					ROADWAY	ROADWAY	BRIDGE	BRIDGE	RETAINING WALL	RETAINING
	CODE NUMBER	PAY ITEM		TOTAL QUANTITY	90% FED	100% STATE	90% FED	90% FED	90% FED	90% FED
					0004	0004	0010	0010	0044	0044
					URBAN	URBAN	016-1701	016-1702	016-1727	016-1825
	50300300	PROTECTIVE COAT	SQ YD	7,411			3,828	3,346		97
	50301350	CONCRETE SUPERSTRUCTURE (APPROACH SLAB)	CU YD	361.9			220.5	141.4		
	50500105	FURNISHING AND ERECTING STRUCTURAL STEEL	L SUM	1.0			0.5	0.5		
	50500505	STUD SHEAR CONNECTORS	EACH	43,227			19,760	22,791	170	
	50800105	REINFORCEMENT BARS	POLIND	1,981,040			532 520	549 800	459 810	
							332,520			
	50800205	REINFORCEMENT BARS, EPOXY COATED	POUND	1,084,390			535,090	449,680	24,850	15,100
	50800515	BAR SPLICERS	EACH	316			164	152		
	50800530	MECHANICAL SPLICERS	EACH	1,128				144	504	
	51500100	NAME PLATES	EACH	7			1	1	1	1
	51602000	PERMANENT CASING	FOOT	5,930			2,303	2,186	180	
								<u> </u>		
*	51603000	DRILLED SHAFT IN SOIL	CU YD	8,869.5			2,178.7	1 2,826.5	1,979.3	
*	51604000	DRILLED SHAFT IN ROCK	CU YD	160.8	mm		93	67.8 Z	1	
	52000110		FOOT	312			156	156	Δ	
	52100010	ELASTOMERIC BEARING ASSEMBLY, TYPE I	EACH	92	سس		52	40	<u>/1\</u>	
		* DENOTES SPECIALTY ITEM ** DENOTES NON-PARTICIP	ATING ITEM		% 0042					
_		DI60X94-sht-S00.dgn DESIGNED - TBC REVISED -								

	UI60X94-sht-500.dgn	DESIGNED - TBC	REVISED -				
Two to Custome	USER NAME = vljanachione	DRAWN - JM	REVISED -	STATE OF ILLINOIS		SU	IMMARY OF QU
	PLOT SCALE = 20.0000 '/ in.	CHECKED - MJL	REVISED -	DEPARTMENT OF TRANSPORTATION			
	PLOT DATE = 3/10/2020	DATE - 3-13-2020	REVISED -		SCALE: NONE	SHEET 6	OF 26 SHEETS
						-	

	RETAINING WALL	RETAINING WALL	RETAINING WALL	RETAINING WALL	NOISE ABATEMENT WALL	LIGHTING/ ITS
Ţ	90% FED	90% FED				
	10% STATE	10% STATE				
	0044	0044	0044	0044	0044	0021
	016-1826	016-Z016	016-Z048	016-W989	NONE	URBAN
			140			
+						
+						
+						
t						
+						
	81	425				
+						
1						
	438-910					
	130,510					
t						
	25,330	34,340				
+						
+						
	400					
	480					
t						
t						
	1	1	1			
+						
	180	1-081				
ļ		.,				
ſ						
t	1.005.0					
	1,885.0					
t						
+						
+						
Γ						
+						
				•		

REV-SEP

						02.		
		F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.		
UANTITIES		90/94/290	2014-015R&B-R	COOK	825	11		
				CONTRACT	NO. 6	0X94		
S STA.	TO STA.		ILLINOIS FED. AID PROJECT					

GENERAL NOTES:

- 1. Fasteners shall be ASTM A325 Type 1, hot dip galvanized bolts. Bolts 7_8 in. ϕ , holes 5_{16} in. ϕ , unless otherwise noted.
- 2. Calculated weight of Structural Steel = 873.400 pounds (AASHTO M270 Grade 50).
- 3. All structural steel shall be metalized (see Special Provision).
- 4. Expansion joint plates and attached bars shall be shop painted with the inorganic zinc rich primer.
- 5. No field welding is permitted except as specified in the contract documents.
- 6. Reinforcement bars designated (E) shall be epoxy coated.
- 7. Plan dimension and details relative to existing plans are subject to nominal construction variations. The Contractor shall field verify existing dimensions and details affecting new construction and make necessary approved adjustments prior to construction or ordering of materials. Such variations shall not be cause for additional compensation for a change in scope of work, however, the Contractor will be paid for the quantity actually furnished at the unit price bid for the work.
- 8. Bearing seat surfaces shall be constructed or adjusted to the designated elevations within a tolerance of l_{θ} inch (0.01 ft.). Adjustment shall be made either by grinding the surface or by shimming the bearings.
- 9. Concrete Sealer shall be applied to the designated areas of the Piers, Abutments, Ninawall and Retainina Walls.
- 10. The existing structural steel coating contains lead. The Contractor shall take appropriate precautions to deal with the presence of lead on this project.
- 11. For Conduit Attached to Structure quantities and details, see Electrical Plans.
- 12. The contractor shall exercise extreme caution during construction to make certain that construction activities, live load surcharge and other loads applied to the structures will not have detrimental effects on the adjacent building foundations. Any damage during construction shall be repaired by the contractor at his expense and no charge to the department. Driving piles and temporary sheet piling is not allowed.
- 13. Slipforming of parapets is not allowed.
- 14. For drilled shaft locations where permanent casing is required as shown on the plans, the casing will be paid for under the Permanent Casing pay item. If contractor elects to use permanent casing for ease of construction in locations where permanent casing is not required on the plans, the casing will not be paid for separately and is included in the Drilled Shaft in Soil pay item.
- 15. Limited groundwater elevation data is available in the boring logs. In addition, groundwater may also be present in deeper granular layers. The groundwater may rise in the shafts to an elevation above the top of granular layers. The Contractor shall consider this information when choosing construction methods. The Contractor will not be compensated for issues related to the groundwater elevation.
- 16. The Contractor shall take all necessary precautions not to contaminate groundwater during the drilled shaft construction operation. Contractor is responsible for the proper containment and disposal of the containinated groundwater and spoils resulting from Contractor's means and methods. No additional cost will be paid for this effort.
- 17. The Contractor shall field verify location of existing utilities prior to construction. The Contractor shall take precautions not to damage existing utilities. Any such damage shall be repaired by the Contractor at no additional cost.
- 18. Structural steel erection shall be accomplished by a steel erection contractor or subcontractor certified as an Advanced Certified Steel Erector (ACSE) by the American Institute of Steel Construction (AISC). See special provision for Erection of Complex Steel Structures.
- 19. The Drilled Shaft quantities and reinforcement detailing are based on the estimated elevations shown on the plans. The actual elevations may differ at each shaft locations and corresponding adjustments shall be made to the drilled shaft and reinforcement quantities and payment limits.
- 20. Based on the squeeze potential of the clay soils, the use of temporary casing will be required to Elevation 540.00 in order to properly construct the drilled shafts. Casing may be pulled or left in place, as determined by the Contractor at no cost to the Department.
- 21. The Contractor shall coordinate the construction of the proposed structure with the construction of the proposed Retaining Wall 24, Retaining Wall 36, Retaining Wall 37, Retaining Wall 8 and the proposed Jackson Blvd. Bridge. See MOT plan sheets and special provisions, including the Available Work Areas and Sequencing Requirements special provision, for additional construction and coordination requirements.
- 22. The Contractor shall provide vibration and displacement monitoring at the locations specified in the Special Provision for Construction Vibration Monitoring and Monitoring Adjacent Structures, to ensure that removal/construction activities in the vicinity of the structures do not have detrimental effects on building foundations. No additional compensation shall be provided to the Contractor for alternative means and methods, or additional precautionary measures, required during removal/construction activities to satisfy these requirements. See Contract Special Provisions for details.

- by the Contractor during construction to verify the design bedrock conditions. An RQD of 75% or more should be verified 23. The quality of bedrock at entrance Ramp Pier R1 and North Abutment shall be checked 75% or more should be verified.
- 24. MSE Wall supplier shall design the MSE Wall assuming granular reinforced mass with an effective internal friction angle of 34 degrees and unit weight of 120 lbs./cu. ft. For embankment behind granular reinforced mass, an embankment unit weight of 120 lbs./cu. ft and an effective friction angle of 30 degrees shall be used in the wall system design.
- 25. All Liahtweight Cellular Concrete Fill for the abutments and wingwall shall be Class I. All Lightweight Cellular Concrete Fill for the MSE retaining wall shall be Class III. See Special Provisions.
- 26. Bridge Deck Grooving shall be applied to the Adams Bridge deck and the west and east approach slabs. Bridge Deck Grooving (Longitudinal) shall be applied to the Adams Ramp deck, north approach slab, and entrance ramp concrete and anchorage slabs.
- 27. If the Contractor elects to use cantilever forming brackets on the exterior beams or girders, the brackets shall be placed at the same locations as required for the hardwood blocks in Article 503.06(b) of the Standard Specifications. If additional cantilever forming brackets are required, hardwood blocking shall be wedged between the exterior and first interior beam at each of these additional bracket locations.
- 28. The Contractor shall provide a method to assure the soldier piles achieve at least the plan tip elevations. The soldier pile locations and elevations shall meet the tolerances provided in the Special Provisions. Any additional measures required to satisfy the construction tolerances will not be paid for separately but shall be included in Drilling and Setting Soldier Piles (In Soil).
- 29. Soldier piles shall be cleaned and given one shop coat of Inorganic Zinc Rich Primer. Cost included with Furnishing Soldier Piles (W Section).

STATION 8313+35.76 BUILT 20-- BY STATE OF ILLINOIS F.A.U. RT. 1421 SEC. 2014-015R&B-R LOADING HL-93 STR. NO. 016-1701

> NAME PLATE See Std. 515001

INDEX OF SHEETS

~ ~ ~ ~		C4 70	
SI-01	General Plan and Elevation 1	51-30	Approach Slab Defails 2 - R
S1-02	General Plan and Elevation 2	S1-31	Decorative Railing, Parapet M
S1-03	General Data 1	S1-32	Expansion Joint Details
S1-04	General Data 2	S1-33	Bridge Drainage System
S1-05	General Data 3	S1-34	Drainage Scupper, DS-11
S1-06	Foundation Layout	S1-35	Drainage Scupper, DS-12
S1-07	Existing Structure Removal Details 1	S1-36	Framing Plan - Adams
S1-08	Existing Structure Removal Details 2	S1-37	Framing Plan - Ramp
S1-09	Top of Slab Elevations 1 - Adams	S1-38	Structural Steel Details 1
S1-10	Top of Slab Elevations 2 - Adams	S1-39	Structural Steel Details 2
S1-11	Top of Slab Elevations 3 - Adams	S1-40	Structural Steel Details 3
S1-12	Top of Slab Elevations 4 - Adams	S1-41	Structural Steel Details 4
S1-13	Top of Slab Elevations 5 - Adams	S1-42	Structural Steel Details 5
S1-14	Top of Slab Elevations 6 - Adams	S1-43	Structural Steel Details 6
S1-15	Top of Slab Elevations 1 - Ramp	S1-44	Expansion Bearing Details
S1-16	Top of Slab Elevations 2 - Ramp	S1-45	Fixed Bearing Details
S1-17	Top of Slab Elevations 3 - Ramp	S1-46	West Abutment Plan and Elev
S1-18	Top of West Approach Slab Elevations	S1-47	West Abutment Details
S1-19	Top of East Approach Slab Elevations	S1-48	West Abutment Architectural
S1-20	Top of North Approach Slab Elevations	S1-49	East Abutment Plan and Elev
S1-21	Deck Plan and Cross Section - Adams	S1-50	East Abutment Details
S1-22	Deck Plan - Ramp	S1-51	East Abutment Architectural
S1-23	Cross Sections - Ramp	S1-52	Northeast Wingwall Plan and E
S1-24	Parapet Elevations - Adams	S1-53	Northeast Wingwall Details
S1-25	Parapet Elevations - Ramp	S1-54	North Abutment Plan and Elev
S1-26	Superstructure Details	S1-55	North Abutment Details
S1-27	Approach Slab Details 1 - Adams	S1-56	Pier 1 Plan and Elevation
S1-28	Approach Slab Details 2 - Adams	S1-57	Pier 1 Details
S1-29	Approach Slab Details 1 - Ramp	S1-58	Pier 1 Architectural Details

1-60X9	USER NAME =	wjcolletti	DESIGNED CHECKED	WJC MDS	REVISED REVISED	STATE OF ILLINOIS	GENERAL DATA
5:48:50 0161701	PLOT SCALE =	NTS	DRAWN	JTF	REVISED	DEPARTMENT OF TRANSPORTATION	STRUCTURE NU. 01
	 PLOT DATE =	5/12/2020	CHECKED	WJC	REVISED		SHEET NO. S1-03 OF S1-8

Furnishing And Erecti Stud Shear Connectors Reinforcement Bars Reinforcement Bars, E Bar Splicers Name Plates Permanent Casing Drilled Shaft in Soil Drilled Shaft in Rock Preformed Joint Strip Elastomeric Bearing A Anchor Bolts, 5/8' Anchor Bolts. 3/4" Anchor Bolts, 1 1/4 Temporary Soil Retenti Furnishing Soldier Pile Drilling And Setting So Concrete Sealer Geocomposite Wall Drai Crosshole Sonic Loggi Crosshole Sonic Loggi Class SI Concrete (Mis Lightweight Cellular Co Decorative Railing (Par Slope Inclinometer Detectable Warnings (S Bridge Deck Grooving High Load Multi-Rotati High Load Multi-Rotati High Load Multi-Rotati Drainage Scuppers, D Drainage Scuppers, D Drainage System Mechanically Stabilized Pipe Underdrains For

30	Approach Slab Details 2 - Ramp
31	Decorative Railing, Parapet Mounted
32	Expansion Joint Details
33	Bridge Drainage System
34	Drainage Scupper, DS-11
35	Drainage Scupper, DS-12
36	Framing Plan - Adams
37	Framing Plan - Ramp
38	Structural Steel Details 1
39	Structural Steel Details 2
40	Structural Steel Details 3
41	Structural Steel Details 4
42	Structural Steel Details 5
43	Structural Steel Details 6
44	Expansion Bearing Details
45	Fixed Bearing Details
46	West Abutment Plan and Elevation
47	West Abutment Details
48	West Abutment Architectural Details
49	East Abutment Plan and Elevation
50	East Abutment Details
51	East Abutment Architectural Details
52	Northeast Wingwall Plan and Elevation
53	Northeast Wingwall Details
54	North Abutment Plan and Elevation
55	North Abutment Details
56	Pier 1 Plan and Elevation

Protective Shield

Rubbed Finish

Protective Coat Concrete Superstructu

Structure Excavation Concrete Structures

Concrete Superstructu Bridge Deck Grooving

Form Liner Textured

TOTAL BILL OF MATERIAL

	Unit	Super	Sub	Total Quantity
tructures No. 1	Each	1		1
	Sq. Yd.	2,661		2,661
	Cu. Yd.		1,956	1,956
	Cu. Yd.		684.4	684.4
	Sq. Ft.		5,008	5,008
re	Cu. Yd.	1,143.4		1,143.4
	Sq. Yd.	1,885		1,885
Surface	Sq. Ft.		1,914	1,914
	Sq. Yd.	3,828		3,828
re (Approach Slab)	Cu. Yd.	220.5		220.5
ng Structural Steel	L. Sum	0.5		0.5
5	Each	19,521	239	19,760
	Pound		532,520	532,520
poxy Coated	Pound	356,310	178,780	535,090
	Each		164	164
	Each		1	1
	Foot		2,303	2,303
	Cu. Yd.		2,178.7	2,178.7
	Cu. Yd.		93.0	93.0
Seal	Foot	156		156
ssembly, Type I	Each	52		52
	Each	100		100
	Each	64		64
u	Each	4		4
ion System	Sq. Ft.		326	326
s (W Section)	Foot		395	395
oldier Piles (In Soil)	Cu. Ft.		3,063	3,063
	Sq. Ft.		15,493	15,493
in	Sq. Yd.		195	195
ng Access Ducts	Foot		2,129	2,129
ng Testing	Each		5	5
scellaneous)	Cu. Yd.		46.1	46.1
ncrete Fill	Cu. Yd.		1,913	1,913
rapet Mounted)	Foot	507		507
	Each		2	2
Special)	Sq. Ft.	89		89
(Longitudinal)	Sq. Yd.	742		742
onal Bearings, Fixed - 250K	Each	11		11
onal Bearings, Fixed - 350K	Each	4		4
onal Bearings, Fixed - 500K	Each	1		1
S-11	Each	1		1
S-12	Each	6		6
	L. Sum	0.5		0.5
Earth Retaining Wall, Special	Sq. Ft.		2,012	2,012
Structures 4"	Foot		213	213

S1-59	Pier 2 Plan and Elevation
S1-60	Pier 2 Details
S1-61	Pier 2 Architectural Details
S1-62	Pier 3 Plan and Elevation
S1-63	Pier 3 Details
S1-64	Pier 3 Architectural Details
S1-65	Pier R1 Plan and Elevation
S1-66	Pier R1 Details
S1-67	Pier R1 Architectural Details
S1-68	MSE Wall Elevation and Cross Sections
S1-69	Parapet and Concrete Slab Plan and Elevation
S1-70	Parapet and Anchorage Slab Plan and Elevation
S1-71	Parapet, Concrete, and Anchorage Slab Plan Details
S1-72	MSE Wall Architectural Details 1
SI-73	MSE Wall Architectural Details 2
SI-74	Bar Splicer Assembly and Mechanical Splicer Details
SI-74A	ComEd Conduit Support Layout
SI- 74B	Come a Conduit Support Hangar Details
SI-75	Boring Logs I
51-76	Boring Logs 2
51-77	Boring Logs 5
51-70	Boring Logs 4
51-19	Boring Logs 5
51-00	During Logs 6
51-01	Boring Logs 7 Poriog Logs 8
51 02	Boring Logs 0 Poring Logs 9
51 05	During Lugs 3

\bigwedge REVISED ENTIRE SHEET 5/15/20

NTA 1	F.A.U. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
016_1701	1421	2014-015R&B-R	СООК	825	305
010-1701			CONTRACT	' NO. 6	0X94
1-83 SHEETS		ILLINOIS FED. AI	D PROJECT		

1:00 AM 1701-60X94-S006-FoundLayout.dgr

ŝ

MOVAL DETAILS 2	F.A.U. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.		
016_1701	1421	2014-015R&B-R	СООК	825	310		
010-1701	CONTRACT NO. 60X94						
1-83 SHEETS		ILLINOIS FED. AI	D PROJECT				

SHEET NO. S1-37 OF S

Girder	AA	BB	СС	DD							
1R	2"x16"	1 ³ 4"x16"	2 ¹ 2"x16"	³ 4"x7 ¹ 2"							
2R	2"x16"	1 ³ 4"x16"	2′2″x16″	³ ₄ "x7 ¹ 2"							
3R	2"x16"	1³4"x16"	2′2″x16″	³ ₄ "x7 ¹ 2"							
9R	2′8"x18"	1 ³ 4"x18"	2′2"x18"	³ 4"x8'2"							

S1	S2	S3
6" (-) = 65'-8 ¹ 4"	125 Spa. at 4" (-) = 41'-5"	131 Spa. at 6" (-) = 65'-0 ¹ 2"
8" (-) = 65'-2 ⁵ 8"	125 Spa. at 4" (-) = 41'-5"	157 Spa. at 5" (-) = 65'-0 ¹ 2"
t 6" (-) = 64'-9"	100 Spa. at 5" (-) = 41'-5"	98 Spa. at 8" (-) = 65′-0½"
$4''(-) = 72' - 7'_4''$	125 Spa. at 4" (-) = 41'-5 ¹ 8"	196 Spa. at 4" (-) = 65'-0 ¹ 2"

SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
2014-015R&	B-R COOK	825	339
	CONTRACT	' NO. 6	0X94
ILLINOIS	FED. AID PROJECT		
-	SECTION 2014-015R&I	SECTION COUNTY 2014-015R&B-R COOK CONTRACT ILLINOIS FED. AID PROJECT	SECTION COUNTY TOTAL SHEETS 2014-015R&B-R COOK 825 CONTRACT NO. 6 ILLINOIS FED. AID PROJECT

1:19

A REVISED ENTIRE SHEET 5/15/20 CVN denotes Charpy V-Notch impact energy requirements. Zone 2.

L DETAILS 6	F.A.U. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
016_1701	1421	2014-015R&B-R	СООК	825	345
. 010-1701			CONTRACT	NO. 6	0X94
1-83 SHEETS	I	ILLINOIS FED. AI	D PROJECT		

 $\frac{3}{4}$ "x6" granular or solid flux filled headed studs conforming to Article 1006.32 of the Standard Specifications automatically end welded to casing. Cost of shear studs included in Class SI

Bars noted thus, $3x^2$ -#5 indicates 3 lines of bars with 2 lengths of bar per line. When splicing spiral reinforcement is necessary, the spirals shall be provided with l_2^{l} extra turns at the ends to be spliced. These additional turns shall either be welded together according

Drilled Shaft quantity from top of existing ground elevation to bottom of abutment cap elevation

Install lagging and Geocomposite Wall Drain from top down as excavation proceeds. Minimize Wall Drain, typ. over-excavation and backfill voids with dry loose sand. Cost included with Class SI Concrete

> The Contractor is responsible for the design and performance of the lagging system, the deflection of the lagging shall be limited to 1" maximum using no less than a 3 in. nominal rough-sawn thickness and timber with a minimum allowable bending stress of 1000 psi, until the concrete facing is installed. The Contractor shall submit design calculations and details prepared by an Illinois Licensed Structural Engineer for the attachment of the lagging to the shaft for approval by the Engineer. Alternative equivalent systems may be submitted for approval by the Engineer. Cost included with Class SI Concrete (Miscellaneous).

WES	T A	BUTMENT
BILL	0F	MATERIAL

Bar h100(E) h101(E)	No			
h100(E) h101(E)	NO.	Size	Length	Shape
h101(E)	12	#5	.36'-2"	
5102(E)	10	#6	36'-5"	
	26	#5	36'-2"	
h102(E)	38	#6	36'-6"	
h104(E)	12	#5	31-10"	
1104(E)	12	#5	J-10	
n105(E)	24	#5	4-6	
h106(E)	16	#5	27-6"	
h107(E)	24	#5	3'-2"	
h108(E)	4	#5	6′-9"	
h109(E)	4	#5	6′-9″	
p100(E)	36	#5	36′-2″	
p101(E)	7	#5	11'-2"	
s100(E)	140	#5	10'-11"	<u> </u>
6100(E)	70	#5	6'-9"	
SIGIL	10	","	0 5	
co 100	10	#7	1011 0"	
spIUU	10	#6	104'-0"	//////
10 - 1	-		7/ 0	
u100(E)	12	#4	7'-8"	
u101(E)	8	#5	10′-6″	
v100(E)	70	#6	3′-8″	
v101(E)	70	#6	4'-11"	
v102(F)	70	#4	2'-11"	\neg
v103(E)	70	#5	3'-6"	
V103(E)	140	#5	13'-0"	· .
V104(L)	170	#11	15 0	
V105(E)	150	#11	22-5	
V106(E)	130	#11	24'-5"	
v107	260	#]]	50'-1"	
v108	260	#11	48′-7"	
v109(E)	28	#5	2'-4"	
v110(E)	10	#5	4′-5″	
Structure	Fxcava	tion	Cu. Yd.	1.066
Concrete	Structur	es	Cu. Yd.	69.5
Concrete	Supersti	ructure	Cu Yd	47
Stud She	ar Conne	otors	Each	140
Daiofara	mont Pa	501013	Bound	177 020
Delefor	ment Ba	15	rouna	111,020
Reintorce	iment Ba	rs,	Pound	38.760
	ated			
Ероху Сс	it Casing		Foot	990
Epoxy Co Permaner		oil	Cu. Yd.	716.4
Epoxy Ca Permaner Drilled Si	haft in S			
Epoxy Co Permaner Drilled SI Drilled SI	haft in S haft in R	ock	Cu. Yd.	30.1
Epoxy Co Permaner Drilled SI Drilled SI Concrete	naft in S naft in R Sealer	Pock	Cu. Yd. Sq. Ft.	30.1 1,486
Epoxy Co Permaner Drilled SI Drilled SI Concrete Class SI	naft in S naft in R Sealer Concrete	Pock	Cu. Yd. Sq. Ft.	30.1 1,486
Epoxy Co Permaner Drilled SI Drilled SI Concrete Class SI (Miscellan	naft in S naft in R Sealer Concrete eous)	Pock	Cu. Yd. Sq. Ft. Cu. Yd.	30.1 1.486 46.1
Epoxy Co Permaner Drilled SI Drilled SI Concrete Class SI (Miscellan	naft in S naft in R Sealer Concrete eous) ht Cellul	Pock	Cu. Yd. Sq. Ft. Cu. Yd.	30.1 1,486 46.1
Epoxy Cc Permaner Drilled SI Drilled SI Concrete Class SI (Miscellan Lightweig	naft in S naft in R Sealer Concrete eous) ht Cellulo Fill	Pock Pock	Cu. Yd. Sq. Ft. Cu. Yd. Cu. Yd.	30.1 1,486 46.1 134
Epoxy Cc Permaner Drilled SI Concrete Class SI (Miscellan Lightweig Concrete	naft in S naft in R Sealer Concrete eous) ht Cellulo Fill	or	Cu. Yd. Sq. Ft. Cu. Yd. Cu. Yd.	30.1 1,486 46.1 134
Epoxy Cc Permaner Drilled SI Drilled SI Concrete Class SI (Miscellan Lightweig Concrete Slope Inc	naft in S Daft in R Sealer Concrete eous) ht Cellulo Fill	Pock Por	Cu. Yd. Sq. Ft. Cu. Yd. Cu. Yd. Each	30.1 1,486 46.1 134 1
Epoxy Cc Permaner Drilled Sr Drilled Sr Concrete Class SI (Miscellan Lightweig Concrete Slope Inc Pipe Und	naft in S naft in R Sealer Concrete eous) ht Cellulo Fill linomete erdrains	pock pock pr	Cu. Yd. Sq. Ft. Cu. Yd. Cu. Yd. Each	30.1 1.486 46.1 134 1 69
Epoxy Cc Permanen Drilled SI Concrete Class SI (Miscellan Lightweig Concrete Slope Inc Pipe Und for Struct	naft in S naft in R Sealer Concrete eous) ht Cellulo Fill linometer erdrains tures, 4	ock ock or r	Cu. Yd. Sq. Ft. Cu. Yd. Cu. Yd. Each Foot	30.1 1,486 46.1 134 1 69
Epoxy Cc Permaner Drilled SI Concrete Class SI (Miscellan Lightweig Concrete Slope Inc Pipe Und for Struc	naft in S naft in R Sealer Concrete eous) ht Cellulo Fill Sinometen erdrains tures, 4	ock ock or r	Cu. Yd. Sq. Ft. Cu. Yd. Cu. Yd. Each Foot	30.1 1.486 46.1 134 1 69
Epoxy Cc Permaner Drilled SI Concrete Class SI (Miscellan Lightweig Concrete Slope Ind Pipe Und for Struct	haft in S haft in R Sealer Concrete eous) ht Celluld Fill Minometer erdrains tures, 4 SECTI	2000 k	CU. Yd. Sq. Ft. CU. Yd. CU. Yd. Each Foot	30.1 1.486 46.1 134 1 69
Epoxy Cc Permaner Drilled SI Drilled SI Concrete Class SI (Miscellan Lightweig Concrete Slope Ind Fipe Und for Struc F.A.U. RTE.	naft in S naft in R Sealer Concrete eous) ht Cellulo Fill linometel erdrains tures, 4	on ock i i i on on on	CU. Yd. Sq. Ft. Cu. Yd. Cu. Yd. Each Foot	30.1 1,486 46.1 134 1 69
Epoxy Cc Permaner Drilled SI Concrete Class SI (Miscellan Lightweig Concrete Slope Ind for Struc F.A.U. RIE. 1421	haft in S haft in R Sealer Concrete eous) ht Cellula Fill 'linometel erdrains 'tures, 4 SECTI 2014-015	000k	CU. Yd. Sq. Ft. Cu. Yd. Cu. Yd. Each Foot COUNTY COOK	30.1 1.486 46.1 134 1 69 TOTAL SHE SHEETS N 825 3.2 2.0 2.0 2.0 3.0 1.486 46.1 1.486 46.1 1.486 46.1 1.486 46.1 1.486 1.486 46.1 1.486 1.

PLOT DATE = 5/12/2020

CHECKED

WJC

REVISED

SHEET NO. S1-49 OF S1-83 SHEETS

 $\frac{3}{4}$ "x6" granular or solid flux filled headed studs conforming to Article 1006.32 of the Standard Specifications automatically end welded to casing.

When splicing spiral reinforcement is necessary, the spirals shall be provided with $l_{2}^{l_{2}}$ extra turns at the ends to be spliced. These additional turns shall either be welded together according to AWS D1.4, or shall both terminate in 135° standard hook. Drilled Shaft quantity from top of existing ground elevation to bottom of abutment cap

Conduit provided by others. Contractor to coordinate with utility owner for location and size of utility blockouts. Cost of utility blockouts included in Concrete Structures. See

Cost of PJF and drain pipe sleeve included in Concrete Structures.

EAS	T A	BUTMENT
BILL	0F	MATERIAL

Bar	No.	Size	Length	Shape
h500(E)	12	#5	36′-2″	
h501(E)	10	#6	36′-5″	
h502(E)	28	#5	36′-2″	
h503(E)	28	#6	36′-6″	
h504(E)	12	#5	3'-10"	
h505(E)	12	#5	4'-4"	
h506(E)	16	#5	3'-2"	
h507(E)	8	#5	2'-6"	
h508(E)	4	#5	6'-9"	
h509(E)	4	#5	6'-9"	
ο500(E)	36	#5	36′-2″	
D501(E)	7	#5	22'-8"	
s500(E)	140	#5	10'-11"	r 1
s501(E)	70	#5	6'-9"	
			<u> </u>	-
sn500	10	#6	105'-6"	mm
0,000	10		105 0	
11500(F)	24	#4	7'-8"	
1501(E)	8	#5	10'-6"	
0301127			10 0	
v500(F)	70	#6	3'-4"	
v500(E)	70	#6	<u> </u>	
V502(E)	70	#0 #1	9'-11"	
V502(E)	70	#4	2 - 11	
V505(E)	140	#5	131-0"	I
VOU4(E)	140	#5	13-9	
VOUDIET	140	#11 #11	25-5	
VOUDIE/	280	#11 #11	20-5	
V507	200	#11	50'-4	
V508	280	#11	48'-10	
V509(E)	20	#5	2'-4"	
v510(E)	10	#5	4'-3"	
Structure	Excavat	'ion	Cu. Yd.	35
Concrete :	Structur	es	Cu. Yd.	119.2
Concrete :	Superstr	ructure	Cu. Yd.	4.8
Stud Shea	r Conne	ctors	Each	150
Reinforcer	nent Ba	rs	Pound	189,640
Reinforcer	nent Ba	rs,	Pound	48 130
Ероху Сос	ited		1 00/10	-10,100
Permanent	Casing		Foot	1,000
Drilled Sho	oft in S	oil	Cu. Yd.	720.1
Drilled Sho	aft in R	'ock	Cu. Yd.	36.0
Concrete 3	Sealer		Sq. Ft.	1,539
Geocompos	site Wall	Drain	Sq. Yd.	109
Lightweigh	t Cellulo)r	C. Vd	E00
Concrete i	Fill		CU. TU.	522
Slope Incl	inometer	r	Each	1
Pipe Unde	rdrains		T t	
for Struct	ures. 4	п	Foot	69

+ Length is height of spiral.

\bigwedge REVISED ENTIRE SHEET 5/15/20

r details	F.A.U. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
016_1701	1421	2014-015R&B-R	СООК	825	352
010-1701			CONTRACT	NO. 6	0X94
1-83 SHEETS		ILLINOIS FED. AI	D PROJECT		

	USER NAME = wjcolletti	DESIGNED TLR	REVISED		BORING LOGS 1	F.A.U. RTE.	SECTION	COUNTY	TOTAL SHEET SHEETS NO.
Tran Systome		CHECKED WJC	REVISED	STATE OF ILLINOIS STRUCTURE NO. 016–1701 DEPARTMENT OF TRANSPORTATION STRUCTURE NO. 016–1701	STRUCTURE NO 016 1701	1421	2014-015R&B-R	СООК	825 377
	PLOT SCALE = NTS	DRAWN JTF	REVISED				CONTRAC	T NO. 60X94	
	PLOT DATE = 5/5/2020	CHECKED WJC	REVISED		SHEET NO. S1-75 OF S1-83 SHEETS		ILLINOIS FED. A	ID PROJECT	

Notes: Boring Log 0589-B-01 station and offset are measured along ₱ Adams St.

 \triangle REVISED ENTIRE SHEET 5/15/20

Bench Mark: Cut "X" on southwest balcony of Jackson Blvd. Bridge. Elev. 597.26.

Existing Structure: SN 016-0588. Constructed in 1955 under F.A.I. Route 173, Section 0101.2-2B. Repairs were made to the bridge in 2002 under Section 0101-2-1B-R-1. Three span bridge that measures 199'-9' from back to back of abutments. Out-to-out width varies from 67'-11³₄" to 72'-1". The spans are supported by 36" wide flange beams. Substructure is reinforced concrete closed abutments and multi-column piers founded on timber piles. The foundation of the west pier is founded on caissons. The Existing Jackson Entrance Ramp is offset 90° from the centerline of Jackson Boulevard. Three span bridge that measures 169'-10" from back of north abutment to the centerline of the north fascia beam on Jackson Boulevard. Out-to-out width is 22'-6". The spans are supported by 24" wide flange beams. Substructure is reinforced concrete closed north abutment and single hammerhead pier founded on caissons. A concrete cantilever retaining wall extends north of the north abutment for 215'-0". The existing bridge superstructure, piers, and ramp retaining wall were removed as part of Contract 62J31. The existing bridge abutments and wingwalls will be removed in this contract.

APPROVED For Structural Adequacy Only mylig ml Engineer of Bridges & Structures

TABLE 1

	Approx.	Approx.
Location	T/Ground	T/Weather.
	Elev.	Rock Elev.
W. Abut.	576,74	487.80
Pier 1	575.35	489.40
Pier 2	574.36	489.40
E. Abut.	573.14	489.00

SEISMIC DATA

Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0 sec. (S_{DI}) = 0.085g Design Spectral Acceleration at 0.2 sec. (S_{DS}) = 0.144g Soil Site Class = D

LOADING HL-93

Allow 50#/sq. ft. for future wearing surface.

DESIGN SPECIFICATIONS

2017 AASHTO LRFD Bridge Design Specifications 8th Edition

DESIGN STRESSES

FIELD UNITS

- f'c = 3,500 psi f'c = 4,000 psi (Superstructure Concrete)
- fy = 60,000 psi (Reinforcement)
- fy = 50,000 psi (M270 Grade 50)

PRECAST UNITS

f'c = 4,500 psi

GENERAL PLAN AND ELEVATION 1 JACKSON BOULEVARD OVER F.A.I. 90/94 (KENNEDY EXPRESSWAY) F.A.U. RTE. 1422 - SECTION 2014-015R&B-R COOK COUNTY STATION 8213+25.75

	F.A.U. RTE	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
	1422	2014-015R&B-R	COOK	825	386
			CONTRACT	NO. 6	0X94
2-80 SHEETS		ILLINOIS FED. AI	D PROJECT		

GENERAL NOTES:

- 1. Fasteners shall be ASTM A325 Type 1, hot dip galvanized bolts. Bolts 7_8 in. ϕ , holes ; in. Ø, unless otherwise noted.
- 2. Calculated weight of Structural Steel = 979,270 pounds (AASHTO M270 Grade 50).
- 3. All structural steel shall be metalized (see Special Provision).
- 4. Expansion joint plates and attached bars shall be shop painted with the inorganic zinc ich primer
- 5. No field welding is permitted except as specified in the contract documents.
- 6. Reinforcement bars designated (E) shall be epoxy coated.
- 7. Plan dimension and details relative to existing plans are subject to nominal construction variations. The Contractor shall field verify existing dimensions and details affecting new construction and make necessary approved adjustments prior to construction or ordering of materials. Such variations shall not be cause for additional compensation for a change in scope of work, however, the Contractor will be paid for the quantity actually furnished at the unit price bid for the work.
- 8. Bearing seat surfaces shall be constructed or adjusted to the designated elevations within a tolerance of l_{θ} inch (0.01 ft.). Adjustment shall be made either by grinding the surface or by shimming the bearings.
- 9. Concrete Sealer shall be applied to the designated areas of the Piers, Abutments, Wingwalls and Retaining Walls.
- 10. For Conduit Attached to Structure quantities and details, see Electrical Plans.
- 11. The contractor shall exercise extreme caution during construction to make certain that construction activities, live load surcharge and other loads applied to the structures will not have detrimental effects on the adjacent building foundations. Any damage during construction shall be repaired by the contractor at his expense and no charge to the department. Driving piles and temporary sheet piling is not allowed.
- 12. Slipforming of parapets is not allowed.
- 13. For drilled shaft locations where permanent casing is required as shown on the plans, the casing will be paid for under the Permanent Casing pay item. If contractor elects to use permanent casing for ease of construction in locations where permanent casing is not required on the plans, the casing will not be paid for separately and is included in the Drilled Shaft in Soil pay item.
- 14. Limited groundwater elevation data is available in the boring logs. In addition, groundwater may also be present in deeper granular layers. The groundwater may rise in the shafts to an elevation above the top of granular layers. The Contractor shall consider this information when choosing construction methods. The Contractor will not be compensated for issues related to the groundwater elevation.
- 15. The Contractor shall take all necessary precautions not to contaminate groundwater during the drilled shaft construction operation. Contractor is responsible for the proper containment and disposal of the contaminated groundwater and spoils resulting from Contractor's means and methods. No additional cost will be paid for this effort.
- 16. The Contractor shall field verify location of existing utilities prior to construction. The Contractor shall take precautions not to damage existing utilities. Any such damage shall be repaired by the Contractor at no additional cost. The Contractor shall locate ComEd ductbanks prior to preparation of MSE shop drawings.
- 17. Structural steel erection shall be accomplished by a steel erection contractor or subcontractor certified as an Advanced Certified Steel Erector (ACSE) by the American Institute of Steel Construction (AISC). See special provision for Erection of Complex Steel Structures.
- 18. The Drilled Shaft quantities and reinforcement detailing are based on the estimated elevations shown on the plans. The actual elevations may differ at each shaft locations and corresponding adjustments shall be made to the drilled shaft and reinforcement quantities and payment limits.
- 19. Based on the squeeze potential of the clay soils, the use of temporary casing will be required to Elevation 540.00 in order to properly construct the drilled shafts. Casing may be pulled or left in place, as determined by the Contractor at no cost to the
- 20. The Contractor shall coordinate the construction of the proposed structure with the construction of the proposed Retaining Wall 24, Retaining Wall 37, Retaining Wall 8 and the proposed Adams St. Bridge. See MOT plan sheets and special provisions, including the Available Work Areas and Sequencing Requirements special provision, for additional construction and coordination requirements.
- 21. The Contractor shall provide vibration and displacement monitoring at the locations specified in the Special Provision for Construction Vibration Monitoring and Monitoring Adjacent Structures, to ensure that removal/construction activities in the vicinity of the structures do not have detrimental effects on building foundations. No additional compensation shall be provided to the Contractor for alternative means and methods, or additional precautionary measures, required during removal/construction activities to satisfy these requirements. See Contract Special Provisions for details.

- 22. MSE Wall supplier shall design the MSE Wall assuming granular reinforced mass with an effective internal friction angle of 34 degrees and unit weight of 120 lbs./cu. ft. For embankment behind granular reinforced mass, an embankment unit weight of 120 lbs./cu. ft and an effective friction angle of 30 degrees shall be used in the wall system desian.
- 23. All Lightweight Cellular Concrete Fill for the abutments and wingwalls shall be Class I. All Lightweight Cellular Concrete Fill for the MSE retaining wall shall be Class III. See Special Provisions.
- 24. Bridge Deck Grooving shall be applied to the Jackson Bridge deck and the west and east approach slabs. Bridge Deck Grooving (Longitudinal) shall be applied to the Jackson Ramp deck, north approach slab, and entrance ramp concrete and anchorage
- 25. If the Contractor elects to use cantilever forming brackets on the exterior beams or girders, the brackets shall be placed at the same locations as required for the hardwood blocks in Article 503.06(b) of the Standard Specifications. If additional cantilever forming brackets are required, hardwood blocking shall be wedged between the exterior and first interior beam at each of these additional bracket locations.

STATION 8213+25.75 BUILT 20-- BY STATE OF ILLINOIS F.A.U. RT. 1422 SEC. 2014-015R&B-R LOADING HL-93 STR. NO. 016-1702

> NAME PLATE See Std. 515001

INDEX OF SHEETS

52-01	General Plan and Elevation 1	52
52-02	General Plan and Elevation 2	52
52-03	General Data 1	52
S2-04	General Data 2	S2
S2-05	General Data 3	S2
52-06	Foundation Lavout	52
S2-07	Existing Structure Removal Details	S2
S2-08	Top of Slab Elevations 1 - Jackson	S2
S2-09	Top of Slab Elevations 2 - Jackson	S2
S2 - 10	Top of Slab Elevations 3 - Jackson	S2
S2 - 11	Top of Slab Elevations 4 - Jackson	S2
S2 - 12	Top of Slab Elevations 5 - Jackson	S2
S2-13	Top of Slab Elevations 6 - Jackson	S2
S2 - 14	Top of Slab Elevations 1 - Ramp	S2
S2 - 15	Top of Slab Elevations 2 - Ramp	S2
S2 - 16	Top of Slab Elevations 3 - Ramp	S2
S2 - 17	Top of West Approach Slab Elevations	S2
S2 - 18	Top of East Approach Slab Elevations	S2
S2 - 19	Top of North Approach Slab Elevations	S2
S2-20	Deck Plan and Cross Section - Jackson	S2
S2-21	Deck Plan - Ramp	S2
S2-22	Cross Sections - Ramp	S2
S2-23	Parapet Elevations - Jackson	S2
S2-24	Parapet Elevations - Ramp	S2
S2-25	Superstructure Details	S2
S2-26	Approach Slab Details 1 - Jackson	S2
S2-27	Approach Slab Details 2 - Jackson	S2
S2-28	Approach Slab Details 1 - Ramp	S2

	Removal of Official
S2-29	Approach Slab Details 2 - Ramp
S2-30	Decorative Railing, Parapet Mounted
S2-31	Expansion Joint Details
S2-32	Bridge Drainage System
S2-33	Drainage Scupper, DS-11
S2-34	Drainage Scupper, DS-12
S2-35	Framing Plan - Jackson
S2-36	Framing Plan - Ramp
S2-37	Structural Steel Details 1
S2-38	Structural Steel Details 2
S2 - 39	Structural Steel Details 3
S2-40	Structural Steel Details 4
S2-41	Structural Steel Details 5
S2-42	Structural Steel Details 6
S2-43	Expansion Bearing Details
S2-44	Fixed Bearing Details
S2-45	West Abutment Plan and Elevation
S2-46	West Abutment Details
S2-47	West Abutment Architectural Details
S2-48	East Abutment Plan and Elevation
S2-49	East Abutment Details
S2-50	East Abutment Architectural Details
S2-51	Southwest Wingwall Plan and Elevation
S2-52	Southeast Wingwall Plan and Elevation
S2-53	Wingwall Details 1
S2-54	Wingwall Details 2
S2-55	North Abutment Plan and Elevation
S2-56	North Abutment Details

	SHEETS NU.
TRAD Systems CHECKED MDS REVISED STATE OF ILLINOIS STATE OF ILLINOIS STATE OF ILLINOIS	СООК 825 388
DEPARTMENT OF TRANSPORTATION	CONTRACT NO. 60X94
PLOT DATE = 5/13/2020 CHECKED WJC REVISED ILLINOIS	AID PROJECT

TOTAL BILL OF MATERIAL

Item	Unit	Super	Sub	Total Quantity
Concrete Removal	Cu. Yd.		676	676
Structure Excavation	Cu. Yd.		4,720	4,720
Concrete Structures	Cu. Yd.		640.2	640.2
Rubbed Finish	Sq. Ft.		3,526	3,526
Concrete Superstructure	Cu. Yd.	1,022.3		1,022.3
Bridge Deck Grooving	Sq. Yd.	1,669		1,669
Form Liner Textured Surface	Sq. Ft.		1,263	1,263
Protective Coat	Sq. Yd.	3,346		3,346
Concrete Superstructure (Approach Slab)	Cu. Yd.	141.4		141.4
Furnishing And Erecting Structural Steel	L. Sum	0.5		0.5
Stud Shear Connectors	Each	22,791		22,791
Reinforcement Bars	Pound		549,800	549,800
Reinforcement Bars, Epoxy Coated	Pound	288,480	161,200	449,680
Bar Splicers	Each		152	152
Mechanical Splicers	Each		144	144
Name Plates	Each		1	1
Permanent Casing	Foot		2.186	2,186
Drilled Shaft in Soil	Cu. Yd.		2.826.5	2.826.5
Drilled Shaft in Rock	Cu. Yd.		67.8	67.8
Preformed Joint Strip Seal	Foot	156		156
Elastomeric Bearing Assembly, Type I	Each	40		40
Anchor Bolts, 5/8"	Each	100		100
Anchor Bolts, 3/4"	Each	16		16
Anchor Bolts. 1"	Each	28		28
Temporary Soil Retention System	Sa. Ft.		1.284	1.284
Concrete Sealer	Sq. Ft.		14,655	14,655
Geocomposite Wall Drain	Sq. Yd.		10	10
Crosshole Sonic Logging Access Ducts	Foot		1,847	1,847
Crosshole Sonic Logging Testing	Each		5	5
Class SI Concrete (Miscellaneous)	Cu. Yd.		211.7	211.7
Lightweight Cellular Concrete Fill	Cu. Yd.		1,447	1,447
Decorative Railing (Parapet Mounted)	Foot	470		470
Steel Railing Removal	Foot		137	137
Slope Inclinometer	Each		1	1
Foundation Construction At Existing Obstructions	Each		5	5
Detectable Warninas (Special)	Sa. Ft.		92	92
Bridge Deck Grooving (Longitudinal)	Sq. Yd.	605		605
High Load Multi-Rotational Bearings, Fixed - 200K	Éach	11		11
High Load Multi-Rotational Bearings, Fixed - 300K	Each	4		4
High Load Multi-Rotational Bearings, Fixed - 500K	Each	1		1
Bonded Preformed Joint Sealer. 2 Inch	Foot	_	55	55
Drainaae Scuppers. DS-11	Each	1		1
Drainaae Scuppers, DS-12	Each	5		5
Drainage System	L. Sum	0.5		0.5
Mechanically Stabilized Earth Retaining Wall. Special	Sa. Ft.		1.755	1.755
Pipe Underdrains For Structures 4"	Foot		284	284
Removal Of Ornamental Claddina	Foot		137	137

S2-57	Pier 1 Plan and Elevation
S2-58	Pier 1 Details
S2-59	Pier 1 Architectural Details
S2-60	Pier 2 Plan and Elevation
S2-61	Pier 2 Details
S2-62	Pier 2 Architectural Details
S2-63	Pier R1 Plan and Elevation
S2-64	Pier R1 Details
S2-65	Pier R1 Architectural Details
S2-66	MSE Wall Elevation and Cross Sections
S2-67	Parapet and Concrete Slab Plan and Elevation
S2-68	Parapet and Anchorage Slab Plan and Elevation
S2-69	Parapet, Concrete, and Anchorage Slab Details
S2 - 70	MSE Wall Architectural Details
S2 - 71	Bar Splicer Assembly and Mechanical Splicer Details
S2-72	Crown Castle/RCN Bridge Deck Cross Section
S2-73	Crown Castle/RCN Conduit Support Hangar Details
S2-74	Crown Castle/RCN Conduit Support Layout
S2-74A	ComEd Conduit Support Layout
S2-74B	ComEd Conduit Support Hangar Details
S2-75	Boring Logs 1
S2-76	Boring Logs 2
S2-77	Boring Logs 3
S2-78	Boring Logs 4
S2-79	Boring Logs 5
S2-80	Boring Logs 6

\bigwedge REVISED ENTIRE SHEET 5/15/20

LAYUUI	RTE.	SECTION	COUNTY	SHEETS	NO.
016_1702	1422	2014-015R&B-R	СООК	825	391
. 010-1702			CONTRACT	NO. 6	50X94
52-80 SHEETS		ILLINOIS FED. A	ID PROJECT		

5:33

HEADER GIRDER TABLE

Header	Longii	^t udinal G	irders	Girder Spacing			C	F	F	Connection Plate	Top & Bott. Flange
Girder	Left	Center	Right	A	В	Angle, D	C	L	,	connection i lare	Splice Plate
1	1R	2R	3R	8'-0 ¹ 2"	2'-3'2"	68°64′01″	6"	1"	1'-1"	⁵ 8" X 8" X 2'-6"	³ 4" x 1'-5" x 2'-1"
2	1R	3R	4R	8'-6 ⁷ 8"	2'-978"	73°07′53"	5½"	1 ⁵ 16 "	1'-0 ³ 16"	⁵ 8" X 7'2" X 2'-6"	³ 4" x 1'-4" x 2'-0"
3	1R	4R	5R	7'-8'2"	1'-11 [/] 2"	<i>81°58′09</i> ″	5"	1 ⁹ 16"	10 ¹⁵ 16 "	⁵ 8" X 7 ¹ 2" X 2'-6"	³ ₄ " x 1'-3" x 1'-10"

	USER NAME = wjcolletti	DESIGNED JM	REVISED		STRUCTURAL STEEL DETAILS 6	F.A.U. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
		CHECKED WJC	REVISED	STATE OF ILLINOIS	CTDUCTUDE NO 016 1702	1422	2014-015R&B-R	СООК	825	427
JI CIU Systems >	PLOT SCALE = NTS	DRAWN JTF	REVISED	DEPARTMENT OF TRANSPORTATION	31NUCIUNE NU. 010-1/02			CONTRACT	T NO. 6	0X94
	PLOT DATE = 5/5/2020	CHECKED WJC	REVISED		SHEET NO. S2-42 OF S2-80 SHEETS		ILLINOIS FED.	OIS FED. AID PROJECT		

SECTION B-B

\triangle REVISED ENTIRE SHEET 5/15/20

Notes:

All structural steel shall be AASHTO M 270 Grade 50. CVN denotes Charpy V-Notch impact energy requirements, Zone 2.

TLR

REVISED

CHECKED

PLOT DATE = 5/12/2020

SHEET NO. S2-46 OF S

ends to be spliced. These additional turns shall either be welded together according to AWS D1.4, or shall both terminate in 135° standard hook. Lap v105(E) bars with v107 bars or v106(E) bars with

v108 bars. The Contractor is responsible for the design and performance of the lagging using no less than a 3 in.

nominal rough-sawn thickness and timber with a minimum allowable bending stress of 1000 psi. See Sheet S2-49 of S2-80 for additional information.

Cost of PJF and drain pipe sleeve included in Concrete Structures.

Concrete fascia panels shall be paid as Class SI Concrete (Miscellaneous). WEST ABUTMENT RILL OF MATERIA

1	ADUIN		BILL	Ur M	AIERIA
1	Bar	No.	Size	Lenath	Shape
	b116(E)	13	#5	1'-3"	
	c101(E)	3	#5	2'-4"	7
	c102(E)	3	#5	12′-8″	
	h100(E)	12	#5	36′-3″	
	h101(E)	10	#6	36′-11″	
+	h102(E)	82	#6	36′-8″	
	h103(E)	4	#5	6′-1″	<u>ـــــــ</u>
	h104(E)	4	#5	6′-1″	
	h105(E)	36	#5	3′-10″	
	h106(E)	24	#5	4'-9"	
	h107(E)	56	#5	3'-2"	
	(00/5)	10		774 04	
	p100(E)	19	#/	37'-0"	
	pIUI(E)	4	#5	17'-0"	
	0100(E)	140	#5	11/_ 1"	<u> </u>
	SIUU(E)	70	#5	<u>11 - 4</u> 7′- 0″	
	SIUI(E)	10	#5	7-9	· · ·
+	sn100	8	#6	104'-0"	
,	50100			107 0	//////
	1100(F)	18	#5	5'-2"	
	u101(E)	8	#6	14'-4"	
	0101(2)				
	v100(E)	70	#6	3′-7″	
	v101(E)	70	#6	4′-10″	
	v102(E)	70	#4	2'-11"	
	v103(E)	58	#5	3′-9″	Г
+	v104(E)	140	#5	13′-10″	
	v105(E)	104	#11	25′-0"	
	v106(E)	104	#11	28′-0"	
	v107	208	#11	47′-6″	
	v108	208	#11	46′-0"	
	v109(E)	60	#5	2'-8"	
	v110(E)	10	#5	4'-0"	
	Structure	Exagua	l	Cu Vd	2.002
	Concreto	Structur		Cu Id	2,092
	Concrete	Superet	ructura	Cu. TU.	53
	Reinforce	ment Ra	rs	Pound	144 500
	Reinforce	ment Ra	rs	1 00/10	177,500
	Εροχν Cod	nted	, 0,	Pound	36,310
	Permanent	° Casina	,	Foot	810
	Drilled Sh	aft in S	Cu. Yd.	847.3	
	Drilled Sh	aft in R	Cu. Yd.	19.8	
	Concrete	Sealer		Sq. Ft.	1,567
	Class SI	Concrete	;	0. V-1	FF 0
	(Miscellane	ous)		cu. rd.	55.2
	Lightweigh	t Cellula	or 🗌	Cu Vd	137
	Concrete	Fill		<i>cu. 10.</i>	157
	Pipe Unde	rdrains		Foot	70
	for Struct	'ures, 4	"	1 001	,0

+ Length is height of spiral.

++ Shown for information only. Cost included with Class SI Concrete (Miscellaneous)

	VV 1			1100037	•
T DETAILS	F.A.U. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
016_1702	1422	2014-015R&B-R	СООК	825	431
010-1702			CONTRACT	NO. 6	0X94
2-80 SHEETS		ILLINOIS FED. AI	D PROJECT		

<
ω
4
Ó
~ ~ ~
4
Ċ.
×
<u>-0</u>
ΔΨ
-0
4 8
02
(O
20

SHEET NO. S2-49 OF S2-

 ${}^{3}_{4}$ " x 6" granular or solid flux filled headed studs conforming to Article 1006.32 of the Standard

Bars noted thus, 3x2-#5 indicates 3 lines of bars with 2 lengths of bar per line.

When splicing of spiral reinforcement is necessary, the spirals shall be provided with l_2'' extra turns at the ends to be spliced. These additional turns shall either be welded together according to AWS

Drilled Shaft quantity from top of existing ground elevation to bottom of abutment cap elevation shall

Install lagging and Geocomposite Wall Drain from top down as excavation proceeds. Minimize over excavation and backfill voids with dry loose sand. Cost included with Class SI Concrete (Miscellaneous). The Contractor is responsible for the design and performance of the lagging system, the

deflection of the lagging shall be limited to 1" maximum using no less than a 3 in nominal rough-sawn thickness and timber with a minimum allowable bending stress of 1000 psi, until the concrete facing is installed. The Contractor shall submit design calculations and details prepared by an Illinois Licensed Structural Engineer for the attachment of the lagging to the shaft for approval by the Engineer. Alternative equivalent systems may be submitted for approval by the Engineer. Cost included with Class

EAST ABUTMENT

	B	ILL (JF MA	<u>I ERIA</u>	<u>L</u>
1	Bar	No.	Size	Length	Shape
	h400(F)	12	#5	36'- 3"	
	h401(E)	10	#6	36'-7"	
+	h402(E)	32	#5	36'-3"	
+	h403(E)	38	#6	36′-8″	
	h404(E)	7	#5	6′-7″	
	h405(E)	4	#5	8′-4″	
	h406(E)	40	#5	3′-2"	
	h407(E)	36	#5	3′-10″	
	h408(E)	24	#5	4'-4"	
	h409(E)	16	#5	2'-6"	
	p400(E)	24	#5	36′-3″	
	p401(E)	16	#6	36′-8″	
	p402(E)	8	#5	5′-5″	
	s400(E)	140	#5	11'-11"	<u> </u>
	s401(E)	70	#5	7′-9″	
+ +	sp400	9	#6	100′-9″	
	u400(E)	(#4	8'-8"	
	401(E)	8	#5	11'-6"	
	100/5)	70	"	7	
	V400(E)	70	#6	3'-4"	
	V401(E)	70	#6	4'-/"	
	V402(E)	70	#4	2'-11"	
+	V403(E)	140	#5	<u> </u>	
	V404(E)	140	#11	14 - 5	
	V405(E)	117	#11	25-5	
	V400(E)	231	#11 #11	20-5	
	v408	234	#11	40-0	
	v409(F)	52	#5	21-1"	
	v410(F)	7	#5	8'-0"	
	v411(F)	, 3	#5	2'-4"	
	VIIIL			2 7	
	Structure	Excaval	tion	Cu. Yd.	1988
	Concrete :	Structur	es	Cu. Yd.	80.7
	Concrete :	Supersti	ructure	Cu. Yd.	4.9
+	Stud Shea	r Conne	ctors	Each	135
	Reinforcer	nent Ba	rs	Pound	162,380
	Reinforcer	nent Ba	rs,	Devend	70,100
	Ероху Сос	nted		Pouna	38,180
	Permanent	Casing		Foot	872
	Drilled Sho	aft in S	oil	Cu. Yd.	912.2
	Drilled Sho	oft in R	'ock	Cu. Yd.	31.7
	Concrete :	Sealer		Sq. Ft.	1,645
	Class SI ((Miscellane	Concrete ous)	;	Cu. Yd.	55.8
	Linhtweinh	t Celluir	ır		
g	Concrete i			Cu. Yd.	133
	Slope Incl	inometer	-	Each	1
	Pipe Unde	rdrains		Foot	70
ļ	tor Struct	ures, 4			
	+ Shown i	tor info	rmation	only. Cost	included

with Class SI Concrete (Miscellaneous) ++Lenath is height of spiral.

	Long	in to neight of op	n u.		
DETAILS	F.A.U. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
16_1702	1422	2014-015R&B-R	СООК	825	434
10-1702			CONTRACT	NO.6	0X94
BO SHEETS	ILLINOIS FED. AID PROJECT				

Bench Mark: Cut "X" on southwest overlook of Jackson Blvd. Bridge. Elev. 597.26. Notes: Wall offsets are measured from the B of Jackson Exit Existing Structure: Existing Retaining Wall 7 (SN 016-W807). Constructed in 2009 under F.A.P. Route 90/94, Section 202.6-2P. Cast-in-place concrete Ramp to the front face of cast-in-place fascia panels. retaining wall on metal shell piles and spread footing that measures 284'-10³8" from Jackson Boulevard NW Wingwall north to Adams Street. C denotes Construction Joint Maximum height from top of wall to bottom of footing measures 22'-8¹/₂". The existing retaining wall is to be removed and replaced. E denotes Expansion Joint Existing Jackson N.W. Wingwall was constructed in 1955 under F.A. Route No. 173, Section 101.2-2B. Cast-in-place concrete retaining F.F. denotes Front Face. wall on timber piles and spread footing that measures approximately 40'-0" from Existing Wall 7 to Jackson Boulevard West Abutment. B.F. denotes Back Face. Maximum height from top of wall to bottom of footing measures 24'-0". The existing wingwall is to be removed. Traffic on Jackson Exit Ramp will be detoured during construction. EN D. SAN APPROVED No Salvage. 081-007244 LICENSED For Structural Adequacy Only STRUCTURA * * Jackson Blvd. Abutmer 313'-2" (Measured along Front Face of Wall) ENGINEER Kunlig OF THE OF ILLING S.N. 016-1702 223'-2" 90'-0" Engineer of Bridges & Structures 03-06-2020 (Drilled Shaft Retaining Wall) (Drilled Soldier Pile Retaining Wall) 21'-7" _ 21'-7 6 Spaces at 30'-0" = 180'-0' 3 Spaces at 30'-0" = 90'-0" Wall Type Transition 5'-6" Kink Point Kink Point Sta. 8284+43.76 Sta. 8285+27.48 Kink Point End Wall Sta. 8286+60.95 Finished Grade Elev. 587.82 Elev. 592.83 MATTHEW D. SANTEFORD P.E., S.E Sta. 8286+66.45 Elev. 594.30 Sta. 8286+24.24 at B.F. of Wall Top of Parapet Elev. E* NO. 081-007244 Elev. 600.21 Elev. 598.17 Elev. D* Existing Grade EXP. DATE 11/30/2020 ´ |/| at F.F. of Wall Elev. F* N Begin Wall Top of Pile Sta. 8283+53.24 Elev. I* Elev. 582.51 Ranae 14F. 3rd P.M. lin. Π 1 11 Top of Cap Elev. G* 2-5" Conduit Finished Grade Sleeves (See at F.F. of Barrier Lighting Plans) Elev. A* Exist. 4'x5' ComEd Ductbank Top of Shaft or to remain, Top of Ductbank Bottom of Cap Prop. Storm Drilled Shaft, typ. Elev. 569.78 Sewer Elev. H* Proposed Drilled Soldier Pile, typ. Exist. Retaining Structure * For elevations, see Table . Exist. Abandoned Freight LOCATION SKETCH Wall 16 to be removed on Sheet S3-02 of S3-21. Tunnel, Bottom of Tunnel (See Retaining Wall 37 Elev. 546.68 (Previously S.N. 016-1826 Plans) <u>ELEVATION</u> filled by others) Bottom of Fascia Panel (Looking West at F.F. of Wall, Elev. B* Proposed Concrete Barrier along Ramp SW not shown for clarity.) Jackson Blvd. Bridge 016 - 1702 Exist. 4'x5' ComEd <u>Prop. H</u>MLT Prop. Temp. Easement Ductbank to remain (See Lighting Plans) Ś rop. Temp. Easemeni R Exist. Retaining Wall 16 Exist. Parking Lot Kink Point with fence to be removed Exist. Building Sta. 8286+24.24 PT Station (See Retaining Wall 37 ₿ Adams St. Bridge Kink Point 765 W. Adams. St. 1 Offset 19.58' Lt. 8285+27.48 S.N. 016-1826 Plans) S.N. 016-1701 _Sta. 8285+27.48 Exist. R.O.W. 0ffset 19**.**58′ RWB-01= B.F. of Drilled Shaft Cap 37-RWB-02 ٠ , Prop. Ret. Wall 37 Prop. R.O.W. Drilled Soldier Pile Prop. Jackson <u>Exit</u> Ramp Kink Point Drilled Shaft, typ. 8286+00 0589-B-01 Sta. 8286+60.95 8285 Exist ROW © Drilled Shaft 8284+00 Offset 26.85' Lt. Stations Curve P-JAC-SX-R = 96.42'_08; RWB-03 Increase R = 96.1314+00 08-ST-01 🚱 🔶 • . - RWB - C Fnd Wall 1312+00= - RWR 1311+00 Sta. 8286+66.45 was as as ₿ Prop. Ramp SW -Exist. Monument = 3,380.42 Offset 26.95' Lt. relocated as part of Stations 600000 Prop. Conc. Barrier Exist. HMLT to be relocated a confe Contract 60X99. 뉨 F.F. of Wall Increase Detail B (See (Installed as part of on top of Prop. Ret. Wall 37 Foundation to be Sheet S3-09 of S3-2. Begin Wall Contract 62A77) X 🚽 partially removed. Sta. 8283+53.2-9 Existing Jackson Blvd, Exist. Retaining Offset 19.58' Lt. Wall Type Transition 000 Bridge NW Wingwall Wall 7 to be Sta. 8284+43.76 to be removed removed Offset 19.58' Lt. 그 6년 Π 6215+00 6214+00

PLAN filled by others) (See Utility Plans) USER NAME = wjcolletti DESIGNED - KRS REVISED **STATE OF ILLINOIS** CHECKED - DJG REVISED **Tran** Systems LOT SCALE = NTS DRAWN - LFP REVISED **DEPARTMENT OF TRANSPORTATION** SHEET NO. S3-01 OF S PLOT DATE = 3/5/2020 CHECKED - DJG REVISED

Exist, Abandoned

Freight Tunnel (Prev.

Exist. Abandoned

removed as reauired)

Gas Line (to be

6213+00

Stations

Increase

₿ Prop. I-90/94 SB

6212+00

	RTE.	5	ECTION		COUNTY	SHEETS	NO.
	90/94	2014	-015R&B	-R	СООК	825	466
					CONTRACT	NO.	60X94
3-21 SHEETS			ILL INOIS	FED. AI	D PROJECT		

PLOT SCALE = NTS DRAWN - LFP REVISED **DEPARTMENT OF TRANSPORTATION** PLOT DATE = 5/5/2020 CHECKED - DJG REVISED SHEET NO. S3-13 OF S3

	1		
L	,		

DETAILS	F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
TUBE NO 016_1727\	90/94	2014-015R&B-R	СООК	825	478
TONE NO. 010-1727			CONTRACT	NO.	60X94
3-21 SHEETS		ILLINOIS FED. A	D PROJECT		

2:47:37 161825-4

(Adams Exit Ramp)
Prop. Curve P-ADM-SX-1
P.I. Sta. = 8386+35.08
⊿ = 6° 41′ 46″ (LT)
D = 1° 49′ 39″
R = 3,135.00'
T = 183.40'
L = 366.39′
E = 5.36′
e = 2.00%
T.R. = 49'
S.E. Run = 97′
P.C. Sta. = 8384+51.68
P.T. Sta. = 8388+18.07

Bench Mark: Set "X" on east barrier wall of I-90 at C of Adams Street. Elev. 581.17. Notes: Wall offsets are measured from the \mathbb{B} of Jackson Existing Structure: Existing Retaining Wall 16. Constructed in 1957 under F.A.I. Route 2, Exit Ramp to the front face of cast-in-place Section 0101.6-2P. Cast-in-place concrete retaining wall on spread footing fascia panels. that measures 330'-0" from Adams Street south to Jackson Boulevard. C denotes Construction Joint. Maximum height from top of wall to bottom of footing measures 13'-3". E denotes Expansion Joint. The existing retaining wall is to be removed and replaced. F.F. denotes Front Face. B.F. denotes Back Face. Traffic on Jackson Exit Ramp will be detoured during construction. No Salvage. 330'-0" (Measured along Front Face of Wall) 113′-6″ 216'-6" (Drilled Soldier Pile Retaining Wall) (Drilled Shaft Retaining Wall) 3 Spaces at 30'-0" = 90'-0" 23'-4" 21'-7" 21'-7" 5 Spaces at 30'-0" = 150'-0" 23'-6" Exist. Retaining Wall 16 Kink Point Wall Type Transition with fence to be removed Sta. 8285+27.48 Sta. 8284+88.74 Elev. 598.33 End Wall Finished Grade Elev., 598.33 Prop. HMLT to be Sta, 8286+02.19 at B.F. of Wall Top of Parapet remounted on wall Elev. 598.33 Elev. C* Elev. E i⊯i∵i∦i Drilled Soldier Pile, typ. Top of Fascia Panel SH H Elev. 594.33 --1i ili ----Top of Shaft Existing Grade i∭i i∭i at F.F. of Wall or Bottom of Cap illi illi Elev. D* Elev. 587.83 Bottom of Fascia Panel, Elev. B* Exist. 4'x5' ComEd Ductbank to remain, Top of Ductbank Elev. 569,78 * For elevations, see Table 1 Finished Grade on Sheet S5-02 of S5-19. at F.F. of Wall Exist. Abandoned Freight Tunnel, Elev. A* Bottom of Tunnel Elev. 546.68 (Previously filled by others) ELEVATION (Looking West at F.F. of Wall) Proposed Concrete Barrier not shown for clarity. ₿ Jackson Blvd. Bridge Exist. ComEd S.N. 016-1702 Ductbank to remain Prop. HMLT (See Lighting Plans) Prop. Temp. Easement (See_Utility_Plans) Temporary Soil Exist. Alley to Stations Increase Retention System be closed during - Prop. Temp. Easement Wall Type Transition Drilled Shaft, typ. Sta, 8284+88.74 construction – B.F. of Drilled Shaft Cap Exist. Retaining Offset 3.58' Rt. End Wall Kink Point Exist. Building Wall 16 to be Sta. 8286+02.19 Sta. 8285+27.48 765 W. Adams. St. removed Offset 3.58' Rt. Offset 3.58' Rt. Kink Point Exist. R.O.W. 37-RWB-01 Offset 3.58' Rt. =Sta. 8283+02.43

Exist. Abandoned

Gas Line to be

7:02

S.N.

8284+00

urve P-JAC-SX-

tation.

Increase

Stations

Increase

Stations Increase

₿ Prop. I-90/94 SB

1311+00

CURVE DATA

(Jackson Exit Ramp) Prop. Curve P-JAC-SX-1 P.I. Sta. = 8283+78.27 ⊿ = 5° 01′ 56″ (Lt.) D = 1° 41′ 07″ R = 3,400.00' T = 149.40'L = 298.61 E = 3.28' e = 2.00% T.R. = NAS.E. Run = NA P.C. Sta. = 8282+28.87 P.T. Sta. = 8285+27.48

Adams St. Abutment

S.N. 016-1701

Begin Wall Sta. 8282+72.47

Elev. 599.66

-Drilled Shaft, typ.

Begin Wall

Sewei

Sta. 8282+72.47

Offset 4.05' Rt.

🛿 Adams St. Bridge

0589-B-01

S.N. 016-1701

Kink Point

┥┽┿┿╾┆└

Min.

•

08-RWB

Prop. Storm

Exist. HMLT to

be relocated on

top of wall

 (\mathbf{P})

6212+00

Elev. 599.66

Sta. 8283+02.43

Πŀ

DESIGN SPECIFICATIONS

2017 AASHTO LRFD Bridge Design Specifications 8th Edition

DESIGN STRESSES FIELD UNITS

f'c = 7,000 psi (Drilled Shafts) f'c = 3,500 psi (All other concrete) fy = 60,000 psi (Reinforcement)

SOLDIER PILES

fy = 50,000 psi (AASHTO M270 Gr. 50)

MATTHEW D. SANTEFORD P.E., S.E.

NO. 081-007244 EXP. DATE 11/30/2020

Ranae 14E. 3rd P.M. N Proposed Structure LOCATION SKETCH

LEGEND:

Ex. Chain Link Fence	— x — x —
Combined Sewer	\rightarrow
Electric	——————————————————————————————————————
Ex. Storm Sewer	
Prop. Storm Sewer	
Ex. ITS Cable	
Ex. Gas Line	⊢−−−−− G ⊢−−−−−
Ex, Fiber Optic	F0

Soil Boring	-
Existing Catch Basin	$\left(\right)$
Proposed Catch Basin	
Existing Manhole	C
Proposed Manhole	(
Proposed Inlet	

GENERAL PLAN AND ELEVATION RETAINING WALL 37 ALONG JACKSON EXIT RAMP F.A.I. RTE. 90/94 (KENNEDY EXPRESSWAY) SECTION 2014-015R&B-R COOK COUNTY STATION 8282+72.47 TO STATION 8286+02.19 STRUCTURE NO. 016-1826

	F.A.I. RTE.	S	ECTION		COUNTY	TOTAL SHEETS	SHEET NO.
	90/94	2014	-015R&B	-R	СООК	825	492
					CONTRACT	NO. 0	60X94
S5-19 SHEETS			ILL INOIS	FED. AI	D PROJECT		

6:29

Bench Mark: Set "X" on east barrier wall of I-90 at ¢ of Adams Street. Elev. 581.17.

Existing Structure: Existing Retaining Wall at Quincy Street. Constructed in 1957 under F.A.I. Route 2, Section 0101.6-2P. Cast-in-place concrete retaining wall on battered timber piles that measures approximately 98'-0" at the end of Quincy Street north of Existing Building at 728 W. Jackson Boulevard. Maximum height from top of wall to bottom of footing measures 17'-0". The existing retaining wall is to remain.

Traffic on I-90/94 will be maintained with stage construction.

Notes:

Wall offsets are measured from the B of NB C-D Road to

the front face of cast-in-place fascia panels.

C denotes Construction Joint

E denotes Expansion Joint

F.F. denotes Front Face.

B.F. denotes Back Face.

	USER NAME = wjcolletti	DESIGNED - KRS	REVISED -			F.A.I. RTE.	SECTION	COUNTY	TOTAL	SHEET NO.
Tran Systems >	PLOT SCALE = NTS	CHECKED - DJG	REVISED -	STATE OF ILLINUIS		90/94	2014-015R&B-R	СООК	825	511
	PLOT DATE = 3/5/2020	CHECKED - KRS	REVISED -		SHEET NO. S6-01 OF S6-22 SHEETS		ILLINOIS FED.	L CONTRACT		60X94

CURVE DATA

(NB C-D Road) Prop. Curve P-NCD-NX-5 P.I. Sta. = 6336+57.47 ⊿ = 35° 13′ 41″ (RT) D = 4° 12′ 24″ R = 1,362.00' T = 432.42'L = 837.42 E = 67.00'e = 4.20% T.R. = 42' S.E. Run = 87' P.C. Sta. = 6332+25.05 P.T. Sta. = 6340+62.48

Ranae 14F, 3rd P.M. Proposed Structure LOCATION SKETCH

DESIGN SPECIFICATIONS

2017 AASHTO LRFD Bridge Design Specifications 8th Edition

DESIGN STRESSES FIELD UNITS

- f'c = 5,000 psi (Micropile Grout)
- f'c = 4,000 psi (Superstructure Concrete,
- f'c = 3,500 psi (All other concrete)
- fy = 60,000 psi (Reinforcement)
- fy = 60,000 psi (Micropile Casing)
- fu = 150,000 psi (Micropile Threadbar)

SOLDIER PILES

fy = 50,000 psi (AASHTO M270 Gr. 50)

EN D. SAN 081-007244 LICENSED STRUCTURAL * * FNGINFER OF ATE OF ILLING 03-06-2020

MATTHEW D. SANTEFORD P.E., S.E. NO. 081-007244 FXP. DATE 11/30/2020

APPROVED For Structural Adequacy Only may Engineer of Bridges & Structures

LEGEND:

Ex. Chain Link Fence	— x — x -	Ex. Gas Line	⊢——— і G ⊢—
Combined Sewer	$\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow$	Ex. Fiber Optic	F0
Electric	Е	Soil Boring	•
Ex. Storm Sewer		Existing Catch Basin	\bigcirc
Prop. Storm Sewer		Proposed Catch Basin	\bullet
Ex. ITS Cable		Existing Manhole	\bigcirc
Limits of Soil Reinf.		Proposed Inlet	-

:53:09 /

3 PLAN AND ELEVATION	RTE.	S	ECTION		COUNTY		SHEETS	NO.	
TUBE NO 016_7016)	90/94	2014	-015R&B	-R	СООК		825	516	
STORE 10.010-2010/					CONTRAC	T	NO.	60X94]
6-22 SHEETS			ILLINOIS	FED. A	ID PROJECT				

	USER NAME = wjcollettu	DESIGNED - KRS	REVISED -		CAST-IN-PLACE WALL DETAILS	F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
ran Systems		CHECKED - DJG	REVISED -	STATE OF ILLINOIS	RETAINING WALL 24 (STRUCTURE NO 016-7016)	90/94	2014-015R&B-R	СООК	825	519
	PLOT SCALE = NTS	DRAWN - AJD	REVISED -	DEPARTMENT OF TRANSPORTATION				CONTRAC	ſNO. 6	0X94
	PLOT DATE = 5/5/2020	CHECKED - KRS	REVISED -		SHEET NO. S6-09 OF S6-22 SHEETS		ILLINOIS FED.	AID PROJECT		

Bar	No.	Size	Length	Shape
d100(E)	72	#5	3'-0"	
d101(E)	69	#6	2′-6″	
e103(E)	18	#5	22'-4"	
e104(E)	12	#5	25′-10″	
h103(E)	30	#5	22'-4"	
h104(E)	48	#5	25′-10″	
n100(E)	72	#5	9′-0″	
n101(E)	72	#5	8′-9"	
v106(E)	24	#5	17′-4″	
v107(E)	24	#5	17′-1″	
v108(E)	24	#5	15′-7"	
v109(E)	24	#5	15′-4″	
v110(E)	24	#5	13′-10″	
v111(E)	24	#5	13′-7"	
†100(E)	21	#6	13′-5"	<u>ل</u>
†101(E)	20	#6	12′-9"	Ĵ
†102(E)	21	#6	12′-1″	
†103(E)	20	#6	11′-6″	
w100(E)	18	#5	34′-9"	
w101(E)	16	#5	36′-2″	
Structure	Excavati	ion	Cu. Yd.	119
Concrete	Superstr	ucture	Cu. Yd.	14.7
Reinforce	ment Bar	·s,	Pound	6 540
Ероху Со	ated			0,570
Concrete	Structure	95	Cu Ya	77 1
(Retaining	Wall)			//*1
Concrete	Sealer		Sq. Ft.	1,765
Geocompo	site Wall	Drain	Sq. Yd.	70
Micro-Pile	5		Each	22
Micropile	Load Tes	st -	Each	1
Micropile	Proof Lo	ad Test	Each	1
	ht Cellula	r	Cu. Yd	224

Minimum B	ar Laps
Bar	Lap
#5	3'-2"

Foot

68

Notes:

Concrete Fill

Structures 4"

Pipe Underdrain for

Epoxy grout d101(E) bars according to Article 584 of the Standard Specifications. Drill to miss existing reinforcement. All work shall be included in the unit Bid Price for Reinforcement Bars, Epoxy Coated. Concrete Parapet shall be paid for as Concrete Superstructure.

Fascia Panels and Footing shall be paid for as Concrete Structures (Retaining Wall).

\bigwedge REVISED ENTIRE SHEET 5/15/20

BILL OF MATERIAL

For soldier pile wall cross sections and details, see Sheet S6-12 of S6-22.

For soldier pile layout, sections and details and Bill of Material, see Sheet S6-13 of S6-22.

	USER NAME = wjcolletti	DESIGNED - KRS	REVISED -		DRILLED SOLDIER PILE WALL PLAN AND ELEVATION 1	F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
. Tran Systems >		CHECKED - DJG	REVISED -	DEPARTMENT OF TRANSPORTATION	RETAINING WALL 24 (STRUCTURE NO 016-7016)	90/94	2014-015R&B-R	СООК	825	520
	PLOT SCALE = NTS	DRAWN - AJD	REVISED -		RETAINING WALL 24 (STRUCTURE NO. 010-2010)			CONTRACT	ſ NO.	60X94
	PLOT DATE = 5/5/2020 CHECKED - KRS REVISED -		SHEET NO. S6-10 OF S6-22 SHEETS		ILLINOIS FED. A	AID PROJECT				

':56:13 AM 0162016-60

Notes:

* Installed as part of Contract 62A76.

Minimum B	ar Laps
Bar	Lap
#5	3'-2"

\wedge REVISED ENTIRE SHEET 5/15/20

LOT SCALE = N.T.S. PLOT DATE = 5/4/2020

DESIGNED - MK	REVISED		ΤΥΡΙΟΔΙ SECTION	F.A.I. RTE.	SECTION	COUNTY	TOTAL	SHEET NO.
CHECKED - ATB	REVISED	STATE OF ILLINOIS		90/94	2014-015 R&B-R	СООК	825	535
DRAWN - MK	REVISED	DEPARTMENT OF TRANSPORTATION	51RUCIURE NU. 010-2048			CONTRAC	T NO. 6	0X94ذ
CHECKED - ATB	REVISED		SHEET NO. S7-03 OF 10 SHEETS		ILLINOIS FED. AI	D PROJECT		

ΞL	EVA	TIONS	TABLE

ELEVATION B	ELEVATION C	ELEVATION D	ELEVATION E	ELEVATION F				
590.70	586.50	589 . 16	585.66	592.28				
591.01	586.79	588.63	585.13	592.60				
591.39	587.10	588.00	584.50	592.98				
591.76	587.59	587.37	583.87	593.35				
592.14	588.38	586.75	583 . 25	593.61				
592.52	588.72	586.13	582.63	593.87				
592.78	586.94	587.12	583.62	594.03				
592.78	586.60	587.55	584.05	594.07				
592.78	588.57	588 . 96	585.46	594.12				
592.78	588.58	588.66	585 . 16	594.24				
592.78	588.59	588.37	584.87	594.36				
592.78	588.60	588.64	585.14	594.37				
592.78	590.66	588.62	585.12	594.37				
592.78	588.62	588.70	585.20	594.36				
Elevation A: Top of Coping Elevation R: Rottom of Coping (Top of Expected Rapp								

am the eree Noice	Elevation B: Bottom of Coping / Top of Exposed Panel Line
Mechanically	Elevation C: Existing Grade at F.F. of Wall
d Croupd Mountod	Elevation D: Finished Grade at F.F. of Wall
and Pofloative) for	Elevation E: Theoretical Top of Leveling Pad
e unu Renechver für	Elevation F: Finished Grade at B.F. of Wall

GENERAL NOTES

TOTAL BILL OF MATERIAL

DESCRIPTION	UNIT	TOTAL
Noise Abatement Wall, Ground Mounted	SQ.FT.	1859
Stainless Steel Cable Plant Support System	L.SUM.	1

REVISED

PLOT DATE = 5/20/2020

TYPICAL SECTION, TOTAL BILL OF MATERIAL, IN

INDEX OF SHEETS:

S9-01	General Plan and Elevation
S9-02	Typical Section, Total Bill of Material, Index of Sheets & General Notes
S9-03	Arhitectural Details I
S9-04	Arhitectural Details II
S9-05	Boring Logs I
S9-06	Boring Logs II
S9-07	Boring Logs III
S9-08	Boring Logs IV

2N	OFFSET	ELEVATION A	ELEVATION B	ELEVATION C	ELEVATION D
5.83	62.42′ RT	599.50	589.73	586.64	590.40
0.00	50.65′ RT	599.50	589.73	586.64	590.40
9.31	58.30′ RT	599.50	591.44	586.96	592.11
0.00	56 . 88′ RT	599.50	591.69	587.23	592.36
5.00	55.27' RT	599.50	592.07	587 . 62	592.74
0.00	53.78′ RT	599.50	592.45	588.11	593.12
5.00	52.41′ RT	599.50	592.83	588.77	593.50
0.00	51 . 16′ RT	599.50	593.20	589.37	593.87
7.48	50.36′ RT	599.50	593.22	587.78	593.89
5.00	50.04′ RT	599.50	593.23	587.41	593.90
0.00	49.03' RT	599.50	593.25	589.37	593.92
5.00	48.15' RT	599.50	593.37	589.38	594.04
3.78	48.10′ RT	599.50	593.39	590.38	594.06

L OF MATERIAL, INDEX OF SHEETS & GENERAL NOTES		SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
		2014-015 R&B-R	СООК	825	546
			CONTRACT	NO. 6	0X94
SHEET NO. S9-02 OF 8 SHEETS	ILLINOIS FED. AID PROJECT				

DETAILS I	F.A.I. RTE.	SECTION	SECTION		TOTAL SHEETS	SHEET NO.
	90/94	2014-015 R&B-R		СООК	825	547
				CONTRACT	NO. 6	0X94
F 9 SHEETS		ILLINOIS	FED. A	ID PROJECT		