

SCI ENGINEERING, INC. 650 Pierce Boulevard 0'Fallon, Illinois 62269 618-624-6969 www.sciengineering.com

Final Structure Geotechnical Report

BRIDGE REPLACEMENT IL- ROUTE 154 (F.A.P. ROUTE 845) OVER REND LAKE FRANKLIN COUNTY, ILLINOIS SECTION: 112 (RS-4, BLP-1); 112B-4 STATION 362+00.00 STRUCTURE NO. 028-0052 (PROPOSED)

Thomas J. Casey, P.E. <u>TCasey@SCIEngineering.com</u> (618) 560-4503 July 5, 2024

Prepared for: ABNA ENGINEERING, INC. 4140 LINDELL BOULEVARD ST. LOUIS, MISSOURI 63108 (314) 454-0222

SCI ENGINEERING, INC.

EARTH • SCIENCE • SOLUTIONS

GEOTECHNICAL ENVIRONMENTAL NATURAL RESOURCES CULTURAL RESOURCES CONSTRUCTION SERVICES

July 5, 2024

Stephen Alsbury, P.E., S.E. ABNA Engineering, Inc. 140 Lindell Boulevard St. Louis, Missouri 63108

RE: Final Structure Geotechnical Report Bridge Replacement IL-Route 154 (F.A.P. Route 845) over Rend Lake Franklin County, Illinois Section: 112 (RS-4, BLP-1); 112B-4 Structure No. 028-0052 (Proposed) SCI No.: 2020-0532.10

Dear Stephen Alsbury:

Enclosed is our *Final Structure Geotechnical Report (SGR)*, dated July 5, 2024. This report should be read in its entirety, and our recommendations considered in the design and construction of the proposed bridge. Please call if you have any questions.

Respectfully,

SCI ENGINEERING, INC.

Prakash Paudel, E.I. Staff Engineer

Thomas J. Casey, P.E. Chief Geotechnical Engineer

PP/TJC/mas

Enclosure Geotechnical Report

\\sciengineering.local\shared\Projects\2020\2020-0532 PTB 195 Item 62 IL 154 at Rend Lake\GS\Reports\SGR\2020-0532.10 IL-154 over Rend Lake SGR.docx

TABLE OF CONTENTS

2.0 SUBS	SURFACE EXPLORATION	1
2.1	Area Geology	1
2.2	Exploration Procedures	2
2.3	Subsurface Conditions	2
	2.3.1 Abutment Borings	2
	2.3.2 Pier Borings	
2.4	Groundwater Conditions	4
3.0 GEO	TECHNICAL EVALUATIONS	5
3.1	Seismic Considerations	5
	3.1.1 Design Earthquake	5
	3.1.2 Site Class Determination	6
	3.1.3 Liquefaction Potential Analysis	6
3.2	Abutment and Pier Settlement	7
3.3	Bridge Approach Slabs	7
3.4	Global Slope Stability	7
3.5	Scour	8
3.6	Bridge Foundations	8
	3.6.1 Driven Steel Piles	
	3.6.2 Drilled Shafts	
	3.6.2.1 Drilled Shaft OA/OC and Construction Considerations	
3.7	Lateral Pile Response	11
	CTDUCTION CONSIDED ATIONS	10

TABLES

Table 2.1 – Summary of Bedrock Elevations – Abutment Borings	.3
Table 2.2 – Summary of Bedrock Elevations – Lake Borings	.4
Table 2.3 – Summary of Approximate Ground/Surface Water Levels	. 5
Table 3.1 – Seismic Design Parameters	.6
Table 3.2 – Summary of Estimated Global Slope Stability Factors of Safety	. 8
Table 3.3 – Summary of Design Scour Elevations	. 8
Table 3.4 – Preliminary Structure Loads	. 8
Table 3.5 – Maximum Nominal and Factored Resistances for Driven Steel Piles	10
Table 3.6 – Unit Nominal and Factored Shaft Resistances	11

FIGURES

Figure 1 – Vicinity and Topographic Map

Figure 2 – Aerial Photograph

Figure 3 – Site Plan

Figure 4 – Subsurface Profile

APPENDICES

Appendix A-1 – Boring Logs Legend and Nomenclature, Boring Logs (SCI)

Appendix A-2 – Boring Logs (RFP)

Appendix B – Lab Test Results

Appendix C – Liquefaction Analysis Results

Appendix D – Global Slope Stability Analyses Results

Appendix E-1 – Driven Pile Capacity Sheets

Appendix E-2 – Drilled Shaft Sheets

Appendix F – L-PILE Table Inputs

Appendix G – Temporary Sheet Pile Design

Appendix H – TS&L

Final Structure Geotechnical Report

BRIDGE REPLACEMENT IL- ROUTE 154 (F.A.P. ROUTE 845) OVER REND LAKE FRANKLIN COUNTY, ILLINOIS SECTION: 112 (RS-4, BLP-1); 112B-4 STATION 362+00.00 STRUCTURE NO. 028-0052 (PROPOSED)

1.0 PROJECT DESCRIPTION

The geotechnical study summarized in this report was performed for the proposed replacement of the structure that carries Illinois Route 154 over Rend Lake in Franklin County, Illinois. The existing structure, built back in 1966, is a two-lane, two-way bridge. The structure consists of a five-span reinforced concrete deck on steel beams supported by deep foundations bearing on rock. The approximate length of the structure measured back-to-back of the abutments is 292 feet and the deck width measures is 36 feet out-to-out. The existing end slopes have inclinations of $3\frac{1}{3}$ horizontal to 1 vertical ($3\frac{1}{3}$ H:1V). The location of the site is shown on the *Vicinity and Topographic Map*, Figure 1.

Based on the *TS&L* dated June 28, 2024, and the *Plan and Profile Sheets*, prepared by ABNA Engineering, Inc. (ABNA), and dated February 16, 2023, the proposed structure will be a two-lane, three-span structure with a back-to-back abutment length of approximately 304 feet and an out-to-out deck width of approximately 55 feet. As such, the new structure will consist of two abutments and two central piers. The new structure will be raised by approximately 4 feet above the existing bridge deck elevation. We anticipate minimal fills on the order of 5 feet or less will be required at the abutments. The most recent aerial imagery of the site is shown on *Aerial Photograph*, Figure 2, and the proposed construction is shown on *Site Plan*, Figure 3.

2.0 SUBSURFACE EXPLORATION

2.1 Area Geology

According to *Quaternary Geology of Illinois*, modified from Hansel and Johnson 1996, the project is located in the Till Plain Section of Glassford Formation. According to the *Bedrock Geologic Map of Illinois*, dated 2005, the bedrock geology at this site consists of Bond Formation that dates back to Pennsylvanian (Kasimovian) Geologic age. Sandstone, shale, and limestone form the major lithologic constituents, while coal forms the minor lithologic constituent of this formation. Shale is usually silty and carbonaceous while limestone can be shaly or argillaceous. The thickness of this formation in southern Illinois may be up to 350 feet. Based on the available information from the past boring logs, the bedrock at this site consists of sandstone or shale.

2.2 Exploration Procedures

Two standard penetration test (SPT) borings, designated B-12 and B-13 were drilled near the proposed pier locations, as shown on Figure 2 and 3. The boring locations were selected and staked in the field by SCI personnel, and the elevations, stations, and offsets were estimated from the available topographic information. The SCI boring logs are shown in Appendix A-1. To supplement the two SCI borings, two borings (designated as S-1 and S-2) were drilled by IDOT in April 2020 near the proposed abutment locations and are shown in Appendix A-2. The stations and offsets were estimated from the TS&L plans provided and included in Appendix H. The field exploration was performed in general accordance with procedures outlined in the *2020 IDOT Geotechnical Manual*.

An SCI personnel was with the drill rig to supervise drilling, log the borings, and perform field unconfined compressive strength tests of the soil samples. A CME 45 or CME 75 all-terrain-mounted drill rig equipped with hollow stem augers and mud-rotary was used to advance the borings. SPTs were performed with a split-spoon sampler at 5-foot intervals down to the termination depth of the borings. Relatively undisturbed Shelby tube samples were collected at selected intervals for additional testing. The unconfined compressive strength of the cohesive soils was determined with a Rimac test apparatus. A pocket penetrometer was used to measure the compressive strength if the soils were not conducive to Rimac testing.

The borings were drilled to auger refusal, per IDOT specifications, to depths of 48.7 to 78.5 feet (approximate elevation (El.) 347.5 to 377.3) below the existing bridge deck. Auger refusal is the designation applied to any material which cannot be further penetrated by a standard power auger without extraordinary effort.

2.3 Subsurface Conditions

Detailed information regarding the nature and thickness of the soils and rock encountered, and the results of the field sampling and laboratory testing are shown on the Boring Logs in Appendix A-1 and A-2. The generalized soil profile is included on the *Subsurface Profile*, Figure 4.

2.3.1 Abutment Borings

Existing pavement was encountered in both abutment borings and consisted of 1.5 to 2.5 inches of Hot Mix Asphalt (HMA) over 10 to 18 inches of Portland Cement Concrete (PCC). The natural soil profile in S-1 generally consisted of soft to stiff clay to silty clay loam (A-6 or A-7) down to the top of weathered sandstone at a depth of 32 feet (approximate El. 393.4). The soil profile in S-2 consisted of soft to stiff clay to silty clay loam (A-6 or A-7) to a depth of 69.5 feet (approximate El. 356.4), followed by loose and coarse

sand to a depth of 74.5 (approximate El. 351.4). The sand layer was underlain by stiff silty loam, judged to be glacial till to the top of hard clay shale. The unconfined compressive strength (Qu) in the cohesive samples ranged from 0.2 to 3.3 tons per square foot (tsf), with an average of approximately 1.5 tsf, while the Standard Penetration Test (SPT) N-values ranged from 2 to 38 blows per foot (bpf), with an average of 9 bpf. The Qu and N-values classify the soils as soft to stiff, and medium stiff in overall consistency. Moisture contents in the cohesive samples ranged from 14 to 29 percent, averaging approximately 21 percent. The SPT N-value of the sand layer encountered in S-2 was 2, which describes it as very loose in relative density.

The borings were continued with rock coring for both locations to a depth of 10.3 feet in S-1 and 9.1 feet in S-2. The core samples recovered from S-1 generally consisted of low strength, medium grained sandstone. The core recovery ranged from 40 to 73 percent and the Rock Quality Designation (RQD) ranged from 0 to 10 percent, classifying it as 'poor'. An unconfined compression test (Qu) of a 1.78 inches diameter and 3.8 inches long core sample at 43.8 feet (approximate El. 381.6) was 59.6 tsf. The core samples recovered from S-2 consisted of dry, gray, and moderately hard clay shale, with the strength observed to be increasing with depth. The core recovery ranged from 88 to 97 percent. Rock Qu, determined from the specimens with length (L) to Diameter (D) ratio smaller than the recommended 2:1, ranged from 66.7 to 130.3 tsf. As such, the actual strength may vary.

Table 2.1 presents a summary of the depth and elevation of the top of bedrock that was first encountered in each of the borings.

Boring	Approximate Pavement Surface Elevation (feet)	Depth to Bedrock (feet)	Approximate Top of Bedrock Elevation (feet)
S-1	425.4	32.0	393.4
S-2	425.9	84.5	341.4

Table 2.1 – Summary of Bedrock Elevations – Abutment Borings

2.3.2 Pier Borings

The interior pier borings, B-12 and B-13, were drilled through the top of bridge deck and consisted of 1 inch of asphalt over 7 inches of concrete in B-12 and 6.5 inches of concrete in B-13.

The bottom of the lake was encountered at a depth of 31.7 feet in both borings. The subsurface profile of boring B-12 consisted of riprap to a depth of 8.3 feet from the bottom of the lake (approximate El. 386.0). The riprap was followed by loose sand (A-2) to an approximate elevation of 381.0. The sand layer was then followed by soft to medium stiff high plastic clay (A-7) to the top of shale bedrock at an elevation of 347.5. Auger refusal on shale was encountered at a depth of 79 feet below the top of bridge deck and 47.3 feet below the bottom of the lake (approximate El. 347). The subsurface profile of boring B-13 consisted of soft gravelly silt (A-4) to a depth of 5.8 feet from the bottom of the lake (approximate El. 388.5) followed by interbedded clay and sand layers to the top of shale at an elevation of 377.3. Auger refusal was encountered at a depth of 50 feet from the top of bridge deck and 18.5 feet from the bottom of lake (approximate El. 375.8).

The Qu values of the natural cohesive soils ranged from 0.2 to 2.1 tsf, with an average of 0.8 tsf, while SPT N-values ranged from 2 to 15 bpf, with an average of 9 bpf, classifying the soils as soft to stiff in consistency. The moisture contents ranged from 19 to 32 percent, averaging approximately 25 percent. The SPT N-values in sands ranged from 11 to 29 bpf, classifying as medium dense to dense in relative density.

Table 2.2 presents a summary of the depth and elevation of the top of bedrock that was first encountered in each of the borings.

Boring	Approximate Pavement Surface Elevation (feet)	Depth to Bedrock (feet)	Approximate Top of Bedrock Elevation (feet)
B-12	426.0	78.5	347.5
B-13	426.0	48.7	377.3

 Table 2.2 – Summary of Bedrock Elevations – Lake Borings

2.4 Groundwater Conditions

Groundwater levels observed at the time of drilling are summarized in Table 2.3. It should be noted that the groundwater level is subject to seasonal and climatic variations, the surface water level in Rend Lake, and other factors; and may be present at different depths in the future. In addition, without extended periods of observation, measurement of the true groundwater levels may not be possible.

Boring	oring Approximate Pavement Surface Elevation (feet) (feet) During Drilling (feet)		Approximate Groundwater/Surface Water Elevation During Drilling (feet)
S-1	425.4	26	399.4
S-2	425.9	37	388.9
B-12	426.0	18.6	407.4
B-13	426.0	16.0	410.0

3.0 GEOTECHNICAL EVALUATIONS

In order to provide design recommendations for founding the structure, we performed the following evaluations based on all available data collected and reviewed at the time of this report. This information includes subsurface explorations performed at pier locations by SCI and abutment locations by IDOT, existing plans, and communications with ABNA personnel familiar with the project.

3.1 Seismic Considerations

3.1.1 Design Earthquake

Ground shaking at the foundation of structures and liquefaction of the soil under the foundation are the principle seismic hazards to be considered in design of earthquake-resistant structures. Soil liquefaction is possible within loose sand and low plastic silt deposits below the groundwater table. Liquefaction occurs when a rapid development in water pressure, caused by the ground motion, pushes sand particles apart, resulting in a loss of strength and later densification as the water pressure dissipates. This loss of strength can cause bearing capacity failure while the densification can cause excessive settlement. Potential earthquake damage can be mitigated by structural and/or geotechnical measures or procedures common to earthquake resistant design.

For the purposes of seismic design the bridge has been classified as *Regular* and *Essential*. According to the Illinois Department of Transportation Bridge Manual 2012 edition, the structure should be designed to a design earthquake with a 7 percent Probability of Exceedance (PE) over a 75-year exposure period (i.e. a 1,000-year design earthquake). The design earthquake has a Moment Magnitude (Mw) of 4.9 and a site coefficient (A_s) of 0.30g, as determined from data provided by the United States Geological Survey (USGS) National Seismic Hazard Mapping Project and procedures outlined in the All Geotechnical Manual Users (AGMU) 10.1, *Liquefaction Analysis Procedure*.

3.1.2 Site Class Determination

The seismic site soil classification for the bridge site was determined from the design earthquake data, the subsurface data, and the procedures described in AGMU Memo 09.1, *Seismic Site Class Definition*, of the IDOT Bridge Manual Design Guides. The Global Site Class was evaluated using methods defined as B and C, which include evaluating the SPT N-values and undrained shear strength, S_u. The following results were calculated:

- Method B using N (bar): 28 bpf (Site Class D)
- Method C using S_u: 1.62 ksf (Site Class D)

Based on the span and overall bridge lengths and the guidelines in the AGMU, we recommend that Site Class D be used for the project. Based on Table 3.15.2-1 the Seismic Performance Zone is 3. Seismic design parameters for the site are summarized in Table 3.1.

Seismic Design Parameters				
Site Class	D			
Site Coefficient (As)	0.300g			
Design Spectral Acceleration at 0.2 sec. (S _{DS})	0.634g			
Design Spectral Acceleration at 1.0 sec. (S _{D1})	0.314g			
Seismic Design Category	С			
Seismic Performance Zone	3			

Table 3.1 – Seismic Design Parameters

3.1.3 Liquefaction Potential Analysis

The liquefaction potential analysis for the site was conducted using field and laboratory data and the techniques outlined in AGMU 10.1. The average seasonal groundwater elevation used in the analysis was estimated from the end of boring conditions and the seasonal weather conditions. Based on our analyses, a majority of the soils observed have sufficient strength and/or a plasticity index that make the threat of liquefaction minimal during the design earthquake. The detailed input parameters and results of the liquefaction analyses are provided in Appendix C. While the amount of seismically induced settlement is dependent on the magnitude and distance from the seismic event, SCI estimates that the impacts from the design earthquake will be negligible.

3.2 Abutment and Pier Settlement

Based on the anticipation of minor grade changes at the abutments, settlement is anticipated to be minimal and not influence the construction of the structures. It is assumed that no grade changes will occur at the interior bents, thus minimal settlement is anticipated. Therefore, the effects of down drag on axial pile capacity should be neglected.

3.3 Bridge Approach Slabs

Based on available information, the bridge approach slabs will likely bear on either newly placed or recompacted existing, low plastic structural fill. In evaluating the bearing resistance of the slabs, we recommend using a modulus of subgrade reaction of 100 pounds per square inch per inch of deflection (pci).

3.4 Global Slope Stability

The global slope stability of both end-slopes was analyzed for end-of-construction (short-term), long-term, and seismic (pseudo-static) loading conditions. The analyses were conducted using limit equilibrium slope stability methods and the commercially available software program Slide 2018 (developed by Rocscience, Inc.). The analyses considered soil properties from the subsurface exploration data and the given slope geometries. To account for traffic loading, a surcharge load of 250 pounds per square foot (psf) was applied to the analyses. For the seismic evaluation, the peak ground acceleration (PGA) from the design earthquake along with procedures for seismic slope stability outlined in Federal Highway Administration (FHWA) publication FHWA-HI-99-012 *Geotechnical Earthquake Engineering* were utilized. Soil parameters used in the analyses and the results of the analyses are shown on the output plots in Appendix-D.

The Bishop method, as recommended by IDOT, with a circular mode of failure, was used to search for the critical factor of safety (FS). The required minimum factors of safety were obtained from Section 6.10.4 of the 2020 IDOT Geotechnical Manual for the global slope stability. The results of the global slope stability analyses are presented in Table 3.2 below. The analysis results indicate that the calculated factor of safety meets the required minimum factor of safety. Therefore, the end slopes will perform satisfactorily under short term, long term, and seismic conditions.

	Short-Term		Long-Term		Seismic	
	Static Condition		Static Condition		Condition	
Analyzed End Slope	Required	Estimated	Required	Estimated	Required	Estimated
	FOS	FOS	FOS	FOS	FOS	FOS
Northwest Abutment	1.50	1.50	1.50	1.68	1.00	1.00
Southeast Abutment	1.50	1.60	1.50	1.52	1.00	1.05

Table 3.2 – Summary of Estimated Global Slope Stability Factors of Safety

3.5 Scour

The pile capacity is dependent on the scour elevation and suitable protection should be provided to the foundation elements. Per IDOT Bridge Manual Section 2.3.6.3.2, open abutments protected with class RR4 or RR5, stone dumped riprap, should set the design scour elevation at the bottom of the abutment. Based on the most recent TS&L, the design and check scour elevations are shown in Table 3.3.

	-				
Event/Limit State		Design Sco	ur Elevation (ft)		112
	SE Abutment	Pier 1	Pier 2	NW Abutment	Item 113
Q100	418.8	380.8	380.8	418.8	
Q200	418.8	380.6	380.6	418.8	5
Design	418.8	380.8	380.8	418.8	5
Check	418.8	380.6	380.6	418.8	

Table 3.3 – Summary of Design Scour Elevations

3.6 Bridge Foundations

The foundation supporting the proposed bridge must provide sufficient support to resist dead and live loads, including seismic loads. Structural loads were not available at the time of the SGR. Therefore, we have assumed preliminary structure loads as shown in Table 3.4.

Table 3.4 – Preliminary Structure Loads

Location	P (kips)
Abutments	1,700
Interior Piers	3,000

Several potential foundation options were considered for supporting the new bridge structure that included driven steel H-Piles, metal shell piles, drilled shafts, and shallow foundations. Shallow foundations are not recommended due to the relatively soft consistency of the shallow subsurface conditions encountered. Driven steel H-piles and metal shell piles are determined to be suitable for the abutments, but not for the interior bents due to relatively shallow depth to bedrock. Therefore, drilled shafts socketed into bedrock were determined to be suitable for the interior pier locations. Design information for both driven steel pile options for the abutments is included in Appendix E-1 and the design information for the drilled shafts is included in Appendix E-2.

For the driven steel foundation options, we recommend a minimum of two test piles be installed to verify the length of the piles. One test pile should be installed at each side of the lake in the general areas of the abutments to help verify the pile length. Recommendations for all the potential foundation options are provided below.

3.6.1 Driven Steel Piles

The structural capacity of driven piles depends on the allowable stress and cross-sectional areas of steel and concrete. The pile recommendations in this report assume that Steel H-piles will conform to ASHTO M270 Grade 50 (ASTM 709 Gr 50) or equivalent with a minimum yield stress of 50 kips per square inch (ksi) and metal shell piles will conform to ASTM A252 grade 3 (or equivalent) with a minimum yield stress of 45 ksi.

Based on the most current IDOT Bridge Manual, All Geotechnical Manual User Memorandums (AGMUs), and Guide Bridge Special Provisions (GBSP), a geotechnical resistance factor (φ_G) of 0.55 was used for the design of the driven pile foundations. Geotechnical losses due to down-drag are not considered for the seismic pile design. Geotechnical losses associated with scour were neglected since the design scour elevation is at the ground surface elevation of the driven piles during driving (El. 418.8) for both the abutments. During the seismic event the Bridge Manual allows the use of a Geotechnical Resistance Factor (φ_G) of 1.0.

All estimates of capacity were calculated using the "Modified IDOT Static Method" spreadsheet associated with the IDOT Bridge Manual, and appropriate AGMUs and GMSPs, and assume construction verification will follow the "WSDOT" formula outlined in Section 512 of the most current IDOT Standard

Specifications for Road and Bridge construction. The top elevations of the piles (pile cutoff elevations) were estimated from the available plans. The tip elevations were calculated from the Modified IDOT Static Method spreadsheets based on the available factored resistance.

A summary of the design capacities, or factored resistance available (R_F), seismic factored resistance (R_{Fseis}), and nominal required bearing (R_N) as well as estimated pile lengths, is presented in Appendix E1 for each H-pile size. It should be noted that H-piles driven into both sandstone and shale may run shorter than the IDOT spreadsheet predicts. The estimated pile lengths should be adjusted based on the test pile results. The maximum nominal required bearing and the available maximum factored resistance for typical steel H-piles for the abutments are shown in Table 3.5.

Abutment	Abutment Pile Size		Maximum Factored Resistance Available (kips)	Estimated Length of Pile at Refusal (feet)
	HP 12X74	589	324	83
	HP 14X89	705	388	83
NW Abutment	HP 14X117	929	511	86
	Metal Shell 14" dia w/0.25" walls	301	166	68
	Metal Shell 16" dia w/0.375" walls	573	315	73
	HP 12X74	522	287	30
	HP 14X89	705	388	31
SE Abutment	HP 14X117	929	511	33
	Metal Shell 14" dia w/0.25" walls	123	67	24
	Metal Shell 16" dia w/0.375" walls	144	79	24

 Table 3.5 – Maximum Nominal and Factored Resistances for Driven Steel Piles

We recommend a minimum driven pile center to center spacing of three pile diameters, as recommended by the IDOT Bridge Manual. The maximum spacing shall be limited to 3.5 times the effective footing thickness plus 1 foot, but not to exceed 8 feet. Once the final spacing is determined, the piles should be evaluated for group effects. With the exception of H-piles driven to bedrock, "hard driving" conditions are not likely to occur, therefore, pile shoes are not required. Pre-drilling for the piles is also not anticipated.

3.6.2 Drilled Shafts

We anticipate that drilled shaft foundations will be suitable to support the interior piers. For the purpose of determining the economic feasibility for the drilled shaft option, the factored tip resistance and/or a factored skin friction are provided in the summary design tables detailed in Appendix E2. Drilled shafts should be spaced no closer than three shaft diameters, center to center. Due to the relatively soft/loose soils encountered below the bottom of the lake, permanent or temporary casing will likely be required in the soil to prevent collapsing of the side walls during installation. Drilled shafts for the interior bents should be socketed into bedrock. It is not anticipated that drilled shafts would be used at the abutment locations. The unit nominal and factored shaft resistances for both the piers are shown in Table 3.6. The factored values presented in Table 3.6 and Appendix E2 reflect a geotechnical resistance factor (φ_G) of 0.50 for both tip resistance and skin friction for Strength Limit State. For seismic considerations, a (φ_G) of 1.0 should be used to calculate the seismic factored resistance available (R_{fseis}).

Layer Elevations (feet)		Average Unit Nominal Side	Average Unit Factored Side	Average Unit Nominal Tip	Average Unit Factored Tip
Pier-1	Pier-2	Resistance (ksf)	Resistance (ksf)	Resistance (ksf)	Resistance (ksf)
347.0 - 342.0	374.3 - 369.3	12.4	6.2	355.9	177.9
342.0 - 337.0	369.3 - 364.3	31.0	15.5	372.8	186.4
337.0 - 332.0	364.3 - 359.3	31.0	15.5	379.6	189.8
332.0 - 327.0	359.3 - 354.3	31.0	15.5	383.1	191.6

 Table 3.6 – Unit Nominal and Factored Side and Tip Resistances

3.6.2.1 Drilled Shaft QA/QC and Construction Considerations

A construction method using a casing for the interior piers will be required due to relatively soft/loose soils were encountered during the investigation. The auger cuttings should be observed as the shafts are drilled to document that competent materials are present. QA/QC for the drilled shafts should include a combination of using a shaft inspection device (SID camera) to ensure the bottom is clean and the socket is uniform and stable. This will also verify that the estimated uplift capacities are present. Crosshole Sonic Logging (CSL) testing should be performed to verify the integrity of the concrete after placement.

3.7 Lateral Pile Response

A representation of the shaft response under lateral loading exceeding 3 kips per pile is required for design of the bridge superstructure per Section 3.10.1.10 of the 2012 Bridge Manual. The lateral response can be developed by modeling the soil/shaft interaction with the computer program LPILE. Discrete elements are used in LPILE to represent the shaft and non-linear soil using springs. The non-linear soil springs are

commonly referred to as P-Y curves. Tables for the pier and abutment locations summarizing approximate soil and rock parameters for the LPILE analyses are included in Appendix F (Reference: LPILE User's Manual, Ensoft, Inc., 2019).

4.0 CONSTRUCTION CONSIDERATIONS

The construction activities should be performed in accordance with the current *IDOT Standard Specifications for Road and Bridge Construction* and any pertinent Special Provisions or policies. We understand that staged construction may be required for this project. We anticipate that temporary sheeting, including cantilever temporary sheet piling, will be feasible according to Section 3.13.1 – *Temporary Sheet Piling Design*. The temporary sheet pile will have an anticipated maximum retained height of 5 feet, and shall be embedded to a minimum depth of 4.0 feet with a minimum section modulus of 1.0 cubic inch per foot for planning purposes. The design of the temporary sheet pile is shown in Appendix G.

A Hydraulic No-Rise during construction shall be maintained. The existing substructure below ground is assumed to be removed using construction barges with excavators with concrete breakers and processors. Broken pieces of concrete are allowed to settle to the bottom of the lake prior to removal from the site. The use of cofferdams for pier removal will need to be approved to ensure the hydraulic no-rise condition will be met.

5.0 LIMITATIONS

The recommendations provided herein are for the exclusive use of ABNA and IDOT. They are specific only to the project described, and are based on subsurface information obtained at two boring locations drilled by SCI at the proposed bent locations and two boring locations drilled by IDOT near the proposed abutments, our understanding of the project as described herein, and geotechnical engineering practice consistent with the standard of care. No other warranty is expressed or implied. SCI should be contacted if conditions encountered during construction are not consistent with those described.

DocuSign Envelope ID: AC99F5A5-0732-43AB-969E-F772069EAD94

RIPRAP SAND CLAY SHALE SANDSTONE		LOAM LOAM	
SILTY CLAY SILTY LOAM SILTY CLAY LOAM GRAVELLY SILT			
SCALE I'- 10 V I'- 40 H JOB NUMBER 2020-0532.10 DATE 05/2023 DATE 05/2023 DATE 05/2023 DATE 05/2023 DATE 05/2023 DATE 05/2023 DATE 05/2023 DATE 05/2023 DATE 05/2023 DATE 05/2023 DATE PFIGURE 4	PROJECT NAME PTB 195, ITEM 62 IL 154 AT REND LAKE (SGR) FRANKLIN COUNTY, ILLINOIS SUBSURFACE PROFILE	General Notes/Legend VARIATIONS IN SUBSURFACE CONDITIONS MAY AND LIKELY EXIST BETWEEN BORINGS, DASHED HORIZONS ARE INTERPRETED AND ARE SHOWN FOR ILLUSTRATION ONLY.	

DocuSign Envelope ID: AC99F5A5-0732-43AB-969E-F772069EAD94

Appendix A-1

SCI ENGINEERING, INC. 130 Point West Boulevard St. Charles, Missouri 63301 636-949-8200 www.sciengineering.com

BORING LOG LEGEND AND NOMENCLATURE

Depth is in feet below ground surface. Elevation is in feet mean sea level, site datum, or as otherwise noted.

Sample Type

- **SS** Split-spoon sample, disturbed, obtained by driving a 2-inch-O.D. split-spoon sampler (ASTM D 1586).
- NX Diamond core bit, nominal 2-inch-diameter rock sample (ASTM D 2113).
- **ST** Thin-walled (Shelby) tube sample, relatively undisturbed, obtained by pushing a 3-inch-diameter, tube (ASTM D 1587).
- **CS** Continuous sample tube system, relatively undisturbed, obtained by split-barrel sampler in conjunction with auger advancement.
- **SV** Shear vane, field test to determine strength of cohesive soil by pushing or driving a 2-inch-diameter vane, and then shearing by torquing soil in existing and remolded states (ASTM D 2573).
- **BS** Bag sample, disturbed, obtained from cuttings.

Recovery is expressed as a ratio of the length recovered to the total length pushed, driven, cored.

Blows Numbers indicate blows per 6 inches of split-spoon sampler penetration when driven with a 140pound hammer falling freely 30 inches. The number of total blows obtained for the second and third 6-inch increments is the N value (Standard Penetration Test or SPT) in blows per foot (ASTM D 1586). Practical refusal is considered to be 50 or more blows without achieving 6 inches of penetration and is expressed as a ratio of 50 to actual penetration, e.g., 50/2 (50 blows for 2 inches).

For analysis, the N value is used when obtained by a cathead and rope system. When obtained by an automatic hammer, the N value may be increased by a factor of 1.3.

Vane Shear Strength is expressed as the peak strength (existing state) / the residual strength (remolded state).

Description indicates soil constituents and other classification characteristics (ASTM D 2488) and the Unified Soil Classification (ASTM D 2487). Secondary soil constituents (expressed as a percentage) are described as follows:

Trace	<5
Few	5-15
With	>15-30

Stratigraphic Breaks may be observed or interpreted and are indicated by a dashed line. Transition between described materials may be gradual.

Laboratory Test Results

- Natural moisture content (ASTM D 2216) in percent.
- Dry density in pounds per cubic foot (pcf).
- Hand penetrometer value of apparently intact cohesive sample in kips per square foot (ksf).
- Unconfined compressive strength (ASTM D 2166) in kips per square foot (ksf).
- Liquid and Plastic Limits (ASTM D 4318) in percent.

RQD (**Rock Quality Designation**) is the ratio between the total length of core segments 4 inches or more in length and the total length of core drilled. RQD (expressed as a percentage) indicates insitu rock quality as follows:

Excellent	90 to 100
Good	75 to 90
Fair	50 to 75
Poor	25 to 50
Very Poor	0 to 25

Illinois of Tran	Depai sporta	rtn ati ∞	nen on	t	SC	DIL BORIN	G LOG	F	Page Date	<u>1</u>	of <u>2</u> 28/23
ROUTE FAP Route 845 (IL-15	<u>64)</u> DES	SCR	IPTION	۱	PTB	195 Item 62 IL 154 at F	Rend Lake Lo	OGGED	BY	S	<u>CI</u>
SECTION 112 (RS-4, BLP-1)	; 112B-4	_ L	OCAT	10N	, SEC. Lat 38	13, TWP. 5S, RNG. 2E 3.087832 Long -88.9294	427				
COUNTY Franklin		MET	HOD	CME	E 75 wi	th HSA and Mud Rotary	HAMMER TYPE		Auto	matic	
STRUCT. NO. 028-0052 (Proposition) Station 362+0.00 BORING NO. B-12	used)	D E P T	B L O W	U C S	M O I S	Surface Water Elev Stream Bed Elev Groundwater Elev.:	<u>407.4</u> ft <u>394.3</u> ft	D E P T	B L O W	U C S	M O I S
Station 361+38 Offset 5 ft RT		н	S	Qu	т	First Encounter	407.4 ft	H	S	Qu	т
Ground Surface Elev. 426	ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs.	<u>N/A</u> ft	(ft) (/6")	(tsf)	(%)
SURFACE WATER LEVEL	425.9 425.3 425.3 - - - - - - - - - - - - - - - - - -					Riprap					

Illinois Depa of Transport	atio	ent n	SC	DIL BORING LOG		Page	2	of <u>2</u>
	SCDIDT			II 154 at Rend Lake				<u>28/23</u>
SECTION 112 (RS-4 BLP-1): 112B-4			SEC	13 TWP 55 RNG 2F	LUGGL	.0.01		
COUNTY Franklin DRILLING	METHC	D <u>CM</u>	Lat 38 5 75 wi	3.087832 Long -88.929427 th HSA and Mud Rotary HAMMER TYPI	E	Auto	omatic	
STRUCT. NO. 028-0052 (Proposed) Station 362+0.00	D E E I P (B U - C	M O	Surface Water Elev.407.4ftStream Bed Elev.394.3ft	D E P	B L O	U C S	M O
BORING NO. B-12 Station 361+38 Offset 5 ft RT Ground Surface Elev. 426	T V H S (ft) (/6	V 6 Qu 6") (tsf)	S T (%)	Groundwater Elev.: First Encounter 407.4 ft Upon Completion N/A ft After N/A Hrs. N/A ft	T H (ft)	W S (/6")	Qu (tsf)	S T (%)
MUDLINE SAND: Gray, loose, wet A-2				CLAY: Gray, stiff, moist A-7 <i>(continued)</i>				
Grain Size Analysis Test Performed	-45	2 5 3 NC			-65	3 4 4	0.2 B/20	23
CLAY: Gray, stiff, moist A-7 Becomes brown and gray <i>Unconfined Compressive Test</i> <i>Performed</i>		¹ 1.0 S/3	22	Unconfined Compressive Test Performed		ST-3	0.8 S/14	27
Becomes gray	2 6 50 8	4 5 2.1 3 B/20	28	Becomes stiff		4 7 8	0.8 B/20	22
Becomes gray and brown, wet								
	2 	4 0.7 5 S/20	32	SAND: Gray, loose, wet35 A-2 <i>Grain Size Analysis Test Performed</i> CLAY: Gray, medium stiff, wet	<u>2.0</u> <u>1.5</u> 	2 3 2	0.3 B/20	29
Unconfined Compressive Test Performed	S1	-2 0.9 S/2	25					
Becomes gray, medium stiff	-60	3 4 0.2 4 B/20	26	SHALE: Gray, hard 34 Auger refusal at 79 feet.	7.5	50/5"	NC	

Illinois of Tra	s Depa nsport	ati ati	nen on	t	SC	DIL BORING LO	G		Page	_1	of <u>2</u>
									Date	04/^	11/23
ROUTE FAP Route 845 (IL-1	<u>154)</u> DE	SCRI	PTION	I		IL 154 at Rend Lake		LOGGE	DBY	<u> </u>	CI
SECTION <u>112 (RS-4, BLP-</u>	1); 112B-4	_ L(OCAT	ION	, SEC. Lat 38	13, TWP. 5S, RNG. 2E .087671 Long -88.929083					
COUNTY Franklin	DRILLING	MET	HOD	CME	E 75 wi	th HSA and Mud Rotary HAMMER	R TYPE	E	Auto	matic	
STRUCT. NO. N/A Station N/A		D E P	B L O	U C S	M O I	Surface Water Elev.410Stream Bed Elev.394	. <u>0</u> ft .3 ft	D E P	B L O	U C S	М О І
BORING NO. B-13 Station 362+53 Offset 5 ft RT Ground Surface Elev. 42	 26 ft	T H (ft)	W S (/6")	Qu (tsf)	S T (%)	Groundwater Elev.: First Encounter 410 Upon Completion N After N/A Hrs. N) <u>.0</u> ft / <u>/A</u> ft /A ft	T H (ft)	W S (/6")	Qu (tsf)	S T (%)
6.5" CONCRETE	425.5										
		-5						-25			
		-10						-30			
							20.				
							<u></u> 3 <u>9</u> 4	<u>4.3</u> . —			
						A-4					
		-15						-35			
SUBFACE WATER LEVEL	410.0					Percent passing the number 200 sieve: 66.5%			2 1	<0.25	19
									1	۲	
						CLAY: Reddish-brown and gray,	388	8.5			
		_				A-7		_			
		20						40			

DocuSign Envelope ID: AC99F5A5-0732-43AB-969E-F772069EAD94

Illinois D of Trans	epart portat n of Highways jineering	men tion	it	SC	DIL BORING LOG	Page <u>2</u> of <u>2</u> Date <u>04/11/23</u>
ROUTEFAP Route 845 (IL-154)	DESC	riptioi	N		IL 154 at Rend Lake	LOGGED BY SCI
SECTION <u>112 (RS-4, BLP-1); 1</u>	12B-4	LOCAT		, SEC.	13, TWP. 5S, RNG. 2E	
COUNTY Franklin DR		THOD	CME	<u>E 75 wi</u>	th HSA and Mud Rotary HAMMER TYPE	Automatic
STRUCT. NO. N/A Station N/A	D	BL	U C	M	Surface Water Elev.410.0ftStream Bed Elev.394.3ft	
BORING NO. B-13 Station 362+53 Offset 5 ft RT Ground Surface Elev. 426	— H — H	W S (/6")	Qu (tsf)	г S T (%)	Groundwater Elev.: First Encounter 410.0 ft Upon Completion N/A ft After N/A Hrs. N/A ft	
CLAY: Reddish-brown and gray, stiff, moist A-7 <i>(continued)</i>		- 2 - 4 - 5	1.1 S/20	23		
SAND: Gray, medium dense, moist A-3	 <u>382.3</u> 	<u>5</u> 12 18	NC			
CLAY: Brown, soft, wet A-6	3 <u>79.0</u>	11 ST-1				
SHALE: Gray, hard	<u>377.3</u> –					
Auger refusal at 50 feet.	<u></u>	50/2", 50/2", 5 5				

DocuSign Envelope ID: AC99F5A5-0732-43AB-969E-F772069EAD94

Appendix A-2

Illinois Department of Transportation

Memorandum

To: Carrie Nelsen

From: Keith Roberts

Subject: Boring Logs

Date: May 15, 2020

Attn: Dave Piche

By: Aaron Hayes

(Zc)

IL 154 over Rend Lake Structure 028-0052 (Ex.) Section: 112B-3 (1966 plans) Franklin County

Foundation boring logs have been obtained for the above listed structure and are attached. A liquefaction analysis should be completed once the proposed structure's final dimensions are determined.

Borings completed in 1963 before the existing structure was constructed have been attached for additional information regarding the depth to bedrock.

Attachments AWH:ah

cc: Materials Geotechnical Unit\gINT\PROJECTS\Projects File\Franklin\Structures

Illinois Dep of Transpo	oartme	nt		SC	OIL BORING LO	G		Page	1	of <u>1</u>
Division of Highways District 6		-				-		Date	4/1	6/20
ROUTE IL 154 DESC	RIPTION			Bridg	e over Rend Lake	LOGGE	DBY	۲ <u> </u>	ee Es	tel
SECTION 112B-3 (from 1966)			0.9 mi	les We	est of I-57, SEC. 18, TWP. 5S, RNG.	3E, 3 P	М			
COUNTY Franklin D	RILLING ME	THOD	H <u>ollow</u>	stem	auger (8" O.D., 3.25" I.D.) HAMMER	TYPE	Α	uto SF	PT 140) lb
STRUCT. NO. 028-0052 Station 362+00 BORING NO. S-1 Station 363+52 Offset 11.0ft RT Ground Surface Elev. 425.4	D E P T H ft (ft)	B L O W S	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. 408.8 Stream Bed Elev. 385.3 Groundwater Elev.: 2 ✓ First Encounter 399.4 ✓ Upon Completion	_ ft _ ft _ ft _ ft _ ft	D E P T H	B L O W S	U C S Qu (tsf)	M O I S T (%)
Cored Pavement, 2.5" HMA over 18" PCC					V. Stiff Blue Grey, Moist CLAY (continued)		_	4 6	2.7 B	17
V. Stiff Brown, Moist SILTY CLAY	423.69	1 4 4	2.1 B	16	Stiff Blue Grey, Moist CLAY	403.40		1 2 4	1.4 B	27
(Stiff)	5 	1 3 4	1.7 B	19	(Brown) ⊻		-25	1 3 5	1.7 B	22
(Brown with specks of Black)		1 2 7	1.1 S	19	Stiff Brown, Moist SILTY CLAY LOAM	398.40		1 2 4	1.8 B	19
V. Soft Greyish Brown, Moist SILTY CLAY	415.90	1 2 5	0.2 B	23			-30	1 4 5	1.9 B	19
M. Stiff Brown, Moist SILTY CLAY LOAM	413.40	1 6 4	0.5 B	19	V. Stiff Brown, Moist SANDSTONE	393.40		6 40 60	2.9 S	18
(Brown and Grey)	 15 	1 3 4	0.5 S	17	Hard Brown, Dry SANDSTONE (Bore hole continued with rock coring.)	<u>390.90</u>	<u></u>	<u>)0/3.2</u>	5 ''	
Stiff Brown and Grey with specks of Red and Black, Moist SILTY CLAY LOAM	408.40	1 4 7	1.1 S	15	Bottom of Hole @ 44.8 feet Benchmark referenced to BM 134, Cut Square in S.E. Parapet wall SN 028-0052; Elev: 427.32					
V. Stiff Blue Grey, Moist CLAY	405.90	1			To convert "N" values to "N60", multiply by 1.5		-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, E-Estimated) Abbreviations W.O.H - Sampler Advanced By Weight of Hammer, W.O.P - Advanced by Weight of Pipe, B.S. - Before Seating The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

Illinois Department		-		Ρ	age <u>1</u>	of <u>1</u>
of Transportation ROCK CORE L	-0	G		D	ate _ 4	/16/20
ROUTE IL 154 DESCRIPTION Bridge over Rend Lake		_ LC	GGE	DBY	Lee E	Estel
SECTION	, RN	G . 3E	E, 3 PN	Λ		
COUNTY Franklin CORING METHOD Conventional rotary with water			R	_	CORE	S
STRUCT. NO. 028-0052 Station 362+00 BORING NO. S-1 Station 363+52 Offset 11.0ft RT Ground Surface Elev. 425.4 ft	D E P T H (ft)	C O R E (#)	Е С О V Е R Y (%)	к Q D (%)	T I M E (min/ft)	r R N G T H (tsf)
Brown, Dry SANDSTONE, Medium Grained, Field Hardness: Low 34.8 to 38.7 ft depth (Field Hardness: Friable 38.7 to 39.2 ft depth) (Field Hardness: Low 39.2 to 44.8 ft depth) 380.60		2	40	0	10	59.6

Color pictures of the cores Yes, attached Cores will be stored for examination until <u>5 Years after Construction</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) RQD is the ratio of the total length of sound core specimens >4" to total length of core run BBS Cores will be stored for examination until

Illinois Department of Transportation District Nine Materials Unconfined Compressive Strength

(IL 154) Structure 028 - 0052 (Boring S-1) Franklin County

Boring #	Specimen#	Depth	Unconfined Compression
S-1	Test 1	43.8 ft	828 psi
Foundation Co Use 1.78" for th 3.8" is the leng	re Instructions ne diameter th		
		$\frac{\pi d^2}{4}$ = 2.487	

Pounds divided by 2.487 = psi

Illinois Dep of Transpo	oartn ortati	neı on	nt		SC	DIL BORING LO	G		Page	<u>1</u>	of <u>3</u>
Division of Highways District 6									Date	4/2	0/20
ROUTE IL 154 DESCI	RIPTION	I			Bridg	e over Rend Lake	LOGGE	D BY	′L	ee Es	tel
SECTION 112B-3 (from 1966)	LO	CATI	ON _	0.9 mi	les We	est of I-57, SEC. 18, TWP. 5S, RNG.	3E, 3 P	M			
County Franklin D	RILLING	S ME	THOD	Hollow	stem	auger (8" O.D., 3.25" I.D.) HAMMER	TYPE	A	uto SF	PT 140	lb
STRUCT. NO. 028-0052 Station 362+00 BORING NO. S-2 Station 260+20		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. 408.8 Stream Bed Elev. 385.3 Groundwater Elev.:	_ ft _ ft	D E P T H	B L O W S	U C S Qu	M O I S T
Offset 10.0ft LT Ground Surface Elev. 425.9	ft	(ft)	-	(tsf)	(%)	v Prist Encounter	_ n _ ft _ ft	(ft)	-	(tsf)	(%)
Cored Pavement, 1.5" HMA over 10" PCC	424.94					V. Stiff Brown, Moist SILTY CLAY (continued)		_	4 5	2.5 S	17
V. Stiff Brown, Moist SILTY CLAY	<u> </u>		2 5 5	3.1 S	16	M. Stiff Brown with Grey spots, Moist SILTY CLAY LOAM	403.90		1 2 3	0.7 B	20
			1 3 4	2.3 S	14	Soft Brown with Grey spots, Moist SILTY CLAY LOAM	401.40		1 1 3	0.25 B	25
							398.90				
			1 3 5	3.1 S	16	Stiff Brown, Moist CLAY			1 4 6	1.6 B	20
Stiff Brown, Moist SILTY CLAY	416.40	 	1 4 4	1.2 B	17	Stiff Grey with Black streaks, Moist CLAY	<u>396.40</u>		1 4 5	1.2 B	23
M. Stiff Brown, Moist CLAY	413.90		1 2 3	0.6 B	22				1 2 3	1.2 B	21
		 	1 1 3	0.7 B	19	Soft Grey, V. Moist CLAY	391.40		WOH WOH WOH	0.25 B	29
V. Stiff Brown with specks of Grey, Moist CLAY	408.90		1 3 3	3.1 B	18	V. Stiff Grey, Moist SILTY CLAY	388.90		1 5 7	2.3 S	19
V. Stiff Brown, Moist SILTY CLAY	406.40	-20	1			M. Stiff Grey, Moist SILTY CLAY	386.40	-40	2		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, E-Estimated) Abbreviations W.O.H - Sampler Advanced By Weight of Hammer, W.O.P - Advanced by Weight of Pipe, B.S. - Before Seating The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

Illinois Dep of Transpo	oartmen ortation	t	SC	DIL BORING LO	G	Page	2	of <u>3</u>
Division of righways District 6						Date	<u>4/2</u>	<u>20/20</u>
ROUTE <u>IL 154</u> DESCI	RIPTION		Bridg	e over Rend Lake	LOGGE	ED BY	Lee Es	stel
SECTION <u>112B-3 (from 1966)</u>	LOCATIO	N <u>0.9 mi</u>	les We	est of I-57, SEC. 18, TWP. 5S, RNG.	3E, 3 P	M		
COUNTY Franklin DI		HODH <u>ollow</u>	stem	auger (8" O.D., 3.25" I.D.) HAMMER	TYPE	Auto S	PT 140) lb
STRUCT. NO. 028-0052 Station 362+00 BORING NO. S-2 Station 360+20 Offset 10.0ft LT	D E P T H	BU LC OS W SQu	M O I S T	Surface Water Elev. 408.8 Stream Bed Elev. 385.3 Groundwater Elev.: 2 ✓ First Encounter 388.9 ✓ Upon Completion 388.9	ft ft ft	D B E L P O T W H S	U C S Qu	M O I S T
M. Stiff Grey, Moist SILTY CLAY		4 0.8	28	Grey) (continued)	_ n		1.2	27
Soft Grey, Moist CLAY	381.40 	VOH VOH 0.4 VOH B	26	M. Stiff Grey, Moist CLAY	<u>361.40</u>	 	0.8 B	20
Stiff Brown and mottled Grey, Moist CLAY	376.40	1 3 2.0 5 B	26	V. Loose Grey, Wet Coarse Grained SAND	356.40	WOH 1 1 		20
		1 3 1.2 4 B	27	Stiff Grey, Moist SILTY LOAM	351.40		1.3 S	19
(Grey)	V	VOH		V. Stiff Grey, Moist SILTY LOAM	346.40	-80 4		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, E-Estimated) Abbreviations W.O.H - Sampler Advanced By Weight of Hammer, W.O.P - Advanced by Weight of Pipe, B.S. - Before Seating The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

Illinois Dep of Transpo Division of Highways	oartr rtati	nei on	nt		SC	DIL BORIN	G LO	G	Page <u>3</u> of <u>3</u> Date 4/20/20
ROUTE II 154 DESCR		J			Brida	e over Rend I ake		LOGGE	DBY Lee Estel
SECTION12B-3 (from 1966)	LO	CATI	ON	0.9 mi	les We	est of I-57, SEC. 18, TV	VP. 58, RNG.	3E, 3 PN	1
COUNTY Franklin DF	RILLING	S ME	THOD	Hollow	stem	auger (8" O.D., 3.25" I.	D.) HAMMER	TYPE _	Auto SPT 140 lb
STRUCT. NO. 028-0052 Station 362+00		D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	408.8 385.3	_ ft _ ft	
BORING NO. S-2 Station 360+20 Offset 10.0ft LT		T H	W S	Qu	S T	Groundwater Elev.: ⊈ First Encounter ⊈Upon Completion	388.9	_ ft _ ft	
Ground Surface Elev. 425.9	ft	(ft)	10	(tsf)	(%) 15	¥After Hrs.		_ ft	
(continued)			23	B					
	341.40		100/01						
Hard Grey, Dry CLAY SHALE		-85	100/2"						
coring.)									
		-90							
Bottom of Hole @ 93.6 feet									
Benchmark referenced to BM 134,									
SN 028-0052; Elev: 427.32									
To convert "N" values to "N60",									
		-95							
		100							
		- 100			I	11			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer, E-Estimated) Abbreviations W.O.H - Sampler Advanced By Weight of Hammer, W.O.P - Advanced by Weight of Pipe, B.S. - Before Seating The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206) BBS, from 137 (Rev. 8-99)

Illinois Department of Transportation ROCK CORE	LO	G		Ρ	age <u>1</u>	of <u>1</u>
Division of Highways District 6				D	ate 4	/20/20
ROUTE IL 154 DESCRIPTION Bridge over Rend Lake		_ LC	OGGEI	DBY	Lee E	Estel
SECTION <u>112B-3 (from 1966)</u> LOCATION <u>0.9 miles West of I-57</u> , SEC. 18, TWP. 53	S, RN	G . 3E	<u>E, 3 P</u>	Λ	1	
COUNTY Franklin CORING METHOD _ Conventional rotary with water	_		R	R	CORE	S T
STRUCT. NO. 028-0052 Station 362+00 BORING NO. S-2 Station 360+20 Offset 10.0ft LT Ground Surface Elev. 425.9	D E P T H (ft)	C O R E (#)	C O V E R Y (%)	Q D	T I M E (min/ft)	R E N G T H (tsf)
Grey, Dry CLAY SHALE, V. Fined Grained, Field Harness: Moderately Hard	-85	1	97	0	6	*66.7
* Specimen length less than 2:1 (L/D). Results may differ from results obtained from a test specimen that meets the requirements.	 	2	88	0	6	*117.7
332.30						*130.3

Color pictures of the cores Yes, attached Cores will be stored for examination until

Cores will be stored for examination until <u>5 Years after Construction</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) RQD is the ratio of the total length of sound core specimens >4" to total length of core run BBS

Illinois Department of Transportation District Nine Materials Unconfined Compressive Strength

> IL 154 Franklin Co. 028 – 0052 Boring S-2 4-20-2020 Bottom

Boring #	Specimen#	Length	L/D ratio	Depth	Unconfined Reading	Unconfined Compression
S-2	3	2.8"	*1.6:1	85'	2,400 lbs	965 psi
S-2	2	3.4"	*1.9:1	92'	4,150 lbs	1,669 psi
S-2	1	3.0"	*1.7:1	92.7'	4,690 lbs	1,886 psi

*Desirable specimen length to diameter ratios are between 2.0:1 and 2.5:1. The results may differ from results obtained from a test specimen that meets the requirements.

Foundation Core Instructions Use 1.78" for the diameter (Pounds divided by 2.487)=psi

<u>πd²</u> =2.487 4
Appendix B

Appendix C

REFERENCE BORING NUMBER ====================================	NW Abu	ut (S-2)			(MSF) = 2.581	
ELEVATION OF BORING GROUND SURFACE ====================================	425.90	FT.				
DEPTH TO GROUNDWATER - DURING DRILLING ====================================	37.00	FT.	(Below Boring Ground Surface)		AVG. SHEAR WAVE VELOC	TY (top 4
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ==============	17.90	FT.	(Below Finished Grade Cut or Fill Surface)		V [*] _{s,40'} = 306	FT./SEC.
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) =====	0.300					
EARTHQUAKE MOMENT MAGNITUDE ====================================	4.9				PGA CALCULATOR	
FINISHED GRADE FILL OR CUT FROM BORING SURFACE =========	4.00	FT.	(Fill Height)	E	Earthquake Moment Magnitude =	4.9
HAMMER EFFICIENCY====================================	73	%		S	ource-To-Site Distance, R (km) =	10
BOREHOLE DIAMETER===================================	6	IN.		Grour	nd Motion Prediction Equations =	CEUS
SAMPLING METHOD====================================	Sampler	r w/out	Liners		PGA = 0.244	

						CONDITIONS DURING DRILLING				CONDITIONS DURING EARTHQUAR										
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFEC	TIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q _u	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.) ((BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N 1) 60	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r_d)	CSR	CRR/CSR
422.4	3.5	10	2.5					0.133	0.466	17.150	17.150	0.182	0.133	0.946	0.946	1.250	0.588	0.770	0.150	N.L. (1)
419.9	6	7	2.3					0.132	0.796	10.304	10.304	0.116	0.132	1.276	1.276	1.126	0.336	0.692	0.135	N.L. (1)
417.4	8.5	8	2.5					0.133	1.128	11.168	11.168	0.124	0.133	1.608	1.608	1.068	0.341	0.617	0.120	N.L. (1)
414.9	11	8	1.2					0.124	1.438	10.989	10.989	0.122	0.124	1.918	1.918	1.024	0.322	0.547	0.107	N.L. (1)
412.4	13.5	5	0.6	50			40	0.116	1.728	6.708	6.708	0.085	0.116	2.208	2.208	0.991	0.218	0.485	0.095	N.L. (1)
409.9	10	4	0.7	50	11	29	19	0.117	2.021	5.190	11.228	0.124	0.055	2.340	2.477	0.976	0.313	0.430	0.089	N.L. (2)
407.4	10.0	0	2.0	50	11	29	10	0.133	2.303	10.604	17 704	0.149	0.071	2.523	2.010	0.950	0.369	0.303	0.003	N.L. (2)
404.9	21	9	2.5	50	11	29	20	0.133	2.000	5 6/3	11.724	0.109	0.071	2.701	3.144	0.935	0.455	0.344	0.078	N.L. (2)
399.9	26	4	0.25	50	11	20	25	0.107	3 246	4 342	10.210	0.125	0.000	2.000	3 706	0.926	0.275	0.285	0.074	3 929 (C)
397.4	28.5	10	1.6	50	11	29	20	0.107	3 563	10 353	17 423	0.115	0.045	3 113	4 024	0.899	0.430	0.263	0.067	N.L. (2)
394.9	31	9	12	50	11	29	23	0.124	3 873	8 909	15 691	0 167	0.062	3 268	4 335	0.891	0.384	0.247	0.064	N.L. (2)
392.4	33.5	5	1.2	50	11	29	21	0.124	4.183	4.740	10.688	0.119	0.062	3.423	4.646	0.893	0.275	0.234	0.062	N.L. (2)
389.9	36	0.1	0.25	50	11	29	29	0.107	4.451	0.091	5.110	0.073	0.045	3.536	4.915	0.902	0.170	0.223	0.060	2.833 (C)
387.4	38.5	12	2.3	50	11	29	19	0.069	4.623	10.748	17.897	0.191	0.069	3.708	5.243	0.855	0.421	0.215	0.059	N.L. (2)
384.9	41	7	0.8	50	11	29	28	0.057	4.766	6.166	12.399	0.135	0.057	3.851	5.542	0.863	0.300	0.208	0.058	5.172 (C)
379.9	46	0	0.4	50	11	29	26	0.049	5.011	0.000	5.000	0.072	0.049	4.096	6.099	0.876	0.163	0.199	0.058	2.810 (C)
374.9	51	8	2	50	11	29	26	0.067	5.346	6.594	12.913	0.140	0.067	4.431	6.746	0.832	0.300	0.194	0.058	5.172 (C)
369.9	56	7	1.2	50	11	29	27	0.061	5.651	5.572	11.687	0.128	0.061	4.736	7.363	0.823	0.273	0.191	0.058	4.707 (C)
364.9	61	2	1.2	50	11	29	27	0.061	5.956	1.538	6.845	0.086	0.061	5.041	7.980	0.832	0.186	0.186	0.057	3.263 (C)
359.9	66	2	0.8	50	11	29	20	0.057	6.241	1.488	6.786	0.086	0.057	5.326	8.577	0.823	0.183	0.179	0.056	N.L. (2)
354.9	71	2						0.048	6.481	1.449	1.449	0.051	0.048	5.566	9.129	0.824	0.108	0.172	0.055	1.964 (C)
349.9	76	38	1.3	50	11	29	15	0.062	6.791	28.812	39.575	0.109	0.062	5.876	9.751	0.665	0.187	0.165	0.053	N.L. (2)
344.9	81	33	2.5	50	11	29	15	0.070	7.141	23.529	33.235	1.549	0.070	6.226	10.413	0.666	2.665	0.158	0.052	N.L. (2)
341.4	84.5	33	2.5	50	11	29	15	0.070	7.386	22.871	32.445	0.879	0.070	6.471	10.876	0.660	1.498	0.153	0.050	N.L. (2)

* FACTOR OF SAFETY DESCRIPTIONS

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$ (C) = CONTRACTIVE SOIL TYPES

(D) = DILATIVE SOIL TYPES

EQ MAGNITUDE SCALING FACTOR = 2.581

LIQUEFACTION ANALYSIS

AVE VELOCITY (top 40') 306 FT./SEC.

		EQ MAGNITUDE SCALING FACTOR
REFERENCE BORING NUMBER ====================================	3-12)	(MSF) = 2.581
ELEVATION OF BORING GROUND SURFACE ====================================	FT.	
DEPTH TO GROUNDWATER - DURING DRILLING ====================================	FT. (Below Boring Ground Surface)	AVG. SHEAR WAVE VELOCITY (top 40')
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ====================================	FT. (Below Finished Grade Cut or Fill Surface)	V _{s,40} = 503 FT./SEC.
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) ===== 0.300		
EARTHQUAKE MOMENT MAGNITUDE ====================================		PGA CALCULATOR
FINISHED GRADE FILL OR CUT FROM BORING SURFACE ====================================	FT.	Earthquake Moment Magnitude = 4.9
HAMMER EFFICIENCY====================================	%	Source-To-Site Distance, R (km) = 10
BOREHOLE DIAMETER===================================	IN.	Ground Motion Prediction Equations = CEUS
SAMPLING METHOD========Sampler	w/out Liners	PGA = 0.244

			BOR	ING DA	TA			CON	DITIONS	DURING L	DRILLING		COND	TIONS D	JRING EA	RTHQUAKE				
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q u	< #200	PI	LL	w _c	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N 1) 60	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
381	5	11		18				0.062	0.310	20.320	24.902	0.290	0.062	0.310	0.622	1.500	1.122	0.962	0.376	2.984 (D)
378.5	7.5	14	1					0.059	0.458	25.543	25.543	0.303	0.059	0.458	0.926	1.500	1.173	0.937	0.369	N.L. (3)
376	10	14	2.1					0.068	0.628	25.848	25.848	0.310	0.068	0.628	1.252	1.495	1.195	0.907	0.353	N.L. (3)
371	15	9	0.7		11	29	32	0.055	0.903	15.588	15.588	0.166	0.055	0.903	1.839	1.255	0.538	0.834	0.331	1.625 (D)
368.5	17.5	8	0.9		11	29	25	0.058	1.048	13.438	13.438	0.145	0.058	1.048	2.140	1.195	0.446	0.791	0.315	1.416 (D)
366	20	8	0.2		11	29	26	0.042	1.153	13.268	13.268	0.143	0.042	1.153	2.401	1.166	0.431	0.746	0.303	1.422 (D)
361	25	8	0.2		11	29	23	0.042	1.363	12.831	12.831	0.139	0.042	1.363	2.923	1.116	0.400	0.653	0.273	N.L. (2)
358.5	27.5	8	0.8		11	29	27	0.057	1.505	12.464	12.464	0.135	0.057	1.505	3.221	1.088	0.381	0.609	0.254	1.500 (D)
356	30	15	0.8		11	29	22	0.057	1.648	24.073	24.073	0.275	0.057	1.648	3.520	1.084	0.768	0.567	0.236	N.L. (2)
351	35	5	0.3		11	29	29	0.046	1.878	7.227	7.227	0.090	0.046	1.878	4.062	1.026	0.237	0.496	0.209	1.134 (C)
347.5	38.5	5	0.3		11	29	29	0.046	2.039	7.004	7.004	0.088	0.046	2.039	4.441	1.008	0.228	0.458	0.195	1.169 (C)

* FACTOR OF SAFETY DESCRIPTIONS N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVA N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$

(C) = CONTRACTIVE SOIL TYPES

(D) = DILATIVE SOIL TYPES

LIQUEFACTION ANALYSIS

Illinois Department of Transportation Ø

LIQUEFACTION A	ANALYSIS
----------------	----------

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.581

AVG. SHEAR WAVE VELOCITY (top 40') V'_{s,40'} = 307 FT./SEC.

	· · · · · · · · · · · · · · · · · · ·		
ELEVATION OF BORING GROUND SURFACE ====================================	394.30	FT.	
DEPTH TO GROUNDWATER - DURING DRILLING ====================================	0.00	FT.	(Below Boring Ground Surface)
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ====================================	0.00	FT.	(Below Finished Grade Cut or Fill Surface)
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) =====	0.300		
EARTHQUAKE MOMENT MAGNITUDE ====================================	4.9		
FINISHED GRADE FILL OR CUT FROM BORING SURFACE ==========	0.00	FT.	
HAMMER EFFICIENCY====================================	73	%	
BOREHOLE DIAMETER===================================	6	IN.	
SAMPLING METHOD====================================	Sampler	· w/ou	t Liners

PG.	Α	CAL	Cι	ILA	TOR	

Earthquake Moment Magnitude =	4.9
Source-To-Site Distance, R (km) =	10
Ground Motion Prediction Equations =	CEUS
PGA = 0.244	

			BOR	RING DA	TA			CON	DITIONS	DURING L	DRILLING]	COND	ITIONS D	JRING EA	RTHQUAKE		-	-	
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q	< #200	PI		W _c	WT.	STRESS		N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR		SAFETY *
(F1.)	(F1.)	(BLOWS)	(13F.)	[(%)	11	20	10	0.042	0.210	2 570	(N 1) 60cs	0.107	0.042	0.210	0.522	1 500	0.414	(' d)	0.412	
380.3	5	2	0.2	50	11	29	19	0.042	0.210	3.570	9.204	0.107	0.042	0.210	0.522	1.500	0.414	0.650	0.412	N.L. (2)
387.3	7	29	1.1	50		29	20	0.000	0.210	58 173	58 173	0.290	0.000	0.210	0.322	1.500	1.145	0.030	0.412	N.L. (2)
007.0	- i -	20						0.071	0.002	00.170	00.170	0.000	0.071	0.002	0.100	1.000	1.400	0.101	0.044	11.2. (0)
•													•		* EAC				•	•

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_d/LL \leq 0.85

- N.L. (3) = NOT LIQUEFIABLE, $(N_1)_{60} > 25$
- (C) = CONTRACTIVE SOIL TYPES
- (D) = DILATIVE SOIL TYPES

LIQUEFACTION ANALYSIS

EQ MAGNITUDE	SCALING FACTOR
(MSF) =	2.581

REFERENCE BORING NUMBER ====================================	SE Abu	t (S-1))		(MSF) = 2.581
ELEVATION OF BORING GROUND SURFACE ====================================	425.40	FT.			
DEPTH TO GROUNDWATER - DURING DRILLING ====================================	26.00	FT.	(Below Boring Ground Surface)		AVG. SHEAR WAVE VELOCITY (top 40')
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ====================================	17.40	FT.	(Below Finished Grade Cut or Fill Surface)		V _{s,40} = 528 FT./SEC.
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) =====	0.300				
EARTHQUAKE MOMENT MAGNITUDE ====================================	4.9				PGA CALCULATOR
EARTHQUAKE MOMENT MAGNITUDE ====================================	4.9 4.00	FT.	(Fill Height)		PGA CALCULATOR Earthquake Moment Magnitude = 4.9
EARTHQUAKE MOMENT MAGNITUDE	4.9 4.00 73	FT. %	(Fill Height)	S	PGA CALCULATOR Earthquake Moment Magnitude = 4.9 source-To-Site Distance, R (km) = 10
EARTHQUAKE MOMENT MAGNITUDE	4.9 4.00 73 6	FT. % IN.	(Fill Height)	S Grou	PGA CALCULATOR Earthquake Moment Magnitude = 4.9 Hource-To-Site Distance, R (km) = 10 Ind Motion Prediction Equations = CEUS

		-	BOR	RING DA	TA		-	CON	DITIONS	DURING D	RILLING		COND	ITIONS DU	JRING EA	RTHQUAKE				
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE	N	COMPR.	FINES	INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE	DEPTH	VALUE	STR., Q	< #200	PI	ш	w	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	(FT.)	(BLOWS)	(TSF.)	(%)			(%)	(KCF.)	(KSF.)	(N 1) 60	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r _d)	CSR	CRR/CSR
421.9	3.5	8	2.1		-			0.130	0.455	13.404	13.404	0.144	0.130	0.935	0.935	1.230	0.458	0.948	0.185	N.L. (1)
419.4	6	7	1.7					0.128	0.775	10.367	10.367	0.116	0.128	1.255	1.255	1.130	0.339	0.923	0.180	N.L. (1)
416.9	8.5	9	1.1					0.123	1.083	12.885	12.885	0.139	0.123	1.563	1.563	1.079	0.388	0.894	0.174	N.L. (1)
414.4	11	7	0.2					0.104	1.343	9.852	9.852	0.112	0.104	1.823	1.823	1.035	0.299	0.861	0.168	N.L. (1)
411.9	13.5	10	0.5	50	11	29	19	0.114	1.628	13,886	21.664	0.237	0.052	1,953	1.959	1.025	0.628	0.823	0.161	N.L. (2)
409.4	16	7	0.5	50	11	29	17	0.114	1.913	9.303	16,164	0.172	0.052	2.083	2.245	1.005	0.446	0.782	0.164	N.L. (2)
406.9	18.5	11	1.1	50	11	29	15	0.123	2.220	14.094	21,913	0.241	0.061	2,235	2,553	0.984	0.611	0.738	0.165	N.L. (2)
404.4	21	10	2.7	50	11	29	17	0.134	2.555	12.083	19,500	0.209	0.072	2.415	2,889	0.963	0.520	0.694	0.162	N.L. (2)
401.9	23.5	6	1.4	50	11	29	27	0 125	2 868	6 910	13 293	0.143	0.063	2 573	3 203	0.952	0.352	0.650	0.158	2.228 (C)
399.4	26	8	17	50	11	29	22	0 128	3 188	8 771	15 526	0 165	0 190	3 048	3 834	0.908	0.388	0.609	0.149	N.L. (2)
396.9	28.5	6	1.8	50	11	29	19	0.066	3.353	6.433	12,720	0.138	0.066	3.213	4.155	0.902	0.321	0.570	0.144	N.L. (2)
393.4	32	9	19	50	11	29	19	0.067	3 587	9 340	16 208	0 172	0.067	3 447	4 608	0.877	0.390	0.522	0 136	NI (2)
300.4	34.5	100	2.0	50		23	10	0.007	3 767	110 588	110.200	0.172	0.007	3 627	1 9/1	0.807	1 810	0.322	0.130	N.L. (2)
I													I						I	l
															* FAC	TOR OF SAF	ETY DESC	CRIPTIONS		

N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION

N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 OR w_c/LL \leq 0.85

N.L. (3) = NOT LIQUEFIABLE, (N₁)₆₀ > 25

(C) = CONTRACTIVE SOIL TYPES

(D) = DILATIVE SOIL TYPES

Appendix D

Appendix E-1

SUBSTRUCTURE====================================	NW Abutm	ient
REFERENCE BORING ====================================	S-2	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	419.80	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	418.80	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) =====	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ==========	===	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======	=====	ft

TOTAL FACTORED SUBSTRUCTURE LOAD ========= 1700 kips TOTAL LENGTH OF SUBSTRUCTURE (along skew)======== 55.00 ft NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ====== 1

Approx. Factored Loading Applied per pile at 8 ft. Cts ========= 247.27 KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts ========= 92.73 KIPS

4.850 FT. Unplugged Pile Perimeter========== 1.469 SQFT. Unplugged Pile End Bearing Area=======

7.117 FT. 0.239 SQFT.

BOT. OF		UNCONF.	S.P.T.	GRANULAR		NOMINAL		NOI	MINAL UNPLU	IG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
416.40	2.40	3.10	8		18.2		42.9	26.8		30.8	31	0	0	17	3
413.90	2.50	1.20			9.9	24.7	40.5	14.6	4.0	43.3	41	0	0	22	6
411.40	2.50	0.60			5.6	12.4	48.2	8.2	2.0	51.9	48	0	0	26	8
408.90	2.50	0.70			6.4	14.4	104.0	9.4	2.3	69.3	69	0	0	38	11
406.40	2.50	3.10	6		19.0	63.8	110.6	27.9	10.4	95.1	95	0	0	52	13
403.90	2.50	2.50			16.3	51.5	89.9	24.0	8.4	113.1	90	0	0	49	16
401.40	2.50	0.70			6.4	14.4	87.0	9.4	2.3	120.9	87	0	0	48	18
398.90	2.50	0.25			2.5	5.1	117.2	3.6	0.8	129.1	117	0	0	64	21
396.40	2.50	1.60			12.2	32.9	121.2	17.9	5.4	145.6	121	0	0	67	23
393.90	2.50	1.20			9.9	24.7	131.1	14.6	4.0	160.2	131	0	0	72	26
391.40	2.50	1.20			9.9	24.7	121.5	14.6	4.0	171.6	122	0	0	67	28
388.90	2.50	0.25			2.5	5.1	166.2	3.6	0.8	182.1	166	0	0	91	31
386.40	2.50	2.30			15.4	47.4	150.7	22.7	7.7	199.7	151	0	0	83	33
381.40	5.00	0.80			14.3	16.5	156.8	21.0	2.7	219.4	157	0	0	86	38
376.40	5.00	0.40			7.7	8.2	197.5	11.3	1.3	236.0	197	0	0	109	43
371.40	5.00	2.00			28.2	41.2	209.2	41.4	6.7	274.8	209	0	0	115	48
366.40	5.00	1.20			19.9	24.7	229.1	29.2	4.0	303.9	229	0	0	126	53
361.40	5.00	1.20			19.9	24.7	240.7	29.2	4.0	331.7	241	0	0	132	58
356.40	5.00	0.80			14.3	10.5	245.9	21.0	2.7	351.3	246	0	0	135	63
351.40	5.00	4.00	2	Clean Coarse Sand	1.0	1.3	200.3	1.4	1.2	300.0	200	0	0	140	08
340.40	5.00	1.30		11	21.1	20.8	351.2	30.9	4.4	397.2	301	0	0	193	73
341.40	5.00		33		60.4	90.0	432.4	12.0	14.7	423.0 513.7	420	0	0	234	78
220.40	1.00			Shale	60.4	103.0	572.0	00.7	29.0	602.4	513	0		202	79.4
339.40	1.00			Shale	60.4	192.0	573.3 622.7	00.7	29.0	601.0	624	0	0	310	00.4 91.4
337.40	1.00			Shale	60.4	183.0	60/ 1	88.7	29.0	770 7	694	0		382	82.4
336.40	1.00			Shale	60.4	183.0	754.5	88.7	20.0	868.3	755	0		415	83.4
335.40	1.00			Shale	60.4	183.0	814.0	88.7	20.0	957.0	815	0		415	84.4
334 40	1.00			Shale	60.4	183.0	875.3	88.7	20.0	1045.6	875	0		440	85.4
333.40	1.00			Shale	60.4	183.0	935.8	88.7	29.8	1134.3	936	<u> </u>		515	86.4
332.40	1.00			Shale	60.4	183.0	996.2	88.7	29.8	1222.9	996	Δ	Å	548	87.4
331.40	1.00			Shale	60.4	183.0	1056.6	88.7	29.8	1311.6	1057	Δ	Å	581	88.4
330.40	1.00			Shale	60.4	183.0	1117.0	88.7	29.8	1400.2	1117	ğ	Å	614	89.4
329.40	1.00			Shale	60.4	183.0	1177.4	88.7	29.8	1488.9	1177	а Д	Å	648	90.4
328.40	1.00			Shale	60.4	183.0	1237.8	88.7	29.8	1577.5	1238	,	, d	681	91.4
327.40	1.00			Shale	60.4	183.0	1298.3	88.7	29.8	1666.2	1298	<u>,</u>	Ģ	714	92.4
326.40	1.00			Shale	60.4	183.0	1358.7	88.7	29.8	1754.8	1359	- 0	- Ø	747	93.4
325.40	1.00			Shale		183.0			29.8			-	-		

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
929 KIPS	929 KIPS	511 KIPS	86 ft.

Pile Design Table for NW Abutment utilizing Boring #S-2

	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	hell 12"Φ	w/.25" walls		Steel I	IP 10 X 42			Steel I	IP 12 X 84		
	154	85	38		166	91	63		162	89	43
	176	97	43		175	96	68		174	96	48
	197	109	48		219	121	73		190	105	53
	218	120	53		335	184	80		201	111	58
	234	129	58	Steel	HP 10 X 57				207	114	63
	252	138	63		164	90	58		222	122	68
	256	141	68		169	93	63		285	157	73
	389	214	73		179	98	68		664	365	84
Motal S	הסטט holl 14"@	w/ 25" walls	10		224	123	73	Stool H	IP 14 X 73	000	04
	168	93	33		454	250	83	0.0011	152	83	38
	180	99	38	Stool		200	00		102	105	43
	208	115	43	010011	167	02	48		202	100	40
	200	128	43		18/	101	40 53		202	122	40 53
	252	120	40 52		104	101	50		221	122	55
	200	141	55		194	107	50		200	120	20
	210	101	00		200	110	03		230 257	131	03
	290	103	03		214	118	00		257	141	00 70
Matria	301 Shall 4 41 4	100	68		2/4	151	73		338	186	73
Metal S	5nell 14 Ψ	w/.312" wali	s	04	418	230	80		5/8	318	81
	168	93	33	Steel	HP 12 X 63			Steel	1P 14 X 89		
	180	99	38		157	86	43		153	84	38
	208	115	43		169	93	48		193	106	43
	232	128	48		185	102	53		204	112	48
	256	141	53		196	108	58		224	123	53
	275	151	58		202	111	63		235	129	58
	296	163	63		216	119	68		241	132	63
	301	166	68		277	152	73		260	143	68
	477	263	73		497	273	82		342	188	73
Metal S	hell 16"Φ	w/.312" wall	s	Steel I	HP 12 X 74				705	388	83
	161	89	28		159	88	43	Steel H	IP 14 X 102	2	
	194	107	33		171	94	48		155	85	38
	207	114	38		188	103	53		195	107	43
	242	133	43		199	109	58		207	114	48
	268	147	48		204	112	63		226	125	53
	295	162	53		219	120	68		238	131	58
	315	173	58		281	154	73		243	134	63
	340	187	63		589	324	83		263	145	68
	347	191	68						347	191	73
	573	315	73						810	445	85
Metal S	hell 16"Φ	w/.375" wall	s					Steel I	IP 14 X 117	7	
	161	89	28						157	86	38
	194	107	33						197	109	43
	207	114	38						209	115	48
	242	133	43						229	126	53
	268	147	48						241	132	58
	295	162	53						246	135	63
	315	173	58						266	146	68
	340	187	63						351	193	73
	347	191	68						929	511	86
	573	315	73								
Steel H	P 8 X 36										
	141	78	68								
	173	95	73								
	286	157	81								
											ŀ
				L							

SUBSTRUCTURE====================================	SE Abutme	ent
REFERENCE BORING ====================================	S-1	
LRFD or ASD or SEISMIC ====================================	LRFD	
PILE CUTOFF ELEV. ====================================	419.80	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	418.80	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) =====	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ==========	===	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======	=====	ft

TOTAL FACTORED SUBSTRUCTURE LOAD ========= 1700 kips TOTAL LENGTH OF SUBSTRUCTURE (along skew)======== 55.00 ft NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ====== 1

Approx. Factored Loading Applied per pile at 8 ft. Cts ========= 247.27 KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts ========= 92.73 KIPS

 4.850 FT.

Unplugged Pile Perimeter========== 1.469 SQFT. Unplugged Pile End Bearing Area=======

7.117 FT. 0.239 SQFT.

вот.						NOMINAL		NO	MINAL UNPLU	IG'D		FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR							NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
415.90	2.90	1.10			10.8		14.9	15.8		16.5	15	0	0	8	4
413.40	2.50	0.20			2.0	4.1	23.1	2.9	0.7	20.4	20	0	0	11	6
410.90	2.50	0.50			4.7	10.3	27.8	6.9	1.7	27.3	27	0	0	15	9
408.40	2.50	0.50			4.7	10.3	44.9	6.9	1.7	36.3	36	0	0	20	11
405.90	2.50	1.10			9.3	22.7	83.0	13.6	3.7	54.6	55	0	0	30	14
403.40	2.50	2.50			16.3	51.5	76.7	24.0	8.4	74.9	75	0	0	41	16
400.90	2.50	1.40			11.1	28.8	94.0	16.3	4.7	92.2	92	0	0	51	19
398.40	2.50	1.70			12.7	35.0	108.7	18.6	5.7	111.2	109	0	0	60	21
395.90	2.50	1.80			13.2	37.1	124.0	19.3	6.0	130.9	124	0	0	68	24
392.90	3.00	1.90			16.4	39.1	398.7	24.1	6.4	196.9	197	0	0	108	27
391.90	1.00			Sandstone	100.7	297.4	499.4	147.8	48.4	344.7	345	0	0	190	27.9
390.90	1.00			Sandstone	100.7	297.4	700.0	147.8	48.4	492.4	492			2/1	28.9
388.90	1.00			Sandstone	100.7	297.4	801.5	147.0	40.4	787 9	788	0	0	433	30.9
387.90	1.00			Sandstone	100.7	297.4	902.2	147.8	48.4	935.7	902	ŏ	0	496	31.9
386.90	1.00			Sandstone	100.7	297.4	1002.8	147.8	48.4	1083.5	1003	0	0	552	32.9
385.90	1.00			Sandstone	100.7	297.4	1103.5	147.8	48.4	1231.2	1104	0	0	607	33.9
384.90	1.00			Sandstone	100.7	297.4	1204.2	147.8	48.4	1379.0	1204	Ð	Ð	662	34.9
383.90	1.00			Sandstone	100.7	297.4	1304.9	147.8	48.4	1526.7	1305	0	Ð	718	35.9
382.90	1.00			Sandstone	100.7	297.4	1405.6	147.8	48.4	1674.5	1406	0	0	773	36.9
381.90	1.00			Sandstone	100.7	297.4	1506.3	147.8	48.4	1822.2	1506	Ð	θ	828	37.9
380.90	1.00			Sandstone	100.7	297.4	1607.0	147.8	48.4	1970.0	1607	Ð	Ð	884	38.9
379.90	1.00			Sandstone	100.7	297.4	1707.7	147.8	48.4	2117.8	1708	Ð	Ð	939	39.9
378.90	1.00			Sandstone	100.7	297.4	1808.4	147.8	48.4	2265.5	1808	Ð	Ð	995	40.9
377.90	1.00			Sandstone		297.4			48.4						
						1									

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
929 KIPS	929 KIPS	511 KIPS	33 FT.

Pile Design Table for SE Abutment utilizing Boring #S-1

	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)	_	(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Ф	w/.25" walls	5	Steel I	HP 10 X 42			Steel I	HP 12 X 84		
	102	56	24		321	176	29		639	351	31
Metal S	Shell 14"Φ	w/.25" walls	5	Steel I	HP 10 X 57			Steel I	HP 14 X 73		
	123	67	24		423	233	30		119	65	24
Metal S	Shell 14"Ф	w/.312" wal	ls	Steel I	HP 12 X 53				176	97	27
	123	67	24		384	211	29		578	318	30
Metal S	Shell 16"Φ	w/.312" wal	ls	Steel I	HP 12 X 63			Steel I	HP 14 X 89		
	144	79	24		393	216	29		121	66	24
Metal S	Shell 16"Ф	w/.375" wal	ls	Steel I	HP 12 X 74				184	101	27
	144	79	24		522	287	30		705	388	31
Steel H	IP 8 X 36							Steel I	HP 14 X 102	2	
	258	142	29						122	67	24
									190	104	27
									810	445	32
								Steel I	HP 14 X 117	7	
									124	68	24
									197	108	27
									929	511	33

Appendix E-2

ESTIMATED TOP OF SHALE ELEVATION =====347.00 FTDRILLED SHAFT DIAMETER IN SHALE ======36 IN.FACTORED AXIAL LOAD ==========3000 KIPS

SOCKET	TID			AVG.q _u W/IN 2 -	NOMINAL		DEPT	H CORR.		NOMINAL	FACTORED	RA (ANGE OF SERVI CORRESPONDIN	CE LOADII G SETTLE	NG AND MENT
DEPTH	ELEV.	THICK.	STRENGTH (q ")	SHAFT DIA.	RESIST.	RESIST.	<u>k</u>	d	RESIST.	RESIST.	RESIST.	LOAD	SETTLEMENT	LOAD	SETTLEMENT
(FT)	(FT)	(FT)	(KSF)	(KSF)	(KIPS)	(KIPS)		Č	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(IN.)	(KIPS)	(IN.)
DEPTH (FT) 5.00 10.00 15.00 20.00 25.00 30.00	ELEV. (FT) 342.00 337.00 322.00 322.00 317.00	<i>THICK.</i> (<i>FT</i>) 5.00 5.00 5.00 5.00 5.00	STRENGTH (q _u) (KSF) 40.0 100.0 100.0 100.0 100.0	SHAFT DIA. (KSF) 100.0 100.0 100.0	<i>RESIST.</i> (<i>KIPS</i>) 584 1414 1414 1414 1414 1414	SIDE RESIST. (KIPS) 584 1998 3412 4825 6239 7653	1.030 1.279 1.373 1.422	d _c 1.21 1.26 1.27 1.28	RESIST. (KIPS) 2558 2663 2703 2724	<i>RESIST.</i> (<i>KIPS</i>) 3142 4661 6115 7549	RESIST. (KIPS) 1571 2331 3057 3775	LOAD (KIPS) 750 1100 1500 1800	SETTLEMENT (IN.) 0.11 0.10 0.12 0.13	LOAD (KIPS) 1300 1900 2500 3100	SETTLEMENT (IN.) 0.20 0.18 0.20 0.23

Drilled Shaft Design Table for Pier-1 (B-12)

Estimated	Top of Sha	le Elevation: 3	47.00						(Page 1 of 1)
		NOMINAL	NOMINAL	NOMINAL	FACTORED	RA	NGE OF SERVI	CE LOAD	ING AND
SOCKET	TIP	TOTAL SIDE	TIP	SHAFT	SHAFT	C	ORRESPONDIN	G SETTL	EMENT
DEPTH	ELEV.	RESIST.	RESIST.	RESIST.	RESIST.	LOAD	SETTLEMENT	LOAD	SETTLEMENT
(FT)	(FT)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(IN.)	(KIPS)	(IN.)
36	in. Diamet	er Drilled Sha	ft						
5	342	584	2558	3142	1571	750	0.11	1300	0.20
10	337	1998	2663	4661	2331	1100	0.10	1900	0.18
15	332	3412	2703	6115	3057	1500	0.12	2500	0.20
20	327	4825	2724	7549	3775	1800	0.13	3100	0.23
42	in. Diamet	er Drilled Sha	ft						
5	342	682	3441	4122	2061	1000	0.13	1700	0.24
10	337	2331	3599	5930	2965	1400	0.12	2400	0.21
15	332	3980	3661	7641	3821	1900	0.13	3100	0.22
20	327	5630	3693	9323	4661	2300	0.15	3800	0.25
48	in. Diamet	er Drilled Sha	ft						
5	342	779	4446	5225	2612	1300	0.15	2100	0.26
10	337	2664	4667	7331	3666	1800	0.14	3000	0.24
15	332	4549	4758	9307	4653	2300	0.14	3800	0.24
20	327	6434	4805	11239	5620	2800	0.16	4500	0.26
54	in. Diamet	er Drilled Sha	ft						
5	342	877	5571	6447	3224	1600	0.17	2600	0.30
10	337	2997	5867	8864	4432	2200	0.16	3600	0.26
15	332	5118	5992	11110	5555	2700	0.16	4500	0.27
20	327	7238	6059	13297	6649	3300	0 17	5400	0.28

Drilled Shaft Design Table: Unit Resistances for Pier-1 (B-12)

Estimated Top of Shale Elevation: 347.00

			UNIT TIP RESISTANCE AT BASE OF LAYER										
	UNIT	SIDE	DRILLED SHAFT ϕ										
LAYER	LAYER RESISTANCE		36"		42	2″	48	8″	54"				
ELEVATIONS	NOM.	FACT.	NOM.	FACT.	NOM.	FACT.	NOM.	FACT.	NOM.	FACT.			
(FT)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)			
347.00 - 342.00	12.4	6.2	361.8	180.9	357.6	178.8	353.8	176.9	350.3	175.1			
342.00 - 337.00	31.0	15.5	376.8	188.4	374.0	187.0	371.4	185.7	368.9	184.4			
337.00 - 332.00	31.0	15.5	382.4	191.2	380.5	190.2	378.6	189.3	376.8	188.4			
332.00 - 327.00	31.0	15.5	385.3	192.7	383.9	191.9	382.4	191.2	381.0	190.5			
327.00 - 322.00	31.0	15.5											
322.00 - 317.00	31.0	15.5											

STRUCTURE ======== SN 028-0052 SUBSTRUCTURE & REFERENCE BORING ==== Pier-2 (B-13)

ESTIMATED TOP OF SHALE ELEVATION =====374.30 FTDRILLED SHAFT DIAMETER IN SHALE ======36 IN.FACTORED AXIAL LOAD ===========3000 KIPS

TIP	LAYER	UNCONFINED COMPRESSIVE	AVG. q _u W/IN 2 -	NOMINAL SIDE	AL CUMULATIVE DEPTH CORR. NOMINAL NOMINAL FACTORED SIDE FACTORS TIP SHAFT SHAFT		RA (ANGE OF SERVIO CORRESPONDIN	CE LOADII G SETTLE	NG AND EMENT				
ELEV.	тніск.	STRENGTH (q _u)	SHAFT DIA.	RESIST.	RESIST.	k	d _c	RESIST.	RESIST.	RESIST.	LOAD	SETTLEMENT	LOAD	SETTLEMENT
(FT)	(FT)	(KSF)	(KSF)	(KIPS)	(KIPS)			(KIPS)	(KIPS)	(KIPS)	(KIPS)	(IN.)	(KIPS)	(IN.)
369.30	5.00	40.0	100.0	584	584	1.030	1.21	2558	3142	1571	750	0.11	1300	0.20
364.30	5.00	100.0	100.0	1414	1998	1.279	1.26	2663	4661	2331	1100	0.10	1900	0.18
359.30	5.00	100.0	100.0	1414	3412	1.373	1.27	2703	6115	3057	1500	0.12	2500	0.20
354.30	5.00	100.0	100.0	1414	4825	1.422	1.28	2724	7549	3775	1800	0.13	3100	0.23
349.30	5.00	100.0		1414	6239									
344.30	5.00	100.0		1414	7653									

SOCKET

DEPTH

(FT)

5.00

10.00 15.00

20.00

25.00 30.00

Drilled Shaft Design Table for Pier-2 (B-13)

Estimated Top of Shale Elevation: 3/4.30 (Page 1 of											
		NOMINAL	NOMINAL	NOMINAL	FACTORED	RA	NGE OF SERVIO	CE LOAD	ING AND		
SOCKET	TIP	TOTAL SIDE	TIP	SHAFT	SHAFT	C	ORRESPONDIN	G SETTL	EMENT		
DEPTH	ELEV.	RESIST.	RESIST.	RESIST.	RESIST.	LOAD	SETTLEMENT	LOAD	SETTLEMENT		
(FT)	(FT)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(IN.)	(KIPS)	(IN.)		
36	in. Diamet	er Drilled Sha	ft								
5	369.3	584	2558	3142	1571	750	0.11	1300	0.20		
10	364.3	1998	2663	4661	2331	1100	0.10	1900	0.18		
15	359.3	3412	2703	6115	3057	1500	0.12	2500	0.20		
20	354.3	4825	2724	7549	3775	1800	0.13	3100	0.23		
42	in. Diamet	er Drilled Sha	ft								
5	369.3	682	3441	4122	2061	1000	0.13	1700	0.24		
10	364.3	2331	3599	5930	2965	1400	0.12	2400	0.21		
15	359.3	3980	3661	7641	3821	1900	0.13	3100	0.22		
20	354.3	5630	3693	9323	4661	2300	0.15	3800	0.25		
48	in. Diamet	er Drilled Sha	ft						-		
5	369.3	779	4446	5225	2612	1300	0.15	2100	0.26		
10	364.3	2664	4667	7331	3666	1800	0.14	3000	0.24		
15	359.3	4549	4758	9307	4653	2300	0.14	3800	0.24		
20	354.3	6434	4805	11239	5620	2800	0.16	4500	0.26		
54	in. Diamet	er Drilled Sha	ft						-		
5	369.3	877	5571	6447	3224	1600	0.17	2600	0.30		
10	364.3	2997	5867	8864	4432	2200	0.16	3600	0.26		
15	359.3	5118	5992	11110	5555	2700	0.16	4500	0.27		
20	354.3	7238	6059	13297	6649	3300	0 17	5400	0.28		

Drilled Shaft Design Table: Unit Resistances for Pier-2 (B-13)

Estimated Top of Shale Elevation: 374.30

				U	OF LAYE	R				
	UNIT	SIDE				DRILLED	SHAFT ø			
LAYER	RESISTANCE		36"		42"		4	8″	54	4"
ELEVATIONS	NOM.	FACT.	NOM.	FACT.	NOM.	FACT.	NOM.	FACT.	NOM.	FACT.
(FT)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)
374.30 - 369.30	12.4	6.2	361.8	180.9	357.6	178.8	353.8	176.9	350.3	175.1
369.30 - 364.30	31.0	15.5	376.8	188.4	374.0	187.0	371.4	185.7	368.9	184.4
364.30 - 359.30	31.0	15.5	382.4	191.2	380.5	190.2	378.6	189.3	376.8	188.4
359.30 - 354.30	31.0	15.5	385.3	192.7	383.9	191.9	382.4	191.2	381.0	190.5
354.30 - 349.30	31.0	15.5								
349.30 - 344.30	31.0	15.5								

Appendix F

L-Pile Table Inputs (SN028-0052)

	Depth (ft)	Elevation (ft)	Abbreviated Soil Description	Effective Unit Weight (pcf)	Cohesion (psf)	Phi (degrees)	Soil Modulus Parameter (pci)	E ₅₀
	0 to 12.1	425.9 to 413.8	Stiff Clay (without free water)	120	1800		500	0.007
NW Abutment (S-2)	12.1 to 34	413.8 to 391.9	Soft to Medium Stiff Clay (with free water)	55	1000		100	0.01
(0 =)	34 to 50	391.9 to 375.9	Soft Clay (with free water)	55	500		40	0.015
	50 to 67	375.9 to 358.9	Medium Stiff Clay (with free water)	55	1200		200	0.01
	67 to 72	358.9 to 353.9	Very Loose Submerged Sand	45		28	20	
	72 to 84.5	353.9 to 341.4	Very Stiff Silty Loam (with free water)	60	2000		600	0.007
	84.5+	< 341.4	Shale (cemented c- ϕ material)	130	5000	12	2000	0.004

	Depth (ft)	Elevation (ft)	Abbreviated Soil Description	Effective Unit Weight (pcf)	Cohesion (psf)	Phi (degrees)	Soil Modulus Parameter (pci)	E ₅₀
Pier-1 (B-12)	0 to 5	386 to 381	Submerged Medium Dense Sand	45		30	60	
	5 to 18	381 to 368	Medium Stiff Clay (with free water)	55	1000		100	0.01
	18 to 25	368 to 361	Soft Clay (with free water)	55	250		30	0.02
	25 to 30	361 to 356	Medium Stiff Clay (with free water)	55	750		100	0.01
	30 to 38.5	356 to 347.5	Soft Clay (with free water)	55	250		30	0.02
	38.5+	< 347.5	Shale (cemented c- ϕ material)	130	5000	12	2000	0.004

Pier-2 (B-13)	Depth (ft)	Elevation (ft)	Abbreviated Soil Description	Effective Unit Weight (pcf)	Cohesion (psf)	Phi (degrees)	Soil Modulus Parameter (pci)	E ₅₀
	0 to 8	394.3 to 386.3	Soft Clay (with free water)	55	250		30	0.02
	8 to 12	386.3 to 382.3	Medium Stiff Clay (with free water)	55	1000		100	0.01
	12 to 17	382.3 to 377.3	Submerged Dense Sand	45		32	120	
	17+	< 377.3	Shale (cemented c-φ material)	130	5000	12	2000	0.004

SE Abutment (S-	Depth (ft)	Elevation (ft)	Abbreviated Soil Description	Effective Unit Weight (pcf)	Cohesion (psf)	Phi (degrees)	Soil Modulus Parameter (pci)	E ₅₀
1)	0 to 9.5	425.4 to 415.9	Stiff Clay (without free water)	120	1500		500	0.008
	9.5 to 17	415.9 to 408.4	Soft Clay (with free water)	55	400		30	0.02
	17 to 32.5	408.4 to 392.9	Stiff Clay (with free water)	55	1600		500	0.007
	32.5+	< 392.9	Sandstone (Weak Rock)	135	10000	45		

Bedrock	Effective Unit Weight	Initial Rock Mass Modulus	Unaxial Compressive Strength	Rock Quality Designation (RQD)	Strain Factor (krm)	
	(pcf)	(psi)	(psi)	(%)		
Sandstone (Weak Rock)	135	30,000	135	0	0.00005	

Appendix G

TEMPORARY SHEET PILE DESIGN CHARTS

STRUCTURE ==================================Staged Construction (S-1)

	LAYER	SPT	UNCONFINED
RETAINED	THICK-	N -	COMPR.
HEIGHT	NESS	VALUE	STRENGTH
(FT)	(FT)	(BPF)	Qu (TSF)
5	3.5	2.1	2.1
	2.5	7	1.7
	2.5	9	1.1
	2.5	7	0.2
	2.5	10	0.5
	2.5	7	0.5
	2.5	11	1.1

COHESIVE CHARTS CONTROL USING AN EMBEDMENT DEPTH OF:	<u>3.75</u> FT	
AND REQUIRES A SECTION MODULUS OF: 0.94 IN. ³ /FT		

DEPTH BELOW EXCAV. (FT)	SPLIT LAYER THICK- NESS (FT)	SPLIT N AT DEPTH (BPF)	SPLIT Qu AT DEPTH (TSF)	AVG. N ABOVE DEPTH (BPF)	AVG. N IN UPPER 50% (BPF)	REQ'D CHART EMBED. DEPTH (FT)	AVG. N IN UPPER 33% (BPF)	REQ'D CHART SECT. MOD. W/ AMP. (IN. ³ /FT)	RATIO LOWER/ UPPER 1/3 N	AVG. Qu ABOVE DEPTH (TSF)	AVG. Qu IN UPPER 50% (TSF)	REQ'D CHART EMBED. DEPTH (FT)	AVG. Qu IN UPPER 33% (TSF)	REQ'D CHART SECT.MOD. W/ AMP. (IN. ³ /FT)	RATIO OF LOWER/ UPPER 1/3 Qu
0.88	0.875	21	2.1	21.00			T	(2.10				(111 /1 1)	
1.75	0.875	21	2.1	21.00						2.10					
2.63	0.875	21	2.1	21.00	21.00	7.14	21.00		1.00	2.10	2.10	3.75	2.10		1.00
3.50	0.875	21	2.1	21.00	21.00	7.14	21.00		1.00	2.10	2.10	3.75	2.10		1.00
3.81	0.3125	17	1.7	20.67	21.00	7.14	21.00		1.00	2.07	2.10	3.75	2.10	0.94	1.00
4.13	0.3125	17	1.7	20.39	21.00	7.18	21.00		1.00	2.04	2.10		2.10		1.00
4.44	0.3125	17	1.7	20.15	21.00	7.21	21.00		1.00	2.02	2.10		2.10		1.00
4.75	0.3125	17	1.7	19.95	21.00	7.24	21.00		1.00	1.99	2.10		2.10		1.00
5.06	0.3125	17	1.7	19.77	21.00	7.26	21.00		1.00	1.98	2.10		2.10		1.00
5.38	0.3125	17	1.7	19.60	21.00	7.29	21.00		1.00	1.96	2.10		2.10		1.00
5.69	0.3125	17	1.7	19.46	21.00	7.30	21.00		1.00	1.95	2.10		2.10		1.00
6.00	0.3125	17	1.7	19.33	21.00	7.32	21.00		1.00	1.93	2.10		2.10		1.00
6.31	0.3125	11	1.1	18.92	21.00	7.34	21.00		1.00	1.89	2.10		2.10		1.00
6.63	0.3125	11	1.1	18.55	21.00	7.39	21.00		1.00	1.85	2.10		2.10		1.00
6.94	0.3125	11	1.1	18.21	21.00	7.44	21.00		1.00	1.82	2.10		2.10		1.00
7.25	0.3125	11	1.1	17.90	20.86	7.49	21.00		1.00	1.79	2.09		2.10		1.00
7.56	0.3125	11	1.1	17.61	20.70	7.53	21.00	2.23	1.00	1.76	2.07		2.10		1.00

Appendix H

WATERWAY INFORMATION

Drainage Are	a = 46	Sq. mi. E	Exist. Overtopping Elev 417.95 @ Sta. 325+62.12-348+44.65								
		P	Prop. Overtopping Elev 417.95 @ Sta. 325+62.12-348+44.6.								
Flood Event	Freq.	Discharge Q	Waterway	Opening Ft ²	Nat.	Head	– Ft.	Headwa	ter Elev		
Flood Event Yr.		C.F.S.	Exist.	Prop.	H.W.E.	Exist.	Prop.	Exist.	Prop.		
10 Year	10	3,310	2824	2842	408.01	0.0	0.0	408.01	408.01		
Design	50	5,035	3046	3068	408.93	0.0	0.0	408.93	408.93		
Base	100	5,773	3157	3180	409.27	0.0	0.0	409.27	409.27		
Scour Check	200	6,480	3279	3305	409.57	0.0	0.0	409.57	409.57		
Max. Calc.	500	7,661	3451	3479	410.05	0.0	0.0	410.05	410.05		

10 Year velocity through existing bridge = 1.2 ft/s10 Year velocity through proposed bridge = 1.2 ft/s

FINAL CROSS SECTION

(Looking East - Upstation)

	USER NAME =	DESIGNED - FH	REVISED -			F.A.P.	SECTION	COUNTY	TOTAL SHEE	εT
		CHECKED - SEA	REVISED -	STATE OF ILLINOIS		845	112B-4	FRANKLIN	4 2	<u> </u>
	PLOT SCALE =	DRAWN – MBJ	REVISED -	DEPARTMENT OF TRANSPORTATION				CONTRA	ACT NO. 7878F	6
Design Firm Red. 184.002117 1 ax. (314) 434-1233	PLOT DATE = 6/28/2024	CHECKED - SEA / FH	REVISED -		SHEET 2 OF 4 SHEETS		ILLINO	IS FED. AID PROJECT		
28/2024 12:05:19 PM										_

DESIGN SCOUR ELEVATION TABLE

Event / Limit	Desig	Item				
State	E. Abut.	Pier 1	Pier 2	W. Abut.	113	
Q100	418.8	380.8	380.8	418.8		
Q200	418.8	380.6	380.6	418.8	5	
Design	418.8	380.8	380.8	418.8	5	
Check	418.8	380.6	380.6	418.8		

۶L										
	USER NAME =	DESIGNED - FH	REVISED -			F.A.P.	SECTION	COUNTY TOTAL SHEET		
			CHECKED - SEA	REVISED -	STATE OF ILLINOIS			112B-4	FRANKLIN 4 3	
Ž		Ph. (314) 454-0222	PLOT SCALE =	DRAWN - MBJ	REVISED -	DEPARTMENT OF TRANSPORTATION				CONTRACT NO. 78786
Design Firm Reg. 184.002117 Fax: (314) 454-1253	PLOT DATE = 6/28/2024	CHECKED - SEA / FH	REVISED -		SHEET 3 OF 4 SHEETS	ILLINOIS FED. A		AID PROJECT		
- 6	6/28/2024 12:05:20 PM									

H S

	4140 Lindoll Rhyd	USER NAME =	DESIGNED - FH	REVISED -		
	St. Louis, MO 63108		CHECKED - SEA	REVISED -	STATE OF ILLINOIS	
	Ph. (314) 454-0222	PLOT SCALE =	DRAWN - MBJ	REVISED -	DEPARTMENT OF TRANSPORTATION	
Design Firm Reg. 184.002117	Fax: (314) 434-1233	PLOT DATE = 6/28/2024	CHECKED - SEA/FH	REVISED -		SHEET 4 OF 4

6/28/2024 12:05:21 PM

	<u>5</u> 7	RUCTU	RE N	V <i>O</i> .	028-00	<u>95</u>	
	F.A.P. RTE	SEC.	TION		COUNTY	TOTAL SHEETS	SHEET NO.
	845	112	B - 4		FRANKLIN	4	4
					CONTRA	CT NO.	78786
SHEETS			ILLINOIS	FED. A	D PROJECT		

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*
responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform constructionphase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note* conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will <u>not</u> of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are <u>not</u> building-envelope or mold specialists.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.