINFORCEMENT REBARS
001006	DECIMAL OF AN INCH AND A FOOT
280001-02	TEMPORARY EROSION CONTROL SYSTEMS
420001-06	PAVEMENT JOINTS
515001-02	NAME PLATE FOR BRIDGES
542401	END SECTION, METAL, FOR PIPE CULVERT
630001-0 5	STEEL PLATE BEAM GUARDRAIL
630301-03	SHOULDER WIDENING FOR TYPE 1 (SPECIAL) GUARDRAIL TERMINAL
631032-01	TRAFFIC BARRIER TERMINAL, TYPE 6A
635001	DELINEATORS
635006=02	REFLECTOR AND TERMINAL MARKER REPLACEMENT
635011-01	REFLECTOR MARKER AND MOUNTING DETAILS
667101	PERMANENT SURVEY MARKERS
701006-02	TYPICAL APPLICATION OF TRAFFIC CONTROL DEVICES
701201-02	TYPICAL APPLICATION OF TRAFFIC CONTROL DEVICES
701301-02	TYPICAL APPLICATION OF TRAFFIC CONTROL DEVICES
701311-02	TYPICAL APPLICATION OF TRAFFIC CONTROL DEVICES
	TYPICAL APPLICATION OF TRAFFIC CONTROL DEVICES
701326-02	TYPICAL APPLICATION OF TRAFFIC CONTROL DEVICES
702001-0 5	TRAFFIC CONTROL DEVICES
704001-02	TEMPORARY CONCRETE
720011	METAL POSTS FOR SIGNS, MARKERS & DELINEATORS
780001-01	TYPICAL PAVEMENT MARKINGS
781001-02	TYPICAL APPLICATIONS RAISED REFLECTIVE PAVEMENT MARKERS
886001	DETECTOR LOOP INSTALLATIONS

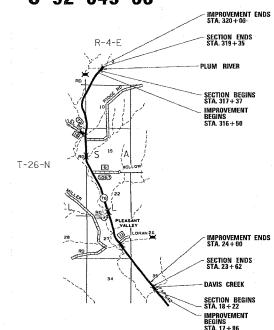
FULL SIZE PLANS HAVE BEEN PREPARED USING STANDARD ENGINEERING SCALES. REDUCED SIZED PLANS WILL NOT CONFORM TO STANDARD SCALES. IN MAKING MEASUREMENTS ON REDUCED PLANS, THE ABOVE SCALES MAY BE USED.

TYPICAL LAYOUT FOR DETECTION LOOPS

JOINT UTILITY LOCATION INFORMATION FOR EXCAVATION 1-800-892-0123

JODAVIESS COUNTY
PLEASANT VALLEY TOWNSHIP, SECTION 3 & 35, T. 26-N. & R-4-E.

CONTRACT NO. 64B27


STATE OF ILLINOIS

DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAYS

PROPOSED HIGHWAY PLANS


FAP ROUTE 642 (IL 78) SECTION (10BR-3)D & 11BR-8 **PROJECT JODAVIESS COUNTY** C-92-045-06

-DAVIS CREEK (SN#043-0042) INCLUDES THE REMOVAL AND REPLACEMENT OF SUPERSTRUCTURE ON BRIDGE CARRYING IL 78 OVER DAVIS CREEK WITH GUARDRAIL UP

-PLUM RIVER (SN# 043-0040) WILL INCLUDE ONLY A NEW CONCRETE DECK OVERLAY

GROSS LENGTH OF SECTION = 738 FEET = .014 MILES **NET LENGTH OF SECTION =** 738 FEET = .014 MILES

SECTION 11BR-8

D-92-090-05

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

PRINTED BY THE AUTHORITY OF THE STATE OF ILLINOIS

SECTION COUNTY TOTAL SHEE SHEETS NO.

 RTE.
 SECTION
 COUNTY
 SHEETS
 NG.

 642
 (10BR-3)D
 JODAVIESS
 45
 2

 STA.
 11BR-8
 TO STA.

SUMMARY OF QUANTITIES

						XIOO STATE	
CODE NUMBER	PAY ITEM	UNIT	TOTAL QUANTITY	X080-2A 100% STATE	SFTY-3N	SFTY-2A EXIST. SN# 043-0040	
20200600	EXCAVATING & GRADING EXISTING SHOULDERS	TINU	1	1			
20400800	FURNSHED EXCAVATION	CU YD .	75	75			
25100630	EROSION CONTROL BLANKET	SQ YD	1114	1114		***************************************	
28000250	TEMPORARY EROSION CONTROL SEEDING	DOUND	150	150			
28000400	PERIMETER EROSION BARRIER	FOOT	950	950			
X4066765	LEVELING BINDER (MACHINE METHOD) SUPERPANE N50	TON	114	114			
44000007	BITUMINOUS CONCRETE SURFACE REMOVAL 2"	SQ YD	282	158		124	
44001205	BITUMINOUS CONCRETE SURFACE REMOVAL COMPLETE	SQ YD	555			555	
48101200	AGGREGATE SHOULDERS, TYPE B	TON	190	190			
48200300	BITUMINOUS SHOULDERS 5"	SO YD	366	366			
50101500	REMOVAL OF EXISTING SUPERSTRUCTURES	EACH	1	1			
50102400	CONCRETE REMOVAL	CU YD	20.7	12.6		8.1	
50300100	FLOOR DRAINS	EACH	8.0			8.0	
50300225	CONCRETE STRUCTURES	CU YD	11.7	5.4		6.3	
50300255	CONCRETE SUPERSTRUCTURE	. CU YD	2.7			2.7	
50300260	BRIDGE DECK GROOVING	SQ YD	924	409		515	
50300300	PROTECTIVE COAT	SO YD	1013	447		566	
50300530	FLOOR DRAIN EXTENSION	EACH	8 .			8	
50301250	FORMED CONCRETE REPAIR (DEPTH GREATER THAN 5")	SQ FT	21			21	
50400305	PRECAST PRESTRESSED CONCRETE DECK BEAMS (17" DEPTH)	SQ. FT.	3852	3852			
50800205	REINFOREMENT BARS, EPOXY COATED	POUND	14530	6400		8130	
50901005	STEEL BRIDGE RAIL, TYPE SM	FOOT	214	214			
51500100	NAME PLATES	EACH	1	1			
542D0220	PIPE CULVERTS, CLASSD, TYPE 1 15"	FOOT	50	50			
54213450	END SECTIONS 15"	EACH	1	1			
63000005	STEEL PLATE BEAM GUARDRAIL, TYPE B	FOOT	402	402			
63100087	TRAFFIC BARRIER TERMINAL , TYPE 6A	EACH	4	4			

* SPECIALTY ITEMS

REVISIO	NS	THEIMOTO	DEDARTMENT	^_	TRANSPORTATION
NAME	DATE	ILLINO12	DEPARTMENT	UF	TRANSPORTATION
		VERT.			
		SCALE: HORIZ.			DRAWN BY
		DATE			CHECKED BY

Pt.01 DATE = Fri Dec 38 00:22:44 2005 FILE NAME = c:\projects\p209005\d0905cvr.dgn Pt.01 SCALE = 50.0000 '/ IN.

F.A.P. SECTION COUNTY S FED. ROAD DIST. NO. ILLINOIS FED. AID PROJECT

SUMMARY OF QUANTITIES

						100 STATE	
CODE NUMBER	PAY ITEM	UNIT	TOTAL QUANTITY	XO80-2A IOO % STATE	SFTY-3N 100 % STATE	SFTY-2A EXIST. SN# 043-0040	
63100167	TRAFFIC BARRIER TERMINAL TYPE 1, SPECIAL (TANCENT)	EACH	4	-1			
63200310	GUARDRAIL REMOVAL	FOOT	717	717			
63500105	DELINEATORS	EACH	4	4			
66700305	PERMANENT SURVEY MARKERS, TYPE II	EACH	2	2			
67000400	ENGINEER'S FIELD OFFICE, TYPE A	CAL MO	3	3			
67100100	MOBILIZATION	'_ SUM	1	1			
70100100	TRAFFIC CONTROL AND PROTECTION STD 701316	EACH	1			1	
70100405	TRAFFIC CONTROL AND PROTECTION STD 701321	EACH	1	1			
70100450	TRAFFIC CONTROL AND PROTECTION STD. 701201	L SUM	1	1			
70100500	TRAFFIC CONTROL AND PROTECTION STD. 701326	L SUM	1			1	
70103815	TRAFFIC CONTROL SURVEILANCE	CAL DA	4	4			
70106500	TEMPORARY BRIDGE TRAFFIC SIGNALS	EACH	2	1		1	
70300200	TEMPORARY PAVEMENT MARKING	FOOT	3965	2313		1652	
70301000	WORK ZONE PAVEMENT MARKING REMOVAL	S0 FT	382	382			
70400100	TEMPORARY CONCRETE BARRIER	FOOT	480	480			
70400200	RELOCATE TEMPORARY CONCRETE BARRIER	FOOT	480	480			
78001110	PAINT PAVEMENT MARKING - LINE 4"	FOOT	3462	2480		982	
78100100	7 PAVEMENT RAISED REFLECTIVE MARKER	EACH	6	6			
78200410	GUARDRAIL MARKERS, TYPE A	EACH	15	15			
78201000	TEMINAL MARKER - DIRECT APPLIED	EACH	4	4			
78300200	RAISED REFLECTIVE PAVEMENT MARKER REMOVAL	EACH	6	6			
X0323557	BRIDGE JOINT SYSTEM (EXPANSION), 1"	FOOT	74.6	6		74.6	
X0323531	BRIDGE JOINT SYSTEM (EXPANSION), 1 BRIDGE JOINT SYSTEM (EXPANSION) 1-5/8"	FOOT	36	36		14.0	
X0323538 X0712400	TEMPORARY PAVEMENT		24	36		24	
		SQ YD TON		104		24	
X4066414	BITUMINOUS CONCRETE SURFACE COARSE, SUPERPAVE, MIX "C", N50		118	104		14	
X5030305	CONCRETE WEARING SURFACE 5"	SQ YD	977.5	429		548.5	
Z000190 0	ASBESTOS BEARING PAD REMOVAL	EACH	72	72			
Z0002600	BAR SPLICERS	EACH	358	197		161	
Z0030250	IMPACT ATTENUATORS, TEMPORARY (NON-REDIRECTIVE), TEST LEVEL 3	EACH	2		2		
Z0030350	IMPACT ATTENUATORS, RELOCATE (NON-REDIRECTIVE), TEST LEVEL 3	EACH	2		2		

ILLINOIS DEPARTMENT OF TRANSPORTATION DRAWN BY

GENERAL NOTES

ROUTE NO.		SEC.	COUNTY	TOTAL	SHEET NO.
FAP 642 (IL 78)	&	BR-3)D 11BR-8	JoDaviess	45	4
FED ROAD DIST. NO.		ILLINOIS	PROJECT		

The Contractor shall seed all disturbed areas within the project limits. Seeding Class 4 or 6 (modified) shall be used, except in front of properties where the grass will be mowed, then use Seeding, Class 1 (modified). Class 6 (modified) shall be used on front slopes and ditch bottoms. Class 4 shall be used on all backslopes and areas behind the backslope. This work will be done at no additional cost to the Department.

Fertilizer shall be applied to all disturbed areas and incorporated into the seedbed prior to seeding or placement of sod at the rate specified in Sections 250 and 252 of the Standard Specifications. This work shall be done at no additional cost to the Department.

Mulch Method II shall be applied over all seeded areas. This work shall be done at no additional cost to the Department.

The following Mixture Requirements are applicable for this project:

Mixture Uses(s):	Mainline Surface Course
PG:	PG 64-22
RAP%: (Max)	10%
Design Air Voids	4.2 @ N50
Mixture Composition	IL 9.5 or 12.5
(Gradation Mixture)	
Friction Aggregate	С
20 Year ESAL	4.3

Install a "TO ACTUATE SIGNAL" sign for the traffic signal detector loops. The detail of this sign is included in the plans. This work will be included in the cost of TRAFFIC CONTROL AND PROTECTION STANDARD 701321.

This structure will retain the same numbers: 043-0040 & 043-0042.

Bituminous Prime Coat shall be placed in accordance with Section 406 of the Standard Specifications. The cost of the Bituminous Prime Coat shall be included in the contract unit price per TON for BITUMINOUS CONCRETE SURFACE COURSE, SUPERPAVE, MIX C, N50.

One 16d galvanized nail shall be used to toe nail the wood block out to the wood post on all Traffic Barrier Terminal Type I Specials and on all existing posts in need of a nail.

Pavement marking shall be done according to Standard 780001, except as follows:

- 1. All words, such as ONLY, shall be 2.4 m (8 feet) high.
- 2. All non-freeway arrows shall be the large size.
- The distance between yellow no-passing lines shall be 200 mm (8"), not 180 mm (7") as shown in the detail of Typical Lane and Edge Lines.

Permanent survey markers, Type II shall be cast-in-place as shown on Highway Standard 667101. A marker shall be placed near each end of the structure in such a location that will take into account satellite and future construction. Location shall be determined by the Engineer.

The Contractor shall submit to the Engineer a description of location, elevation, and coordinates for each permanent survey marker. The Engineer shall submit this information to the Survey Crew.

The Contractor shall be responsible for protecting utility property during construction operations as outlined in Article 107.31 of the Standard Specifications. A minimum of 48 hours advance notice is required for non-emergency work. The JULIE number is 800-892-0123. The following listed utilities located within the project limits or immediately adjacent to the project construction limits are members of JULIE:

Commonwealth Edison Co.

Verizon

Following are the known utilities located within the project limits or immediately adjacent to the project construction limits which are not members of JULIE and should be notified individually by the contractor:

IDOT 819 Depot Ave. Dixon, IL 61021

Due to environmental concerns, the following shall be strictly adhered to:

- 1. All work shall be performed from the existing decks and no work shall take place below the existing structure on the ground.
- No fill shall be placed in or around Plum River or Davis Creek.

The final top 100 mm (four inches) of soil in any right-of-way area disturbed by the Contractor must be capable of supporting vegetation. The soil must be from the A horizon (zero to 2' deep) of soil profiles of local soils.

The proposed pipes for entrances and side roads shall be placed in line with the existing or proposed ditch line.

The Contractor shall supply the Resident Engineer with the manufacturer's installation requirements for the type of Steel Plate Beam Guardrail Terminal Type 1 Special (Tangent) or Steel Plate Beam Guardrail Terminal Type I Special (Flared).

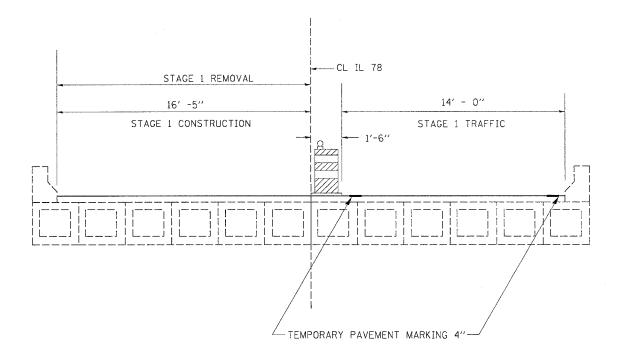
Delineators shall be installed as shown in Standard 635001, except that the post shall be rotated 180° and only metal-backed delineators shall be permitted.

Delineators shall be placed at the ends of approach guardrail terminal sections, and at each headwall or end section of AR Culverts. This work will be paid for at the contract unit price each for DELINEATORS.

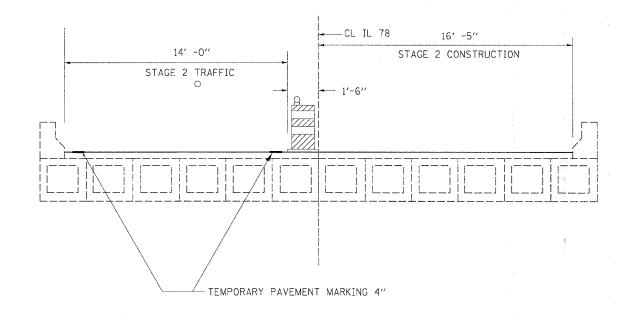
CADD data will be available to Contractors and Consultants working on this project. This information will be provided upon request as MicroStation CADD files and Geopak coordinate geometry files ONLY. If data is required in other formats it will be your responsibility to make these conversions. If any discrepancy or inconsistency arises between the electronic data and the information on the hard copy, the information on the hard copy should be used. Contact the District's Project Engineer to request these files.

Program #5 (A) A. Size) large 200% Enlarge 107%

CONTRACT NO. 64827


F.A.P.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
642	•	JODAVIESS	45	5
STA.		TO STA.		

FED. ROAD DIST. NO. ILLINOIS FED. AID PROJECT


* (10BR-3)D & 11BR-8

TYPICAL SECTION (SN 043-0040) PLUM RIVER

STAGE 1

STAGE 2

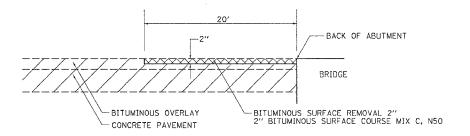
REVISIONS		ZIONTILI	DEPARTMENT	OF.	TRANSPORTATION
NAME	DATE	ILLINOIS	DEI ARTIMENT	01	THANSI ONTATION
		VEDT			
		SCALE: VERT.	j.		DRAWN BY
		DATE			CHECKED BY

: = Fr; Dec 30 09:02:41 2005 = c:\projects\p209065\d0905typ.dgn

FILE NAME = ct/pr
FILE NAME = ct/pr
PLOT SCALE = 20.00

F.A.P. SECTION TO STA. FED. ROAD DIST. NO. ILLINOIS FED. AID PROJECT TYPICAL SECTION (SN 043-0042) DAVIS GREEK STAGE 1 18 + 12.93 - 23 + 62.40CL IL 78 33′ 33′ 13' & VAR 3' & VAR-1' & VAR -STAGE 2 18 + 12.93 - 23 + 62.40-BITUMINOUS SHOULDER 5 INCH -EXCAVATING AND GRADING EXISTING SHOULDER 6" AGGREGATE SHOULDER, TYPE B ---- CL IL 78 -EXISTING PAVEMENT STEEL PLATE BEAM GUARDRAIL ∠ TEMPORARY CONCRETE BARRIER BITUMINOUS SHOULDER 5 INCH EXCAVATING AND GRADING EXISTING SHOULDER-4′ & VAR→ 1 1/2" AND VAR. LEVELING BINDER 3' & VAR--(MACHINE METHOD) MIX C, TYPE 1 1' & VAR_ 1 1/2" BITUMINOUS CONCRETE SURFACE COARSE, SUPERPAVE, MIX C, N50 TEMPORARY CONCRETE BARRIER-EXISTING PAVEMENT 1 1/2" AND VAR. LEVELING BINDER (MACHINE METHOD) MIX C, TYPE 1 1 1/2" BITUMINOUS CONCRETE SURFACE COARSE, SUPERPAVE, MIX C, N50-ILLINOIS DEPARTMENT OF TRANSPORTATION 6" AGGREGATE SHOULDER, TYPE B-STEEL PLATE BEAM GUARDRAIL-SCALE: VERT. HORIZ.

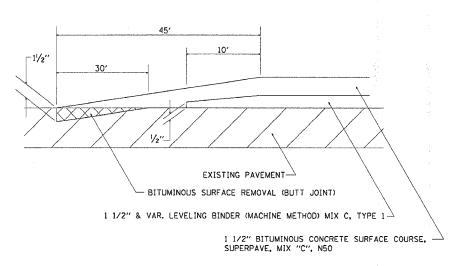
BUTT JOINT


CONTRACT NO. 64B27 SECTION JODAVIESS 45 TO STA. FED. ROAD DIST. NO. ILLINOIS FED. AID PROJECT

* (10BR-3)D & 11BR-8

PLUM RIVER

(SN # 043-0040)


BITUMINOUS SURFACE REMOVAL - 2"

DAVIS CREEK

(SN # 043-0042) STA. 18 + 12.93 - STA 18 + 42.93 & STA 23 + 32.40 - STA. 23 + 62.40

BUTT JOINT

REVISIO		THE INOTS: DE	PARTMENT OF	TRANSPORTATION
NAME	DATE	ILLINOIS DE	TAITINENT OF	THANSI ON TATION
			- 5	ļ
······································		30	1	
		CON E. VERT.		DO 11111 DV
		SCALE: VERT. HORIZ.		DRAWN BY
		DATE		CHECKED BY

SCHEDULE OF QUANTITIES

20200600	EXCAVATING & (GRADING EX	ISI	ING SHOULDE	RS
	1	18+12		23+62	LT & RT
	1	TOTAL		23762	LIXIVI
20400000	_				
20400800	FURNISHED EXC	LOCATION			
				23+62	LT & RT
	75 75		_	23+62	LIARI
05100030	75	TOTAL			
25100630	EROSION CONTR		-		
	SO YD	LOCATION		20 21	IT O DT
	444	18+04		20+21	LT & RT
	670	21+28	_	23+86	LT & RT
	1114	TOTAL			
28000250	TEMPORARY ERC	•	301	-	
	POUND	LOCATION		00.01	. T 4 DT
	70	18+04		20+21	LT & RT
	. 80	21+28	-	23+86	LT & RT
	150	TOTAL			
28000400	PERIMETER ERO		EB		
	EOOI	LOCATION		00.01	
	211	18+12		20+21	LT
	230	18+04		20+21	RT
	275	21+28		23+86	LT
	234	21+27	-	23+62	RT
	950	TOTAL			
40600530	LEVELING BINDE		_M	ETHOD) MIX C	. TYPE 1. N50
	ION	LOCATION			
	53	18+42		20+21	
	61	21+28	-	23+40	
	114	TOTAL			
44000007	BITUMINOUS CO		RF.A	CE REMOVAL	2"
	SO YD	LOCATION			
	79	18+12		18+42	
	80	23+32		23+62	
	61	317+37		317+63	
	62	319+09	~	319+35	
	282	TOTAL			

AGGREGATE S	SHOULDERS. T	YPE B		
ION	LOCATION			
50	18+04	- 20+21	RT	
50	18+51	- 20+21	LT	
45	21+28	~ 22÷90	RT	
45	21+28	- 23+86	LT	
190	TOTAL			
BITUMINOUS	S SHOULDERS	<u>5″</u>		
SO YD	LOCATION			
86	18+12	- 20+06	RT	
97	21+44	- 23+62	RT	
86	18+12	- 20+06	LT	
<u>97</u>	21+44	- 23+62	LT	
366	TOTAL			
	LOCATION			
	18+15	- 18+65	RT	
·				
			RT	
-				
			,	
			= :	
		- 22+25	KI	
_				
			-	
-			IX I	
		I TYPE 1 SP	ECIAL (TANCE	NTI
			LCIAL TIANGL	JV.L.)
1			LT	
1	18+12	- 18+62	RT	
1	23+12	- 23+62		
	22+25	- 22+75	RT	
-				
	TON 50 50 45 45 490 BITUMINOUS SO YD 86 97 86 97 86 97 366 PIPE CUL VER EQOT 50 END SECTION EACH 1 1 STEEL PLATE EQOT 63 126 150 63 402 IRAFFIC BAR EACH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TON LOCATION 50 18+04 50 18+51 45 21+28 45 21+28 190 TOTAL BITUMINOUS SHOULDERS SO YD LOCATION 86 18+12 97 21+44 86 18+12 97 21+44 366 TOTAL PIPE CULVERTS. CLASS D. EOOT LOCATION 50 18+15 50 TOTAL END SECTIONS 15" EACH LOCATION 1 18+65 1 TOTAL STEEL PLATE BEAM GUARDI EOOT LOCATION 63 19+25 126 18+62 150 21+62 402 TOTAL IRAFFIC BARRIER TERMINA EACH LOCATION 1 20+21 1 21+28 1 20+21 1 21+28 4 TOTAL IRAFFIC BARRIER TERMINA EACH LOCATION 1 20+21 1 21+28 4 TOTAL IRAFFIC BARRIER TERMINA EACH LOCATION 1 18+75 1 18+12 1 23+12	50 18+04 - 20+21 50 18+51 - 20+21 45 21+28 - 22+90 45 21+28 - 23+86 190 TOTAL BITUMINOUS SHOULDERS 5'' SO YD LOCATION 86 18+12 - 20+06 97 21+44 - 23+62 86 18+12 - 20+06 97 21+44 - 23+62 366 TOTAL PIPE CULVERTS. CLASS D. TYPE 1 15' EOOT LOCATION 50 18+15 - 18+65 50 TOTAL END SECTIONS 15'' EACH LOCATION 1 18+65 1 TOTAL STEEL PLATE BEAM GUARDRAIL, TYPE B EOOT LOCATION 63 19+25 - 19+88 150 21+62 - 23+12 63 21+62 - 22+25 402 TOTAL IRAFFIC BARRIER TERMINAL, TYPE GA EACH LOCATION 1 20+21 1 21+28 1 20+21 1 21+28 4 TOTAL IRAFFIC BARRIER TERMINAL TYPE 1, SP. EACH LOCATION 1 18+75 - 19+25 1 18+12 - 18+62 1 18+75 - 19+25 1 18+12 - 18+62 1 23+12 - 23+62	TON LOCATION 50 18+04 - 20+21 RT 50 18+51 - 20+21 LT 45 21+28 - 22+90 RT 45 21+28 - 23+86 LT 190 TOTAL BITUMINOUS SHOULDERS 5." SO YD LOCATION 86 18+12 - 20+06 RT 97 21+44 - 23+62 RT 86 18+12 - 20+06 LT 97 21+44 - 23+62 LT 366 TOTAL PIPE CULVERTS, CLASS D. TYPE 1 15." EOOT LOCATION 50 18+15 - 18+65 RT 50 TOTAL END SECTIONS 15." EACH LOCATION 1 18+65 RT 1 TOTAL STEEL PLATE BEAM GUARDRAIL, TYPE B EOOT LOCATION 63 19+25 - 19+88 RT 150 21+62 - 23+12 LT 63 21+62 - 22+25 RT 402 TOTAL TRAFFIC BARRIER TERMINAL, TYPE GA EACH LOCATION 1 20+21 LT 1 20+21 LT 1 20+21 RT 1 21+28 RT 1 TOTAL TRAFFIC BARRIER TERMINAL TYPE 1, SPECIAL (TANGE) EACH LOCATION 1 18+75 - 19+25 LT 1 18+12 - 18+62 RT 1 18+12 - 18+62 RT 1 18+12 - 18+62 RT

REVISIONS		THE TWO IS	DEPARTMENT	OE	TRANSPORTATION
NAME	DATE	10013	DEI MINIMEINI	O.	TRANSFORTATION

		:			
		SCALE: VERT.	Y		DRAWN BY
		HURIZ.			
 		DATE			CHECKED BY

FED. ROAD DIST. NO. | ILLINOIS | FED. AID PROJECT

SCHEDULE OF QUANTITIES

			
63200310	GUARDRAIL RE		
	FOOT	LOCATION	
	148	18+73 - 20+21	LT
	211	21+28 - 23+39	LT
	210	18+11 - 20+21	RT
	148	21+28 - 22+76	RT
	717	TOTAL	
63500105	DELINEATORS		
	EACH	LOCATION	
	1	18+75	LT
	1	18+12	RT
	1	23+62	LT
	1	22+75	RT
	4	TOTAL	
70300200	TEMPORARY P	AVEMENT MARKING	
. 0000200	EOOT	LOCATION	
	638	16+62 - 23+00	YELLOW STAGE 1
	511	17+89 - 23+00	WHITE STAGE 1
	638	16+62 - 23+00	YELLOW STAGE 2
	526	17+74 - 23+00	WHITE STAGE 2
	413	315+87 - 320+00	YELLOW STAGE 1
	413		
	413	315+87 - 320+00	YELLOW STAGE 2
	413	315+87 ~ 320+00	WHITE STAGE 2
	3965	TOTAL	
70301000		AVEMENT MARKING REMOVAL	-
	SO FI	LOCATION	
	16	18+14 - 18+88	STAGE 1 CL
	171	18+14 - 23+34	STAGE 1 WHITE RT
	24	22+62 - 23+34	STAGE 1 CL
	171	18+14 - 23+34	STAGE 2 WHITE LT
	382	TOTAL	
70400100	TEMPORARY C	CONCRETE BARRIER	
	EOOI	LOCATION	
	480	18+35 - 23+14	
	480	TOTAL	
70400200	RELOCATE TE	MPORARY CONCRETE BARRI	ER
	EQQI	LOCATION	
	480	18+35 - 23+14	
	480	TOTAL	
78001110	PAINT PAVEM	ENT MARKING LINE 4"	
	FOOT	LOCATION	
	1100	18+12 - 23+62	WHITE EDGELINES - 2 COATS
	1100	18+12 - 23+62	WHITE EDGELINES - 2 COATS
	280	18+12 - 23+62	SKIP DASH YELLOW - 2 COATS
	436	317+27 - 319+45	WHITE EDGELINES - 2 COATS
	436	317+27 - 319+45	WHITE EDGELINES - 2 COATS
	110	317+27 - 319+45	SKIP DASH YELLOW - 2 COATS
	3462	TOTAL	

78100100	RAISED REFL	ECTIVE MARK	ER			
	EACH	LOCATION	J			
	6	18+12	-	23+62		
	6	TOTAL				
78200410	GUARDRAIL M	IARKERS. TYP	ΕA			
	EACH	LOCATION	الا			
	2	19+25	-	19+88	LT	
	5	18+62	-	19+88	RT ·	
	6	21+62	-	23+12	LT	
	2	21+62	_	22+25	RT	
	15	TOTAL				
78201000	TERMINAL MA	RKER - DIRE	CT.	APPLIED		
	EACH	LOCATION	4			
	1	18+75			LT	
	1	18+12			RT	
	1	23+62			LT ·	
	1	22+75			RT	
	4	TOTAL				
78300200	RAISED REFL	ECTIVE PAVE	MEN	IT MARKER F	REMOVAL	
	EACH	LOCATION				
	6	18+12	_	23+62		
	6	TOTAL				
X0712400	TEMPORARY I	PAVEMENT				
	SQ YD	LOCATION	y			
	10	317+28	-	317+47	RT	
	14	319+33		319+63	RT	
	24	TOTAL				
X4066414	BITUMINOUS	CONCRETE SL	JRE.	ACE COARSE	. SUPERPAVE.	MIX C. N50
	TON	LOCATION	<u>J</u>			
	9	18+12	_	18+42		
	9	23+32	-	23+62		
	40	18+12	-	20+21		
	46	21+28	_	23+32		
	7	317+37	-	317+63		
	7	319+09		319+35		
	118	TOTAL				
Z0030250	IMPACT ATEN	WATORS, TEM	1P0	RARY (NON -	RE-DIRECTIVE	, TEST LEVEL3
	EACH	LOCATION	y.			
	1	18+35			LT	
	1	23+14			LT	4
	2	TOTAL				
Z0030350	IMPACT ATTE	NUATORS. RE	LOC	CATE (NON -	RE-DIRECTIVE	TEST LEVEL 3
	EACH	LOCATION	y			
	1	18+35			RT	
	1	23+14			RT	
	2	TOTAL				

	II I INOIS	DEDADTMENT	ΛE	TRANSPORTATION	
DATE	ILLINOIS	DEF ARTMENT	OF-	TRANSFORTATION	
ļ					
					
	veer				
 	SCALE: HORIZ			DRAWN BY	
	DATE			CHECKED BY	
	DATE	SCALE: YERT.	SCALE: VERT.	SCALE: VERT.	SCALE: VERT. DRAWN BY

		CONTRACT	NU. 64	52 i
F.A.P. RTE,	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
642		JODAVIESS	45	10
STA.		TO STA.		
FFD, ROAD	DIST. NO D.L.	INOIS EED. AID	PROJECT	

* (10BR-3)D & 11BR-8

EXISTING HORIZONTAL AND VERTICAL CONTROL

HORIZONTAL CONTROL POINTS								
POINT	NORTH	EAST	ELEVATION	CHAIN	STATION	OFFSET		DESCRIPTION
1	1997911.6369	2345446.8475	643.3290	EXIL78	842+82.5479	29.6797' LT	108	
10	2071986.5189	2335468.7378	1079.2100	EXIL78	631+74.3047	4339.8801' LT	108	
29	2034703.2863	2331364.7568	695.3960	EXIL78	231+17.5461	201.1847' LT	108	
31	2012576.0958	2342622.4698	861,0480	EXIL78	1006+86.8417	28.2775' LT	108	
90	1975376.4564	2347921.0162	797,4100	EXIL78	647+64.8279	5143.8811' LT	108	

	SURVEY WORK POINTS							
POINT	NORTH	EAST	ELEVATION	CHAIN	STATION	OFFSET	DESCRIPTION	
127	2014465.0804	2341026.3453	0.0000	EXIL78	1+76.7182	21.4287' LT	SURVEY POINT	
128	2019539.8183	2337078.1349	0.0000	EXIL78	66+06.5372	16.9984' LT	SURVEY POINT	
137	2040801.1673	2332311.1225	0.0000	EXIL78	297+16.2328	13.5183' RT	SURVEY POINT	
138	2041891.4331	2332887.2498	0.0000	EXIL78	309+47.8349	16.7900' LT	SURVEY POINT	
139	2043298.4721	2334035.8037	0.0000	EXIL78	327+70.1124	15.1890' RT	SURVEY POINT	
140	2044517.1746	2334422.2735	0.0000	EXIL78	340+45.4205	29.4412' LT	SURVEY POINT	

210 CUR 1200 CUR 1210 CUR 1220 CUR 1230 CUR 1240 CUR 1250 CUR 1260 CUR 1270 CU-R 1280 CUR 1290 CUR 1300 CUR 1310 CUR 1320 CUR 1330 CUR 1340 CUR 1350 CUR 1360 -CUR 1370 CUR 1380 CUR 1390 CUR 1400 CUR 1410 CUR 1420 CUR 1430 CUR 1440 CUR 145-O CUR 1460 CUR 1470 1473 CUR 1480 269 270 CUR 1510 273 CUR 1530 276 CUR 1550 27-9 CUR 1570 282 CUR 1590 CUR 1600 CUR 1610 CUR 1620 CUR 1630 CUR 1640 294 CUR 16-60 CUR 1670 299 CUR 1690 CUR 1700 CUR 1710 CUR 1720 CUR 1730 310 311 312 313 31-4 CUR 1790 CUR 1800 319

Point 210 N 1,979,741,9831 E 2,347,841.0376 Sta 636+75.2910

Course from 210 to PC 1200 0° 54′ 38.8674" Dist 607.4086′

Curve Data

Beginning chain EXIL78 description

Curve 1470 P.I. Station 1029+52.0827 N 2,014,234.6450 E 2,341,241.6868 Delta = 1° 37′ 14.2365″ (RT)

Degree = 0° 35′ 19.0379″ Tangent = 137.6716' Length = 275.3248' Radius = 9,733.8897' External = 0.9735'

Long Chord = 275.3156' Mid. 0rd. = 0.9734'

0.000 S. E. P.C. Station 1028+14.4111 N 2,014,130.8662 E 2,341,332.1492 P.T. Station 1030+89.7359 N 2,014,340.9406 E 2,341,154.1957 C.C. N 2,020,526.8892 E 2,348,669.6895

End Region 1 Equation: Sta 1030+89.7359 (BK) = Sta 0+00.0000 (AH) ------Begin Region 2

Point 1473 N 2,014,340,9406 E 2,341,154,1957 Stg 0+00,0000

Curve Data

Curve 1480 P.I. Station 1+51.3310 N 2.014.457.7825 E 2.341.058.0239

Delta = 1° 46′ 52.9729′′ (RT) Degree = 0° 35′ 19.0277″ Tangent = 151.3309' Length = 302.6375' Radius = 9,735,9362' External = 1.1763' Long Chord - 302.6253'

Mid. Ord. = 1.1761'

P.C. Station 0+00.0000 N 2,014,340.9406 E 2,341,154,1957 P.T. Station 3+02.6375 N 2,014,577.5576 E 2,340,965.5307 C.C. N 2,020,526,9188 E 2,348,669.7255

Course from PT 1480 to 269 322° 19' 25.7963" Dist 1,024.8645'

Point 269 N 2,015,388.7152 E 2,340,339,1357 Sta 13+27,5021

Course from 269 to 270 322° 15′ 06.2685" Dist 802.6215'

Point 270 N 2.016.023.3546 E 2.339.847.7763 Sta 21+30.1235

Course from 270 to PC 1510 322° 17' 57.6998" Dist 2.288.3665'

Curve Data

Curve 1510 P.I. Station 48+57.0351 N 2,018,180.9326 E 2,338,180.1720 Delta = 0° 45′ 57.1840″ (LT)

Degree = 0° 05′ 14.3605″ Tangent = 438.5450' Length = 877.0770' Radius = 65,614.0909' External = 1.4655' Long Chord = 877.0705 Mid. Ord. = 1.4655'

0.000 P.C. Station 44+18.4901 N 2,017,833.9484 E 2,338,448.3581 P.T. Station 52+95.5671 N 2,018,524.3010 E 2,337,907.3719 C.C. N 1,977,708,5787 E 2,286,533,3927

Course from PT 1510 to 273 321° 32′ 00.5158″ Dist 699.1796″

Point 273 N 2,019,071.7388 E 2,337,472.4422 Sta 59+94.7467

Course from 273 to PC 1530 321° 28′ 51.4610" Dist 3,534.3654'

Curve Data

Curve 1530 P.I. Station 97+73.0837 N 2,022,027,9145 E 2,335,119,3896 Delta = 26° 58′ 46.8240″ (RT)

Degree = 5° 38′ 01.4947″ Tangent = 243.9717' Length = 478.8938'Radius = 1,017.0099' External = 28.8540' Long Chord = 474.4816' Mid. Ord. = 28.0580' S. E.

P.C. Station 95+29.1121 N 2,021,837.0307 E 2,335,271.3290 P.T. Station 100+08.0059 N 2,022,266.9549 E 2,335,070.5852 C.C. N 2,022,470.3987 E 2,336,067.0388

Course from PT 1530 to 276 348° 27' 38.2850" Dist 591.8503'

Point 276 N 2,022,846.8425 E 2,334,952.1908 Sta 105+99.8562

Course from 276 to PC 1550 348° 13' 51.7816" Dist 627.1230'

Curve Data

Curve 1690 P.I. Station 309+47.5380 N 2,041,888.6020 E 2,332,888.8603

Delta = 13° 19′ 47.6819″ (RT) Degree = 2° 49′ 00.7198″ Tangent = 237.6819'Length = 473.2177 Radius = 2.034.0253' External = 13.8398' Long Chord = 472.1512'

C.C. N 2,040,705.9566

Mid. Ord. = 13.7463' 0.000 N 2,041,679.9413 E 2,332,775.0473 P.C. Station 307+09.8561 P.T. Station 311+83.0738 N 2,042,065.4006 E 2,333,047.7153

Course from PT 1690 to PC 1700 41° 56′ 23.8786″ Dist 1,126.5395′

E 2,334,560,7160

Curve Data

Curve 1700 P.I. Station 325+24.5959 N 2,043,063.2859 E 2,333,944.3238

 $Delta = 24^{\circ} 08' 10.5258'' (LT)$ Degree = 5° 41′ 52.9777″ Tangent = 214.9827' Length = 423.5881' Radius = 1,005.5332' External = 22.7248' Long Chord = 420.4630' Mid. Ord. = 22.2226'

P.C. Station 323+09.6133 N 2,042,903.3720 E 2,333,800.6398 P.T. Station 327+33.2013 N 2,043,267.9729 E 2,334,010.0562

C.C. N 2,043,575.4217 E 2,333,052.6784

Course from PT 1700 to PC 1710 17° 48' 13.3528" Dist 914.0343'

Curve Data

Curve 1710 P.I. Station 339+82.5342 N 2,044,457.4747 E 2,334,392.0484

Delta = 18° 58′ 37.4021″ (RT) Degree = 2° 51' 21.7132" Tangent = 335.2986' Length = 664.4554'Radius = 2,006.1327' External = 27.8274' Long Chord = 661,4224 Mid. Ord. = 27.4466′

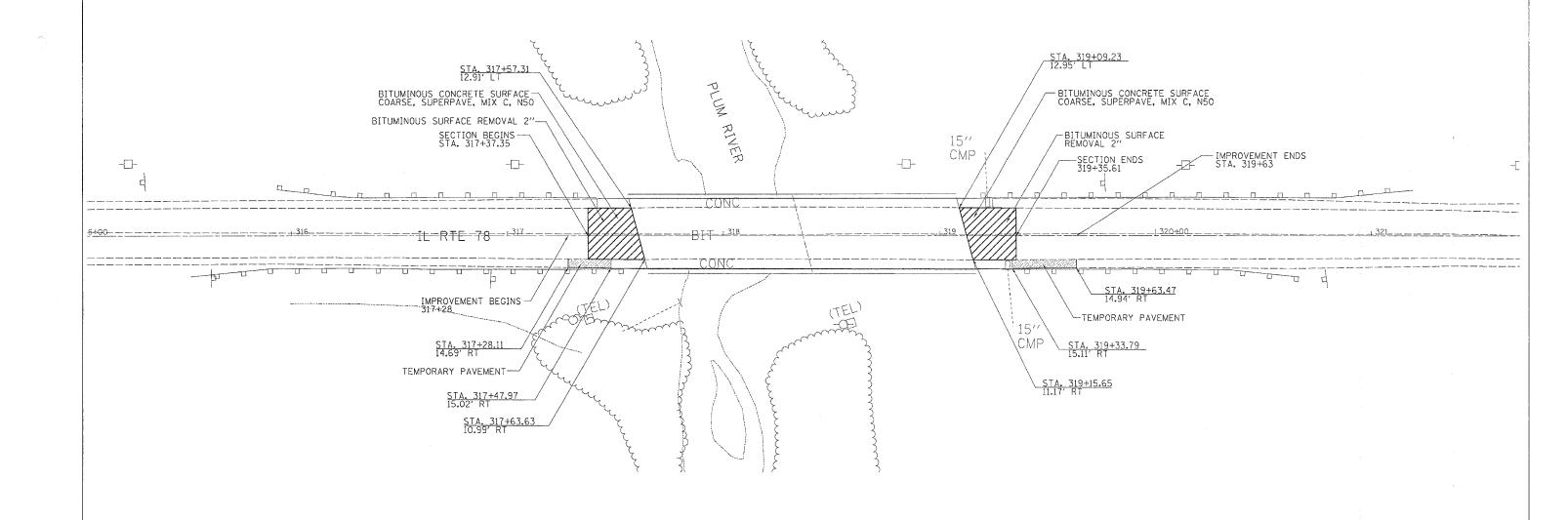
C.C. N 2,043,524.8448

P.C. Station 336+47.2356 N 2,044,138.2337 E 2,334,289.5286 P.T. Station 343+11.6911 N 2,044,726.0262 E 2,334,592.8100

E 2,336,199.5867 Course from PT 1710 to PC 1720 36° 46′ 50.7549" Dist 713.8902'

Ending chain EXIL78 description

ILLINOIS DEPARTMENT OF TRANSPORTATION SCALE: VERT. HORIZ. DATE CHECKED BY

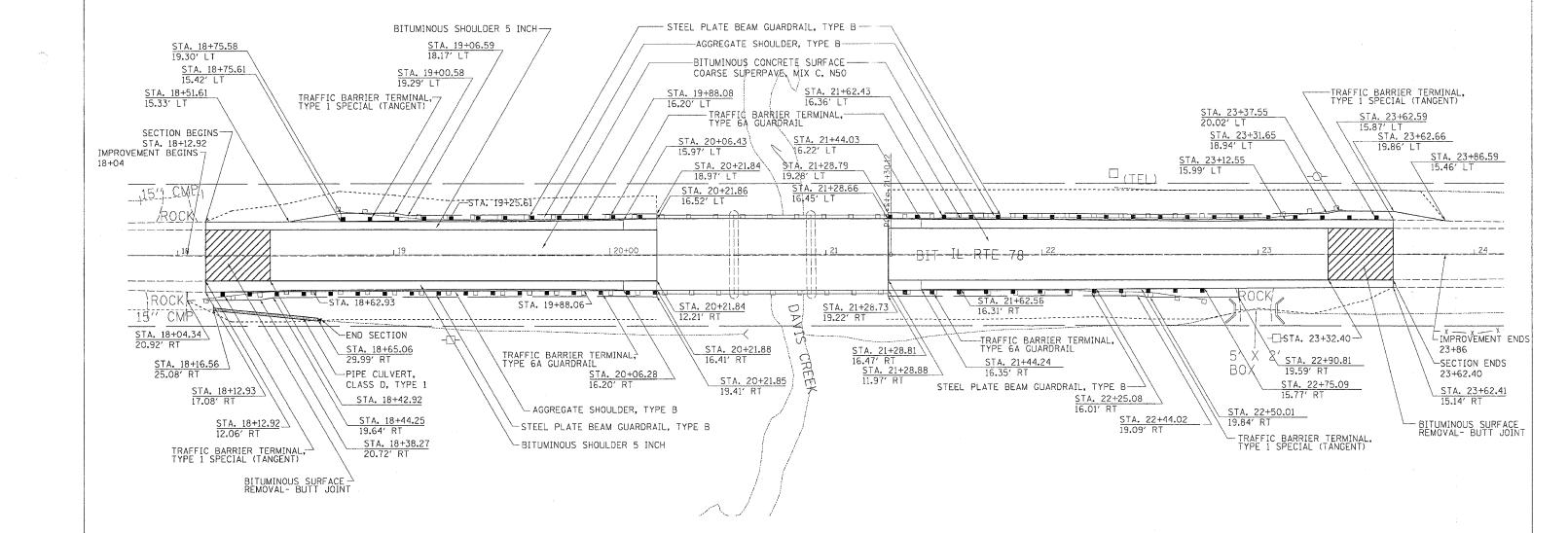

FED. ROAD DIST. NO. ILLINOIS FED. AID PROJECT EXISTING HORIZONTAL AND VERTICAL CONTROL -SECTION ENDS 319+35 Plum River SECTION BEGINS --SECTION ENDS 18+22 23+62 Davis Creek POINT 90 POINT 1 POINT 31 POINT 29 POINT 10 VERTICAL CONTROL STATION — VERTICAL CONTROL STATION -VERTICAL CONTROL STATION -VERTICAL CONTROL STATION -VERTICAL CONTROL STATION -ILLINOIS DEPARTMENT OF TRANSPORTATION SCALE: VERT. DRAWN BY

COUNTY TOTAL SHEET SHEETS NO.

JODAVIESS 45 12 SECTION TO STA. FED. ROAG DIST. NO. ILLINOIS FED. AID PROJECT

= (10BR-3)D & 11BR-8

PLAN SHEET (SN # 0430040) PLUM RIVER



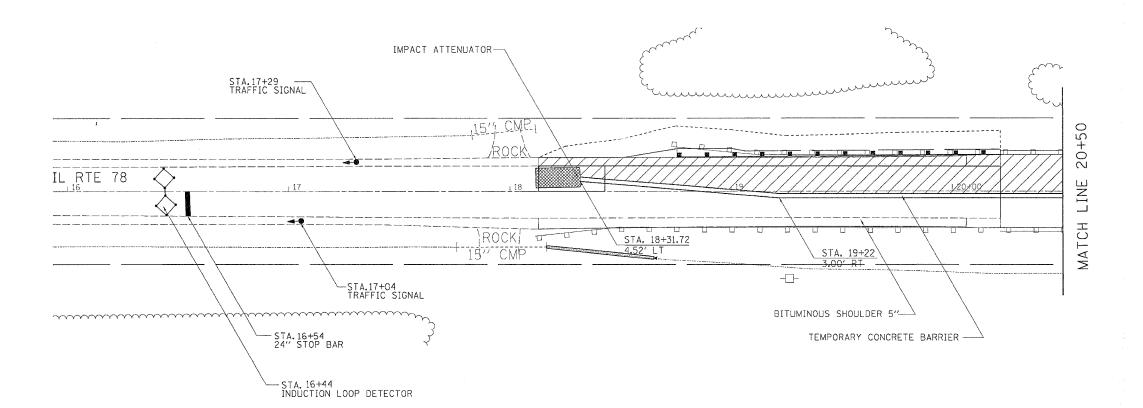
REVISIONS		ILLINOIS DEPART	MENT OF TO	ANCRORTATION
NAME	DATE	ILLINOIS DEPART	MENI OF IR	ANSFORTATION
	 			
	1	CONT. VERT.		
	1	SCALE: HORIZ.		DRAWN BY
		DATE		CHECKED BY

PLAN SHET (SN # 043-0042) DAVIS CREEK

• (108R-3)D & 11BR-8

DATE VAME SCALE NAME

ILLINOIS DEPARTMENT OF TRANSPORTATION SCALE: VERT. HORIZ.


DRAWN BY CHECKED BY STAGE DETAILS

(SN # 0430042) STAGE 1

CONTRACT NO. 64B27

COUNTY TOTAL SHEET SHEET NO. RTE. SECTION JODAVIESS 45 14 STA. TO STA. FED. ROAD DIST. NO. . ILLINOIS FED. AID PROJECT

* (108R-3)D & 11BR-8

= WORK ZONE

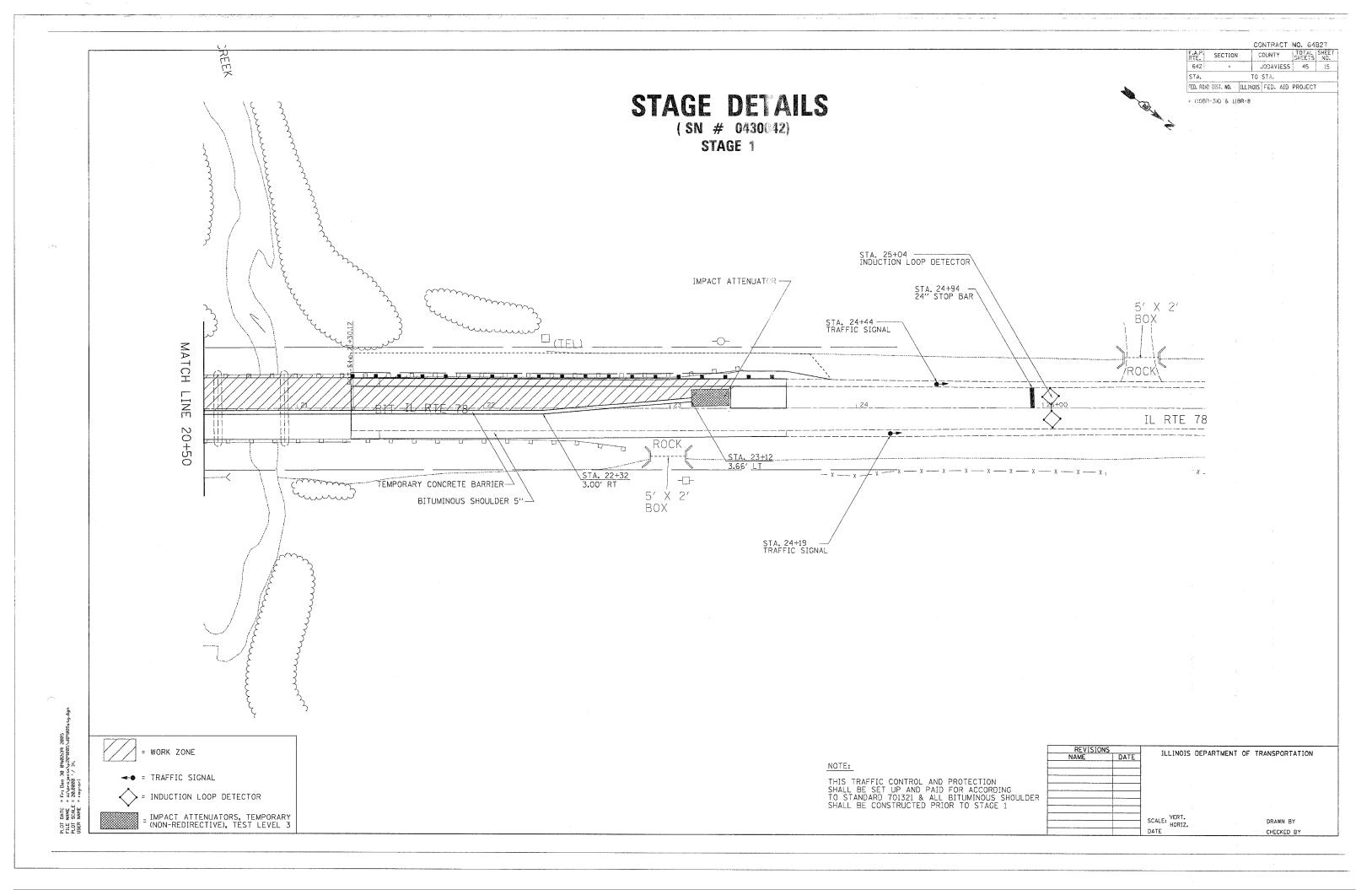
→ = TRAFFIC SIGNAL

= INDUCTION LOOP DETECTOR

IMPACT ATTENUATORS, TEMPORARY (NON-REDIRECTIVE), TEST LEVEL 3

NOTE:

THIS TRAFFIC CONTROL AND PROTECTION
SHALL BE SET UP AND PAID FOR ACCORDING
TO STANDARD 701321 & ALL BITUMINOUS SHOULDER
SHALL BE CONSTRUCTED PRIOR TO STAGE 1


NAME	DATE	

***************************************		١
		SC

REVISIONS ILLINOIS DEPARTMENT OF TRANSPORTATION

SCALE: VERT.

DRAWN BY

CHECKED BY

STAGE DETAILS

(SN # 0430042) STAGE 2

SECTION COUNTY JODAVIESS 45 STA. TO STA. FED. ROAD DIST. NO. ILLINOIS FED. AID PROJECT

-BITUMINOUS SHOULDER 5" IMPACT ATTENUATOR--TEMPORARY CONCRETE BARRIER STA, 17+29 TRAFFIC SIGNAL 20+50 IL RȚE 78 LINE MATCH 15" CMP $-\!\!\!\Box\!\!\!-$ -STA. 17+04 TRAFFIC SIGNAL - STA. 16+54 24" STOP BAR - STA. 16+44 INDUCTION LOOP DETECTOR

= WORK ZONE

→ = TRAFFIC SIGNAL

= INDUCTION LOOP DETECTOR

IMPACT ATTENUATORS, TEMPORARY (NON-REDIRECTIVE), TEST LEVEL 3

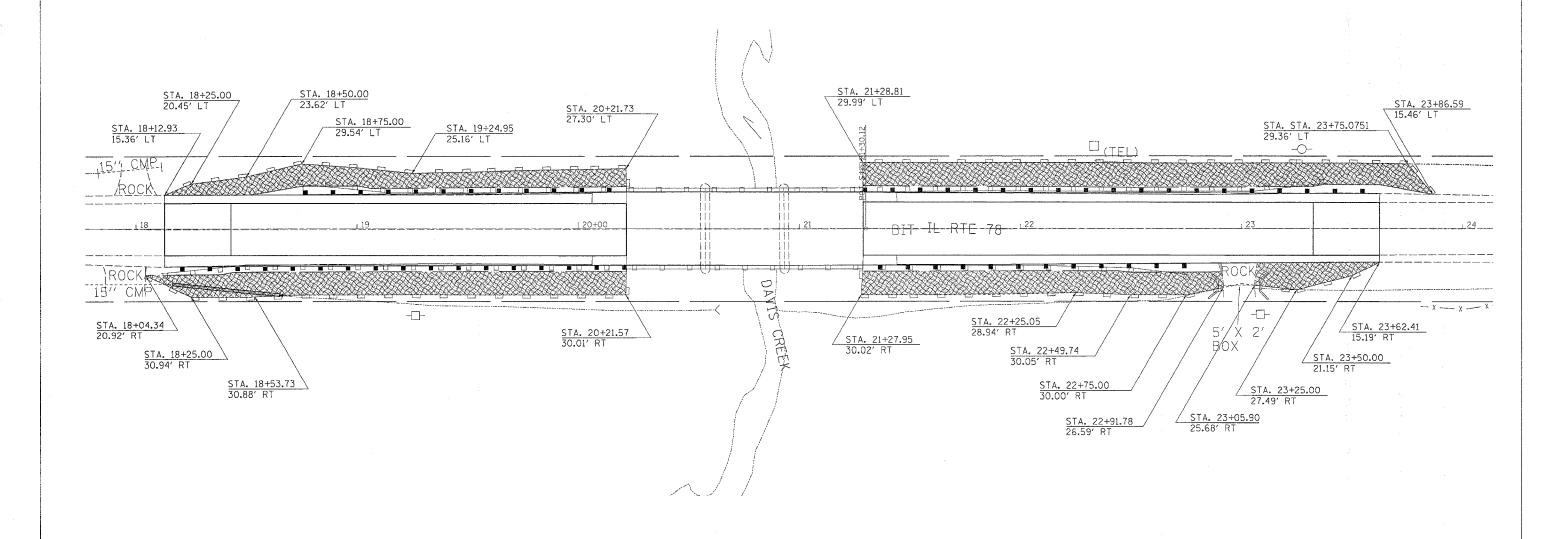
NOTE:

THIS TRAFFIC CONTROL AND PROTECTION
SHALL BE SET UP AND PAID FOR ACCORDING
TO STANDARD 701321 & ALL BITUMINOUS SHOULDER
SHALL BE CONSTRUCTED PRIOR TO STAGE 1

1/2 17210112		
NAME	DATE	

ILLINOIS DEPARTMENT OF TRANSPORTATION

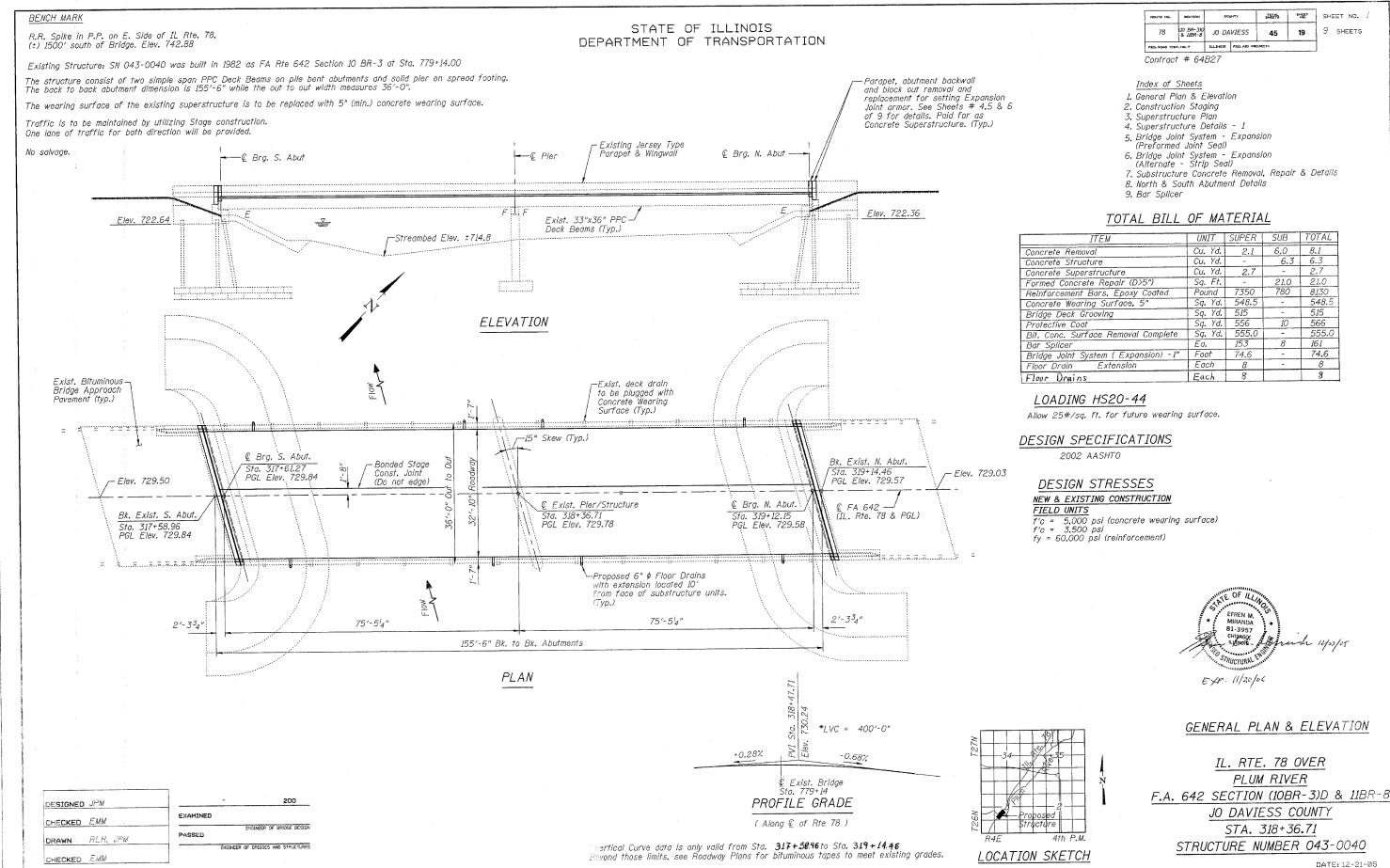
SCALE: VERT.


DRAWN BY CHECKED BY

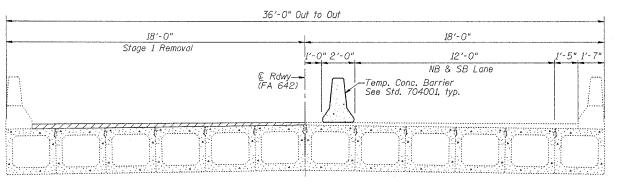
RTE. SECTION COUNTY TOTAL SHEETS
642 • JODAVIESS 45 JODAVIESS 45 受 TO STA. FED. ROAD DIST. NO. ILLINOIS FED. AID PROJECT STAGE DETAILS * (108R-3)D & LIBR-8 (SN # 0433042) STAGE 2 BITUMINOUS SHOULDER 5"-TEMPORARY CONCRETE BARRIER STA. 25+04 ______ INDUCTION LOOP DETECTOR STA. 22+32 \ 4.33' LT STA. 24+94 — 24" STOP BAR -IMPACT ATTENUATOR 5' X 2' STA. 24+44 TRAFFIC SIGNAL STA. 23+12 \2.24' RT -O-CIEL MATCH LINE IL RTE 78 20+50 ____ 5′ X 2′ BOX STA. 24+19 — TRAFFIC SIGNAL PLOT DATE = Fr. Dec 30 89,82:38 2805 FILE NAME = c:\projects\p28985\d978 PLOT SCALE = 20.8080 / IN. USER NAME = regnor] = WORK ZONE ILLINOIS DEPARTMENT OF TRANSPORTATION NOTE: **→** = TRAFFIC SIGNAL THIS TRAFFIC CONTROL AND PROTECTION
SHALL BE SET UP AND PAID FOR ACCORDING
TO STANDARD 701321 & ALL BITUMINOUS SHOULDER
SHALL BE CONSTRUCTED PRIOR TO STAGE 1 = INDUCTION LOOP DETECTOR IMPACT ATTENUATORS, TEMPORARY (NON-REDIRECTIVE), TEST LEVEL 3 SCALE: VERT. DRAWN BY DATE CHECKED BY

EROSION CONTROL DETAILS (SN # 043-0042) DAVIS CREEK

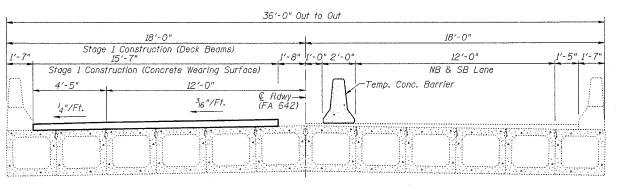
• (108R-3)D & 11BR-8

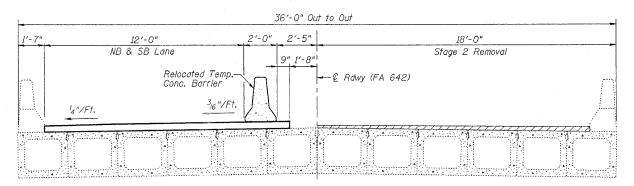

= PERIMETER EROSION BARRIER

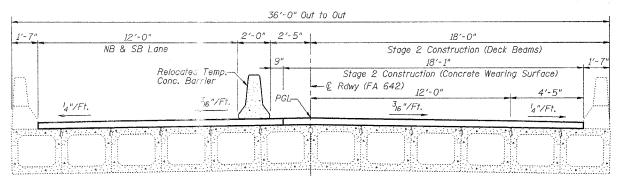
= EROSION CONTROL BLANKET


LEGEND

= SEEDING


ILLINOIS DEPARTMENT OF TRANSPORTATION SCALE: VERT. DRAWN BY CHECKED BY


STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION


STAGE 1 REMOVAL

STAGE 1 CONSTRUCTION

STAGE 2 REMOVAL

STAGE 2 CONSTRUCTION

SHEET NO. 2 ROUTE NO. SECTION TOTAL SHEETS (10BR-3)D JO DAVIESS 9 SHEETS 78 45 20 FEO. ROAD DIST. NO. 7 ILLINGIS FEO. AID P

Contract # 64B27

GENERAL NOTES

Reinforcement bars shall conform to the requirements of AASHTO M 31 or M 322 Grade 60.

Plan dimensions and details relative to existing structure have been taken from existing plans and are subject to nominal construction variations. It shall be the Contractor's responsibility to verify such dimensions and details in the field and make necessary approved adjustments prior to construction or ordering of materials. Such variations shall not be cause for additional compensation for a change in the scope of the work, however, the Contractor will be paid for the quantity actually furnished at the unit price for the work.

All construction joint shall be bonded.

The minimum thickness of the Concrete overlay shall be 5" and varies as required to adjust for the new profile grade and beam camber.

No instream work will be allowed on this project.

The contractor is advised that the existing PPC Deck Beams are in a deteriorated condition with reduced load carrying capacity. It is the contractor's responsibility to account for the condition of the beams when developing construction procedures.

If the contractor's procedure involves placement of cranes or other heavy

equipment on existing superstructure, detailed procedure shall be submitted to the Engineer for approval.

CONSTRUCTION STAGING

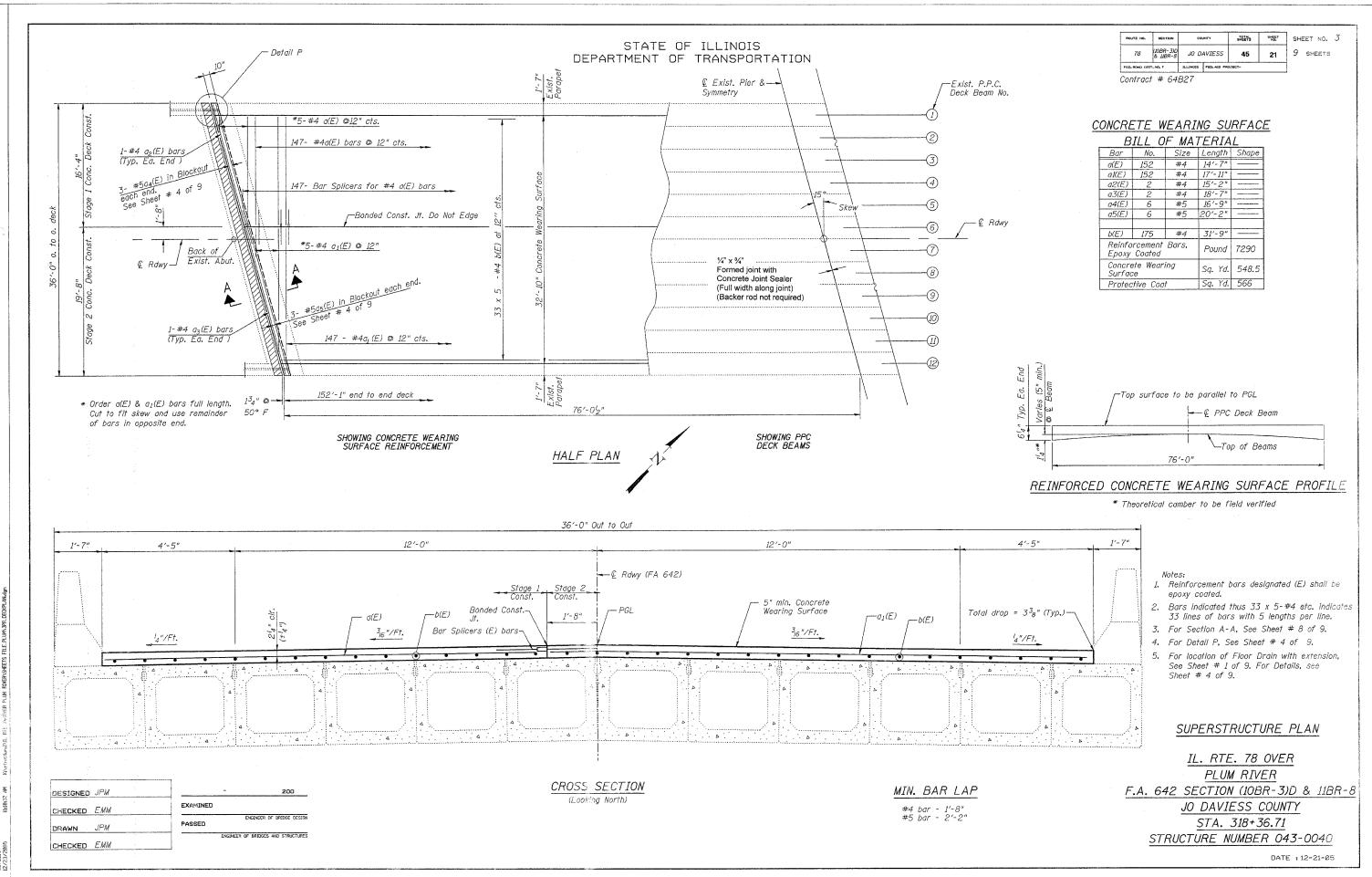
- 1. Hatched area indicate removal of existing bituminous surface.
- 2. See Roadway plans for quantity of Temporary Concrete Barriers.
- 3. All sections taken looking North.

CONSTRUCTION STAGING

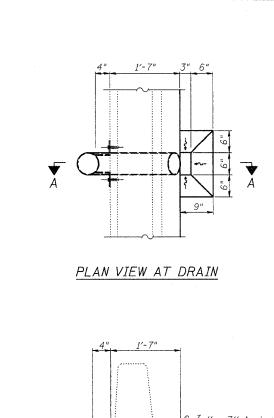
IL. RTE. 78 OVER PLUM RIVER F.A. 642 SECTION (10BR-3)D & 11BR-8 JO DAVIESS COUNTY STA. 318+36.71 STRUCTURE NUMBER 043-0040

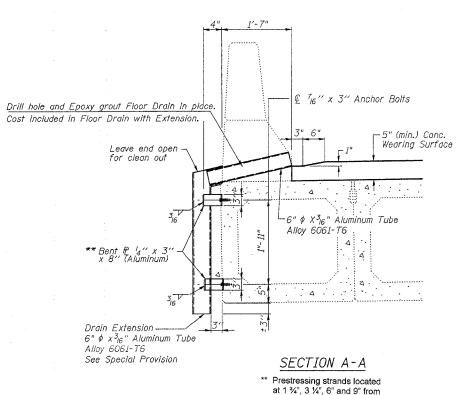
DATE : 12-21-05

DESIGNED JPA


CHECKED EMM

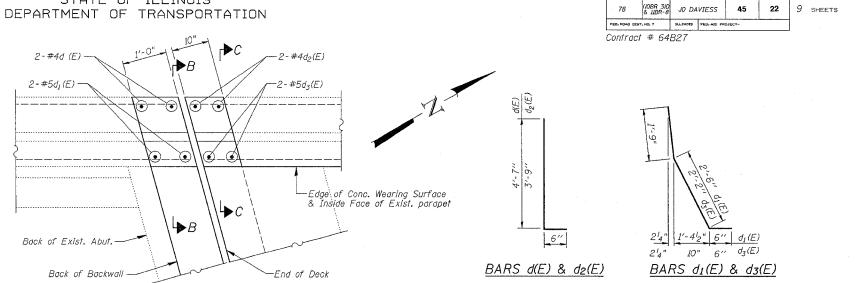
DRAWN JPM

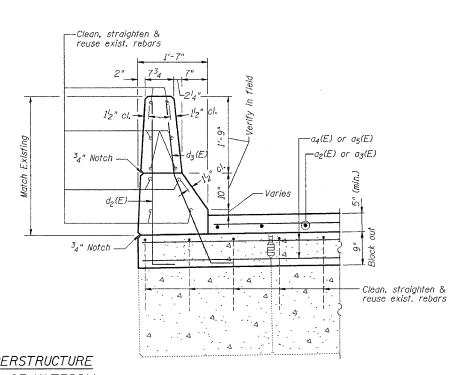

CHECKED EMM


EXAMINED

PASSED

lefoult.




** Prestressing strands located at 1 %", 3 %", 6" and 9" from bottom of beam.
Contractor must ensure no damage is done to the strands

STATE OF ILLINOIS

SECTION B-B

<u>SUPERSTRUCTURE</u> BILL OF MATERIAL

Bar	No.	Size	Length	Shape
d2(E)	4	#4	4'-3"	
d3(E)	(E) 4 #5		4'-5"	
Concret Superst		s	Cu. Yd.	2.7
Reinfor Epoxy (Bars,	Pound	60
Floor D with Ex			Each	8
Concrete Removal			Cu. Yd.	2.1

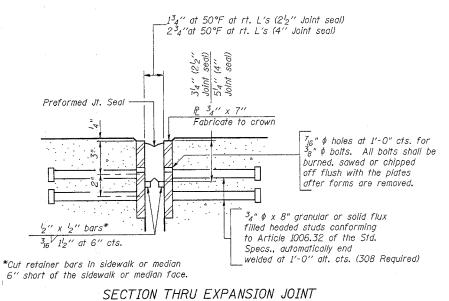
st Includes parapet over deck and deck beam block out

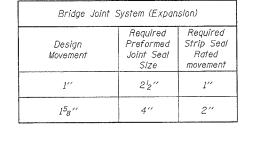
SECTION C-C SUPERSTRUCTURE DETAILS - 1

IL. RTE. 78 OVER
PLUM RIVER

F.A. 642 SECTION (10BR-3)D & 11BR-8

JO DAVIESS COUNTY


STA. 318+36.71

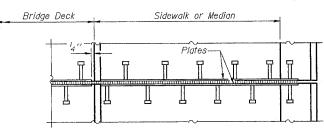

STRUCTURE NUMBER 043-0040

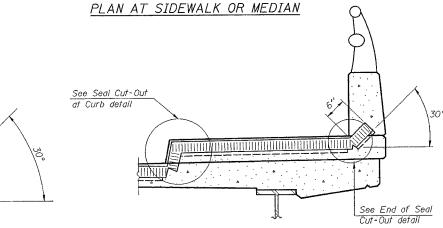
DATE : 12-21-05

SHEETS SHEET NO. 4

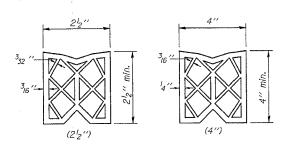
1	
DESIGNED JPM	- 200
CHECKED EMM	EXAMINED
DRAWN JPM	ENGINEER OF BRIDGE DESIGN PASSED
CHECKED EMM	ENGINEER OF BRIDGES AND STRUCTURES

STATE OF ILLINOIS

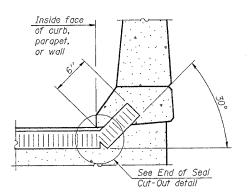

DEPARTMENT OF TRANSPORTATION

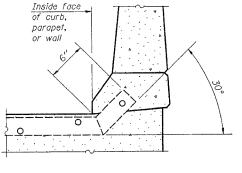


Contract # 64B27


GENERAL NOTES

Furnish steel plates in segments of 20 feet maximum length. Maximum space between installed segments shall be 3 ₁₆ $^{\prime\prime}$. Seal space with silicone sealant suitable for structural steel.


ECTION THRU EXPANSION JOINT (2½" and 4" joint seals)


PREFORMED JOINT SEAL

EXAMINED

PASSED

AT CURB, PARAPET, OR WALL (Showing seal)

AT CURB, PARAPET, OR WALL (Showing plate)

TYPICAL END TREATMENTS

AT SIDEWALK OR MEDIAN*

(Showing plate and seal)

* Shorter plates with a single row of studs at 12" centers may be necessary on medians which are shallower than 9". See manufacturer's recommendation.

BILL OF MATERIAL

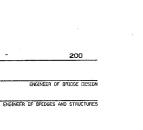
	JIUI
Bridge Joint System foot 72 (Expansion) -1"	4.6

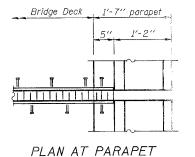
(Sheet 1 of 2)

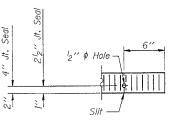
BRIDGE JOINT SYSTEM - EXPANSION (PREFORMED JOINT SEAL)

IL. RTE. 78 OVER

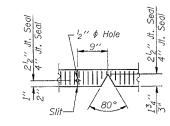
PLUM RIVER


F.A. 642 SECTION (10BR-3)D & 11BR-8


JO DAVIESS COUNTY


STA. 318+36.71.00

STRUCTURE NUMBER 043-0040


DATE : 12-21-05

END OF SEAL CUT-OUT

SEAL CUT-OUT AT CURB

DESIGNED JPM

CHECKED EMM

DRAWN JPM

CHECKED EMM

EJ-BJS

		\rightarrow at 50 °F
		Locking Edge Rail — Strip St
uired Seal ovement	"A "	Top of slab
""	1/8"	in typ In
2//	134"	
		$\frac{7_{16}'' \ \phi \ holes \ at \ 1'-0'' \ cts. \ for \ \frac{3}{8}'' \ \phi}{bolts. \ All \ bolts \ shall \ be \ burned, \ sawed,}$

or chipped off flush with the plates

after forms are removed. (typ.)

78 UDBR-330 JO DAVIESS 45 24 9 SHEETS

ED. ROMO DIST, NO. 7 BLLDHOIS FED. AND PROJECT-

Contract # 64B27

<u>GENERAL NOTES</u>

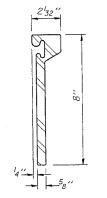
The strip seal shall be made continuous and shall have a minimum thickness of ${}^{l}_{4}$ ". The configuration of the strip seal shall match the configuration of the Locking Edge Rails.

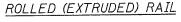
The height and thickness of the Locking Edge Rails shown are minimum dimensions. The actual configuration of the Locking Edge Rails and matching strip seal may vary from manufacturer to manufacturer. Flanged edge rails will not be allowed.

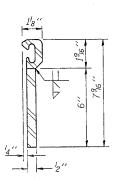
Locking Edge Rails may be spliced at slope discontinuities and stage construction joints.

The manufacturer's recommended installation methods shall be followed.

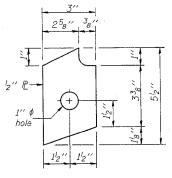
The joint opening and deck dimensions detailed on the superstructure are based on a preformed joint seal. If the contractor elects to use the alternate strip seal joint, the opening and deck dimensions shall be modified according to the dimensions detailed on this sheet. Required modifications shall be made at no additional cost to the State.

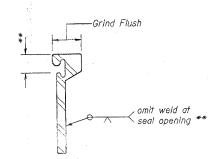

SECTION THRU ROLLED RAIL EXP. JOINT


(392 Studs Required)

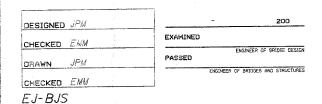

* Granular or solid flux filled headed studs conforming to Article 1006.32 of the Std. Specs., automatically end welded.

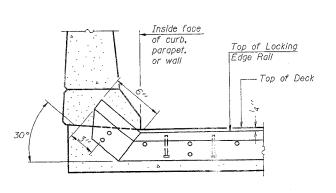
SECTION THRU WELDED RAIL EXP. JOINT

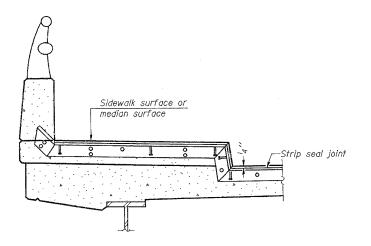

(236 Studs Required) (156 Anchor Plates Required)


WELDED RAIL

ANCHOR P (for welded rail)


TYPICAL END TREATMENTS


LOCKING EDGE RAILS


LOCKING EDGE RAIL SPLICE

The inside of the locking edge rail groove shall be free of weld residue.

AT CURB, PARAPET, OR WALL

AT SIDEWALK OR MEDIAN*

* Shorter plates with a single row of studs at 12" centers may be necessary on medians which are shallower than 9". See manufacturer's recommendation.

studs at 1'-0" cts.

Anchor Plate.

Place plates at 1'-0" cts.

(alt. with top horizontal studs)

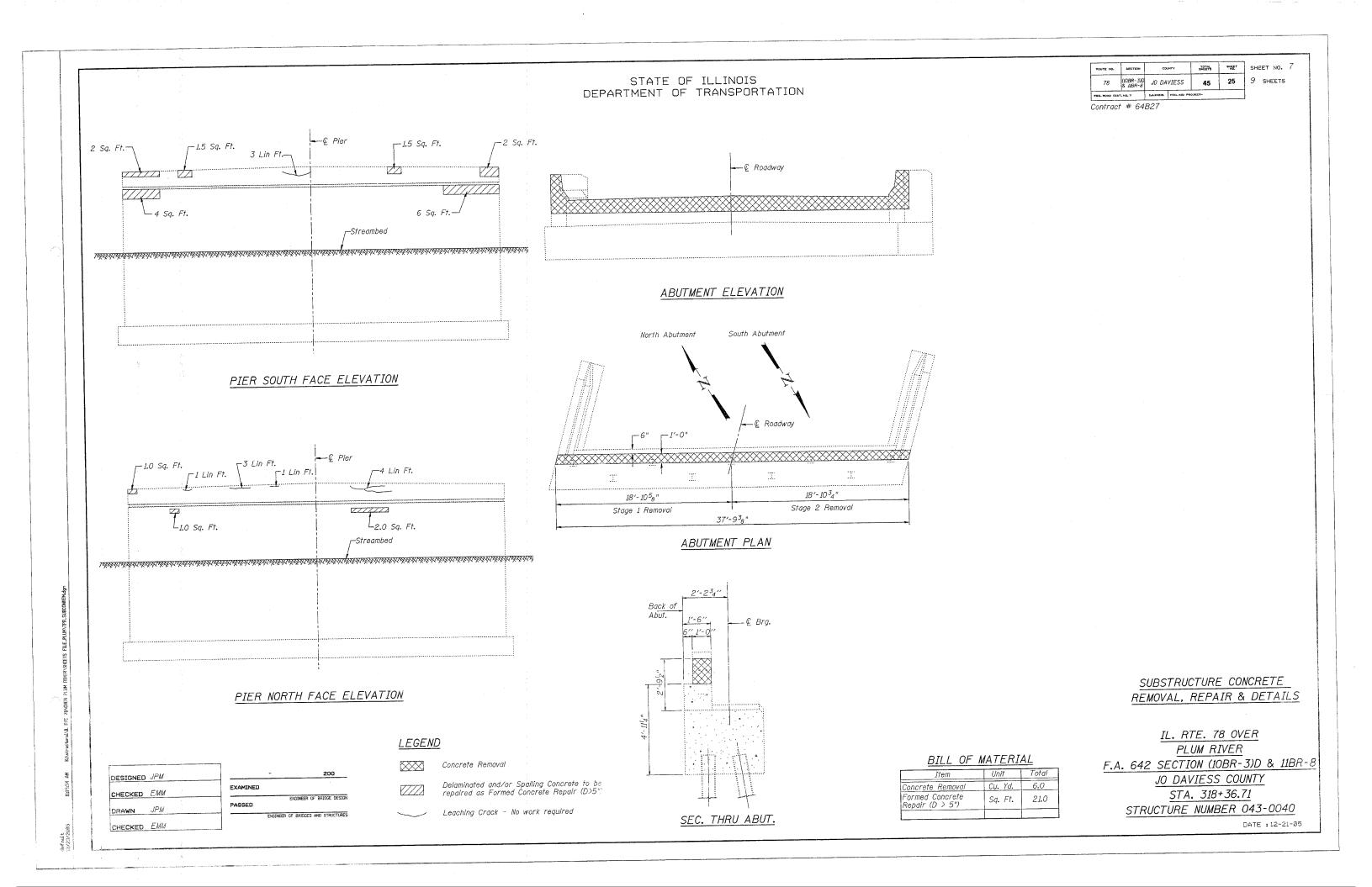
(Sheet 2 of 2)

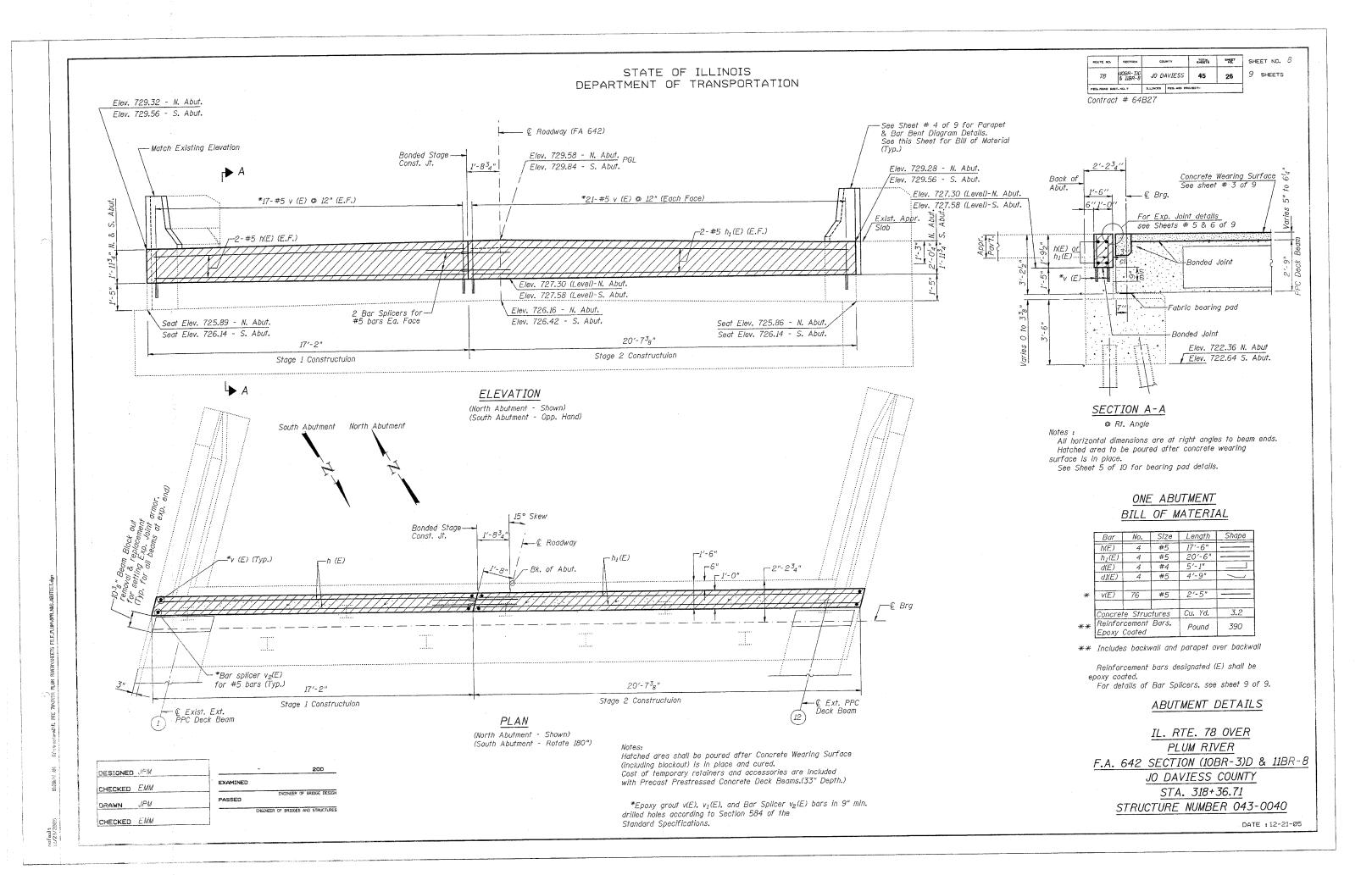
<u>BRIDGE JOINT SYSTEM - EXPANSION</u>
(ALTERNATE-STRIP SEAL)

IL. RTE. 78 OVER

PLUM RIVER

F.A. 642 SECTION (10BR-3)D & 11BR-8


JO DAVIESS COUNTY


STA. 318+36.71

STRUCTURE NUMBER 043-0040

DATE :12-21-05

2/23/2005

Contract # 64B27

<u>NOTES</u>

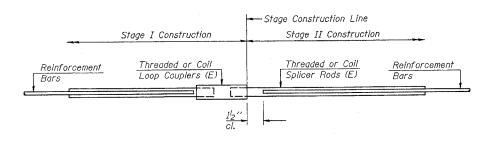
Bar splicer assemblies shall be of an approved type and shall develop in tension at least 125 percent of the yield strength of the lapped reinforcement bars.

Splicer rods shall be of minimum 60 ksi yield strength, threaded or coiled full length. All reinforcement bars shall be lapped and tied to the splicer rods or dowel bars.

Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars.

Other systems of similar design may be submitted to the Engineer for approval. Approval shall be based on certified test results from an approved testing laboratory that the proposed bar splicer assembly satisfies the following requirements:

Minimum *Pull-out Strength = $1.25 \times fs_{allow} \times A_f$ (Tension in kips)


Where fy = Yield strength of lapped reinforcement bars in ksi.

fs_{allow}= Allowable tensile stress in lapped reinforcement bars in ksi (Service Load)

A_t = Tensile stress area of lapped reinforcement bars. * = 28 day concrete

	. BAR SPLIC	CER ASSEMBLI	ES	
		Strength Requirements		
Bar Size to be Spliced	Splicer Rod or Dowel Bar Length	Min. Capacity kips - tension	Min. Pull-Out Strength kips - tension	
#4	1'-8''	14.7	5.9	
#5	2'-0"	23.0	9.2	
#6	2'-7"	33.1	13.3	
#7	3′-5″	45.1	18.0	
#8	4'-6''	58.9	23.6	
#9	5'-9"	75.0	30.0	
#10	7′-3′′	95.0	38.0	
#11	9'-0"	117.4	46.8	

Bar splicer assemblies shall be according to Section 508 of the Standard Specifications, except as noted. The furnishing and installation of bar splicer assemblies will be measured and paid for at the contract unit price each for "BAR SPLICERS."

STANDARD

Bar Size	No. Assemblies Required	Location
#4	147	Deck
#5	6	Deck Bm Blockout
#5	4	South Abutment
#5	4	North Abutment

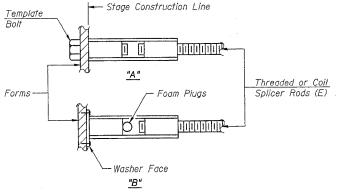
BAR SPLICER ASSEMBLY DETAILS

IL. RTE. 78 OVER PLUM RIVER F.A. 642 SECTION (10BR-3)D & 11BR-8 JO DAVIESS COUNTY STA. 318+36.71 STRUCTURE NUMBER 043-0040

DATE : 12-21-05

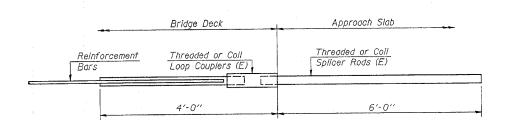
The diameter of this part is equal or larger than the The diameter of this part diameter of bar spliced. is the same as the diameter of the bar spliced.

ROLLED THREAD DOWEL BAR

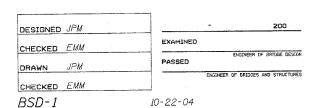

** ONE PIECE

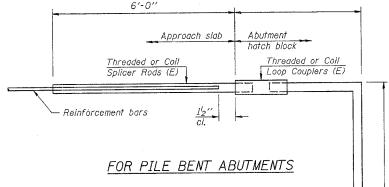
- Wire Connector

WELDED SECTIONS


BAR SPLICER ASSEMBLY ALTERNATIVES

** Heavy Hex Nuts conforming to ASTM A 563, Grade C, D or DH may be used.


INSTALLATION AND SETTING METHODS


"A": Set bar splicer assembly by means of a template bolt. "B" : Set bar splicer assembly by nailing to wood forms or cementing to steel forms. (E): Indicates epoxy coating.

FOR INTEGRAL OR SEMI-INTEGRAL ABUTMENTS

Bar Splicer for #5 bar Min. Capacity = 23.0 kips - tension Min. Pull-out Strength = 9.2 kips - tension No. Required =

Bar Splicer for #5 bar Min. Capacity = 23.0 kips - tension Min. Pull-out Strength = 9.2 kips - tension No. Required = 70

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

SHEET NO. TOTAL ROUTE NO. (10BR-3)D & 11BR-8 JO DAVIESS 45 28 FED. ROAD DIST. NO. 7

SHEET NO. 1 12 SHEETS

Contract # 64B27

TOTAL BILL OF MATERIAL

ITEM	UNIT	SUPER	SUB	TOTAL
Removal of Existing Superstructures	Each	1	-	1
Concrete Removal	Cu. Yd.	-	12.6	12.6
Concrete Structures	Cu. Yd.	5.4	-	5.4
Precast Prestressed Concrete Deck Beams (17" Depth)	Sq. Ft.	3852	-	3852
Reinforcement Bars, Epoxy Coated	Pound	5580	820	6400
Concrete Wearing Surface, 5"	Sq. Yd.	428.7	-	428.7
Bridge Deck Grooving	Sq. Yd.	409	-	409
Protective Coat	Sq. Yd.	447.0	-	447.0
Steel Bridge Rail, Type SM	Foot	214.5	-	214.5
Name Plates	Each	1	-	1
Bridge Joint System (Expansion), 158"	Foot	36	-	36
Bar Splicers	Each	111	86	197
Asbestos Bearing Pad Removal	Each	-	72	72

LOADING HS20-44

Allow 50#/sq. ft. for future wearing surface.

DESIGN SPECIFICATIONS

2002 AASHTO

DESIGN STRESSES

NEW & EXISTING CONSTRUCTION FIELD UNITS

f'c = 5,000 psi (Concrete Wearing Surface) f'c = 3,500 psi

fy = 60,000 psi (reinforcement)

PRECAST PRESTRESSED UNITS

f'ci = 4,000 psi f's = 270,000 psi (1/2" ф low relax strands) f'si = 201,960 psi (1/2" \(\phi \) low relax strands)

STATION 20+75.37 REBUILT 200_ BY STATE OF ILLINOIS F.A. RT. 642 SEC 11BR-8 LOADING HS20 STR. NO. 043-0042

NAME PLATE

See Std. 515001

Existing Name Plate shall be cleaned and relocated adjacent to new Name Plate, Cost included with Name Plates,

> EFREN M 81-3957

EXP. 11/30/06

Index of Sheets

- 1. General Plan
- 2. Construction Staging 3. Superstructure Plan
- 4. Superstructure Details 1
- 5. Superstructure Details 2
- 6. Type SM Steel Bridge Rail
 Side Mounted
- 7. Bridge Joint System Expansion
- (Preformed Joint Seal)
- 8. Bridge Joint System Expansion (Alternate Strip Seal)
- 9. Substructure Concrete Removal
- 10. South Abutment
- 11. North Abutment
- 12. Bar Splicer Assembly Details

PROPOSED -STRUCTURE LOCATION SKETCH

GENERAL PLAN

IL. RTE. 78 OVER DAVIS CREEK

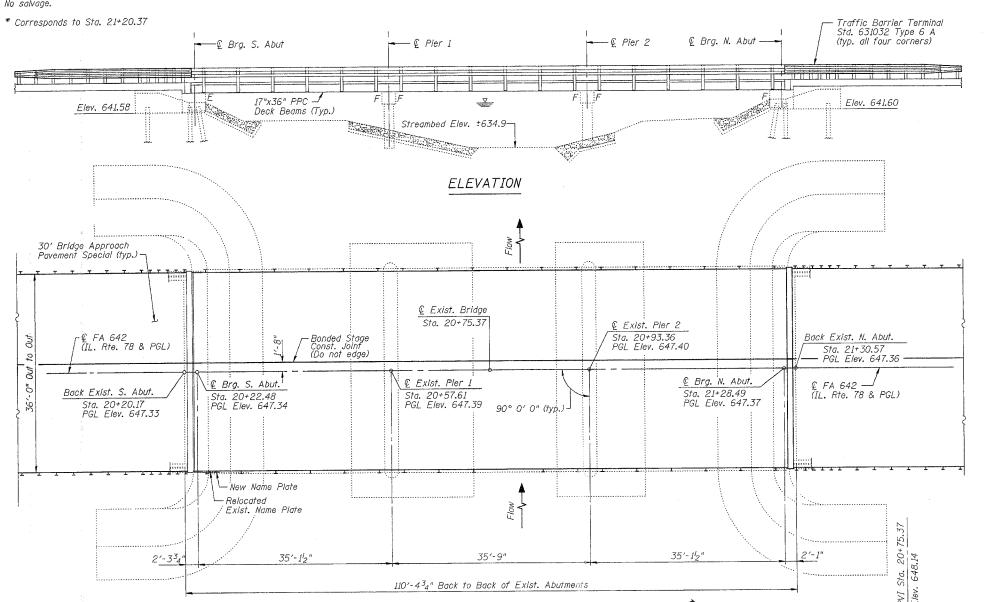
F.A. 642 SECTION (10BR-3)D & 11BR-8

JO DAVIESS COUNTY STA. 20+75.37 STRUCTURE NUMBER 043-0042

DATE : 12-21-05

BENCH MARK

Chiseled "□" on top of N.W. concrete wing wall (near North end) on Bridge 11-BR-6, Sta. 481+25*, Elev. 647.75


Existing Structure: SN 043-0042 was built in 1982 as FA Rte 642 Section 10 BR-6 at Sta. 480+80.00

The structure consist of three simple span PPC Deck Beams on pile bent abutments and solid piers on spread footing. The back to back abutment dimension is $110'-4^3_4$ " while the out to out width measures 36'-0".

The existing superstructure is to be replaced with PPC Deck Beams and 5" (min.) concrete wearing surface.

Traffic is to be maintained by utilizing Stage construction. One lane of traffic for both direction will be provided.

No salvage.

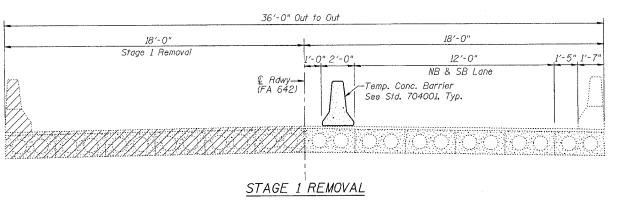
PLAN

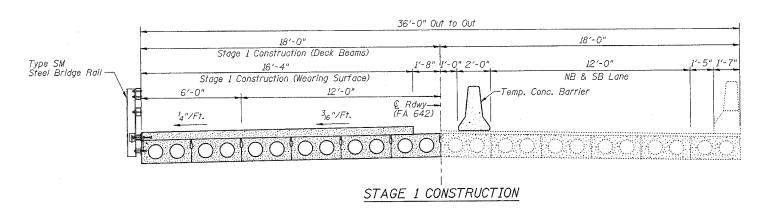
DESIGNED COM EXAMINED CHECKED EMM ENCINEED OF BRIDGE DESIGN PASSED DRAWN COM ENGINEER OF BRIDGES AND STRUCTURES CHECKED EMM

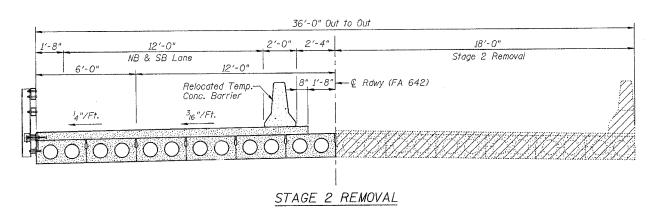
★ Vertical curve data is only valid from Sta. 20+20+17 Sta. 21+30.57 Beyond those limits, see roadway plans for bituminous taper to meet existing grades.

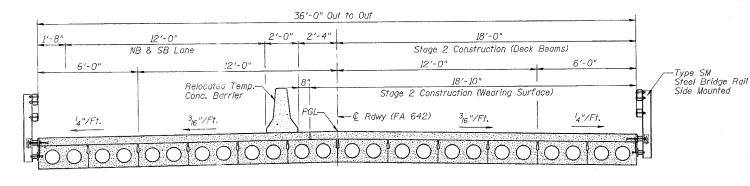
PROFILE GRADE

(Along @ of Rte 78)


-0.72 %


L = 400' *


+0.76 %


Bridge
 ■

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

STAGE 2 CONSTRUCTION

Contract # 64B27

GENERAL NOTES

Reinforcement bars shall conform to the requirements of AASHTO M 31 or M 322 Grade 60.

Plan dimensions and details relative to existing structure have been taken from existing plans and are subject to nominal construction variations. It shall be the Contractor's responsibility to verify such dimensions and details in the field and make necessary approved adjustments prior to construction or ordering of materials. Such variations shall not be cause for additional compensation for a change in the scope of the work, however, the Contractor will be paid for the quantity actually furnished at the unit price for the work.

Existing Name Plate shall be cleaned and relocated adjacent to new Name Plate. Cost included with Name Plate.

All construction joint shall be bonded.

Repair of pier caps shall be completed prior to placement of the new deck beams.

The minimum thickness of the Concrete overlay shall be 5" and varies as required to adjust for the new profile grade and beam camber.

No instream work will be allowed on this project.

The contractor is advised that the existing PPC Deck Beams are in a deteriorated condition with reduced load carrying capacity. It is the contractor's responsibility to account for the condition of the beams when developing construction procedures for removal and replacement of the superstructure.

If the Contractor's procedure for existing beam removal or placement of new beams involves placement of cranes or other heavy equipment on new beams, a detailed procedure shall be submitted to the Engineer for approval. The procedure shall include calculations, prepared and sealed by an Illinois Licensed Structural Engineer, verifying that the equipment and procedure used will not overstress the new beams. To distribute load to multiple beams and protect the concrete, in all cases a double layer mat of heavy timbers shall be used at all times under crane tracks or wheels and any outriggers in the down position. If necessary, shims shall be used under the crane mat to ensure uniform contact with the underlying beams. Prior to placement of the timber mats, the following shall be done: grouting and curing the dowel rods 24 hours minimum and grouting and curing the shear keys. A temporary means of lateral restraint will be required for fascia beams at expansion ends of beams to prevent movement of the beams.

CONSTRUCTION STAGING

- 1. Hatched area indicate removal of existing Superstructure.
- 2. See Roadway plans for quantity of Temporary Concrete Barriers.
- 3. All sections taken looking North.

CONSTRUCTION STAGING

IL. RTE. 78 OVER

DAVIS CREEK

F.A. 642 SECTION (10BR-3)D & 11BR-8

JO DAVIESS COUNTY

STA. 20+75.37

STRUCTURE NUMBER 043-0042

DATE : 12-21-05

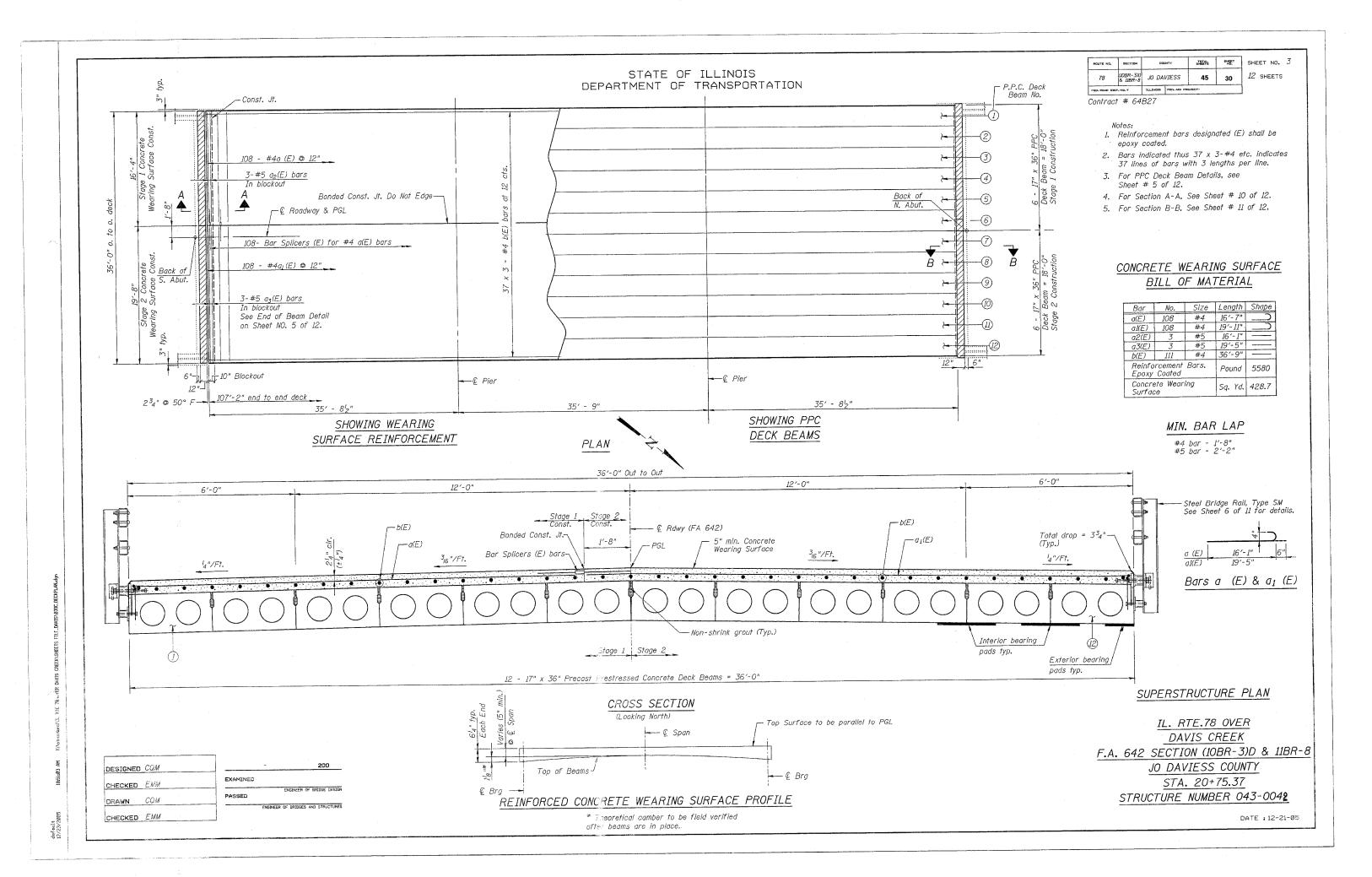
18558-28 AF KAST-WOLD-WALLE FITE 78ADVER DAVIS CREEKSHEETS FILE DAVIS

723/2085

DESIGNED CQM

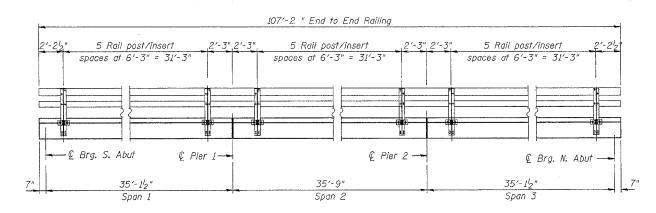
CHECKED EMM

DRAWN CQM


CHECKED EMM

EXAMINED

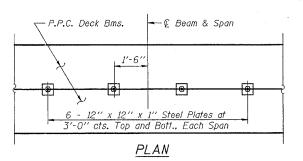
PASSED

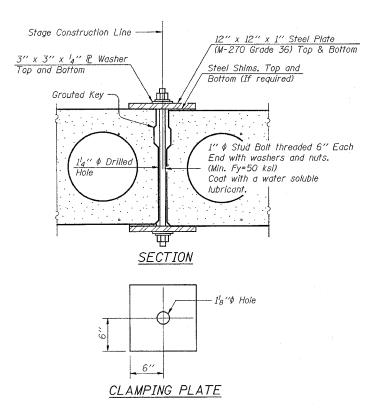

ENGINEER OF BRIDGE DESIGN

ENGINEER OF BRIDGES AND STRUCTURES

SHEET NO. 4
12 SHEETS

Contract # 64B27




SIDE RETAINER AT SOUTH ABUTMENT

SECTION A-A

DESIGNED	CQM		200
CHECKED	ЕММ	EXAMINED	
DRAWN	СОМ	PASSED	NEER OF BRIDGE DESIGN
CHECKED	ЕММ	ENGINEER OF B	REDGES AND STRUCTURES

* AFTER THE BLOCK-OUTS ARE POURED AND CURED THE RETAINER AND SHIMS SHALL BE REMOVED. ANCHOR BOLTS SHALL BE CUT, GRIND SMOOTH AND SEALED WITH EPOXY.

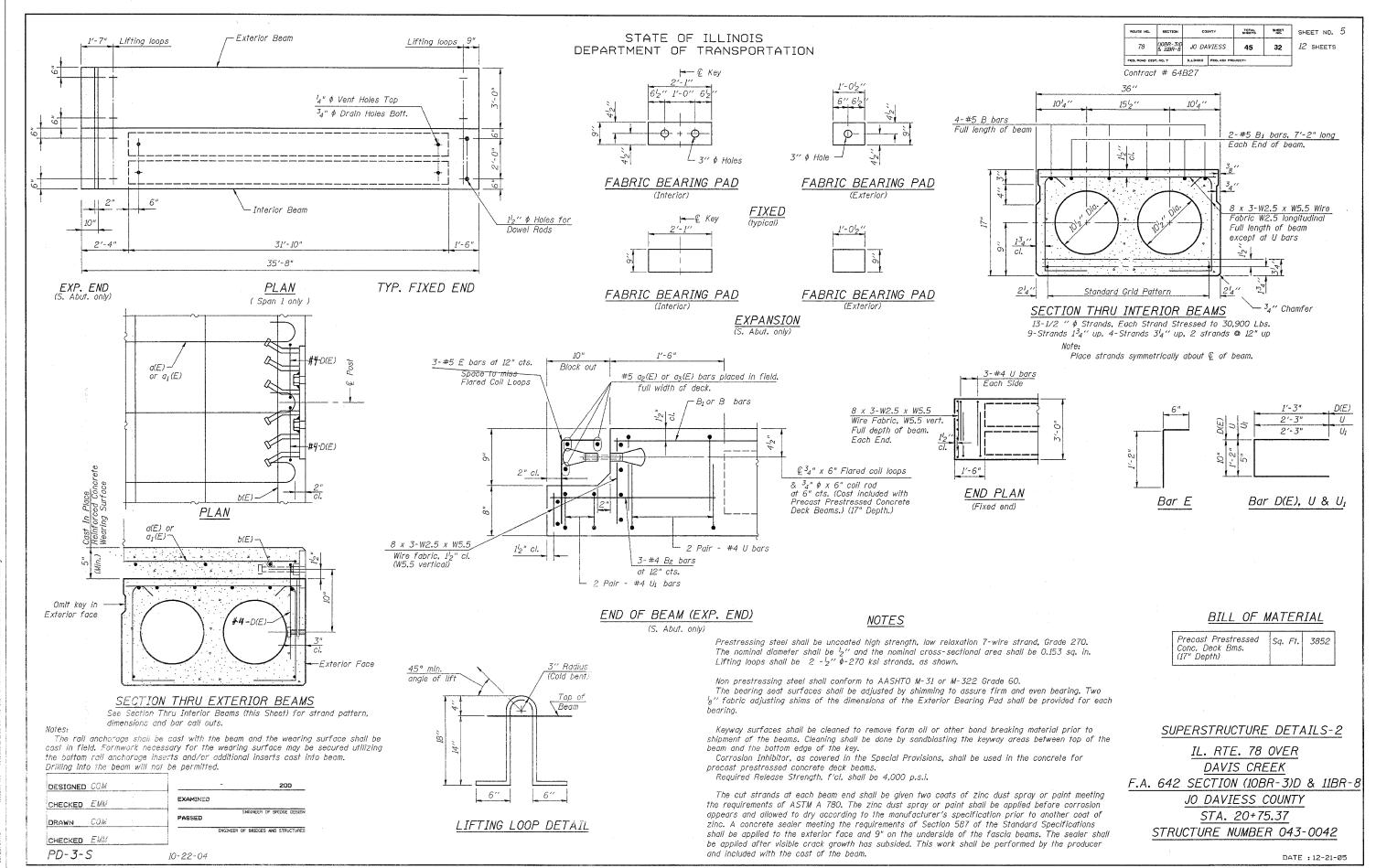
SHEAR KEY CLAMPING DETAILS AT STAGE CONST. JT.

See Special Provisions for Stage Construction of Precast Prestressed Concrete Deck Beams. Cost included with "Precast Prestressed Concrete Deck Beams". See Stage Construction Details for traffic lanes on Sheet 2 of 12

SUPERSTRUCTURE DETAILS - 1

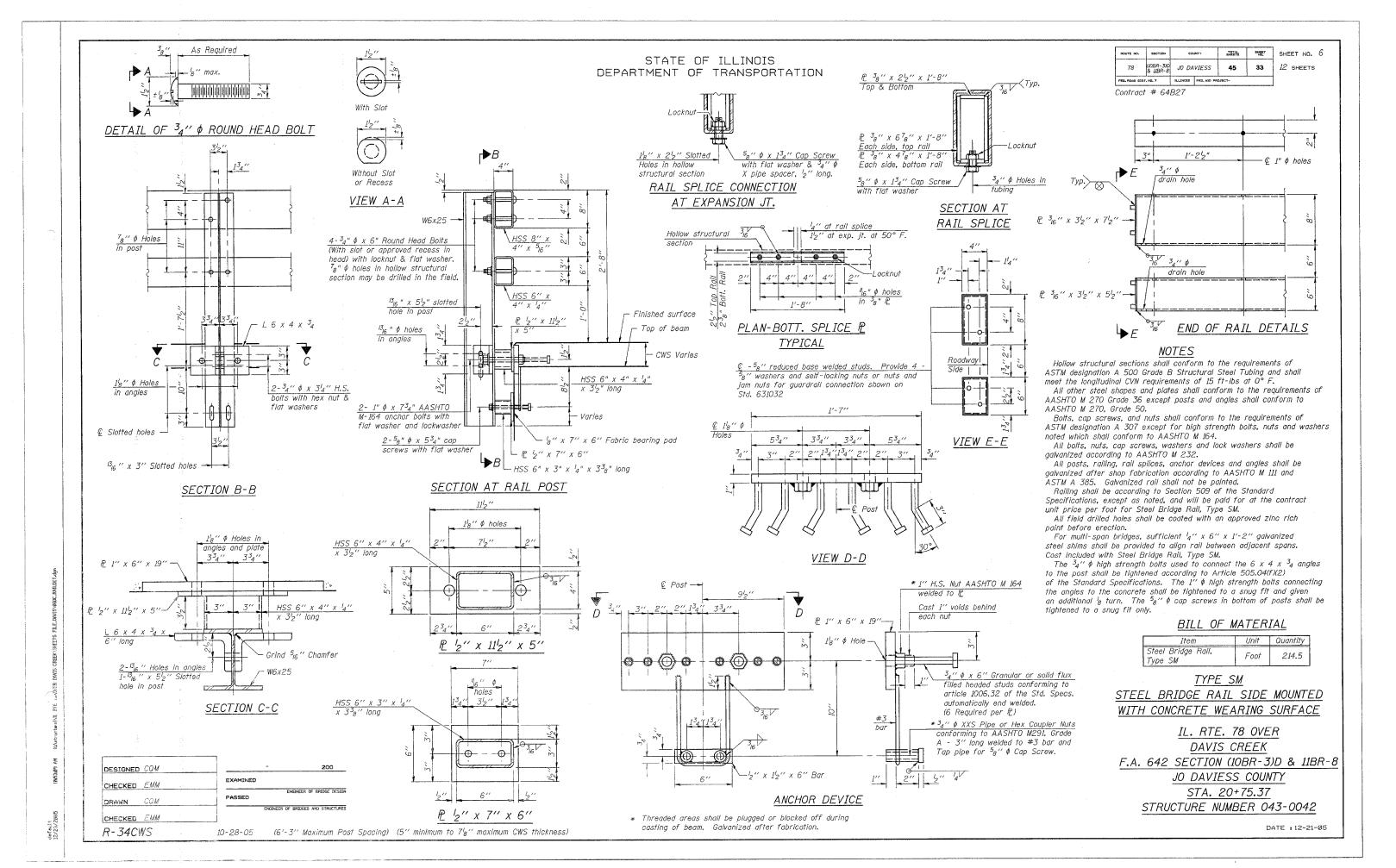
IL. RTE. 78 OVER

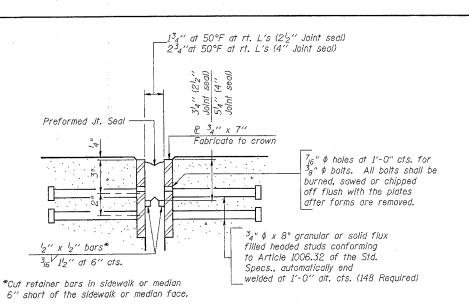
DAVIS CREEK


F.A. 642 SECTION (10BR-3)D & 11BR-8

JO DAVIESS COUNTY

STA. 20+75.37

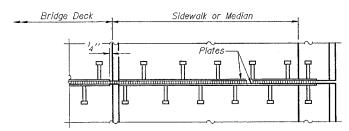

STRUCTURE NUMBER 043-0042


DATE : 12-21-05

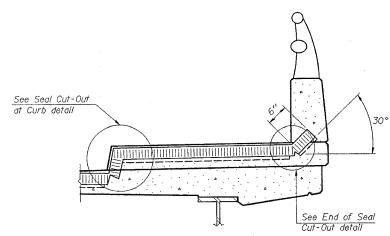
MASSAG AM KASTAMBANANI, RT. JADVER DAVIS CREEKSARETS FILE DAVISAGED.S

defeult 12723/2005

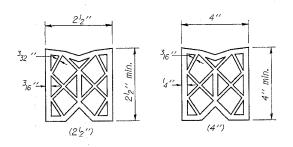
STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

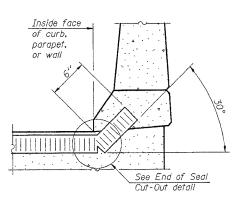

Bridge Joint	System (Expan	sion)
Design Movement	Required Preformed Joint Seal Size	Required Strip Seal Rated movement
1′′	212"	1''
1 ⁵ 8"	4''	2"

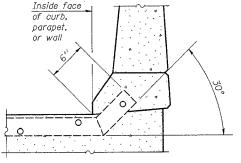
ROUTE NO.	SECTION	COUNTY		TOTAL SHEETS	SHEET NG.	SHEET NO.	7
78	(10BR-3)D & 11BR-8	JO DA	VIESS	45	34	12 ѕнеетѕ	
FED. ROAD DIST		ILLINOIS	FED. AID PR	DJECT-			


Contract # 64B27

GENERAL NOTES


Furnish steel plates in segments of 20 feet maximum length. Maximum space between installed segments shall be 3₁₆". Seal space with silicone sealant suitable for structural steel.


PLAN AT SIDEWALK OR MEDIAN


SECTION THRU EXPANSION JOINT (2¹2'' and 4'' joint seals)

PREFORMED JOINT SEAL

AT CURB, PARAPET, OR WALL (Showing seal)

AT CURB, PARAPET, OR WALL (Showing plate)

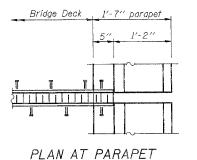
TYPICAL END TREATMENTS

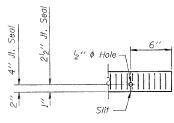
AT SIDEWALK OR MEDIAN*

(Showing plate and seal)

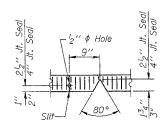
* Shorter plates with a single row of studs at 12" centers may be necessary on medians which are shallower than 9". See manufacturer's recommendation.

BILL OF MATERIAL


Unit	Total
foot	36
	0////


(Sheet 1 of 2)

BRIDGE JOINT SYSTEM - EXPANSION (PREFORMED JOINT SEAL)


IL. RTE. 78 OVER DAVIS CREEK F.A. 642 SECTION (10BR-3)D & 11BR-8 JO DAVIESS COUNTY STA. 20+75.37 STRUCTURE NUMBER 043-0042

DATE: 12-21-05

END OF SEAL CUT-OUT

SEAL CUT-OUT AT CURB

DESIGNED COM EXAMINED CHECKED EMM DRAWN COM ENGINEER OF BRIDGES AND STRUCTURES CHECKED- EMM 10-22-04

EJ-BJS

Locking Edge Rail

Top of slab typ typ

Contract # 64B27

GENERAL NOTES

The strip seal shall be made continuous and shall have a minimum thickness of ${}^{l}_{4}$ ". The configuration of the strip seal shall match the configuration of the Locking Edge Rails.

The height and thickness of the Locking Edge Ralls shown are minimum dimensions. The actual configuration of the Locking Edge Rails and matching strip seal may vary from manufacturer to manufacturer. Flanged edge rails will not be allowed.

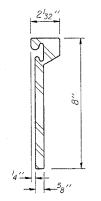
Locking Edge Rails may be spliced at slope discontinuities and stage construction joints.

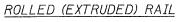
The manufacturer's recommended installation methods shall be followed.

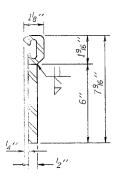
The joint opening and deck dimensions detailed on the superstructure are based on a preformed joint seal. If the contractor elects to use the alternate strip seal joint, the opening and deck dimensions shall be modified according to the dimensions detailed on this sheet. Required modifications shall be made at no additional cost to the State.

SECTION THRU ROLLED RAIL EXP. JOINT

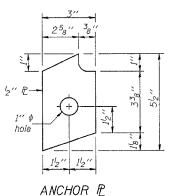
after forms are removed. (typ.)

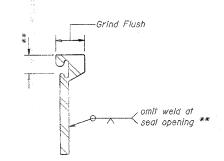

(186 Studs Required)


* Granular or solid flux filled headed studs conforming to Article 1006.32 of the Std. Specs., automatically end welded.

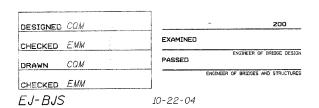

134"

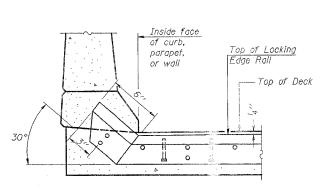
SECTION THRU WELDED RAIL EXP. JOINT

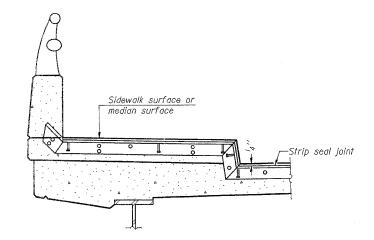

(112 Studs Required) (74 Anchor Plates Required)


WELDED RAIL

(for welded rail)


TYPICAL END TREATMENTS


LOCKING EDGE RAILS


LOCKING EDGE RAIL SPLICE

The inside of the locking edge rail groove shall be free of weld residue.

AT CURB, PARAPET, OR WALL

AT SIDEWALK OR MEDIAN*

* Shorter plates with a single row of studs at 12" centers may be necessary on medians which are shallower than 9". See manufacturer's recommendation.

(Sheet 2 of 2)

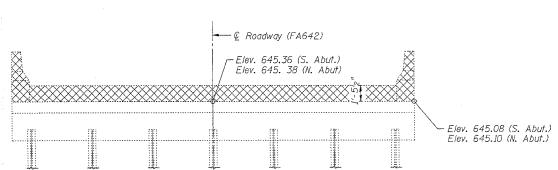
BRIDGE JOINT SYSTEM - EXPANSION
(ALTERNATE-STRIP SEAL)

IL. RTE. 78 OVER

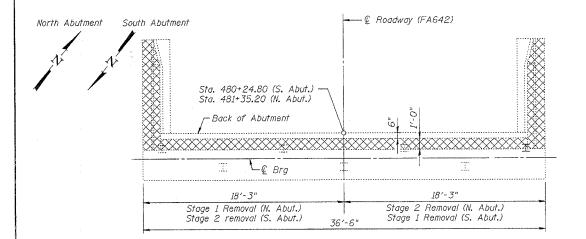
DAVIS CREEK

F.A. 642 SECTION (10BR-3)D & 11BR-8

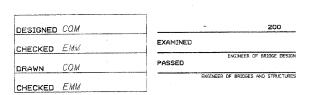
JO DAVIESS COUNTY

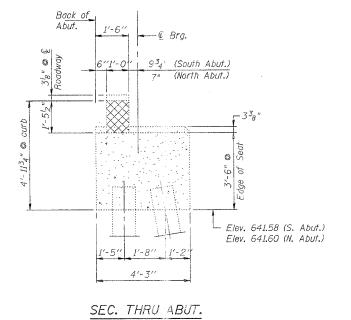

STA. 20+75.37

STRUCTURE NUMBER 043-0042


DATE :12-21-05

Contract # 64B27

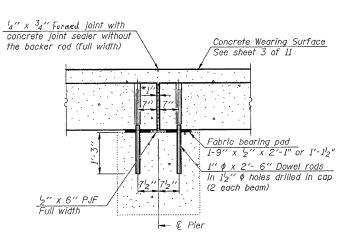

ABUTMENT ELEVATION



ABUTMENT PLAN

BILL OF MATERIAL

! Item	Unit	Total
Concrete Removal	Cu. Yd.	12.6



Fabric Bearing Pad 9"x ½"x ½"-0½" exterior edge of l₂" x 6 " PJF Full Width exterior beams € Brg. Burn existing dowel rods flush with existing— Pier cap surface. Grind existing dowel rods smooth and seal with epoxy. Cost is included with Precast Prestressed Concrete Deck Beams (17" Depth). Existing dowel rod spacing 3'-0" 17" x 36" PPC Deck Beams

PIER TOP PLAN (Pier 1 & 2)

-Fabric Bearing Pad 1- 9"x ½"x 2'-1" Interior (typ.)

SECTION A-A

*1" Jt. shall be filled with non-shrink grout. 1" dimension may vary to accommodate tolerance in beam lengths.

Notes :

Proposed dowel

rod spacing

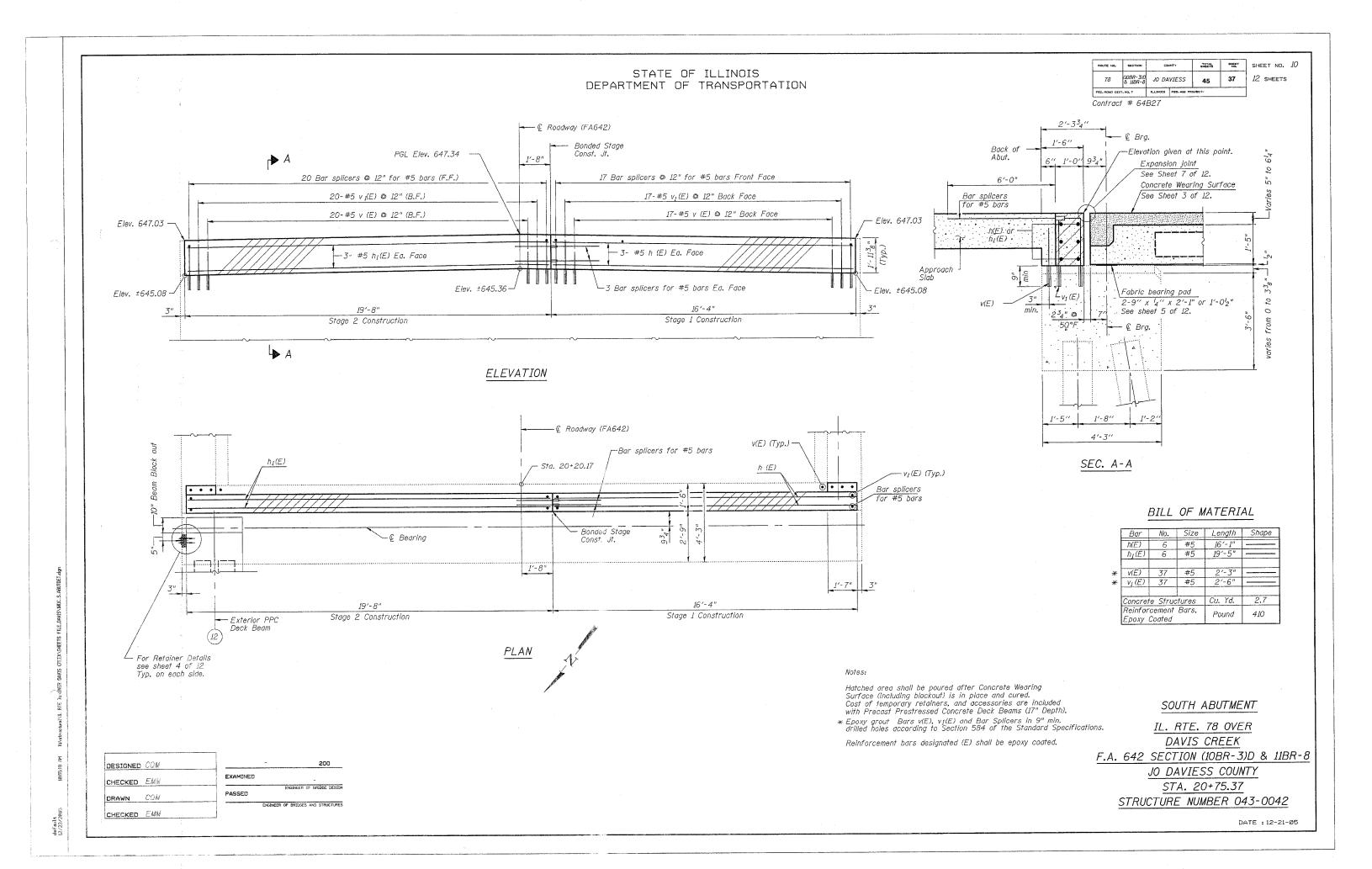
After beams have been erected, holes shall be drilled into substructure and anchor dowels placed. Dowel holes shall be filled with non-shrink grout to top of beam and allowed to cure min. 24 hrs. prior to grouting the shear keys.

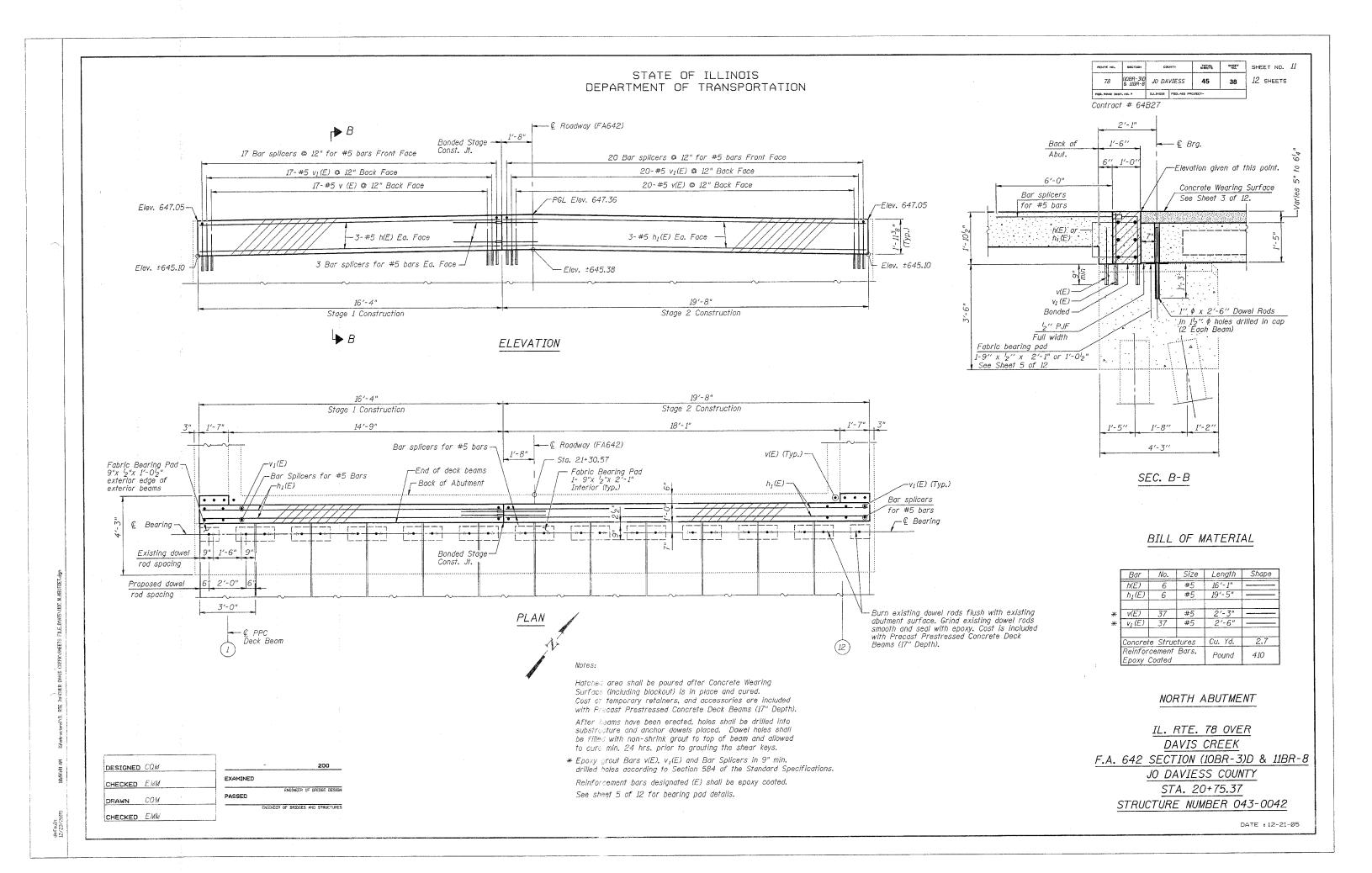
All horizontal dimensions are at right angles to beam ends.

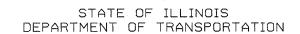
LEGEND

Concrete Removal

SUBSTRUCTURE CONCRETE REMOVAL


IL. RTE. 78 OVER DAVIS CREEK F.A. 642 SECTION (10BR-3)D & 11BR-8


JO DAVIESS COUNTY STA. 20+75.37


STRUCTURE NUMBER 043-0042

DATE :12-21-05

defoult 12/23/26

- Stage Construction Line

Threaded or Coil

Splicer Rods (E)

Template

Forms-

Contract # 64B27

NOTES

Bar splicer assemblies shall be of an approved type and shall develop in tension at least 125 percent of the yield strength of the lapped reinforcement bars.

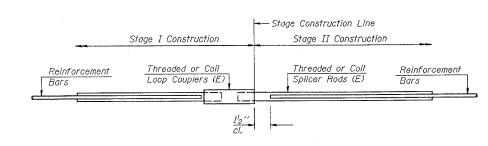
Splicer rods shall be of minimum 60 ksi yield strength, threaded or coiled full length. All reinforcement bars shall be lapped and fied to the splicer rods or dowel bars. Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars.

Other systems of similar design may be submitted to the Engineer for approval. Approval shall be based on certified test results from an approved testing laboratory that the proposed bar splicer assembly satisfies the following requirements:

Minimum Capacity = 1.25 x fy x A_t

Minimum *Pull-out Strength = 1.25 x fs_{allow} x A_t

(Tension in kips)

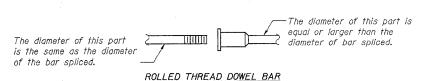

Where fy = Yield strength of lapped reinforcement bars in ksi. fs_{allow}= Allowable tensile stress in lapped reinforcement bars in ksi (Service Load)

A_t = Tensile stress area of lapped reinforcement bars.

* = 28 day concrete

BAR SPLICER ASSEMBLIES					
		Strength Requirements			
Bar Size to be Spliced	Splicer Rod or Dowel Bar Length		Min. Pull-Out Strength kips - tension		
#4	1'-8''	14.7	5.9		
#5	2'-0''	23.0	9.2		
#6	2′-7′′	33.1	13.3		
#7	3′-5″	45.1	18.0		
#8	4'-6''	58.9	23.6		
#9	5'-9"	75.0	30.0		
#10	7′-3′′	95.0	38.0		
#11	9'-0''	117.4	46.8		

Bar splicer assemblies shall be according to Section 508 of the Standard Specifications, except as noted. The furnishing and installation of bar splicer assemblies will be measured and paid for at the contract unit price each for "BAR SPLICERS."


STANDARD

Bar Size	No. Assemblies Required	Location		
#4	108	Deck		
#5	3	Deck Bm. Block out		
#5	6	South Abutment		
#5	6	North Abutment		

BAR SPLICER ASSEMBLY DETAILS

IL. RTE. 78 OVER DAVIS CREEK F.A. 642 SECTION (10BR-3)D & 11BR-8 JO DAVIESS COUNTY STA. 20+75.37 STRUCTURE NUMBER 043-0042

DATE : 12-21-05

** ONE PIECE - Wire Connector Viritiiii

WELDED SECTIONS

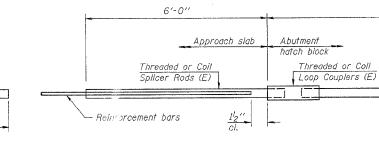
BAR SPLICER ASSEMBLY ALTERNATIVES ** Heavy Hex Nuts conforming to ASTM A 563, Grade C, D or DH may be used.

Bridge Deck

4'-0"

Threaded or Coil

Loop Couplers (E)


<u>"B"</u> INSTALLATION AND SETTING METHODS

Washer Face

"A "

"A": Set bar splicer assembly by means of a template bolt. "B": Set bar splicer assembly by nailing to wood forms or cementing to steel forms.

(E): Indicates epoxy coating.

FOR INTEGRAL OR SEMI-INTEGRAL ABUTMENTS

Approach Slab

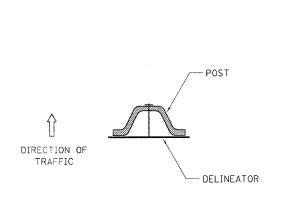
6'-0"

Threaded or Coil

Splicer Rods (E)

	Bar	Splicer	for #	5 bar		
Min.	Capacity	= 23.0	kips -	tensi	on	
Min.	Pull-out	Strength	= 9.2	kips	-	tension
No.	Required	=				

DESIGNED COM 200 EXAMINED CHECKED EMM ENGINEER OF BRIDGE DESIGN PASSED DRAWN COM CHECKED EMM BSD-1 10-22-04


Reinforcement

Bars

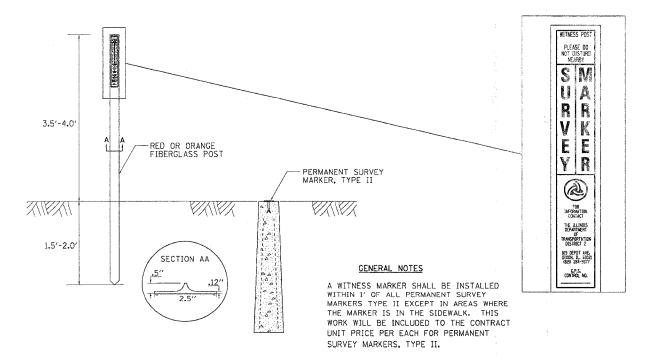
Bar Splicer for #5 bar Min. Capacity = 23.0 kips - tension Min. Pull-out Strength = 9.2 kips - tension No. Required = 74

FOR PILE BENT ABUTMENTS

DELINEATOR AND POST ORIENTATION

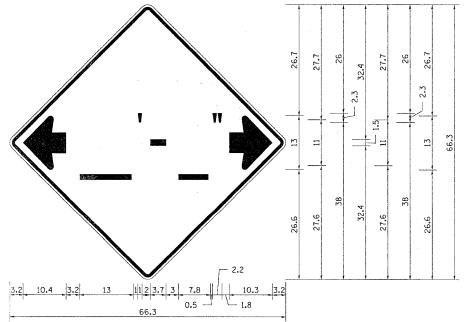
DELINEATORS SHALL BE INSTALLED ACCORDING TO STANDARD 635001 EXCEPT THAT THE POST SHALL BE ROTATED 180°. THE POST WILL HAVE THE WIDE SIDE FACING TRAFFIC AND THE DELINEATOR ATTACHECD AS SHOWN ABOVE.

ALL DIMENSIONS ARE IN MILLIMETERS (INCHES) UNLESS OTHERWISE NOTED.


SECTION D-D

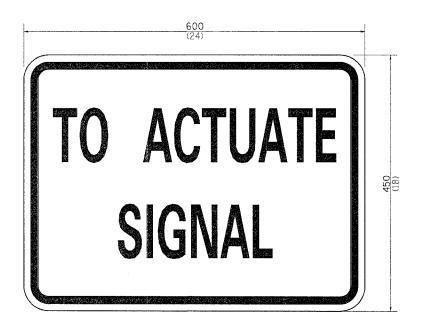
DELINEATOR AND POST ORIENTATION

37.4


WITNESS MARKER FOR PERMANENT SURVEY MARKERS TYPE II

WITNESS MARKER FOR PERMANENT SURVEY MARKERS TYPE II

INFORMATIONAL WARNING SIGN (FOR NARROW TRAVEL LANES)



W12-2 - Horizontal Clearance Sign 48.0" across sides, 1.9" Radius, 0.8" Border, 0.5" Indent, Black on Orange; Standard Arrow Custom 10.4" X 8.1" 180° Black 11 Inch D Series Lettering; Standard Arrow Custom 10.4" X 8.1" 0°

All work to furnish and install these signs shall be included in the cost of the Traffic Control Standards and shall not be paid for separately.

ALL DIMENSIONS ARE IN INCHES UNLESS OTHERWISE NOTED.

STOP LINE SIGN FOR TEMPORARY SIGNALS

SIZE: $600(24) \times 450(18)$

100(4) CAPITAL LETTERS - BLACK

13 (1/2) BORDER - BLACK

WHITE REFLECTIVE - TYPE B ENGINEERING GRADE SHEETING

GENERAL NOTE:

THIS SIGN SHALL BE INSTALLED AT THE STOP LINE AS DIRECTED BY ENGINEER.

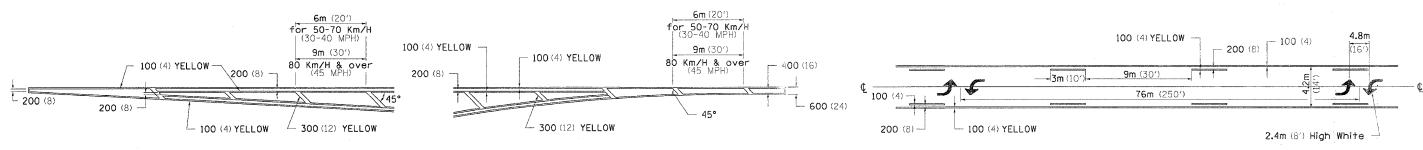
ALL DIMENSIONS ARE IN MILLIMETERS (INCHES) UNLESS OTHERWISE NOTED.

INFORMATIONAL WARNING SIGN (FOR NARROW TRAVEL LANES) 39.4

STOP LINE SIGN FOR TEMPORARY SIGNALS

99.4

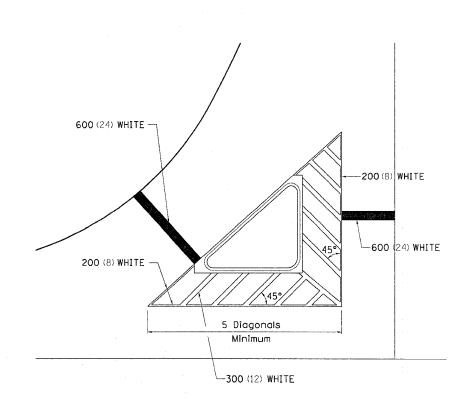
REVISED 6-29-05

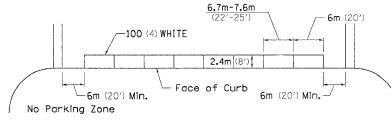

REVISED 8-7-90

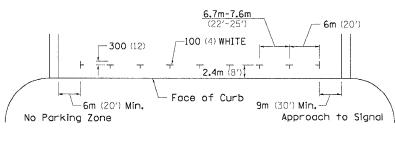
TYPICAL PAVEMENT MARKINGS

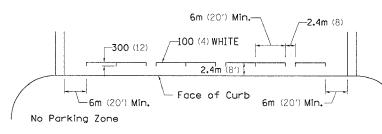
			CONT	RACT N	10. 846	32
	F.A.P. RTE.	SECTION	COUNTY	TOTAL	SHEET NO.	
	642	(10BR-3)D	JODAVIESS	45	41	
STA.		11BR-8	TO STA.			
	FED. RO	O DIST. NO. ILLIN	NOIS FED. AID	PROJECT		

TYPICAL PAVEMENT MARKING FOR FLUSH MEDIAN

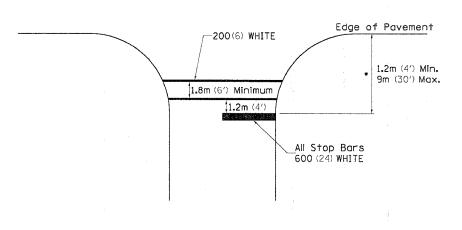

MEDIAN PAVEMENT MARKING

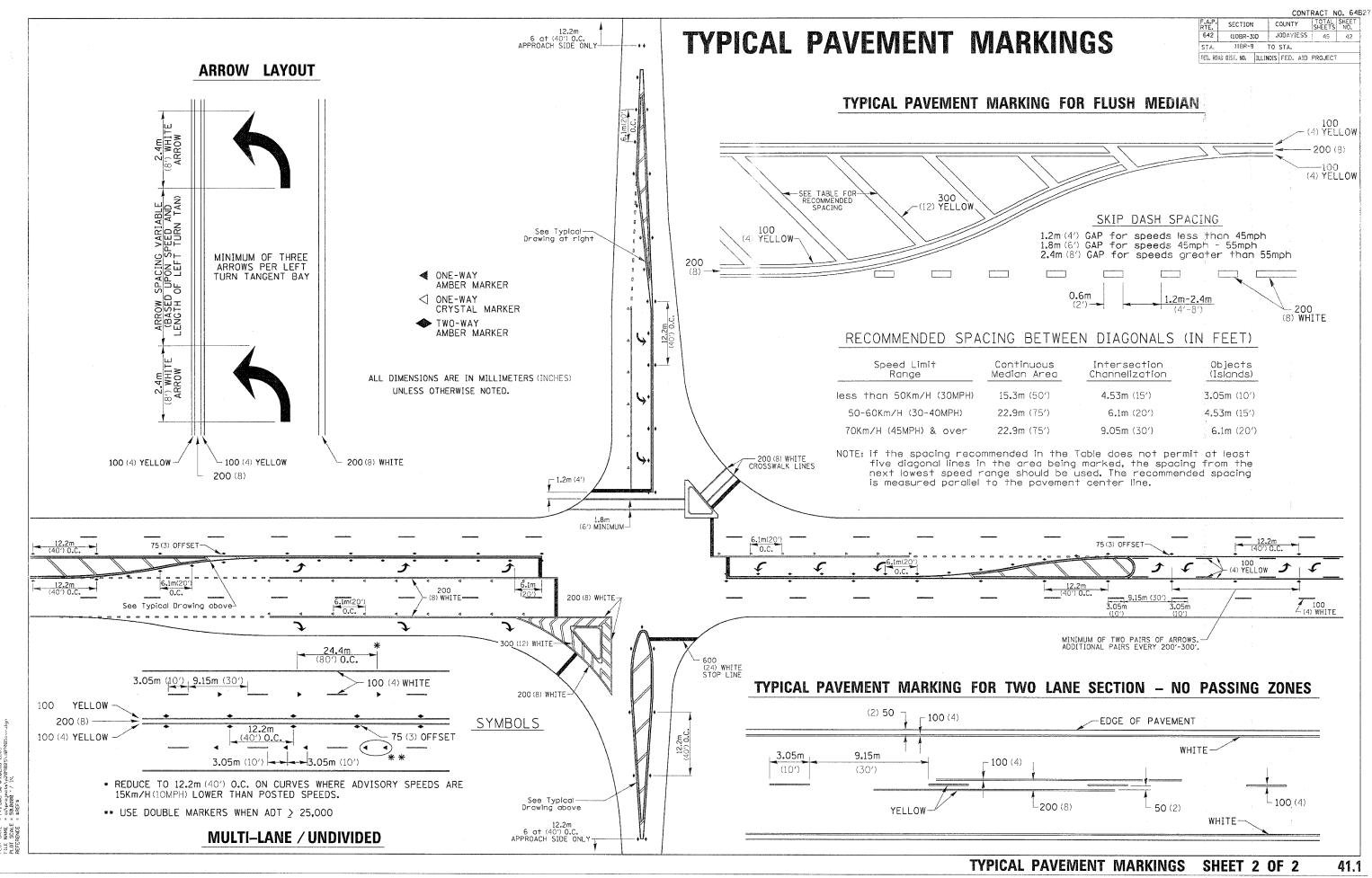


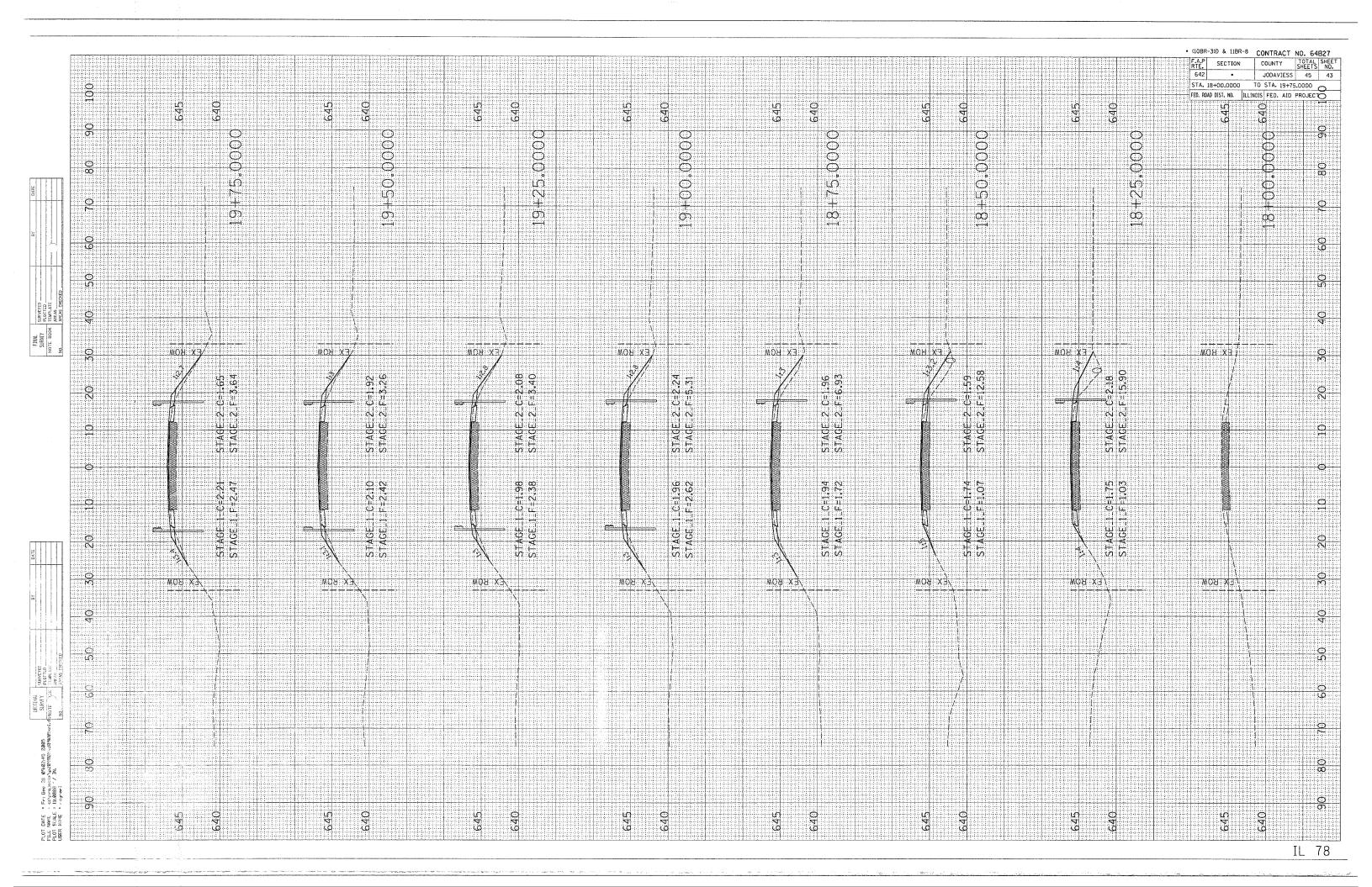

TYPICAL ISLAND OFFSET SHOULDER WIDTH

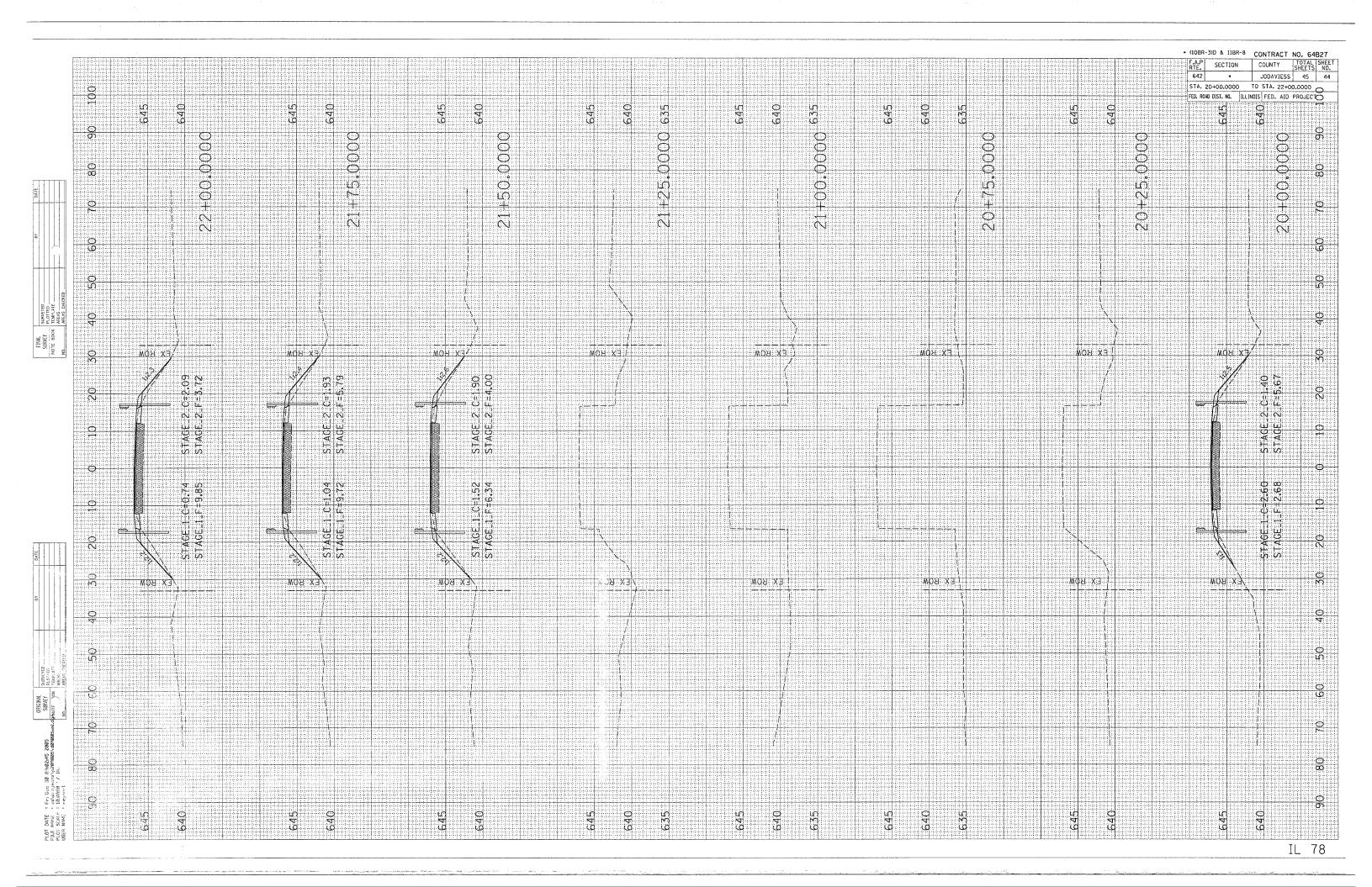

TYPICAL PARKING SPACING

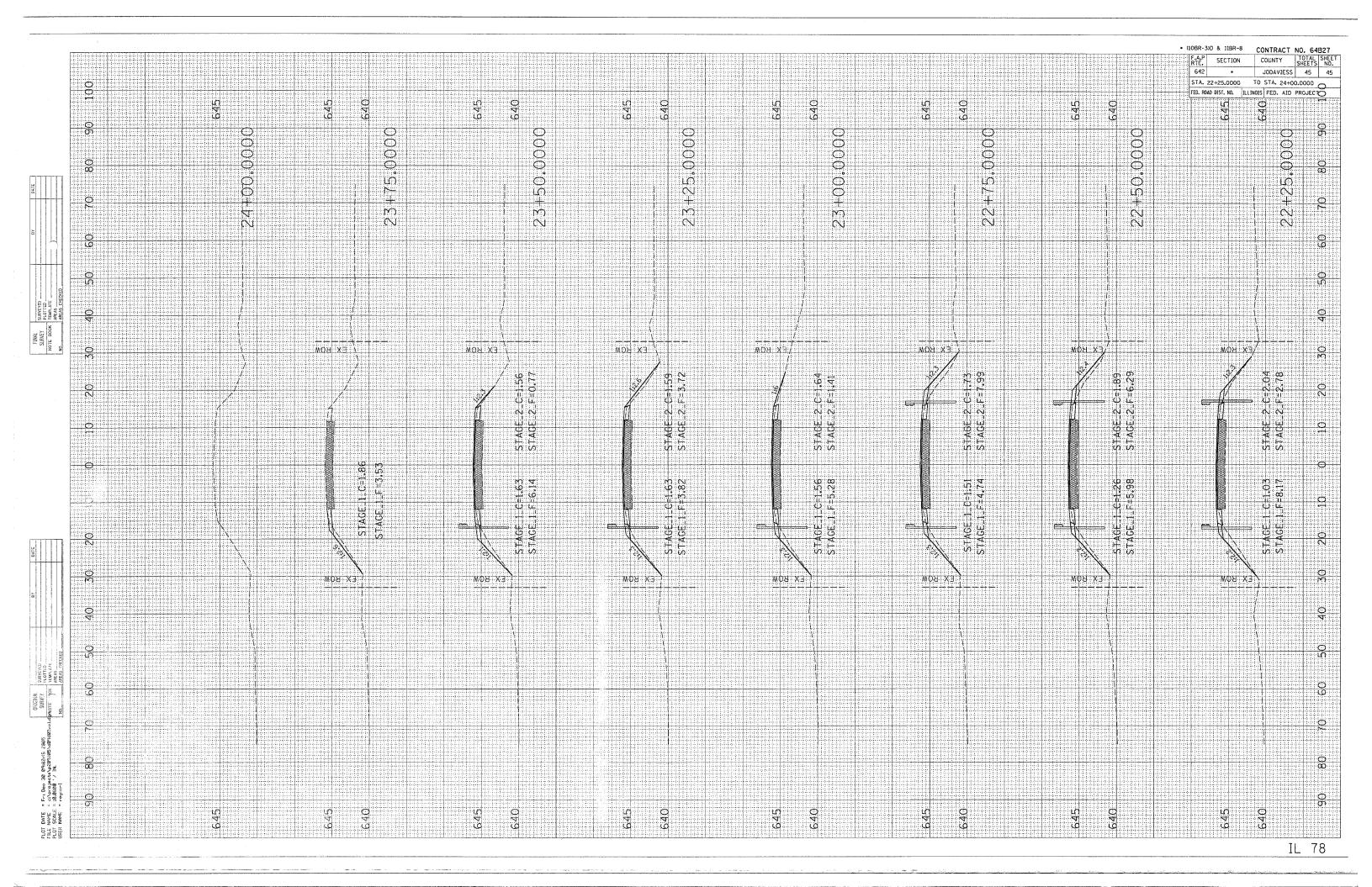
** ALL DIMENSIONS ARE IN MILLIMETERS (INCHES) UNLESS OTHERWISE NOTED.






STANDARD CROSSWALK MARKING See Schedules for Locations




· Distance to the nearest edge of the intersecting roadway in the absence of a marked crosswalk.

REVISED 10-15-04

