STRUCTURE GEOTECHNICAL REPORT

Interstate 80 Bridge over Hickory Creek Section 2013-008B & 2013-009B, Station 721+49.17 IDOT Job Number D-91-196-09 (PTB 152, Item 004) SN 099-0062 (EB) & SN 099-0063 (WB)

Joliet, Will County, Illinois

Submitted to:

HBP Illinois Partners, JV c/o HNTB One South Wacker Drive Suite 900 Chicago, Illinois 60606

Prepared by:

Geo Services, Inc. 805 Amherst Court Suite 204 Naperville, Illinois 60565 (630) 305-9186

GSI Job No. 13125

Revised: October 24, 2014 September 30, 2014 June 4, 2014

Revised: October 24, 2014 September 30, 2014 June 4, 2014

HBP Illinois Partners, JV c/o HNTB One South Wacker Drive, Suite 900 Chicago, Illinois 60606

Attn: Ms. Amy Foster, P.E. HNTB Corporation

Job No. 13125

Re: Structure Geotechnical Report Interstate 80 Bridge over Hickory Creek Section 2013-008B & 2013-009B, Station 721+49.17 SN 099-0062 (EB) and 099-0063 (WB) Joliet, Will County, Illinois IDOT Job Number: D-91-196-09 (PTB 152, Item 004)

Dear Ms. Foster:

The following report presents the geotechnical analysis and recommendations for the reconstruction and widening of the existing bridge structures carrying Interstate 80 Bridge over Hickory Creek. A total of eight (8) structural soil borings (BSB-17 through BSB-24) were completed. Copies of these boring logs, along with boring location plan and profile are included in this report.

If there are any questions regarding the information submitted herein, please do not hesitate to contact us.

Very truly yours,

GEO SERVICES, Inc.

Richard Realeza Staff Engineer

he Phot

Andrew J. Ptak, P.E. Office Manager

enc.

TABLE OF CONTENTS

SECTION 01: INTRODUCTION	<u>2</u>
SECTION 02: PROJECT DESCRIPTION	2
SECTION 03: SUBSURFACE INVESTIGATION PROCEDURES	<u>3</u>
SECTION 04: LAB TESTING PROGRAM	3
SECTION 05: SUBSURFACE CONDITIONS	4
SECTION 06: WATER TABLE CONDITIONS	5
SECTION 07: ANALYSIS	<u>5</u>
Mining Activity	5
Site Seismic Parameters	
Settlement	
Slope Stability	
Scour	6
SECTION 08: RECOMMENDATIONS	7
Foundation Recommendations	7
Straight-Shaft Rock-Socketed Caissons Recommendations at the	
Abutments	
Pile Recommendations at the Abutments	
Pile Foundations Considerations	
Shallow Spread Footing Recommendations at the Piers	
Wingwalls Recommendations	
Approach Slab Recommendations	11
SECTION 09: GENERAL CONSTRUCTION CONSIDERATIONS	11
SECTION 10: GENERAL QUALIFICATIONS	10
SECTION TO: GENERAL QUALIFICATIONS	1 Z

- APPENDIX A General Notes
- APPENDIX B Site Location Map
- APPENDIX C Soil Boring Plan

APPENDIX D – Boring and Rock Core Logs

APPENDIX E – Pile Length and Capacity Tables

APPENDIX F - Lab Testing Results

SECTION 01: INTRODUCTION

This report presents the results of the geotechnical investigation for the bridge widening of the Interstate 80 Bridge over Hickory Creek, IDOT Job Number: D-91-196-09 (PTB 152, Item 004). The results of the eight (8) structure borings (BSB-17 through BSB-24) completed by Geo Services, along with plan and profile drawings, are included with this report.

Boring locations were selected by Geo Services, Inc. and were reviewed and approved by HBP Illinois Partners, JV (HBP), and the Illinois Department of Transportation (IDOT). Boring locations were located in the field by Geo Services, Inc. (GSI) personnel after review of accessibility and utility locations. Estimated elevations of the as-drilled borings were taken from the topographic and cross-section drawings provided by HBP. The as-drilled locations for the borings are shown on the Boring Location Diagram found in Appendix C section of the report.

This report includes a description of subsurface conditions, location diagram, profiles and boring logs, as well as recommendations pertaining to the design and construction of the new bridge foundations, earth embankment, and general construction considerations for the site.

SECTION 02: PROJECT DESCRIPTION

The existing bridges (SN 099-0062 EB and SN 099-0063 WB) were built in 1964 for F.A.I. Route 80, and were repaired in 1990, 1998, 2001, and 2011. The existing dual structures consist of three single-span reinforced concrete deck on W36 rolled steel beams supported by pile bent abutments and multi-column concrete piers founded on spread footings bearing on bedrock. Out to out deck width of the existing bridges is approximately 48'-0" to 54'-5-1/2" at the EB structure, and 51'-1" to 54'-11-1/4" at the WB structure.

It is intended to remove and replace the entire bridge superstructure. The existing bridges are proposed to be widened at each side of the median lanes/shoulder, which varies from 14'-0" to 24'-0" feet wide. Service loads for the foundation structures have been provided by HBP, and are tabulated in Table 4 of the report. The approximate bottom of bearing elevations is shown in Table 5 of the report.

SECTION 03: SUBSURFACE INVESTIGATION PROCEDURES

The borings were performed during the month of March, 2014 with a truck-mounted drilling rig. Borings performed near the abutments (BSB-17, BSB-18, BSB-23 and BSB-24) were advanced by means of hollow stem augers and continued with rotary drilling techniques. The remainder of the borings (BSB-19 thru BSB-22) were performed from the top of the bridge deck down to ground surface along Interstate 80 (over Hickory Creek) using hollow stem augers and continued with rotary drilling techniques. Representative soil samples were obtained employing split spoon sampling procedures in accordance with AASHTO Method T-206. Bedrock cores were obtained in the bridge structure borings using an NX-size double tube core barrel with a diamond impregnated bit. Samples obtained in the field were returned to our laboratory for further examination and testing.

Split spoon sampling involves driving a 2.0-inch outside diameter split-barrel sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. Blow counts are recorded at 6" intervals and the blow counts are shown on the boring logs. The number of blows required to advance the sampler the last 12 inches is termed the Standard Penetration Resistance (N). The N value is an indication of the relative density of the soil.

SECTION 04: LAB TESTING PROGRAM

The test procedures were performed in accordance with test procedures discussed in the IDOT Geotechnical Manual. All split-spoon samples obtained from the drilling operation were visually classified in the field. Cohesive samples were tested for unconfined compressive strength using an IDOT modified RIMAC test device and/or calibrated penetrometer in the field.

The soil testing program included performing water content, density and either unconfined compression and/or calibrated penetrometer tests on the cohesive samples recovered. Water content tests were performed on the non-cohesive samples recovered. These tests were performed upon representative portions of the samples obtained in the field. In addition, unconfined compressive testing was performed on rock cores obtained from the field and are indicated on the rock core logs.

The results of the above testing, along with a visual classification of the material based upon both the Illinois textural classification and the AASHTO Soil Classification System, are indicated on the boring logs.

SECTION 05: SUBSURFACE CONDITIONS

Boring logs can be found in Appendix C. The stratification lines shown on the boring logs represent the approximate boundary between soil types, and the actual transition may be gradual.

For the borings performed at the existing abutments (taken along the roadway or shoulder areas of Interstate 80), surface conditions consisted of existing asphalt and/or concrete pavement to crushed stone to underlying clay to clay loam fill materials to approximate elevation of 525 feet. Beneath the pavement and fill soils, strata of medium dense to dense loam and sand soils were encountered prior to reaching the top of bedrock elevation at approximately 517 feet.

For the borings performed at the top of bridge deck down to ground surface along Interstate 80 (over Hickory Creek), surface conditions at the creek ground level encountered shallow bedrock, which varied from elevations 512 to 514 feet.

The fill soils had moisture contents within the range of 7% to 28% with an average of 19%. The granular soils had moisture contents within the range of 14% to 31% with an average of 22%.

The bedrock cores obtained indicated Silurian System, Niagaran Dolomite. A summary of the bedrock information obtained during our exploration is tabulated in Table 1.

Boring	Station	Offset	Top of Bedrock Elevation (feet)	RQD	Compressive Strength (tsf)
BSB-17	Sta. 720+12	22.3' Left	518.2	47.0%	1,299
BSB-18	Sta. 719+78	53.3' Right	519.2	14.0%	1,002
BSB-19	Sta. 721+58	63.1' Left	513.1	43.0%	1,025
BSB-20	Sta. 721+29	18.0' Right	513.1	34.0%	695
BSB-21	Sta. 721+88	23.0' Left	514.4	48.0%	1,233
BSB-22	Sta. 721+52	55.4' Right	512.0	7.5%	1,212
BSB-23	Sta. 723+11	61.5' Left	517.9	12.0%	831
BSB-24	Sta. 722+87	21.4' Right	519.9	19.0%	868

Table 1 – Bedrock Information Summary

SECTION 06: WATER TABLE CONDITIONS

Groundwater was only encountered at borings BSB-23 and BSB-24 at approximate elevation 554.5, and these readings are shown on the boring logs. Due to the nature of rotary-wash drilling, it was not possible to obtain accurate water levels below 10 feet of depth or after drilling. Existing water surface elevation of the creek was given by HBP, which was estimated to be at elevation 517 feet. Perched water levels may occur within granular layers above the rock or the upper zone of weathered and fractured rock. We estimate the long-term water table to be around the elevation of the streambed level or higher. Fluctuations in the amount of water accumulated and in the hydrostatic water table can be anticipated depending upon variations in precipitation, and surface runoff of the Hickory Creek.

SECTION 07: ANALYSIS

<u>Mining Activity</u>

According to readily available ISGS sources, there are no documented coal mining operations in near vicinity to the project site and seismic activity is noted to be very low.

Site Seismic Parameters

For LFRD design, according to the AASHTO LRFD Bridge Design Specification 2012 (with 2013 Interims), the project site has a horizontal Response Spectral Acceleration of 0.040 at a period of 1.0 second and 5% critical dampening (S_1). The site also has a horizontal Response Spectral Acceleration of 0.104 at a period of 0.2 seconds and 5% critical dampening (S_s). The following table shows recommended seismic design data in accordance to the AASHTO LRFD Bridge Design Specification 2012 (with 2013 Interims).

Seismic Performance Zone (SPZ)	1
Spectral Acceleration at 1 second (S _{D1})	0.068
Design Spectral Acceleration at 0.2 seconds (S _{Ds})	0.125
Soil Site Class	С

The project site is considered to be in a low seismic area and is considered a nonextreme event. Liquefiable layers, scour and downdrag are not expected to impact the design of the new bridge.

<u>Settlement</u>

Based on the TS&L and old bridge plans (1961), the proposed bridge profile is to be similar to existing, and little or no fill is expected to be placed. No new settlement is expected to occur, and settlement and downdrag are not considered to affect the design of the new bridge.

Slope Stability

The abutments will be supported with the use of piles or drilled caissons. The proposed bridge core will match the existing 2H:1V slopes. Pier spread footings will be founded shallow bedrock. No slope stability issues are associated with the bridge structures founded on rock.

<u>Scour</u>

The design scour elevations have been determined for each substructure based on the calculated scour, Waterway Information Table (WIT), and bridge profile drawings provided by HBP, and provisions from IDOT Bridge Manual 2012. Due to presence of shallow bedrock encountered below in the streambed elevation, 100% reductions are made from the scour depths. At the abutments, where the footing cap elevations are higher than the natural HWE (at 100 and 500-year events), the footing cap are not affected by scour. The following table has been formulated to represent the design scour elevations computed in each area:

Design Scour Elevation (feet)	West Abutment	Pier 1	Pier 2	East Abutment
Q100	WB 554.62 EB 555.51	514.40	514.40	WB 546.78 EB 547.81
Q500	WB 554.62 EB 555.51	514.40	514.40	WB 546.78 EB 547.81

Notes: Design HWE is approximately 526.3 feet. Estimated WSE is approximately 517.2 feet.

1. The Design Scour Elevations for 100 and 500-year events are based from the streambed elevation minus the reduced scour depth per procedures stated in the Section 2, page 2-93 of the IDOT Bridge Manual 2012.

SECTION 08: RECOMMENDATIONS

Foundation Recommendations

Based on the results of the borings, type of structure, and estimated loading, feasible foundations for support include shallow spread footings for the piers, and a deep foundation system consisting of end-bearing driven Shell or H-piles or drilled caissons at both abutments section of the bridges. It should be noted that Metal Shell piles should not be driven to the IDOT maximum Nominal Required Bearing (NRB) or refusal to prevent damage to the piles, and driving needs to be limited to lower levels before it gets close to bedrock. A pile length limit of 10 feet above bedrock elevation is recommended for Metal Shell piles.

We recommend that an economic analysis for each foundation option presented below be considered before choosing a foundation system for the design. Based on the foundation loads for abutments provided by HBP, the total factored reactions at the top of foundation are shown on the following Table 4 below:

Table 4 – Factored Loads for the Substructures

Location	Maximum Service Loads ¹
West and East Abutments	100 kips/pile
Piers 1 and 2	5 ksf

Note: 1. Service Loads provided by HBP are based on Illinois Modified Group (1.15D+2.17L+I) per IDOT policy for evaluating piers for reuse.

Per HBP, the estimated substructure pile cap and footing elevations are assumed to be based on near the existing foundation elevations or a minimum of 3.5 feet below existing ground. For the proposed piers, we recommend the designer to note the following statement in the Final Plans per IDOT's direction:

The proposed footing elevations for all Piers should be located at the adjoining existing footing elevation or six inches below top of rock whichever is the lowest.

The estimated substructure elevations shown in Table 5 are recommended for design of the foundation substructure cap/footing elevations.

Substructure	Estimated Bottom of Substructure Elevation
West Abutment (WB)	554.62 ¹
West Abutment (EB)	555.51 ¹
Pier 1 WB	512.60 ²
Pier 1 EB	512.60 ²
Pier 2 WB	513.90 ²
Pier 2 EB	511.50 ²
East Abutment (WB)	546.78 ¹
East Abutment (EB)	547.81 ¹

Table 5 – Estimated Substructure Elevations

Notes: 1. Piles assumed to be embedded 1.0-ft into the pile cap.

2. Estimated bottom of substructure elevations at the piers are based from the top of the bedrock elevation recorded in the borings per substructure minus six inches below the top of bedrock.

Straight-Shaft Rock-Socketed Caissons Recommendations at the Abutments

The foundations at the abutment portions of the proposed bridges may be constructed using a foundation system of drilled straight-shaft rock-socketed caissons. A factored end-bearing resistance of 30 ksf is recommended for design for rock-socketed caissons, socketed 3 feet into sound bedrock. From the AASHTO LRFD Bridge Design Specifications Manual Table 10.4.6.4-1, the bedrock is considered poor to fair quality. The Carter and Kulhawy equation was used to compute the bearing and a resistance factor of $\Phi b=0.50$ was used. To the extent rock-socketing is provided, an allowable friction value (in addition to the end bearing) of 3.0 tsf/ft for side resistance can be used for rock-socketed caissons over the depth of the rock-socket to resist vertical and uplift loads. A minimum diameter of 24 inches for the rock-socket size is recommended.

For the unit skin friction at the upper strata of the borings, the medium dense to dense sand and gravel and clay to clay loam will have estimated factored resistances of 500 psf per foot (or can be ignored). Note that the factored skin friction values will need to be reduced since temporary casing or drilling will be used for caisson installation.

An experienced, geotechnical engineer should be present during excavation to check that suitable sound rock has been reached. The temporary casing should be extended beneath the granular strata to top of bedrock elevation at approximate elevation 517.

Based on the estimated bearing pressures and the magnitude of the loads expected, we estimate a maximum settlement of 0.40 inches or less for rock-socketed caisson foundations supported on bedrock as described above. Differential settlements would be dependent on the adjacent loads but is typically 1/2 to 2/3 of the total settlement. It

should be noted that these settlement values are for compression of the bearing materials only and that elastic compression of the caisson concrete should be added to these values.

Pile Recommendations at the Abutments

Based on the results of the borings and proposed foundation loadings, driven, endbearing (to refusal) Shell or H-piles may be used for the support of the proposed abutments.

The selection of pile type should be determined by economic considerations if either pile types are feasible for the design of the bridge. Pile data for Shell and H-piles is included in Appendix E. Pile capacities and lengths were calculated to the piles' Maximum Nominal Required Bearing and Factored Resistance Available, based on a LRFD resistance factor of 0.55.

For the new driven piles at the abutment areas, it is estimated settlement of 1/4 inch or less excluding the elastic shortening of the pile due to loading.

Tables and graphs for estimated pile lengths for various pile sizes and pile capacities at each substructure unit are summarized in the Appendix E.

Pile Foundations Considerations

As per the IDOT Design Guide AGMU Memo 10.2, dated August 2011, the Washington State DOT (WSDOT) formula has replaced the FHWA Gates Formula as the standard method of construction verification. A modified IDOT static method was used to develop the SGR pile design tables. Nominal required bearing was calculated from LRFD skin-friction (with pile type correction factors) and end-bearing calculations. A value of 1.04 is used for Bias Factor Ratio (I_G). A geotechnical resistance factor (Φ_G) of 0.55 was used in calculations for the factored resistance available (FRA). Pile lengths were picked with respect to the loadings and geometry of the proposed structures.

When Steel H-piles are used, the Steel H-piles shall be according to AASHTO M270 Grade 50.

The pile tables, provided in Appendix E, are estimates and test piles should be used for final pile length selections. We recommend that a minimum of one test pile be performed at each substructure unit. The piles should be driven until satisfactory driving resistance is developed in accordance with an appropriate pile driving formula. The test piles shall be driven to 110 percent of the Nominal Required Bearing indicated in the pile data information. The pile size and capacity selected should be based on economic considerations and the loads imposed on the structures.

Shallow Spread Footing Recommendations at the Piers

It is intended that the existing piers will be reused, and new pier extensions are proposed to match the existing pier footing elevations at the widening areas. Based on the information obtained from the borings and estimated loadings anticipated for the proposed structures, the widened bridge areas may be supported on shallow spread footing foundations bearing on bedrock at the elevations recommended in Table 5, and can be designed for a factored bearing resistance of 27 ksf. A resistance factor of 0.45 was used to calculate the factored bearing resistance at strength limit according to AASHTO LRFD Bridge Design Specifications (Article 10.5.5.2.2).

Note that the bedrock typically had numerous vertical and horizontal fractures and the transition from the fractured and/or weathered rock to the sound bedrock may not be pronounced. It is strongly recommended that an experienced geotechnical engineer be onsite during the foundation excavation to make the final determination on fractured and/or sound bedrock elevations during construction.

If materials with less than adequate bearing strength are noted at the foundation level during footing construction, the weaker material encountered at the base of the footings should be undercut to reach suitable rock, and the undercut area filled with regular concrete.

Considering the piers are located in the creek and after review of the boring and core logs, there is potential for water infiltration though the bedrock at isolated locations. The contractor will likely need to design and install a cofferdam system for stage construction at the pier sections of the bridge. See cofferdam recommendations in the Section 09 (General Construction Considerations) of this report.

Wingwalls Recommendations

The abutments will have associated wingwalls. The foundation recommendations presented for the abutments earlier in this report are valid for the wingwalls as well.

At the abutments, it is recommended that a lateral active earth pressure of 40 psf per foot of depth be used above the water table assuming a free-draining granular backfill is utilized. For non-yielding walls with granular backfill, a lateral at-rest pressure of 50 psf per foot should be used, assuming proper drainage. Allowances should be made for any surcharge loads adjacent to the retaining structure. Drainage should be provided behind any wingwalls.

Approach Slab Recommendations

The new approach slab will be supported on either new or existing embankment fill. We recommend using an assumed CBR of 2.0 for the compacted fill for the embankment. Shallow footings for the "sleeper" below the slab should be designed for a maximum factored bearing resistance of 3,000 psf situated on new embankment fill. The new fill should be compacted per IDOT specifications for earth embankment. Any organics or soft, yielding subgrade (if any) should be removed prior to new fill placement. A qualified geotechnical engineer should observe the subgrade prior to any base course is placed. Settlement of the approach slab is calculated on the order of less than 0.4 inches.

SECTION 09: GENERAL CONSTRUCTION CONSIDERATIONS

Traffic will be maintained utilizing staged construction. At the bridge abutments, IDOT Temporary Sheet Piling Design Charts may be used for stage construction. However, at the pier sections, the contractor will likely need to design and install a temporary cofferdam system with dewatering wells to keep the site in the dry.

Per temporary cofferdams criteria stated in the Section 2.3.6.4.2 of the IDOT Bridge Manual (2012) and GBSP No. 73 (Article 502.06b), a Type 1 cofferdam system will be required for construction since the location is less than 6 feet of water surface elevation above the bottom of footing excavation. However, if the water surface elevation above from the bottom of footing excavation is greater than 6 feet as determined at the time of construction or if water inflow cannot be controlled without a seat coat, then the use of Type 2 cofferdam with seal coat may be necessary. A minimum factor of safety of buoyancy of 1.2 is required by IDOT for seal coat construction. In addition, pump and pit procedures will also be needed to keep the site "in the dry" during construction at the piers.

All soils which become softened or loosened at the base of foundation excavation areas or subgrade areas should be carefully recompacted or removed prior to placement of foundation concrete or fill material. No foundation concrete or structural fill should be placed in areas of ponded water or frozen soil.

During excavation for the proposed improvements, movement of adjacent soils into the excavation should be prevented. All excavations should be performed in accordance with the latest Occupational Safety and Health Administration (OSHA) requirements. Allowances should be made for any surcharge loads adjacent to the retaining structures.

SECTION 10: GENERAL QUALIFICATIONS

The analysis and recommendations presented in this report are based upon the data obtained from the soil borings performed at the indicated locations and from any other information discussed in this report. This report does not reflect any variations that may occur between borings or across the site. In addition, the soil samples cannot be relied on to accurately reflect the strata variations that usually exist between sampling locations. The nature and extent of such variations may not become evident until construction. If variations appear evident, it will be necessary to reevaluate the recommendations of the report. In addition, it is recommended that Geo Services, Inc. be retained to perform construction observation and thereby provide a complete professional geotechnical engineering service through the observational method.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are intended or made. In the event that any changes in the nature, design or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and the conclusions of this report modified or verified in writing by the geotechnical engineer. Also note that Geo Services, Inc. is not responsible for any claims, damages, or liability associated with any other party's interpretation of this report's subsurface data or reuse of the report's subsurface data or engineering analyses without the express written authorization of Geo Services, Inc.

APPENDIX A

GENERAL NOTES

GENERAL NOTES

CLASSIFICATION

American Association of State Highway & Transportation Officials (AASHTO) System used for soil classification.

Cohesionless Soils

Relative

Density

Loose

Dense Very Dense

Very Loose

TERMINOLOGY

Streaks are considered to be paper thick. **Lenses** are considered to be less than 2 inches thick. **Layers** are considered to be less than 6 inches thick. **Stratum** are considered to be greater than 6 inches thick.

Cohesive Soils

Medium Dense

<u>Consistency</u>	Unconfined Compressive Strength - qu (tsf)
Very Soft	Less than 0.25
Soft	0.25 - 0.5
Medium Stiff	0.5 - 1.0
Stiff	1.0 - 2.0
Very Stiff	2.0 - 4.0
Hard	Over 4.0

No. of Blows

per foot N

0 to 4

4 to 10

10 to 30

30 to 50

Over 50

DRILLING AND SAMPLING SYMBOLS

SS:	Split Spoon 1-3/8" I.D., 2" O.D.
cт.	Challey Type OILOD average where not

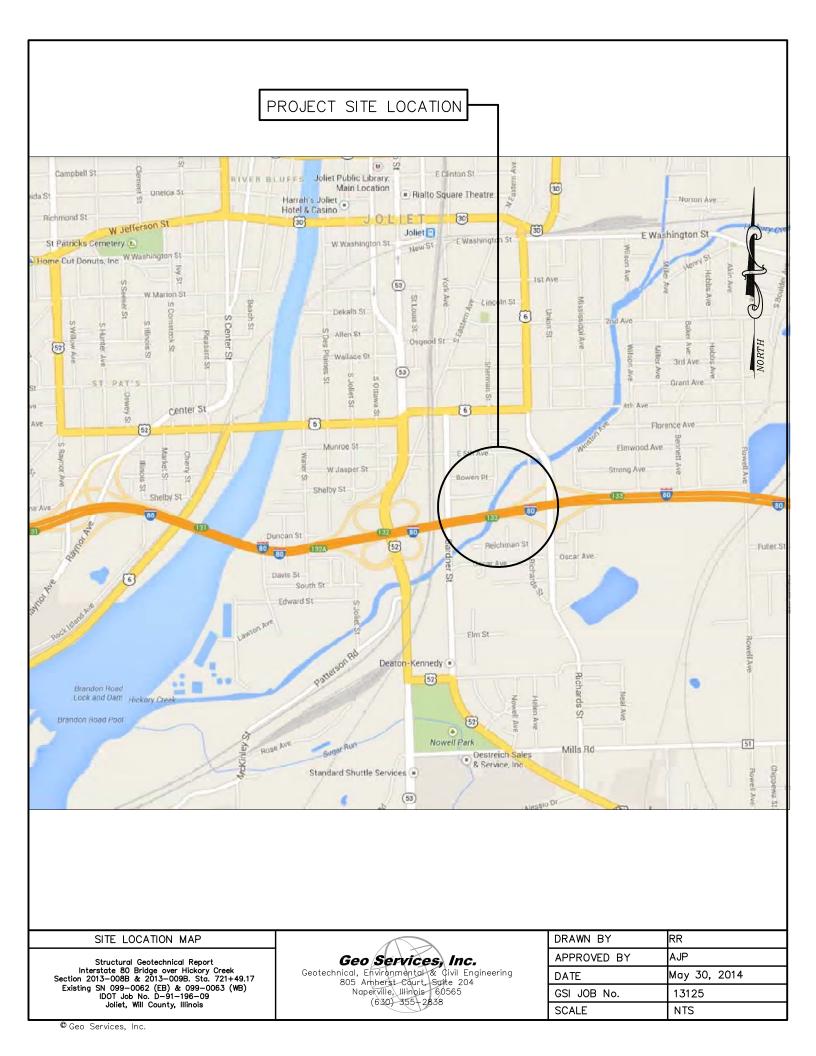
- ST: Shelby Tube 2" O.D., except where noted
- AS: Auger Sample
- DB: Diamond Bit NX: BX: AX
- CB: Carboloy Bit NX: BX: AX
- OS: Osterberg Sampler

WS:	Wash Sample
FT:	Fish Tail
RB:	Rock Bit
WO:	Wash Out

Housel Sampler

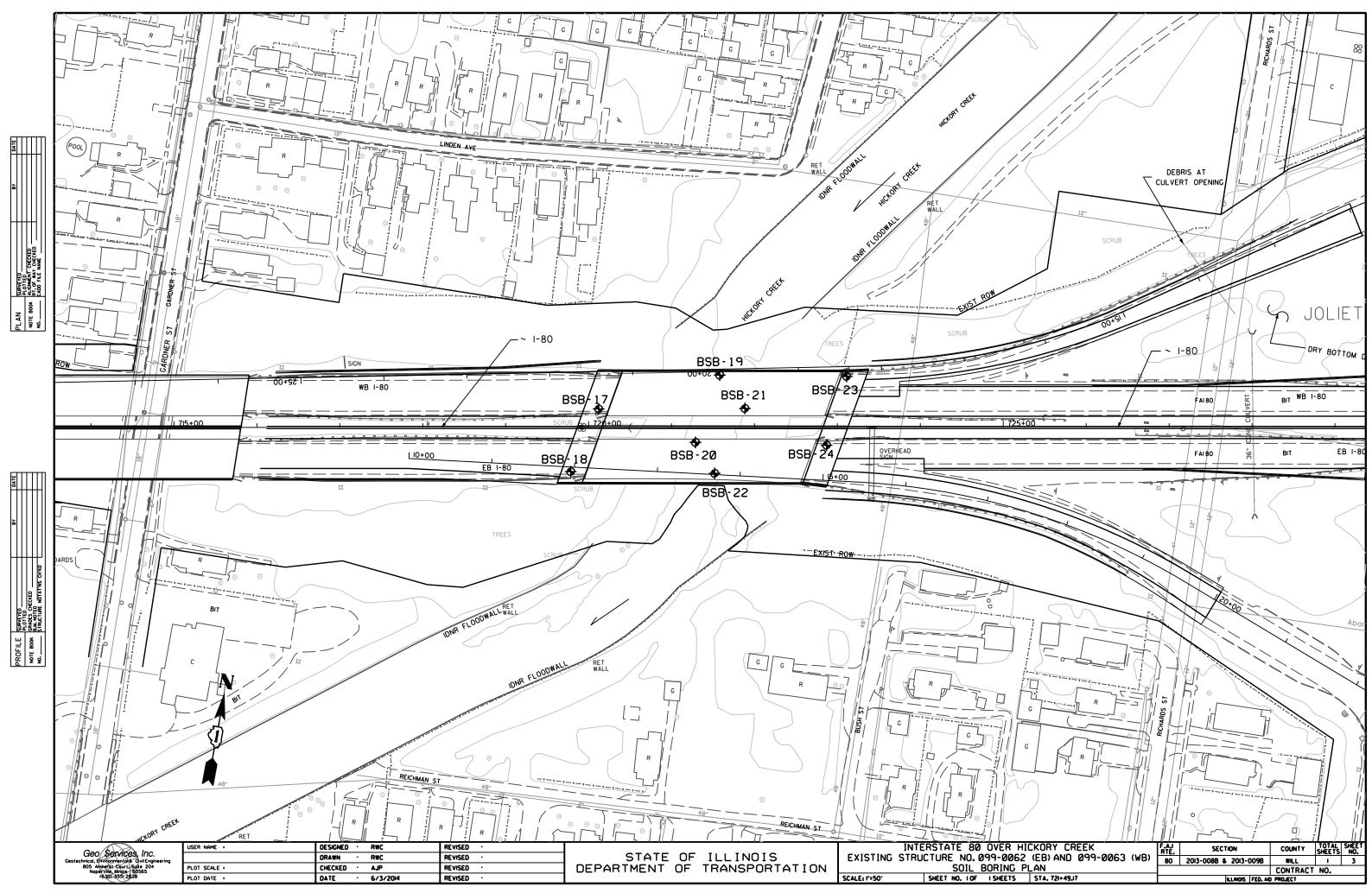
HS:

Standard "N" Penetration: Blows per foot of a 140 lb. hammer falling 30" on a 2" O.D. Split Spoon

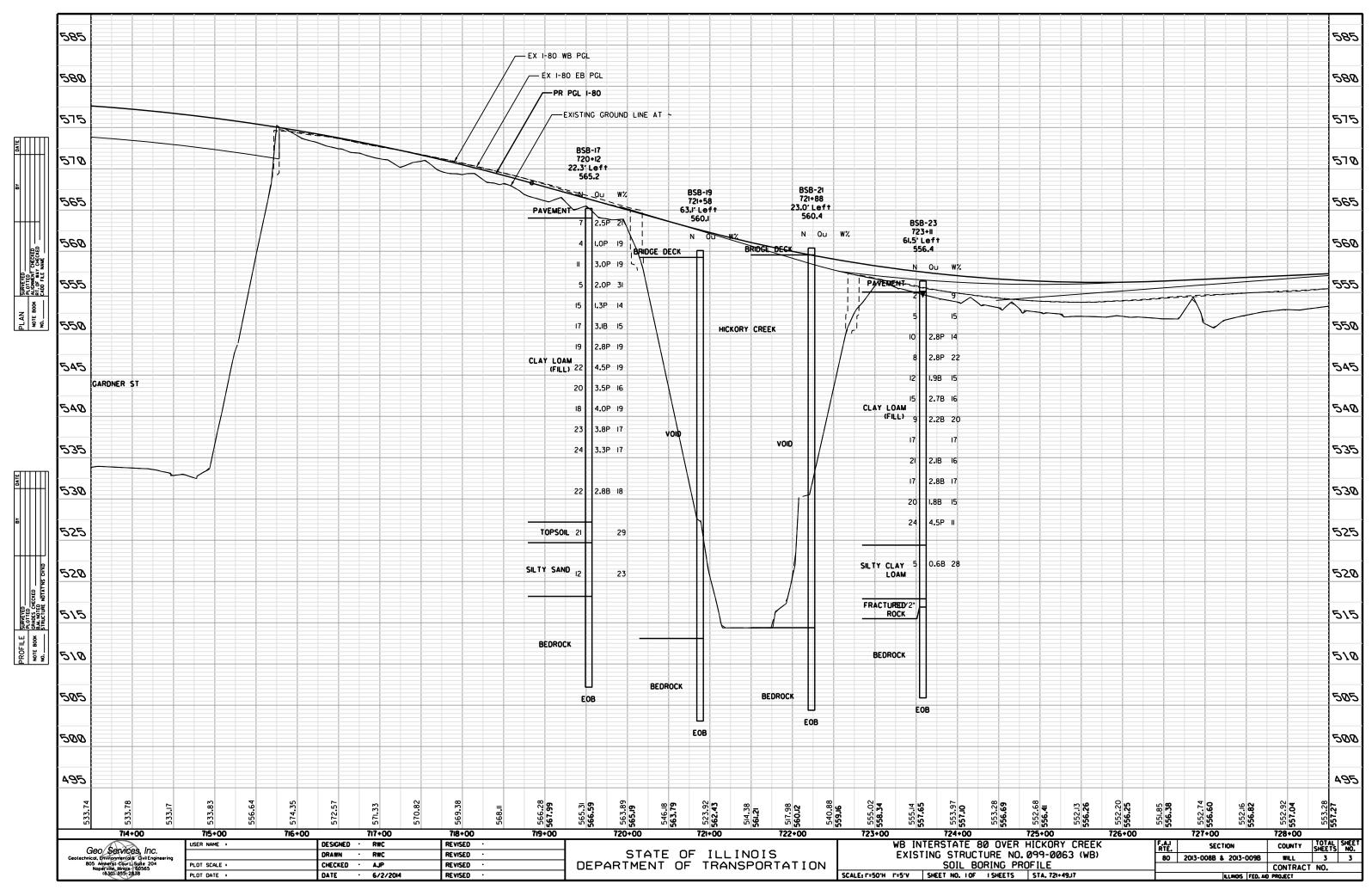

WATER LEVEL MEASUREMENT SYMBOLS

WL:	Water	WD:	While Drilling
WCI:	Wet Cave In	BCR:	Before Casing Removal
DCI:	Dry Cave In	ACR:	After Casing Removal
WS:	While sampling	AB:	After Boring

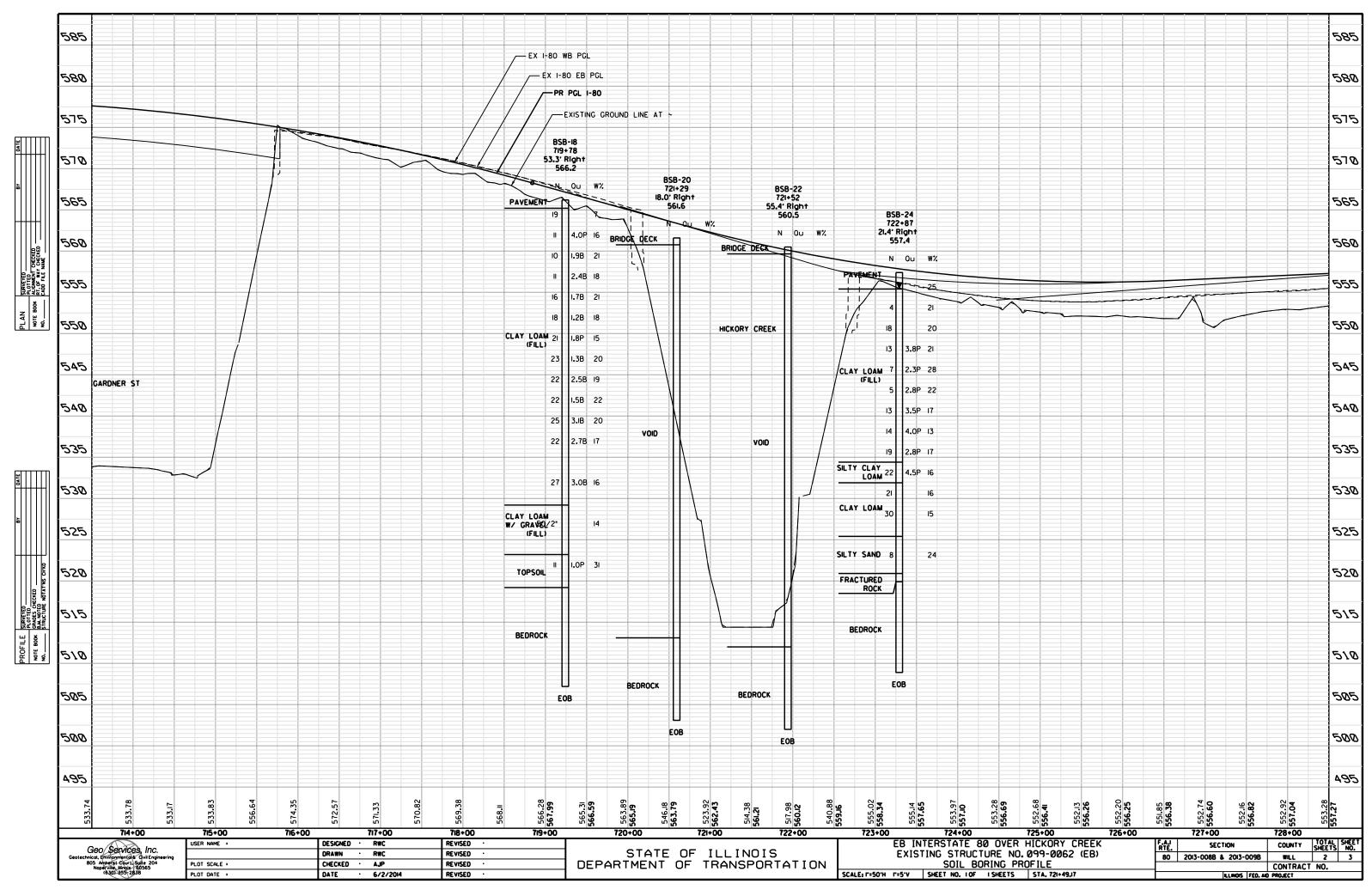
Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils, the accurate determination of ground water elevations is not possible in even several days observation, and additional evidence on ground water elevations must be sought.


APPENDIX B

SITE LOCATION MAP



APPENDIX C


BORING LOCATION PLAN

APPENDIX D

BORING & ROCK CORE LOGS

SOIL BORING LOG

Page <u>1</u> of <u>2</u>

Date 3/17/14

F	ROUTE	F.A.I RTE. 80	DES	SCRIPTION I-80 Phase II (Near Term)					erm)	LOGGED BY			IB		
ę	SECTION _			LOCATION			SW 1/	4, SEC. 15, TWP. T35N	I, RNG. R10E, 3 rd P	М	1				
(COUNTY	Will	DRILLING	MET	HOD		Hollow Stem Auger/Rotary HAMMER TYP				CME A	utoma	tic		
	Station 3ORING NO. Station Offset	BSB-17 720+12 22.30ft Left face Elev. 565.		D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	n/a ft ft n/a ft	D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)		
	0" ASPHAL	T, 4.0" CONCRET		<u> </u>		()	()	CLAY to CLAY LOAM	/l-brown &			()	()		
	1.0" CRUSHE		564.03		3			gray-stiff to hard (Fill)	(continued)		4				
	CLAY to CLA gray-stiff to ha	Y LOAM-brown & ard (Fill)			3	2.5	21				7	3.5	16		
					4	Р				_	13	P			
					2	1.0	19				6 7	4.0	19		
				-5	2	P				-25	11	P			
					3						6				
4					5 6	3.0 P	19				9 14	3.8 P	17		
41./Z/Q C					0	P					14	Р			
19.90					2						8				
172 L					2	2.0	31				9	3.3	17		
20/12				-10	3	Р				-30	15	Р			
NG LC										_	-				
					3	1.3	14			_					
13120					7	P	14				-				
											-				
EAR					4					—	8				
Z) = =					8 9	3.1 B	15			_	9 13	2.8 B	18		
PHAS				- <u>15</u>	9	Б				<u>35</u>	13	Б			
м 1-80					6										
2 HNT					8	2.8	19				-				
\$1312					11	Р									
Z:\PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ								SANDY LOAM-browr	<u>527.</u> า &	20	-				
JECT					5	4 5	10	gray-medium dense			5		20		
: / PRC				-20	11	4.5 P	19			-40	6 15		29		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Geoe Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suifé 204 Naperville, Illihotis 50565 (830) 355-2888

Page <u>2</u> of <u>2</u>

Date	3/17/14

	ROUTE _	E F.A.I RTE. 80 DESCRIPTION							I-80 Phase II (Near T	erm)	LOGGED BY	JB
	SECTION				_ L	OCAT	ION _	SW 1/4	4, SEC. 15, TWP. T35N	N, RNG. R10E, 3 ^{rr}	^d PM	
	COUNTY	W	<u>'ill</u> C	RILLING	MET	HOD		Hollow	Stem Auger/Rotary	HAMMER TY	PE <u>CME</u> A	utomatic
	STRUCT. N Station _	0			D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a f n/a f	t t	
	BORING NO Station _ Offset	D	BSB-17 720+12 22.30ft Left		T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion			
_	Ground S	urface Ele	v. <u>565.2</u>	0 ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	f	ť	
	SILTY SAN dense	ID-dark gra	ay-medium	<u>524.70</u>								
						3						
					-45	4 8		23				
				-								
				-								
4		1:	A	518.20								
J 6/2/	Drillers Obs Bedrock	servation: <i>I</i>	Apparent	517.20								
0G.GP.	Borehole coring.	ontinued w	vith rock	011.20								
25_LC	coning.			-								
SV131				-	-50							
G LOG												
SORIN				-	_							
3125 E												
RM)/1												
AR TE												
II (NE												
HASE					- <u>55</u>							
I-80 PI												
NTB,				-								
125 H				-								
Z:/PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 6/2/14				-								
CTS/2												
SOJEC												
Z:\PF					-60							

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of _1		
Geo Services, Inc. Geotechnical, Environmental & Givil Engineering	ROCK	CORE	LOG	DATE _	<u>3/18</u>	/2014	4		
805 Amherst Court, Suite 204				LOGGED	BY	JK			
Naperville, Illinois 60565 (630) 355-2838				GSI JOE	3 No.	_13	125		
ROUTE	DESCRIPTION 1-80	Reconstruc	tion (Near Term Phas	e 2)					
SECTION									
STRUCT. NO		-		D <u>ft</u> E	C O	R E	R ·	00	S T
Station	Coro Diamotor	20 in		Р Т	R E	C O	Q	R E T	R E
BORING NO. BSB-17 Station 720+12	Begin Core Elev.	· <u>518.2</u> 517.2		— Ĥ	R	V E	D	i M	N
Station <u>720+12</u> Offset <u>22.3' Left</u>	-			_	U N	R	•	E	T
Ground Surface Elev. <u>565.2</u>				(ft)	(#)	(%)	(%)	(min /ft)	
SILURIAN SYSTEM, NIAGARAN SERIES						100.0			· · · ·
RUN 1 (-48.0' to -58.0')									-49.0
Light gray with horizontal to wavy b horizontal fractures throughout.	edding. Porous with	h some chei	rt nodules. Numerous						
				53					
				-58					
					1				
R	5B-17 UN 1 -480'- DP	6-58.0'							

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

SOIL BORING LOG

Page <u>1</u> of <u>2</u>

Date <u>3/19/14</u>

ROUTE	F.A.I RTE. 80	DE	DESCRIPTION I-80 Phase II (Near Term)					LOGGED BY			NW	
SECTION			I		ION _	SW 1/	4, SEC. 15, TWP. T35N	I, RNG. R10E, 3 rd PM				
COUNTY	Will	DRILLING	LING METHOD			Hollow	Stem Auger/Rotary	HAMMER TYPE		CME A	utoma	tic
	BSB-18 719+78 53.30ft Right		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter	ft 	D E P T H	B L O W S	U C S Qu	M O I S T
Ground Surfa	ace Elev. <u>566.2</u>	20 ft	(ft)	(/6'')	(tsf)	(%)	Upon Completion After Hrs.	π ft	(ft)	(/6'')	(tsf)	(%
4.0" ASPHAL	T, 8.0" GRAVEL						CLAY to CLAY LOAM	/l-brown &				
		565.20					gray-stiff to hard (Fill)	(continued)				
CLAY to CLAY gray-stiff to ha	Y LOAM-brown &			12		7			_	7	25	10
gray sui to rid	····/			10 9		'				9	2.5 B	19
				1						1		
				5	10	10				9	4.5	
				3 8	4.0 P	16				11	1.5 B	2
			5		·				<u>-25</u>			-
				1								
			_	4	4.0	04			_	9	2.4	_
				4	1.9 B	21				11	3.1 B	2
									_			
				5		10				14	0 -	_
				5	2.4 B	18				11	2.7 B	1
			<u>-10</u>	0					-30		0	
			_	-								
			_	4					_			
				7 9	1.7 B	21						
				3								
				1								
				7						8		<u> </u>
				8 10	1.2 B	18				12 15	3.0 B	10
			<u>-15</u>	10					<u>-35</u>	15	D	
				1								
				5								
				8 13	1.8 P	15	CLAY LOAM with GR	529.20)			
			_	13	r		brown, gray & black-v		_			
				-			(Fill)					
				17						50/2"		
			_	9	1.3	20						14
			-20	14	В				-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

SOIL	BOR	ING	LOG

Page <u>2</u> of <u>2</u>

Date 3/19/14

ROUTE F.A.I RTE. 80 DESCRIPTION								I-80 Phase II (Near T	<u>erm)</u>	LOGGED BY N					
SEC	TION			_ L	OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	N, RNG. R10E, 3 rd PM						
COU	INTY	Will	DRILLING	MET	HOD		Hollow	Stem Auger/Rotary	HAMMER TYPE	CME Auto	omatic				
				D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/aft n/aft						
Sta Off	ition iset	BSB-18 719+78 53.30ft Right		T H	W S	Qu	S T	Upon Completion	<u>Dry to 10.0'</u> ft n/aft						
		ce Elev. 566.2	<u>0</u> ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	ft						
brow		ith GRAVEL-dark black-very dense)													
			523.20												
LOA	M-gray-me	dium dense		_	_										
					5		0.1								
				_	5	1.0	31								
				- <u>45</u>	6	Р									
4			519.20												
Trille		ation: Apparent													
Bedi	rock														
0.0															
			517.20												
E Bore		nued with rock													
corir	ng.			-50											
8															
NGL															
ORI															
25 B															
131															
(M)															
E															
IEAF															
< =															
ASE				- <u>55</u>											
H															
VTB,				_											
22 HI															
ZAPROJECTS/2013/13125 HNTB, 1-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125 LOG.GPJ 6/2/14				_											
013/															
S/2(_											
ECI															
ROJ															
Z				-60											

				PAGE _	1		of <u>1</u>		
Geo Services, Inc. Geotechnical, Environmental & Civil Engineering	ROCK	CORE	LOG	DATE _	<u>3/20</u>	/201	4		
Geotechnical, Environmental & Çivil Engineering 805 Amherst Court, Suite 204 Naperville, Illinbis 60565				LOGGED	BY	_JK_			
(630) 355-2838				gsi joe	3 No.	13	125		
ROUTE	DESCRIPTION 1-80) Reconstruc	tion (Near Term Phas	e 2)					
SECTION	LOCATION SEC 15	<u>, T35N, R10</u>	E, SW 1/4, 3rd PM						
COUNTY WIII	CORING METHOD	Rotary Wasł	1						
STRUCT. NO	CORING BARREL T	YPE & SIZE	NX Double Swivel-1	<u>D</u> <u>D</u> ft E	C O	R E	R ·	С 0	S T
Station	Core Diameter <u>-</u> Top of Rock Elev	2.0 in 5192			R E	C O	Q ·	R E T	
BORING NO. BSB-18 Station 719+78	Begin Core Elev.	517.2		<u> </u>	R U	V E	D ·	I M	N G
Offset <u>53.3' Right</u>					N	R Y		E (min	1
Ground Surface Elev566.2				(ft)	(#)	(%)	(%)		(tsf)
SILURIAN SYSTEM, NIAGARAN SERIES	DOLOMITE				1	100.0	14.0	n/a	1002 @ -52.8
RUN 1 (-49.0' to -59.0') Light gray, porous & cherty with ho		iahly fractur	ed throughout with						
numerous intersecting horizontal &	vertical fractures.	igniy nactai							
					1				
					-				
				_					
				-59					
	San Street	A State of Lot							
	DIR 10	and the second second	13125						
	B5B-18								
	DRUNI	-49.0'	fo-59.0'						
	dauge 1	-							
and the second se	TOP			-					
	101	Contraction of the second		-					
		A STATE	the state of the s						
	A	1.0	The second						
	11-1-1-	Tur							
	Line James	11	2 5	-A					
		-	Contraction of Contraction						
	and a support			1					

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

SOIL BORING LOG

Page <u>1</u> of <u>2</u>

Date 3/10/14

	ROUTE	F.A.I RTE. 80	DESCR	IPTION			I-80 Phase II (Near Te	erm) Lo	OGGE	D BY		IZ
	SECTION			LOCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E, 3 rd PM				
		Will DRI		THOD			Mud Rotary	HAMMER TYPE	(CME A	utoma	tic
	BORING NO Station Offset	BSB-19 721+58 63.10ft Left	- P T - H	B L O W S (/6")	U C S Qu	M O I S T	Upon Completion	n/aft n/aft	D E P T H	B L O W S (/6")	U C S Qu	M O I S T
Г		ce Elev. 560.10	_ ft (ii)	(/0)	(tsf)	(%)	After Hrs.	Ħ	(11)	(/0)	(tsf)	(%)
		, 8.0" CONCRETE					VOID (continued)					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page <u>2</u> of <u>2</u>

Date	3/10/14
Dale	3/10/14

ROUTE	F.A.I RTE. 80	DESCRIPTION	۱	I-80 Phase II (Near T	ierm) LO	GGED BY JZ
SECTION	I	LOCA	rion <u>sw</u>	/ 1/4, SEC. 15, TWP. T35N	N, RNG. R10E, 3 rd PM	
COUNTY	WillD	RILLING METHOD		Mud Rotary	HAMMER TYPE	CME Automatic
Station BORING Station Offset	NO	P O T W H S	C C S S Qu T	First Encounter Upon Completion	n/aft n/aft	
Z:PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 6/2/14 Could Phase Phase II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 6/2/14	e continued with rock					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of <u>1</u>		
Geo Services Inc.	ROCK	CORE	LOG	DATE _	<u>3/10</u>	/2014	4		
Geo Services, Inc. Geotechnical, Environmental & Givil Engineering 805 Amherst Court, Suite 204				LOGGED	BY	JK			
Naperville, Illinois 60565 (630) 355+2838				GSI JOE	3 No.	_13	125		
ROUTE	DESCRIPTION 1-80) Reconstruc	tion (Near Term Phase	e 2)					
SECTION	LOCATION SEC 15	<u>, T35N, R10</u>	E, SW 1/4, 3rd PM						
COUNTY WIII	CORING METHOD	Rotary Wasł	n						
STRUCT. NO				<u>) ft</u> E	C O R	R E C	R · Q	C O R	S T R
Station	Top of Rock Elev	<u>2.0 in</u> • <u>513.1</u>		— Р Т Н	E	0 V	· D	ET	E
BORING NO. BSB-19 Station 721+58	Begin Core Elev.	<u>513.1</u>		_ ''	R U	Ē	•	M E	G
Offset <u>63.1' Left</u>					N	Y		(min	н
Ground Surface Elev. <u>560.1</u>				(ft)	(#)		(%)		
SILURIAN SYSTEM, NIAGARAN SERIES	DOLOMITE				1	100.0	43.0	n/a	1025 @ -54.7
RUN 1 (-47.0' to -57.0') Light gray to gray, fine grained with									
weathering. Highly fractured & chert throughout.	y to —49.8'. Nume	erous horizor	ntal fractures						
					-				
				52					
				52					
				-57	,				
			1717-						
	358-19		13125	Line in the second s					
	RUNI -47.0	10-57.0'	16						
			the start of the						
	TOP			TOT I					
				and and					
		and the second of the		-					
		State of the							
	and the second	Dig the second	7 1						
		1	- Ford						
Same State	-> (Bitter)			and I					
	t y								
and the second se		and the second	an her to						

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

SOIL BORING LOG

Page <u>1</u> of <u>2</u> Date <u>3/26/14</u>

ROUTE F.A.I RTE. 80	DESCRIPTION		I-80 Phase II (Near Te	erm) Lo	OGGED BY	JB
SECTION	LOCAT	ION _ SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E, 3 rd PM		
	DRILLING METHOD		Mud Rotary	HAMMER TYPE	CME A	utomatic
STRUCT. NO	 Н S	U M C O S I S Qu T (tsf) (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion	n/aft n/aft	D B E L P O T W H S (ft) (/6")	U M C O S I S Qu T (tsf) (%)
Cround Surface Elev			After Hrs.	ft	(TT) (/6) 	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page <u>2</u> of <u>2</u>

ROUTE	F.A.I RTE. 80	DESCR	PTION			I-80 Phase II (Near Te	erm) LOGGED BY JB				
SECTION		I		ION _	SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E, 3 rd PM				
COUNTY	Will DRI	LING ME	HOD			Mud Rotary	_ HAMMER TYPE _	CME Auto	matic		
Station BORING NO. Station	BSB-20 721+29	- P T - H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter	n/aft n/aft				
Offset	18.00ft Right		(/6'')	(tsf)	(%)	Upon Completion	n/aft				
	ace Elev. <u>561.60</u>	_ ft (iii)	(,0)	((3))	(70)	After Hrs.	π				
VOID (continu 375, PROJECTS/2013/13125 HNTB, 1-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125 LOG.GPJ 6/2/14 coring.											

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

			LOG	PAGE <u>1</u> of <u>1</u>						
Geo Services, Inc.	ROCK	CORE		DATE _	3/26	/201	4			
Geotechnical, Environmental & Çivil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565				LOGGED	BY .	MD				
Naperville, Ultinois 60565 (630) 355+2838				GSI JOE						
ROUTE	DESCRIPTION 1-80	<u>) Reconstruc</u>	tion (Near Term Phase							
SECTION										
COUNTY	CORING METHOD	Rotary Wasł	า							
STRUCT. NO	CORING BARREL T	YPE & SIZE	NX Double Swivel-10	<u>) ft</u> E	СО	R E	R ·	С 0	S T	
Station	Core Diameter	2.0 in		Р Т	R E	С 0	Q	R E T	R E	
BORING NO. BSB—20 Station 721+29	Top of Rock Elev Begin Core Elev.	· <u>513.1</u> _513.1		— Н	R	V E	D	I M	N	
Offset <u>18.0' Right</u>					U N	R Y		E		
Ground Surface Elev561.6				(ft)	(#)	(%)	(%)	(min /ft)	(tsf)	
SILURIAN SYSTEM, NIAGARAN SERIES	DOLOMITE				1	100.0	34.0	n/a	695 @ -50.8	
RUN 1 (-48.5' to -58.5') Light gray to gray with horizontal b		ous with so	me rust staining. Son							
large chert nodules. Highly fractured	I throughout with r	numerous int	tersecting horizontal &							
vertical fractures.										
				-53.5						
				-58.5						
		and the second second		T						
	B5B-20		13125	7						
64	RUNI T	-48.5%	585	15						
150	TOP	And Party of the								
and a second	and the									
	A	11-4	1 12 1							
	ATT A									
			1							
		-		1/						
	1	a ser la	a land a	Y						
	all a state	A SPA	14 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	And and						

Color pictures of the cores <u>Yes</u> Cores will be stored for examination for <u>-</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

SOIL BORING LOG

Page <u>1</u> of <u>2</u>

Date <u>3/14/14</u>

ROUTE	F.A.I RTE. 80DESCRIPTIONI-80					I-80 Phase II (Near Term) LOGGED BY					JB
SECTION		L	OCAT	ION _	SW 1/	4, SEC. 15, TWP. T35N	, RNG. R10E, 3 rd PN	1			
	Will DRIL					Mud Rotary	_ HAMMER TYPE	CME A	Automatic		
BORING NO. Station Offset	BSB-21 721+88 23.00ft Left ace Elev. 560.40	- P - T - H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	n/aft n/aft	D E T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
	T, 8.0" CONCRETE					VOID (continued)					

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

SOIL	BORING	LOG
------	--------	-----

Page <u>2</u> of <u>2</u>

Date <u>3/14/14</u>

	ROUTE	F.A.I RTE. 80	DES	CRIPTI	ON		I-80 Phase II (Near Te	erm) LC	GGED BY	JB
	SECTION			_ LOC	ATION	SW 1/	4, SEC. 15, TWP. T35N	I, RNG. R10E, 3 rd PM		
		Will [METHO	D		Mud Rotary	HAMMER TYPE	CME Auto	omatic
	STRUCT. NO. Station			D E E L P C	. C) S	M O I	Surface Water Elev. Stream Bed Elev.	n/a ft n/a ft		
	Station Offset	BSB-21 721+88 23.00ft Left		T V H S	6 Qu		Groundwater Elev.: First Encounter Upon Completion	n/aft		
		Elev. 560.4	0 ft	(ft) (/6	") (tsf)	(%)	After Hrs.	ft		
	VOID (continue	d)	- - - 514.40							
Z:/PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 6/2/14	Borehole contin coring.	ued with rock	-							

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1	^{of}	1	
Geo Services, Inc.	ROCK	CORE	LOG	DATE _	3/15/2	0145		
Geotechnical, Environmental & Çivil Engineering 805 Amherst Court, Suite 204				LOGGED	ΒΥ <u></u>	ĸ		
Naperville, Illinois 60565 (630) 355+2838				GSI JOE	No.	13125		
ROUTE	DESCRIPTION 1-80) Reconstruc	tion (Near Term Pha					
SECTION				,				
COUNTY WIII								
STRUCT. NO				D 0 ft E	C O	R R E .	C 0	S T
Station	Core Diameter	2.0 in			R		R ET	R
BORING NO. BSB-21 Station 721+88	Top of Rock Elev Begin Core Elev.	514.4 <u>514.4</u>		— H		V D E .	Гі м	N
Station <u>721+88</u> Offset <u>23.0' Left</u>				_		L . R Y	E	
Ground Surface Elev560.4	1			(ft)		' %) (%)	(min	H (tsf)
SILURIAN SYSTEM, NIAGARAN SERIES						8.0 48.0		· · · ·
RUN 1 (-46.0' to -56.0')								-0.7
Light gray to gary with some rust s Numerous horizontal fractures throu	ghout with some in	n norizontal ntersecting \	vertical fractures.					
				-56				
			Should Charles and		I	I		
			1710	5				
	35B-21		13125	£7				
		6.040-56	N	Hall.				
	RUNI -40	6.040 26						
				3				
	TOP							
			In the second	1				
		1 Sola	The second second					
	Silent Consumer	> 1	Alexandre Automatication					
	-			CH IL				
			Link Contraction	1				
			and the state of the second					

SOIL BORING LOG

Page <u>1</u> of <u>2</u>

Date 3/20/14

F	ROUTE		F.A.I R	TE. 80		DES	SCRI	PTION			I-80 Phase II (Near Te	erm) I	OGGE	DBY	N	W
S	SECTION						_ L	OCAT	ION _	SW 1/-	4, SEC. 15, TWP. T35N	, RNG. R10E, 3 rd PN	1			
C	COUNTY		Will		DRIL	LING	MET	HOD			Mud Rotary	_ HAMMER TYPE	C	ME A	utoma	tic
	otation			3SB-22		-	D E P T	B L O W	U C S	M O I S	Surface Water Elev. Stream Bed Elev.	n/a ft	D E P T	B L O W	U C S	M O I S
	Offset		55.4	<u>3SB-22</u> /21+52 40ft Righ	t			S	Qu	Т	First Encounter Upon Completion	n/aft n/aft	н	S	Qu	т
	Ground	Surfac	e Elev.	560.	.50	ft	(ft)	(/6")	(tsf)	(%)	After Hrs.	ft	(ft)	(/6")	(tsf)	(%)
E	BRIDGE I			DNCRET		59.50					VOID (continued)					
	/OID															
													_			
								а.								
							5						-25			
6/2/14																
DG.GPJ																
3125_L(
LOGS/1							-10						-30			
ORING																
13125 B																
TERM)/								а.								
I (NEAR																
PHASE I							-15						-35			
B, I-80 F																
125 HNT																
2013/131																
Z:\PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 6/2/14																
Z:\PRO							-20						-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

SOIL BORING LOG	SOIL	BORIN	NG L	.OG
-----------------	------	-------	------	-----

Page <u>2</u> of <u>2</u>

ROUTE F.A.I R	TE. 80 DESCR	RIPTION		I-80 Phase II (Near Te	erm) LO	GGED BY NW
SECTION		LOCATION	SW 1/4	4, SEC. 15, TWP. T35N	I, RNG. R10E, 3 rd PM	
		THOD		Mud Rotary	HAMMER TYPE	CME Automatic
STRUCT. NO Station BORING NOB Station7 Offset55.4 Ground Surface Elev.	21+52 H	L C O S W S Qu	O I S J T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	n/aft n/aft	
VOID (continued) P1720 Borehole continued with coring.					n	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of _1		
Geo Services Inc.	ROCK	CORE	LOG	DATE _	3/20	/201	4		
Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amherst Court, Suite 204				LOGGEE) BY	JK			
Naperville, Illinbis 60565 (630) 355+2838				GSI JOI	3 No.	13	125		
ROUTE	DESCRIPTION 1-80) Reconstruc	tion (Near Term Phas	e 2)					
SECTION	LOCATION SEC 15	<u>, T35N, R10E</u>	E, SW 1/4, 3rd PM						
COUNTY WIII	CORING METHOD	Rotary Wash	า					-	
STRUCT. NO	CORING BARREL T	YPE & SIZE	NX Double Swivel-10		C O	R E	R .	С 0	S T
Station	Core Diameter	2.0 in		— Р Т	R E	C 0	Q	R ET	R E
BORING NO. BSB-22 Station 721+52	Begin Core Elev.	<u> </u>		<u> </u>	R	V E	D	I M	
Offset <u>55.4' Right</u>					U N	R Y		E (min	1 11
Ground Surface Elev. 560.5				(ft)	(#)	(%)	(%)		(tsf)
SILURIAN SYSTEM, NIAGARAN SERIES	DOLOMITE				1	100.0	7.5	n/a	1212 @ -51.0'
RUN 1 (-48.5' to -58.5') Light gray & porous with horizontal	bedding.Highly_frac	ctured throw	ahout						
	bodding.niginy nac		griout						
				_					
					-				
				<u> </u>	5				
				_	-				
				_					
				-58.5	5				
	and the second second	Sandara		-					
		TRANSPORT OF	12125	T					
	35B-22		13125						
		110 17 -	The second second						
a Committe	RUNI -	18.5 to	58.5						
	TOD			K					
	TOP			free to					
	The State		1- and						
1 and 1	CIL	TIV		Nor In					
	Aminte	Y							
	1. A	The second	AT TO						
1000	P 1 P	and and	a the R						
		_	1 11	12					
and the second se	- Martin Contractor	and a	4						

SOIL BORING LOG

Page <u>1</u> of <u>2</u>

Date 1/15/14

 ROUTE
 F.A.I RTE. 80
 DESCRIPTION
 I-80 Phase II (Near Term)
 LOGGED BY
 NW

 LOCATION _ SW 1/4, SEC. 15, TWP. T35N, RNG. R10E, 3rd PM SECTION COUNTY Will DRILLING METHOD Hollow Stem Auger/Rotary HAMMER TYPE CME Automatic D в U Μ D в U Μ Surface Water Elev. STRUCT. NO. n/a **ft** Е L С ο Е С L 0 Station Stream Bed Elev. n/a **ft** Ρ S S 0 Ρ Т Ο L т W т S W S BORING NO. BSB-23 Groundwater Elev.: н S Qu т S т
 Station
 723+11

 Offset
 61.50ft Left
 н Qu <u> 554.4 ft </u> First Encounter Upon Completion <u>n/a</u>ft (ft) (%) (ft) (/6") (%) Ground Surface Elev. 556.40 (/6") (tsf) (tsf) ft After Hrs. __ ft 4" ASPHALT, 12.0" CONCRETE CLAY LOAM-brown & gray-stiff to hard (Fill) (continued) 555.07 6 CLAY LOAM-brown & gray-stiff to 9 2.1 16 1 ▼ hard (Fill) 1 9 12 В 1 2 4 2 15 7 2.8 17 3 10 В -25 3 9 5 2.8 14 10 1.8 15 (PROJECTS/2013/13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125 LOG.GPJ 6/2/14 Р 5 10 В 2 14 3 2.8 22 12 4.5 11 5 Ρ 12 Ρ -10 -30 4 1.9 15 5 524.40 SILTY CLAY LOAM-dark brown & 7 В gray-loose 4 2 6 2.7 16 2 0.6 28 В 3 В 9 5 5 2.2 20 4 В 517.90 3 Drillers Observation: Fractured 50/2" Rock 5 17 516.90 12 -40

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page <u>2</u> of <u>2</u>

Date	1/15/14

	ROUTE	F.A.I RTE. 80	DES	SCRIPT	TION			I-80 Phase II (Near Te	erm)	LOO	GED BY	NW
	SECTION			_ LO	CAT	ION _	SW 1/4	4, SEC. 15, TWP. T35N	I, RNG. R10E, 3	3 rd PM		
		Will	DRILLING	METH	OD		Hollow	Stem Auger/Rotary	HAMMER T	YPE _	CME Auto	omatic
	STRUCT. NO. Station			D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	n/a	ft ft		
	Station Offset	BSB-23 723+11 61.50ft Left	t	н	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	n/a	ft		
		ce Elev. <u>556</u>	.40 ft	(ft) (/6")	(tsf)	(%)	After Hrs.		ft		
	Bedrock (contil	ation: Apparent nued)	515.90									
		nued with rock										
	coring.			_								
				-45								
Ħ												
/2/14												
-J 6												
G.GF												
PO												
3125 _.												
S\13				-50								
LOG				_								
ЫNG												
30R												
125 E												
)\13				_								
ERM												
R TI				_								
NEA												
E II (_								
HAS				- <u>55</u>								
30 PI				_								
В, Г б												
HNTI				-								
125												
3\13 [.]				\neg								
\201:												
CTS				\neg								
OJE												
Zi/PROJECTS/2013(13125 HNTB, I-80 PHASE II (NEAR TERM)/13125 BORING LOGS/13125_LOG.GPJ 6/2/14				-60								

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of <u>1</u>		
Geo Services, Inc.	ROCK	CORE	LOG	DATE	1/16,	/2014	1		
Geotechnical, Environmental & Givil Engineering 805 Amherst Court, Suite 204 Naperville, Illinois 60565				LOGGED	BY	JK			
(630) 355-2838				GSI JOE	3 No.	13	125		
ROUTE	DESCRIPTION 1-80) Reconstruc	tion (Near Term Phas	se 2)					
	LOCATION SEC 15	<u>, T35N, R10E</u>	<u>E, SW 1/4, 3rd PM</u>						
COUNTY	CORING METHOD	Rotary Wasł	ı						
STRUCT. NO	CORING BARREL T	YPE & SIZE	NX Double Swivel-1		C O	R E	R ·	С 0	S T
Station	Core Diameter	2.0 in			R E	С 0	Q	R E T	R E
BORING NO. BSB-23 Station 723+11	Top of Rock Elev Begin Core Elev.	· <u>517.9</u> _515.9		— Н	R	V E	D	I M	N G
Offset <u>61.5' Left</u>					U N	R Y		Е	T
Ground Surface Elev556.4				(ft)	(#)	· (%)	(%)	(min /ft)	(tsf)
SILURIAN SYSTEM, NIAGARAN SERIES	DOLOMITE				1	100.0	12.0	n/a	831 @ -43.1'
RUN 1 (-40.5' to -50.5') Light gray to gray with horizontal b		& porous H	lighly fractured with						
numerous intersecting horizontal &	vertical fractures.	a porous. I	nghiy nactured with]				
				-45.5					
					1				
				_					
]				
				-50.5					
	2612 72	- te							
	B5B-23		13125						
	DUIL -1	0.5 % -50		1					
E.C.	RUN 1 4	0.5 10 20	15	4.000					
			No. of the	-alle-					
	TOP	-							
	A CONTRACT OF CALL	RIGH	Martin Martines	and the second					
	Land Garage	Personal St	AND DOG - CORDA	in the second					
	1 hours	1.46	A. L. J. C. A.	1-					
and the second second			1 0 1						
	Sar V								
Strate -	R A		14	_					
1	Same of the state								
		11 20	A	-					

Geo Services, Inc. Geotechnical, Environmental & Civil Engineering 805 Amherst Court; Suite 204 Naperville, Illihois J0565 (630) 355-2888

Page <u>1</u> of <u>1</u>

Date 3/28/14

ROUTE	F.A.I RTE. 80	_ DESC	CRIPTI	ON _		I-80 Phase II (Near Term)	L(oggi	ED BY	N	W
SECTION				CATION	 SW 2	/4, SEC. 15, TWP. T35N, RNG. R10E	, 3 rd PM				
COUNTY	Will DR	RILLING N	NETHC	DD _	Hollo	w Stem Auger/Rotary HAMMER	TYPE	(CME A	utoma	tic
Station	BSB-24 722+87 21.40ft Right		E P (T \	L 0 0 3 N	J M C O S I S S Qu T	Surface Water Elev. n/a Stream Bed Elev. n/a Groundwater Elev.: First Encounter 555.4	_ ft	D E P T H	B L O W S	U C S Qu	M O I S T
Offset	21.40ft Right ace Elev. 557.40	fi (sf) (%)	Upon Completion n/a	_ ft	(ft)	(/6'')	(tsf)	(%)
	T, 18.0" CONCRETE	_ " [- / (-		CLAY LOAM-brown & gray-very	_ n			()	(,
		_				stiff to hard (Fill) (continued)			7		
	prown & gray-very	555.40	<u> </u>		25	-			9 10	2.8 P	17
stiff to hard (Fi		_				SILTY CLAY LOAM-gray-medium	534.40				
		_	-	2	21				6 9	4.5	16
			-5	2		-	531.90	-25	13	P	
				8		CLAY LOAM-gray-medium dense to dense			4		
5/2/14		_		10 8	20	_			8 13		16
00.0PJ				2					8		
5/13125_LC		_			.8 21	_		-30	13		15
ING LOGS		_									
13125 BOR		_	:		.3 28 5	SILTY SAND with Gravel-dark	525.40				
R TERM)		_				brown-loose					
II (NEAF		_	:		.8 22	_			2 3		24
0 PHASE			-15	3	>	_		-35	5		
INTB, I-8		_	_	3	E 47		520.90				
Z:\PROJECTS\2013\13125 HNTB, I-80 PHASE II (NEAR TERM)\13125 BORING LOGS\13125_LOG.GPJ 6/2/14					.5 17 >	Drillers Observation-Weathered & fractured rock. Drillers Observation-Apparent	519.90				
CTS/201				5		Bedrock Borehole continued with rock	518.90				
				7 4	.0 13 >	coring.		-40			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

				PAGE _	1		of <u>1</u>		
Geo Services, Inc.	ROCK	CORE	LOG	DATE _	3/20	/201	4		
Geotechnical, Environmental & Civil Engineering 805 Amberst Court, Suite 204				LOGGED) BY	_JK_			
Naperville, Illinbis 60565 (630) 355+2838				GSI JOI	3 No.	<u>13</u>	5125		
ROUTE	DESCRIPTION 1-80) Reconstruc	tion (Near Term Phase	2)					
SECTION	LOCATION SEC 15	<u>, T35N, R10</u>	E, SW 1/4, 3rd PM						
COUNTY	CORING METHOD	Rotary Wasł	า						
STRUCT. NO					C O	R E	R	C O	S T
Station	Core Diameter <u></u> Top of Rock Elev	<u>2.0 in</u>		- P T	R E	C O	Q	R E T	
BORING NO. BSB-24 Station 722+87	Begin Core Elev.	518.9		— H	R U	V E	D	I M	N G
Offset 21.4' Right	•				N	R Y		E (min	Т Н
Ground Surface Elev557.4	-			(ft)	(#)	(%)	(%)	`∕ft)	(tsf)
SILURIAN SYSTEM, NIAGARAN SERIES	DOLOMITE				1	100.0	19.0	n/a	868 @ -46.0'
RUN 1 (-38.5' to -48.5') Light gray & weathered with horizor	ital to wavv beddin	a. Highly fro	actured throughout wit	h					
numerous intersecting horizontal &	vertical fractures &	k some thin	clay partings.		_				
				-43.5	ò				
					-				
				-48.5	ò				
1-				5					
	358-24		13125						
		5 + - 48							
	KNN1 20) to 90	2	and the					
		-		1000					
	TBP								
	(1971) (1972) (275) (1 97	N LA	ATO N	1					
	A Martine	ST.	A Bleensterness						
	- A have	L M	A DOL ASIA CONT						
	-75 1	Ast	No. And And						
1.00	CT REPORT	and the second	In succession with	WILLIAM					
	11	- Fair and	1	-					
1.1.1.		Pris Will	and the second s	-					
	14 14 14 MA	and a second second second		100 m					

APPENDIX E

PILE LENGTH AND CAPACITY TABLES

	Boring BSB-17 - West Abutment WB (Ground Surface Elevation against Pile during driving = 554.62 Pile Cutoff Elevation = 555.62											
		3x36	HP 1		HP 1	-	HP 1	-		nell 12" ¹		nell 14" ²
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Required Bearing NRB(Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)
11	14	25	18	32	23	41	28	50	23	43	28	51
13	16	30	21	38	27	48	33	60	28	51	34	62
16	19	35	24	44	30	55	38	68	33	60	39	72
18	22	39	27	50	34	62	42	77	38	69	45	82
21	24	44	31	56	38	69	47	85	43	78	51	92
23	27	49	34	62	42	76	51	94	47	86	56	102
26	30	54	37	67	46	83	56	102	52	95	62	112
28	32	58	40	73	50	90	61	110	57 ³	104 ³	67 ³	123 ³
31	44	81	58	105	70	128	85	155				
33	40	73	51	93	64	117	80	145				
36	41	74	52	95	65	119	81	147				
38	59	108	73	133	88	160	108	197				
38.2	86	156	106	193	128	232	156	284				
38.7	113	205	140	254	167	304	204	371				
39.2	139	253	173	314	207	377	252	458				
39.7	157	286	184	335	230	419	300	545				
40							318	578				

Estimated Pile Lengths and Capacities for the West Abutments of the Proposed I-80 over Hickory Creek

Notes:

1. Metal Shell Pile 12" diameter with 0.179" walls

2. Metal Shell Pile 14" diameter with 0.250" walls

3. When driving Metal Shell piles, pile lengths should be limited to 10 feet above bedrock elevation to prevent damage to piles.

Top of rock elevation at BSB-17 is approximately 518.2 feet. Estimated Pile Length in BLUE denotes pile lengths at bedrock depth.

	Boring BSB-18, West Abutment EB (Ground Surface Elevation against Pile during driving = 555.51 Pile Cutoff Elevation = 556.51)											
	HP	3x36	HP 1	0x42	HP 1	2x53	HP 1	4x73	Metal Sh	ell 12" ¹	Metal Sh	nell 14" ²
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)
10	13	24	17	31	22	40	27	48	23	41	27	50
13	16	29	20	37	26	47	32	59	27	50	33	60
15	19	34	24	43	30	54	37	67	32	59	39	70
18	21	39	27	49	34	61	42	75	37	67	44	80
20	24	43	30	55	38	68	46	84	42	76	50	90
23	26	48	33	61	41	75	51	92	47	85	55	101
25	29	53	37	67	45	82	55	101	51	94	61	111
28	32	58	40	72	49	89	60	109	56 ³	102 ³	67 ³	121 ³
30	34	62	43	78	53	96	64	117				
33	37	67	46	84	57	103	69	126				
35	40	72	49	90	61	110	74	134				
37	65	119	81	147	97	176	119	217				
37.8	92	167	114	207	137	249	167	304				
38.3	119	216	147	268	177	321	215	391				
38.8	145	264	181	328	216	393	263	478				
39.3	157	286	184	335	230	419	318	578				

Notes:

1. Metal Shell Pile 12" diameter with 0.179" walls

2. Metal Shell Pile 14" diameter with 0.250" walls

3. When driving Metal Shell piles, pile lengths should be limited to 10 feet above bedrock elevation to prevent damage to piles.

Top of rock elevation at BSB-18 is approximately 519.2 feet. Estimated Pile Length in BLUE denotes pile lengths at bedrock depth.

	Boring BSB-23 East Abutment WB (Ground Surface Elevation against Pile during driving = 546.78 Pile Cutoff Elevation = 547.78)												
	HP 8	3x36	HP 1	0x42	HP 1	2x53	HP 1	4x73	Metal Sh	ell 12" ¹	Metal Sh	nell 14" ²	
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Required Bearing NRB(Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	
9	12	22	16	29	19	35	23	43	20	37	25	45	
12	15	27	19	35	24	44	30	55	25	46	30	55	
14	17	32	22	40	28	51	35	63	30	55	36	65	
17	20	36	25	46	32	58	39	72	35	63	42	76	
19	23	41	29	52	36	65	44	80	40 ³	72 ³	47 ³	86 ³	
22	25	46	32	58	40	72	49	88					
24	27	48	33	60	40	74	49	89					
27	28	51	35	64	43	78	52	94					
30	51	93	63	115	76	138	94	171					
30.7	78	142	96	175	116	211	142	258					
31.2	105	190	130	236	156	283	190	345					
31.7	131	239	163	296	195	355	237	432					
32.2	157	286	184	335	230	419	285	519					
32.5							318	578					

Estimated Pile Lengths and Capacities for the East Abutments of the Proposed I-80 over Hickory Creek

Notes:

1. Metal Shell Pile 12" diameter with 0.179" walls

2. Metal Shell Pile 14" diameter with 0.250" walls

3. When driving Metal Shell piles, pile lengths should be limited to 10 feet above bedrock elevation to prevent damage to piles. Top of rock elevation at BSB-23 is approximately 517.9 feet. Estimated Pile Length in BLUE denotes pile lengths at bedrock depth.

	Boring BSB-24, East Abutment EB (Ground Surface Elevation against Pile during driving = 547.81 Pile Cutoff Elevation = 548.81)											
	HP 8	3x36	HP 1)x42	HP 1	2x53	HP 1	4x73	Metal S	hell 12" ¹	Metal Sh	nell 14" ²
Estimated Pile Length (ft.)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)	Factored Resistance Available, FRA (Kips)	Nominal Requred Bearing, NRB (Kips)
9	12	22	16	29	19	35	24	43	21	37	25	45
12	15	27	19	35	24	44	30	55	25	46	30	55
14	23	41	28	51	34	61	41	75	47	85	59	107
17	31	57	41	74	49	89	59	108	82	150	104	190
19	35	63	43	78	52	94	63	114	106 ³	192 ³	135 ³	246 ³
22	36	66	45	82	54	99	66	120				
24	30	54	38	69	47	86	58	106				
27	30	55	39	70	48	88	59	108				
28	47	86	58	106	70	127	87	158				
28.7	74	134	91	166	110	200	135	245				
29.2	101	183	125	227	149	272	182	332				
29.7	127	231	158	287	189	344	230	419				
30.2	154	280	184	335	230	419	278	505				
30.5	157	286					318	578				

Notes:

1. Metal Shell Pile 12" diameter with 0.179" walls

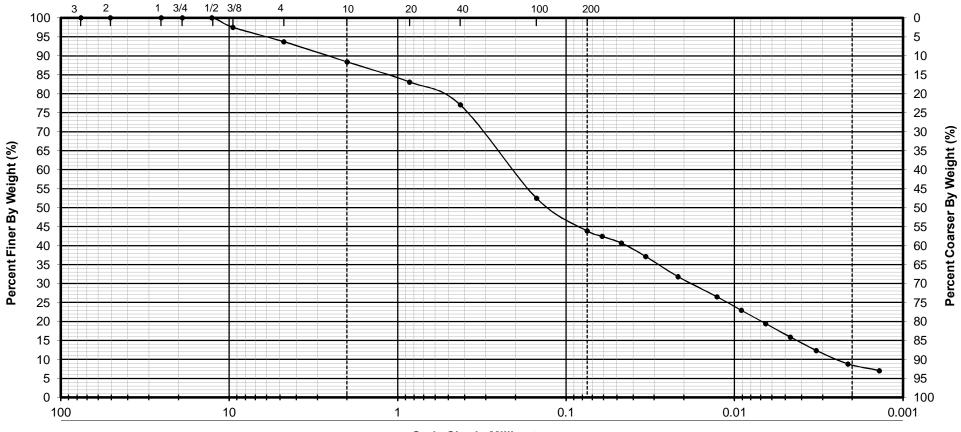
2. Metal Shell Pile 14" diameter with $\,0.250"$ walls

3. When driving Metal Shell piles, pile lengths should be limited to 10 feet above bedrock elevation to prevent damage to piles.

Top of rock elevation at BSB-24 is approximately 519.9 feet. Estimated Pile Length in BLUE denotes pile lengths at bedrock depth.

APPENDIX F

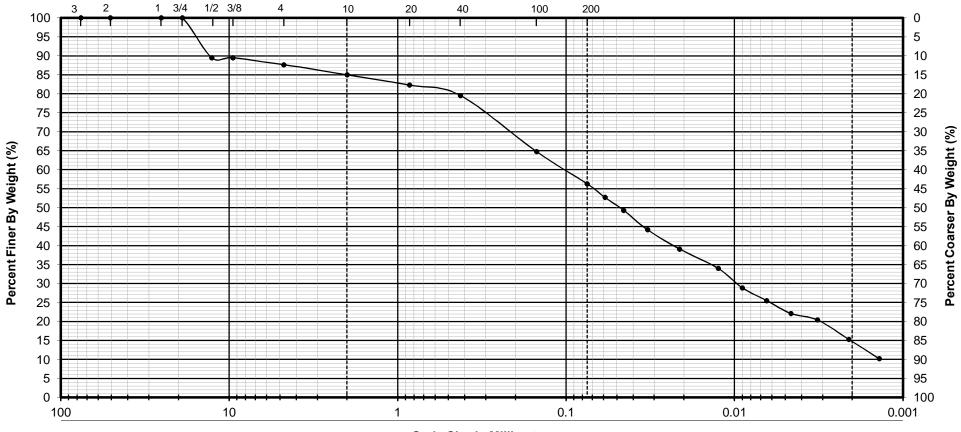
LAB TEST RESULTS



1235 E. Davis Street Arlington Heights, Illinois 60005 Phone: (847) 253-3845 Fax: (847) 253-0482

UNCONFINED COMPRESSIVE STRENGTH of INTACT ROCK CORE SPECIMENS - ASTM D 7012

	I-80 Reconstruction (Near Term Phase 2)	Date_	11/7/13
Location	Various	Job No	13125
County	Will	Tested By:	RWC
Sample Type	Drilled Bedrock Core Sample		


Sample	Depth	Length	Diameter	Weight	Load	Area	Unit Weight	Compressiv	ve Strength
No.	(ft)	(in)	(in)	(g)	(lbs)	(in ²)	(lbs ft ³)	(tsf)	(psi)
BSB-17 Run 1	49.6	4.091	2.059	588.8	60090	3.33	164.6	1299	18047
BSB-18 Run 1	52.6	4.106	2.052	599.9	46040	3.31	168.2	1002	13922
BSB-19 Run 1	54.7	4.096	2.050	592.0	47010	3.30	166.7	1025	14243
BSB-20 Run 1	50.8	4.136	2.053	598.7	31940	3.31	166.5	695	9649
BSB-21 Run 1	48.7	4.094	2.057	593.8	56910	3.32	166.2	1233	17125
BSB-22 Run 1	51.0	4.091	2.018	574.8	53860	3.20	167.3	1212	16840
BSB-23 Run 1	43.1	4.559	2.123	670.4	40870	3.54	158.2	831	11547
BSB-24 Run 1	46.0	4.142	2.054	594.6	39950	3.31	165.0	868	12057

Grain Size in Millimeters

GRAVEL	S	AND	SILT	
GRAVEL	COARSE	FINE	SILT	CLAT

Boring No.	BSB-17	CLASSIFICATION	PARTICLE SIZE ANALYSIS-AASHTO T88
Sample No.	15		
Depth	38.5'-40.0'	SANDY LOAM	I-80 Phase II
Liquid Limit	27	A-4	Will County, Illinois
Plastic Limit	19	brown & gray	
Plasticity Index	8	Group Index 0	
Test By	МТ	% Gravel 11.6	Geo Services, Inc. Geotechnical, Environmental and Civil Engineering
Date	5/22/14	% Sand 44.5	Geotechnical, Environmental and Civil Engineering An MBE - DBE Firm
Reviewed By	RR	% Silt 35.0	1235 E. Davis St., Arlington Heights, IL 60005
Job No	13125	% Clay 8.8	Phone 847-253-3845 • Fax 847-253-0482

Grain Size in Millimeters

GRAVEL	S	AND	SILT	
GRAVEL	COARSE	FINE	SILT	CLAT

Boring No.	BSB-18	CLASSIFIC	ATION	PARTICLE SIZE ANALYSIS-AASHTO T88
Sample No.	16			
Depth	43.5'-45.0'	LOAN	1	I-80 Phase II
Liquid Limit	30	A-4		Will County, Illinois
Plastic Limit	20	gray		
Plasticity Index	10	Group Index	3	
Test By	МТ	% Gravel	15.0	Geo Services, Inc. Geotechnical, Environmental and Civil Engineering
Date	5/22/14	% Sand	28.7	Geotechnical, Environmental and Civil Engineering
Reviewed By	RR	% Silt	41.0	1235 E. Davis St., Arlington Heights, IL 60005
Job No	13125	% Clay	15.3	Phone 847-253-3845 • Fax 847-253-0482

Liquid Limit, Plastic Limit, and Plasticity Index of Soils AASHTO T89/T90

Project Name I-80 Phase II	Job No 13125
Location Will County, Illinois	Date <u>5/22/14</u>

SAMPLE NO.	BSB-17	BSB-18			
DEPTH	38.5'-40.0'	43.5'-45.0'			
LIQUID LIMIT (LL)	27	30			
PLASTIC LIMIT (PL)	19	20			
PLASTICITY INDEX (PI)	8	10			

MT