06-14-2024 LETTING ITEM 229

FOR INDEX OF SHEETS, SEE SHEET NO. 2 **DESIGN DESIGNATION** 2735 (40) EXPRESSWAY 38.76 (FD-20)

TRAFFIC DATA

 \bigcirc

Ο

 \bigcirc

 \bigcirc

US 20 (IL 31 TO ILLINOIS ST) EXISTING ADT: 51,100 (2019) **DESIGN ADT: 64,000 (2040)**

US 20 (ILLINOIS ST TO POPLAR CREEK) EXISTING ADT: 41,400 (2019) **DESIGN ADT: 68,000 (2040)**

DESIGN SPEED LIMIT: 55MPH POSTED SPEED LIMIT: 55MPH

PROJECT LOCATED IN THE CITY OF ELGIN

FULL SIZE PLANS HAVE BEEN PREPARED USING ENGINEERING SCALES. REDUCED SIZED PLANS WILL NOT CONFORM TO STANDARD SCALES. IN MAKING MEASUREMENTS ON REDUCED PLANS, THE ABOVE SCALES MAY BE USED.

J.U.L.I.E. JOINT UTILITY LOCATION INFORMATION FOR EXCAVATION 1-800-892-0123 OR 811

PROJECT ENGINEER: SUNG BYUN (847) 705-4588 PROJECT MANAGER: KIM HARVEY (847) 705-4055

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

PROPOSED **HIGHWAY PLANS**

FAP ROUTE 345 (US 20) EAST OF GRACE STREET TO WEST OF SHALES PKWY SECTION: FAP 345 23 BRIDGE **PROJECT: NHPP–ZWEL(759)** NEW BRIDGE DECK, BRIDGE WIDENING, BRIDGE SUPERSTRUCTURE REPLACEMENT, CHANNELIZATION, SAFETY **IMPROVEMENTS & NOISE BARRIERS KANE & COOK COUNTY**

C-91-168-23

CERTIFICATION AND SEALS

CONTRACT NO. 62U83

La Mem

SIGNED:

DATE: 02/02/2024

EXPIRES: 11/30/2025

SHEETS: <u>68-78,</u>

USER NAME = eckay	DESIGNED - ECK	REVISED -		INDEX OF SHEETS	F.A.P.	SECTION	COUNTY	TOTAL	SHEET
	CHECKED - GEK	REVISED -	STATE OF ILLINOIS		345 FAP 345-23-BR		KANE	379	133
PLOT SCALE = 2.0000 ' / in.	DRAWN - BAH	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 046-0006			CONTRA	CT NO. 62	2U83
PLOT DATE = 5/9/2024	CHECKED - ECK	REVISED -		SHEET 2 OF 42 SHEETS		ILLINOIS FED. AI	D PROJECT		
		くくくくくくくくく			人人	$\lambda \lambda \lambda \lambda \lambda \lambda$			、人

 Δ

、 人 人 人 3:5933 処 人 人 人 人

GENERAL NOTES

2

- 1. Fasteners shall be ASTM F3125 Grade A325 Type 1, mechanically galvanized bolts in painted areas. Bolts $\frac{7}{3}$ in. Ø, holes $\frac{15}{16}$ in. Ø, unless otherwise noted.
- = 402,240 Pounds (M270 Gr. 50) 2. Calculated weight of Structural Steel = 42,070 Pounds (M270 Gr. 36)
- 3. No field welding is permitted except as specified in the contract documents.
- 4. Reinforcement bars designated (E) shall be epoxy coated.
- 5. Plan dimensions and details relative to existing structures are subject to nominal construction variations. The Contractor shall field verify existing dimensions and details affecting new construction and make necessary approved adjustments prior to construction or ordering of materials. Such variations shall not be cause for additional compensation for a change in scope of the work, however, the Contractor will be paid for the quantity actually furnished at the unit price bid for the work.
- 6. Bearing seat surfaces shall be constructed or adjusted to the designated elevations within a tolerance of $\frac{1}{8}$ inch (0.01 ft.). Adjustment shall be made either by grinding the surface or by shimming the bearings.
- 7. The existing structural steel coating contains lead. The Contractor shall take appropriate precautions to deal with the presence of lead on this project.
- 8. The Organic Zinc Rich Primer / Epoxy / Urethane Paint System shall be used for painting of new structural steel except where otherwise noted. The entire system shall be shop applied, with the exception of the exterior surface and the bottom of the bottom flange of fascia beams, masked off connection surfaces, field installed fasteners and damaged areas shall be touched up in the field. The color of the final finish coat for all interior steel surfaces shall be Gray, Munsell No. 5B 7/1. The color of the final finish coat for the exterior and bottom flange of the fascia beams shall be Reddish Brown, Munsell No. 2.5YR 3/4.

9. Removal of existing abutments, bearings, superstructure, approach piles (as needed), slopewall, temporary cribbing at abutments, and temporary HP support posts included in cost of Removal of Existing Structures No. 1. Existing Piers are to remain and to be re-used.

- 10. Slipforming of the parapets and median barrier is not allowed.
- 11. Slope wall shall be reinforced with welded wire fabric, 6 in. x 6 in. -W4.0 x W4.0, weighing 58 lbs. per 100 sq. ft.
- 12. Up to $\frac{1}{4}$ inch to be ground off the bridge deck and the bridge approach slab. The Profile Grade shows the final grade after grinding.

(Horiz. dim. @ Rt. Ľs) *Included in cost of Pipe Underdrains for Structures

All drainage system components shall extend to 2'-0" from the end of each wingwall except an outlet pipe shall be extended until intersecting with the side slopes. The pipes shall drain into concrete headwalls (See Article 601.05 of the Standard Specifications and Highway Standards 601101).

₹šL											
efat	•	USER NAME = eckay	DESIGNED - ECK	REVISED -		GENERAL NOTES & TOTAL BILL OF MATERIAL	F.A.P.	SECTION	COUNTY	TOTAL	SHEET
O W			CHECKED - GEK	REVISED -	STATE OF ILLINOIS		345	FAP 345-23-BR	KANE	379	134
DEL		PLOT SCALE = 2.0000 ' / in.	DRAWN - BAH	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 045-0006			CONTR/	ACT NO. 6	2U83
MO		PLOT DATE = 5/9/2024	CHECKED - ECK	REVISED -		SHEET 3 OF 42 SHEETS		ILLINOIS FED. AID	PROJECT		
$\overline{\sqrt{5}}$	9x202x X3:58:41 PM XXX				mmmm	mmmmm	\mathcal{L}		\mathcal{T}	\sum	J

TOTAL BILL OF MATERIAL									
ITEM	UNIT	SUPER	SUB	TOTAL					
Removal Of Existing Structures No. 1	Each	1	-	1					
Concrete Removal	Cu. Yd.	-	125.7	125.7					
Protective Shield	Sq. Yd.	686	-	686					
Structure Excavation	Cu. Yd.	-	919.0	919.0					
Floor Drains	Each	4	-	4					
Concrete Structures	Cu. Yd.	-	340.5	340.5					
Concrete Superstructure	Cu. Yd.	626.9	-	626.9					
Protective Coat	Sq. Yd.	2,532	-	2,532					
Concrete Superstructure (Approach Slab)	Cu. Yd.	233.0	-	233.0					
Furnishing And Erecting Structural Steel	L. Sum	0.49	-	0.49					
Stud Shear Connectors	Each	9,765	-	9,765					
Reinforcement Bars, Epoxy Coated	Pound	254,210	47,960	302,170					
Bar Splicers	Each	698	140	838					
Slope Wall 4 Inch	Sq. Yd.	-	900	900					
Furnishing Metal Shell Piles 12" X 0.250"	Foot	-	826	826					
Driving Piles	Foot	-	826	826					
Test Pile Metal Shells	Each	-	2	2					
Pile Shoes	Each	-	30	30					
Name Plates	Each	1	-	1					
Elastomeric Bearing Assembly, Type I	Each	30	-	30					
Anchor Bolts, 1"	Each	60	-	60					
Anchor Bolts, 1¼"	Each	60	-	60					
Temporary Sheet Piling	Sq. Ft.	-	760	760					
Temporary Soil Retention System	Sq. Ft.	-	324	324					
Drainage System for Structures	L. Sum.	1	-	1					
Granular Backfill For Structures	Cu.Yd.	-	267.0	267.0					
Geocomposite Wall Drain	Sq. Yd.	-	138	138					
Pipe Underdrains For Structures 4"	Foot	-	198	198					
Noise Abatement Wall Anchor Rod Assembly	Each	48	-	48					
Bridge Deck Grooving (Longitudinal)	Sq. Yd.	1,662	-	1,662					
Bar Terminators	Each	474	800	1,274					
Structural Repair Of Concrete (Depth Equal	Sq. Ft.	-	14	14					
Deck Slah Renair (Partial)	Sa Yd	10	_	10					
Drainage Scuppers DS-11	Each	18	_	18					
Diamond Grinding (Bridge Section)	Sa Yd	1746	_	1746					
Temporary Shoring and Cribbing	Each		2	2					
. emperer, onoring and eriobing	Lacit		-	-					

CONCRETE SLOPEWALL

*** West Abut: Var. 1:2.75 to 1:28 (V:H) from N. to S. East Abut: Var. 1:2.64 to 1:36 (V:H) from N. to S.

LEGEND

Removal (See Note 1)

- Structure Mounted NAW, typ.

Conduit, typ.

DS-11 Scupper or Floor Drain, typ.

NOTES:

- 1. Hatched area indicates removal of Existing Structures No. 1.
- 2. For Temporary Concrete Barrier details see Sheet 6 of 42.
- 3. See Roadway Plans for quantity of Temporary Concrete Barrier.

\triangle REVISED ENTIRE SHEET 6/10/2024

	<u>[</u> 2]											
STAGING		SECTION			со	UNTY	s	TOTAL HEETS	SHE	ET S.		
		FAP 345-23-BR			ĸ	٩NE		379	13	36		
0+0 0000							С	ONTE	RAC	T NO.	62U8	33
42 SHEETS					ILLINOIS	FED. A	D PROJE	ст				
λ	λХ	人	У	Y	У	λλ	. Х	У	У	У	У	X

 Δ

5/处/2022 入3:59,04 处 入

with bar splicer inserts in the side of the beam, as detailed, to accommodate the installation of the retainer assemblies. A pair of bar splicers, 6" apart,

	121					2024		ŀ
RETE BARRIER	F.A.P. RTE	A.P. SECTION			COUNTY	TOTAL SHEETS	SHEET NO.	
045-0006		345 FAP 345-23-BR			KANE	379	137	l
040-0000					CONTRA	CT NO. 6	S2U83	ľ
12 SHEETS			ILLINOIS	FED. A	D PROJECT			
	$\overline{\mathcal{A}}$	$\overline{\mathcal{X}}$	\mathcal{T}	\mathcal{T}	\mathcal{L}	\mathcal{L}	\searrow	_

ΞL	.AYC	υυτ							F	A P. RTE			SEC	TION			C	тиис	Y	TOTA SHEE	L S	SHEET NO.	╞
٥,	15_0	00	6						:	345		F٨	AP 34	5 - 23-E	R		ł	KANE		379		138	1
0-		00	<u> </u>														(CONT	TRA	CT NC	. 62	2U83	r
2	SHEE	TS												ILLIN	D IS F	ED. AI	D PROJ	ECT].
Y	λ	λ	λ	λ	λ	λ	λ	У	У	λ	У	У	У	У	У	У	У	У	У	У	У	У	Ξ.

DEPARTMENT OF TRANSPORTATION

PLOT SCALE = 20.0000 ' / in.

.

PLOT DATE = 5/9/2024

1/20122 X2.59723 PM

DRAWN - BAH

CHECKED - ECK

REVISED -

REVISED -

STRUCTURE NO.

SHEET 8 OF 4

These elevations subtracted from the "Theoretical Grade Elevations Adjusted for Dead Load Deflection" shown on sheet 9 & 10 of 42 minus slab thickness, equals the

A REVISED ENTIRE SHEET 6/10/2024

Ν

	<u> </u>					.024		
VATIONS LAYOUT		SECTION		COUNTY	TOTAL SHEETS	SHEET NO.		
		FAP 345-23-BR			KANE	379	139	
040-0000					CONTRA	CT NO. 6	S2U83	
2 SHEETS			ILLINOIS	FED. A	D PROJECT			

SUPE	ERS	TRUCTURE
BILL	0F	MATERIA

<u> 1</u>	BILL	OF M.	ALERIA	<u>NL</u>
Bar	No.	Size	Length	Shape
a(E)	268	#5	43'-3''	
a1(E)	204	#5	42'-11"	
a2(E)	268	#5	38'-3"	
a3(E)	204	#5	37'-11"	
a4(E)	648	#8	10'-0''	
a5(E)	168	#6	7'-5"	
a6(E)	144	#5	1'-6"	
b(E)	510	#5	31'-2"	
b1(E)	156	#6	41'-4"	
b2(E)	380	#5	36'-8"	
d(E)	816	#5	10'-0"	
dI(E)	168	#5	8'-1"	
dZ(E)	168	#5	9'-10"	<u> </u>
d3(E)	648	#6	8'-7"	
d4(E)	648	#6	10'-4"	
d5(E)	510	#5	5'-4"	
d6(E)	510	#5	8'-6"	
0(E)	22	#1	16' 5"	
O(L)	18	#4 #1	10' 11"	
$O_2(E)$	40 8	#4 #1	32'-2"	
$e_{Z(L)}$	22	#4	1 / 0"	
$O_{A(E)}$	 	#4 #1	$\frac{14}{20} = 0$	
0.5(E)	18	#4	29-10	
06(E)	40	#0 #0	20-5	
$O_{C}^{(L)}$	40	#0	ייכיככ	
OR(E)	178	#0	10'-11"	
O(E)	120	#0	10 - 11 10' - 11''	
$O_{0}(L)$	10	#0	10 - 11 14' - 0''	
0.11(E)	40	#0	31' 7"	
$\frac{CII(L)}{0.12(E)}$	40	#0	20' 5"	
EIZ(L)	40	#0	JU - J	
m10(F)	8	#6	43'-5"	
m11(F)	78	#6	5'-2"	
m12(E)	8	#6	38'-5"	
m13(F)	12	#6	2'-5"	
(//13(L)	12		2 5	
s10(E)	154	#5	6'-10"	
s11(E)	154	#5	9'-8"	1
v100(E)	166	#5	3'-1"	<u>ц</u>
Reinford	ement	Bars,	Lbc	152 7 20
Ероху С	oated		LUS.	155,720
Concrete	2		Cu Vdc	E00 2
Superst	ructure	,	cu. rus.	560.2
Protecti	ve Coa	t	Sq. Yd.	1,870
Diamond	Grindi	ng	Sava	1 200
'Bridge	Section	ו)(ו	3y. ru.	1,290
Bridge I	Deck Gi	rooving	Sa Vd	1 7 7 7
'Longitu	dinal)		3q. ru.	1,233
loise Ak	patemer	Fach	36	
Anchor H	Rod Ass	sembly	Laun	50

Bars indicated thus 1 x 2-#4 etc. indicates 1 line of bars with 2 lengths per line.

BAR a4(E) or a5(E)

	2	RE\	/ISE	ED E	ENTI	RE S	HEE.	Γ6/10	0/2024		
DETAILS II	F.A.P. RTE		S	ECTI	ION		CO	UNTY	TOTAL SHEETS	SHE	E D.
145-0006	345		FAP	345-	23 - BR		K/	ANE	379	14	17
743-0000							C	ONTR/	ACT NO.	62U8	33
SHEETS				I	LLINOIS	FED. A	D PROJE	ст			_
λλλλλλλλλ	$\overline{\lambda}$ $\overline{\lambda}$	X	X	λ	X	7 7	$\overline{\lambda}$	X	$\lambda \lambda$	Y	7

- 1. The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab.
- 2. Parapet concrete shall be paid for as Concrete Superstructure.
- 3. Approach slab shall be paid for as Concrete Superstructure (Approach Slab).
- 4. Approach footing concrete shall be paid for as Concrete Structures.
- 5. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.
- 6. Cost of excavation for approach footing included with Concrete Structures.
- 7. For Granular Backfill for Structures and drainage treatment details, see sheet 3 of 42.
- 8. For Median Parapet Joint details, see sheet 15 of 42. For Parapet Joint details, see sheet 16 of 42.
- 9. For NAW anchor rod assembly, see sheet 15 of 42

TWO	APF	PROACHES
BILL	0F	MATERIAL

-	DILL		ATENIA	11_		
Bar	No.	Size	Length	Shape		
a10(E)	92	#5	38'-5"			
a11(E)	120	#8	38'-5"			
a12(E)	92	#5	43'-5"			
a13(E)	120	#8	43'-5"			
a14(E)	184	#5	7'-4"			
b10(E)	258	#5	29'-8"			
b11(E)	384	#9	29'-8''			
d(E)	288	#5	10'-0''	D		
d3(E)	288	#6	8'-7"	IJ		
d5(E)	184	#5	5'-4"	[
d7(E)	288	#6	11'-2"	4		
d8(E)	184	#5	9'-3"	Δ		
e13(E)	48	#6	14'-8''			
e14(E)	8	#8	29'-8"			
e15(E)	40	#6	29'-8''			
e16(E)	32	#4	14'-8"			
e17(E)	8	#4	29'-8''			
t10(E)	332	#4	9'-8''			
w10(E)	80	#5	38'-4"			
w11(E)	80	#5	43'-4"			
Reinford	cement	Bars,	lhe	100 150		
Ероху С	oated		LDS.	109,450		
Concret	е		Cu Vd	100		
Structu	res		<i>cu. ru.</i>	49.9		
Concret	е		Cu Vd	16.7		
Superst	ructure	•	<i>cu. ru.</i>	40.7		
Concret	е					
Superst	ructure		Cu.Yd.	233.0		
(Approa	ch Slab)				
Protecti	ve Coat	ŀ	Sq.Yd.	662		
Diamono	d Grindi	ng	Sa Vd	156		
(Bridge	Sectior	1)	3 <i>q.</i> 10.	430		
Bridge .	Deck					
Grooving	9		Sq. Yd.	1. 429		
(Longitu	dinal)					
Noise A	batemer	nt Wall	Each	17		
Anchor	Rod As	sembly	Eacii	12		

SLAB DETAILS II	F.A.P. RTE		S	ECT	ION		со	UNTY	s	TOTAL HEETS	SHE	ET C
045-0006	345		FAP	345	-23-BR		к	ANE		379	15	52
043-0000							С	ONTR	AC	T NO. (5208	33
42 SHEETS					ILLINOIS	FED. A	D PROJE	СТ				
	Σ Σ	X	λ	λ	λ	7 7	. <u>X</u>	X	λ	λ	Y	X

5/9/2024

DEPARTMENT OF TRANSPORTATION

PLOT SCALE = 16.0000 ' / in.

PLOT DATE = 5/9/2024

DRAWN - BAH

CHECKED - ECK

REVISED -

REVISED -

STRUCTURE NO.

SHEET 24 OF 4

- designated with (*) only. The bolts for the slotted holes shall be finger tightened prior to the deck pour for Stage II Construction. Tighten bolts after deck is poured. Position slots so bolts start at one end of slotted holes before the Stage II concrete is poured and finish near the opposite end after the Stage II pour. See detail on

2	REVISED	ENTIRE	SHEET	6/10/2024
---	---------	--------	-------	-----------

						~		
PLAN		SECTION	COUNTY	TOTAL SHEETS	SHEET NO.]_		
045-0006	345	FAP 345-23-BR	KANE	379	155	1		
043-0000			CONTRACT NO. 62U83					
2 SHEETS		ILLINOIS FED. A	D PROJECT			1.		

DEPARTMENT OF TRANSPORTATION LOT SCALE = 16.0000 ' / in. DRAWN - BAH REVISED -CHECKED - ECK PLOT DATE = 5/9/2024 REVISED -****

5/9/202头 入4:0头55 5州 入

STRUCTURE NO.

SHEET 25 OF 4

<u>SHE</u> ,	AR STUD TABLE
Location	Stud Spacing
а	13 Spa. at 6" = 6'-6"
b	5 Spa. at 8" = 3'-4"
С	21 Spa. at 9" = 15'-9"
d	17 Spa. at 6" = 8'-6"
е	15 Spa. at 15" = 18'-9"
f	8 Spa. at 7" = 4'-8"
g	14 Spa. at 8" = 9'-4"
h	28 Spa. at 9" = 21'-0"
i	14 Spa. at 8" = 9'-4"
j	8 Spa. at 7" = 4'-8"
k	15 Spa. at 15" = 18'-9"
1	17 Spa. at 6" = 8'-6"
т	21 Spa. at 9" = 15'-9"
n	5 Spa. at 8" = 3'-4"
0	13 Spa. at 6" = 6'-6"

- 1. Load carrying components designated "CVN" shall conform to the Charpy-V-Notch Impact Energy Requirement, Zone 2.
- 2. Two hardened washers required for each set of oversized holes.
- 3. Alternate channels of equal depth and larger weight are permitted to facilitate material acquisition. Alternate channels, if utilized, shall be provided at no additional cost to the Department.
- 4. All W sections, splice plates and bearing stiffeners shall be
- 5. All diaphragms shall be installed as steel is erected and secured with erection pins and bolts except as otherwise noted. Individual diaphragms at supports may be temporarily disconnected to install

STEEL		SECTION		COUNTY	TOTAL SHEETS	SHEET NO.
045-0006	345	FAP 345-23-BR	KANE	379	156	
043-0000				CONTRA	CT NO. 6	S2U83
2 SHEETS		ILLINOIS	FED. A	D PROJECT		
	レン	人人人人	スス	レイス	、人、	人人

- 5						
ò.		USER NAME = eckay	DESIGNED - ECK	REVISED -		
ME	BURNS		CHECKED - GEK	REVISED -	STATE OF ILLINOIS	
N		PLOT SCALE = 2.0000 ' / in.	DRAWN - BAH	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO.
E		PLOT DATE = 5/9/2024	CHECKED - ECK	REVISED -		SHEET 27 OF 42
入	5/9/2022 4:02/11 PM					

- Brg. Stiffener

<u>⊈ 1" Ø x 12" All-thread anchor bolts</u> (Grade 55) with $2^{1}/4'' \times 2^{1}/4'' \times 5/16'' P$ washer under nut. $1\frac{3}{8}$ "x 2" slotted hole in flange. $1^{1/2}$ " Ø Holes in bearing plate.

SECTION A-A

FIXED BEARING

(E. & W. Abut.) (30 rea'd)

1. Structural steel plates of the Bearing assembly and the structural steel plates for the fixed bearings shall conform to the requirement of AASHTO M270 Grade 50.

2. Side retainers and stainless steel plates shall be included in the cost of

3. Anchor bolts and side retainers at all supports shall be installed as each member is erected unless an equivalent temporary means of lateral restraint is used.

4. Two $\frac{1}{2}$ " adjusting shims shall be provided for each bearing in addition to all other plates and shims and placed as shown on the bearing details.

5. Shim plates shall not be placed under bearing assembly.

6. Drilled and set anchors shall be installed according to Article 521.06 of the

7. The cost of fabricating and installing the fixed bearing assembly and shim plates will be paid for as Furnishing and Erecting Structural Steel.

8. Prior to ordering any material, the Contractor shall verify in the field all bearing

Item	Unit	Total
Elastomeric Bearing Assembly Type I	Each	30
Anchor Bolts, 1"	Each	60
Anchor Bolts, 1¼"	Each	60

BILL OF MATERIAL

\bigwedge REVISED ENTIRE SHEET 6/10/2024

	4					
TAILS	F.A.P. RTE	SEC ⁻	FION	COUNTY	TOTAL SHEETS	SHEET NO.
045-0006	345	FAP 345	KANE	379	158	
040 0000				CONTRA	CT NO. 6	32U83
2 SHEETS			ILLINOIS FED. A	D PROJECT		
	$\overline{\mathcal{X}}$		$\overline{\mathcal{N}}$	$\overline{\mathcal{M}}$	\mathcal{L}	$\overline{\mathcal{N}}$

2											<u> </u>	7			•
		USER NAME =	ER NAME = eckay DESIGNED - ECK				REVISED -		ARIITMENTS I		SECTION	COUNTY	TOTAL	SHEET	
Mal 🔊 Bi	URNS			CH	HECKED	- GEK		REVISED -	STATE OF ILLINOIS			FAP 345-23-BR	KANE	379	159
	1 ⊆DONNELL	PLOT SCALE =	4.0000 ' / in.	DF	RAWN	- BAH	l	REVISED -	DEPARTMENT OF TRANSPORTATION	31RUCIURE NO. 043-0000	_		CONTRA	ACT NO. 6	2U83
	-	PLOT DATE =	5/9/2024	CH	IECKED	- ECK		REVISED -		SHEET 28 OF 42 SHEETS		ILLINOIS FED. A	D PROJECT		
入 5/9)2024	从0220 PM 人 人 人		<u>, </u>	$\lambda \lambda \lambda$	$\lambda \lambda$	$\lambda \lambda$	$\lambda \lambda \lambda$	$\lambda \ \lambda \$			大人		$\overline{\mathbf{x}}$	\sum	仄

<u>NOTE:</u>

1. See Sheet 30 of 42 for pile data, bill of materials and additional notes.

2. See Sheet 30 of 42 for Section thru Abutment.

PILE DATA (W. ABUT.)

Type: Metal Shell – 12 in. dia. x 0.25 in. walls with pile shoes Nominal Required Bearing: 392 kip Factored Resistance Available: 216 kip Est. Length: 35 ft. No. Production Piles: 14 No. Test Piles: 1

PILE DATA (E. ABUT.)

Type: Metal Shell - 12 in. dia. x 0.25 in. walls with pile shoes Nominal Required Bearing: 392 kip Factored Resistance Available: 216 kip Est. Length: 24 ft. No. Production Piles: 14 No. Test Piles: 1

7-11"

BEARING SEAT ELEVATION TABLE

Location	W. Abut.	E. Abut.
Beam 1	750.04	749.59
Beam 2	750.35	749.90
Beam 3	750.46	750.01
Beam 4	750.55	750.10
Beam 5	750.64	750.19
Beam 6	750.72	750.27
Beam 7	750.80	750.35
Beam 8	750.88	750.43
Beam 9	750.80	750.35
Beam 10	750.72	750.27
Beam 11	750.64	750.19
Beam 12	750.55	750.10
Beam 13	750.46	750.01
Beam 14	750.35	749.90
Beam 15	750.04	749.59

FIELD CUTTING DIAGRAM Order h1(E) and v2(E) full length. Cut as shown and use remainder of bars in opposite wing.

3'-4" BAR s(E)

BAR s1(E)

, it /								<u> </u>				
efa(•	USER NAME =	eckay	DESIGNED - ECK	REVISED -		ABUTMENT DETAILS	F.A.P.	SECTION	COUNTY	TOTAL SHE	ET
	N BURNS	CHECKED - GEK			REVISED -	STATE OF ILLINOIS		345	FAP 345-23-BR	KANE	379 16	1
N DEL		PLOT SCALE =	2.0000 ' / in.	DRAWN - BAH	REVISED -	DEPARTMENT OF TRANSPORTATION STRUCTURE NO. 045-0006				CONTRACT NO. 62		3-
MO		PLOT DATE =	5/9/2024	CHECKED - ECK	REVISED -		SHEET 30 OF 42 SHEETS		ILLINOIS FED. AID	PROJECT		_
\mathcal{L}	5A/2024 4:02:36 km						mmmmm	$\overline{\mathcal{T}}$	<u> </u>		$\overline{\mathcal{I}}$	J

<u>_</u>	BILL OF MATERIAL												
Bar	No.	Size	Length	Shape									
h(E)	56	#5	11'-9"										
h1(E)	20	#5	18'-8''										
h2(E)	8	#5	8'-8''										
p(E)	20	#7	43'-5"										
p1(E)	20	#7	38'-5"										
p2(E)	8	#5	32'-5"										
<i>рЗ(Е)</i>	8	#5	10'-5"										
p4(E)	8	#5	5'-5"										
p5(E)	8	#5	27'-5"										
s(E)	154	#6	14'-4''										
s1(E)	60	#5	4'-4''										
s2(E)	126	#5	9'-10''										
sp(E)	30	#4	2'-0"	MMM									
u(E)	16	#6	11'-10"										
(=)													
V(E)	400	#8	5'-3''										
VI(E)	16	#5	6'-11"										
V2(E)	28	#5	9'-11"										
	_		C X I	650									
Structu		ation	Cu. Ya.	658									
Concret	e Struci	ures Dore	Cu. ra.	95.0									
Enor	Cement . Costod	Bars,	Pound	17,690									
Eurpich	ing Mot	al Chall											
	7" v 0 2	ai Sheh 50"	Foot	826									
Driving	Piloc		Foot	826									
Toct Di	rnes lo Motal	Sholle	Fach	20									
Dila Sh		Shens	Each	2									
Granula	r Backf	Lach	50										
Structu	res	Cu.Yd.	250										
Geocom	nosite M												
Drain	Source W	Sq Yd.	138										
Pipe Un	derdrai	ns for											
Structu	res 4"		Foot	198									

BOTH ABUTMENTS DILL OF MATERIAL

* Length is height of spiral.

BAR u(E)

BAR s2(E)

NOTES:

- Pour steps monolithically with cap.
 Bar terminators will be paid for separately. See Total Bill of Material.
- 3. For details of piles see sheet 35 of 42.

\bigwedge REVISED ENTIRE SHEET 6/10/2024

									0/10/2027	4
BURNS MSDONNELL PLOT	USER NAME = eckay	DESIGNED - ECK	REVISED -		PIER DETAILS	F A P BTE	SECTION	COUNTY	TOTAL SHE	ET
		CHECKED - GEK	REVISED -	STATE OF ILLINOIS		345	FAP 345-23-BR	KANE	379 1€	35
	PLOT SCALE = 6.0000 ' / in.	DRAWN – BAH	REVISED -	DEPARTMENT OF TRANSPORTATION	51RUCTURE NO. 045-0000			CONTRA	ACT NO. 62UE	33
	PLOT DATE = 5/9/2024	CHECKED - ECK	REVISED -		SHEET 34 OF 42 SHEETS		ILLINOIS FED. A	D PROJECT		
5/\$1/2024 \ 4:0\$10 AM \ \		un u				人人	くんんんん	、人人、	人人人	天

1		
١T	ER	IAL

Length	Shape
38'-5"	
5'-5"	
27'-5"	
32'-5"	
43'-5"	
10'-5"	
14'-5"	
15'-6"	
4'-6"	
8'-10"	\frown
40'-0"	
38'-5"	
45'-0"	
43'-5"	
101 111	
10'-11''	
$\frac{12^{\circ}-10^{\circ}}{0!}$	
8'-10"	
21'-8"	
9-4	
7'-8"	
, 0	
7'-8"	
9'-0"	Π –
10'-4"	
14'-5"	
3'-10"	
Cu. Yd.	112
Cu. Yd.	84.3
Pound	9,460
Cu. Yd.	17
- u u.	**

Bar	No.	Size	Length	Shape
h30(E)	8	#5	38'-5"	
h31(E)	4	#5	5'-5"	
h32(E)	4	#5	27'-5"	
h33(E)	4	#5	32'-5"	
h34(E)	8	#5	43'-5"	
h35(E)	4	#5	10'-5"	
h36(E)	36	#7	4'-6"	
h37(E)	18	#5	13'-4"	
h38(E)	7	#5	14'-6"	
h39(E)	18	#5	14'-8''	
h40(E)	7	#5	15'-8''	
120(5)	40		01 1 01	_
n30(E)	48	#/	8'-10"	
n30(E)	6	#9	40'-0"	
n31(E)	6	#9 #9	38'-5"	
$p_{37(E)}$	6	#9 #9	<u>45'-0"</u>	
n33(E)	6	#9	43'-5"	
PJJ(L)	0	# 5	45-5	
s30(E)	27	#5	12'-10"	
s31(E)	29	#5	21'-8"	
s32(E)	22	#5	8'-10"	Π.
s33(E)	32	#4	9'-4"	i i i i i i i i i i i i i i i i i i i
s34(E)	111	#5	16'-11"	
t30(E)	29	#5	7'-8"	
20(5)	<i>C</i> 1	<i>4</i> F	71 011	
$\frac{U30(E)}{U31(E)}$	12	# 5 # E	/ -0	
USI(E)	12	#5	9-0	
v30(E)	48	#7	10'-1"	
w30(E)	8	#5	13'-5"	
w31(E)	16	#5	3'-10''	
w32(E)	8	#5	14'-8''	
			<u> </u>	4.40
Structur	<u>e Exc</u>	avation	CU.Yd.	149
<u>oncret</u>	e Stru	ctures	CU.Yd.	111.3
Keintor Enovy (cemeni	: Bars,	Pound	11,850
ероху с	.oatea			

A	&	В	DIMENSIONS
---	---	---	------------

Bar	A	В
p20(E)	38'-5"	1'-7"
p30(E)	38'-5"	1'-7"
p22(E)	43'-5"	1'-7"
p32(E)	43'-5"	1'-7"
s21(E)	2'-8"	5'-1''
s30(E)	2'-8''	5'-1''
s22(E)	2'-8"	3'-1"
s32(E)	2'-8''	3'-1''
s23(E)	2'-8"	9'-6"
s31(E)	2'-8''	9'-6"
s24(E)	2'-4"	3'-6''
s33(E)	2'-4"	3'-6''
u20(E)	2'-6"	2'-8"
u30(E)	2'-6"	2'-8"
u21(E)	3'-2''	2'-8''
u31(E)	3'-2"	2'-8"

METAL SHELL PILE TABLE

Designation and outside diameter	Wall thickness t	Weight per foot (Lbs./ft.)	Inside volume (yd.³/ft.)
PP12	0.250"	31.40	0.0267
PP14	0.250"	36.75	0.0368
PP14	0.312"	45.65	0.0361
PP16	0.312"	52.32	0.0478
PP16	0.375"	62.64	0.0470

END PLATE ATTACHMENT

ji li

illi Z

PILE SHOE ATTACHMENT (When called for on the plans, the Contractor shall furnish metal shell pile shoes consisting of a single piece conical pile point as shown.

The pile shoes shall be cast in one piece steel

according to either ASTM A 148 Grade 80-50 or AASHTO M 103 Grade 65-35 and shall provide

full bearing over the full circumference of the metal shell pile. The pile shoe shall have tapered

leads to assure proper alignment and fitting and shall be secured to the pile with a circumferential

`u I∕

DETAIL A

Metal shell pile

inclination of 60°.

 $s = t - \frac{1}{8}$ "

Shop or \setminus field weld

Pile shoe shape may vary. Shallower pile shoes are allowed provided that the driving surface has an angle of

WELDED COMMERCIAL SPLICE Notes:

The $\frac{1}{8}$ " x $\frac{1}{2}$ " min. fill bar may be constructed of

2 bars with a $\frac{1}{8}$ " max. gap between them.

Pile segments shall be driven to solid contact with splicer before welding.

COMPLETE PENETRATION WELD SPLICE

* Field fabricated backing ring may be made from pile shell by removing segment to allow reducing circumference and vertically rejoin with partial joint penetration weld.

ult v //gfn	F-MS	2-1-2023				Article 1006.05 (Article 1006.05 of the Standard Specifications.				6/10/202	.4	
etai.	A	MS 2-1-2023 SURNS MSDONNELL PLOT SCALE PLOT DATE A 4-0X-18 RM X X X X X X	USER NAME = eckay DESIGNED - ECK REVISED -			REVISED -		METAL SHELL PILE DETAILS	F.A.P. RTE	SECTION	COUNTY	TOTAL	SHEET NO.
_ ₩				CHECKED - GEK	REVISED -	STATE OF ILLINOIS		345	FAP 345-23-BR	KANE	379	166	
		PLOT SCALE =	2.0000 ' / in.	DRAWN - BAH	REVISED -	DEPARTMENT OF TRANSPORTATION	SIRUCIURE NO. 043-0006			CONTF	ACT NO. 6	2U83	
₽ E [PLOT DATE =	5/9/2024	CHECKED - ECK	REVISED -		SHEET 35 OF 42 SHEETS		ILLINOIS FED. A	D PROJECT			
نحر	5&2024 \ 4:02:18 km \ \ \	\mathcal{M}				mmmm			J.J.J.J	JJ.	رىر	<u>ک</u>	

45°1

60° Angle of

weld).

inclination

 Δ

STANDARD BAR SPLICER ASSEMBLY PLAN

Only bar splicer assemblies are presented on the approved QPL list may be used.

Threaded splicer bar length = min. lap length + $1\frac{1}{2}$ " + thread length

* Epoxy not required on Bar Splicer Assembly components used in conjunction with black bars.

Location	Bar	No. assemblies	Minimum
	size	required	lap length
Top of Deck	#5	268	3'-0"
Bottom of Deck	#5	204	3'-6"
West Approach	#5	46	3'-0''
West Approach	#8	60	4'-9"
W. Appr. Footing	#5	40	3'-2"
East Approach	#5	46	3'-0"
East Approach	#8	60	4'-9"
E. Appr. Footing	#5	40	3'-2"
West Diaphragm	#6	4	4'-0''
East Diaphragm	#6	4	4'-0''
West Abutment	#7	10	5'-0"
East Abutment	#7	10	5'-0"
Pier 1	#5	8	3'-7"
Pier 1	#9	12	6'-5"
Pier 2	#5	8	3'-7"
Pier 2	#9	12	6'-5"

SPLICER BAR FOR CONCRETE DIAPHRAGM

Location	Bar size	No. assemblies required
West Diaphragm	#6	3
East Diaphragm	#6	3

INSTALLATION AND SETTING METHODS

- "A" : Set bar splicer assembly by means of a template bolt.
- "B" : Set bar splicer assembly by nailing to wood forms or cementing to steel forms.
 - (E) : Indicates epoxy coating.

	USER NAME = eckay DESIGNED - ECK		REVISED -		BAR SPLICER ASSEMBLY DETAILS	F.A.P. SECTION	COUNTY TOTAL SHEET
		CHECKED - GEK	REVISED -	STATE OF ILLINOIS		345 FAP 345-23-BR	KANE 379 167
	PLOT SCALE = 2.0000 ' / in.	DRAWN - BAH REVISED	REVISED -	DEPARTMENT OF TRANSPORTATION	SIRUCIURE NO. 045-0006		CONTRACT NO. 62U83
	PLOT DATE = 5/9/2024	CHECKED - ECK	REVISED -		SHEET 36 OF 42 SHEETS	ILLINOIS F	ED. AID PROJECT
入5/9K202人人:03K7 PM人人人			$\overline{\lambda}$			λ λ λ λ λ λ λ	$\overline{)}$

1. Splicer bars shall be deformed with threaded ends and have a minimum 60 ksi yield strength.

2. All reinforcement shall be lapped and tied to the splicer bars.

3. Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars. See Section 508 of the Standard Specifications.

4. See approved list of bar splicer assemblies and mechanical splicers for alternatives.

ΟΑΤΑ				ŝ	SEC	ION		СС	UNTY		TOTAL SHEETS	SHEE NO.	:T
045-0007		345		FAF	9 345	-23-BR		ĸ	ANE		379	175	
043-0001								C	ONTI	RAC	CT NO. 6	32U83	;
5 SHEETS		ILLINOIS FED. AID PROJECT											
		X	λ	7	λ	X	7 7	X	X	X	7		

				-							
JRE PLAN	F.A.P. RTE		5	SEC.	FION		со	UNTY	TOTAL SHEET	SHE	ET
045-0007	345		FAF	9 345	5-23-BR		ĸ	ANE	379	18	5
043-0001							С	ONTR	ACT NO.	62U8	33
5 SHEETS					ILLINOIS	FED. A	D PROJE	СТ			
	1 1	١	١	1	1	1 1	1	١.	1 1	١	N

BILL OF MATERIAL Bar No. Size Length Shape $a(E)$ 246 #5 39-9"	-	SUPE	RSTR	UCTUR	E
Bar No. Size Length Shape $a(E)$ 246 #5 39'-9"	1	BILL	OF M.	ATERIA	AL.
a(E) 246 #5 $39'-9''$ $a1(E)$ 176 #5 $39'-6''$ $a2(E)$ 492 #5 $20'-4''$ $a3(E)$ 352 #5 $20'-2''$ $a4(E)$ 80 #6 $7'-4''$ $a5(E)$ 624 #8 $9'-11''$ $a6(E)$ 32 #5 $1'-6''$ $b(E)$ 486 #5 $27'-2''$ $b(E)$ 486 #5 $27'-2''$ $b1(E)$ 73 #6 $40'-0''$ $b2(E)$ 73 #6 $43'-0''$ $b3(E)$ 350 #5 $31'-10''$ $d(E)$ 704 #5 $9'-7''$ $d(E)$ 704 #5 $9'-7''$ $d3(E)$ 624 #6 $8'-7''$ $d4(E)$ 312 #6 $10'-1''$ $d3(E)$ 456 #5 $5'-4'''$ $d4(E)$ 312 #6 $10'-1''$ $d3(E)$ 456 $45'-2''$ $4''''''''''''''''''''''''''''''''''''$	Bar	No.	Size	Length	Shape
a1(E) 176 #5 $39'-6''$ $a2(E)$ 492 #5 $20'-2''$ $a3(E)$ 352 #5 $20'-2''$ $a4(E)$ 80 #6 $7'-4''$ $a5(E)$ 624 #8 $9'-11''$ $a6(E)$ 32 #5 $1'-6''$ $b(E)$ 486 #5 $27'-2''$ $b1(E)$ 73 #6 $40'-0''$ $b2(E)$ 73 #6 $43'-0''$ $b3(E)$ 350 #5 $31'-10''$ $d(E)$ 704 #5 $10'-0''$ $d1(E)$ 80 #5 $8'-1''$ $d2(E)$ 40 #5 $9'-7''$ $d4(E)$ 312 #6 $10'-1''$ $d5(E)$ 456 455 $8'-6''$ $d1(E)$ 40 #6 $26'-8''$ $e1(E)$ 48 86 $13'-2''$ $e(E)$ 8 #8 $26'-1''$ $e(E)$ 8 #8 $26'-1''$ $e1(E)$	a(E)	246	#5	39'-9"	
a2(E) 492 #5 $20'-4"$ $a3(E)$ 352 #5 $20'-2"$ $a4(E)$ 80 #6 $7'-4"$ $a5(E)$ 624 #8 $9'-11"$ $a6(E)$ 32 #5 $1'-6"$ $b(E)$ 486 #5 $27'-2"$ $b1(E)$ 73 #6 $40'-0"$ $b1(E)$ 73 #6 $43'-0"$ $b2(E)$ 73 #6 $43'-0"$ $b3(E)$ 350 #5 $31'-10"$ $d(E)$ 70 #6 $43'-0"$ $d(E)$ 70 #6 $43'-0"$ $d(E)$ 312 #6 $10'-1"$ $d2(E)$ 426 #5 $5'-4"$ $d5(E)$ 456 #5 $8'-6"$ $d7(E)$ 40 #5 $9'-7"$ $d6(E)$ 312 #6 $13'-2"$ $e(E)$ 8 $826'-1"$ $=$ $e(E)$ 8 $826'-1"$ $=$ $e(E)$ 48	a1(E)	176	#5	39'-6"	
$a3(E)$ 352 #5 $20'-2"$ $a4(E)$ 80 #6 $7'-4"$ $a5(E)$ 624 #8 $9'-11"$ $a6(E)$ 32 #5 $1'-6"$ $b(E)$ 486 #5 $27'-2"$ $b1(E)$ 73 #6 $40'-0"$ $b2(E)$ 73 #6 $40'-0"$ $b3(E)$ 350 #5 $31'-10"$ $d(E)$ 704 #5 $10'-0"$ $d1(E)$ 80 #5 $8'-1"$ $d2(E)$ 40 #5 $9'-7"$ $d3(E)$ 624 #6 $8'-7"$ $d4(E)$ 312 #6 $10'-1"$ $d5(E)$ 456 $45^{-6"}$ $45^{-6"}$ $d7(E)$ 40 #5 $9'-7"$ Δ $e(E)$ 8 #8 $26'-8"$ $=$ $e1(E)$ 40 #6 $26'-8"$ $=$ $e1(E)$ 40 #6 $26'-8"$ $=$ $e1(E)$ 48 $86^{-15'-2"}$ </td <td>a2(E)</td> <td>492</td> <td>#5</td> <td>20'-4"</td> <td></td>	a2(E)	492	#5	20'-4"	
$a4(E)$ 80 #6 7'-4" $a5(E)$ 624 #8 9'-11" $a6(E)$ 32 #5 $1'-6"$ b(E) 486 #5 $27'-2"$ $b1(E)$ 73 #6 $40'-0"$ $b2(E)$ 73 #6 $43'-0"$ $b3(E)$ 350 #5 $31'-10"$ $d(E)$ 704 #5 $10'-0"$ 0 $d1(E)$ 80 #5 $8'-1"$ Λ $d2(E)$ 40 #5 $9'-7"$ Δ $d3(E)$ 624 #6 $8'-7"$ Λ $d4(E)$ 312 #6 $10'-1"$ Δ $d5(E)$ 456 #5 $5'-4"$ Γ $d4(E)$ 312 #6 $10'-1"$ Δ $d5(E)$ 456 455 $8'-6"$ Δ $d1(E)$ 40 #6 $26'-8"$ $=$ $e1(E)$ 48 $810'-11"$ $=$ $e2(E)$ 848 $26'-1"$ $=$	a3(E)	352	#5	20'-2"	
a5(E) 624 #8 $9'-11"$ $a6(E)$ 32 #5 $1'-6"$ $b(E)$ 32 #5 $1'-6"$ $b1(E)$ 73 #6 $40'-0"$ $b2(E)$ 73 #6 $43'-0"$ $b2(E)$ 73 #6 $43'-0"$ $b3(E)$ 350 #5 $31'-10"$ $d(E)$ 704 #5 $10'-0"$ 0 $d1(E)$ 80 #5 $8'-1"$ $10'-0"$ $d1(E)$ 80 #5 $8'-1"$ $10'-1"$ $d2(E)$ 40 #5 $9'-7"$ $10'-1"$ $d4(E)$ 312 #6 $10'-1"$ $10'-1"$ $d5(E)$ 456 #5 $8'-6"$ $10'-1"$ $d6(E)$ 456 455 $8'-6"$ $10'-1"$ $e(E)$ 8 #8 $26'-1"$ $10'-1"$ $e(E)$ 48 46 $15'-2"$ $10'-1!"$ $e(E)$ 48 86 $10'-1!"$ $10'-1!!"$ $e(E)$	a4(E)	80	#6	7'-4"	
$a6(E)$ 32 #5 $1'-6"$ $b(E)$ 486 #5 $27'-2"$ $b1(E)$ 73 #6 $40'-0"$ $b2(E)$ 73 #6 $43'-0"$ $b2(E)$ 73 #6 $43'-0"$ $b3(E)$ 350 #5 $31'-10"$ $d(E)$ 704 #5 $9'-7"$ \Box $d1(E)$ 80 #5 $8'-1"$ \Box $d2(E)$ 40 #5 $9'-7"$ \Box $d3(E)$ 624 #6 $8'-7"$ \Box $d4(E)$ 312 #6 $10'-1"$ \Box $d5(E)$ 456 455 $8'-6"$ \Box $d7(E)$ 40 #6 $26'-8"$ \Box $e1(E)$ 40 #6 $26'-8"$ \Box $e2(E)$ 8 #8 $26'-1"$ \Box $e2(E)$ 32 #4 $13'-2"$ \Box $e4(E)$ 40 #6 $10'-11"$ $e2(E)$ 32 #4 $10'-11"$ <td>a5(E)</td> <td>624</td> <td>#8</td> <td>9'-11"</td> <td></td>	a5(E)	624	#8	9'-11"	
b(E) 486 #5 $27'-2"$ b1(E) 73 #6 $40'-0"$ b2(E) 73 #6 $43'-0"$ b3(E) 350 #5 $31'-10"$ d(E) 704 #5 $10'-0"$ 0 d1(E) 80 #5 $8'-1"$ 0 d2(E) 40 #5 $9'-7"$ 0 d3(E) 624 #6 $8'-7"$ 1 d4(E) 312 #6 $10'-1"$ 0 d5(E) 456 #5 $5'-4"$ 1 d6(E) 456 #5 $9'-7"$ 0 d6(E) 312 #6 $9'-7"$ 0 d8(E) 312 #6 $9'-7"$ 0 e(E) 8 #8 $26'-8"$ - e(E) 8 #8 $26'-8"$ - e2(E) 48 #6 $13'-2"$ - e3(E) 32 #4 $13'-2"$ - e3(E) 32 #4 $13'-2"$ - <td>a6(E)</td> <td>32</td> <td>#5</td> <td>1'-6"</td> <td></td>	a6(E)	32	#5	1'-6"	
b(E) 486 #5 $27'-2"$ b1(E) 73 #6 $40'-0"$ b2(E) 73 #6 $43'-0"$ b3(E) 350 #5 $31'-10"$ d(E) 704 #5 $10'-0"$ 0 d1(E) 80 #5 $8'-1"$ $10'-0"$ d2(E) 40 #5 $9'-7"$ Δ d3(E) 624 #6 $8'-7"$ Λ d3(E) 624 #6 $8'-7"$ Λ d4(E) 312 #6 $9'-7"$ Δ d5(E) 456 #5 $8'-6"$ Δ d7(E) 40 #5 $9'-1"$ Δ e(E) 8 #8 $26'-8"$ $-$ e(E) 8 #8 $26'-1"$ $-$ e4(E) 40 #6 $24'-11"$ $-$ e5(E) 36 #6 $15'-2"$ $-$ e6(E) 16 #8 $10'-11"$ $-$ e5(E) 36 #6 $10'-11"$					
b1(E) 73 #6 $40'-0''$ $b2(E)$ 73 #6 $43'-0''$ $b3(E)$ 350 #5 $31'-10''$ $d(E)$ 704 #5 $10'-0''$ $10''''''''''''''''''''''''''''''''''''$	b(E)	486	#5	27'-2"	
$b2(E)$ 73 #6 $43'-0"$ $b3(E)$ 350 #5 $31'-10"$ $d(E)$ 704 #5 $10'-0"$ 0 $d1(E)$ 80 #5 $8'-1"$ $10'-0"$ $d2(E)$ 40 #5 $9'-7"$ Δ $d3(E)$ 624 #6 $8'-7"$ Λ $d4(E)$ 312 #6 $10'-1"$ Δ $d5(E)$ 456 #5 $5'-4"$ Γ $d6(E)$ 456 #5 $8'-6"$ Δ $d7(E)$ 40 #5 $9'-7"$ Δ $d8(E)$ 312 #6 $9'-7"$ Δ $e(E)$ 8 #8 $26'-8"$ $$	b1(E)	73	#6	40'-0"	
b3(E) 350 #5 $31'-10"$ $d(E)$ 704 #5 $10'-0"$ $10'$ $d1(E)$ 80 #5 $8'-1"$ $10'$ $d2(E)$ 40 #5 $9'-7"$ $10'$ $d3(E)$ 624 #6 $8'-7"$ $10'$ $d4(E)$ 312 #6 $10'-1"$ $10'$ $d4(E)$ 312 #6 $10'-1"$ $10'$ $d4(E)$ 312 #6 $9'-7"$ $10'$ $d6(E)$ 456 #5 $8'-6"$ $10'$ $d6(E)$ 456 #5 $9'-7"$ $10'$ $d(E)$ 312 #6 $10'-1"$ $10'$ $e(E)$ 8 #8 $26'-8"$ $-10'$ $e1(E)$ 40 #6 $26'-1"$ $-10'$ $e4(E)$ 40 #6 $15'-2"$ $-10'$ $e4(E)$ 40 #6 $10'-11"$ $-10'$ $e7(E)$ 128 #6 $10'-11"$ $-10'$ $e10(E)$ 14	b2(E)	73	#6	43'-0"	
d(E) 704 #5 $10'-0''$ 1 d1(E) 80 #5 $8'-1''$ 1 d2(E) 40 #5 $9'-7''$ 1 d3(E) 624 #6 $8'-7''$ 1 d4(E) 312 #6 $10'-1''$ 1 d5(E) 456 #5 $5'-4''$ [d6(E) 456 #5 $9'-1''$ 1 d8(E) 312 #6 $9'-7''$ 1 d8(E) 312 #6 $9'-1''$ 1 d8(E) 312 #6 $9'-1''$ 1 e8(E) 312 #6 $13'-2''$	b3(E)	350	#5	31'-10"	
$d(E)$ 704 #5 $10'-0''$ 1 $d1(E)$ 80 #5 $8'-1''$ 1 $d2(E)$ 40 #5 $9'-7''$ Δ $d3(E)$ 624 #6 $8'-7''$ Δ $d4(E)$ 312 #6 $10'-1''$ Δ $d5(E)$ 456 #5 $8'-6''$ Δ $d7(E)$ 40 #5 $9'-1''$ Δ $d8(E)$ 312 #6 $9'-7''$ Δ $d8(E)$ 312 #6 $9'-7''$ Δ $e(E)$ 8 #8 $26'-8''$ $=$ $e1(E)$ 40 #6 $26'-8''$ $=$ $e2(E)$ 48 46 $13'-2''$ $=$ $e3(E)$ 8 $826'-1''$ $=$ $=$ $e4(E)$ 40 #6 $13'-2''$ $=$ $e4(E)$ 40 #6 $15'-2''$ $=$ $e1(E)$ 32 #4 $13'-2''$ $=$ $e1(E)$ 32 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
d1(E) 80 #5 $8'-1''$ Λ d2(E) 40 #5 $9'-7''$ Λ d3(E) 624 #6 $8'-7''$ Λ d4(E) 312 #6 $10'-1''$ Λ d5(E) 456 #5 $5'-4''$ Γ d6(E) 456 #5 $8'-6''$ Λ d7(E) 40 #5 $9'-1''$ Λ d8(E) 312 #6 $9'-7''$ Λ e1(E) 40 #6 $26'-8''$ $-$ e1(E) 40 #6 $26'-8''$ $-$ e2(E) 48 #6 $13'-2''$ $-$ e3(E) 8 #8 $26'-1''$ $-$ e4(E) 40 #6 $13'-2''$ $-$ e4(E) 40 #6 $13'-2''$ $-$ e6(E) 16 #8 $10'-11''$ $-$ e7(E) 128 #6 $10'-11''$ $-$ e9(E) 24 #4 $15'-2''$ $-$	d(E)	704	#5	10'-0''	
$d2(E)$ 40 $\#5$ $9'-7"$ Λ $d3(E)$ 624 $\#6$ $8'-7"$ Λ $d4(E)$ 312 $\#6$ $10'-1"$ Λ $d5(E)$ 456 $\#5$ $5'-4"$ Γ $d6(E)$ 456 $\#5$ $9'-7"$ Λ $d7(E)$ 40 $\#5$ $9'-7"$ Λ $d8(E)$ 312 $\#6$ $9'-7"$ Λ $d8(E)$ 312 $\#6$ $9'-7"$ Λ $d8(E)$ 312 $\#6$ $9'-7"$ Λ $e(E)$ 40 $\#6$ $26'-8"$ $ e2(E)$ 48 $\#6$ $13'-2"$ $ e4(E)$ 40 $#6$ $24'-11"$ $ e5(E)$ 32 $\#4$ $10'-11"$ $ e7(E)$ 128 $\#6$ $10'-11"$ $ e8(E)$ 32 $\#4$ $10'-11"$ $ e10(E)$ 48 $#4$ $26'-8"$ $ e11(E)$ </td <td>d1(E)</td> <td>80</td> <td>#5</td> <td>8'-1''</td> <td></td>	d1(E)	80	#5	8'-1''	
d3(E) 624 #6 $8'-7''$ Λ d4(E) 312 #6 $10'-1''$ Λ d5(E) 456 #5 $5'-4''$ Λ d6(E) 456 #5 $8'-6''$ Λ d7(E) 40 #5 $9'-1''$ Λ d8(E) 312 #6 $9'-7''$ Λ d8(E) 312 #6 $9'-7''$ Λ d8(E) 312 #6 $9'-7''$ Λ e1(E) 40 #6 $26'-8''$ $$	d2(E)	40	#5	9'-7"	
$d4(E)$ 312 #6 $10'-1"$ \bigtriangleup $d5(E)$ 456 #5 $5'-4"$ $\boxed{1}$ $d6(E)$ 456 #5 $8'-6"$ \fbox $d7(E)$ 40 #5 $9'-1"$ \checkmark $d8(E)$ 312 #6 $9'-7"$ \checkmark $e(E)$ 8 #8 $26'-8"$ \longrightarrow $e1(E)$ 40 #6 $26'-8"$ \longrightarrow $e2(E)$ 48 #6 $13'-2"$ \longrightarrow $e3(E)$ 36 #6 $15'-2"$ \longrightarrow $e4(E)$ 40 #6 $24'-11"$ \longrightarrow $e7(E)$ 128 #6 $10'-11"$ \longrightarrow $e7(E)$ 128 #6 $10'-11"$ \longrightarrow $e7(E)$ 24 $41'5'-2"$ \longrightarrow \longrightarrow $e10(E)$ 48 $#4'10'-11"$ \longrightarrow \longrightarrow \longrightarrow $m10(E)$ 5 #6 $35'-3"$ \longrightarrow \longrightarrow \longrightarrow \longrightarrow $m11(E)$ $44'4'6'5'-6"$ \longrightarrow \longrightarrow </td <td>d3(E)</td> <td>624</td> <td>#6</td> <td>8'-7"</td> <td></td>	d3(E)	624	#6	8'-7"	
d5(E) 456 #5 5'-4" [d6(E) 456 #5 8'-6" [] d7(E) 40 #5 9'-1" [] d8(E) 312 #6 9'-7" [] e(E) 8 #8 26'-8" [] e2(E) 48 #6 13'-2" [] e3(E) 8 #8 26'-1" [] e3(E) 8 #8 26'-1" [] e3(E) 8 #8 26'-1" [] e4(E) 40 #6 24'-11" [] e5(E) 36 #6 15'-2" [] [] e6(E) 16 #8 10'-11" [] [] [] [] e9(E) 24 #4 15'-2" []	d4(E)	312	#6	10'-1''	
d6(E) 456 #5 8'-6" $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	d5(E)	456	#5	5'-4''	Γ
$d7(E)$ 40 #5 $9'-1"$ Λ $d8(E)$ 312 #6 $9'-7"$ Λ $e(E)$ 8 #8 $26'-8"$ $$ $e2(E)$ 48 #6 $13'-2"$ $$ $e3(E)$ 8 #8 $26'-1"$ $$ $e3(E)$ 8 #8 $26'-1"$ $$ $e3(E)$ 36 #6 $15'-2"$ $$ $e4(E)$ 40 #6 $24'-11"$ $$ $e5(E)$ 36 #6 $15'-2"$ $ e6(E) 16 #8 10'-11" $	d6(E)	456	#5	8'-6''	
$d8(E)$ 312 #6 $9'-7"$ $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	d7(E)	40	#5	9'-1"	
e(E) 8 #8 $26'-8''$ $e1(E)$ 40 #6 $26'-8''$ $e2(E)$ 48 #6 $13'-2''$ $e3(E)$ 8 #8 $26'-1''$ $e3(E)$ 36 #6 $15'-2''$ $e6(E)$ 16 #8 $10'-11''$ $e5(E)$ 36 #6 $15'-2''$ $e6(E)$ 16 #8 $10'-11''$ $e7(E)$ 128 #6 $10'-11''$ $e7(E)$ 22 #4 $15'-2''$ $e9(E)$ 24 #4 $15'-2''$ $e10(E)$ 48 #4 $10'-11''$ $e11(E)$ 8 #4 $24'-4''$ $e12(E)$ 8 #4 $24'-4''$ $m10(E)$ 5 #6 $35'-3''$ $m11(E)$ 44 #6 $4'-2''$ $m13(E)$ 4 #6 $4'-2''$ $m13(E)$ 4 #6 $4'-2''$ $m13(E)$ 4 #6 $2'-7''$ $m14(E)$ 4 #6 <t< td=""><td>d8(E)</td><td>312</td><td>#6</td><td>9'-7"</td><td></td></t<>	d8(E)	312	#6	9'-7"	
e(E) 8 #8 $26'-8''$ $e1(E)$ 40 #6 $26'-8''$ $e2(E)$ 48 #6 $13'-2''$ $e3(E)$ 8 #8 $26'-1''$ $e4(E)$ 40 #6 $24'-11''$ $e5(E)$ 36 #6 $15'-2''$ $e6(E)$ 16 #8 $10'-11''$ $e7(E)$ 128 #6 $10'-11''$ $e7(E)$ 128 #6 $10'-11''$ $e9(E)$ 24 #4 $15'-2''$ $e9(E)$ 24 #4 $10'-11''$ $e10(E)$ 48 #4 $10'-11''$ $e11(E)$ 8 #4 $24'-4''$ $e12(E)$ 8 #4 $24'-4''$ $m10(E)$ 5 #6 $35'-3''$ $m11(E)$ 44 #6 $4'-2''$ $m13(E)$ 4 #6 $4'-2''$ $m13(E)$ 4 #6 $0'-9''$ $m14(E)$ 4 #6 $2'-7''$ $m16(E)$ 4 #4		-			
e1(E) 40 #6 $26'-8''$ $e2(E)$ 48 #6 $13'-2''$ $e3(E)$ 8 #8 $26'-1''$ $e4(E)$ 40 #6 $24'-11''$ $e5(E)$ 36 #6 $15'-2''$ $e6(E)$ 16 #8 $10'-11''$ $e7(E)$ 128 #6 $10'-11''$ $e8(E)$ 32 #4 $13'-2''$ $e9(E)$ 24 #4 $15'-2''$ $e10(E)$ 48 #4 $10'-11''$ $e11(E)$ 8 #4 $26'-8''$ $e11(E)$ 8 #4 $24'-4''$ $m10(E)$ 5 #6 $35'-3''$ $m11(E)$ 44 #6 $5'-6''$ $m12(E)$ 4 #6 $4'-2''$ $m13(E)$ 44 #6 $5'-6''$ $m14(E)$ 4 #6 $2'-2''$ $m14(E)$ 4 #6 $2'-2''$ $m14(E)$ 4 #6 $2'-7''$ $m12(E)$ 5 #6 <	e(E)	8	#8	26'-8"	
$e2(E)$ 48 #6 $13^{-}2''$ $e3(E)$ 8 #8 $26^{-1''}$ $e4(E)$ 40 #6 $24'-11''$ $e5(E)$ 36 #6 $15'-2''$ $e6(E)$ 16 #8 $10'-11''$ $e7(E)$ 128 #6 $10'-11''$ $e7(E)$ 24 #4 $15'-2''$ $e9(E)$ 24 #4 $15'-2''$ $e9(E)$ 24 #4 $10'-11''$ $e10(E)$ 48 #4 $10'-11''$ $e11(E)$ 8 #4 $26'-8''$ $e12(E)$ 8 #4 $24'-4''$ $m10(E)$ 5 #6 $35'-3''$ $m11(E)$ 44 #6 $5'-6''$ $m13(E)$ 44 #6 $5'-6''$ $m13(E)$ 44 #6 $7'-2''$ $m13(E)$ 4 #6 $2'-2''$ $m13(E)$ 4 #6 $2'-2''$ $m13(E)$ 4 #6 $2'-7''$ $m12(E)$ 4 #6	e1(E)	40	#6	26'-8"	
e3(E) 8 #8 26'-1" e4(E) 40 #6 $24'-11"$ e5(E) 36 #6 $15'-2"$ e6(E) 16 #8 $10'-11"$ e7(E) 128 #6 $10'-11"$ e8(E) 32 #4 $13'-2"$ e9(E) 24 #4 $15'-2"$ e10(E) 48 #4 $10'-11"$ e11(E) 8 #4 $26'-8"$ e12(E) 8 #4 $26'-8"$ m10(E) 5 #6 $35'-3"$ m11(E) 44 #6 $5'-6"$ m12(E) 4 #6 $4'-2"$ m13(E) 44 #6 $5'-6"$ m14(E) 4 #6 $38'-2"$ m13(E) 8 #4 $20'-4"$ m17(E) 10 #6 $38'-2"$ m18(E) 8 #4 $20'-4"$ m19(E) 5 #6 $32'-1"$ m12(E) 4 #6 $2'-7"$ m22(E)	e2(E)	48	#6	13'-2"	
e4(E) 40 #6 $24'-11''$ $e5(E)$ 36 #6 $15'-2''$ $e6(E)$ 16 #8 $10'-11''$ $e7(E)$ 128 #6 $10'-11''$ $e8(E)$ 32 #4 $15'-2''$ $e9(E)$ 24 #4 $15'-2''$ $e10(E)$ 48 #4 $26'-8''$ $e11(E)$ 8 #4 $24'-4''$ $e12(E)$ 8 #4 $24'-4''$ $m10(E)$ 5 #6 $35'-3''$ $m11(E)$ 44 #6 $5'-6''$ $m12(E)$ 4 #6 $4'-2''$ $m13(E)$ 44 #6 $5'-6''$ $m14(E)$ 4 #6 $4'-2''$ $m16(E)$ 4 #4 $18'-11''$ $m17(E)$ 10 #6 $38'-2''$ $m18(E)$ 8 #4 $20'-4'''$ $m17(E)$ 10 #6 $2'-7''$ $m20(E)$ 4 #6 $2'-7''$ $m21(E)$ 4 #6	e3(E)	8	#8	26'-1"	
e5(E) 36 #6 $15'-2''$ $e6(E)$ 16 #8 $10'-11''$ $e7(E)$ 128 #6 $10'-11''$ $e8(E)$ 32 #4 $13'-2''$ $e9(E)$ 24 #4 $15'-2''$ $e10(E)$ 48 #4 $10'-11''$ $e11(E)$ 8 #4 $26'-8''$ $e12(E)$ 8 #4 $24'-4''$ $m10(E)$ 5 #6 $35'-3''$ $m11(E)$ 44 #6 $5'-6''$ $m12(E)$ 4 #6 $4'-2''$ $m13(E)$ 44 #6 $5'-6''$ $m13(E)$ 4 #6 $4'-2''$ $m13(E)$ 8 #6 $0'-9''$ $m16(E)$ 4 #6 $2'-7''$ $m18(E)$ 8 #4 $20'-4''$ $m17(E)$ 10 #6 $38'-2''$ $m17(E)$ 10 #6 $32'-1''$ $m17(E)$ 10 #6 $2'-7'''$ $m21(E)$	e4(E)	40	#6	24'-11"	
e6(E) 16 #8 $10'-11''$	e5(E)	36	#6	15'-2"	
e7(E) 128 #6 $10'-11''$	e6(E)	16	#8	10'-11"	
e8(E) 32 #4 $13'-2''$ $e9(E)$ 24 #4 $15'-2''$ $e10(E)$ 48 #4 $10'-11''$ $e11(E)$ 8 #4 $26'-8''$ $e12(E)$ 8 #4 $24'-4''$ $m10(E)$ 5 #6 $35'-3''$ $m11(E)$ 44 #6 $5'-6''$ $m12(E)$ 4 #6 $4'-2''$ $m13(E)$ 44 #6 $5'-6''$ $m14(E)$ 4 #6 $4'-2''$ $m13(E)$ 4 #6 $0'-9''$ $m14(E)$ 4 #6 $0'-9''$ $m15(E)$ 8 #4 $20'-4''$ $m17(E)$ 10 #6 $38'-2''$ $m18(E)$ 8 #4 $20'-4''$ $m12(E)$ 4 #6 $2'-7''$ $m20(E)$ 4 #6 $2'-7''$ $m21(E)$ 4 #6 $2'-7''$ $m12(E)$ 4 #6 $2'-7''$ $m22(E)$	e/(E)	128	#6	10'-11"	
e9(E) 24 #4 $15'-2''$ $e10(E)$ 48 #4 $10'-11''$ $e11(E)$ 8 #4 $26'-8''$ $e12(E)$ 8 #4 $24'-4''$ $m10(E)$ 5 #6 $35'-3''$ $m11(E)$ 44 #6 $5'-6''$ $m12(E)$ 4 #6 $4'-2''$ $m13(E)$ 44 #6 $5'-6''$ $m13(E)$ 4 #6 $4'-2''$ $m13(E)$ 4 #6 $0'-9''$ $m14(E)$ 4 #6 $0'-9''$ $m15(E)$ 8 #6 $0'-9''$ $m16(E)$ 4 #4 $18'-11''$ $m17(E)$ 10 #6 $38'-2''$ $m18(E)$ 8 #4 $20'-4''$ $m19(E)$ 5 #6 $32'-1''$ $m20(E)$ 4 #6 $2'-7''$ $m22(E)$ 4 #4 $17'-3''$ $m21(E)$ 128 #5 $9'-0''$ $u100(E)$ 128 #5	e8(E)	32	#4	13'-2"	
$e10(E)$ 48 #4 $10^{-}-11^{"}$ $e11(E)$ 8 #4 $26^{-}-8^{"}$ $e12(E)$ 8 #4 $24^{-}-4^{"}$ $m10(E)$ 5 #6 $35^{-}-3^{"}$ $m11(E)$ 44 #6 $5^{-}-6^{"}$ $m12(E)$ 4 #6 $4^{-}2^{"}$ $m13(E)$ 44 #6 $5^{-}-6^{"}$ $m13(E)$ 44 #6 $4^{-}2^{"}$ $m13(E)$ 44 #6 $4^{-}2^{"}$ $m13(E)$ 4 #6 $4^{-}2^{"}$ $m15(E)$ 8 #6 $0^{-}9^{"}$ $m17(E)$ 10 #6 $38^{-}2^{"}$ $m18(E)$ 8 #4 $20^{-}-4^{"}$ $m19(E)$ 5 #6 $32^{-}-1^{"}$ $m20(E)$ 4 #6 $2^{-}-7^{"}$ $m21(E)$ 4 #6 $2^{-}-7^{"}$ $m21(E)$ 4 #6 $2^{-}-7^{"}$ $m21(E)$ 128 #5 $9^{-}0^{"}$ \square $u100(E)$ 128 #5 <t< td=""><td>e9(E)</td><td>24</td><td>#4</td><td>15'-2"</td><td></td></t<>	e9(E)	24	#4	15'-2"	
$e11(E)$ 8 #4 $26-8^{\circ}$	e10(E)	48	#4	10'-11"	
$e12(E)$ 8 #4 $24-4^{*}$	eII(E)	8	#4	26'-8"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	eIZ(E)	8	#4	24'-4"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m10(E)	5	#6	35'-3"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m11(E)	11	#6	5'-6"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m12(E)	4	#6	<u>J</u> =0 <u></u> <u>A'</u> =2"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m13(E)	44	#6	5'-6"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m13(E) m14(F)	4	#6	4'-2"	
m16(E) 4 #4 18'-11" m17(E) 10 #6 38'-2" m18(E) 8 #4 20'-4" m19(E) 5 #6 32'-1" m20(E) 4 #6 2'-7" m20(E) 4 #6 2'-7" m21(E) 4 #6 2'-7" m21(E) 4 #6 2'-7" m21(E) 4 #6 2'-7" m22(E) 4 #6 2'-7" m21(E) 4 #6 2'-7" m21(E) 4 #6 2'-7" m22(E) 4 #4 17'-3" m21(E) 128 #5 9'-0" 1 s11(E) 128 #5 9'-0" 1 u100(E) 157 #5 3'-1" 1 v100(E) 157 #5 3'-1" 1 Concrete Cu. Yd. 449.8 8 Bridge Deck Grooving Sq. Yd. 1,504 Reinforcement Bars, Epoxy Coated Pound 134,800<	m15(E)	8	#6	0'-9"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m16(F)	4	#4	18'-11"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m17(E)	10	#6	38'-2"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m18(F)	8	#4	20'-4"	
m20(E) 4 #6 2'-7" m21(E) 4 #6 2'-7" m22(E) 4 #4 17'-3" s10(E) 128 #5 7'-8" s11(E) 128 #5 9'-0" u10(E) 128 #4 4'-6" u10(E) 128 #4 4'-6" v100(E) 157 #5 3'-1" Concrete Cu. Yd. 449.8 Bridge Deck Grooving Sq. Yd. 1,071 Protective Coat Sq. Yd. 1,504 Reinforcement Bars, Epoxy Coated Pound 134,800 Noise Abatement Wall Anchor Rod Assembly Each 30	m19(E)	5	#6	32'-1"	
m21(E) 4 #6 2'-7" m22(E) 4 #4 17'-3" s10(E) 128 #5 7'-8" s11(E) 128 #5 9'-0" u10(E) 128 #4 4'-6" u10(E) 128 #4 4'-6" v100(E) 157 #5 3'-1" Concrete Cu. Yd. 449.8 Bridge Deck Grooving Sq. Yd. 1,071 Protective Coat Sq. Yd. 1,504 Reinforcement Bars, Epoxy Coated Pound 134,800 Noise Abatement Wall Anchor Rod Assembly Each 30	m20(E)	4	#6	2'-7"	<u> </u>
m22(E) 4 #4 17'-3" s10(E) 128 #5 7'-8" s11(E) 128 #5 9'-0" 1 u10(E) 128 #4 4'-6" 1 v100(E) 157 #5 3'-1" 1 Concrete Cu. Yd. 449.8 Bridge Deck Grooving Sq. Yd. 1,071 Protective Coat Sq. Yd. 1,504 Reinforcement Bars, Pound 134,800 Noise Abatement Wall Each 30	m21(E)	4	#6	2'-7"	
s10(E) 128 #5 7'-8" s11(E) 128 #5 9'-0" [] u10(E) 128 #4 4'-6" [] v100(E) 157 #5 3'-1"	m22(E)	4	#4	17'-3"	
\$10(E) 128 #5 7'-8" □ \$11(E) 128 #5 9'-0" □ u10(E) 128 #4 4'-6" □ v100(E) 157 #5 3'-1" □ Concrete Superstructure Cu. Yd. 449.8 Bridge Deck Grooving 5q. Yd. 1,071 Protective Coat 5q. Yd. 1,504 Reinforcement Bars, Pound 134,800 Noise Abatement Wall Anchor Rod Assembly Each 30	, , ,				
\$11(E) 128 #5 9'-0" [] u10(E) 128 #4 4'-6" [] v100(E) 157 #5 3'-1" [] Concrete Superstructure Cu. Yd. 449.8 Bridge Deck Grooving Sq. Yd. 1,071 Protective Coat Sq. Yd. 1,504 Reinforcement Bars, Pound 134,800 Noise Abatement Wall Anchor Rod Assembly Each 30	s10(E)	128	#5	7'-8"	
u10(E) 128 #4 4'-6" □ v100(E) 157 #5 3'-1" □ Concrete Superstructure Cu. Yd. 449.8 Bridge Deck Grooving Sq. Yd. 1,071 Protective Coat Sq. Yd. 1,504 Reinforcement Bars, Epoxy Coated Pound 134,800 Noise Abatement Wall Anchor Rod Assembly Each 30	s11(E)	128	#5	9'-0"	U
u10(E) 128 #4 4'-6" □ v100(E) 157 #5 3'-1" □ Concrete Superstructure Cu. Yd. 449.8 Bridge Deck Grooving Sq. Yd. 1,071 Protective Coat Sq. Yd. 1,504 Reinforcement Bars, Epoxy Coated Pound 134,800 Noise Abatement Wall Anchor Rod Assembly Each 30					
v100(E)157#53'-1"Concrete SuperstructureCu. Yd.449.8Bridge Deck GroovingSq. Yd.1,071Protective CoatSq. Yd.1,504Reinforcement Bars, Epoxy CoatedPound134,800Noise Abatement Wall Anchor Rod AssemblyEach30	u10(E)	128	#4	4'-6"	U
v100(E)157#53'-1"Concrete SuperstructureCu. Yd.449.8Bridge Deck GroovingSq. Yd.1,071Protective CoatSq. Yd.1,504Reinforcement Bars, Epoxy CoatedPound134,800Noise Abatement Wall Anchor Rod AssemblyEach30					
Concrete SuperstructureCu. Yd.449.8Bridge Deck Grooving Protective CoatSq. Yd.1,071Protective CoatSq. Yd.1,504Reinforcement Bars, Epoxy CoatedPound134,800Noise Abatement Wall Anchor Rod AssemblyEach30	v100(E)	157	#5	3'-1"	
Concrete SuperstructureCu. Yd.449.8Bridge Deck Grooving Protective CoatSq. Yd.1,071Protective CoatSq. Yd.1,504Reinforcement Bars, Epoxy CoatedPound134,800Noise Abatement Wall Anchor Rod AssemblyEach30					
SuperstructureProtectiveProtectiveBridge Deck GroovingSq. Yd.1,071Protective CoatSq. Yd.1,504Reinforcement Bars, Epoxy CoatedPound134,800Noise Abatement Wall Anchor Rod AssemblyEach30	Concret	е		Cu. Yd.	449.8
Bridge Deck Grooving Sq. Ya.1,071Protective CoatSq. Yd.1,504Reinforcement Bars, Epoxy CoatedPound134,800Noise Abatement Wall Anchor Rod AssemblyEach30	Superst	nucture Doct: C	2	Co. V-I	1.071
Reinforcement Bars, Epoxy CoatedPound134,800Noise Abatement Wall Anchor Rod AssemblyEach30	Bratast	Deck G	i ooving +	54. 1a.	1,0/1
NoiseAbatementWallPound134,800NoiseAbatementWallEach30AnchorRodAssemblyEach30	Protect	comont	Rarc	3y. TU.	1,304
Noise Abatement Wall Anchor Rod Assembly Each 30	Enovy (Centent	baiS,	Pound	134,800
Anchor Rod Assembly Each 30	Noise A	hateme	nt Wall		
	Anchor	Rod As	sembly	Each	30
					1

E DETAILS II	F.A.P. RTE		S	EC	r i on		со	UNTY	TOT SHE	AL ETS	SHE	ET S.
045-0007	345		FAP	345	5-23-BR		к	ANE	37	9	18	8
040 0001							С	ONTR	ACT N	0.6	62U8	33
35 SHEETS					ILLINOIS	FED. A	D PROJE	ст				
	<u> </u>	λ	7	γ	7	1 1	7		1 1		1	1

												_		
West Ap		East Approach												
' Location	Тор	Bottom	,	Ро	nt/	Lo	cation	'		Тор			Botte	эт
Edge of Appr.	750.49	749.66	A	– N.	Ed	ge	of Ap	pr.	74	46.9	0		746.0	26
JS 20	751.09	750.26	В	- 4	US	20			74	47.4	9		746.6	<u> 55</u>
age Const. Jt.	751.05	750.22	С	- Si	tage	С	onst.	Jt.	74	47.4	5		746.0	51
Edge of Appr.	750.41	749.57	D) – S	. Ed	ge	of A	opr.	74	46.8	8		746.0)5
Edge of Appr.	750.58	749.75	E	E - N. Edge of Appr.					74	46.7	3		745.9	<i></i>
Appr. Ftg.	750.70	749.86	– NE Appr. Ftg.			74	46.6	7		745.8	34			
IS 20	751.23	750.40	G	G - Ç US 20				74	47.2	5		746.4	41	
age Const. Jt.	751.19	750.36	h	I – S	– Stage Const. Jt.			Jt.	7.	47.2	21		746.3	38
Appr. Ftg.	750.67	749.83	Ι	- S.	Edg	je	of Ap	pr.	74	46.6	5	745.82		32
Edge of Appr.	750.50	749.67												
H SLAB PLAN			F.A.P. RTE		5	SEC-	FION			COUN	ITY	5		SHEI NO
045-0007			345	45 FAP 345-23-BR					KAN	IE		379	192	
040-0001										COI	NTR	AC	T NO.	62U8
35 SHEETS							ILLINOIS	FED. A	D PR	OJECT				
λ λ λ λ		1 1	х х	X	7	X	X	X 3	λ.	Y	X	X	X	X

.

.

Location	Location	"B"
West	West End	13'-3 ⁵ /8''
Approach	East End	1 <i>2</i> '-7¾''
East	West End	9'-5 ³ ⁄8"
Approach	East End	8'-9½"

1. The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab. 2. Parapet and median barrier concrete shall be paid for as Concrete Superstructure. 3. Approach slab shall be paid for as Concrete Superstructure (Approach Slab). 4. Approach footing concrete shall be paid for as Concrete Structures. 5. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. 6. Cost of excavation for approach footing included with Concrete Structures. 7. For Granular Backfill for Structures and drainage treatment details, see sheet 31 of 35.

TWO APPROACHES BILL OF MATERIAL

Bar No. Size Length Shape a10(E) 92 #5 $39'-9''$	<u> </u>				
a10(E) 92 #5 $39'-9''$ $a11(E)$ 122 #8 $39'-9''$ $a12(E)$ 184 #5 $7'-4''$ $a13(E)$ 46 #5 $37'-3''$ $a14(E)$ 61 #8 $37'-3''$ $a15(E)$ 46 #5 $33'-5''$ $a16(E)$ 61 #8 $33'-5''$ $a16(E)$ 61 #8 $33'-5''$ $a16(E)$ 61 #8 $33'-5''$ $b10(E)$ 229 #5 $29'-8''$ $b11(E)$ 361 #9 $29'-8''$ $b12(E)$ 16 #5 $29'-8''$ $b12(E)$ 16 #5 $29'-8''$ $d10(E)$ 288 #6 $11'-2''$ $d11(E)$ 288 #6 $11'-2''$ $d13(E)$ 184 #5 $8'-6''$ $e10(E)$ 8 #8 $29'-8''$ $e11(E)$ 48 #6 $14'-8''$ $e12(E)$ 40 #6 $29'-8''$	Bar	No.	Size	Length	Shape
a11(E) 122 #8 $39'-9''$	a10(E)	92	#5	39'-9"	
a12(E) 184 #5 $7'-4"$ a13(E) 46 #5 $37'-3"$ a14(E) 61 #8 $37'-3"$ a15(E) 46 #5 $33'-5"$ a16(E) 61 #8 $33'-5"$ b10(E) 229 #5 29'-8" b11(E) 361 #9 29'-8" b12(E) 16 #5 29'-8" b12(E) 16 #5 29'-8" c10(E) 12 #4 3'-11" \Box d10(E) 288 #6 8'-7" Λ d11(E) 288 #6 8'-7" Λ d12(E) 288 #6 11'-2" Δ d13(E) 184 #5 5'-4" Γ d13(E) 184 #5 8'-6" Δ e10(E) 8 #8 29'-8" $-$ e11(E) 48 #6 14'-8" $-$ e13(E) 32 #4 14'-8" $-$ w10(E) 28 #5	a11(E)	122	#8	39'-9"	
a13(E) 46 #5 $37'-3"$ a14(E) 61 #8 $37'-3"$ a15(E) 46 #5 $33'-5"$ a16(E) 61 #8 $33'-5"$ b10(E) 229 #5 29'-8" b11(E) 361 #9 29'-8" b12(E) 16 #5 29'-8" b12(E) 16 #5 29'-8" c10(E) 12 #4 3'-11" C d10(E) 288 #6 8'-7" 1 d11(E) 288 #6 8'-7" 1 d12(E) 288 #6 8'-7" 1 d13(E) 184 #5 5'-4" 1 d14(E) 184 #5 8'-6" 1 e10(E) 8 #8 29'-8"	a12(E)	184	#5	7'-4"	
a14(E) 61 #8 $37'-3"$	a13(E)	46	#5	37'-3"	
a15(E) 46 #5 $33'-5"$ a16(E) 61 #8 $33'-5"$ b10(E) 229 #5 $29'-8"$ b11(E) 361 #9 $29'-8"$ b12(E) 16 #5 $29'-8"$ c10(E) 12 #4 $3'-11"$ \Box d10(E) 288 #5 $10'-0"$ 0 d11(E) 288 #6 $8'-7"$ 1 d13(E) 184 #5 $5'-4"$ f d13(E) 184 #5 $8'-6"$ \Box e10(E) 8 #8 $29'-8"$ \Box e11(E) 48 #6 $14'-8"$ \Box e11(E) 48 #6 $14'-8"$ \Box e13(E) 32 #4 $14'-8"$ \Box w10(E) 28 #5 $37'-10"$ \Box w12(E) 28 #5 $31'-9"$ \Box w12(E) 28 #5 $37'-10"$ \Box w12(E) 28 #5 $39'-9"$	a14(E)	61	#8	37'-3"	
a16(E) 61 #8 $33'-5"$ b10(E) 229 #5 $29'-8"$ b11(E) 361 #9 $29'-8"$ b12(E) 16 #5 $29'-8"$ c10(E) 12 #4 $3'-11"$ \Box d10(E) 288 #6 $8'-7"$ \Box d11(E) 288 #6 $8'-7"$ \Box d13(E) 184 #5 $5'-4"$ ζ d13(E) 184 #5 $8'-6"$ \Box e10(E) 8 #8 $29'-8"$ \Box e11(E) 48 #6 $14'-8"$ \Box e11(E) 48 #6 $14'-8"$ \Box e11(E) 48 #6 $14'-8"$ \Box e13(E) 32 #4 $14'-8"$ \Box w10(E) 28 #5 $37'-10"$ \Box w11(E) 12 #5 $31'-9"$ \Box w11(E) 12 #5 $31'-9"$ \Box w11(E) 26 #4	a15(E)	46	#5	33'-5"	
b10(E) 229 #5 29'-8" b11(E) 361 #9 29'-8" b12(E) 16 #5 29'-8" c10(E) 12 #4 3'-11" Image: Constraint of the second of the s	a16(E)	61	#8	33'-5"	
b10(E) 229 #5 29'-8" b11(E) 361 #9 29'-8" b12(E) 16 #5 29'-8" c10(E) 12 #4 3'-11" C d10(E) 288 #5 10'-0" 0 d11(E) 288 #6 8'-7" 1 d12(E) 288 #6 11'-2" 1 d13(E) 184 #5 5'-4" 1 d13(E) 184 #5 8'-6" 1 e10(E) 8 #8 29'-8" 1 e11(E) 48 #6 14'-8" 1 e12(E) 40 #6 29'-8" 1 e13(E) 32 #4 14'-8" 1 w10(E) 28 #5 37'-10" 1 w11(E) 12 #5 31'-9" 1 w11(E) 12 #5 35'-5" 1 w13(E) 12 #5 39'-9" 1 w14(E) 40 #5 39'-9" 1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	b10(E)	229	#5	29'-8"	
b12(E) 16 #5 $29'-8"$	b11(E)	361	#9	29'-8"	
$c10(E)$ 12 #4 $3'-11''$ \Box $d10(E)$ 288 #5 $10'-0''$ \bigcirc $d11(E)$ 288 #6 $8'-7''$ \bigcirc $d12(E)$ 288 #6 $11'-2''$ \bigcirc $d13(E)$ 184 #5 $5'-4''$ \bigcirc $d14(E)$ 184 #5 $8'-6''$ \bigcirc $e10(E)$ 8 #8 $29'-8''$ \bigcirc $e11(E)$ 48 #6 $14'-8''$ \bigcirc $e12(E)$ 40 #6 $29'-8''$ \bigcirc $e13(E)$ 32 #4 $14'-8''$ \bigcirc $e13(E)$ 32 #4 $14'-8''$ \bigcirc $w10(E)$ 28 #5 $37'-10''$ \bigcirc $w11(E)$ 12 #5 $35'-5''$ \bigcirc $w12(E)$ 28 #5 $40'-6''$ \bigcirc $w13(E)$ 12 #5 $35'-5''$ \bigcirc $w14(E)$ 40 #5 $39'-9''$ \bigcirc $w15(E)$ 40 #5	b12(E)	16	#5	29'-8"	
$c10(E)$ 12 #4 3'-11" \Box $d10(E)$ 288 #5 $10'-0"$ \bigcirc $d11(E)$ 288 #6 $8'-7"$ \bigcirc $d12(E)$ 288 #6 $11'-2"$ \bigcirc $d13(E)$ 184 #5 $5'-4"$ \bigcirc $d13(E)$ 184 #5 $8'-6"$ \bigcirc $d14(E)$ 184 #5 $8'-6"$ \bigcirc $e10(E)$ 8 #8 $29'-8"$ $_$ $e11(E)$ 48 #6 $14'-8"$ $_$ $e12(E)$ 40 #6 $29'-8"$ $_$ $e13(E)$ 32 #4 $14'-8"$ $_$ $e14(E)$ 8 #5 $37'-10"$ $_$ $w10(E)$ 28 #5 $31'-9"$ $_$ $w11(E)$ 12 #5 $35'-5"$ $_$ $w13(E)$ 12 #5 $39'-9"$ $_$ $w14(E)$ 40 #5 $39'-9"$ $_$ $w15(E)$ 26 #4 $6'$					
d10(E) 288 #5 10'-0" 1 d11(E) 288 #6 8'-7" 1 d12(E) 288 #6 11'-2" 1 d13(E) 184 #5 5'-4" [d13(E) 184 #5 5'-4" [d13(E) 184 #5 5'-4" [d14(E) 184 #5 5'-4" [e10(E) 8 #8 29'-8"	c10(E)	12	#4	3'-11"	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	d10(E)	288	#5	10'-0''	Q
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	d11(E)	288	#6	8'-7"	N
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	d12(E)	288	#6	11'-2"	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	d13(E)	184	#5	5'-4"	ſ
e10(E) 8 #8 29'-8" e11(E) 48 #6 14'-8" e12(E) 40 #6 29'-8" e13(E) 32 #4 14'-8" e13(E) 32 #4 14'-8" e14(E) 8 #4 29'-8" w10(E) 28 #5 37'-10" w10(E) 28 #5 31'-9" w12(E) 28 #5 40'-6" w13(E) 12 #5 35'-5" w14(E) 40 #5 39'-9" w13(E) 12 #5 35'-5" w14(E) 40 #5 39'-9" w15(E) 40 #5 39'-9" t10(E) 288 #4 9'-8" t11(E) 26 #4 6'-8" Concrete Structures Cu. Yd. 46.3 Concrete Structures Cu. Yd. 46.4 Bridge Deck Grooving Sq. Yd. 663	d14(E)	184	#5	8'-6"	Γ
e10(E) 8 #8 29'-8" e11(E) 48 #6 14'-8" e12(E) 40 #6 29'-8" e13(E) 32 #4 14'-8" e14(E) 8 #4 29'-8" w10(E) 28 #5 37'-10" w10(E) 28 #5 31'-9" w12(E) 28 #5 40'-6" w13(E) 12 #5 35'-5" w14(E) 40 #5 33'-4" w15(E) 40 #5 39'-9" t10(E) 288 #4 9'-8" t11(E) 26 #4 6'-8" concrete Structures Cu. Yd. 46.3 Concrete Superstructure Cu. Yd. 46.4 Bridge Deck Grooving Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Epoxy Coated Pound 102,490 Noise Abatement Wall Each 12					
e11(E) 48 #6 14'-8" e12(E) 40 #6 29'-8" e13(E) 32 #4 14'-8" e14(E) 8 #4 29'-8" w10(E) 28 #5 37'-10" w10(E) 28 #5 31'-9" w12(E) 28 #5 40'-6" w13(E) 12 #5 35'-5" w14(E) 40 #5 39'-9" w15(E) 40 #5 39'-9" t10(E) 288 #4 9'-8" t11(E) 26 #4 6'-8" Concrete Superstructure Cu. Yd. 46.3 Concrete Structures Cu. Yd. 46.6 Bridge Deck Grooving Sq. Yd. 484 Protective Coat Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Epoxy Coated Pound 102,490 Noise Abatement Wall Each 12	e10(E)	8	#8	29'-8''	
e12(E) 40 #6 29'-8"	e11(E)	48	#6	14'-8''	
e13(E) 32 #4 14'-8" e14(E) 8 #4 29'-8" w10(E) 28 #5 37'-10" w11(E) 12 #5 31'-9" w12(E) 28 #5 40'-6" w13(E) 12 #5 35'-5" w14(E) 40 #5 33'-4" w15(E) 40 #5 39'-9" w15(E) 40 #5 39'-9" w15(E) 40 #5 39'-9" w15(E) 40 #5 39'-9" t10(E) 288 #4 9'-8" concrete Structures Cu. Yd. 46.3 Concrete Structures Cu. Yd. 46.6 Bridge Deck Grooving Sq. Yd. 484 Protective Coat Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Epoxy Coated Pound 102,490 Noise Abatement Wall Achoor Rod Assembly Each 12	e12(E)	40	#6	29'-8''	
e14(E) 8 #4 29'-8"	e13(E)	32	#4	14'-8''	
w10(E) 28 #5 37'-10" w11(E) 12 #5 31'-9" w12(E) 28 #5 40'-6" w13(E) 12 #5 35'-5" w14(E) 40 #5 33'-4" w15(E) 40 #5 33'-4" w15(E) 40 #5 39'-9" w11(E) 26 #4 6'-8" Concrete Structures Cu. Yd. 46.3 Concrete Structures Cu. Yd. 46.6 Bridge Deck Grooving Sq. Yd. 484 Protective Coat Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Epoxy Coated Pound 102,490 Noise Abatement Wall Each 12	e14(E)	8	#4	29'-8''	
w10(E) 28 #5 37'-10"					
w11(E) 12 #5 31'-9" w12(E) 28 #5 40'-6" w13(E) 12 #5 35'-5" w14(E) 40 #5 33'-4" w15(E) 40 #5 39'-9" w15(E) 40 #5 39'-9" w15(E) 40 #5 39'-9" w10(E) 288 #4 9'-8" t10(E) 288 #4 9'-8" concrete Superstructures Cu. Yd. 46.3 Concrete Superstructure Cu. Yd. 46.6 Bridge Deck Grooving Sq. Yd. 484 Protective Coat Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Epoxy Coated Pound 102,490 Noise Abatement Wall Each 12	w10(E)	28	#5	37'-10"	
w12(E) 28 #5 40'-6" w13(E) 12 #5 35'-5" w14(E) 40 #5 33'-4" w15(E) 40 #5 39'-9" w15(E) 40 #5 39'-9" t10(E) 288 #4 9'-8" t11(E) 26 #4 6'-8" concrete Superstructure Cu. Yd. 46.3 Concrete Superstructure Cu. Yd. 46.6 Bridge Deck Grooving Sq. Yd. 484 Protective Coat Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Pound 102,490 Noise Abatement Wall Each 12	w11(E)	12	#5	31'-9"	
w13(E) 12 #5 35'-5" w14(E) 40 #5 33'-4" w15(E) 40 #5 39'-9" t10(E) 288 #4 9'-8" t11(E) 26 #4 6'-8" Concrete Structures Cu. Yd. 46.3 Concrete Superstructure Cu. Yd. 46.6 Bridge Deck Grooving Sq. Yd. 484 Protective Coat Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Epoxy Coated Pound 102,490 Noise Abatement Wall Anchor Rod Assembly Each 12	w12(E)	28	#5	40'-6"	
w14(E) 40 #5 33'-4" w15(E) 40 #5 39'-9" t10(E) 288 #4 9'-8" t11(E) 26 #4 6'-8" Concrete Structures Cu. Yd. 46.3 Concrete Superstructure Cu. Yd. 46.6 Bridge Deck Grooving Sq. Yd. 484 Protective Coat Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Epoxy Coated Pound 102,490 Noise Abatement Wall Anchor Rod Assembly Each 12	w13(E)	12	#5	35'-5"	
w15(E) 40 #5 39'-9" t10(E) 288 #4 9'-8" t11(E) 26 #4 6'-8" Concrete Superstructures Cu. Yd. 46.3 Concrete Superstructure Cu. Yd. 46.6 Bridge Deck Grooving Sq. Yd. 484 Protective Coat Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Epoxy Pound 102,490 Noise Abatement Wall Each 12	w14(E)	40	#5	33'-4"	
t10(E) 288 #4 9'-8" t11(E) 26 #4 6'-8" Concrete Superstructures Cu. Yd. 46.3 Concrete Superstructure Cu. Yd. 46.6 Bridge Deck Grooving Sq. Yd. 484 Protective Coat Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Pound 102,490 Noise Abatement Wall Each 12	w15(E)	40	#5	39'-9"	
t10(E) 288 #4 9'-8" t11(E) 26 #4 6'-8" Concrete Structures Cu. Yd. 46.3 Concrete Superstructure Cu. Yd. 46.6 Bridge Deck Grooving Sq. Yd. 484 Protective Coat Sq. Yd. 663 Concrete Superstructure Cu. Yd. 213.4 Reinforcement Bars, Epoxy Pound 102,490 Noise Abatement Wall Each 12					
t11(E)26#46'-8"ConcreteStructuresCu. Yd.46.3ConcreteSuperstructureCu. Yd.46.6BridgeDeckGroovingSq. Yd.484ProtectiveCoatSq. Yd.663ConcreteSuperstructureCu. Yd.213.4ReinforcementBars,Pound102,490EpoxyCoatedPound12NoiseAbatementWallEach12	t10(E)	288	#4	9'-8''	
Concrete StructuresCu. Yd.46.3Concrete SuperstructureCu. Yd.46.6Bridge Deck GroovingSq. Yd.484Protective CoatSq. Yd.663Concrete Superstructure (Approach Slab)Cu. Yd.213.4Reinforcement Bars, Epoxy CoatedPound102,490Noise Abatement Wall Anchor Rod AssemblyEach12	t11(E)	26	#4	6'-8''	
Concrete StructuresCu. Yd.46.3Concrete SuperstructureCu. Yd.46.6Bridge Deck GroovingSq. Yd.484Protective CoatSq. Yd.663Concrete Superstructure (Approach Slab)Cu. Yd.213.4Reinforcement Bars, Epoxy CoatedPound102,490Noise Abatement Wall Anchor Rod AssemblyEach12					
Concrete SuperstructureCu. Yd.46.6Bridge Deck GroovingSq. Yd.484Protective CoatSq. Yd.663Concrete Superstructure (Approach Slab)Cu. Yd.213.4Reinforcement Bars, Epoxy CoatedPound102,490Noise Abatement Wall Anchor Rod AssemblyEach12	Concrete	Structur	es	Cu. Yd.	46.3
Bridge Deck GroovingSq. Yd.484Protective CoatSq. Yd.663Concrete Superstructure (Approach Slab)Cu. Yd.213.4Reinforcement Bars, Epoxy CoatedPound102,490Noise Abatement Wall Anchor Rod AssemblyEach12	Concrete	Superstr	ucture	Cu. Yd.	46.6
Protective CoatSq. Yd.663Concrete Superstructure (Approach Slab)Cu. Yd.213.4Reinforcement Bars, Epoxy CoatedPound102,490Noise Abatement Wall Anchor Rod AssemblyEach12	Bridge D	eck Groov	/ing	Sq. Yd.	484
Concrete Superstructure (Approach Slab)Cu. Yd.213.4Reinforcement Bars, Epoxy CoatedPound102,490Noise Abatement Wall Anchor Rod AssemblyEach12	Protective	e Coat		Sq. Yd.	663
(Approach Slab)Cu. Tu. 213.4Reinforcement Bars, Epoxy CoatedPound102,490Noise Abatement Wall Anchor Rod AssemblyEach12	Concrete	Superstr	ucture	Cu Vd	2121
Reinforcement Bars, Epoxy CoatedPound102,490Noise Abatement Wall Anchor Rod AssemblyEach12	(Approach	n Slab)		си. та.	213.4
Epoxy CoatedPound102,490Noise Abatement WallEach12Anchor Rod AssemblyEach12	Reinforce	ement Bai	۶,	Dound	102 400
Noise Abatement Wall Anchor Rod Assembly Each 12	Ероху Со	ated		Pouna	102,490
Anchor Rod AssemblyEach12	Noise Aba	atement V	Vall	Each	17
	Anchor R	od Assem	ibly	Eatli	12

REVISED ENTIRE SHEET 6/10/2024

SECTION

FAP 345-23-BR

345

<u> </u>			$\left \right\rangle$
4 of th	P		\sum
ctures,	the		
the tot	al		
norstri	icture		5
Slab).	icture.		К
			K
r) = 2.0) kst.		K
ee she	et 31 of	35.	$\boldsymbol{\mathcal{L}}$
			\sum
)
			$\overline{)}$
			1
			К
			K
			$\boldsymbol{\boldsymbol{\lambda}}$
			$\boldsymbol{\mathcal{L}}$
)
<u>HES</u>			
RIAL			5
nath	Chana	1	К
ngtn 9'_9"	Shape		К
9'-9"			K
'-4''			$\boldsymbol{\lambda}$
7'-3'' 7' 2''			\sum
-5"			
8'-5")
ייסינ			
9'-0 9'-8''			5
9'-8''			К
1 1"	_		K
-11			K
0'-0''	0		K
'-7"	<u>N</u>		$\boldsymbol{\mathcal{L}}$
'-4''	<u> </u>		\sum
'-6''	$\$		
2'-8")
4'-8'')
9'-8"			5
4'-8'' 2'-8''			К
, 0			К
'-10''			K
1'-9" 1'-6"			K
5'-5"			$\left \right\rangle$
8'-4''			\sum
9'-9"			
'-8''			
'-8'')
Yd	46.3		$\overline{)}$
. Yd.	46.6		К
ı. Yd.	484		К
ı. Yd.	663		K
.Yd.	213.4		K
ound	102 490		$\left \right\rangle$
			$\left \right\rangle$
ach	12		$\left \right\rangle$
I			
HEET 6	/10/2024)
	TOTAL	HEET	
KANE	SHEETS 379	NO. 194	
CONTR	ACT NO. 62	U83	К

	<u> </u>	<u> </u>					-	1-
PLAN	F.A.P. RTE	SEC.	TION		COUNTY	TOTAL SHEETS	SHEET NO.	-
045-0007	345	FAP 34	5-23-BR		KANE	379	196	
045-0007					CONTRA	CT NO. 6	32U83	1
5 SHEETS			ILLINOIS	FED. A	D PROJECT			
	$\nabla \nabla$	\mathcal{X}	\mathcal{T}	\sum	$\overline{\mathcal{X}}$	\mathcal{T}	∇	_

	INTE	RIOR GIRDER MOME	NT TABLE	
		0.26 Sp. 1 or 0.74 Sp. 3	Pier	0.5 Sp. 2
Is	(in⁴)	5,900	5,900	5,900
$I_c(n)$	(in⁴)	16,811	-	16,811
Ic(3n)	(in⁴)	12,514	-	12,514
I _c (cr)	(in⁴)	-	8,288	-
S₅	(in³)	359	359	359
Sc(n)	(in³)	544	-	544
Sc(3n)	(in³)	493	-	493
Sc(cr)	(in³)	-	421	-
Sx	(in³)	537	408	507
DC1	(k/')	0.74	0.74	0.74
MDC1	('k)	35	250	190
DC2	(k/')	0.72	0.72	0.72
Mdc2	('k)	34	242	184
DW	(k/')	0.29	0.29	0.29
Mow	('k)	14	99	75
LLDF		0.600	0.564	0.539
M4 + 1M	('k)	342	466	498
f ₁ (Strength I)	(ksi)	-	-	-
$M_u + \frac{1}{3} f_{\ell} S_X$	('k)	712	1,579	1,452
$Ø_f M_n$	('k)	2,893	2,124	2,742
fs DC1	(ksi)	1.17	8.36	6.36
fs DC2	(ksi)	0.83	6.90	4.48
fs DW	(ksi)	0.45	2.82	1.83
fs (4+IM)	(ksi)	7.5	13.3	11.0
fs+ ^{fl} / ₂ (Service I	I) (ksi)	12.3	35.4	26.9
Service II Resistar	nce (ksi)	47.5	47.5	47.5
fs+ ^{fl} / ₃ (Strength	I) (ksi)		-	-
Ø _f F _n	(ksi)		-	-
Vf	(k)	45.7	54.9	33.7

GIRDER REA	ACTIC	ON TABLE	
		W. & E. Abut.	Pier 1 & 2
LLDF		0.658	0.658
OCF		1.00	-
RDC1	(k)	13.1	46.4
R _{DC2}	(k)	6.9	44.6
Row	(k)	2.8	18.2
R Ł	(k)	41.3	73.3
R _{Im}	(k)	11.4	15.3
R _{Total} (Strength I)(Impact)	(k)	121.5	295.9
RTotal (Strength I)(No Impact)	(k)	101.5	269.2

2

- Strength I load combination of factored design moments (kip-ft.). M_{U} : 1.25 (M_{DC1} + M_{DC2}) + 1.5 M_{DW} + 1.75 M⁴ + IM
- $\phi_f M_n$: Factored nominal flexural resistance of the section determined as specified in Article 6.10.7.1 or A6 as applicable (kip-ft.).

1" Rad.

Beam No.	Ç Brg. W. Abut.	(
1	750.45	
2	750.82	
3	750.92	
4	751.01	
5	751.10	
6	751.19	
7	751.27	
8	751.19	
9	751.10	
10	751.01	
11	750.92	
12	750.82	
13	750.73	
14	750.39	

<u>1½</u>	$\frac{1}{1}$
<u>+</u> <i>±2/16</i> ^{<i>i</i>}	↓ ½"x5" Connection ₽***
$\frac{5}{1} \frac{5}{2} \frac{5}{8}$	←
typ.	$ \begin{array}{c} & & & & \\ \hline \\ \hline$

INTERIOR DIAPHRAGM - D

(133 Required) ****Brg. Stiff. shall be used in lieu of Connection P at piers **** See note (*) on sheet 23 of 35, and Diaphragm

Slotted Hole Detail this sheet.

DIAPHRAGM SLOTTED HOLE DETAIL (Along Construction Line)

*** Brg. Stiff. shall be used in lieu of Connection P at piers

* Stop welds $\frac{1}{4}$ ($\pm \frac{1}{8}$ ") from edges as shown, typ.

WEB WELD DETAIL

– Std. clip

	USER NAME = mzelisko	DESIGNED - MZ	REVISED -			F.A.P.	SECTION	COUNTY	TOTAL S	HEET
GANNEII		CHECKED - SS	REVISED -	STATE OF ILLINOIS		345	EAP 345-23-BR	KANE	379	197
	PLOT SCALE =	DRAWN - LAM	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 045-0007	010		CONTRA	CT NO. 62	U83
	PLOT DATE = 5/8/2024	CHECKED - MZ	REVISED -		SHEET 24 OF 35 SHEETS		ILLINOIS FED. A	D PROJECT		
入7:2 3: 05 M 人人人	くくくくくくくくく			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u> </u>				<u> </u>

	fs DC1:	Un-fa flang	actored stress a e due to vertica	t edge of flange I non-composite	e for controlling dead loads as	g steel calculated					
		below	(ksi).								
	fs DC2:	™ DC1 Un-fa flang	/ Ss actored stress a e due to vertica	t edge of flange L composite dead	for controlling	g steel ulated					
		below	(ksi).			aracea					
	f DW.	MDC2	/ Sc(3n) or M DC2	e / S _c (cr) as app.	licable.	a staal					
	Is DW:	fland	e due to vertica	l euge of flange I composite futu	re wearing sur	fare					
		loads	as calculated b	elow (ksi).	re wearing sur	1400					
		Mow /	Sc(3n) or Mow/	$S_c(cr)$ as applic	able.						
fs	(4 + IM):	Un-fa	nctored stress a	t edge of flange	for controlling	g steel					
		flang	e due to vertica Latad balaw (kci	l composite live	load plus impa	ct loads as					
		Mu	M / S_(n) or M4	/ Sc(cr) as .	annlicahle						
fs + fl /2 (Se	rvice II):	Sum	of stresses as o	computed below ((ksi).						
		fs DC	$C1 + f_s DC2 + f_s$	DW + 1.3 fs (4	+ IM) + f _l /2						
Service II Re	sistance:	Сотр	osite (0.95R _h F _{yf} ,) or noncomposit	e (0.80RhFyf) s	tress capacity					
f 1 f. /7 /C+	consth I);	accor	ding to Article 6	5.10.4.2 (ksi).	on non compoct	costions (ksi)					
1s + 11/5 (50)	ength T):	1 25 .	(fr DC1 + fr DC	2) + 15 fc DW +	- 175 fe (4 + 1	M + $f_{0}/3$					
	$\Phi_f F_n$:	Facto	red nominal fle	kural resistance	of the section	as					
		speci	fied in Article 6	.10.7.2 or 6.10.8	as applicable	(ksi).					
	Vf:	Maxir	num factored sh	ear range in spa	an computed ac	cording					
	005	to Ar	ticle 6.10.10.	star according t	Article 167						
	UCF:	furth	UDTUSE COFFECTION FACTOR ACCORDING TO ARTICLE 4.6.2.2.3c or as further simplified by IDOT provisions								
	R DC1 :	Un-fa	Un-factored reaction due to non-composite dead load (kin).								
	R DC2 :	Un-fa	actored reaction	due to long-teri	n composite (su	iperimposed					
	-	exclu	ding future wea	ring surface) de	ad load (kip).						
	R DW :	Un-ta	actored reaction	due to long-teri	n composite (si ad (kin)	iperimposed					
	R4 :	Un-fa	e wearnig surra actored live load	reaction (kin).	au (KIP).						
	RIM :	Un-fa	actored dynamic	load allowance (impact) (kip).						
al (Strength I)(Impact):	Strer	ngth I load comb	ination of factor	ed design reac	tions (kip).					
		1.25	$(R_{DC1} + R_{DC2}) +$	1.5R DW + 1.75 (R	(4 + R IM)						
(Strength I)(No	(Impact):	Stren	igth I load comb ding dynamic loa	ination of factor d allowanco (Im	ed design reac	tions, not					
		1.25	(Rnci + Rncz) +	1.5Rpw + 1.75 (R_{4})						
			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
		¥	*T								
Bra W Abut	a Solic	р 1 Гр. 1	f Pier 1	G Splice 2	G Pier 2	<u> </u>					
750.45	7.50.08	3	749.74	748.74	748.45	747.74					
750.82	750.4	4	750.11	749.11	748.82	748.11					
750.92	750.5	5	750.21	749.21	748.92	748.22					
751.01	750.6.	3	750.30	749.30	749.01	748.31					
751.10	750.72	2	750.39	749.38	749.10	748.39					
751.19	/50.8	1	750.48	749.48	749.19	748.48					
751.27	750.90) 1	750.30	7 49.55	7/9.27	748.50					
751.19	750.8	1 2	750.40	749.40	749.19	748.40					
751.01	750.72	-	750.39	749 30	749.10	748 31					
750.92	7.50.5	5	750.21	749.21	748.92	748.22					
750.82	750.4	4	750.11	749.11	748.82	748.11					

Notes:

750.35

750.01

750.02

749.68

1. All beam structural steel members, bearing stiffener plates and splice plates shall be AASHTO M270, Grade 50.

749.02

748.68

748.73

748.39

748.02

747.69

- 2. Two hardened washers required for each set of oversized holes.
- Alternate channels of equal depth and larger weight are permitted 3. to facilitate material acquisition. Alternate channels if utilized, shall be provided at no additional cost to the Department.

ARING DETAILS	F.A.P. RTE			r i on		COUNTY			TOTAL SHEETS	SHEE NO.	ΞT	
045-0007	345	FAP 345-23-BR KANE							379	198	;	
045-0001							C	ONTI	RAC	T NO.	82U83	3
35 SHEETS					ILLINOIS	FED. A	D PROJE	СТ				_
	λ λ	X	λ	X	X	λλ	λ	X	X	7	7 7	ς

	2
	$\left \right\rangle$
	$ \uparrow$
	$ \langle$
	$\left \right\rangle$
	$\left \uparrow \right $
	$ \langle$
	$\left \right\rangle$
)
	$ \mathcal{A} $
	$ \langle$
	$\left \right\rangle$
	$\left \right\rangle$
	$ \mathcal{T} $
	$ \langle$
	$\left \right\rangle$
	$\left \right\rangle$
	$ \langle$
	$ \langle$
	$\left \right\rangle$
)
	$ \mathcal{T} $
	$ \langle$
	$\left \right\rangle$
	$\left \uparrow \right $
	$ \langle$
	$ \langle$
	$\left \right\rangle$
	$\left \uparrow \right $
	$ \langle$
	$\left \right\rangle$
	[⁻)
	$ \mathcal{T} $
	$ \langle$
	$\left \right\rangle$
	$\left \right\rangle$
	$ \langle$
	$\left \right\rangle$
	$\left \right\rangle$
	$ \langle$
	$ \langle$
	$\left \right\rangle$
)
	$ \uparrow$
	$ \langle$
	$\left \right\rangle$
	「)
	$ \mathcal{T} $
	$\left \right $
	$ \rangle$
	$\left \right)$
	$\left \right\rangle$
	$ \uparrow $
	$ \langle$
	$\left \right\rangle$
)
	$\left \uparrow \right $
	$ \langle$
	$ \langle$
1	$\left \right\rangle$
	L \

*EXISTING SEAT ELEV (For Information Only)

Exist. Beam No.	W. Abut.
1	746.35
2	745.91
3	747.16
4	747.19
5	747.27
6	747.27
7	747.35
8	747.34
9	747.23
10	747.23
11	747.14
12	747.14
13	745.90
14	745.93
15	746.29

-Outside face of exist. wingwall, typ.

> *As Surveyed Seat Elev. Contractor shall verify prior to ordering bearing materials and fill plates. See sheet 28 of 35 for existing beam locations.

	<u>AI</u>	WES	I ABL	JIMEN	<u>/</u>
	Bar	No.	Size	Length	Shape
	h20(E)	6	#5	13'-6"	
	h21(E)	2	#5	7'-9"	-
	h22(E)	2	#5	5'-0"	
	h23(E)	6	#5	10'-11''	
	d20(E)	12	#5	1'-7"	
	d21(E)	15	#5	1'-11"	
	u20(E)	8	#5	5'-11"	
	u21(E)	12	#5	4'-5"	
	u22(E)	15	#5	5'-3''	
	Concrete	Removal		Cu.Yd.	15.4
	Structure	e Excavat	ion	Cu. Yd.	98.1
	Concrete	Structur	es	Cu. Yd.	3.7
15'-0" 742 17 Elev. 742 02	Reinforce Epoxy Co	ment Bai ated	rs,	Pound	420
(Outlet to	Granular for Struc	Backfill tures		Cu. Yd.	140.9
	Geocompo	site Wali	Drain	Sq. Yd.	67
	Pipe Unde	erdrains		Foot	109
	Slope Wa	ll Crack	Sealing	Foot	63

BILL OF MATERIAL

NOTES

1. See sheet 31 of 35 for details and sections. 2. Bill of material includes slopewall repair quantity shown on sheet 31 of 35

**Modified retainer shall be used for this side of bearing to miss exist. anchor bolt at Beams 2, 3, 11 & 12. See sheet 25 of 35 for additional details and quantities.

N & ELEVATION	F.A.P. SECTION						COUNTY			TOTAL SHE SHEETS N		ET .
045-0007	345	FAP 345-23-BR					K	ANE		379	202	2
043-0001							0	ONT	RAC	T NO.	52U8:	3 -
35 SHEETS					ILLINOIS	FED. A	D PROJE	СТ				
	λХ	λ	λ	У	У	λλ	λ	λ	λ	λ	λ.	Σ.

*EXISTING	SEAT	ELEV
(For Inform	nation Oi	nlv)

Exist. Beam No.	E. Abut.
1	744.14
2	743.55
3	744.89
4	744.89
5	744.95
6	744.98
7	745.03
8	745.03
9	744.94
10	744.94
11	744.86
12	744.85
13	743.54
14	743.50
15	74416

Outside face of exist. wingwall, typ.

<u>EL. 745.04</u> <u>EL. 744.70</u>

Top of Exist.

*As Surveyed Seat Elev. Contractor shall verify prior to ordering bearing materials and fill plates. See sheet 28 of 35 for existing beam locations.

BILL OF MATERIAL

AT EAST ABUTMENT

tura	l Repair	01
ete (´D<=5″)	

Structural Repair of Concrete (D>5")

Epoxy Crack Injectio

1					
e (D>5")	Bar	No.	Size	Length	Shape
	h22(E)	2	#5	5'-0''	
Caraly In in shire	h23(E)	4	#5	10'-11"	
Lrack Injection	h24(E)	2	#5	6'-3''	_
	h25(E)	4	#5	10'-5"	
	d21(E)	14	#5	1'-11"	
	d22(E)	10	#5	1'-2"	
	u20(E)	6	#5	5'-11"	
	u22(E)	14	#5	5'-3''	
	u23(E)	10	#5	3'-5"	
	Concrete	Removal		Cu. Yd.	15.3
	Structure	e Excavat	Cu. Yd.	90.9	
	Concrete	Structur	Cu.Yd.	2.7	
	Reinforce	ement Ba	rs,	Dound	200
5'-0" Elou	Ероху Со	ated		Pouna	300
.39 / 739.24	Epoxy Cr	ack Inje	ction	Foot	4
(Outlot to	Granular	Backfill		Cu Val	1 7 1 7
davlight)	for Struc	tures		Cu. ru.	121.2
	Geocompo	site Wal	Drain	Sq. Yd.	60
Ŧ	Pipe Und	erdrains		Foot	106
n	Slope Wa	II Crack	Sealing	Foot	65
+	Structura	al Repair	of		
	Concrete	(Depth e	qual	Sq. Ft.	2
<u> </u>	to or les.	s than 5	inches)	,	
	Structura	al Repair	of		
	Concrete	(Depth g	reater	Sq. Ft.	8
	than 5 in	ches)			

NOTES

1. See sheet 31 of 35 for details and sections. 2. Bill of material includes slopewall repair quantity shown on sheet 31 of 35

**Modified retainer shall be used for this side of bearing to miss exist. anchor bolt at Beams 2, 3, 11 & 12. See sheet 25 of 35 for additional details and quantities. \triangle REVISED ENTIRE SHEET 6/10/2024

	4		ONEET 0/	10/202	
EVATION	F.A.P. RTE	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
207	345	FAP 345-23-BR	KANE	379	203
501			CONTRA	CT NO. 6	62U83

ILLINOIS FED. AID PROJECT

~ ~ ~ ~ ~ ~

FLEMING LOT SCALE = 4.0000 ' / in. DRAWN - LAM REVISED -**DEPARTMENT OF TRANSPORTATION** PLOT DATE = 5/8/2024 CHECKED - MZ REVISED -

 λ λ λ λ λ

 Δ

SHEET 31 OF

						0/202	•	-	
045-0007		SEC	SECTION			TOTAL SHEETS	SHEET NO.	-	
		5 345-23-BR			KANE	379	204		
					CONTRA	CT NO. 6	32U83	1	
35 SHEETS	ILLINOIS FED. AID PROJECT								

Pier 2	
44.05	
44.22	
44.22	
44.32	
44.31	
44.42	
44.38	
44.40	
44.39	
44.26	
44.27	
44.16	
44.15	
43.99	
43.91	

NOTES

- 1. Existing vertical reinforcement bars extending into concrete removal areas shall be cleaned, straightened and incorporated into new concrete. Cost included with Concrete Removal.
- 2. Any reinforcement bars to be incorporated that are damaged during concrete removal operations shall be repaired or replaced using an approved bar splicer or anchorage system. Cost included with Concrete Removal
- 3. The ends of existing reinforcement bars which are cut & exposed shall be coated with epoxy. Cost included with Concrete Removal.
- 4. Temporary lighting to be maintained during construction, see electrical plans.

\triangle REVISED ENTIRE SHEET 6/10/2024

									.4			
& REPAIRS	F.A.P. RTE	SECTION			со	UNTY	S	TOTAL SHEETS	SHE	ET C.		
045-0007		FAP 345-23-BR			ĸ	٩NE		379	20)5		
045-0007					С	ONTF	RAC	T NO. (32U8	33		
5 SHEETS					ILLINOIS	FED. A	D PROJE	СТ				
$\overline{\lambda \lambda \lambda \lambda \lambda \lambda \lambda \lambda \lambda \lambda}$	$\overline{\lambda}$ $\overline{\lambda}$	X	λ	X	X	7 7	<u> </u>	X	X	X	λ	$\overline{\lambda}$

GENERAL NOTES		OF SHEFTS	<u>1 </u>		
					STA. 440+55.54
Fasteners shall be ASTM F3125 Grade A325 Type 1, mechanically	1	General Plan & Elevation			REBUILT 20 BY
gaivanized bolts in painted areas. Bolts γ_8 -in. Ø, holes γ_{16} -in. Ø, unless otherwise noted	∠ 3	oeneral Data Pre-Stage Deck Renairs			STATE OF ILLINOIS
	4	Construction Staging		F.A.P.	RT. 345 SEC. 345-23-BR
Calculated weight of Structural Steel	5	Temporary Concrete Barrie	er for Stage Construction		LOADING HL-93
= 145,720 pounds (AASHTO M270 Grade 50)	6	Top of Slab Elevations Lay	out		STR. NO. 016-0217
= 10,610 pounds (AASHTO M270 Grade 36)	7	Top of Slab Elevations I			
No field welding is permitted event as specified in the septrast	8	Top of Slab Elevations II			NAME PLATE
documents	9 10	Top of West Approach Slal	, Elevations		See Std. 515001
documents.	10	Top of East Approach Slat	Elevations	Existing	Name Plate shall be cleaned
Reinforcement bars designated (E) shall be epoxy coated.	12	Superstucture Plan		and relo	ocated next to new Name Plate.
	13	Superstucture Cross Secti	on	Cost inc	luded with Name Plates.
Slipforming of the median barrier is not allowed.	14	Superstructure Details I			
If the Contractor elects to use cantilever forming brackets on the	15	Abutment Dianbragm Detail	Is I		65
exterior beams or girders, the brackets shall be placed at the same	17	Abutment Diaphragm Detail	ls II		-68
locations as required for the hardwood blocks in Article 503.06(b) of	18	Bridge Approach Slab Plan			38+
the Standard Specifications. If additional cantilever forming brackets	19	Bridge Approach Slab Deta	ails		28. 28. 28.
are required, hardwood blocking shall be wedged between the	20	Drainage Scupper, DS-11	ation		<u>5ta</u> <u>. 7</u> <u>. 7</u>
exterior and first interior beam at each of these additional bracket	21	Ream Details	ation		Level 1
	23	Abutment Bearing I			V.C. = 600 ft.
The finishing machine rails shall be placed on the top flange of the	24	Abutment Bearing II			-3.08% -3.02%
exterior beams within the deck pour. Beam blocks shall be placed	25	Pier Bearing			5.00% · 5.01
between beams at all tie locations in each bay for the full width of	26	Abutment Removal			Siructure 6
the deck pour.	27	Abutment Repairs			Limits <u>9+</u> +
Bearing seat surfaces shall be constructed or adjusted to the	20 29	Pier Repair			<u>9.0</u>
designated elevations within a tolerance of $\frac{1}{2}$ inch (0.01 ft.).	30	Pier Details			<u>71</u>
Adjustment shall be made either by grinding the surface or by	31	Bar Splicer Assembly and	Mechanical Splicer Detail	5	<u>St</u> ev.
shimming the bearings.	32	Concrete Parapet Slipform	ing Option		EI
		11'-	-3"	Bk. of Abut.	PROFILE GRADE – US 20
Layout of the slope protection system may be varied to suit ground		(Stage I and	II Sheeting)		4-ft offset (Eastbound & Westbound)
in the rich as an effect by the Engineer.				W. ADUL. EL. 725.21	
Plan dimensions and details relative to existing structure have been	Ground surface/Top —				
taken from existing plans are subject to nominal construction	of sheet piling				DU DUE (man Antista 1051.00 of
variations. The Contractor shall field verify existing dimensions and	F. Abut. El. 723.80				2" PJF (per Article 1051.09 of
adjustments prior to construction or ordering of materials. Such	21718001 2117 20100				full width and vertically at
variations shall not be cause for additional compensation for a					edge bonded to abutment cap
change in scope of the work, however, the Contractor will be paid for					and wingwalls with suitable
the quantity actually furnished at the unit price bid for the work.		1.16H (W. Abut.)			adnesive as recommended by
The existing structural steel coating contains lead Contractor shall	Maximum —	1.23H (E. Abut.)			δαρρήτει. ξ W24 k
take appropriate precautions to address the presence of lead on this	excavation line				. Abut. El. 721.12
project.				E	. Abut. El. 719.80
	Tip of sheet piling—	-			
The Organic Zinc Rich Primer / Epoxy / Urethane Paint System shall	W. Abut. El. 710.6				Elastomeric Bearing
noted The entire system shall be shon applied with the exception of	E. Abut. El. 708.7				(typical except at
the exterior surface and the bottom of the bottom flange of fascia				↓	. Abut. El. 717.80 fascia beam)
beams, masked off connection surfaces, and field installed fasteners				E	. Abut. El. 716.66
shall all be touched up and finish coated in the field. The color of				4	2,~~ /
the final finish coat for all interior steel surfaces shall be Gray,					Exist. Conc. —/
and bottom flange of the fascia beams shall be Reddish Brown					Slopewall to
Munsell No. 2.5YR 3/4.					Kemain
This project requires a US Army Corps of Engineers permit, and the			$\Sigma \parallel \parallel \parallel$		
Contractor shall adhere to the conditions, requirements, and		Min. tip elev or	•/ `\\		
Commitments regarding the work at Poplar Creek.		sheet piling			CE
A Cofferdam (Type I) (In-Stream/Wetland Work) is identified to divert			\times \parallel		<u>SE</u>
stream flow to complete the riprap work. It is anticipated that the			\sim	J — Min. tip	* Included in the c
Cofferdam will be placed on top of the streambead and not penetrate			2'-0"	W. Abut. El. 702.05	** Granular Backfill
or disturb the streambed. All erosion control measures identified in			1	E. Abut. El. 700.91	shall be Grad CA
ine erosion control plans should be implemented when performing this		Minimum	Section		according to Arti
		Modulus =	10.6 in³/ft		*** Cost included wit
The removal of cribbing at both abutments shall be included in the			ADADY CHEET DI	INC	with of vertical with nuts and wa
cost of Removal of Existing Superstructure No. 2.		<u>I E M P</u>	UKAKI SHEEL PIL	.11/0	details of the ¹ /-
		(Along	g Q US 20 at each abutme	ent)	Note:
		If the Contractor chooses	to alter the temporary o	antilevered sheet piling	All drainage
▶ 		design requirements show	n on the plans, a design	submittal including plan d	letails wingwalls. Place
2^{2} REVISED ENTIRE S	HEET 6/10/2024	and calculations will be r	equired for review and a	cceptance by the Engineer	601.05 of the St
USER NAME = mzelisko DESIGNFD - M7	REVISED -				
					GENERALI

DEL: Defabl		GANNETT	USER NAME = mzelisko PLOT SCALE =	DESIGNED - MZ CHECKED - DF DRAWN - LAM	REVISED - REVISED - REVISED -	STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION	GENERAL DA STRUCTURE NO. C
	PLOT DATE = 5/14/2024	CHECKED - DF	REVISED -		SHEET 2 OF 32		
$\langle \cdot \rangle$	=2010201	λ_{1}					

I for Structures shall follow Std. Spec. 586 except the coarse aggregate 7, CA11 or CA14. Granular backfill behind the abutments shall be compacted icle 205.06 of the Standard Specifications.

th Concrete Superstructure. Fabric mat shall be 24" wide and attached full Ily at edges to the abutment cap with a $\frac{3}{8}$ " x 5" steel plate and $\frac{1}{2}$ " Ø studs ashers at 12" centers according to Section 1028 of the Std. Specs. Further " expansion bolts and galvanized plate may be found on sheet 17 of 32.

system components shall extend from inside face to inside face of existing pipe drain under existing wingwall footing and extend through until the side slopes. The pipes shall drain into concrete headwalls. (See Article andard Specifications and Highway Standard 601101).

ΟΑΤΑ	F.A.P. RTE			SEC	TION		СС	DUNTY	s	TOTAL HEETS	SHEET NO.	┣
016-0217	345 FAP 345-23-BR			C	OOK		379	210				
010-0217		CONTRACT NO. 62				52U83	γ					
2 SHEETS					ILLINOIS	FED. A	D PROJI	СТ				1.
	<u> </u>	Y	X	γ	<u> </u>	γX	λ	Y	γ	7 7	<u> </u>	-

- X - X - X - X

 Δ

-		01 11	, () E (()	
Bar	No.	Size	Length	Shape
a(E)	214	#5	34'-5"	
a1(E)	139	#5	34'-2"	
a2(E)	414	#6	8'-5"	L
a3(E)	214	#5	39'-8''	
a4(E)	139	#5	39'-8''	
a5(E)	4	#5	39'-5"	
a6(E)	4	#5	45'-4"	
a7(E)	24	#5	1'-6"	
b(E)	395	#5	26'-1"	
b1(E)	142	#6	31'-0"	
b2(E)	264	#5	31'-9"	
d(E)	364	#5	6'-5"	Λ
d1(E)	364	#5	8'-5"	<u> </u>
d2(E)	364	#5	5'-4"	Γ
d3(E)	364	#5	8'-6"	
o(E)	80	#1	1.8'_/''	
e1(E)	40	#4 #1	20' - 10''	
$\rho_2(F)$	48	#4 #1	19'-8"	
e3(E)	24	#4	22'-3"	
m10(E)	10	#6	37'-9"	
m11(E)	48	#6	6'-3"	·
m12(E)	48	#6	6'-3"	
m13(E)	16	#6	1'-3"	
m14(E)	8	#4	20'-4"	
m15(E)	10	#6	43'-6"	
m16(E)	8	#4	23'-2"	
s10(E)	128	#5	6'-11"	
s11(E)	128	#5	7'-0"	<u>n</u>
u10(E)	128	#4	3'-8"	U
v100(E)	151	#5	3'_1"	
Reinfor	cement	Bars	<u> </u>	
Ероху С	Coated	<i>Dui 3</i> ,	Pound	145,130
Concret	е		Cu. Yd	330.8
Superst	ructure	2		
Protect	ive Coa	t .	Sq. Yd.	1,113
Bridge	реск G	rooving	Sq. Yd.	844
2 R	EVISED) ENTIR	E SHEET	6/10/2024

	2						-	К	
RE DETAILS I . 016-0217		SECTION			COUNTY	TOTAL SHEETS	SHEET NO.	K	
		5 FAP 345-23-BR			соок	379	222		
					CONTRA	CT NO. 6	32U83	1	
32 SHEETS	ILLINOIS FED. AID PROJECT							1	
<u>munum</u>									

 λ λ λ λ

FOR APPROACH FOOTING										
Point	Station	Offset	Тор	Bottom						
West Approach										
Α	439+95.41	36.5' Lt.	723.42	722.58						
B1	439+75.18	<i>O</i> ′	724.40	723.57						
B2	439+73.79	4.0' Rt.	724.39	723.56						
С	439+54.95	36.5' Rt.	724.23	723.39						
D	439+83.98	36.5' Lt.	723.63	722.79						
E 1	439+63.75	0'	724.64	723.80						
E2	439+62.36	4.0' Rt.	724.63	723.79						
F	439+43.51	36.5' Rt.	724.48	723.65						
	Ea	st Approad	h							
Α	441+56.13	36.5' Lt.	721.85	721.01						
B1	441+35.90	0'	722.50	721.67						
B2	441+34.51	4.0 Rt.	722.47	721.63						
С	441+15.66	36.5' Rt.	721.99	721.16						
D	441+67.56	36.5' Lt.	721.84	721.00						
E 1	441+47.33	<i>O'</i>	722.46	721.63						
E2	441+45.94	4.0 Rt.	722.43	721.60						
F	441+27.10	36.5' Rt.	721.94	721.10						

SHEET 19 OF 32 LOT DATE = 5/8/2024 CHECKED - MZ REVISED -

The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total

Parapet and median barrier concrete shall be paid for as Concrete Superstructure. Approach slab shall be paid for as Concrete Superstructure (Approach Slab).

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Cost of excavation for approach footing included with Concrete Structures.

TWO	APF	PROACHES
BILL	0F	MATERIAL

	Bar	No.	Size	Length	Shape
	a10(E)	92	#5	38'-9"	·
	a11(E)	122	#8	38'-5"	
	a12(E)	92	#5	7'-4"	·
	a13(E)	92	#5	45'-10"	·
	a14(E)	122	#8	45'-6"	
-10(5)					
	b10(E)	220	#5	29'-9"	
a13(E)	b11(E)	352	#9	29'-9"	
	b12(E)	16	#5	14'-8"	
	b13(E)	4	#4	14'-8"	
	c10(E)	64	#4	3'-11"	
-					
	d10(E)	92	#5	6'-5"	Ν
	d11(E)	276	#5	8'-6"	Ň
	d12(E)	184	#5	5'-4"	Ī
	e10(E)	72	#4	14'-8"	
	e11(E)	8	#4	29'-9"	
	t10(E)	300	#4	9'-8"	
	w10(E)	80	#5	38'-5"	
	w11(E)	80	#5	44'-4"	
⇒ji	Concrete	Supersti	ructure	Cu. Yd.	25.8
1	Concrete	Superstr	ucture	Cu Val	200.4
	(Approach	Slab)		Cu. ra.	206.4
	Concrete	Structur	es	Cu. Yd.	45.1
	Reinforce	ment Bai	rs,	Davial	00.000
-	Epoxy Co.	ated		Pouna	90,660
he	Bridge De	eck Groo	ving	Sq. Yd.	434
	Protective	≏ Coat	~	Sa. Yd.	552
006.09	1100000000	cour			

Article 1006.09	Protective	Protective Coat			252		
ecifications)			ENTIF	RE S	HEET	6/10/2	2024
SLAB DETAILS	F.A.P. RTE	SECTION		со	UNTY	TOTAL SHEETS	SHEET NO.
16-0217	345	FAP 345-23-BF	र	C	зок	379	227
010-0211				С	ONTRA	CT NO.	62U83
SHEETS		ILLINO	IS FED. AI) PROJE	СТ		

PLOT DATE =

5/8/2024

5/8/2024

CHECKED - MZ

REVISED -

SHEET 23 OF

Prior to ordering any material, the Contractor shall verify in the field all bearing & steel extension heights and fill plate & shim plate thicknesses.

Side retainers and other steel members required for the bearing assembly shall be included in the cost of Elastomeric Bearing Assembly, Type I.

Anchor bolts and side retainers at all supports shall be installed as each member is erected unless an equivalent temporary means of lateral restraint is used.

The structural steel plates of the Bearing Assembly, the structural steel plates of the fixed bearings, pintles, and steel extensions shall conform to the requirements of AASHTO M270, Grade 50. The structural steel for the shim plates, fill plates, and side retainers may conform to the requirements of AASHTO M270, Grade 36, unless otherwise noted. Two $\frac{\eta}{8}$ " adjusting shims shall be provided for each bearing in addition to all other plates or shims and placed as shown on bearing details.

The cost for fabricating and installing the fixed bearing, steel extensions, fill plates, and shim plates will be paid for as Furnishing and Erecting Structural Steel. Drilled and set anchor bolts shall be installed according to Article 521.06 of the

ELEVATION (Beam lines 2 thru 12 only)

SECTION B-B

BILL OF MATERIAL

Item	Unit	Total
Elastomeric Bearing Assembly Type I	Each	26
Anchor Bolts, ³ ⁄4"	Each	52

!	BM 12
	I
	9½"
	7 ¹ ⁄2"
	2 ⁷ ⁄8"

-

10½"

8½"

2⁷/8"

Δ			OUFET	014010004
121	REVISED	ENTIRE	SHEEL	0/10/2024

										1
EARING I	F.A.P. RTE	SECTION			COUNTY	TOTAL SHEETS	SHEET NO.			
016-0217	345	FAP 345-23-BR			соок	379	231			
010 0211							CONTRA	CT NO. 6	i2U83	ŀ
32 SHEETS					ILLINOIS	FED. A	D PROJECT			
	λХ	X	X	Y	λ	$\sqrt{\lambda}$	$\lambda \lambda \lambda$		ΥX	

9th Edition DESIGN STRESSES

2020 AASHTO LRFD Bridge Design Specifications,

DESIGN SPECIFICATIONS

FIELD UNITS

f'c = 4,000 psi (Parapet) (Superstructure)

f'c = 4,000 psi (Anchorage Slab) (Superstructure)

fy = 60,000 psi (Reinforcement)

DESIGN LOADS

Impact Load (Static) = 106 kip (TL-5 Loading 6 ft parapet)

TOTAL BILL OF MATERIAL

ITEM	UNIT	TOTAL
Concrete Superstructure	Cu Yd	115.2
Protective Coat	Sq Yd	181
Reinforcement Bars, Epoxy Coated	Pound	25,850
Name Plates	Each	2
Noise Abatement Wall Anchor Rod Assembly	Each	11

ANCHORAGE SLAB CONTROL POINTS

Description	Station	Offset	Elev. @ Toe of Parapet
Point A	418+92.64	39.66	753.02
Point B	419+22.63	38.89	752.76
Point C	419+52.62	38.12	752.47
Point D	419+82.61	37.35	752.12
Point E	420+05.06	36.77	751.84

NOTES

- Stations and offsets are measured relative 1 to Q US 20 at the parapet toe u.n.o.
- 2. C.P.J. – Cork Parapet Joint.
- З. For Section A-A, anchorage slab and parapet reinforcement, light pole, and drainage details see sheets 2 and 3.
- See drainage plans for location of inlet and 4 catch basin.
- Structure mounted NAW B11+13 (SN 045-5. N1007) is attached to this anchorage slab. For NAW post spacing and attachment details, see sheet 267 thru 278 of 379. The Contractor shall be aware that mounting hardware is embedded in the parapet portion of the anchorage slab and shall be installed prior to pouring the parapet.

/2 **REVISED ENTIRE SHEET 6/10/2024** TOTAL SHEET SHEETS NO. SECTION COUNTY 345 FAP 345-23-BR KANE 379 252

ILLINOIS FED. AID F

CONTRACT NO. 62U83

TEMPLATE PLATE FOR NOISE ABATEMENT WALL ANCHOR ROD ASSEMBLY

NOISE ABATEMENT WALL ANCHOR ROD ASSEMBLY

CANINETT	USER NAME = mzelisko	DESIGNED - MZ REVISED -		NOISE ABATEMENT WALL SECTION DETAILS	F.A.P. RTE	SECTION	COUNTY	TOTAL SHEET SHEETS NO.	
GANNETT		CHECKED - JGC	REVISED -	STATE OF ILLINOIS		345	FAP 345-23-BR	KANE	379 254A
	PLOT SCALE = 2.0000 ' / in.	DRAWN - MDA	REVISED -	DEPARTMENT OF TRANSPORTATION				CONTRA	ACT NO. 62U83
	PLOT DATE = 5/13/2024	CHECKED - MZ	REVISED -		SHEET 3A OF 3 SHEETS		ILLINOIS FED. AID	PROJECT	
5/18/2024 4 09/38 PM	unu	<u>unu</u>	unu			人人	$\lambda \lambda \lambda \lambda \lambda \lambda$	入入。	$\overline{\lambda \ \lambda \ \lambda \ \lambda}$

λ MO FILI

3" Rad.

BILL OF MATERIAL

ITEM	UNIT	TOTAL
Noise Abatement Wall Anchor Rod Assembly	Each	11

NOTES

- 1. For location of Section X-X, see sheet 254 of 379.
- 2. Cost of four anchor rods, template plate, and associated hardware included in the cost for one each of Noise Abatement Wall Anchor Rod Assembly.
- 3. See noise abatement wall plans on sheet 267 thru 278 of 379 for additional details.

人人人人

 \triangle

		BILL (OF MA	TERIAL	
	Bar	No.	Size	Length	Shape
4'-0''	a(E)	274	#6	10'-10"	L
	a1(E)	139	#6	9'-9"	
	a2(E)	139	#6	3'-9"	
1	a3(E)	32	#6	2'-6"	
6 115 20	d(E)	270	# E	1.01 61	n
- ų US 20	d(E)	2/8	#5	10-6	U Ň
	$\frac{dI(E)}{dZ(E)}$	204	#5	8'-1"]
• W.B. P.G.L.	$a_2(E)$	204	#5	9'-0"	
	$a_3(E)$	74	#6	8'-/"]]
	d4(E)	74	#6	9'-0"	
1.5%	a5(E)	3	#6	7'-9"	L
	$\frac{d6(E)}{d7(E)}$		#6	8'-11"	
	a/(E)	3	#6	5'-1"	L
		0		221 61	
	e(E)	8	#8	32'-6"	
	eI(E)	40	#6	30-9"	
	$e_2(E)$	36	#6	14'-8"	
	e3(E)	6	#6	11'-9"	
	e4(E)	6	#6	10'-0''	
	w(E)	92	#5	30'-4"	
	x(E)	139	#6	15'-2"	-7
	Concrete	Supers	tructure	115.2	Cu Yd
	Protecti	ie Loat		181	Sq Yd
	Reinford Epoxy C	ement Ba oated	ars,	25,850	Pound

ANCHOR ROD

Diameter as specified for light poles. (ASTM F1554 Grade 105). Cost included with Concrete Superstructure.

	\underline{Z}^2	V REVISEL	ENT	IRE 3	HEEI	6/10	//2024	
AILS	F A P RTE	SECTION			COUN	ITY	TOTAL SHEETS	SHEE NO.
GRADE - WB	345	FAP 345-23-BR			KAN	E	379	254
	_				CON	VTRA	CT NO. 6	32U83
SHEETS			ILLINOIS	FED. A	D PROJECT			

DESIGN SPECIFICATIONS

2020 AASHTO LRFD Bridge Design Specifications, 9th Edition

DESIGN STRESSES

FIELD UNITS

- f'c = 4,000 psi (Parapet) (Superstructure)
- f'c = 4,000 psi (Anchorage Slab) (Superstructure)
- fy = 60,000 psi (Reinforcement)

DESIGN LOADS

Impact Load (Static) = 106 kip (TL-5 Loading 6 ft parapet)

TOTAL BILL OF MATERIAL

ITEM	UNIT	TOTAL
	0 1/1	
Concrete Superstructure	Cura	1/1.1
Protective Coat	Sq Yd	258
Reinforcement Bars, Epoxy Coated	Pound	32,670
Name Plates	Each	2
Noise Abatement Wall Anchor Rod Assembly	Each	12

ANCHORAGE SLAB CONTROL POINTS

Description	Station	Offset	Elev. @ Toe
			of Parapet
Point A	418+92.65	39.67 Rt.	753.02
Point B	419+22.65	39.67 Rt.	752.75
Point C	419+52.65	39.67 Rt.	752.43
Point D	419+82.65	39.67 Rt.	752.08
Point E	420+05.06	39.31 Rt.	751.79

NOTES

- Stations and offsets are measured relative 1. to Q US 20 at the parapet toe u.n.o.
- 2. C.P.J. Cork Parapet Joint.
- 3. For Section A-A, anchorage slab and parapet reinforcement, light pole, and drainage details see sheets 2 and 3.
- 4. See drainage plans for location of inlet and catch basin.
- Structure mounted NAW B10 (SN 045-N1006) 5 is attached to this anchorage slab. For NAW post spacing and attachment details, see sheet 258 thru 266 of 379. The Contractor shall be aware that mounting hardware is embedded in the parapet portion of the anchorage slab and shall be installed prior to pouring the parapet.

							F	A.P. RTE	SECTION			С	OUNT	ſΥ	TOTA SHEE	L TS	SHE NC	ET ,				
								345		FA	P 34	5-23-BR			KANE		379		25	5		
													CONTRACT NO. 62U83				3					
3	SHEE	TS												ILLINOIS	FED. A	D PRO.	IECT					
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	. \	1	1	1	1	1	١	<u> </u>

SECTION X-X

TEMPLATE PLATE FOR NOISE ABATEMENT WALL ANCHOR ROD ASSEMBLY

NOISE ABATEMENT WALL ANCHOR ROD ASSEMBLY

	USER NAME = mzelis	ko DESIG	GNED -	MDA	REVISED -		NOISE ABATEMENT WALL SECTION DETAILS		SECTION	COUNTY	TOTAL SHEET
GANNEI I		CHEC	KED -	MZ	REVISED -	STATE OF ILLINOIS		345	FAP 345-23-BR	KANE	379 257A
	PLOT SCALE = 2.0000)'/in. DRAW	/N -	MDA	REVISED -	DEPARTMENT OF TRANSPORTATION	ANCHORAGE SLAB ON GRADE - EB			CONTR	ACT NO. 62U83
	PLOT DATE = 5/13/20	024 CHEC	KED -	MZ	REVISED -		SHEET 3A OF 3 SHEETS	ILLINOIS FED. AID PROJECT			
5A3/2024 入4:13:28 M 入人人	3/2/4/2/3/2/4/2/2/2/2/2/2/2/2/2/2/2/2/2/										

 Δ

3" Rad.

BILL OF MATERIAL

ITEM	UNIT	TOTAL
Noise Abatement Wall Anchor Rod Assembly	Each	12

NOTES

- 1. For location of Section X-X, see sheet 257 of 379.
- 2. Cost of four anchor rods, template plate, and associated hardware included in the cost for one each of Noise Abatement Wall Anchor Rod Assembly.
- 3. See noise abatement wall plans on sheet 258 thru 266 of 379 for additional details.

5/13/20/24 X 3:59:43 PM

Grade 105). Cost included with Concrete Superstructure

		<u> </u>					
DETAILS	F.A.P. RTE	SEC.	FION		COUNTY	TOTAL SHEETS	SHEET NO.
ON GRADE - FR	345	FAP 345-23-BR			KANE	379	257
UN GRADE-EB					CONTRA	CT NO. 6	62U83
3 SHEETS			ILLINOIS	FED. A	D PROJECT		
	くと	人人人	\sum	入 ノ		\mathcal{T}	\mathcal{T}

PLOT DATE = 5/13/2024 CHECKED - ECK REVISED -2/2024 DO 22557 MM 人人人人 $\lambda \lambda \lambda$

 Δ

SHEET 4 OF 9 SHEETS

ILLINOIS FED. AID F

- 3 Section & Details

WALL ELEVATION INFORMATION

		Theo. Top	Theo.	Finished	Exist. P.G.L.
Ctation	Offcot	of	Bottom of	Grade at	Elev. at
SLALTON	Unsel	NAW Elev.	NAW	F.F. of NAW	Q US 20
		(ft)	Elev. (ft)	Elev. (ft)	(ft)
452+00.45	66.14' Rt.	763.14	750.40	751.07	750.14
453+00.45	65.94' Rt.	766.08	752.70	753.37	753.08
454+00.45	65.73 Rt.	769.10	755.70	756.37	756.10
454+00.45	65.73 Rt.	771.10	755.70	756.37	756.10
455+00.00	65.52' Rt.	774.16	759.00	759.67	759.16
456+00.00	65.31' Rt.	777.14	763.00	763.67	762.14
457+00.00	65.10' Rt.	779.73	762.20	762.87	764.73
458+00.00	64.90' Rt.	782.00	761.70	762.37	767.00
459+00.00	64.69' Rt.	783.59	763.00	763.67	768.59
460+00.00	64.48' Rt.	784.61	766.60	767.27	769.61
460+00.00	64.48' Rt.	786.61	766.60	767.27	769.61
461+00.00	64.27' Rt.	787.31	772.23	772.90	770.31
462+00.00	64.06' Rt.	787.96	773.80	774.47	770.96
463+00.00	63.86' Rt.	788.54	774.50	775.17	771.54
464+00.00	63.65' Rt.	789.16	774.50	775.17	772.16
465+66.13	63.40' Rt.	790.18	772.90	773.57	773.18
465+66.13	63.40' Rt.	783.18	772.90	773.57	773.18
466+00.00	63.23' Rt.	783.39	770.90	771.57	773.39
467+00.00	63.02' Rt.	783.91	770.00	770.67	773.91
468+00.00	62.82' Rt.	784.45	769.50	770.17	774.45
469+10.45	62.59' Rt.	785.18	770.20	770.87	775.18

•	Soil Boring
	Exist. R.O.W.
	Exist. Water Main
	Exist. Sanitary Sewer
	Exist. Storm Sewer
NAW	Noise Abatement Wall
¤	Exist. Light Pole
þ	Exist. Advertising Sigr
- x x x x x	Exist. Fence
——— F0 ——	Exist. Fiber Optic
н с н	Exist. Gasline

2 REVISED ENTIRE SHEET 6/10/2024

ξL											
â	Trocore	USER NAME = jchen	DESIGNED - ZC	REVISED -		GENERAL PLAN & ELEVATION I		SECTION	COUNTY TO	TAL SHEET	
Ă	Iransmart		CHECKED - JK	REVISED -	STATE OF ILLINOIS		345	FAP 345-23-BR	COOK/KANE 3	379 284	
ž	100 S. Wacker Drive Suite 400	PLOT SCALE = 100.0000 ' / in.	DRAWN – JK	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 016-N1002			CONTRACT	NO. 62U83	
2	Chicago, Illinois 60606	PLOT DATE = 5/9/2024	CHECKED - ZC	REVISED -		SHEET 1 OF 9 SHEETS		ILLINOIS FED. /	AID PROJECT		
5											

INDEX OF SHEETS

1 - General Plan & Elevation I 2 – General Plan & Elevation II 4 - Soil Borings Logs I 5 - Soil Borings Logs II 6 - Soil Borings Logs III 7 - Soil Borings Logs IV 8 - Soil Borings Logs V 9 - Soil Borings Logs VI

DESIGN SPECIFICATIONS

2020 AASHTO LRFD Bridge Design Specifications, 9th Edition

DESIGN STRESSES

FIELD UNITS

- f'c= 4,000 psi fy= 60,000 psi (Reinforcement)
- fy= 50,000 psi (M270 Grade 50, posts)
- fy= 36,000 psi (M270 Grade 36, all
- other structural steel)

PRECAST UNITS

f'c= 4,500 psi fy= 60,000 psi (Reinforcement) fy= 65,000 psi (Welded Wire Reinforcement)

DESIGN LOADING

Strength III or V Wind: 35 psf Service I Wind: 15 psf

- 1. Stations and Offsets are measured from $\not \underline{\textit{Q}}$ US 20 to front face of the proposed noise wall.
- 2. 4" Ø weep hole shall be provided through wall panels at the ground level at a spacing of 8 ft as shown on the contract plans. Cost of weep holes included with Noise Abatement Wall, of the type specified.
- 3. Type, size and spacing of posts, noise wall panels, drilled shaft and size embedment length, reinforcement details, lifting bars and wall limits including top and bottom of wall shall be determined by the Contractor and shall be designed to avoid conflicts with the existing facilities. Cost included with Noise Abatement Wall, of the type specified.
- 4. The contractor shall review the maintenance of traffic plans. The Construction of Noise Abatement Wall may need to be sequenced to match the roadway sequence of construction. and the Contractor may not be able to construct the NAW in one continuos operation. Additional mobilization/demobilization required will not be measured for payment, but shall be included in the cost of Noise Abatement Wall, of the type specified.
- 5. The Contractor shall verify locations of all existing utilities and structures and shall take all necessary precautions to perform the work in such a manner as to not damage existing utilities or structures, located near or beneath the Noise Abatement Wall. Any damage to existing utilities or structures shall be repaired at no cost to the Department.
- 6. It is anticipated that temporary casing is required for each drilled shaft foundation due to soil condition. The temporary casing will not be measured separately for payment, and shall be included in the cost of Noise Abatement Wall, of the type specified.
- 7. It shall be the Contractor's responsibility to field verify existing ground elevations at the locations of the proposed ground mounted noise abatement walls and compare to that shown on the plans. Adjustments to NAW heights as required to accommodate actual field conditions shall be made by the Contractor at no additional cost and as approved by the Engineer. Cost to comply with this requirement is included in the cost of Noise Abatement Wall, of the type specified.
- 8. See special provisions for additional requirements.
- 9. In addition to the special provisions, the panels shall be designed to be vertically supported between foundations such that the excavation beneath the panels does not require additional supports. When panels span a utility crossing, the maximum post spacing shall be used to maximize the horizontal clearance between the posts and the utility. The cost for this work shall be included in the cost of Noise Abatement Wall of the type specified.
- 10. Theoretical Top of NAW Elev., Theoretical Bottom of NAW Elev., Existing Grade Elev. at front face of NAW, and Finished Grade Elev. at front face of NAW shall be taken as straight lines in the segments between each pair of stations shown in the Wall Elevation Information table on Sheet 1 of 9.

AESTHETIC FINISH GENERAL NOTES:

1. Precast Concrete Noise Abatement Wall Random Ashlar Limestone Formliner Pattern.

The formliner used to create the random ashlar limestone pattern shall be of high quality and capable of withstanding anticipated concrete pour pressures without causing leakage or causing physical defects. The liner shall be made from high-strength elastomeric urethane material which shall not compress more than 0.02 feet when poured at a rate of 10 vertical feet per hour. The form release agents shall be non-staining, non-residual and non-reactive.

Precast Concrete Noise Abatement Wall Panels shall be constructed with a square cut random ashlar rusticated limestone surface with a maximum relief along each side as shown the details. The panel(s) height selected by the Fabricator should be compatible with Random Ashlar Limestone Formliner Pattern.

The maximum architectural aesthetic surface treatment thickness along one side cannot exceed $\frac{3}{4}$ inches. The relief, on each side of precast concrete panel, is permitted to vary from 0 to $\frac{3}{4}$ inches, but the total architectural relief thickness, on both sides of the precast concrete panel, must not be greater than $1\frac{1}{2}$ inches.

Angular distortion with regards to panel squareness, defines as the difference between the two diagonals, shall not exceed $\frac{1}{2}$ in. Panel dimensions shall be within $\frac{1}{4}$ in. all hardware embedded in panels shall be within $\frac{1}{4}$ in.

The Random Ashlar Limestone Pattern shall be continuous for the full height of a wall section except the top 1'-0", regardless of the number of panels in a wall section. All exposed concrete edges shall have a $\frac{3}{4}$ " chamfer except at horizontal edges between successive panels.

- 2. The color of the wall panels and support posts is identified by Federal Standard 595-B color number 30372.
- 3. Formliner treatment will not be measured for payment, but shall be included in the cost of Noise Abatement Wall, of the type specified.
- 4. Aesthetic finish for the precast panels and staining for the panels and steel posts will not be measured separately for payment, and shall be included in the cost of Noise Abatement Wall, of the type specified. The stain color and aesthetic textured finish pattern shall be approved by the Roadside Development Unit prior to ordering materials or beginning fabrication. Submittal shall be made 30 days in advance prior to ordering materials.

FORMLINER PATTERN DETAIL

AME: pw	TranSmart	USER NAME = jchen	DESIGNED - ZC CHECKED - JK	REVISED - REVISED -	STATE OF ILLINOIS	SECTION & D
Ž	100 S. Wacker Drive Suite 400	PLOT SCALE = 96.0000 ' / in.	DRAWN – JK	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO.
H	Chicago, Illinois 60606	PLOT DATE = 5/13/2024	CHECKED - ZC	REVISED -		SHEET 3 OF 9
	5 A 3/2 A 24 1 8 A \$ 13 M 1 1					

Exist. R.O.W.

Noise Wall				Noise	
Structure	Face	From Sta.	To Sta.	Reduction	
Number				Coofficient	
	Front	452,00 45	100,10,15	Deflective	
016 N1002	Face	452+00.45	469+10.45	Reflective	
010-11002	Back	152,00 15	160,10.45	Pofloctivo	
	Face	452+00.45	409+10.45		

NOISE REDUCTION DATA TABLE

TOTAL BILL OF MATERIAL

Item	Unit	Total
Noise Abatement Wall, Ground Mounted	Sq. Ft.	26,665
Name Plates	Each	1

 \triangle

- 1. Stations and Offsets are measured from $\it Q$ US 20 to front face of the proposed noise wall.
- 2. 4" Ø weep hole shall be provided through wall panels at the ground level at a spacing of 8 ft as shown on the contract plans. Cost of weep holes included with Noise Abatement Wall, of the type specified.
- 3. Type, size and spacing of posts, noise wall panels, drilled shaft and size embedment length, reinforcement details, lifting bars and wall limits including top and bottom of wall shall be determined by the Contractor and shall be designed to avoid conflicts with the existing facilities. Cost included with Noise Abatement Wall, of the type specified.
- 4. The contractor shall review the maintenance of traffic plans. The Construction of Noise Abatement Wall may need to be sequenced to match the roadway sequence of construction. and the Contractor may not be able to construct the NAW in one continuos operation. Additional mobilization/demobilization required will not be measured for payment, but shall be included in the cost of Noise Abatement Wall, of the type specified.
- 5. The Contractor shall verify locations of all existing utilities and structures and shall take all necessary precautions to perform the work in such a manner as to not damage existing utilities or structures, located near or beneath the Noise Abatement Wall. Any damage to existing utilities or structures shall be repaired at no cost to the Department.
- 6. It is anticipated that temporary casing is required for each drilled shaft foundation due to soil condition. The temporary casing will not be measured separately for payment, and shall be included in the cost of Noise Abatement Wall, of the type specified.
- 7. It shall be the Contractor's responsibility to field verify existing ground elevations at the locations of the proposed ground mounted noise abatement walls and compare to that shown on the plans. Adjustments to NAW heights as required to accommodate actual field conditions shall be made by the Contractor at no additional cost and as approved by the Engineer. Cost to comply with this requirement is included in the cost of Noise Abatement Wall, of the type specified.
- 8. See special provisions for additional requirements.

NOISE ABATEMENT WALL BUILT 202 BY

STATE OF ILLINOIS

F.A.P. RTE. 345

- 9. In addition to the special provisions, the panels shall be designed to be vertically supported between foundations such that the excavation beneath the panels does not require additional supports. When panels span a utility crossing, the maximum post spacing shall be used to maximize the horizontal clearance between the posts and the utility. The cost for this work shall be included in the cost of Noise Abatement Wall of the type specified.
- 10. Theoretical Top of NAW Elev., Theoretical Bottom of NAW Elev., Existing Grade Elev. at front face of NAW, and Finished Grade Elev. at front face of NAW shall be taken as straight lines in the segments between each pair of stations shown in the Wall Elevation Information table on Sheet 1 of 6.

AESTHETIC FINISH GENERAL NOTES:

1. Precast Concrete Noise Abatement Wall Random Ashlar Limestone Formliner Pattern.

The formliner used to create the random ashlar limestone pattern shall be of high quality and capable of withstanding anticipated concrete pour pressures without causing leakage or causing physical defects. The liner shall be made from high-strength elastomeric urethane material which shall not compress more than 0.02 feet when poured at a rate of 10 vertical feet per hour. The form release agents shall be non-staining, non-residual and non-reactive.

Precast Concrete Noise Abatement Wall Panels shall be constructed with a square cut random ashlar rusticated limestone surface with a maximum relief along each side as shown the details. The panel(s) height selected by the Fabricator should be compatible with Random Ashlar Limestone Formliner Pattern.

The maximum architectural aesthetic surface treatment thickness along one side cannot exceed $\frac{3}{4}$ inches. The relief, on each side of precast concrete panel, is permitted to vary from 0 to $\frac{3}{4}$ inches, but the total architectural relief thickness, on both sides of the precast concrete panel, must not be greater than $1\frac{1}{2}$ inches.

Angular distortion with regards to panel squareness, defines as the difference between the two diagonals, shall not exceed $\frac{1}{2}$ in. Panel dimensions shall be within $\frac{1}{4}$ in. all hardware embedded in panels shall be within $\frac{1}{4}$ in.

The Random Ashlar Limestone Pattern shall be continuous for the full height of a wall section except the top 1'-0", regardless of the number of panels in a wall section. All exposed concrete edges shall have a $\frac{34}{4}$ chamfer except at horizontal edges between successive panels.

- 2. The color of the wall panels and support posts is identified by Federal Standard 595-B color number 30372.
- 3. Formliner treatment will not be measured for payment, but shall be included in the cost of Noise Abatement Wall, of the type specified.
- 4. Aesthetic finish for the precast panels and staining for the panels and steel posts will not be measured separately for payment, and shall be included in the cost of Noise Abatement Wall, of the type specified. The stain color and aesthetic textured finish pattern shall be approved by the Roadside Development Unit prior to ordering materials or beginning fabrication. Submittal shall be made 30 days in advance prior to ordering materials.

Noise Wall Structure Number	Face	From Sta.	To Sta.	Noise Reduction Coofficient
016 N1003	Front Face	447+95.88	460+99.04	Reflective
010-11003	Back Face	447+95.88	460+99.04	Reflective

NOISE REDUCTION DATA TABLE

ETAIL

FROM S	TA. 447+95.88 TO STA. 460+99.00 STRUCTURE NO. 016-N1003 <u>NAME PLATE</u> See Std. 515001	4	Ground Level	
gfnet-pw.ben		NAME PLA	ATE LOCATION	FORMLINER PATTERN DET
	USER NAME = jchen	DESIGNED - ZC	REVISED -	STATE OF ILLINOIS
100 S. Wacker Drive Suite 4	00 PLOT SCALE = 96.0000 '/in.	DRAWN - JK	REVISED -	DEPARTMENT OF TRANSPORTATION
∑ =	PLOT DATE = 5/13/2024			

9"

Min

Name

Plate

Inside of end post

at start of wall

SECTION & DETAILS STRUCTURE NO. 016-N1003 SHEET 2 OF 6 SHEETS

DESIGN SPECIFICATIONS

2020 AASHTO LRFD Bridge Design Specifications, 9th Edition

DESIGN STRESSES

FIELD UNITS

- f'c= 4,000 psi
- fy= 60,000 psi (Reinforcement)
- fy= 50,000 psi (M270 Grade 50, posts) fy= 36,000 psi (M270 Grade 36, all
- other structural steel)

PRECAST UNITS f'c= 4,500 psi fy= 60,000 psi (Reinforcement) $f_{y} = 65,000$ psi (Welded Wire Reinforcement,

DESIGN LOADING

Strength III or V Wind: 35 psf Service I Wind: 15 psf

TOTAL BILL OF MATERIAL

Item	Unit	Total
Noise Abatement Wall, Ground Mounted	Sq. Ft.	22,398
Name Plates	Each	1

