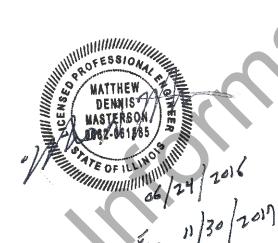
STRUCTURE GEOTECHNICAL REPORT

US Route 150 over BNSF RR

Existing S.N. 048-0013 Proposed S.N. 048-0096

F.A.S. ROUTE 2401 SECTION (40V-1)BR KNOX COUNTY, ILLINOIS CONTRACT NO. 68800 PTB 148/17 WO#2 KEG NO. 08-0054.02


Authored By: Matthew D. Masterson, P.E. &

Charles R. Graham Kaskaskia Engineering Group, LLC 208 East Main Street, Suite 100 Belleville, IL 62220 (618)233-5877 mmasterson@kaskaskiaeng.com

Prepared for: Allen Henderson & Associates 907 South 4th Street Springfield, IL 62703

> February 22, 2016 Revised June 24, 2016

Kaskaskia Engineering Group, LLC

EXECUTIVE SUMMARY

US 150 over BNSF RR F.A.S. 2401 Section (40V-1) BR Knox County, Illinois Contract No. 68800 PTB 148/17 WO #2 Existing Structure No. 048-0013 Proposed Structure No. 0048-0096

The project consists of a complete bridge replacement of the existing structure (S.N 048-0013) located at US Route 150 over BNSF RR. The project is located 1.2 miles southeast of Galesburg in Knox County, Illinois.

According to the settlement calculations performed, approximately 3.6 inches of settlement could occur under the new north abutment bridge cone and approach embankment, and approximately 1 inch of settlement under the southern approach embankment. The proposed location for the south abutment is inside the footprint of the existing structure, requiring minimal amounts of new fill material, and settlement is not anticipated to be a concern. The majority of the settlement is anticipated to occur in the upper 30 ft. of the soil profile. KEG recommends allowing settlement completion prior to installation of the piles for the north abutment. Pile capacity estimates have also been provided with respect to potential pre-core methods for the North Abutment, and/or the effects of downdrag for the North and South Abutment embankments depending upon final development of the construction schedule with respect to the potential settlement.

The results of the slope stability analysis indicate that an acceptable FOS will exist at the north and south abutments, and the approach embankment side-slopes during all three conditions.

TABLE OF CONTENTS

1.0	Project Description and Proposed Structure Information1
1.1	Introduction1
1.2	Project Description1
1.3	Existing Bridge Information1
1.4	Proposed Bridge Information1
2.0	Site Investigation, Subsurface Exploration, and Generalized Subsurface Conditions1
2.1	Subsurface Conditions2
2.2	Groundwater3
3.0	Geotechnical Evaluations
3.1	Settlement4
3.2	Slope Stability
3.3	Seismic Considerations
3.4	Scour6
3.5	Mining Activity6
3.6	Liquefaction
4.0	Foundation Evaluations and Design Recommendations7
4.1	General Feasibility7
4.2	Pile Supported Foundations7
4.3	Lateral Pile Response16
5.0	Construction Considerations
5.1	Construction Activities
5.2	Temporary Sheeting and Soil Retention18
5.3	Site and Soil Conditions
5.4	Foundation Construction19
6.0	Computations
7.0	Geotechnical Data
8.0	Limitations

TABLES

<u>Page</u>

Table 2.0 – Boring Summary	2
Table 2.1 – Estimated Top of Rock	
Table 2.2 – Groundwater Elevations	3
Table 3.1 – North Abutment Settlement Estimate Times Utilizing Wick Drains	4
Table 3.2 – Slope Stability Critical FOS	5
Table 3.3 – Summary of Seismic Parameters	
Table 4.2.1– Estimated Pile Lengths for Steel HP 10X42	
Table 4.2.2 – Estimated Pile Lengths for Steel HP 12X53	9
Table 4.2.3 – Estimated Pile Lengths for Steel HP 12X74	
Table 4.2.4 – Estimated Pile Lengths for Steel HP 14X73	. 11
Table 4.2.5 – Estimated Pile Lengths for Steel HP 14X117	
Table 4.2.6 – Estimated Pile Lengths for Pre-Core Option at North Abutment	.13
Table 4.2.7 – Estimated Pile Lengths for North Abutment with Downdrag	.14
Table 4.2.8 – Estimated Pile Lengths for South Abutment with Downdrag	. 15
Table 4.3 – Soil Parameters for Lateral Pile Load Analysis	

EXHIBITS

- Exhibit A USGS Topographic Location Map
- Exhibit B Type, Size, and Location Plan (TS&L)
- Exhibit C Boring Logs
- Exhibit D Subsurface Profile
- Exhibit E Wick Drain Detail Exhibit F SLOPE-W Slope Stability Analysis
- Exhibit G Pile Length/Pile Type

1.0 **Project Description and Proposed Structure Information**

1.1 Introduction

The geotechnical study summarized in this report was performed for the proposed structure at US Route 150 (FAS 2401) over the BNSF Railroad in Knox County, Illinois. The purpose of this report is to present design and construction recommendations for the proposed structure.

1.2 **Project Description**

The project consists of a complete bridge replacement of the existing structure (S.N 048-0013) located at US Route 150 over BNSF RR. The project is located 1.2 miles southeast of Galesburg in Knox County, Illinois. The general location of the structure is shown on a United States Geological Survey (USGS) Topographic Location Map, Exhibit A. The site lies within the limits of the Fourth Principal Meridian (Sec. 19, T11N, R2E) in the Till Plains Section, specifically the Galesburg Plain.

1.3 Existing Bridge Information

The original three-span, reinforced concrete T-beam superstructure was constructed in 1927. In 1977, the original reinforced concrete T-beam superstructure was removed and replaced with pre-cast prestressed concrete (PPC) deck beams. Eight PPC beams were replaced in 2008 due to critical conditions. The existing structure consisted of a superstructure 133 ft. - 7.5 in. back-to-back of abutments, with a 33 ft. out-to-out width. The structure was constructed with a 30 degree skew. The superstructure was supported by stub abutments and two intermediate piers founded on metal shell piles.

The Bridge Condition Report (BCR), dated October 23, 2008, recommends complete structure replacement due to the age and condition of the structure including the poor condition of the existing PPC beams and the insufficient horizontal clearance between the centerline of the track and substructure units.

1.4 Proposed Bridge Information

The proposed structure will consist of a three-span bridge. The structure will be built on a 40 degree skew. The proposed centerline of the structure will be at Station 65+83.27 (US Route 150). The proposed structure will consist of Integral Abutments, with an overall length of 190 ft. back-to-back abutments. The proposed structure will contain 12 ft. driving lanes with 6 ft. shoulders on both the northbound and southbound lanes with an out-to-out width of 39 ft.-2 in. Further substructure details will be based on the findings of this SGR. The structure will be built under road closure, and traffic detoured during construction.

2.0 Site Investigation, Subsurface Exploration, and Generalized Subsurface Conditions

The original site investigation plan was determined by KEG and approved by IDOT District 4 geotechnical personnel and Allen Henderson & Associates, Inc. A KEG representative was present during the first phase of the drilling operations to log the subsurface conditions. After discussion of the initial SGR findings with Allen Henderson & Associates and IDOT, a second phase of drilling was recommended consisting of four additional borings. A KEG representative was not present during the second phase of drilling.

Four Standard Penetration Test (SPT) borings, designated B-1, B-2, B-3, and B-4 were drilled between December 28, 2009 and March 3, 2010. Two additional SPT borings and two Shelby Tube borings, designated B-18, B-18ST, B-19, and B-19ST were drilled in October 2015 The boring locations are shown on the Type, Size, and Location (TS&L) Plan, Exhibit B, as provided by Allen Henderson & Associates. Detailed information regarding the nature and thickness of the soils encountered and the results of the field sampling and laboratory testing are shown on the Boring Logs, Exhibit C. A soil profile can be found under Subsurface Profile, Exhibit D.

Boring Location	Station	Offset (ft.)	Ground Surface Elevation (ft.)
B-1	67+40	13.3 LT	797.5
B-2	65+00	13.0 RT	797.2
B-3	66+50	30.0 RT	785.5
B-4	65+90	30.0 LT	786.1
B-18	64+40	60.0 RT	772.8
B-18ST	64+45	60.0 RT	772.8
B-19	68+00	58.0 LT	772.3
B-19ST	67+95	58.0 LT	772.3

2.1 Subsurface Conditions

Generally at Borings B-1 and B-2, approximately 23 ft. of clay and silty clay fill material was encountered before multiple layers of medium-stiff clays and silty clays were encountered from approximate El. 775 to El. 750. A small sand layer was encountered at the north abutment (Boring B-2) from El. 754 to El. 750. In both borings, the sand and sandy clay layer was followed by approximately 5 to 7 ft. of stiff silt before transitioning to a sandy clay at approximate El. 742. At Boring B-1, the profile continued with stiff clay until auger refusal in clayey shale at El. 729.0. A 5-foot rock core sample was retrieved from this borehole, with the rock identified as siltstone. The rock core information indicates recovery of 98 percent. The Rock Quality Designation (RQD) value was 93 percent. Moisture content of the rock core ranged from 9 to 10 percent. The Rock Core Log is included in Boring Logs, Exhibit C. Boring B-2 was advanced 6.2 feet into the clayey shale until the boring terminated at El. 722.5, with consecutive 50 blows per 1 to 2 inches of penetration.

The profiles at the pier borings, Borings B-3 and B-4, showed approximately 3 to 5 ft. of silty clay fill material followed by approximately 15 to 20 ft. of medium-stiff to stiff silty clay and sandy clay. At approximate EI. 765, a 15 to 17 ft. layer of silt was encountered which then transitioned to a sandy clay material from approximate EI. 750 until clayey shale was reached at EI. 738.1, respectively. Borings B-3 and B-4 were advanced 11 to 12 feet into the clayey shale until the borings were terminated at approximate EI. 726.7 and EI. 727.3, with consecutive 50 blows per 1 to 3 inches of penetration. No rock coring was conducted in these borings.

The profile at Boring B-18 had approximately 16.5 ft. of silty clay material. This material varied from very stiff, to medium stiff, and back to very stiff with trace sand. At El. 756.3, the material transitioned to a stiff clayey silt, until El. 752.8. At this elevation, a small sand and gravel layer was encountered until El. 751.3. A hard silt with trace sand followed until El. 748.8. This transitioned into a loose silty sand until El. 746.3. A layer of stiff silt followed to El. 742.8. Medium dense sand and gravel followed until El. 734.3. This transitioned into silty clay with trace sand and gravel until boring termination, at El. 732.3.

The profile at Boring B-19 had approximately 11.5 ft. of silty clay loam to silty loam that was medium stiff to stiff. A stiff silty clay to clay followed to El. 758.3. A stiff clay loam (till) followed to El. 755.0. A small layer of sandy clay followed to El. 754.3. A stiff clay loam (till) with sand seams followed to El. 750.8. A small layer of stiff silty loam followed to El. 749.8. A stiff silt followed to El. 743.8, where the material then transitioned into a very stiff clay loam (till) until boring termination at El. 731.8.

Table 2.1 shows the estimated top of rock elevations for Borings B-1, B-2, B-3, and B-4.

Boring	Bedrock Elevation (ft.)
B-1	729.5
B-2	728.7
B-3	738.7
B-4	738.1

Table 2.1 – Estimated T	op of	Rock
-------------------------	-------	------

2.2 Groundwater

Groundwater was encountered during drilling at all boring locations. The groundwater elevations were recorded upon completion of the borings. An extended groundwater reading was taken after 24 hours at Boring B-4, after 120 hours at Boring B-18, and after 144 hours at Boring B-19. It should be noted that the groundwater level is subject to seasonal and climatic variations. In addition, without extended periods of observation, measurement of true groundwater levels may not be possible.

Table 2.2 – Groundwater Elevations

Boring	Elevation (ft.)
B-1	759.0
B-2	763.7
B-3	774.5
B-4	770.1
D-4	777.1 (after 24 hr.)
B-18	748.8
B-10	763.1 (after 120 hr.)
B-19	755.1
D-19	761.2 (after 144 hr.)

3.0 Geotechnical Evaluations

3.1 Settlement

The proposed structure will require new approach embankments and bridge cone for the north abutment and new approach embankments from the south, which will place an additional load on the soil profile. Due to the nature of the soils encountered in the borings and an estimated maximum fill height of approximately 28 ft. at the north abutment and 20 ft. for the southern approach embankment, settlement calculations were necessary. The proposed location for the south abutment is inside the footprint of the existing structure and embankment, requiring minimal amounts of new fill material, and settlement is not anticipated to be a concern.

A settlement analysis was performed using Boring B-18 (north abutment) and B-19 (south embankment), soil parameters from laboratory testing including consolidation testing provided by Terracon, and the dimensions of the proposed embankments at Station 64+50 and 68+00, as provided by Allen Henderson & Associates, to calculate the applied loads on the soil profile. The subsurface profile generally consists of soft to medium-stiff clays and silty clays. According to the settlement calculations performed, approximately 3.6-inches of settlement could occur under the new north abutment bridge cone and approach embankment, and approximately 1-inch of settlement under the southern approach embankment. The majority of the settlement is anticipated to occur in the upper 30 ft. of the soil profile.

KEG has estimated settlement times using consolidation data provided by Terracon. The time rate of consolidation estimates for the north bridge cone and approach embankment suggest that half of the calculated settlement, t_{50} , will occur over a period of 2 months, and 90 percent of the settlement, t_{90} , will occur over 8 months. KEG also estimated a T_{70} time of 4 months, which represents the time when less than an inch of the overall calculated settlement should be remaining. Times were also calculated utilizing wick drains on 3 ft. triangular spacings under the north abutment bridge cone and approach embankment, assuming the drains were extended a minimum of 25 ft. below the existing ground surface, and extend from beneath the north abutment from Station 65+00 to Station 60+50. The results are shown in Table 3.1. It should be noted that while the drains help reduce the time for consolidation settlement, they will not reduce the magnitude of settlement. See Exhibit E, Wick Drain Detail, for additional information.

Scenario	T₅₀	T ₇₀	T₃₀
	(days)	(days)	(days)
3' Triangular Spacing	10	21	45

Table 3.1 – North Abutment Settlement Estimate Times Utilizing Wick	Drains
Tuble off The automatic Cottlement Estimate Thirde Stilling The	Diamo

Settlement platforms placed at the toes of the existing approach embankment side-slopes prior to and during embankment construction should be considered for monitoring of settlement during construction. KEG recommends allowing settlement completion prior to installation of the piles for the north abutment. Due to potential downdrag effects, pile capacities with respect to precoring of the piles and downdrag have also been included in this report with respect to the north abutment.

3.2 Slope Stability

The construction of the new structure will result in new endslopes at the abutment locations, and new approach embankment sideslopes.

The proposed endslopes are a 1 vertical to 2 horizontal (1V:2H) slope, to the toe. The proposed new approach embankments are a 1V:2H slope from the roadbed to the toe. Slope stability of the endslopes and sideslopes were analyzed using SLOPE-W; the soil properties at the site, including those in Borings B-1 and B-2; and the endslope and sideslope geometrics. The maximum proposed embankment height of approximately 30 ft. at Station 64+50 was used for the sideslope analyses. In the embankment sideslope stability model, a 250 pounds per cubic foot vertical surcharge load was included to simulate the roadway and traffic loads. Three conditions were modeled: end-of-construction, long-term, and a design seismic event. A critical factor of safety (FOS) was calculated for each condition. According to current standards of practice, the target FOS is 1.5 for end-of-construction and long-term slope stability and 1.0 for the design seismic event.

In order to model the end-of-construction condition, undrained soil parameters were used with a friction angle of 0 degrees assumed for cohesive soils. Drained soil parameters with an assumed friction angle of 26 to 34 degrees was used to model the long-term and seismic conditions and to analyze the condition where excess pore water pressure from construction has dissipated. For clay and silty clay materials, a nominal cohesion value of 50 to 100 psf was included in the drained strength parameters.

The Modified Bishop Method, which generates circular-arc failure surfaces, was used to calculate the critical failure surfaces and FOS for the analyzed conditions. The FOS obtained in the analysis are shown in Table 3.2. SLOPE-W program output from this analysis can be found in SLOPE-W Slope Stability Analysis, Exhibit F.

Location	Slope	End-of- Construction	Long Term	Seismic
North Abutment	1V:2H	2.3	1.7	1.5
South Abutment	1V:2H	2.9	1.7	1.6
Approach Embankment Sideslopes	1V:2H	1.5	1.5	1.3

Table 3.2 -	Slope	Stability	Critical FOS

The results of the analysis, as provided in Table 3.2, indicates that an acceptable FOS will exist at the north and south abutments, and the approach embankment sidelopes during all three conditions.

3.3 Seismic Considerations

The determination of Seismic Site Class was based on the method described by IDOT AGMU Memo 09.1 - Seismic Site Class Definition and the IDOT-provided spreadsheet titled: *Seismic*

Site Class Determination. Using these resources, the controlling global site class for this project is Soil Site Class D.

Additional seismic parameters were calculated for use in design of the structure and evaluation of liquefaction potential. The USGS published information and mapping (<u>http://earthquake.usgs.gov/</u>), including software directly applicable to the *AASHTO Guide Specifications for LRFD Seismic Bridge Design*, was used to develop the parameters for the project site location. The values, based on a 1000-Year Return Period with a Probability of Exceedance (PE) of 7 percent in 75 years and Soil Site Class D, are summarized below.

Table 3.3 – Summary of Seismic Parameters

Parameter	Value
Soil Site Class	D
Spectral Response Acceleration, 0.2 Sec, S _{DS}	0.151g (Site Class D)
Spectral Response Acceleration, 1.0 Sec, S _{D1}	0.101g (Site Class D)
Seismic Performance Zone	1

As indicated in the table above, the Seismic Performance Zone is 1, based on S_{D1} and Table 3.15.2-1 in the IDOT Bridge Manual, the Soil Site Class D, and Figure 2.3.10-4 in the IDOT Bridge Manual.

3.4 Scour

Scour is not anticipated for the structure, since it is not spanning a waterway.

3.5 Mining Activity

The Illinois State Geological Survey (ISGS) website indicates that coal mining has occurred in Knox County. According to the Knox County, Illinois Coal Mines and Underground Industrial Mines Map, dated January 28, 2015, obtained from the Illinois Geological Survey website (<u>http://www.isgs.illinois.edu/maps-data-pub/coal-maps.shtml</u>), the project site was not undermined.

The listed disclaimer indicates the locations of some features on the mine map may be offset by 500 ft. or more due to errors in the original source maps, the compilation process, digitizing, or a combination of these factors.

No visual indications were noted on the boring logs of apparent depressions, which could be due to mine subsidence or shafts beneath the site.

3.6 Liquefaction

A liquefaction analysis is not required to be performed since the project is in a Seismic Performance Zone 1 as per IDOT Bridge Manual and AGMU 10.1 – Liquefaction Analysis.

Liquefaction was not considered as a reduction for the pile design capacity or other foundation considerations included herein.

4.0 Foundation Evaluations and Design Recommendations

4.1 General Feasibility

According to the IDOT All Bridge Designers (ABD) Memo 12.3 dated July 25, 2012 by IDOT, 14 in. Metal Shell and HP 10X42 or larger H-piles are feasible pile types for foundation support of the proposed Integral Abutments. The average shear strength within the critical depth zone at the north and south abutments is 1.24 and 2.18 tsf, respectively. Even though Metal Shell piles are a feasible option according to ABD Memo 12.3, Metal Shell piles are not able to achieve appreciable bearing without being driven to a close proximity of bedrock and potentially damaging the pile. Therefore, Metal Shell piles should not be utilized at the proposed structure location.

4.2 Pile Supported Foundations

The foundations supporting the proposed bridge must provide sufficient support to resist dead and live loads, including seismic loadings. Based on the encountered subsurface conditions, the Modified IDOT Static Method of Estimating Pile Length provided by IDOT BBS Foundations and Geotechnical Unit, and the information available to date, KEG recommends using Steel H-piles at the abutment and intermediate Pier locations. The Modified IDOT Static Method uses the LRFD Pile Design Guide Procedure to estimate the pile lengths (Pile Length/Pile Type, Exhibit G).

The abutment and intermediate pier loads were provided by Allen Henderson & Associates. The Strength 1 Factored load were 975 kips at the abutments and approximately 4,500 kips at the piers. The estimated pile lengths for the recommended pile type are shown in Tables 4.2.1 - 4.2.8, below.

The Nominal Required Bearing (R_N) represents the resistance the pile will experience during driving, and will assist the contractor in selecting a proper hammer size. The Factored Resistance Available (R_F) documents the net long-term axial factored pile capacity available at the top of the pile to support factored substructure loadings.

KEG recommends allowing settlement completion prior to installation of the piles for the north abutment. Due to potential downdrag effects, pile capacities with respect to pre-coring of the piles have been included below for the North Abutment in Table 4.2.6 – Estimated Pile Lengths for Pre-Core Option at North Abutment. Pile capacities including the effects of downdrag are also included in Tables 4.2.7 and 4.2.8 below for the north and south abutment locations.

	Estimated Pile Tip Elevation (ft.)	R _□ Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
	732.2	175	96	65	797.2
North	728.2	251	138	69	797.2
Abutment	727.2	292	161	70	797.2
	726.2	335	184	71	797.2
	737.0	170	93	34	771.0
Pier 1	736.0	230	127	35	771.0
	735.0	275	151	36	771.0
	734.0	335	184	37	771.0
	737.0	107	107	34	771.0
Pier 2	736.0	138	138	35	771.0
	735.0	292	160	36	771.0
	734.0	335	184	37	771.0
	735.96	210	115	61	796.9
South	730.96	291	160	66	796.9
Abutment	729.96	311	171	67	796.9
	728.96	335	184	68	796.9

Table 4.2.1 – Estimated Pile Lengths for Steel HP 10X42

	Estimated Pile Tip Elevation (ft.)	R _□ Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
	732.2	218	120	65	797.2
North	728.2	306	168	69	797.2
Abutment	727.2	372	205	70	797.2
	726.2	418	230	71	797.2
	737.0	203	112	34	771.0
Pier 1	736.0	275	151	35	771.0
	735.0	348	191	36	771.0
	734.0	418	230	37	771.0
	737.0	233	128	34	771.0
Pier 2	736.0	305	168	35	771.0
1.012	735.0	371	204	36	771.0
	734.0	418	230	37	771.0
	740.96	226	124	56	796.9
South	735.96	259	143	61	796.9
Abutment	730.96	370	204	66	796.9
	729.96	418	230	67	796.9

Table 4.2.2 – Estimated Pile Lengths for Steel HP 12X53

	Estimated Pile Tip Elevation (ft.)	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
	726.2	433	238	71	797.2
North	725.2	483	266	72	797.2
Abutment	724.2	534	294	73	797.2
	723.2	589	324	74	797.2
	734.0	424	233	37	771.0
Pier 1	733.0	475	261	38	771.0
	732.0	525	289	39	771.0
	731.0	589	324	40	771.0
	734.0	432	238	37	771.0
Pier 2	733.0	483	265	38	771.0
11012	732.0	533	293	39	771.0
	731.0	589	324	40	771.0
	728.96	456	251	68	796.9
South	727.96	507	279	69	796.9
Abutment	726.96	557	306	70	796.9
	725.96	589	324	71	796.9

Table 4.2.3 – Estimated Pile Lengths for Steel HP 12X74

	Estimated Pile Tip Elevation (ft.)	R₀ Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
	728.2	371	204	69	797.2
North	727.2	457	252	70	797.2
Abutment	726.2	526	289	71	797.2
	725.2	578	318	72	797.2
	736.0	333	183	35	771.0
Pier 1	735.0	420	231	36	771.0
	734.0	516	284	37	771.0
	733.0	578	318	38	771.0
	736.0	369	203	35	771.0
Pier 2	735.0	456	251	36	771.0
	734.0	525	289	37	771.0
	733.0	578	318	38	771.0
	735.96	317	174	61	796.9
South	730.96	454	250	66	796.9
Abutment	729.96	495	272	67	796.9
	728.96	578	318	68	796.9

Table 4.2.4 – Estimated Pile Lengths for Steel HP 14X73

	Estimated Pile Tip Elevation (ft.)	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
	725.2	609	335	72	797.2
North	724.2	670	368	73	797.2
Abutment	723.2	730	401	74	797.2
	722.2	929	511	75	797.2
	731.0	719	396	40	771.0
Pier 1	730.0	780	429	41	771.0
	729.0	840	462	42	771.0
	728.0	870	479	43	771.0
	731.0	729	401	40	771.0
Pier 2	730.0	789	434	41	771.0
	729.0	850	467	42	771.0
	728.0	929	511	43	771.0
	726.96	697	384	70	796.9
South	725.96	788	433	71	796.9
Abutment	724.96	833	458	72	796.9
	723.96	929	511	73	796.9

Table 4.2.5 – Estimated Pile Lengths for Steel HP 14X117

As previously mentioned, KEG recommends allowing settlement completion prior to installation of the piles for the north abutment. Another option would be pre-coring the piles at the north abutment location to below the cohesive soils affected by the settlement. KEG estimated the compressible zone under the north abutment to extend from El. 768.8 to El. 761.0. If the pre-core option is utilized, pile capacities and compatible lengths will have to be selected. KEG recommends a minimum pre-core hole-diameter that extends approximately 2-inches on each side of the H-pile diagonal.

	Estimated Pile Tip Elevation (ft.)	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
	727.2	181	99	70	797.2
HP	726.2	241	133	71	797.2
10X42	725.2	282	155	72	797.2
	724.2	335	184	73	797.2
	727.2	216	119	70	797.2
HP	726.2	289	159	71	797.2
12X53	725.2	360	198	72	797.2
	724.2	410	225	73	797.2
	724.2	421	231	73	797.2
HP	723.2	471	259	74	797.2
12X74	722.2	522	287	75	797.2
	721.2	589	324	76	797.2
	726.2	349	192	71	797.2
HP	725.2	436	240	72	797.2
14X73	724.2	512	282	73	797.2
	723.2	578	318	74	797.2
	722.2	655	360	75	797.2
НР	721.2	715	393	76	797.2
14X117	720.2	776	427	77	797.2
	719.2	929	511	78	797.2

Table 4.2.6 – Estimated Pile Lengths for Pre-Core Option at North Abutment

If a waiting period is not applicable due to time constraints and pre-coring is not utilized, the following tables provide estimated pile lengths and capacities taking into account downdrag forces. For the pile length estimates below, downdrag forces will impact the factored resistance of the pile to elevation 761.3.

	Estimated Pile Tip Elevation (ft.)	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
	728.2	251	0	69	797.2
HP 10X42	727.2	292	8	70	797.2
	726.2	334	31	71	797.2
	732.2	218	0	65	797.2
HP	728.2	306	0	69	797.2
12X53	727.2	372	21	70	797.2
	726.2	418	47	71	797.2
	726.2	433	51	71	797.2
HP	725.2	483	79	72	797.2
12X74	724.2	534	107	73	797.2
	723.2	589	137	74	797.2
	728.2	371	0	69	797.2
HP	727.2	457	35	70	797.2
14X73	726.2	526	72	71	797.2
	725.2	578	101	72	797.2
	723.2	730	177	74	797.2
HP	722.2	790	211	75	797.2
14X117	721.2	851	244	76	797.2
	720.2	929	287	77	797.2

Table 4.2.7– Estimated Pile Lengths for North Abutment with Downdrag

	Estimated Pile Tip Elevation (ft.)	R _n Nominal Required Bearing (kips)	R⊧ Factored Resistance Available (LRFD) (kips)	Estimated Pile Length (ft.)	Assumed Pile Cut-off Elevation (ft.)
	732.2	210	0	65	797.2
HP	731.2	291	8	66	797.2
10X42	730.2	311	20	67	797.2
	729.0	335	33	68	797.2
	736.2	259	0	61	797.2
HP	731.2	370	21	66	797.2
12X53	730.2	395	35	67	797.2
	729.2	418	47	68	797.2
	729.2	456	65	68	797.2
HP	7282	507	93	69	797.2
12X74	727.2	557	120	70	797.2
	726.2	589	138	71	797.2
	731.2	454	34	66	797.2
HP	730.2	495	56	67	797.2
14X73	729.2	553	88	68	797.2
	728.2	578	102	69	797.2
	726.2	764	197	71	797.2
HP	725.2	839	239	72	797.2
14X117	724.2	885	264	73	797.2
	723.	929	288	74	797.2

Table 4.2.8 – Estimated Pile Lengths for South Abutment with Downdrag

KEG recommends a test pile be performed at both abutment locations. A test pile is performed prior to production driving so that actual, on-site field data can be gathered to further evaluate pile driving requirements for the project. This also is the manner in which the contractor's proposed equipment and methodologies identified in their Pile Installation Plan can be assessed. In KEG's opinion, pile shoes should not be required. The boring logs do not indicate any abrupt changes

in anticipated driving conditions or the presence of hard rock.

4.3 Lateral Pile Response

Generally, the geotechnical engineer provides soil parameters to the structural engineer so that an L-Pile program or other approved software can be used for the lateral or displacement analysis of the foundations. Table 4.3 is included for the structural engineer's use in evaluating lateral pile response. The values were estimated based on the descriptions as listed on the boring logs. No specific hydrometer analyses were performed on the site soils for estimation of parameters.

	Elev. At		Sho	rt-term	Lon	g-term			Assume	
Boring	Bottom of Layer	Y (pcf)	C' (psf)	Ф (degrees)	C ⁷ (psf)	Ф (degrees)	K (pci)	N	d % fines < #200	<mark>٤</mark> 50
	794.5	125	1500	0	100	26	500	5	85	0.007
	784.5	125	1830	0	100	26	500	6	85	0.007
	782.0	125	1300	0	100	26	500	4	85	0.007
	779.5	120	1700	0	100	26	500	6	65	0.007
	774.5	125	1300	0	100	26	500	5	85	0.007
B-1 South	772.0	120	1300	0	100	26	500	8	65	0.007
Abutment	764.5	125	1550	0	100	26	500	7	85	0.007
	759.0	120	900	0	50	26	100	7	65	0.010
	745.5	125	1433	0	100	26	500	10	85	0.007
	740.5	115	1100	0	100	28	500	19	60	0.007
	735.5	115	2700	0	100	28	1000	17	60	0.005
	729.5	125	3100	0	100	26	1000	21	85	0.005
	729.0	125	6000	12	6000	12	2000	100	n/a	0.004

Table 4.3 – Soil Parameters for Lateral Pile Load Analysis

	Elev. At		Sho	rt-term	Lon	g-term			Assume	
Boring	Bottom of Layer	Y (pcf)	C' (psf)	Ф (degrees)	C' (psf)	Ф (degrees)	K (pci)	N	d % fines < #200	<mark>٤</mark> 50
	772.3	125	1500	0	100	26	500	12	85	0.007
	768.8	120	2500	0	100	26	1000	7	80	0.005
	761.3	120	730	0	50	26	100	7	80	0.010
	756.3	120	2900	0	100	26	1000	13	80	0.005
B-18	752.8	115	2000	0	100	28	1000	13	65	0.005
North Abutment	751.3	110	0	32	0	32	90	9	3	n/a
	748.8	115	4500	0	100	28	2000	20	65	0.004
	746.3	110	0	32	0	32	20	7	10	n/a
	742.8	115	1500	0	100	28	500	11	65	0.007
	734.3	110	0	33	0	33	60	13	3	n/a
	732.3	120	4500	0	100	26	2000	12	80	0.004
	780.0	120	750	0	50	26	100	11	65	0.010
	770.0	120	725	0	50	26	100	7	65	0.010
	767.5	125	700	0	50	26	100	8	85	0.010
	765.0	120	1300	0	100	26	500	8	65	0.007
B-3 Pier 2	763.0	115	1900	0	100	28	500	12	60	0.007
	748.5	115	350	0	50	28	30	23	60	0.020
	743.5	120	2000	0	100	26	1000	19	65	0.005
	738.7	125	2600	0	100	26	1000	18	85	0.005
	726.7	125	6000	12	6000	12	2000	100+	n/a	0.004
B-4	783.1	120	800	0	50	26	100	8	65	0.010
Pier 1	780.6	125	1600	0	100	26	500	9	85	0.007

	Elev. At		Sho	Short-term		Long-term			Assume	
Boring	Bottom of Layer g	Y (pcf)	C' (psf)	Ф (degrees)	C' (psf)	Ф (degrees)	K (pci)	N	d % fines < #200	٤ ₅₀
	778.1	120	100	0	50	26	30	3	65	0.020
	770.6	120	800	0	50	26	100	6	65	0.010
	768.1	125	2600	0	100	26	1000	15	85	0.005
B-4	765.6	120	300	0	50	28	30	5	25	0.020
Pier 1	763.1	115	2500	0	100	28	1000	14	60	0.005
	750.1	115	400	0	50	28	30	16	60	0.020
	744.1	120	500	0	50	28	100	21	25	0.010
	738.1	125	2200	0	100	26	1000	24	85	0.005
	727.3	125	6000	12	6000	12	2000	100+	n/a	0.004

5.0 Construction Considerations

5.1 Construction Activities

Construction activities should be performed in accordance with the current IDOT Standard Specifications for Road and Bridge Construction and any pertinent Special Provisions or Policies.

5.2 Temporary Sheeting and Soil Retention

As per BNSF Railway-Union Pacific Railroad "Guidelines for Railroad Grade Separation Projects", shoring will be required for the construction of the proposed piers. The average unconfined compressive strength for the assumed embedment depth of 16 ft. at Pier 1 is 1.1 tsf and Pier 2 is 0.9 tsf. Due to the anticipated loads from the railroad and back slope, temporary sheet piling will not be feasible, and a Temporary Soil Retention System will be required. An Illinois-licensed structural engineer is required to seal the design of the Temporary Soil Retention System. The design must conform to all current AREMA design requirements and BNSF Railway-Union Pacific Railroad "Guidelines for Railroad Grade Separation Projects".

5.3 Site and Soil Conditions

Should any bridge or embankment design considerations assumed by either IDOT or KEG change, KEG should be contacted to determine if the recommendations stated in this report still apply.

5.4 Foundation Construction

Conventional pile-driving equipment and methodologies should be assumed.

Prior to construction, a JULIE locate shall be conducted to determine if any underground utilities are present in the area of the proposed structure. IDOT shall also be contacted to locate any private utilities. If utilities become a problem during construction, the appropriate owner shall be contacted immediately.

6.0 Computations

Computations and analyses for special circumstances, if any, are included as exhibits. Please refer to each section of the report for reference to the exhibit containing any such calculations or analysis used.

7.0 Geotechnical Data

Soil boring logs can be found in Exhibit C. The Subsurface Profile can be found in Exhibit D.

8.0 Limitations

The recommendations provided herein are for the exclusive use of Allen Henderson & Associates and IDOT. They are specific only to the project described and are based on the subsurface information obtained by KEG and Terracon at eight boring locations. KEG's understanding of the project as described herein, and geotechnical engineering practice consistent with the standard of care. No other warranty is expressed or implied. KEG should be contacted if conditions encountered during construction are not consistent with those described.

EXHIBIT A

USGS TOPOGRAPHIC LOCATION MAP

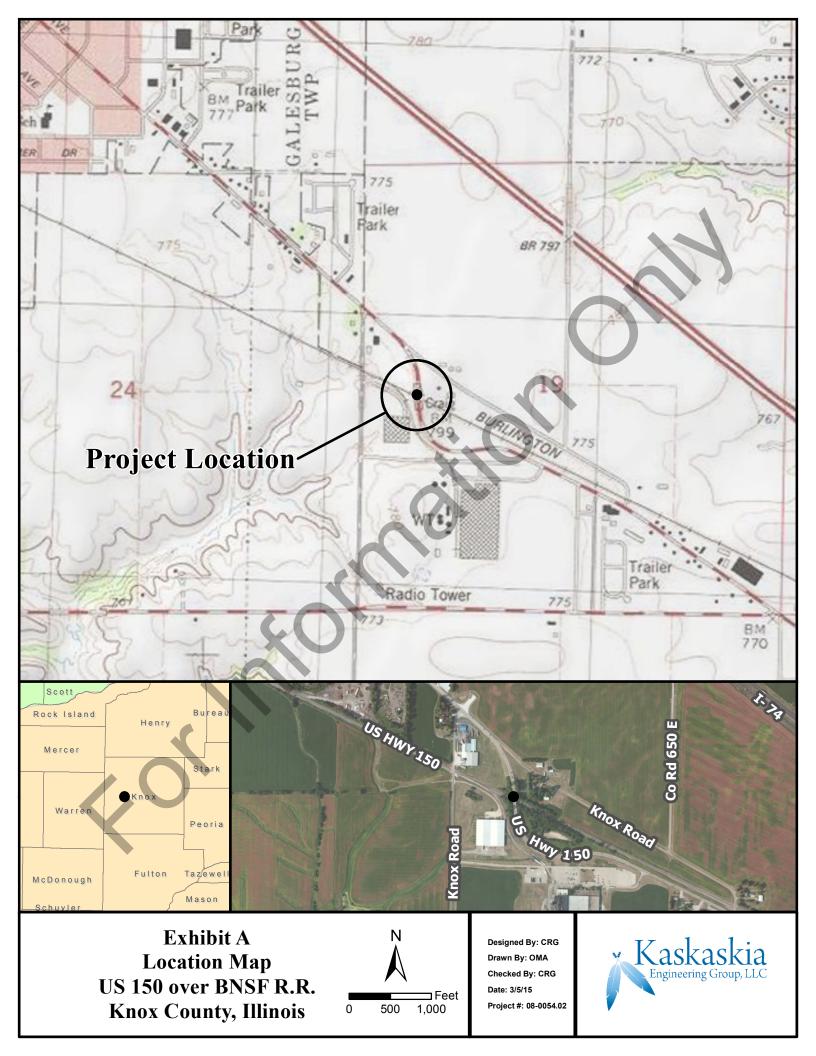
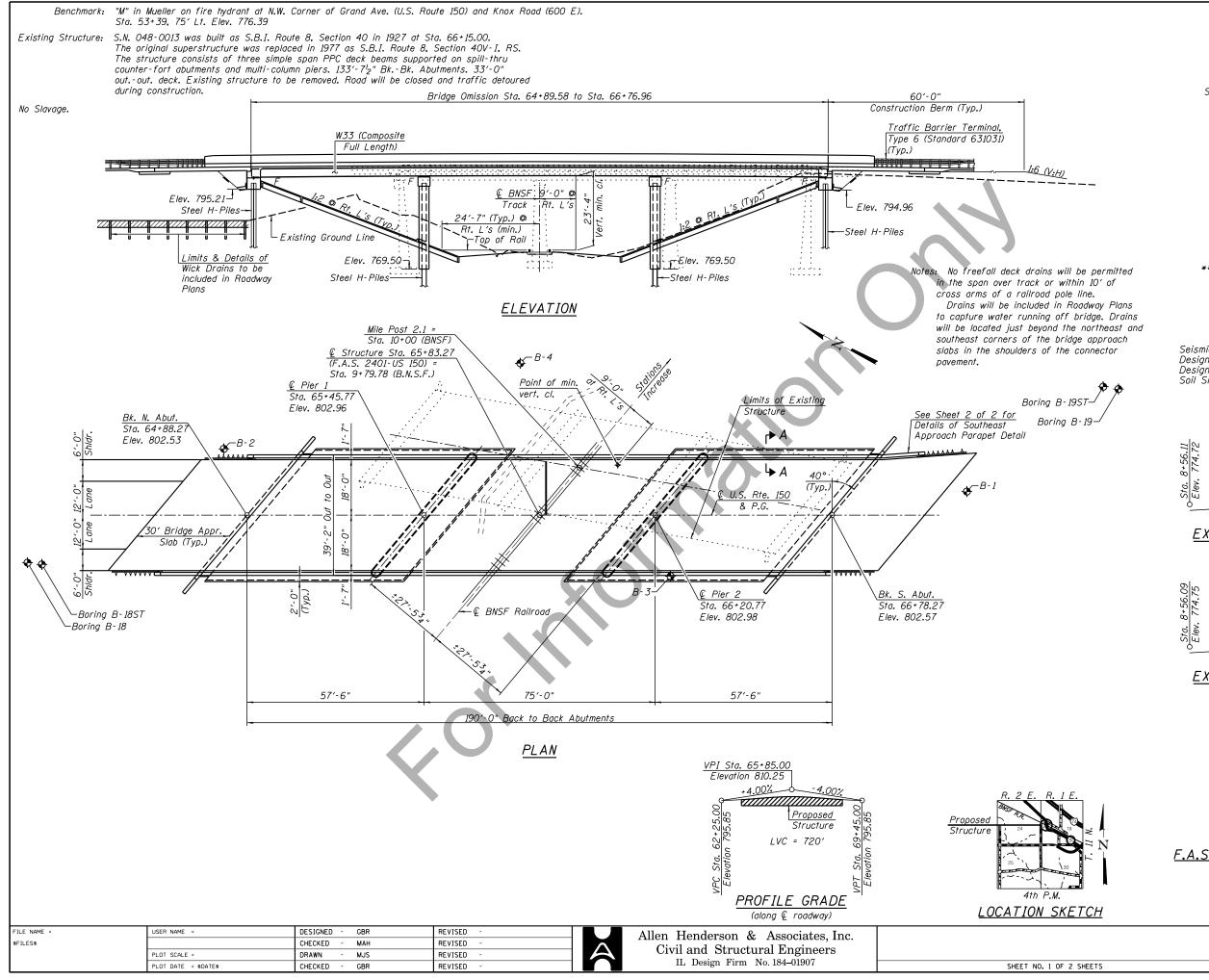



EXHIBIT B

TYPE, SIZE, AND LOCATION PLAN (TS&L)

HIGHWAY CLASSIFICATION

F.A.S. Route 2401 - U.S. Rte. 150 Functional Class: Minor Arterial ADT: 4,450 (2014); 5650 (2037) ADTT: 375 (2014); 476 (2037) DHV: 565 (2037) Speed: 45 m.p.h. (posted); 50 m.p.h. (design) Directional Distribution: 50:50 Two-Way Traffic

LOADING HL 93

Allow 50#/sq. ft. for future wearing surface. DESIGN SPECIFICATIONS

2014 AASHTO LRFD Bridge Design Specifications, 7th Edition.

DESIGN STRESSES FIELD UNITS

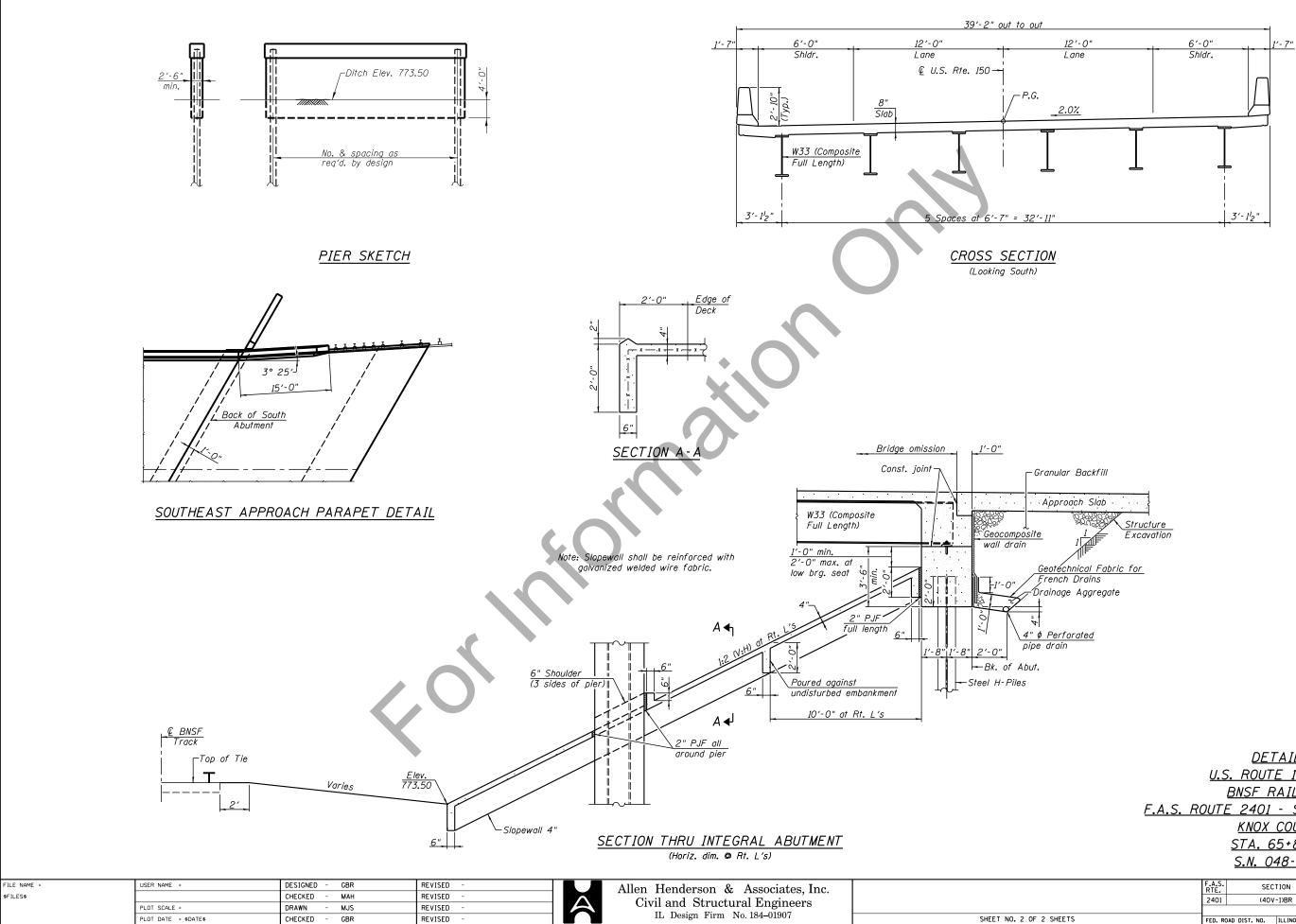
f'c = 3,500 psi f'c = 4,000 psi (superstructure concrete) f_y = 60,000 psi (reinforcement) ** f_v = 50.000 psi (M270 Grade 50)

> ** All new structural steel shall be galvanized.

SEISMIC DATA

Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0 sec. $(S_{DI}) = 0.101g$ Design Spectral Acceleration at 0.2 sec. $(S_{DI}) = 0.101g$ Design Spectral Acceleration at 0.2 sec. $(S_{DS}) = 0.151g$ Soil Site Class = D

o <u>5ta. 8+56.11</u>	Sta. 9+00.41	<u>51a. 9+48.97</u>	<u>Sta. 10+44.97</u>	Sta. 10+94.28	Octa, 11+43.12
6 <u>Elev. 774.72</u>	Elev. 774.98	Elev. 775.27	Elev. 775.68	Elev. 775.88	Elev, 776.08


EXISTING TOP OF RAIL ELEVAIONS (North Rail Along BNSF Track)

Sta. 8+56.09 Elev. 774.75 Sta. 9+00.22 Elev. 775.01 Sta. 9+49.33 Elev. 775.31 Sta. 10+44.90 Elev. 775.75 Elev. 775.75	0 <u>51a. 11+43.05</u> Elev. 776.11	
---	--	--

EXISTING TOP OF RAIL ELEVAIONS (South Rail Along BNSF Track)

GENERAL PLAN & ELEVATION U.S. ROUTE 150 OVER BNSF RAILROAD F.A.S. ROUTE 2401 - SECTION (40V-1)BR KNOX COUNTY STA. 65+83.27 S.N. 048-0096

F.A.S. RTE.		SEC	TION		COUNTY	TOTAL SHEETS	SHEET NO.
2401		(40)	-1)BR		KNOX		
					CONTRACT	NO. 6	8800
FED. RC	AD DIST.	NO.	ILLINOIS	FED. AIL	PROJECT		

	F.A.S RTE.	5.		SEC	TION			COUNTY	TOTAL SHEETS	SHEET NO.
	240	1		(40)	-1)BR			KNOX		
								CONTRACT	NO. 6	8800
2 SHEETS	FED.	ROAD	DIST.	NO.	ILLINOIS	FED.	AID	PROJECT		

EXHIBIT C BORING LOGS

Illinois Department of Transportation Division of Highways SCI Engineering SOIL BORING LOG

Page <u>1</u> of <u>2</u>

Date 3/2/10

ROUTE	FAS 2401 D	ESCR	IPTION	I	U	S Route 150 over BNSF R.R.	L	OGGE	ED BY	K	EG
SECTION	(40V-1) BR				Galest Latitu	burg, SEC. 19, TWP. 11N, RNG. 2E, de ,Longitude					
COUNTY	Knox DRILLI	NG ME				HSA HAMMER	TYPE		Auto	matic	
Station	048-0013 (existing) 66+15.00	D E P	L O	U C S	M O I	Surface Water Elev Stream Bed Elev	_ ft _ ft	DEP	0	U C S	M O I
Station Offset	B-1 (S. Abut.) 67+40 13.3 ft Lt	Н	S			Groundwater Elev.: First Encounter 759.0 Upon Completion	ft		W S	Qu	S T
Ground Surfa	ice Elev. 797.5 f	t (ft)	(/6")	(tsf)	(%)	After Hrs	_ ft	(ft)	(/6")	(tsf)	(%)
CONCRETE -		_	-			FILL: Dark brown and gray, clay (A-7) (continued)		_			
FILL: Dark bro crushed rock (A-7)			5 2 3	1.5 P	23	Becomes dark brown			1 2 4	1.6 B	31
FILL: Brown and (A-7)	nd gray, clay	.5	-			SILTY CLAY: Dark brown, trace sand	7 <u>74.5</u>				
			3 2 2	1.5 B	28	(A-6)			1 3 5	1.3 B	31
Becomes da	ark brown		2	2.0		CLAY: Gray (A-7)	772.0	·	3	2.0	
			35	8	26				4 5	B	30
Becomes br	rown and gray	-10	3 2 4	2.0 B	26	Becomes gray and brown		-30	1 1 3	1.1 B	28
Becomes da brown	ark brown and	_	3	3.2 B	34						
			4			SILTY CLAY: Gray and brown	764.5				
Becomes da	\mathbf{O}^{\star}	-15	1 2 2	1.3 P	35	(A-6)		-35	2 3 4	0.9 B	24
FILL: Dark bro (A-7)	wn, silty clay	<u>.0</u>	1	1.7							
			2 4	B	30						
FILL: Dark bro	wn and gray, clay	.5					759.0				
(A-7)		-20	1 2 2	1.0 B	32	CLAY: Brown and reddish brown, trace sand, gravel (A-7)		-40	2 4 6	1.7 B	25

SOIL BORING LOG

Illinois Department of Transportation Division of Highways SCI Engineering

ROUTE	FAS 2401	DE	SCR	PTION	I	U	S Route 150 over BNSF R.R.	LC	OGGE	ED BY	K	EG
	(40V-1) BR		L	OCAT		Galest	burg, SEC. 19, TWP. 11N, RNG. 2E, de , Longitude					
COUNTY	Knox DRIL	LING	6 ME	THOD			HSA HAMMER T	YPE		Auto	matic	
STRUCT. NO. Station	048-0013 (existing) 66+15.00	-	D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	ft ft	D E P	B L O	U C S	M 0 I
Offset	B-1 (S. Abut.) 67+40 13.3 ft Lt		T H	W S	Qu	S T	Groundwater Elev.: First Encounter 759.0 Upon Completion	ft	T H	W S	Qu	S T
	ce Elev. 797.5	ft	(ft)	(/6'')	(tsf)	(%)	After Hrs	ft	(ft)	(/6")	(tsf)	(%)
CLAY: Brown trace sand, gra (A-7) <i>(continue</i>	and reddish brown, vel d)						SANDY CLAY: Grayish brown (A-4) (continued)	735.5				
Recomes by	our come cond						sand, trace gravel (A-7)			-		
Becomes bi	own, some sand		-45	1 3 4	1.0 B	20			-65	6 8 13	3.1 B	13
							0					
				5			Auger refusal at 68 feet.	7 <u>29.5</u> 729.0		50/3"		
Becomes gr	ayish brown	k	-50	3 6 7	1.6 B	14	Borehole continued with rock coring.		-70	50/3"/		
		45 <u>.5</u>										
SILT: Gray (A-4)												
	0		-55	4 6 13	1.1 B	26			-75			
	7	40.5										
SANDY CLAY: (A-4)	Grayish brown	<u>+0.J</u>										
			-60	4 7 10	2.7 S	15			-80			

Date 3/2/10

	of Transpo	ortation	ROCK	CORE	LO	G				
	Division of Highways SCI Engineering							Date _	3/2/10	
OUTE	FAS 2401		US Route 1	50 over BNSF R	R.		LOGGE	D BY _	KEG	
	(40V-1) BR	LOCATION	Galesburg, SEC. Latitude, Longi	19, TWP. 11N, F tude	NG. 2E	,				
DUNTY	Knox C	CORING METHOD Rota	ary, surface set dia	amond bit		F	R	CORE	S T	
Station		Core Diameter	TYPE & SIZE2		D E P	C C C C C C C C C C C C C C C C C C C	Q	T I M E	R E N G	
Station Offset	13.3 ft Lt	Begin Core Elev		ft ft	T H	E F Y			Т Н	
Ground Surfa	Grav	5 ft		728.9	(ft)	(#) (% 1 98		(min/ft)	(tsf)	(
				120.0	-70					1
			×							
nd of Boring				723.9	6					
			-0		-75					
					_					
		XV								
		$\langle \rangle$			-80					
					_					
					-85					
								1		1

Illinois Department

Page <u>1</u> of <u>1</u>

Illinois Department of Transportation SOIL

SOIL BORING LOG

Page <u>1</u> of <u>2</u>

Date 3/3/10

ROUTE	FAS 2401	DE	SCR	PTION	I	U	S Route 150 over BNS	F R.R.	LC	OGGE	ED BY	K	EG
SECTION	(40V-1) BR		_ เ	_OCAT	'ION _	Galest Latitu	ourg, SEC. 19, TWP. 11 de , Longitude	N, RNG. 2E,					
COUNTY	Knox D	RILLING	6 ME	THOD			HSA		YPE _		Auto	matic	
Station	048-0013 (existin 66+15.00 B-2 (N. Abut.) 65+00 13.0 ft Rt		D E P T H	o W	U C S Qu	M O I S T	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion	763.7	ft ft.▼	D E P T H	O W	U C S Qu	M O I S T
Offset Ground Surfa	13.0 ft Rt ace Elev. 797.2	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs.			(ft)	(/6")	(tsf)	(%)
CONCRETE -	12 inches						FILL: Brown and gray (A-7) (continued)	r, clay		_			
FILL: Dark bro trace gravel, c (A-7)	own and gray, clay, rushed rock	796.2		4 2 3	1.1 B	28	Becomes brown SILTY CLAY: Dark br sand, organics (A-6)		775.7		4 5 6	1.0 P	28
			 -5	2 3 3	1.0 B	34	CLAY: Brown (A-7)			-25	2 3 3	1.1 B	27
FILL: Brown a	and gray, clay	7 <u>91.7</u>					SILTY CLAY: Brown		771.7	_			
(A-7)				2 3 4	0.9 B	31	(A-6)		-		3 2 4	1.0 P	24
Becomes b dark brown	prown, gray, and	Ś	-10	2 2 4	1.3 P	30	Becomes brown an	nd gray		-30	1 3 4	0.8 B	25
				235	2.3 B	26			-				
Becomes b	prown		-15	2 2 3	0.8 B	31	CLAY: Brown, trace to (A-7)	o some sand	<u>_763.7 '</u>	₹ -35	1 2 3	0.8 P	22
Becomes d sand	lark brown, trace			2 3 4	0.4 B	29							
			-20	3 4 6	2.1 B	31	Trace gravel			-40	2 3 5	1.2 B	22

Illinois Department of Transportation Division of Highways SCI Engineering

SOIL BORING LOG

Page <u>2</u> of <u>2</u>

Date 3/3/10

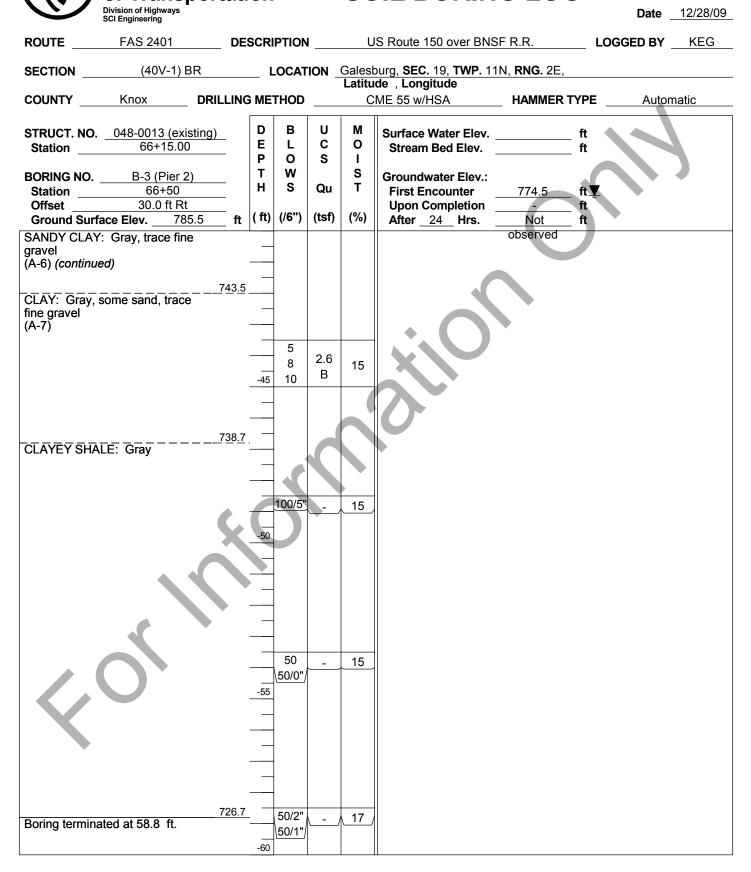
ROUTE	FAS 2401	DE	SCRI	PTION	I	U	S Route 150 over BNSF	R.R. I	OGGED BY	<u> </u>	EG
	(40V-1) BR		_ L	OCAT		Galest	ourg, SEC. 19, TWP. 11N de , Longitude	I, RNG. 2E,			
COUNTY	Knox DRIL	LING	6 ME	THOD			HSA	HAMMER TYPE	Auto	omatic	
Station	048-0013 (existing) 66+15.00	_	D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	ft	D B E L P O	U C S	M O I
Station Offset	B-2 (N. Abut.) 65+00 13.0 ft Rt	-	T H	W S	Qu	S T	Upon Completion			Qu	S T
	ce Elev. 797.2	_ ft	(π)	(/0)	(tsf)	(%)	After Hrs		(ft) (/6")	(tsf)	(%)
CLAY: Brown, (A-7) <i>(continue</i>	trace to some sand d)	753 7					CLAY: Grayish brown, sand, trace gravel (A-7) <i>(continued)</i>	some			
SAND: Brown trace gravel (A-3)	fine to medium,	<u></u>	-45	WR 3 5		18	X		8 12 -65 13	2.3 B	13
		7 <u>50.2</u>					0				
SILT: Gray (A-4)								728.	7		
		k	-50	5 7 9	_	27	CLAYEY SHALE: Gra	У	48 26 70 _50/4"	3.5 P	13
SAND & GRAN		742.5	-55	2 3 3	-	27	Boring terminated at 74	722.	50/2" 50/1" <u>50/1</u> " -75 50/2"		15
(A-1) CLAY: Gravish	brown, some	7 <u>39.2</u>						τ. Ο ΙΙ.			
sand, trace gra (A-7)	Vei		-60	6 8 13	2.6 B	14			-80		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) AASHTO Classifications are based on visual classifications unless otherwise noted BBS, form 137 (Rev. 8-99)

SOIL BORING LOG

Illinois Department of Transportation Division of Highways SCI Engineering

Page <u>1</u> of <u>2</u>


Date 12/28/09

ROUTE	FAS 2401	_ DES	SCRI	PTION	I	U	S Route 150 over BNSF	<u>R.R.</u>	.OGGE	ED BY	K	EG
	(40V-1) BR		_ L	OCAT		Galest	ourg, SEC. 19, TWP. 111	N, RNG. 2E,				
COUNTY			- MC				de , Longitude ME 55 w/HSA			Auto	matic	
		LLING				0	WE 55 WITGA			Auto		
STRUCT. NO	048-0013 (existing) 66+15.00		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	ft	D E P	B L O	U C S	M O
Station	B-3 (Pier 2) 66+50 30.0 ft Rt		Т Н	w s	Qu	S T	Groundwater Elev.: First Encounter		Ì	W S	Qu	S T
Ground Surfa	ce Elev785.5	- 4	(ft)	(/6")	(tsf)	(%)	Upon Completion After24 Hrs		(ft)	(/6'')	(tsf)	(%)
	over & Topsoil+	_ "	(,	,	(,	(///		a la a a muna al		()	()	(/0)
Shrub ground d	·						SILT: Brown		<u>)</u>			
sand (A-6)	wn, silty clay, trace	784.5 784.3		3 4 5	0.5 P	28	(A-4)			2 5 7	1.9 S/15	27
FILL: Brown, s organics (A-7)	ilty clay, trace	782.5		5								
FILL: Dark bro sand, organics (A-6)	wn, silty clay, trace		-5	3 5 7	1.0 P	31			-25	8 12 12	0.6 S/10	24
SILTY CLAY: 0	Grayish brown and	780.0		3			2		_	9		
(A-6)				3 3	0.5 B	31				9 12 12	0.3 P	28
Becomes br	own and grayish			2						3		
brown		K	-10	2 2	0.6 B	27			-30	9 11	0.4 B	27
			¥	2								
				4 4	1.3 B	27						
Becomes br	own, some sand			2			Becomes gray			4		
	S		-15	4 4	0.5 B	21			-35	9 13	0.1 B	26
CLAY: Brown,		770.0							_			
(A-7)				1 3 5	0.7 B	24	SANDY CLAY: Gray,	748.5 trace fine	<u></u>			
	Brown, trace fine	767.5					gravel (A-6)		_			
gravel (A-7)			-20	2 5 5	1.3 B	21			-40	6 8 11	2.0 B	15

Illinois Department of Transportation SOIL BORING LOG

Page <u>2</u> of <u>2</u>

Date 12/28/09

Page <u>1</u> of <u>2</u>

ROUTE	FAS 2401	_ DE	SCR	PTION		U	IS Route 150 over BNS	<u>= R.R.</u> LO	OGGEI	D BY	K	EG
SECTION	(40V-1) BR		_ เ	.OCAT		Gales	ourg, SEC. 19, TWP. 111	N, RNG. 2E,				
COUNTY	Knox DR		6 ME	THOD			de , Longitude ME 55 w/HSA	HAMMER TYPE		Auto	matic	
Station	048-0013 (existing 66+15.00 B-4		D E P T	B L O W	U C S	M O I S	Surface Water Elev Stream Bed Elev Groundwater Elev.:	ft	D E P T	B L O W	U C S	M O I S
Station	65+90 30.0 ft Lt		н	S	Qu	Т	First Encounter Upon Completion		Н	S	Qu	Т
Ground Surfa	ace Elev. 786.1	ft	(ft)	(/6")	(tsf)	(%)	After <u>24</u> Hrs	ft ft⊻	(ft) ((/6")	(tsf)	(%)
-	cover & Topsoil+	705 4					SILT: Brown	765.6				
FILL: Large ro silty clay, some (A-6)				5 4 4	0.8 P	37	(A-4)			3 4 10	2.5 B	25
CLAY: Brown		783.1										
(A-7)			-5	4 4 5	1.6 B	30	X			12 13 12	0.5 B	27
	Brown and gravish	780.6							_			
brown (A-7)				2	0.1 B	32	0			4 7 10	0.4 B	28
										10		
SILTY CLAY: brown (A-6)	Brown and grayish	Ç	-10	1 3 4	0.5 B	25			-30	3 7 9	0.4 B	28
			-						_			
Becomes b	rown			2 2 3	1.1 B	24						
Some sand	0		-15	3 3 3	0.8 B	20	Becomes grayish b	rown	-35	2 3 4	0.3 P	31
CLAY: Brown	, some sand, trace	770.6						750.1	-			
fine gravel (A-7)	, 		<u>▼</u>	4 7 8	2.6 B	21	SANDY CLAY: Gray, and coarse gravel (A-6)	trace fine				
	Brown, trace fine	768.1										
gravel (A-6)			-20	4 2 3	0.3 B	23			-40	8 11 10	0.5 P	17

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) AASHTO Classifications are based on visual classifications unless otherwise noted BBS, form 137 (Rev. 8-99)

Date 12/29/09

Illinois Department of Transportation Division of Highways SCI Engineering SOIL BORING LOG

Page <u>2</u> of <u>2</u>

Date 12/29/09

ROUTE	FAS 2401	DESC	RIPTIO	N	U	S Route 150 over BNS	= R.R.	LOGGED BY	KEG
	(40V-1) BR		LOCAT		Gales	ourg, SEC. 19, TWP. 11	N, RNG. 2E,		
						de , Longitude		-	
	Knox DRIL	LING N	IETHOD		U	ME 55 w/HSA		: <u>Autom</u>	
STRUCT. NO. Station	048-0013 (existing) 66+15.00	- I - I	D B E L P O	U C S	M O I	Surface Water Elev Stream Bed Elev	ft ft		
Station	B-4 65+90 30.0 ft Lt	- • - •	r W H S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion			
Ground Surfa	ce Elev786.1	- ff (ft) (/6")	(tsf)	(%)	After <u>24</u> Hrs.	777.1 ft S	7	
	Gray, trace fine vel d)							<u> </u>	
CLAY: Gray, s fine gravel (A-7)	ome sand, trace	7 <u>44.1</u>				.0			
			6 10 45 14	2.2 B	17				
		_	_			0			
	-	738.1							
CLAYEY SHAL	E: Gray								
			50 50/2"	-	18 /				
			_						
K	0		50/3" 55/2" 55 						
			_						
		_	-						
		727.3	50/3"	t _	17				
Boring terminat	ted at 58.8 ft.		50/1"	<u> </u>					
		-	60	΄					

Illinois Department of Transportation SOIL BORING LOG

Date 10/9/15

ROUTE US 150 (FAS 2401) __ DESCRIPTION ___ LOGGED BY JLO SECTION _____(40V-1)BR ______ LOCATION _45' W of new N Abutment, SEC. , TWP. , RNG. , Latitude 40d 55' 32", Longitude 90d 19' 28" HAMMER TYPE COUNTY Knox DRILLING METHOD HSA AUTO В U Μ D в U Μ D STRUCT. NO. _ ft Surface Water Elev. Е С E С L 0 Ь 0 Stream Bed Elev. Station ft Ρ S Ρ s ο L 0 Т BORING NO. B-18 Station 64+40 т Т W S W S Groundwater Elev.: н S Qu т S Qu т 7<u>48.8</u> H
 Station
 64+40

 Offset
 60.0 ft RT
 First Encounter ft 🔻 Upon Completion ft Ground Surface Elev. 772.80 ft (ft) (/6") (%) (/6") (%) (tsf) (ft) (tsf) After 120 Hrs. 763.1 ft 🔽 12 772.30 9 6" Topsoil Medium Dense SAND & GRAVEL Light Brown, Very Stiff SILTY CLAY 751.30 5 5 2.5 30 Gray, Hard 4.5 12 3 8 SILT w/ trace sand Ρ В 4 12 768.80 748.80 2 24 3 19 Brown. Medium Stiff 0.5 Gray, Loose Wet SILTY SAND SILTY CLAY 2 Р 3 -5 -25 3 4 746.30 3 4 0.8 25 24 Gray, Stiff 6 3 Wet SILT B 4 6 21 3 0.9 4 25 6 В 742.80 -30 14 Medium Dense Wet SAND & GRAVEL 761.30 Dark Brown, Very Stiff 3 24 3.1 SILTY CLAY w/ trace sand 6 В 7 3 20 2.7 8 5 R 5 -35 -15 7 8 756.30 3 23 2.0 Brown, Stiff 6 CLAYEY SILT В 8 Gray, Hard 10 4.5 14 4 22 SILTY CLAY w/ trace sand, trace 6 Ρ gravel 6 8 752.80 -20 -40

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page 1 of 2

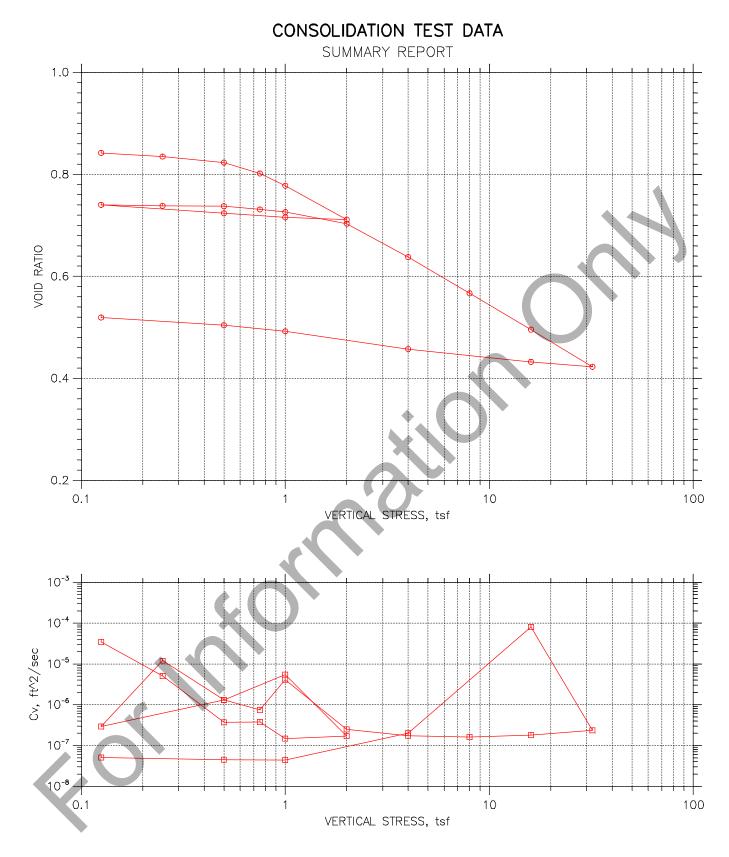
Division of Highways Terracon

Date 10/9/15

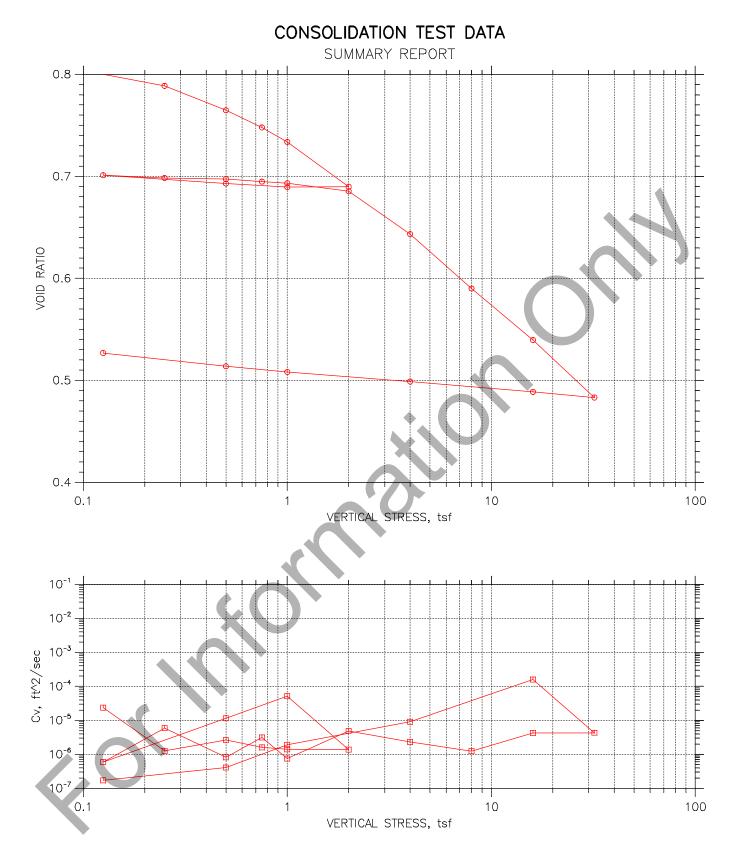
ROUTE = 03 150 (FA3 2401) DE		LOGGED BY JLO
SECTION (40V-1)BR	LOCATION 45' W of new N Abutm	ent, SEC., TWP., RNG.,
		Longitude 90d 19' 28"
COUNTY Knox DRILLIN		HAMMER TYPEAUTO
STRUCT. NO Station	P O S I	Elev ft
BORING NOB-18 Station64+40	T W S Groundwater E H S Qu T First Encount	ter748.8ft 🔽
Offset 60.0 ft R I	ft) (/6") (tsf) (%) Upon Comple	
Ground Surface Elev. 772.80 ft	(10) (10) (13) (10) After <u>120</u> F	Hrs763.1_ft ⊻
T32.30		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

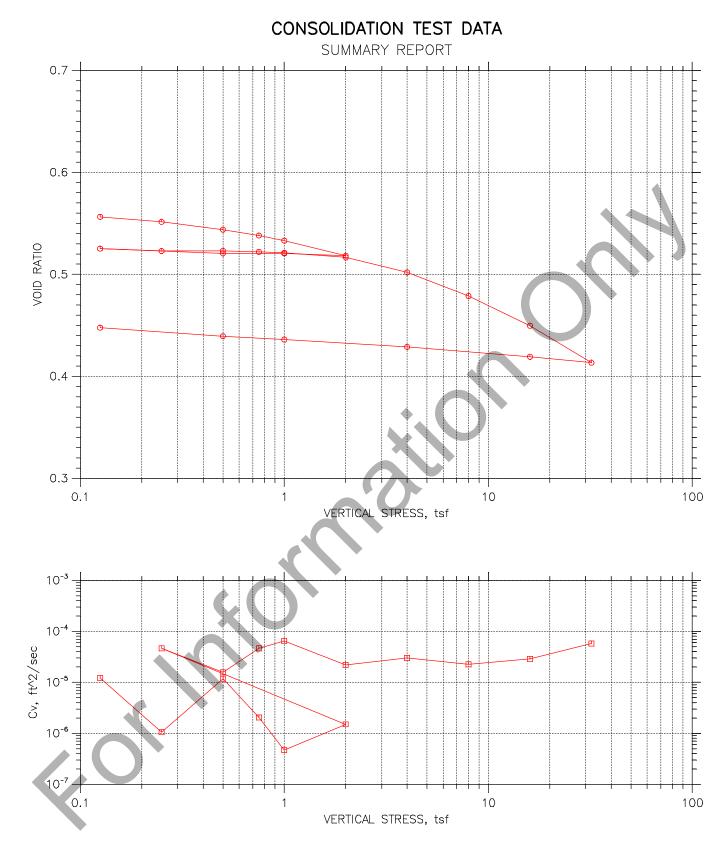
Illinois Department of Transportation


Date 10/9/15

SECTION	(40V-1)BR	_ I			45' W Latitu	of new N Abutment, SE de 40d 55' 32", Longiti	C., TWP., RNG., ude 90d 19' 28"				
	Knox		S ME				HSA			AL	ло	
STRUCT. NO			D E P T	B L O W	U C S	M O I S	Surface Water Elev Stream Bed Elev	ft ft	D W P T	B L O W	n c e	M O I S
BORING NO Station Offset	64+45 60.0 ft F	RT #	н	S	Qu (tsf)	Т	Upon Completion	ft ft	Н	S (/6")	Qu (tsf)	Т
Ground Surfa Augered materi		<u>72.80</u> ft 772.30		(/0)	(131)	(/0)	After Hrs	ft 752.30		(/0)	((3))	(70
No sampling Tube 18-1		r		-			Tube 18-9					
Tube 18-2		769.80	. <u> </u>	-			Tube 18-10	749.80				
Tube To-2			-5	-					-25			
Tube 18-3		767.30		-			End of Boring	747.30				
		764.80					Recovery for all tubes from 16" to 20".	ranged				
Tube 18-4		762.30	-10	D								
Tube 18-5		\bigcirc										
Tube 18-6		759.80		-								
Tube 18-7		757.30	-15	-					-35			
Tube 18-8		754.80		-								
			-20	-					-40			


The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page $\underline{1}$ of $\underline{1}$


· • 9• __

	Project: US150 over BNSF	Location: KNOX COUNTY, IL	Project No.: MR155199						
	Boring No.: 18-2	Tested By: BCM	Checked By: WPQ						
76	Sample No.: S-2	Test Date: 11/1/15	Depth: 3.0'-5.0'						
llerracon	Test No.: STB1835	Sample Type: 3.0'' ST	Elevation:						
	Description: BROWNISH GRAY LEAN CLAY WITH SAND CL								
	Remarks: Pc = 0.73 tsf Cc = 0.237 Ccr = 0.052 TEST PERFORMED AS PER AASHTO T 216								

	Project: US150 over BNSF	Location: KNOX COUNTY, IL	Project No.: MR155199						
	Boring No.: 18-3	Tested By: BCM	Checked By: WPQ						
76	Sample No.: S-3	Test Date: 10/29/15	Depth: 6.0'-8.0'						
llerracon	Test No.: STB1868	Sample Type: 3.0'' ST	Elevation:						
	Description: BROWN TO BROWNISH GRAY LEAN CL WITH SAND CL								
	Remarks: Pc = 1.0 tsf Cc = 0.177 Ccr = 0.021 TEST PERFORMED AS PER AASHTO T 216								

	Project: US150 over BNSF	Location: KNOX COUNTY, IL	Project No.: MR155199						
	Boring No.: 18-4	Tested By: BCM	Checked By: WPQ						
75	Sample No.: S-4	Test Date: 10/29/15	Depth: 8.0'-10.0'						
llerracon	Test No.: STB18810	Sample Type: 3.0'' ST	Elevation:						
	Description: BROWN TO BROWNISH GRAY LEAN CL WITH SAND CL								
	Remarks: Pc = 2.6 tsf Cc = 0.108 Ccr = 0.013 TEST PERFORMED AS PER AASHTO T 216								

10/8/15 Date

Page <u>1</u> of <u>2</u>

ROUTE US 150 (FAS 2401)	DES	CRI	PTION	I			L(JGGF	ED BY	D	LR
SECTION(40V-1)BR		_ L	OCAT		<u>105' S</u>	E of new S Abutment, SEC. , TWP. , de 40d 55' 29", Longitude 90d 19'	RNG. ,				
COUNTY Knox DRI	LLING	MET	THOD		Latitu				AL	ло	
STRUCT. NO Station	_	D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	_ ft _ ft	D E P	B L O	U C S	M 0 1
BORING NO. B-19 Station 68+00 Offset 58.0 ft LT	_	T H	W S	Qu	S T	Groundwater Elev.: First Encounter755.1 Upon Completion756.1	ft∑	H	W S	Qu	S T
Ground Surface Elev. 772.30		(ft)	(/6")	(tsf)	(%)	After <u>144</u> Hrs. <u>761.2</u>	_ ft⊻_	(ft)	(/6")	(tsf)	(%)
4" Topsoil Light Brown & Gray, Medium Stiff to Stiff	71.97	_				Brown w/ trace Gray, Stiff CLAY LOAM w/ sand seams (TILL) <i>(continued)</i>	750.80		8		
SILTY CLAY LOAM	_		7	1.5	26	Gray, Stiff SILTY LOAM			3	1.2	22
			6 6	Р			749.80		4	В	_27_
	_	_	0			Gray, Stiff SILT			5	0.5 P	
	_		3	0.5	24				5	1.9	21
	_	-5	4 5	P				-25	6 6	S	
								-			
	_										
	_		4 4 4	1.3 B	26						
	-						743.80				
7	63.30					Gray, Very Stiff	1 10.00				
Light Brown & Light Gray, Medium Stiff SILTY CLAY LOAM to SILTY		-10	4 3 3	0.9 B	26	CLÁY LOÁM (TILL)		-30	3 4 5	2.1 B	15
LOAM		<u>z</u>	0						5		
Brown w/ trace Gray, Stiff	00.00	_	3	1.8	29			-			
SILTY CLAY to CLÁY	-		4	S							
	_		6								
7	'58.30	_						_			
Brown w/ trace Gray, Stiff CLAY LOAM (TILL)		-15	4 5 7	2.1 B	22			-35	2 6	2.5 P	15
		+	7					_	7		
	<u>_</u> -										
7	′55.05 -	_	4	1.7	20						
Very soft wet SANDY CLAY	<u> </u>		5	B	21			_			
Brown w/ trace Gray, Stiff	54.30		<u> </u>	0.3	I						
CLAY LOAM w/ sand seams									6		
(TILL)	_		3	1.0	16				8	3.1	20
		-20	5	В				-40	12	B	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois Department of Transportation

Division of Highways Terracon

Illinois Department of Transportation SOIL BORING LOG

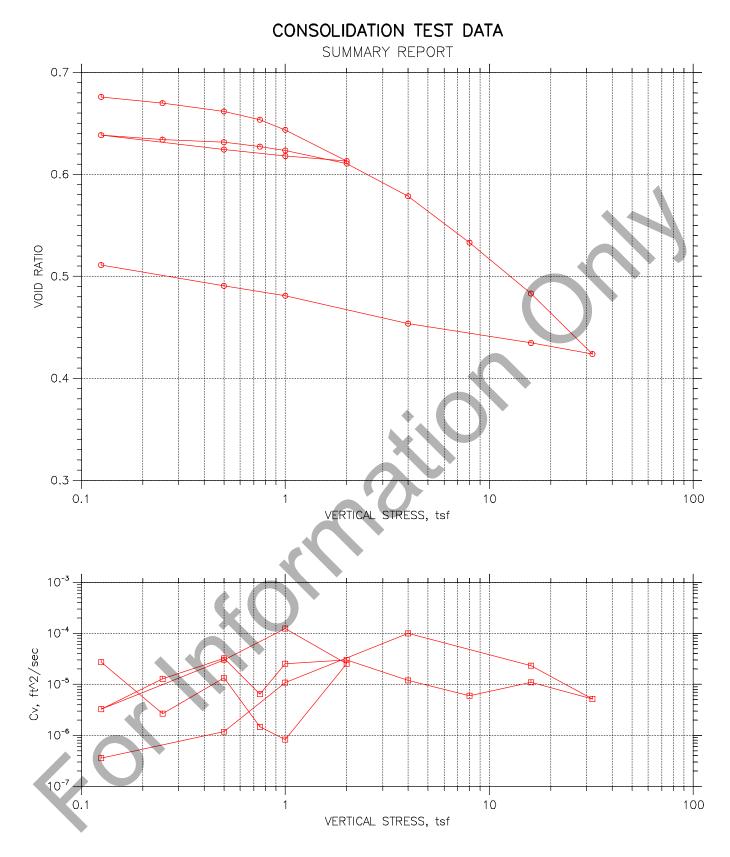
Division of Highways Terracon Date 10/8/15

Page $\underline{2}$ of $\underline{2}$

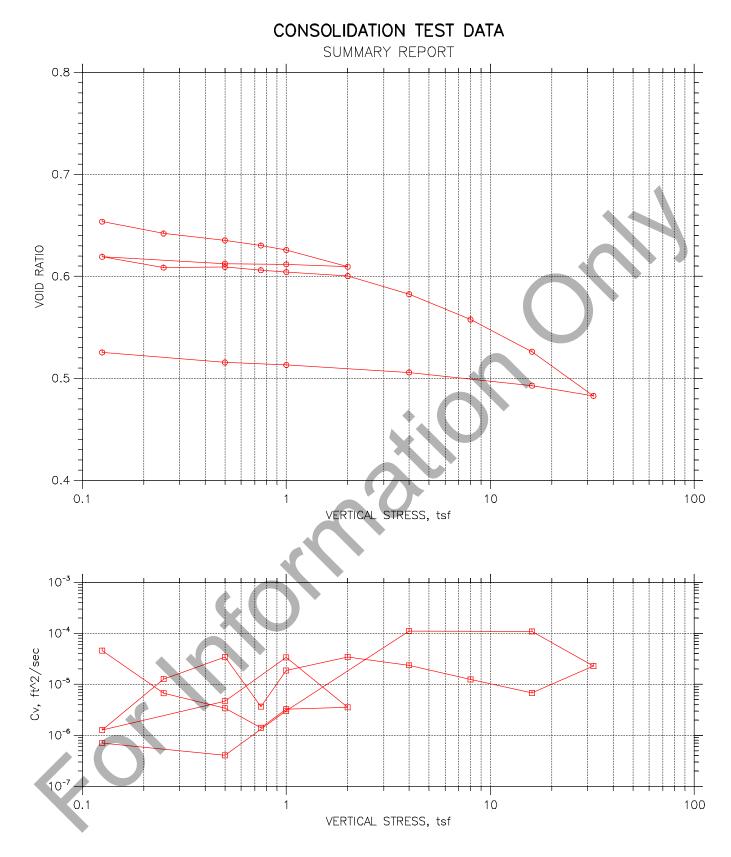
ROUTE US 150 (FAS 2401) DE	SCRIP	TION			LOGGED BY DLR
				40510	
SECTION (40V-1)BR	LC	CATI	ON _	105' S	E of new S Abutment, SEC. , TWP. , RNG. , de 40d 55' 29", Longitude 90d 19' 26"
COUNTY Knox DRILLING					
	3 IVIE I I	HOD			HSA HAMMER TYPE AUTO
CTDUCT NO	D	в	U	м	Sturfage Water Flag
STRUCT. NO	E	L	č	0	Surface Water Elev ft _
Station	P	ō	S	I	
BORING NO B-19	Т	w		S	Groundwater Elev.:
Station 68+00	H	S	Qu	Т	First Encounter 755.1 ft
Station 68+00 Offset 58.0 ft LT					Upon Completion 756.1 ft $\overline{\Sigma}$
Ground Surface Elev. 772.30 ft	(ft) ((/6")	(tsf)	(%)	After 144 Hrs761.2 ft ⊻
731.80					
End of Boring					
	-45				
					× ·
			•		
X	-50				
	_				
	_				
	-55				
	\neg				
	\neg				
	\neg				
	+				
	-60				

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Date 10/9/15


Page <u>1</u> of <u>1</u>

ROUTE US 150 (FAS 2401) DE	SCRIP	TION	I			LOGO	ED BY	JI	LO
SECTION(40V-1)BR	_ LC	CAT		105' S	E of new S Abutment, SEC. , TWP. , RN de 40d 55' 29", Longitude 90d 19' 26"	G. ,			
COUNTY Knox DRILLING		HOD					AL	ло	
STRUCT. NO. Station BORING NO.		B L O W	U C S	M O I S	Surface Water Elev ff Stream Bed Elev ff Groundwater Elev.:	D E P T	L O W	U C S	M O I S
BORING NO. B-19ST Station 67+95 Offset 58.0 ft LT	н	S	Qu	Т	First Encounter Upon Completion		S	Qu	Т
Ground Surface Elev772.30 ft		(/6'')	(tsf)	(%)	After Hrs fl	(ft)	(/6")	(tsf)	(%)
Augered material 771.80 No sampling					75 [.] Tube 19-9	.80	-		
769.30 Tube 19-2					749 Tube 19-10	.30	-		
766.80 Tube 19-3					746 Tube 19-11	<u></u>	-		
764.30 Tube 19-4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			744 Tube 19-12	.30	-		
761.80 Tube 19-5	-10				Augered material No sampling	<u>.80</u>	-		
759.30 Tube 19-6	-15				Tube 19-13				
756.80 Tube 19-7					End of Boring		- - - -		
754.30 Tube 19-8	-20				Recovery for all tubes ranged from 16" to 20".	 			


The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois Department of Transportation

" 0

	Project: US150 over BNSF	Location: KNOX COUNTY, IL	Project No.: MR155199						
	Boring No.: 19-2	Tested By: HP	Checked By: BCM						
76	Sample No.: S-2	Test Date: 11/5/15	Depth: 3.0'-5.0'						
llerracon	Test No.: STB193050	Sample Type: 3.0'' ST	Elevation:						
	Description: BROWN TO BROWNISH GRAY LEAN CLAY WITH SAND CL								
	Remarks: Pc = 2.1 tsf Cc = 0.182 Ccr = 0.035 TEST PERFORMED AS PER AASHTO T 216								

	Project: US150 over BNSF	Location: KNOX COUNTY, IL	Project No.: MR155199						
	Boring No.: 19-4	Tested By: HP	Checked By: BCM						
76	Sample No.: S-4	Test Date: 11/16/15	Depth: 8.0'-10.0'						
llerracon	Test No.: STB190810	Sample Type: 3.0'' ST	Elevation:						
	Description: BROWNISH GRAY AND BROWN MOTTLED LEAN CLAY CL								
	Remarks: Pc = 3.0 tsf Cc = 0.132 Ccr = 0.014 TEST PERFORMED AS PER AASHTO T 216								

SUBSURFACE PROFILE

v K	askaskia ngineering Group, LLC				Route: FAS 240 Section: (40V-1
τ <i>τ</i>					SUBSUR
)	5	10) 15	20	25 30
15 14	722.5		X		724.0
50/4" 3.5 13 P	CLAYEY SHALE: Gray	- 17	727.3	- 17 726.7	SILTSTON
25 2.3 13 B		- 17		- 15	B CLAY: Gra (A-7)
	CLAY: Grayish brown, some sand, trace gravel (A-7)		CLAYEY SHALE: Gray	- 15 CLAYEY SHALE: Gray	21 31 13
21 2.6 14	(A-1)	- 18	(A-7)	B	17 2.7 15 SANDY CL
6 - 27	SAND & GRAVEL	24 2.2 17 B	CLAY: Gray, some sand, trace fine gravel	18 2.6 15 CLAY: Gray, some sand, trace fine grav	19 1.1 26 B (A-4)
16 - 27	SILT: Gray (A-4)	21 0.5 17 P	SANDY CLAY: Gray, trace fine and coarse gravel (A-6)	19 2.0 15 B SANDY CLAY: Gray, trace fine gravel (A-6)	13 1.6 14 B
8 18	SAND: Brown, fine to medium, trace gravel (A-3)	7 0.3 31 P		22 0.1 26 B	7 1.0 20 B CLAY: Bro (A-7)
8 1.2 22 B	(A-7)	16 0.4 28 B	SILT: Brown (A-4)	P 20 0.4 27 B SILT: Brown (A-4)	10 1.7 25 B
)	CLAY: Brown, trace to some sand	25 0.5 27 B 17 0.4 28 B		24 0.6 24 S 24 0.3 28	(A-6)
5 0.8 22 P	_ ¥	14 2.5 25 B 25 0.5 27		12 1.9 27 S	7 0.9 24 B
7 0.8 25 B	SILTY CLAY: Brown (A-6)	B 5 0.3 23 B	(A-7) SANDY CLAY: Brown, trace fine gravel (A-6)	B (A-7) 10 1.3 21 SANDY CLAY: Brown, trace fine gravel	4 1.1 28 CLAY: Gra B (A-7)
B 6 1.0 24 P	(A-7)	6 0.8 20 B 15 2.6 21	CLAY: Brown, some sand, trace fine gravel	8 0.5 21 8 0.7 24 CLAY: Brown, some sand	B (A-6) 9 2.0 30 B
11 1.0 28 P 6 1.1 27	SILTY CLAY: Dark brown, trace sand, organics (A-6) CLAY: Brown	5 1.1 24 B	SILTY CLAY: Brown and grayish brown (A-6)	B SILTY CLAY: Grayish brown and brown 8 1.3 27 B (A-6)	8 1.3 31 SILTY CLA
10 2.1 31 B		3 0.1 32 B 7 0.5 25 B		6 0.5 31 (476) B 4 0.6 27	4 1.0 32 B 6 16 31 (A-7)
B 7 0.4 29		9 1.6 30 B 3 0.1 32	CLAY: Brown (A-7) SILTY CLAY: Brown and grayish brown	FILL: Brown, silty clay, trace organics 12 1.0 31 (A-7) FILL: Dark brown, silty clay, trace sand, (A-6)	
8 2.3 26 B 5 0.8 31	FILL: Brown and gray, clay (A-7)	8 0.8 37 P	786.1 Shrub ground cover & Topsoil+ FILL: Large root with dark brown, silty clay, some sand (A-6)	N Qu w% Shrub ground cover & Topsoil+ 9 0.5 28 P	7 3.2 34 B 4 1.3 35 P
6 1.3 30 P		65-1 30.0 ⊥⊥_ N Qu w%	ft Lt	B-3 (PIER 2) 66+50 30.0 ft Rt	6 2.0 26 FILL: Brov B (A-7)
B 7 0.9 31 B	-	B-4 (P	IER 3)	B 3 (DIED 2)	B 8 2.0 26 B
5 1.1 28 B 6 1.0 34	FILL: Dark brown and gray, clay, trace gravel, crushed rock (A-7)	k			P FILL: Dark P (A-7)
13.0 N Qu w%	797.24 CUNCRETE - 12 inches				N Qu w% 797.46
B-2 (N / 65+	00				B-1 (S ABUT) 67+40 13.3 ft Lt
					- · · · · · · · · · · · · · · · · · · ·

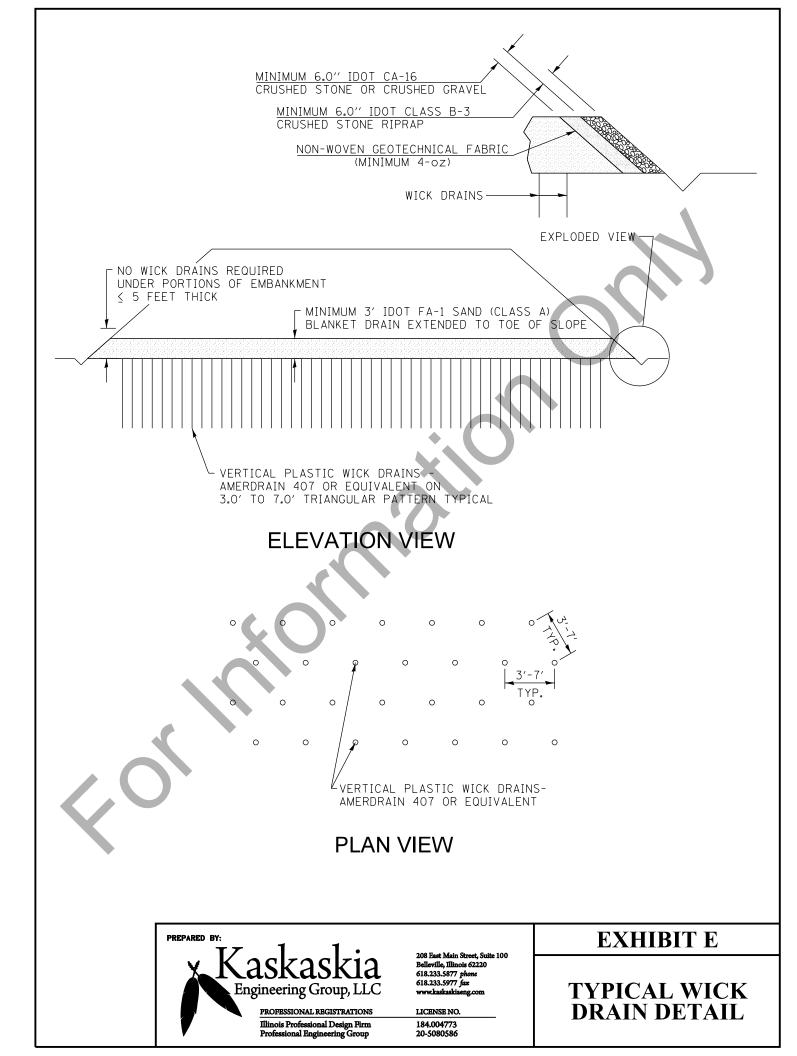
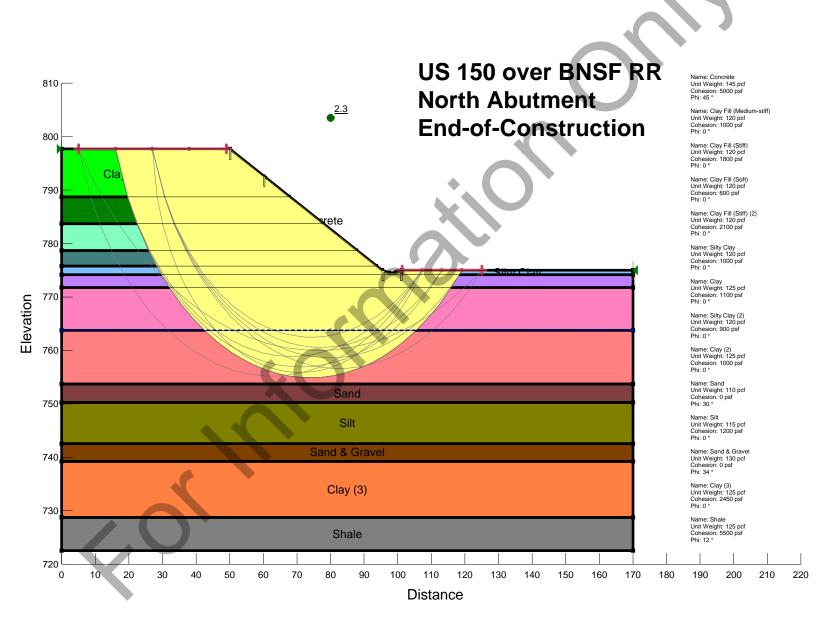
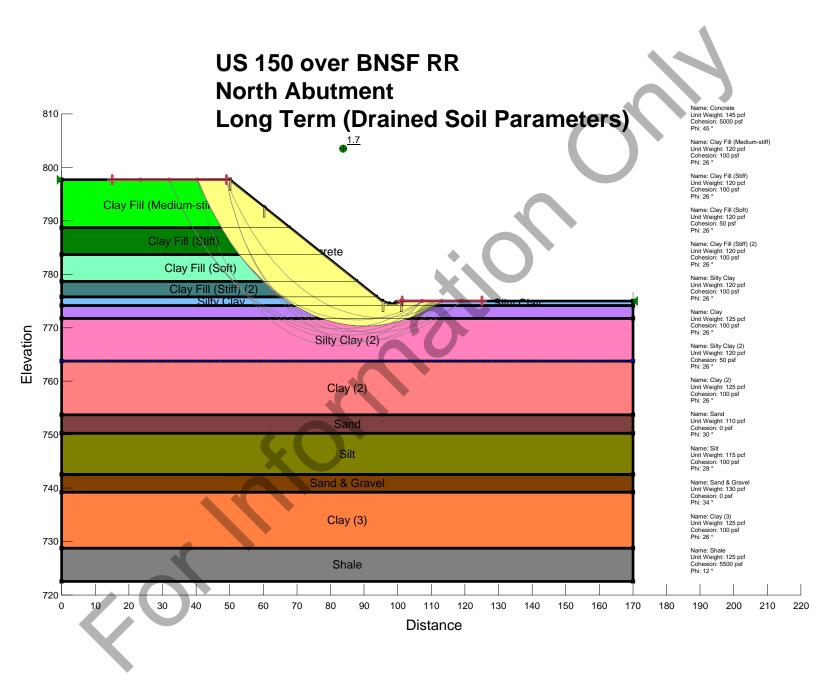
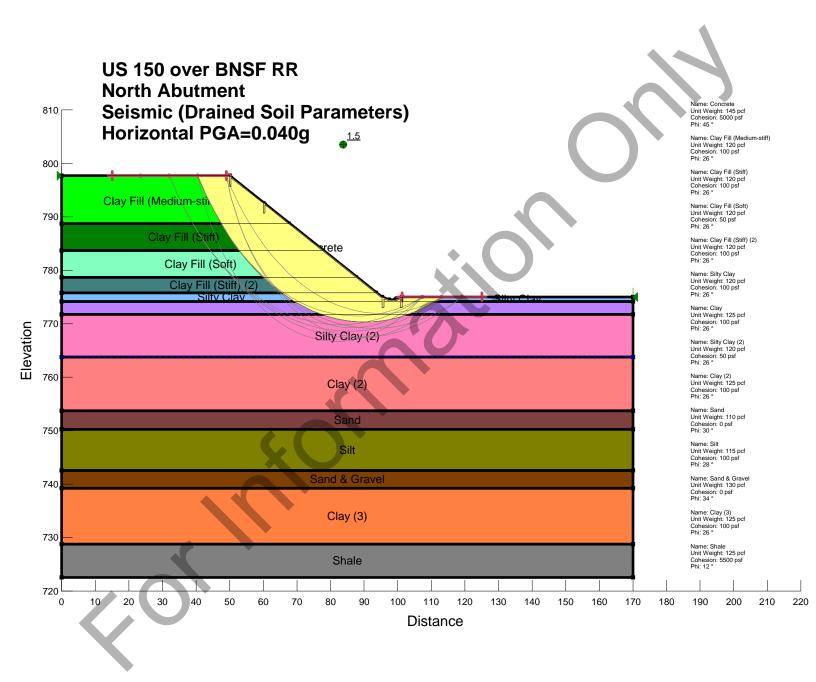
(US 150 over BNSF RR) BR

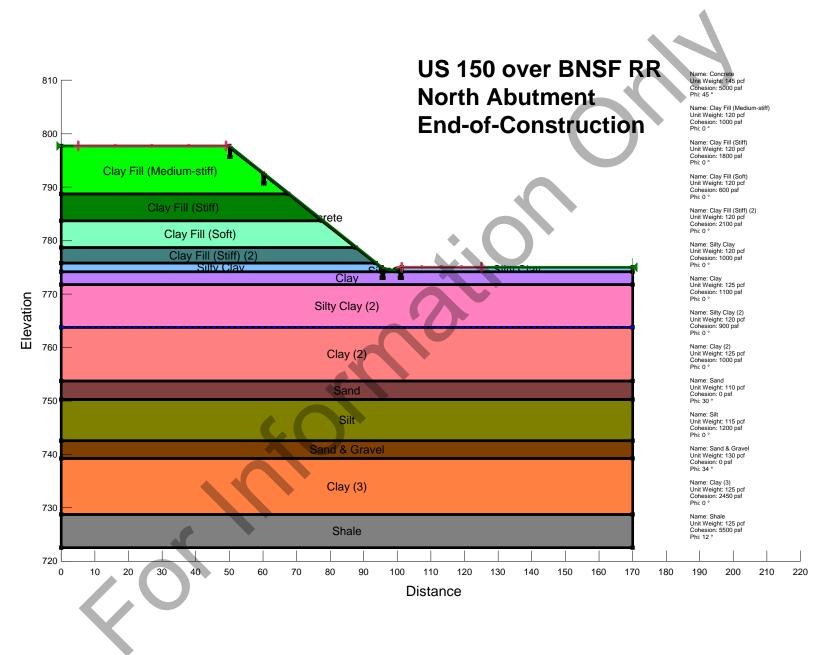
CE PROFILE : US 150 over BNSF RR

-	-	
3	5	
		800
h		
hes lay, trace crushed ro	ck	
,,		
		790
ay, clay		
ilty clay		
		780
nd gray, clay		
prown, trace sand		
		770
and brown		
		760
eddish brown, trace s	and gravel	
		750
		740
/ish brown		
n, some sand, trace	gravel	
rav		730
ray		
		720
3	5	

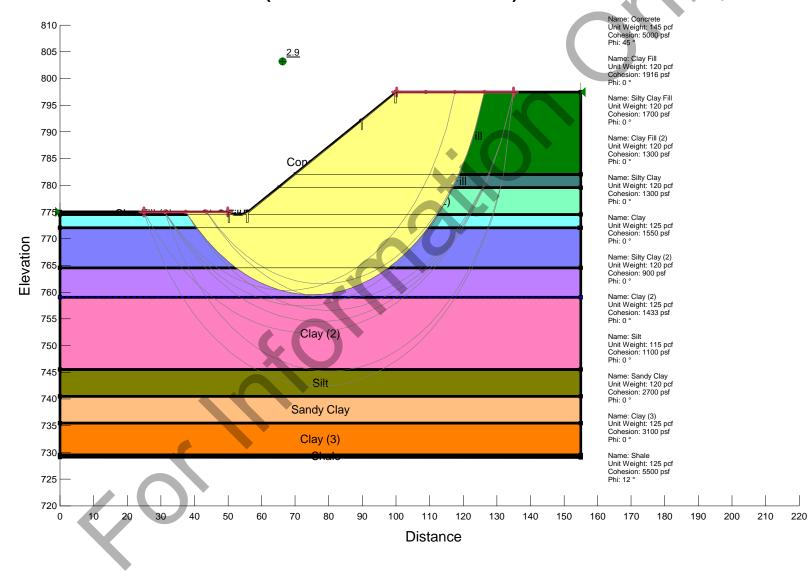
EXHIBIT E

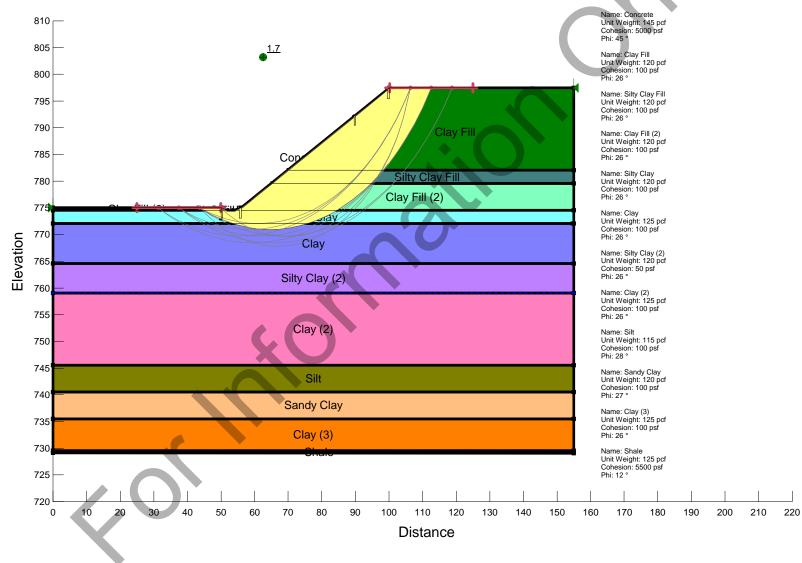
WICK DRAIN DETAIL

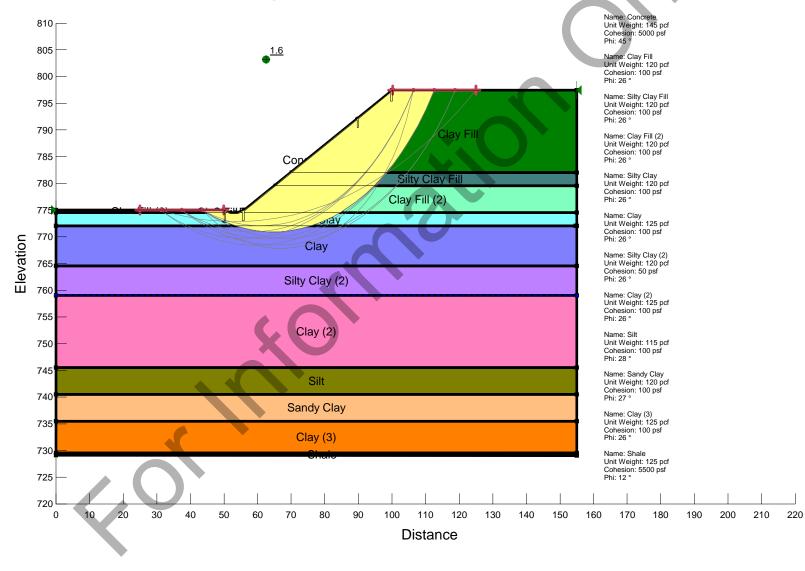





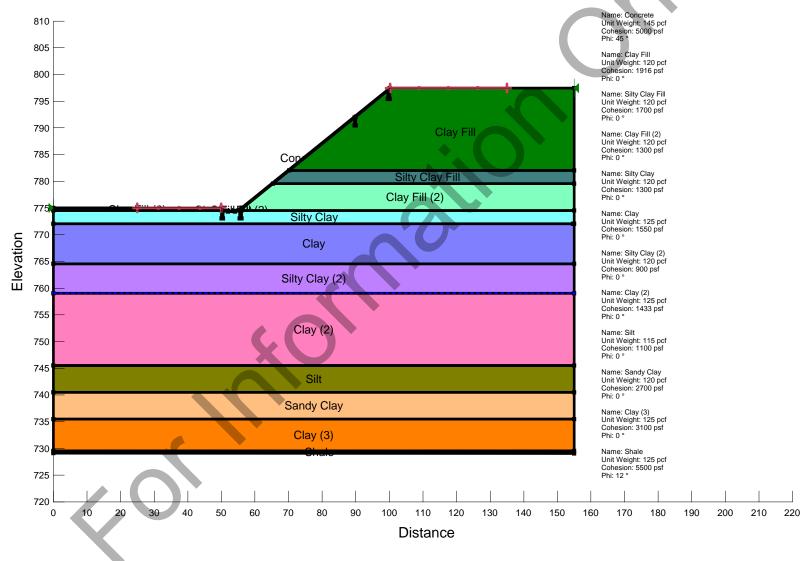

EXHIBIT F

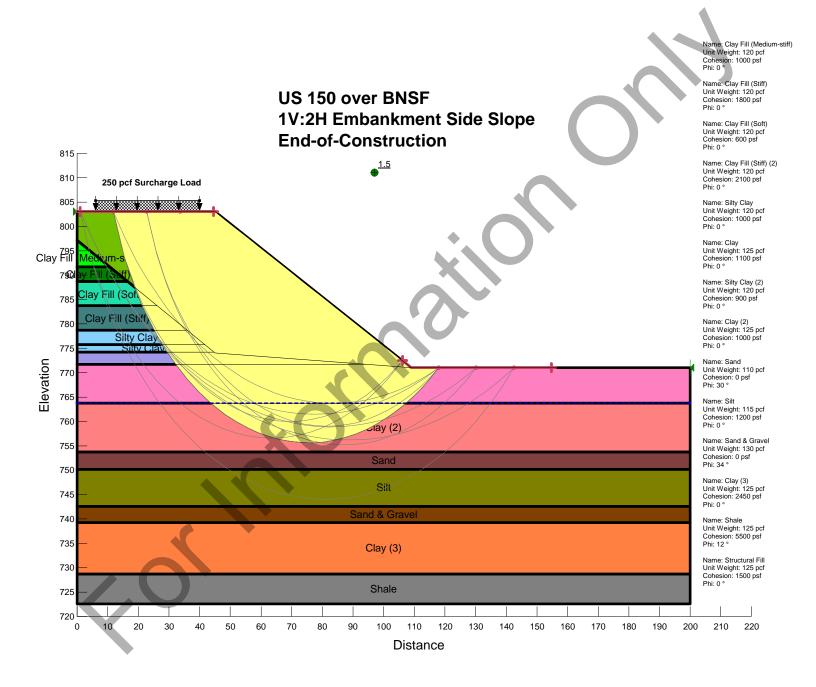
SLOPE/W SLOPE STABILITY ANALYSIS

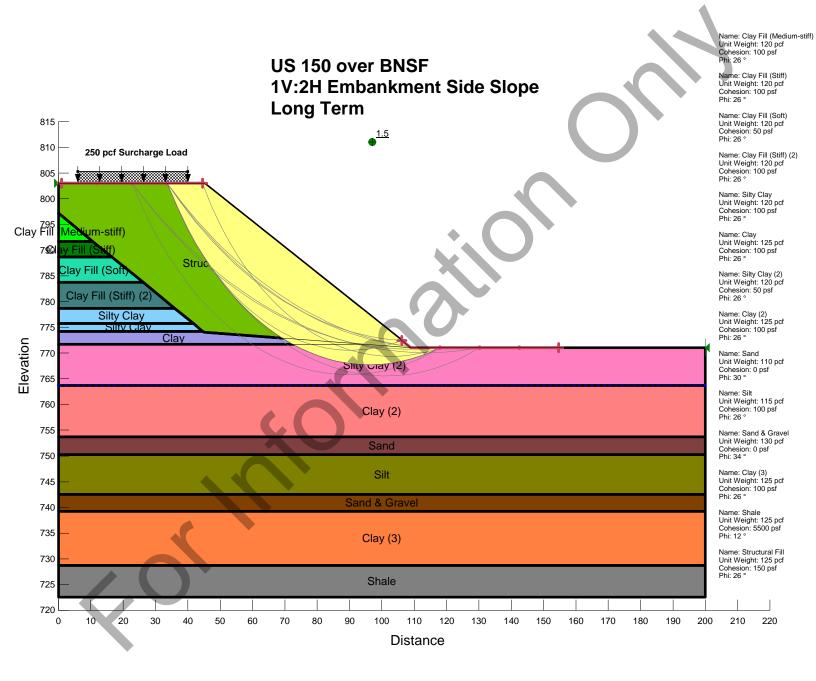





US 150 over BNSF RR South Abutment End-of-Construction (Undrained Soil Parameters)






US 150 over BNSF RR South Abutment Seismic (Drained Soil Parameters) Horizontal PGA=0.040g

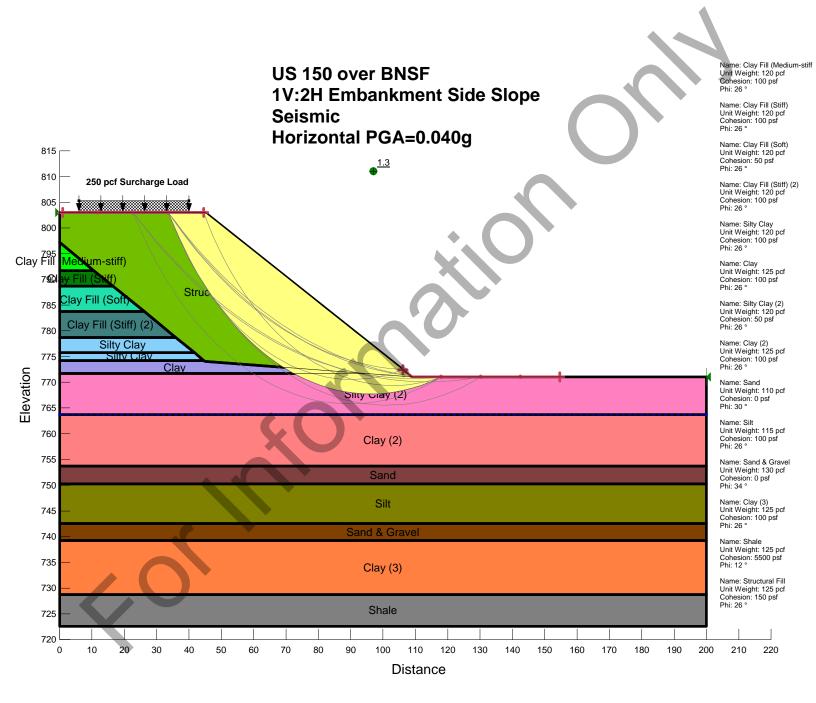


EXHIBIT G

PILE DESIGN TABLES

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

SUBSTRUCTURE====================================	MAX. REQUIRED	BEARING & RESI	STANCE for Selected Pile	, Soil Profile, & Losses
LRFD or ASD or SEISMIC ====================================	Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
PILE CUTOFF ELEV. ====================================	Req'd Bearing of Pile	Req.d Bearing of Borin	Resistance Available in Boring	Driveable Length in Boring
GROUND SURFACE ELEV. AGAINST PILE DURING DR 792.21 ft	589 KIPS	589 KIPS	324 KIPS	74 FT.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD None		-		
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =================================				
TOP ELEV. OF LIQUEF. (so layers above apply DD) ==================================				
TOTAL FACTORED SUBSTRUCTURE LOAD 975 kips TOTAL LENGTH OF SUBSTRUCTURE (along skew)=== 39.17 ft NUMBER OF ROWS OF PILES PER SUBSTRUCTURE 1 1 Approx. Factored Loading Applied per pile at 8 ft. Cts ===== 199.13 KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts ===== 74.67 KIPS				3
PILE TYPE AND SIZE ======== Steel HP 12 X 74	d Dila Daviasatan	5 000		
	ed Pile Perimeter===			
Plugged Pile End Bearing Area====================================	ed Pile End Bearing A	rea==== 0.151	SQFT.	

			-					r							
BOT.					NON	IINAL PLUG	GED	NO	MINAL UNPLU	IG'D		FACTORED	FACTORED	51070055	
OF		UNCONF.	S.P.T.	GRANULAR	0/25			0.05			NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
772.30	19.91	1.50			77.6	25.0	113.5	113.1	5.0	118.5	113	0	0	62	25
768.80	3.50	2.50			19.1	35.9 7.2	103.8	27.9	5.3 1.1	142.1	104	0	0	57	28
766.30 763.80	2.50 2.50	0.50 0.80			3.9 6.0	7.2 11.5	112.1 119.5	5.8 8.7	1.7	148.5 157.4	112 120	0	0	62 66	31 33
763.80					6.6	11.5	138.1	8.7 9.6	1.7	157.4	120	0	0	00 76	33 36
758.80	2.50 2.50	0.90	13	Hard Till	0.0 1.4	24.9	138.1	9.6 2.1	3.7	168.8	138	0	0	76 84	36 38
756.30	2.50	2.70	13		14.4	38.8	153.4	2.1	5.7	192.4	158	0	0	87	30 41
752.80	3.50	2.70			14.4	28.7	168.5	21.0	4.2	215.6	168	0	0	93	41
751.30	1.50	2.00	9	Sandy Gravel	1.3	23.0	185.1	1.9	3.4	219.8	185	0	0	102	46
748.80	2.50		20	Hard Till	2.2	38.3	162.4	3.2	5.7	219.3	162	0	0	89	48
746.30	2.50		7	Very Fine Silty Sand	1.1	13.4	171.6	1.6	2.0	222.1	172	0	0	94	51
742.80	3.50	1.50	· · ·	Very Fille Only Galid	13.6	21.5	196.9	19.9	3.2	243.7	197	0	0	108	54
734.30	8.50	1.50	13	Sandy Gravel	10.5	33.2	197.2	15.2	4.9	257.5	197	0 0	ő	108	63
732.30	2.00		12	Hard Till	1.1	23.0	223.1	1.5	3.4	262.7	223	0	0	123	65
728.70	3.60		25	Hard Till	4.0	47.9	306.9	5.8	7.1	280.3	280	0	0	154	69
728.20	0.50			Shale	25.2	127.7	332.1	36.8	18.9	317.1	317	0	0	174	69
727.70	0.50			Shale	25.2	127.7	357.4	36.8	18.9	353.9	354	0	0	195	69.5
727.45	0.25			Shale	12.6	127.7	370.0	18.4	18.9	372.3	370	0	0	203	69.8
727.20	0.25			Shale	12.6	127.7	382.6	18.4	18.9	390.7	383	0	0	210	70
726.95	0.25			Shale	12.6	127.7	395.2	18.4	18.9	409.1	395	0	0	217	70.3
726.70	0.25			Shale	12.6	127.7	407.8	18.4	18.9	427.5	408	0	0	224	70.5
726.45	0.25			Shale	12.6	127.7	420.4	18.4	18.9	445.9	420	0	0	231	70.8
726.20	0.25			Shale	12.6	127.7	433.0	18.4	18.9	464.3	433	0	0	238	71
725.95	0.25			Shale	12.6	127.7	445.6	18.4	18.9	482.7	446	0	0	245	71.3
725.70	0.25			Shale	12.6	127.7	458.3	18.4	18.9	501.1	458	0	0	252	71.5
725.45	0.25			Shale	12.6	127.7	470.9	18.4	18.9	519.5	471	0	0	259	71.8
725.20	0.25			Shale	12.6	127.7	483.5	18.4	18.9	537.9	483	0	0	266	72
724.95	0.25			Shale	12.6	127.7	496.1	18.4	18.9	556.3	496	0	0	273	72.3
724.70	0.25			Shale	12.6	127.7	508.7	18.4	18.9	574.7	509	0	0	280	72.5
724.45	0.25			Shale	12.6	127.7	521.3	18.4	18.9	593.1	521	0	0	287	72.8
724.20	0.25			Shale	12.6	127.7	533.9	18.4	18.9	611.5	534	0	0	294	73
723.95	0.25			Shale	12.6	127.7	546.5	18.4	18.9	629.9	547	0	0	301	73.3
723.70	0.25			Shale	12.6	127.7	559.2	18.4	18.9	648.3	559	0	0	308	73.5
723.45	0.25			Shale	12.6	127.7	571.8	18.4	18.9	666.7	572	0	0	314	73.8
723.20	0.25			Shale	12.6	127.7	584.4	18.4	18.9	685.1	584	0	0	321	74
722.95	0.25			Shale	12.6	127.7	597.0	18.4	18.9	703.5	597	θ	θ	328	74.3
722.70	0.25			Shale		127.7			18.9						
								l	l						I

				<u> </u>	D.O.T. BBS	FOUND	ATIONS AND	GEOTECH	HNICAL UNI	Т				Mo	odified 10/18/201
SUBST	RUCTU	RE======			North Abu	tment Pr	e-Core	MAX						Cail Drafila	
REFER	ENCE B	BORING ===			B-18 & B-3	2		<u>MAX. R</u>	EQUIRED	BEARIN	5 & RESI	STANCE for S	selected Pile	e, Soli Profile	, & Losses
_RFD o	r ASD o	r SEISMIC =			LRFD			Maximu	m Nominal	Maximu	m Nominal	Maximum	Factored	Maxim	um Pile
PILE CU	JTOFF I	ELEV. ====	=======		797.21	ft		Req'd Be	aring of Pile	Req.d Bea	ring of Boring	Resistance Ava	ilable in <u>Boring</u>		
ROUN	ID SUR	FACE ELEV	. AGAINS	ST PILE DURING DR	761.30	ft		589	KIPS	572	KIPS	315	KIPS	76	FT.
BEOTE	CHNICA	AL LOSS TY	PE (None	e, Scour, Liquef., DD	None					-		-		-	
ютто	M ELEV	. OF SCOU	R, LIQUE	F., or DD =======		ft									
OP EL	EV. OF	LIQUEF. (s	o layers a	above apply DD) ===	=======	ft									
				RE LOAD ======		- F									
				IRE (along skew)===		ft									
IUMBE				R SUBSTRUCTURE =											
				pplied per pile at 8 ft.											
	Approx	. Factored L	oading Ap	pplied per pile at 3 ft.	Cts =====	74.67	KIPS								
ILE T		D SIZE ====			IP 12 X 74										
							Unplugged								
	Plugge	d Pile End B	learing Ar	rea============	1.025	SQFT.	Unplugged	Pile End	Bearing A	rea=====	0.151	SQFT.			
ВОТ.		1						1				FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR	NOM	IINAL PLUG	GGED	NOI	MINAL UNPLU	JG'D	NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
	LAYER	COMPR.	S.F.T. N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
758.80	2.50		13	Hard Till	1.4		40.2	2.1		7.8	8	0	0	4	38
756.30	2.50	2.70			14.4	38.8	44.5	21.0	5.7	27.3	27	0	0	15	41
752.80	3.50	2.00	~	Oracle Oracel	16.5	28.7	55.3	24.1	4.2	50.5 54.7	51	0	0	28	44
751.30 748.80	1.50 2.50		9 20	Sandy Gravel Hard Till	1.3 2.2	23.0 38.3	71.9 49.2	1.9 3.2	3.4 5.7	54.7 54.2	55 49	0	0	30 27	46 48
746.30	2.50		7	Very Fine Silty Sand	1.1	13.4	58.5	1.6	2.0	57.0	57	0	0	31	
742.80	3.50	1.50				-						0			
734.30	8.50		13		13.6	21.5	83.7	19.9	3.2	78.6	79	0	0	43	54
732.30			15	Sandy Gravel	13.6 10.5	21.5 33.2	83.7 84.0	19.9 15.2	3.2 4.9	92.4	79 84	0 0	0 0	-	54 63
	2.00		12	Hard Till	10.5 1.1	33.2 23.0	84.0 109.9	15.2 1.5	4.9 3.4	92.4 97.6	84 98	0	0 0	43 46 54	63 65
	3.60		-	Hard Till Hard Till	10.5 1.1 4.0	33.2 23.0 47.9	84.0 109.9 193.7	15.2 1.5 5.8	4.9 3.4 7,1	92.4 97.6 115.2	84 98 115	0 0 0	0 0 0	43 46 54 63	63 65 69
28.20	3.60 0.50		12	Hard Till Hard Till Shale	10.5 1.1 4.0 25.2	33.2 23.0 47.9 127.7	84.0 109.9 193.7 218.9	15.2 1.5 5.8 36.8	4.9 3.4 7.1 18.9	92.4 97.6 115.2 152.0	84 98 115 152	0 0 0 0	0 0 0 0	43 46 54 63 84	63 65 69 69
28.20 27.70	3.60 0.50 0.50		12	Hard Till Hard Till Shale Shale	10.5 1.1 4.0 25.2 25.2	33.2 23.0 47.9 127.7 127.7	84.0 109.9 193.7 218.9 244.2	15.2 1.5 5.8 36.8 36.8	4.9 3.4 7.1 18.9 18.9	92.4 97.6 115.2 152.0 188.8	84 98 115 152 189	0 0 0 0 0	0 0 0 0	43 46 54 63 84 104	63 65 69 69 69.5
728.20 727.70 727.45	3.60 0.50		12	Hard Till Hard Till Shale	10.5 1.1 4.0 25.2	33.2 23.0 47.9 127.7	84.0 109.9 193.7 218.9	15.2 1.5 5.8 36.8	4.9 3.4 7.1 18.9	92.4 97.6 115.2 152.0	84 98 115 152 189 207 226	0 0 0 0	0 0 0 0	43 46 54 63 84 104 114 124	63 65 69 69
28.20 27.70 27.45 27.20 26.95	3.60 0.50 0.25 0.25 0.25		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale	10.5 1.1 4.0 25.2 25.2 12.6 12.6 12.6	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0	15.2 1.5 5.8 36.8 36.8 18.4 18.4 18.4	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0	84 98 115 152 189 207 226 244	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	43 46 54 63 84 104 114 124 134	63 65 69 69.5 69.8 70 70.3
28.20 27.70 27.45 27.20 26.95 26.70	3.60 0.50 0.25 0.25 0.25 0.25 0.25		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale	10.5 1.1 4.0 25.2 25.2 12.6 12.6 12.6 12.6	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6	15.2 1.5 5.8 36.8 36.8 18.4 18.4 18.4 18.4	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4	84 98 115 152 189 207 226 244 262	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	43 46 54 63 84 104 114 124 134 134	63 65 69 69.5 69.8 70 70.3 70.5
28.20 27.70 27.45 27.20 26.95 26.70 26.45	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale	10.5 1.1 4.0 25.2 12.6 12.6 12.6 12.6 12.6 12.6	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2	15.2 1.5 5.8 36.8 36.8 18.4 18.4 18.4 18.4 18.4	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8	84 98 115 152 189 207 226 244 262 281	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	43 46 54 63 84 104 114 124 134 134 144 154	63 65 69 69.5 69.8 70 70.3 70.3 70.5 70.8
28.20 27.70 27.45 27.20 26.95 26.70 26.45 26.45 26.20	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale Shale	10.5 1.1 4.0 25.2 25.2 12.6 12.6 12.6 12.6 12.6 12.6 12.6	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9	15.2 1.5 5.8 36.8 36.8 18.4 18.4 18.4 18.4 18.4 18.4	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2	84 98 115 152 207 226 244 262 281 299	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	43 46 54 63 84 104 114 124 134 134 154 155	63 65 69 69.5 69.8 70 70.3 70.5 70.8 71
28.20 27.70 27.45 27.20 26.95 26.70 26.45 26.20 26.20 25.95	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale	10.5 1.1 4.0 25.2 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9 332.5	15.2 1.5 5.8 36.8 36.8 18.4 18.4 18.4 18.4 18.4 18.4 18.4	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2 317.6	84 98 115 152 207 226 244 262 281 299 318		0 0 0 0 0 0 0 0 0 0 0 0 0 0	43 46 54 63 84 104 114 124 134 134 154 155 175	63 65 69 69.5 69.8 70 70.3 70.5 70.5 70.8 71
28.20 27.70 27.45 27.20 26.95 26.70 26.45 26.45 26.20 25.95 25.70	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale Shale	10.5 1.1 4.0 25.2 25.2 12.6 12.6 12.6 12.6 12.6 12.6 12.6	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9	15.2 1.5 5.8 36.8 36.8 18.4 18.4 18.4 18.4 18.4 18.4	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2	84 98 115 152 207 226 244 262 281 299	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	43 46 54 63 84 104 114 124 134 134 154 155	63 65 69 69.5 69.8 70 70.3 70.5 70.8 71
728.20 727.45 727.45 727.20 726.95 726.70 726.45 726.20 725.95 725.70 725.45	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale	10.5 1.1 4.0 25.2 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9 332.5 345.1	15.2 1.5 5.8 36.8 36.8 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2 317.6 336.0	84 98 115 152 207 226 244 262 281 299 318 336		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43 46 54 63 84 104 114 124 134 144 154 165 175 185	63 65 69 69.5 69.8 70 70.3 70.5 70.8 71. 71.3 71.5
728.20 727.40 727.45 726.95 726.95 726.70 726.45 726.20 725.95 725.70 725.45 725.20 725.20 724.95	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale	$\begin{array}{c} 10.5 \\ 1.1 \\ 4.0 \\ 25.2 \\ 25.2 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \end{array}$	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9 332.5 345.1 357.7 370.3 382.9	15.2 1.5 5.8 36.8 36.8 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2 317.6 336.0 354.4 372.8 391.2	84 98 115 152 207 226 244 262 281 299 318 336 354 370 383		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43 46 54 63 84 104 124 134 144 124 134 145 175 185 195 204 211	63 65 69 69.5 69.8 70 70.3 70.5 70.8 71.3 71.5 71.8 71.8 72 72.3
728.20 727.40 727.45 727.20 726.95 726.70 726.45 726.20 725.95 725.70 725.45 725.20 724.95 724.70	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale	$\begin{array}{c} 10.5 \\ 1.1 \\ 4.0 \\ 25.2 \\ 25.2 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \end{array}$	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9 332.5 345.1 357.7 370.3 382.9 395.5	$15.2 \\ 1.5 \\ 5.8 \\ 36.8 \\ 18.4 \\ 18$	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2 317.6 336.0 354.4 372.8 391.2 391.2	84 98 115 152 207 226 244 262 281 299 318 336 354 370 383 396			43 46 54 63 84 104 124 124 134 154 155 185 195 204 211 218	63 65 69 69.5 69.8 70 70.3 70.5 70.8 71. 71.3 71.5 71.8 72 72.3 72.5
728.20 727.40 727.45 727.20 726.95 726.70 726.45 725.95 725.95 725.70 725.45 725.20 725.45 725.20 724.95 724.70	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale	$\begin{array}{c} 10.5 \\ 1.1 \\ 4.0 \\ 25.2 \\ 25.2 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \end{array}$	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9 332.5 345.1 357.7 370.3 382.9 395.5 408.1	$15.2 \\ 1.5 \\ 5.8 \\ 36.8 \\ 18.4 \\ 18$	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2 317.6 3360.4 372.8 391.2 409.6 428.0	84 98 115 152 207 226 244 262 281 299 318 336 354 370 383 396 408			43 46 54 63 84 104 124 134 154 155 175 185 195 204 211 218 224	63 65 69 69.5 69.8 70 70.3 70.5 70.8 71. 71.3 71.5 71.8 72.3 72.5 72.8
728.20 727.40 727.45 726.95 726.95 726.70 726.45 725.95 725.70 725.45 725.20 724.95 724.95 724.45 724.20	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale	$\begin{array}{c} 10.5 \\ 1.1 \\ 4.0 \\ 25.2 \\ 25.2 \\ 12.6$	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9 332.5 345.1 357.7 370.3 382.9 395.5 408.1 420.8	$15.2 \\ 1.5 \\ 5.8 \\ 36.8 \\ 18.4 \\ 18$	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2 317.6 336.0 354.4 372.8 391.2 409.6 428.0 446.4	84 98 115 152 207 226 244 262 281 299 318 336 354 370 383 396 408 421			43 46 54 63 84 104 124 134 144 165 175 185 195 204 211 218 224 231	63 65 69 69.5 69.8 70 70.3 70.5 70.8 71.3 71.5 71.8 72.3 72.5 72.8 73
728.70 727.20 727.45 727.45 727.20 726.95 726.45 726.45 726.20 725.95 725.70 725.45 725.20 724.95 724.95 724.95 724.92 724.93 724.93	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale	$\begin{array}{c} 10.5 \\ 1.1 \\ 4.0 \\ 25.2 \\ 25.2 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \\ 12.6 \end{array}$	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9 332.5 345.1 357.7 370.3 382.9 395.5 408.1 420.8 433.4	$15.2 \\ 1.5 \\ 5.8 \\ 36.8 \\ 18.4 \\ 18$	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2 317.6 336.0 354.4 372.8 391.2 409.6 428.0 446.4	84 98 115 152 207 226 244 262 281 299 318 336 354 370 383 396 408 408 421 433			43 46 54 63 84 104 114 124 134 144 154 165 175 185 195 204 211 218 224 231 238	63 65 69 69.5 69.8 70 70.3 70.5 70.8 71.3 71.5 71.8 72.3 72.5 72.8 73 73.3
728.20 727.40 727.45 726.95 726.95 726.70 726.45 725.95 725.20 725.20 725.45 724.95 724.95 724.45 724.20	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale	$\begin{array}{c} 10.5 \\ 1.1 \\ 4.0 \\ 25.2 \\ 25.2 \\ 12.6$	33.2 23.0 47.9 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9 332.5 345.1 357.7 370.3 382.9 395.5 408.1 420.8	$15.2 \\ 1.5 \\ 5.8 \\ 36.8 \\ 18.4 \\ 18$	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2 317.6 336.0 354.4 372.8 391.2 409.6 428.0 446.4	84 98 115 152 207 226 244 262 281 299 318 336 354 370 383 396 408 421			43 46 54 63 84 104 124 134 144 165 175 185 195 204 211 218 224 231	63 65 69 69.5 69.8 70 70.3 70.5 70.8 71.3 71.5 71.8 72.3 72.5 72.8 73
728.20 727.70 727.20 726.95 726.95 726.95 726.95 725.70 725.70 725.70 725.45 725.20 724.95 724.20 724.20 724.20 724.20	3.60 0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.2		12	Hard Till Hard Till Shale	$\begin{array}{c} 10.5\\ 1.1\\ 4.0\\ 25.2\\ 26.2\\ 12.6\\ 1$	33.2 23.0 47.9 127.7	84.0 109.9 193.7 218.9 244.2 256.8 269.4 282.0 294.6 307.2 319.9 332.5 345.1 357.7 370.3 382.9 395.5 408.1 420.8 433.4 446.0	$15.2 \\ 1.5 \\ 5.8 \\ 36.8 \\ 36.8 \\ 18.4 \\ 18$	4.9 3.4 7.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18	92.4 97.6 115.2 152.0 188.8 207.2 225.6 244.0 262.4 280.8 299.2 317.6 336.0 354.4 372.8 391.2 354.4 372.8 391.2 409.6 428.0 446.4 464.8 483.2	84 98 115 152 226 244 262 281 299 318 336 354 370 383 396 408 421 433 446			43 46 54 63 84 104 124 134 154 155 195 204 211 218 224 231 238 224 235	63 65 69 69.5 69.8 70.70.3 70.5 70.8 71.7 71.3 71.5 71.8 72.7 72.3 72.5 72.8 73.3 73.5

127.7

127.7

127.7 127.7

127.7

127.7

127.7 127.7

12.6

12.6

25.2 25.2

25.2

25.2

25.2

Shale

Shale

496.4 521.7

546.9

572.1

597.3

622.6

18.4

18.4

36.8

36.8

36.8

36.8

36.8

18.9

18.9

18.9

18.9

18.9

18.9

18.9

18.9

538.4

556.8

593.6

630.4

667.2

704.0

740.8

484

496

522 547

572

597 623

0

0

266

273

287 301

315

329 342

74.3 74.5 75 75.5

76

76.5 77

723.20 722.95 722.70 722.20 721.70 721.20 720.70 720.70

720.20 719.70

0.25 0.25 0.50 0.50

0.50

0.50

0.50 0.50

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

				I.D.O.T. BB	S FOUNDA	ATIONS AND	GEOTECH	HNICAL UNIT	-				M	odified 10/18/20
EFERENCE E RFD or ASD o LE CUTOFF	BORING === or SEISMIC = ELEV. ====			= B-18 & B- = LRFD = 797.21	2 ft	DD	Maximu Req'd Be	m Nominal aring of <u>Pile</u>	Maximu Req.d Bea	m Nominal aring of <u>Borinc</u>	STANCE for S Maximum Resistance Ava	Factored ailable in <u>Boring</u>	Maxim Driveable Lei	um Pile ngth in <u>Borinc</u>
EOTECHNIC/ OTTOM ELE\	AL LOSS TY /. OF SCOU	'PE (None R, LIQUE	T PILE DURING DR e, Scour, Liquef., DD F., or DD ======= bove apply DD) ===) DD = 761.30	ft		589	KIPS	584	KIPS	134	KIPS	74	FT.
DTAL LENGT JMBER OF R Approx	H OF SUBS OWS OF PI . Factored L	TRUCTU ILES PER .oading Ap	RE LOAD ======= RE (along skew)=== SUBSTRUCTURE oplied per pile at 8 ft	= 39.17 = 1 . Cts =====	# 199.13								2	
E TYPE ANI Plugge	D SIZE ==== d Pile Perim	eter====		HP 12 X 74 = 4.050	FT.	Unplugged		meter====				S		
Plugge	d Pile End B	Searing Ar	ea=====					Bearing Ar		0.151	SQFT.	FACTORED		
DF YER LAYER .EV. THICK. FT.) (FT.)	UNCONF. COMPR. STRENGTH (TSF.)	S.P.T. N VALUE (BLOWS)	GRANULAR OR ROCK LAYER DESCRIPTION	NOI SIDE RESIST. (KIPS)	NINAL PLUC END BRG. RESIST. (KIPS)	GGED TOTAL RESIST. (KIPS)	NOI SIDE RESIST. (KIPS)	NINAL UNPLU END BRG. RESIST. (KIPS)	IG'D TOTAL RESIST. (KIPS)	NOMINAL REQ'D BEARING (KIPS)	GEOTECH. LOSS FROM SCOUR or DD (KIPS)	GEOTECH. LOSS LOAD FROM DD (KIPS)	FACTORED RESISTANCE AVAILABLE (KIPS)	ESTIMATEI PILE LENGTH (FT.)
13.3019.913.803.503.302.503.802.503.302.503.802.50	1.50 2.50 0.50 0.80 0.90	13	Hard Till	77.6 19.1 3.9 6.0 6.6 1.4	35.9 7.2 11.5 12.9 24.9	113.5 103.8 112.1 119.5 138.1 153.4	113.1 27.9 5.8 8.7 9.6 2.1	5.3 1.1 1.7 1.9 3.7	118.5 142.1 148.5 157.4 168.8 172.9	113 104 112 120 138 153	43 53 55 59 62 62	86 107 111 118 125 125	-66 -103 -105 -110 -111 -103	25 28 31 33 36 38
.30 2.50 .80 3.50 .30 1.50 .80 2.50 .30 2.50 .30 2.50 .30 3.50 .30 8.50	2.70 2.00 1.50	9 20 7 13	Sandy Gravel Hard Till Very Fine Silty Sand Sandy Gravel	14.4 16.5 1.3 2.2 1.1 13.6 10.5	38.8 28.7 23.0 38.3 13.4 21.5 33.2	157.7 168.5 185.1 162.4 171.6 196.9 197.2	21.0 24.1 1.9 3.2 1.6 19.9 15.2	5.7 4.2 3.4 5.7 2.0 3.2 4.9	192.4 215.6 219.8 219.3 222.1 243.7 257.5	158 168 185 162 172 197 197	62 62 62 62 62 62 62 62	125 125 125 125 125 125 125 125	-100 -94 -85 -98 -93 -79 -79	41 46 48 51 54 63
0.00 0.00 30 2.00 70 3.60 20 0.50 70 0.50 45 0.25 20 0.25		12 25	Hard Till Hard Till Shale Shale Shale Shale Shale	1.1 4.0 25.2 25.2 12.6 12.6	23.0 47.9 127.7 127.7 127.7 127.7	223.1 306.9 332.1 357.4 370.0 382.6	1.5 5.8 36.8 36.8 18.4 18.4	3.4 7.1 18.9 18.9 18.9 18.9 18.9	262.7 280.3 317.1 353.9 372.3 390.7	223 280 317 354 370 383	62 62 62 62 62 62 62 62	125 125 125 125 125 125 125	-64 -33 -13 8 16 23	65 69 69 69.5 69.8 70
95 0.25 70 0.25 45 0.25 20 0.25 95 0.25 70 0.25 70 0.25 45 0.25			Shale Shale Shale Shale Shale Shale Shale	12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	395.2 407.8 420.4 433.0 445.6 458.3 470.9	18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9	409.1 427.5 445.9 464.3 482.7 501.1 519.5	395 408 420 433 446 458 471	62 62 62 62 62 62 62 62 62	125 125 125 125 125 125 125 125	30 37 44 51 58 65 72	70.3 70.5 70.8 71 71.3 71.5 71.8
20 0.25 95 0.25 70 0.25 45 0.25 20 0.25 95 0.25			Shale Shale Shale Shale Shale Shale Shale Shale	12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	483.5 496.1 508.7 521.3 533.9 546.5 559.2	18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9	537.9 556.3 574.7 593.1 611.5 629.9 648.3	483 496 509 521 534 547 559	62 62 62 62 62 62 62 62 62 62	125 125 125 125 125 125 125 125	79 86 93 100 107 114 121	72 72.3 72.5 72.8 73 73.3 73.3 73.5
.70 0.25 .45 0.25 .20 0.25 .95 0.25 .70 0.25			Shale Shale Shale Shale	12.6 12.6 12.6 12.6	127.7 127.7 127.7 127.7 127.7	579.2 571.8 584.4 597.0	18.4 18.4 18.4 18.4	18.9 18.9 18.9 18.9 18.9	648.3 666.7 685.1 703.5	539 572 584 597	62 62 62	125 125 125 125	121 127 134 141	73.5 73.8 74 74.3
		C												

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

								<u>MAX. I</u>	REQUIRED	BEARIN	G & RESI	STANCE for S	Selected Pile	, Soil Profile	, & Losses
LRFD o	r ASD or	SEISMIC =			LRF	C		Maximu	m Nominal	Maximu	m Nominal	Maximum	Factored	Maxim	um Pile
PILE CI	JTOFF E	LEV. =====			771.00	ft		Req'd Be	aring of Pile	Req.d Bea	ring of Boring	Resistance Ava	ailable in <u>Boring</u>	Driveable Le	ngth in Boring
GROUN	ID SURF	ACE ELEV	. AGAINS	ST PILE DURING DRI	766.00	ft		578	KIPS	560	KIPS	308	KIPS	38	FT.
GEOTE	CHNICA	L LOSS TY	PE (None	e, Scour, Liquef., DD)	None	e		8						•	
BOTTO	M ELEV	OF SCOU	R. LÍQUE	F., or DD =======		= ft									
			,	bove apply DD) ====											
TOTAL NUMBE	LENGTH R OF RO Approx. Approx. (PE AND Plugged	HOF SUBS OWS OF PI Factored Lo Factored Lo SIZE ===== I Pile Perimo	TRUCTU LES PER bading A bading A seter====	RE LOAD ======= RE (along skew)==== SUBSTRUCTURE = oplied per pile at 8 ft. oplied per pile at 3 ft. Steel H ea====================================	39.17 2 Cts ===== Cts ===== HP 14 X 73 4.700	= 459.54 = 172.33 3 ↓ FT.	KIPS Unplugged		meter==== Bearing Ar			FT. SQFT.	S		
BOT. OF		UNCONF.	S.P.T.	GRANULAR	NO	MINAL PLUG	GED	NO	MINAL UNPLU	JG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE

OF		UNCONF.	S.P.T.	GRANULAR	Non		JGLD	Nor		00	NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
765.50	0.50	0.30			0.6		48.9	0.8		6.1	6	0	0	3	6
763.00	2.50	2.50			15.8	48.3	26.1	23.5	5.2	25.4	25	0	0	14	8
760.50	2.50	0.50			4.6	9.7	28.7	6.8	1.0	32.0	29	0	0	16	11
758.00	2.50	0.40			3.7	7.7	32.4	5.5	0.8	37.5	32	0	0	18	13
755.50	2.50	0.40			3.7	7.7	34.2	5.5	0.8	42.8	34	0	0	19	16
750.10	5.40	0.30			6.1	5.8	44.2	9.1	0.6	52.4	44	0	0	24	21
744.10	6.00	0.50			11.0	9.7	88.1	16.3	1.0	72.2	72	0	0	40	27
738.10	6.00	2.20			34.9	42.5	252.2	51.8	4.6	137.9	138	0	0	76	33
737.85	0.25			Shale	14.6	171.8	266.9	21.7	18.5	159.6	160	0	0	88	33.2
737.60	0.25			Shale	14.6	171.8	281.5	21.7	18.5	181.4	181	0	0	100	33.4
737.35	0.25			Shale	14.6	171.8	296.1	21.7	18.5	203.1	203	0	0	112	33.7
737.10	0.25			Shale	14.6	171.8	310.8	21.7	18.5	224.8	225	0	0	124	33.9
736.85	0.25			Shale	14.6	171.8	325.4	21.7	18.5	246.5	247	0	0	136	34.2
736.60	0.25			Shale	14.6	171.8	340.1	21.7	18.5	268.3	268	0	0	148	34.4
736.35	0.25			Shale	14.6	171.8	354.7	21.7	18.5	290.0	290	0	0	159	34.7
736.10	0.25			Shale	14.6	171.8	369.3	21.7	18.5	311.7	312	0	0	171	34.9
735.85	0.25			Shale	14.6	171.8	384.0	21.7	18.5	333.4	333	0	0	183	35.2
735.60	0.25			Shale	14.6	171.8	398.6	21.7	18.5	355.1	355	0	0	195	35.4
735.35	0.25			Shale	14.6	171.8	413.2	21.7	18.5	376.9	377	0	0	207	35.7
735.10	0.25			Shale	14.6	171.8	427.9	21.7	18.5	398.6	399	0	0	219	35.9
734.85	0.25			Shale	14.6	171.8	442.5	21.7	18.5	420.3	420	0	0	231	36.2
734.60	0.25			Shale	14.6	171.8	457.2	21.7	18.5	442.0	442	0	0	243	36.4
734.35	0.25			Shale	14.6	171.8	471.8	21.7	18.5	463.8	464	0	0	255	36.7
734.10	0.25			Shale	14.6	171.8	486.4	21.7	18.5	485.5	485	0	0	267	36.9
733.85	0.25			Shale	14.6	171.8	501.1	21.7	18.5	507.2	501	0	0	276	37.2
733.35	0.50			Shale	29.3	171.8	530.3	43.4	18.5	550.6	530	0	0	292	37.7
732.85	0.50			Shale	29.3	171.8	559.6	43.4	18.5	594.1	560	0	0	308	38.2
732.35	0.50			Shale	29.3	171.8	588.9	43.4	18.5	637.5	589	θ	θ	32 4	-38.7
731.85	0.50			Shale	29.3	171.8	618.2	43.4	18.5	681.0	618	θ	θ	340	-39.2
731.35	0.50			Shale	29.3	171.8	647.4	43.4	18.5	724.4	647	θ	θ	356	39.7
730.85	0.50			Shale	29.3	171.8	676.7	43.4	18.5	767.9	677	θ	θ	372	40.2
730.35	0.50			Shale	29.3	171.8	706.0	43.4	18.5	811.3	706	θ	θ	-388	40.7
729.85	0.50			Shale	29.3	171.8	735.3	43.4	18.5	854.8	735	θ	θ	404	41.2
729.35	0.50			Shale	29.3	171.8	764.5	43.4	18.5	898.2	765	θ	θ	420	41.7
728.85	0.50			Shale	29.3	171.8	793.8	43.4	18.5	941.6	794	θ	θ	437	42.2
728.35	0.50			Shale	29.3	171.8	823.1	43.4	18.5	985.1	823	θ	θ	453	42.7
727.85	0.50			Shale	29.3	171.8	852.4	43.4	18.5	1028.5	852	θ	θ	469	43.2
727.35	0.50			Shale		171.8		-	18.5						
		$\langle \rangle$	C												

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

SUBST															
								MAY	PEOLIPED		C & PESI	STANCE for S	Soloctod Pilo	Soil Profile	8105505
										-		-			
					LRFD				m Nominal		m Nominal	Maximum			um Pile
												Resistance Ava			ngth in <u>Boring</u>
GROUN	ID SURF	ACE ELEV	. AGAINS	T PILE DURING DRI	766.00	ft		929	KIPS	910	KIPS	501	KIPS	43	FT.
GEOTE	CHNICA	L LOSS TY	PE (None	e, Scour, Liquef., DD)	None										
зотто	M ELEV	. OF SCOU	R, LIQUE	F., or DD =======		ft									
ΓΟΡ ΕΙ	EV. OF	LIQUEF. (so) lavers a	bove apply DD) ====		ft									
				, , ,											
TOTAL	FACTO	RED SUBST	RUCTUR	RE LOAD ======	4500	kips									
τοται				RE (along skew)====											
				SUBSTRUCTURE =											
NONDL					_	450 54									
				oplied per pile at 8 ft.									_		
	Approx.	Factored Lo	bading Ap	oplied per pile at 3 ft.	Cts =====	: 172.33	KIPS								
ILE T	PE AND) SIZE ====													÷
					P 14 X 117									N	~
	00	Pile Perim	eter====		4.850	FT.	Unplugged								~
	00	Pile Perim	eter====		4.850	FT.	Unplugged Unplugged					FT. SQFT.	\sim		-
	00	Pile Perim	eter====		4.850	FT.	1 00								*
	00	Pile Perim	eter====		4.850	FT.	1 00								*
	00	Pile Perim	eter====		4.850	FT.	1 00					SQFT.			
BOT.	00	d Pile Perimo d Pile End B	eter==== earing Ar	ea	4.850 1.469	FT.	Unplugged	I Pile End		'ea=====	0.239	SQFT.	FACTORED		
OF	Plugged	d Pile Perimo d Pile End B <i>UNCONF</i> .	eter==== earing Ar s.p.t.	GRANULAR	4.850 1.469 <i>NON</i>	FT. SQFT. MINAL PLUG	Unplugged	I Pile End	Bearing Ar	'ea===== JG'D	0.239	SQFT. FACTORED GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
OF LAYER	Pluggeo	UNCONF. COMPR.	eter===== earing Ar s. <i>p.t.</i> N	ea GRANULAR OR ROCK LAYER	4.850 1.469 NOM SIDE	FT. SQFT. MINAL PLUG	Unplugged GGED TOTAL	NON	Bearing Ar MINAL UNPLU	'ea===== JG'D TOTAL	0.239 NOMINAL REQ'D	SQFT. FACTORED GEOTECH. LOSS FROM	GEOTECH. LOSS LOAD	RESISTANCE	PILE
OF LAYER ELEV.	LAYER THICK.	UNCONF. COMPR. STRENGTH	eter==== earing Ar S.P.T. N VALUE	GRANULAR	4.850 1.469 NOM SIDE RESIST.	FT. SQFT. MINAL PLUG END BRG. RESIST.	GGED TOTAL RESIST.	NON SIDE RESIST.	Bearing Ar MINAL UNPLO END BRG. RESIST.	'ea===== JG'D TOTAL RESIST.	0.239 NOMINAL REQ'D BEARING	SQFT. FACTORED GEOTECH. LOSS FROM SCOUR or DD	GEOTECH. LOSS LOAD FROM DD	RESISTANCE AVAILABLE	PILE LENGTH
OF LAYER ELEV. (FT.)	LAYER THICK. (FT.)	UNCONF. COMPR. STRENGTH (TSF.)	eter===== earing Ar s. <i>p.t.</i> N	ea GRANULAR OR ROCK LAYER	4.850 1.469 NON SIDE RESIST. (KIPS)	FT. SQFT. MINAL PLUG	GGED TOTAL (KIPS)	NOI SIDE RESIST. (KIPS)	Bearing Ar MINAL UNPLU	ea===== JG'D TOTAL RESIST. (KIPS)	0.239 NOMINAL REQ'D BEARING (KIPS)	SQFT. FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS)	GEOTECH. LOSS LOAD FROM DD (KIPS)	RESISTANCE AVAILABLE (KIPS)	PILE LENGTH (FT.)
OF LAYER ELEV. (FT.) 765.50	LAYER THICK. (FT.) 0.50	UNCONF. COMPR. STRENGTH (TSF.)	eter==== earing Ar S.P.T. N VALUE	ea GRANULAR OR ROCK LAYER	4.850 1.469 NON SIDE RESIST. (KIPS) 2.1	FT. SQFT. MINAL PLUG END BRG. RESIST. (KIPS)	GGED TOTAL RESIST. (KIPS) 41.2	NOR SIDE RESIST. (KIPS) 3.1	Bearing Ar MINAL UNPLO END BRG. RESIST. (KIPS)	ea===== JG'D TOTAL RESIST. (KIPS) 9.5	0.239 NOMINAL REQ'D BEARING (KIPS) 9	SQFT. FACTORED GEOTECH. LOSS FROM SCOUR or DD	GEOTECH. LOSS LOAD FROM DD	RESISTANCE AVAILABLE (KIPS) 5	PILE LENGTH (FT.) 6
OF LAYER ELEV. (FT.) 765.50 763.00	LAYER THICK. (FT.) 0.50 2.50	UNCONF. COMPR. STRENGTH (TSF.) 1.30 1.90	eter==== earing Ar S.P.T. N VALUE	ea GRANULAR OR ROCK LAYER	4.850 1.469 NOIN SIDE RESIST. (KIPS) 2.1 13.7	FT. SQFT. IINAL PLUG END BRG. RESIST. (KIPS) 39.1	GGED TOTAL RESIST. (KIPS) 41.2 28.1	Non SIDE RESIST. (KIPS) 3.1 20.0	Bearing Ar MINAL UNPLU END BRG. RESIST. (KIPS) 6.4	ea===== JG'D TOTAL RESIST. (KIPS) 9.5 25.1	0.239 NOMINAL REQ'D BEARING (KIPS) 9 25	SQFT. FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0	GEOTECH. LOSS LOAD FROM DD (KIPS) 0	RESISTANCE AVAILABLE (KIPS) 5 14	PILE LENGTH (FT.) 6 8
OF LAYER ELEV. (FT.) 765.50 763.00 760.50	LAYER THICK. (FT.) 0.50	UNCONF. COMPR. STRENGTH (TSF.)	eter==== earing Ar S.P.T. N VALUE	ea GRANULAR OR ROCK LAYER	4.850 1.469 NON SIDE RESIST. (KIPS) 2.1	FT. SQFT. MINAL PLUG END BRG. RESIST. (KIPS)	GGED TOTAL RESIST. (KIPS) 41.2	NOR SIDE RESIST. (KIPS) 3.1	Bearing Ar MINAL UNPLO END BRG. RESIST. (KIPS)	ea===== JG'D TOTAL RESIST. (KIPS) 9.5	0.239 NOMINAL REQ'D BEARING (KIPS) 9	SQFT. FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0	GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0	RESISTANCE AVAILABLE (KIPS) 5	PILE LENGTH (FT.) 6
OF LAYER ELEV.	LAYER THICK. (FT.) 0.50 2.50 2.50	UNCONF. COMPR. STRENGTH (TSF.) 1.30 1.90 0.60	eter==== earing Ar S.P.T. N VALUE	ea GRANULAR OR ROCK LAYER	 4.850 1.469 NON SIDE RESIST. (KIPS) 2.1 13.7 5.6 	FT. SQFT. IINAL PLUG END BRG. RESIST. (KIPS) 39.1 12.4	GGED TOTAL RESIST. (KIPS) 41.2 28.1 27.5	NON SIDE RESIST. (KIPS) 3.1 20.0 8.2	Bearing Ar MINAL UNPLU END BRG. RESIST. (KIPS) 6.4 2.0	ea===== JG'D TOTAL RESIST. (KIPS) 9.5 25.1 32.3	0.239 NOMINAL REQ'D BEARING (KIPS) 9 25 28	SQFT. FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0	GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0	RESISTANCE AVAILABLE (KIPS) 5 14 15	PILE LENGTH (FT.) 6 8 11
OF LAYER ELEV. (FT.) 765.50 763.00 760.50 758.00	LAYER THICK. (FT.) 0.50 2.50 2.50 2.50	UNCONF. COMPR. STRENGTH (TSF.) 1.30 1.90 0.60 0.30	eter==== earing Ar S.P.T. N VALUE	ea GRANULAR OR ROCK LAYER	 4.850 1.469 NON SIDE RESIST. (KIPS) 2.1 13.7 5.6 2.9 	FT. SQFT. IINAL PLUC END BRG. RESIST. (KIPS) 39.1 12.4 6.2	GGED TOTAL RESIST. (KIPS) 41.2 28.1 27.5 32.5	NON SIDE RESIST. (KIPS) 3.1 20.0 8.2 4.3	Bearing Ar MINAL UNPLU END BRG. RESIST. (KIPS) 6.4 2.0 1.0	ea===== JG'D TOTAL RESIST. (KIPS) 9.5 25.1 32.3 37.0	NOMINAL REQ'D BEARING (KIPS) 9 25 28 33	SQFT. FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0	GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0	RESISTANCE AVAILABLE (KIPS) 5 14 15 18	PILE LENGTH (FT.) 6 8 11 13
OF LAYER ELEV. (FT.) 765.50 763.00 760.50 758.00 755.50	LAYER THICK. (FT.) 0.50 2.50 2.50 2.50 2.50	UNCONF. COMPR. STRENGTH (TSF.) 1.30 0.60 0.30 0.40	eter==== earing Ar S.P.T. N VALUE	ea GRANULAR OR ROCK LAYER	 4.850 1.469 NON SIDE RESIST. (KIPS) 2.1 13.7 5.6 2.9 3.8 	FT. SQFT. IINAL PLUC END BRG. RESIST. (KIPS) 39.1 12.4 6.2 8.2	Unplugged GGED TOTAL RESIST. (KIPS) 41.2 28.1 27.5 32.5 30.2	NOM SIDE RESIST. (KIPS) 3.1 20.0 8.2 4.3 5.6	Bearing Ar MINAL UNPLO END BRG. RESIST. (KIPS) 6.4 2.0 1.0 1.3 0.3 6.7	ea===== JG'D TOTAL RESIST. (KIPS) 9.5 25.1 32.3 37.0 41.6	0.239 NOMINAL REQ'D BEARING (KIPS) 9 25 28 33 30	SQFT. FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0	GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0 0	RESISTANCE AVAILABLE (KIPS) 5 14 15 18 18 17	PILE LENGTH (FT.) 6 8 11 13 16
OF AYER ELEV. (FT.) 765.50 763.00 760.50 758.00 755.50 748.50	LAYER THICK. (FT.) 0.50 2.50 2.50 2.50 2.50 7.00	UNCONF. COMPR. STRENGTH (TSF.) 1.30 0.60 0.30 0.40 0.10	eter==== earing Ar S.P.T. N VALUE	ea GRANULAR OR ROCK LAYER	 4.850 1.469 NOIN SIDE RESIST. (KIPS) 2.1 13.7 5.6 2.9 3.8 2.8 	FT. SQFT. IINAL PLUC END BRG. RESIST. (KIPS) 39.1 12.4 6.2 8.2 2.1	GGED TOTAL RESIST. (KIPS) 41.2 28.1 27.5 32.5 30.2 72.1	Non SIDE RESIST. (KIPS) 3.1 20.0 8.2 4.3 5.6 4.2	Bearing Ar MINAL UNPLU END BRG. RESIST. (KIPS) 6.4 2.0 1.0 1.3 0.3	ea===== JG'D TOTAL RESIST. (KIPS) 9.5 25.1 32.3 37.0 41.6 52.1	0.239 NOMINAL REQ'D BEARING (KIPS) 9 25 28 33 30 52	SQFT. FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS) 0 0 0 0 0	GEOTECH. LOSS LOAD FROM DD (KIPS) 0 0 0 0 0 0	RESISTANCE AVAILABLE (KIPS) 5 14 15 18 17 29	PILE LENGTH (FT.) 6 8 11 13 16 23

22.2

22.2

22.2 22.2

22.2 22.2 22.2 22.2 22.2 22.2

22.2

22.2 22.2

22.2

22.2

22.2

44.3

44.3

44.3

44.3

44.3

44.3

44.3

44.3

44.3

44.3

44.3

44.3 44.3

44.3

44.3

29.8

29.8

29.8 29.8

29.8 29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

29.8

188.0

210.2

232.3

254.5

276.7

321.0

343.1

365.3

387.5

409.6

431.8

454.0

476.1

520.5

564.8

609.1

653.4

697.8

742.1

786.4

830.7

875 1

919.4

963.7

1008.0

1052.4 1096.7

1141.0

188

210

232 254

277

299

321

343

365

387

410

432

454

476

517

548

578

608

638

668

699

729

759

789

820

850

880

910

940

0

0

0 0

0

0

Ō

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Ð

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Ð

103

116

128

140 152 164

177

189

201

213

225

237 250

262

285

301

318

334

351 368

384

401

418

434

451

467

484

501

517

32.8

33

33.3

33.5

33.8

34

34.3

34.5

34.8

35

35.3

35.5

35.8

36

36.5

37

37.5

38

38.5

39

39.5

40

40.5

41

41.5

42

42.5

43

43.5

15.1

15.1

15.1

15.1

15.1 15.1

15.1

15.1 15.1

15.1

15.1

15.1

15.1

15.1

30.2 30.2 30.2

30.2 30.2 30.2

30.2 30.2 30.2

30.2

30.2

30.2

30.2 30.2

30.2

Shale

Shale Shale Shale Shale Shale Shale Shale Shale Shale Shale

Sh Sh Sh

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

183.0

290.9

306.0

321.1 336.2

351.3

366.4

381.5 396.6

411.7

426.8 441.9

457.0

472.1

487.2

517.4

547.6

577.9

608.1

638.3

668.5

698.7

728.9

759.1

789.3

819.5

849.7

879.9

910.2

940.4

Modified IDOT Pile Length Pier 2

0.25

0.25

0.25 0.25 0.25 0.25 0.25 0.25

0.25 0.25 0.25

0.25

0.25 0.25

0.25

0.50 0.50

0.50

0.50

0.50 0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.80

738.25

738.00

737.75

737.50

737.25

737.00

736.75

736.50

736.25

736.00

735.75

735.50

735.25

735.00

734.50

734.00

733.50

733.00

732.50

732.00

731.50

731.00

730 50

730.00

729.50

729.00

728.50

728.00

727.50

726.70

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

FD or ASD E CUTOFF OUND SUF OTECHNIC TTOM ELE P ELEV. OI TAL FACTO TAL LENG MBER OF I Appro Appro E TYPE AN	or SEISMIC = ELEV. ==== RFACE ELEV V. OF SCOU F LIQUEF. (so DRED SUBST TH OF SUBS ROWS OF PI X. Factored L X. Factored L ID SIZE ====	. AGAINS PE (None R, LIQUE o layers a FRUCTUF TRUCTUF TRUCTUI LES PER oading Ap oading Ap	T PILE DURING DR a, Scour, Liquef, DD, F., or DD ======= bove apply DD) ===== RE (along skew)==== SUBSTRUCTURE = splied per pile at 8 ft. splied per pile at 3 ft. Steel I	 LRFD 796.96 791.96 None 975 39.17 1 Cts ===== HP 14 X 73 	ft ft ft ft kips ft 199.13 74.67	KIPS	Maximu Req'd Be 578	m Nominal	Maximu Req.d Bez 578	m Nominal ring of <u>Borinc</u> KIPS	Maximum Resistance Ava 318	Factored ilable in <u>Boring</u> KIPS	Driveable Le	um Pile ngth in <u>Boring</u> FT.
Pluggi or. or	unconf.	earing Ar s.p.t.	ea	≖ 1.379 <i>№</i>	SQFT.	Unplugged	d Pile End	Bearing Ar	'ea===== JG'D	0.149 NOMINAL	SQFT. FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
YER LAYEF .EV. THICK =T.) (FT.)		N VALUE (BLOWS)	OR ROCK LAYER DESCRIPTION	SIDE RESIST. (KIPS)	END BRG. RESIST. (KIPS)	TOTAL RESIST. (KIPS)	SIDE RESIST. (KIPS)	END BRG. RESIST. (KIPS)	TOTAL RESIST. (KIPS)	REQ'D BEARING (KIPS)	LOSS FROM SCOUR or DD (KIPS)	LOSS LOAD FROM DD (KIPS)	RESISTANCE AVAILABLE (KIPS)	PILE LENGTH (FT.)
3.46 2.50 6.96 2.50 6.96 2.50 2.50 2.50 2.00 2.46 3.50 2.50 2.00 2.50 2.00 2.50 3.50 2.50 3.00 5.50 3.00 5.00 3.00 5.00 3.50 2.50 3.00 5.00 3.00 5.00 3.50 5.00 3.50 5.00 3.50 5.00 3.50 5.00 3.50 5.00 3.20 0.10 3.20 0.10 3.20 0.10 3.50 0.50 3.50 0.50 3.50 0.50 3.50 0.50 3.50 0.50 3.50 0.50 5.50 0.75 5.50 0.75 5.50 0.75 5.50 <td>2.00 2.00 3.20 1.30 1.70 1.00 1.60 1.10 0.90 1.70 1.00 1.60 1.10 2.70 3.10</td> <td>21</td> <td>Shale Shale</td> <td>$\begin{array}{c} 13.7\\ 13.7\\ 13.8\\ 10.1\\ 12.3\\ 8.3\\ 11.8\\ 10.2\\ 13.7\\ 18.0\\ 16.9\\ 24.6\\ 16.7\\ 16.5\\ 18.0\\ 33.4\\ 36.8\\ 5.9\\ 5.9\\ 5.9\\ 5.9\\ 5.9\\ 5.9\\ 5.9\\ 5.9$</td> <td>38.6 61.8 25.1 32.9 19.3 30.9 25.1 38.6 21.3 17.4 32.9 19.3 30.9 21.3 52.2 59.9 171.8 171.</td> <td>52.3 89.2 71.3 89.1 87.9 107.8 113.8 137.6 133.9 148.0 180.3 191.4 219.7 226.6 275.5 316.6 465.3 471.1 477.0 482.8 488.7 494.5 500.4 500.4 500.4 518.0 523.8 553.1 582.4 614.6 640.9 670.2 714.1 758.0 801.9</td> <td>20.3 20.3 28.0 14.9 18.3 12.4 17.5 15.2 20.3 26.7 25.0 36.5 24.8 24.5 24.5 24.5 24.5 24.5 54.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7</td> <td>$\begin{array}{r} 4.2\\ 6.7\\ 2.7\\ 3.5\\ 2.1\\ 3.3\\ 2.7\\ 4.2\\ 2.3\\ 1.9\\ 3.5\\ 2.1\\ 3.3\\ 5.6\\ 6.5\\ 18$</td> <td>24.5 47.3 77.3 87.0 103.8 117.5 134.4 195.7 222.4 257.4 195.7 222.4 257.4 283.5 307.0 337.</td> <td>24 47 71 87 88 108 114 138 134 148 180 191 220 227 275 317 454 463 471 480 489 495 500 506 512 518 524 553 562 612 641 670 714 758 802</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>13 26 39 48 48 59 63 76 74 81 99 105 121 125 152 174 250 255 259 264 269 272 275 275 275 275 275 275 275 285 285 285 285 285 285 285 285 285 28</td> <td>8 10 13 15 17 20 22 25 27 32 38 43 48 51 56 66.6 66.7 66.8 66.6 66.7 66.8 66.9 67 67.1 67.3 67.4 67.5 68 69 695 70 70.7 71.5 70.7 71.5 72.2</td>	2.00 2.00 3.20 1.30 1.70 1.00 1.60 1.10 0.90 1.70 1.00 1.60 1.10 2.70 3.10	21	Shale Shale	$\begin{array}{c} 13.7\\ 13.7\\ 13.8\\ 10.1\\ 12.3\\ 8.3\\ 11.8\\ 10.2\\ 13.7\\ 18.0\\ 16.9\\ 24.6\\ 16.7\\ 16.5\\ 18.0\\ 33.4\\ 36.8\\ 5.9\\ 5.9\\ 5.9\\ 5.9\\ 5.9\\ 5.9\\ 5.9\\ 5.9$	38.6 61.8 25.1 32.9 19.3 30.9 25.1 38.6 21.3 17.4 32.9 19.3 30.9 21.3 52.2 59.9 171.8 171.	52.3 89.2 71.3 89.1 87.9 107.8 113.8 137.6 133.9 148.0 180.3 191.4 219.7 226.6 275.5 316.6 465.3 471.1 477.0 482.8 488.7 494.5 500.4 500.4 500.4 518.0 523.8 553.1 582.4 614.6 640.9 670.2 714.1 758.0 801.9	20.3 20.3 28.0 14.9 18.3 12.4 17.5 15.2 20.3 26.7 25.0 36.5 24.8 24.5 24.5 24.5 24.5 24.5 54.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	$\begin{array}{r} 4.2\\ 6.7\\ 2.7\\ 3.5\\ 2.1\\ 3.3\\ 2.7\\ 4.2\\ 2.3\\ 1.9\\ 3.5\\ 2.1\\ 3.3\\ 5.6\\ 6.5\\ 18$	24.5 47.3 77.3 87.0 103.8 117.5 134.4 195.7 222.4 257.4 195.7 222.4 257.4 283.5 307.0 337.	24 47 71 87 88 108 114 138 134 148 180 191 220 227 275 317 454 463 471 480 489 495 500 506 512 518 524 553 562 612 641 670 714 758 802	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 26 39 48 48 59 63 76 74 81 99 105 121 125 152 174 250 255 259 264 269 272 275 275 275 275 275 275 275 285 285 285 285 285 285 285 285 285 28	8 10 13 15 17 20 22 25 27 32 38 43 48 51 56 66.6 66.7 66.8 66.6 66.7 66.8 66.9 67 67.1 67.3 67.4 67.5 68 69 695 70 70.7 71.5 70.7 71.5 72.2

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

EFERENCE B FD or ASD o LE CUTOFF B ROUND SURI EOTECHNICA DTTOM ELEV	ORING === r SEISMIC = ELEV. ===== FACE ELEV AL LOSS TY 7. OF SCOU	AGAINS PE (None R, LIQUE	T PILE DURING DRI 5, Scour, Liquef., DD) F., or DD ====== bove apply DD) ====	B-1 LRFD 796.96 791.96 DD 761.30	ft ft	DD	Maximu Req'd Be	m Nominal	Maximu Req.d Bea	G & RESI m Nominal ring of <u>Borinc</u> KIPS		Factored	Maxim Driveable Le	& Losses um Pile ngth in <u>Boring</u> FT.
DTAL LENGTI JMBER OF R Approx. Approx. LE TYPE ANI Plugged Plugged	H OF SUBS OWS OF Pli Factored Lo Factored Lo SIZE ==== d Pile Perimo	TRUCTUI LES PER bading Ap bading Ap eter====	RE LOAD ====== RE (along skew)==== SUBSTRUCTURE = oplied per pile at 8 ft. oplied per pile at 3 ft. Steel F	39.17 1 Cts ===== Cts ===== HP 12 X 74 4.050	ft 199.13 74.67 FT.	KIPS		meter==== Bearing Ar			SQFT.			
80T. OF VYER LAYER LEV. THICK. FT.) (FT.)	UNCONF. COMPR. STRENGTH (TSF.)	S.P.T. N VALUE (BLOWS)	GRANULAR OR ROCK LAYER DESCRIPTION	NON SIDE RESIST. (KIPS)	IINAL PLUC END BRG. RESIST. (KIPS)	GGED TOTAL RESIST. (KIPS)	NOI SIDE RESIST. (KIPS)	MINAL UNPLU END BRG. RESIST. (KIPS)	IG'D TOTAL RESIST. (KIPS)	NOMINAL REQ'D BEARING (KIPS)	FACTORED GEOTECH. LOSS FROM SCOUR or DD (KIPS)	FACTORED GEOTECH. LOSS LOAD FROM DD (KIPS)	FACTORED RESISTANCE AVAILABLE (KIPS)	ESTIMATED PILE LENGTH (FT.)
$\begin{array}{c} 1.9 \\ 9.46 \\ 2.50 \\ 6.96 \\ 2.50 \\ 2.50 \\ 2.200 \\ 2.46 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 3.50 \\ 5.50 \\ 0.50 \\ 0.50 \\ 0.10 \\ 0.20 \\ 0.10 \\ 0.20 \\ 0.10 \\ 0.30 \\ 0.10 \\ 0.30 \\ 0.10 \\ 0.30 \\ 0.10 \\ 0.30 \\ 0.10 \\ 0.30 \\ 0.10 \\ 0.30 \\ 0.10 \\ 0.50 \\ 5.50 \\ 0.50 \\ 5.50 \\ 0.50 \\ 5.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.10 \\ 0.990 \\ 0.10 \\ 0.990 \\ 0.10 \\ 0.990 \\ 0.10 \\ 0.50 \\$	2.00 2.00 3.20 1.30 1.70 1.60 1.30 2.00 1.70 1.00 1.60 1.10 2.70 3.10	7 21	Shale Shale	$\begin{array}{c} 1.1.8\\ 11.8\\ 11.8\\ 11.8\\ 11.8\\ 11.8\\ 16.2\\ 8.8\\ 11.8\\ 15.5\\ 14.5\\ 21.2\\ 14.4\\ 14.5\\ 21.2\\ 14.4\\ 14.3\\ 15.5\\ 28.8\\ 31.7\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0$	28.7 46.0 18.7 24.4 14.4 23.0 18.7 28.7 15.8 12.9 24.4 14.4 23.0 15.8 38.8 44.5 12.7,7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7	40.5 69.5 58.5 72.9 73.4 89.2 95.1 114.0 112.8 125.5 151.5 162.6 185.7 192.7 231.2 265.7 380.6 385.7 390.7 390.7 395.8 400.8 410.9 415.9 421.0 426.0 431.1 456.3 481.5 506.7 532.0 557.2 595.0 632.9 670.7	17.2 17.2 23.7 12.6 15.5 10.5 14.8 17.2 23.7 12.8 15.5 10.5 14.8 17.2 23.6 21.0 20.0 20.0 20.0 20.0 20.0 22.6 42.0 46.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 <tr< td=""><td>$\begin{array}{c} 4.2\\ 6.8\\ 2.8\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 18.9\\ 1$</td><td>11.2 60.8 74.3 88.3 100.1 114.3 128.6 143.9 166.1 189.0 218.4 240.7 260.4 286.5 329.3 387.8 395.2 402.5 402.5 402.5 402.5 393.3 446.7 432.0 454.1 461.4 461.7 454.1 461.7 455.0 571.8 608.6 645.4 700.6 755.8 811.0</td><td>21 41 58 73 73 89 95 114 113 125 151 163 186 391 386 391 396 401 406 411 416 421 426 431 456 482 507 532 557 565 633 671</td><td>6 6 13 22 27 32 36 42 47 53 62 62 62 62 62 62 62 62 62 62 62 62 62</td><td>$\begin{array}{c} 1.3\\ 26\\ 44\\ 53\\ 65\\ 73\\ 84\\ 94\\ 107\\ 124\\ 124\\ 124\\ 124\\ 124\\ 124\\ 124\\ 124$</td><td>-8 -16 -34 -60 -57 -60 -78 -98 -117 -103 -97 -84 -80 -59 -40 23 26 29 32 34 -59 -40 23 26 29 32 34 -59 -40 23 26 29 32 34 -59 -40 23 26 29 32 346 48 51 65 79 93 107 120 141 162 183</td><td>8 10 13 15 17 20 25 27 32 38 43 48 51 56 61 66 66.7 67.3 67.4 67.5 68 68.5 69 69.5 70 72.2</td></tr<>	$\begin{array}{c} 4.2\\ 6.8\\ 2.8\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 2.1\\ 3.6\\ 18.9\\ 1$	11.2 60.8 74.3 88.3 100.1 114.3 128.6 143.9 166.1 189.0 218.4 240.7 260.4 286.5 329.3 387.8 395.2 402.5 402.5 402.5 402.5 393.3 446.7 432.0 454.1 461.4 461.7 454.1 461.7 455.0 571.8 608.6 645.4 700.6 755.8 811.0	21 41 58 73 73 89 95 114 113 125 151 163 186 391 386 391 396 401 406 411 416 421 426 431 456 482 507 532 557 565 633 671	6 6 13 22 27 32 36 42 47 53 62 62 62 62 62 62 62 62 62 62 62 62 62	$\begin{array}{c} 1.3\\ 26\\ 44\\ 53\\ 65\\ 73\\ 84\\ 94\\ 107\\ 124\\ 124\\ 124\\ 124\\ 124\\ 124\\ 124\\ 124$	-8 -16 -34 -60 -57 -60 -78 -98 -117 -103 -97 -84 -80 -59 -40 23 26 29 32 34 -59 -40 23 26 29 32 34 -59 -40 23 26 29 32 34 -59 -40 23 26 29 32 346 48 51 65 79 93 107 120 141 162 183	8 10 13 15 17 20 25 27 32 38 43 48 51 56 61 66 66.7 67.3 67.4 67.5 68 68.5 69 69.5 70 72.2