

Prepared for:

Illinois Department of Transportation, District 2 819 Depot Avenue Dixon, Illinois 61021

Structure Designer: Modjeski and Masters, Inc. #4 Sunset Hills Professional Center Edwardsville, Illinois 62088 (618) 659-9102

Prepared By: Hanson Professional Services Inc. 1525 South Sixth Street Springfield, Illinois 62703 (217) 788-2450

Structure Geotechnical Report

F.A.I. Route 74 Section 81-1-2 Rock Island County Job No. P-92-032-01 Contract No. 64C08 PTB No. N/A Retaining Wall IL-RW11 Structure Number 081-6017

May 2011

REVISED: 12/02/11

Table of Contents

1. Project Description
2. Location
3. Existing Structures
4. Proposed Structure
5. Site Investigation4
6. Laboratory Investigation
7. Subsurface Profile
8. Geotechnical Evaluations
9. Design Recommendations7
10. Construction Considerations9
References11
Appendix12
Tables

Table 7.1.	Groundwater Elevations	б

Copyright © 2011 by Hanson Professional Services Inc. All rights reserved. This document is intended solely for the use of the individual or the entity to which it is addressed. The information contained in this document shall not be duplicated, stored electronically, or distributed, in whole or in part, without the express written permission of Hanson Professional Services Inc., 1525 S. Sixth Street, Springfield, IL 62703-2886 (217)788-2450, www.hanson-inc.com. Unauthorized reproduction or transmission of any part of this document is a violation of federal law.

1. Project Description

This report provides geotechnical data and recommendations for the proposed Retaining Wall IL-RW11, which is part of the Central Section of the I-74 over the Mississippi River Project. The project includes reconstruction of I-74 between 14th Avenue in Moline, Illinois and Lincoln Road in Bettendorf, Iowa. The retaining wall covered by this structure geotechnical report will be a replacement structure, constructed to retain fill at the north abutments of the new I-74 over 12th Avenue Bridges.

Nearby project features that have an impact on the design or construction of the proposed retaining wall include the I-74 over 12th Avenue Bridges (S.N.'s 081-0182 and 081-0183), the south abutment retaining wall (IL-RW13, S.N. 081-6020), the I-74 median retaining wall (IL-RW10), the I-74 roadway, and the 12th Avenue roadway. Geotechnical recommendations for the bridges and Retaining Wall IL-RW13 are presented in separate structure geotechnical reports prepared by Hanson Professional Services Inc. (Hanson). The geotechnical data and recommendations for Retaining Wall IL-RW10 are presented in a structure geotechnical report prepared by CH2M HILL in September 2009. Geotechnical recommendations for the interstate and street will be contained in soil survey reports prepared by Hanson.

This report supersedes the structure geotechnical report prepared by CH2M HILL in September 2009.

2. Location

The proposed Retaining Wall IL-RW11 is located in the north central portion of Rock Island County, within Section 33 of Township 18 North, Range 1 West. It is located between I-74 Sta. 67+45 and 71+18. The wall separates I-74 and Ramp 7th-A on the high side from 12th Avenue on the low side.

3. Existing Structures

The existing structures, S.N. 081-0101 (Eastbound I-74) and S.N. 081-0102 (Westbound I-74), were constructed in 1973. They are single-span bridges with closed abutments. The abutment walls span the 50 feet wide median between the bridges. The profile grade line of the eastbound (southbound) bridge (Elev. 684.6) is approximately 7 feet higher than the westbound (northbound) bridge (Elev. 677.8). Due to the steep grade of 12th Avenue, the 21.7 feet overall height of the eastbound bridge abutment is actually shorter than the 26.5 feet height of the westbound bridge abutment. A considerable portion of the abutment wall is buried under a 1:2 spill slope. The exposed height of the abutment wall is approximately 10 to 12 feet. A semi-gravity retaining wall extends the east wingwall for more than 330 feet along the shoulder of WB I-74. Portions of the existing structure plans are included in the Appendix for reference.

The structure is supported on vertical and batter piles. Concrete piles with a 90 kip allowable capacity were used under the westbound abutment and the first 26 feet of the east wingwall. Timber piles with a 48 kip allowable capacity were used for the remainder of the structure. The pile tips are located in very stiff to hard clay (glacial till) at approximately Elev. 628 for the concrete piles and Elev. 632 to Elev. 640 for the timber piles.

4. Proposed Structure

The general structure type was determined by a previous value engineering study. The proposed grade separation will be a single-span bridge with mechanically stabilized earth (MSE) walls serving as the abutments. The MSE walls have U-shaped configurations in plan, which is typical for Illinois Department of Transportation (IDOT) structures. The walls terminate in the existing abutment cones at three of the four corners. At the northeast corner, IL-RW11 continues along the outside shoulder of WB I-74 for 360'-9" beyond the corner point. This

portion of the wall will replace the existing semi-gravity retaining wall. The face of the proposed abutment wall is approximately 15 feet in front of the existing abutment face. The wings are in the same location as the existing wingwalls. The portion of the wall along the east side of I-74 gradually flares to approximately 10 feet in front of the existing wall.

The bridge and wall geometry are configured for a mixed abutment, where the vertical bridge loads are supported by piles passing through the reinforced soil mass. The MSE wall will resist lateral loads applied to the bridge abutments. Based on information provided by the structure designer, the bridge's lateral load applied to the abutment by the superstructure will be approximately 1.3 kips per foot width.

The proposed wall will be constructed in stages in order to allow traffic on I-74 and 12th Avenue throughout the construction period. The middle portion of the wall, located in the current I-74 median, will be constructed first, followed by the east side (WB I-74), then the west side (EB I-74).

A wall using precast panels with the minimum reinforced soil mass width is preferred for cost and construction schedule. The wall will have a height, measured from the theoretical top of leveling pad to the finished grade line, between 21.0 and 25.7 feet along the abutment and between 3.5 and 25.7 feet along the wings. With this range of heights, a typical MSE wall section would have an equivalent uniform bearing pressure varying from 3,300 to 4,200 psf under the bridges and 1,000 to 4,500 psf along the wings.

Construction of the wall will be governed by a performance specification. The MSE wall supplier will be responsible for the internal stability of the reinforced soil mass. This report provides geotechnical recommendations for external stability and global stability, which are the responsibility of the wall designer.

5. Site Investigation

The project site is located in the steeply sloping terrain of the bluffs along the Mississippi River. The ground surface of the residences to the west is at approximately Elev. 691 feet, while the surface of a motel parking lot to the east is at approximately Elev. 658 feet. Existing I-74 is located on two terraces constructed on a former hillside. Presently, 12th Avenue slopes down to the east at approximately 8% grade, while I-74 slopes down to the north at approximately 3% grade.

The footprint of the proposed retaining wall generally lies within the existing I-74 embankment and 12th Avenue Bridge abutment spill slope. Along the east side of I-74, the wall encroaches on the motel parking lot.

Test boring data was shown on the existing structure plans. It is presumed that these borings were drilled in the early 1970's. Eight borings were drilled to depths between 55 and 65 feet below grade. Standard penetration tests were generally performed at 2.5-feet intervals for the entire boring. Boring Numbers 1 and 2 were drilled near the existing bridge abutments. Borings 5 through 8 were drilled along the existing east wingwall. Although the soil strata logged in the upper part of these borings were likely disturbed by the original I-74 roadway and bridge construction, the data for the lower strata are useful for design of the new retaining wall.

The field exploration that was completed specifically for the proposed structure was accomplished in three phases. The first two phases were completed in December 2005 and October 2007 by another consultant. IDOT provided the data collected from those two phases. The third phase was completed in June 2010 by Hanson. The primary purpose of the third phase was to collect additional samples of the shallow, softer soils for strength and consolidation testing. A representative from Hanson logged the boring and performed a general site reconnaissance during the third phase.

Five borings were drilled in the first two phases and one boring was drilled in the third phase. Locations of the borings were selected to avoid the numerous obstructions currently occupying the site. The maximum spacing between borings was approximately 125 feet. Standard Penetration Test samples were collected at 2.5 ft. to 10.0 ft. intervals in all borings. Several Shelby tube samples were collected at representative locations in cohesive strata. The boring depths ranged from 15.0 ft. to 99.25 ft.

The boring locations are shown on the Boring Location Plan included in the Appendix. Boring logs are included in the Appendix.

6. Laboratory Investigation

Soil samples from the 1970's borings, first phase borings, and second phase borings were tested by others. Unconfined strength and moisture content test results, generally in accordance with current IDOT policies, are shown on the existing structure plans. The testing of samples collected from the first and second phase borings does not meet IDOT's current minimum requirements for structure borings. Unconfined strength and moisture content tests were completed on a small fraction of the samples. Index testing was completed on representative samples from two borings. Triaxial strength data from one sample was included in a summary of laboratory test results.

The soil samples obtained from the third phase borings were delivered to Hanson's soils laboratory and subjected to a testing program. Natural moisture content and visual classification tests were competed on all samples. Unconfined compressive strength tests, using a Rimac spring tester, were also completed when possible. Two unconfined compression tests and one consolidation test were performed on Shelby tube samples.

The locations of the index tests, triaxial tests, and consolidation tests are indicated on the subsurface data profile. All laboratory test data is included in the Appendix.

7. Subsurface Profile

A subsurface data profile is presented in the Appendix for use by the structure designer. The data profile includes all of the borings that were recently drilled near the proposed structure and two of the older borings that were drilled behind the proposed structure.

The subsurface profile consists of deposits of fill material and loessial soils overlying glacial till. The till was encountered in all of the borings between Elev. 657.1 and Elev. 644.8 or 8 to 14 ft below grade in front of the highway embankment. Boring PB1001 encountered shale bedrock at Elev. 558.5 or 97 ft below grade.

Fill was encountered at the southwest corner of the site in Boring RW701. It extended from the ground surface to the top of the till stratum. The fill material was random, consisting of layers of stiff silty clay, loose sand with gravel, soft to stiff silty clay with debris.

The loessial soils were encountered in the other borings. Although similar in origin, these soils were quite variable in classification and consistency. Typically, they were soft to stiff silty clays, clayey silts, or silts. A seam of silty sand to sandy silt was found in several of the borings at the north end of the east wingwall. Unconfined strengths ranged from 0.5 to 4.0 tsf, with an average of 1.2 tsf along the abutment and 2.0 tsf along the west wingwall. Generally, the measured strengths were more consistent in the samples taken from borings along the west wingwall.

The till stratum is typically very stiff, gray sandy lean clay. Typical unconfined strengths were between 2.5 and 3.5 tsf. Standard Penetration Test (SPT) values were typically between 13 and 18 blows per foot. The SPT

values from the 1970's borings were significantly higher, but those tests were probably run with the older style drop hammers. Natural moisture contents ranged from 11 to 15 percent.

The groundwater conditions encountered in the borings were not consistent across the site. The 1970's borings generally were noted as being dry on completion. Boring PB1001 encountered groundwater at a depth of 8 feet (Elev. 647.5). Groundwater was not encountered in Boring RW11-1. The groundwater elevations recorded on the boring logs are summarized in Table 7.1. Stabilized readings were not taken in any of the borings. The groundwater encountered in PB1001 was located just above the till stratum, which could be a localized, perched condition. For comparison, the water level in the Mississippi River, approximately 0.9 miles to the north of the site, is usually about Elev. 561.0.

Table 7.1 Groundwater Elevations

Boring No.	During Drilling	At End of Boring	24-hour Reading
1	-	dry	-
2	-	dry	-
5	-	dry	-
6	-	dry	-
7	-	-	-
8	-	dry	-
ILR1101	-	-	-
ILR1103	-	-	-
ILR1105	-	-	-
PB1001	647.5	-	-
RW701	-	-	-
RW11-1	dry	-	-

The Illinois State Geological Survey Directory of Coal Mines does not list any mines in the immediate vicinity of the site.

8. Geotechnical Evaluations

A previous value engineering study determined that an MSE wall was preferred at this site. Due to the interdependence of this structure, the I-74 Over 12th Avenue Bridges, and the retaining wall supporting the bridges' south abutments, other types of retaining wall construction were not considered during the development of this SGR.

The native soils have an allowable bearing capacity of 2,500 psf along the west wingwall, 2,500 psf along the abutment, and 4,200 psf along the east wingwall north of I-74 Sta. 70+50. These capacities consider all soil layers within the zone of influence. The native soils have an undrained sliding resistance of 1,200 psf along the west wingwall and abutment and 2,050 psf along the east wingwall. The drained sliding resistance is 0.53 times the effective vertical stress for the entire wall. The proposed wall would meet the Standard Specifications for Highway Bridges (AASHTO) requirements for bearing pressure and sliding stability only along the east wingwall north of Sta. 70+50. The taller portions of the wall would exceed the allowable bearing capacity by as much as 2,000 psf.

Slope stability analyses of the wall's highest points along the abutment and along the wings were completed to determine the overall stability of the wall. Results of those analyses are included in the Appendix. The 1.86 and 1.84 factors of safety satisfy AASHTO requirements.

Although the upper native soils are relatively weak, they are overconsolidated and exhibit fairly low compressibility. The estimated total settlement under the weight of the proposed wall ranges up to 1.5 inches. Approximately one-half of this settlement is due to recompression of the glacial till stratum, which could take up to 200 months to be 90 percent complete. This magnitude and duration of settlement would not preclude construction of an MSE wall.

Some differential settlement is anticipated near the proposed stage lines. Theoretically, the subgrade soils within approximately 5' of the edge of a stage will consolidate 25% to 33% less than the central portion. When the adjacent stage is placed, the edge of the previous stage will settle to a level approximately equal to the central portion. This would affect pavement constructed on top of the first stage and may be visible in the panel joints on the face of the wall. Due to the relatively small settlement magnitude, this is not expected to be a serious concern for this structure.

The native cohesive soils found at this site are relatively weak and will not support the weight of a conventional MSE wall. Typically, the alternative solutions are to either reduce the wall's bearing pressure or to increase the foundation soils' strength. Several potential treatment options were considered. Widening the reinforced soil mass and raising the wall in stages are not feasible for this wall. Removal and replacement of the foundation soils, the use of lightweight aggregate, and ground improvement with aggregate columns are possible solutions.

The removal and replacement of the relatively shallow, softer soils would normally be an ideal solution. At this wall, any excavation below the base of the reinforced soil mass would require additional excavation to lay back slopes through the existing embankment and additional shoring to support the interstate along the stage lines. The cost of the temporary work renders the removal and replacement alternative uneconomical when compared to the other possible solutions.

The use of lightweight granular backfill with a total unit weight of 75 pcf or less would reduce the applied bearing pressures to acceptable values. The lightweight aggregate must be used within the reinforced soil mass and within the backfill behind the reinforced soil mass. It is estimated that more than 4,000 cubic yards of lightweight aggregate would be needed. The cost of this material is not economical when compared to other possible solutions.

Vibrator compacted aggregate columns tipped in the very stiff, gray glacial till could increase the allowable bearing capacities above the applied bearing pressures. Our preliminary analyses indicate that relatively short columns with an area replacement ratio of 13 to 17 percent would be sufficient. Although ground improvement with tamper compacted aggregate columns was not expressly investigated, it is expected that the wall also could be successfully constructed using that technology. The cost of aggregate column ground improvement is expected to be significantly lower than the other feasible solutions.

9. Design Recommendations

When designing for the external stability of the MSE wall, it should be assumed that the reinforced soil mass will be composed of a granular select backfill and the fill behind the reinforced soil mass will be embankment material as defined by the IDOT Standard Specifications for Road and Bridge Construction (IDOT Standard Specifications). Both materials should be assumed to have a total unit weight of 125 pcf. The active earth pressure coefficient of the embankment fill could vary greatly depending on the actual material used, but should

be assumed to be 0.36 for design. Near the wall corners, where the backfill will be the select material placed behind the other face, an active earth pressure coefficient of 0.28 may be used.

Aggregate column ground improvement is the recommended treatment option. The results are highly dependent upon the equipment and techniques used to install the aggregate columns. The contractors that perform this type of work routinely design the improvement to specific geotechnical performance requirements. The lump sum cost of the treatment is expected to be approximately \$80,000.

We recommend that the approximate horizontal limits of the aggregate column ground improvement be defined as an area bounded by a line 4 ft. beyond the perimeter of the reinforced soil mass. The limits along the wall should include the west wingwall, the portion along the face of the abutment, and the east wingwall between the face of the abutment and I-74 Sta. 70+50. Within these limits, the contractor should be required to satisfy the following performance requirements:

- 1. Minimum factor of safety of 1.5 against global slope stability failure of permanent condition.
- 2. Minimum factor of safety of 1.5 against global slope stability failure of temporary condition at end of Stage 1.
- 3. Minimum factor of safety of 2.0 against equivalent uniform service bearing pressure failure if a load test is performed.
- 4. Minimum factor of safety of 2.5 against equivalent uniform service bearing pressure failure if a load test is not performed.
- 5. Total settlement measured at the base of the wall not to exceed 4.0 inches.
- 6. Total settlement measured on the pavement not to exceed 1.0 inch.
- 7. Differential settlement measured along the base of the wall not to exceed 1/100.
- 8. Primary consolidation of the soil within the depth of the ACGI to be at least 90 percent complete when the bridge piles are to be driven. Any required waiting periods shall be coordinated with the bridge construction schedule.

It should be noted that most of these performance requirements can be satisfied without any improvement to the native subgrade. The bearing pressure requirement will control the design of the aggregate column ground improvement. The provision allowing for a lower factor of safety if a load test is performed has been included for consistency with other walls on the I-74 project.

Along the east wingwall where ground improvement is not required, the wall should be proportioned for an allowable bearing capacity of 4,200 psf. Sliding stability should be checked against a nominal undrained sliding resistance of 2,050 psf and a nominal drained sliding resistance of 0.53 times the effective vertical stress. The native soils should be inspected when the excavation reaches the base of the proposed wall. Any soft or otherwise unsuitable material should be removed and replaced with suitable compacted native soil.

With the ground improvement, a conventional precast panel MSE wall is feasible. The theoretical top of leveling pad or base of reinforced soil mass may be located at the minimum embedment required by IDOT (3'-6" below finished grade). Any removals or other excavation below the reinforced soil mass should be backfilled with either the select backfill used in the reinforced soil mass or the granular material used as a drainage layer or working platform for the aggregate column ground improvement design. Other material outside the limits of the reinforced soil mass may be embankment fill in accordance with the IDOT Standard Specifications.

The external stability design should be completed using the parameters defined above. In areas with ground improvement, the applied bearing pressures should not be compared to allowable bearing capacities of the native soils. Instead, the estimated applied bearing pressures will be given as a performance requirement for the aggregate column ground improvement. The minimum length to height ratio specified by AASHTO (0.70) will be acceptable for the entire wall.

In areas where the footprint of the proposed MSE wall overlaps the existing semi-gravity wall, the existing structure must be removed. It is recommended that the tops of the existing piles be cut off at least one foot below the base of the wall or the base of the contractor's working platform in areas with ground improvement. Pile holes should be backfilled with compacted native material.

10. Construction Considerations

The construction of MSE walls and aggregate column ground improvement are not covered by the IDOT Standard Specifications. Guide Bridge Special Provisions No. 38, Mechanically Stabilized Earth Retaining Walls (Revised: January 18, 2011), and No. 71, Aggregate Column Ground Improvement (Revised: October 4, 2010), should be included in the construction documents. These special provisions require that the contractor take responsibility for the final design of much of the structure.

The general contractor will hire a specialty contractor to design and install the aggregate column ground improvement. He will also hire an MSE wall supplier to complete the MSE wall design and furnish the materials. The interdependence of the ground improvement and MSE wall designs must be considered when developing the plans. The MSE wall supplier will typically design a wall with a horizontal base with vertical steps at convenient locations. This results in a wall that is slightly taller and wider than the theoretical size shown on the construction plans. The wall supplier may also use different assumptions for unit weight and lateral earth pressure on the reinforced soil mass. Because of these factors, the target bearing pressure for the ground improvement contractor should be 5% to 10% higher than the theoretical value calculated during preliminary design.

The ground improvement contractor will need to assign strength and consolidation properties to the native soils in order to design the aggregate columns. All of the soils laboratory data in the Appendix to this report should be included in the contract documents. Usually, this is accomplished by adding a "Geotechnical Investigation Laboratory Data" section to the special provisions.

Obstructions, such as old footings, pavements, utilities, etc., that are within the area to be treated with aggregate column ground improvement generally should be removed. Although it is possible to predrill the columns through large obstructions or space the columns around smaller obstructions, this increases the cost and reduces the effectiveness of the ground improvement.

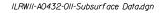
The piles supporting the existing bridges are a special case that should be investigated thoroughly. The existing piles could potentially interfere with the aggregate columns and the new bridge piles. It is not unusual for aggregate columns to be installed around piles; however, the number of piles at this site is much larger than typical. There must be enough clear space within the horizontal limits of improvement to allow 2'-6'' to 3'-0'' diameter aggregate columns to be installed at 5'-0'' to 7'-0'' intervals. If the relationship between the existing structure and new structure results in a site that is too congested, then some of the existing piles must be removed completely.

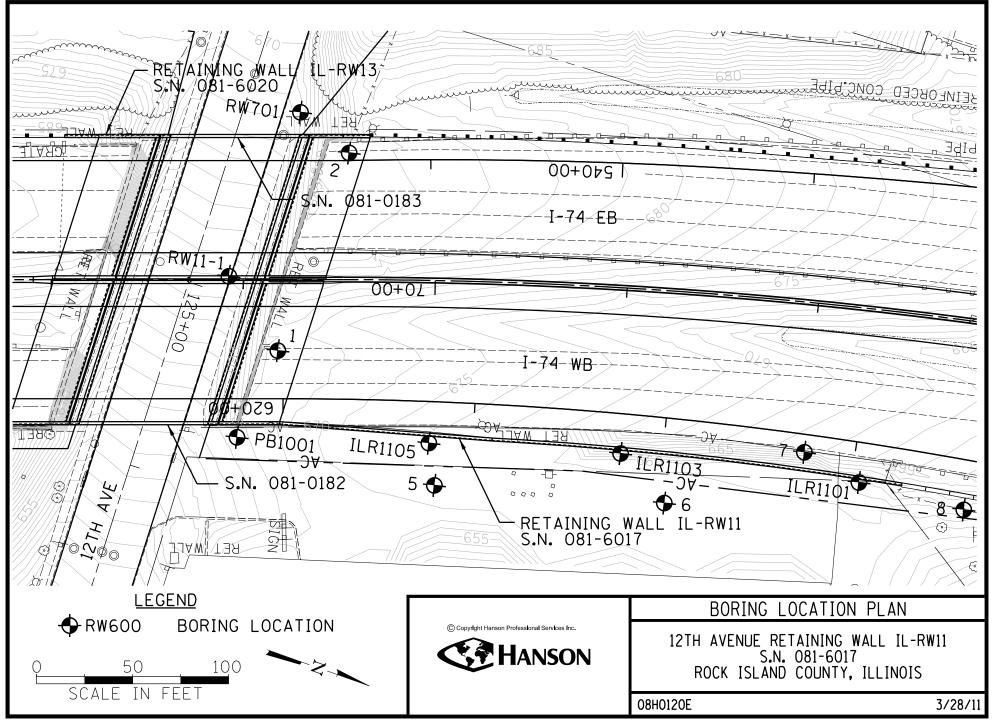
The first stage of construction will require top-down shoring for near-vertical cuts along the inside shoulders of EB and WB I-74. The height of this shoring exceeds the maximum values in the Bridge Manual's Design Guide 3.13.1 – Temporary Sheet Piling Design. The existing abutment's large pile cap will have a significant impact on the design of the shoring. A contractor-designed temporary wall is recommended. Guide Bridge Special Provision No. 44, Temporary Soil Retention System (Revised: May 11, 2009), should be included in the construction documents.

The first stage will also require temporary vertical faces along the sides of the reinforced soil mass, perpendicular to the front face of the permanent wall. These vertical faces should not be formed by placing the select backfill against the temporary soil retention system. This would inhibit compaction of the select backfill and obstruct

removal of the temporary soil retention system. Temporary, wire-faced MSE walls are recommended along the stage lines. Guide Bridge Special Provision No. 57, Temporary Mechanically Stabilized Earth Retaining Walls (Revised: October 4, 2010), should be included in the construction documents.

The piles for the I-74 over 12th Avenue Bridges (S.N. 081-0182 and 081-0183), which are located within the reinforced soil mass for this wall, will interfere with the placement and compaction of the select backfill. The piles must either be driven prior to placing the select backfill or driven through sleeves after placing the select backfill. Refer to the structure geotechnical report for those structures for specific recommendations.


References


- American Association of State Highway and Transportation Officials (2002). *Standard Specifications for Highway Bridges*, 17th Edition.
- CH2M HILL (2009, September). Structure Geotechnical Report Ramp 7th-A Retaining Wall Structure Number IL-RW10.
- CH2M HILL (2009, September). Structure Geotechnical Report 12th Avenue Bridge Structure Nos. 081-0182 (WB) and 081-0183 (EB).
- CH2M HILL (2009, September). Structure Geotechnical Report 12th Avenue Retaining Wall Structure Number 081-6017.
- Hanson Professional Services Inc. (2011, May). Structure Geotechnical Report, I-74 Over 12th Avenue Bridges, Structure Nos. 081-0182 (WB) and 081-0183 (EB).
- Illinois Department of Transportation (2009). Bridge Manual.
- Illinois Department of Transportation (1999). Geotechnical Manual.
- Illinois Department of Transportation (2007). Standard Specifications for Road and Bridge Construction.
- Illinois State Geological Survey, Rock Island County coal data, Retrieved July 30, 2010 from <u>http://www.isgs.illinois.edu/maps-data-pub/coal-maps/counties/rockisland.shtml.</u>
- U.S. Department of Transportation, Federal Highway Administration (1983, December). *Design and Construction of Stone Columns* (Report No. FHWA/RD-83/026).
- U.S. Department of Transportation, Federal Highway Administration (1997, August). *Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines* (Publication No. FHWA-SA-96-071).

Appendix

Boring Location Plan Subsurface Data Profile Boring Logs Soils Laboratory Test Results Summary of Slope Stability Analysis Existing Structure Plans

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

Sta. 70+4.	2 5, 66' RT <u>N Qu w%</u>	
684.00-	Seat Augers	
680.50-	17 1.15B 11 Very Stiff to Hard SILTY CLAY LOAM	
	CLÀY LOAM 22 1.40E 7	
676.00-	39 4 Stiff to Hard Yellow and Grey SILT	
RW701 Sta. 70+70, 87′ RT	50 4.00E 5	
669.09 <u>N</u> <u>Qu wZ</u>	32 5	
667.59 <u>20</u> bottom of slope adjacent to existing manhole gps point #48	31 7	
6 Silty Clay (CL-ML) - Gray brown, stiff, dry. 5 fine to coarse, rounded-subrounded gravel, fill	22 1.38B 9	
2 Poorly Graded Sand With Gravel (SP) - Brown, dry, fine to coarse, fine to medium rounded-subrounded gravel, fill	13 1.68B 20	RW11-1 Sta. 71+08, 2' RT
659.09 2 Soft silty clay with wood piece in shoe 660.00-	14 0.93B 21 Medium to Very Stiff SILTY	659.90 <u>N Qu w%</u> 659.70 ASPHALT 659.10 CONCRETE
657.09 3 1.3P \clay and old concrete pieces, fill	14 U.93B 21 Medium to Very Stiff SILTY CLAY LOAM to CLAY LOAM 14 1.55S 25	656.90 9 0.965 20 Gray with brown mottles, moist, stiff, silty CLAY
10 1.3P Silty Clay (CL-ML) - Gray moist/wet, soft, high plasticity, fine to coarse, subangular- angular gravel. fill	15 2.13B 19	0.55S 19 Brown with gray mottles, moist, stiff, silty CLAY with trace very-fine grained sand
Sandy Lean Clay Trace Gravel (CL) - Gray, moist, soft/stiff, medium plasticity, fine to	13 1.78 21	652.65 17 1.77B 17 Brown, moist, very still, silly CLAT with trace sand
medium, rounded-subrounded gravel, till	7 0.58B 20	1.12S 18 Brown, slightly moist, very stiff, SILT with trace
20 4.5P Piece of coarse gravel in toe, possibly 648.00-	30 4.40S 12 Hard Grey CLAY LOAM with Gravel (TILL)	648.40 29 3.44S 13 Gray, slightly moist, very stiff, silty CLAY with trace sand and gravel
20 4.5r Piece of coarse gravel in toe, possibly caused poor recovery. Stop for day at 3:30pm, Start on 12/14/05 at 8:30am, start mud rotary at 20' after sampling	Gravel (11LL) 35 5.155 12	644.90 33 5.01B 10 Bottom of hole = 15.0 feet
12 1.5P 643.00-	16 1.68B 11 Stiff to Very Stiff Grey CLAY LOAM with Gravel (TILL)	
No recovery, possibly pounded on gravel	LOAM with Gravel (TIL1) 17 1.94 13	
14	22 2.13B 13	
	19 2.33B 13	
7 2.5P	24 3.02B 12	
Gray, unweathered glacial clay	25 2.82B 12	
16 2.5P	22 3.20B 12	
	25 3.49B 11	<u>LEGEND</u> N Standard Penetration Test N (blows/ft)
15	<i>18 1.12B 15</i>	Qu Unconfined Strength (tsf)
620.00 23 2.5P	25 2.72B 13	w% Natural Moisture Content (%)
11 2.57		R Consolidated Undrained Triaxial Test
600.00	24 2.60B 14	C Consolidation Test DD Water Surface Elevation Encountered in Boring
	27 3.02B 13	DD = during drilling $558.10 \square DD = during drilling$ 24h = 24 hours after completion
20 2.5P 609.00-	<u>25 2.958 15</u>	
20 2.5P 609.00-	Bottom of hole = 75.0 feet	
		SUBSURFACE DATA PROFILE
572.00 24 2.3P		STRUCTURE NO. 081-6017
572.09 <u>24 2.3P</u> Bottom of hole = 97.0 feet	PROFESSIONAL DESIGN FIRM LICENSE © Copyright Hanson Professional Services Inc.	<i>#184-001084</i>
		Memory Obho120E SHEET NO.1 F.A.I RTE. SECTION COUNTY TOTAL SHEET NO.1 SHEET NO.1 74 81-1-2 ROCK ISLAND _
		3 SHEETS CONTRACT NO. 64C08
	Hanson Professional Services In	3/28/11

N	Standard	Penetration	Test	Ν	(blows/ft)	

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

1						DEPAR	IMENI	OF TRANSP	URIATION				
Sta. 70+82, 674.80	37'LT <u>N Qu w%</u>												
674.80	16 1.01S 13	Medium to Stiff Grey and Tan SILT											
	<i>19 1.09S 6</i>												
	25 1.05E 13												
	32 1.10E 14												
	28 0 . 975 18									ILR1.	10.5		
659.99	27 0.925 23									Sta. 70+02 658.82 —	°, 85′ L	<u>T</u> <u>Qu</u> <u>w%</u>	
658.80	25 2.72S <i>1</i> 8	Stiff to Very Siff Brown CLAY LOAM with GRAVEL	PB10 Sta. 71+03	, 82′ LT						658.82			Silt With Trace Of Sand (ML) - yellowish brown, slightly moist, firm, fine to medium grained, low plasticity (LL=30 PI=14)
	22 3. 105 19		655.49 654.49	<u>N Qu w%</u>		2.5 inches of asph se. Hole offset 9' ea	alt followed t	<i>y</i>			6		
652.30			652.49	6	wall						8 9	2.15 15.0	firm - RIMAC: Pu = 35lbs (shear) (LL=29 PI=14) stiff
650.50	<u>18</u> 17 6.79B 12	Medium Brown SILTY SAND	650.49	13 4.5P	stiff, low	(CL) - Light grayish plasticity, with iron metal and miscellane	oxide staining ous fill mater	rial,			8	2.0P	firm
		Very Stiff to Hard Brown to Gray CLAY LOAM with Gravel (TILL)	0D 647.5 ▽	26 2.0P	\\ possibly f	///					8		firm (LL=30 PI=17)
	36 2.30B 11	(TILL)	646.49		brown, ma	an Clay, Trace Grave bist, hard, low plastic barse, subrounded-su throughout, possibly	city, fine san ubangular grav	d with vel.			8	2.0P	firm
	40 2.65B 8 4.27B 12			13 <0.25-4.5						644.82	10		Clay (CL) - dark gray, moist, stiff, moderate
	4.27B 12 30 3.30B 12			20 4.5P	stiff, som	(CL) - Reddish brow e gravel, possibly loo rown, wet, soft, trad ver auger to 7', stad	n, moisizary, ess ce verv fine .	sand.					Clay (CL) - dark gray, moist, stiff, moderate plasticity, trace of coarse sand (LL=34 PI=22) RIMAC: Pu = 70lbs (shear)
	24 4.17B 12			17 3.0P							14	2.0P	stiff
	24 2.91B 13				Brown to subrounde	an Clay, Trace Grave dark gray, moist, fi d gravel embedded t ial till	he rounded- hroughout,						
	27 3. 49B 12				Dark gray						13	2.5P	stiff
	28 2.88B 11			11 2.5P	600.00 —	20 2.8P							
	23 3.00B 12					20 2.0/					15	4.85	stiff low plasticity
				13 2.3P			580.00				15	4.00	stiff. low plasticity RIMAC: Pu = 80lbs (shear)
	25 2.85B 13					20 2.3P	580.00 —	26 3.0P					
	24 3 . 49B 13			16 3.5P							15	3.0P	stiff, no sand observed
	28 3. 88B 12					19 2.5P		26 3.5P					
	32 4.27B 14			17 4. 0P							16	3.0P	very stiff, trace coarse sand
	31 4.07B 12					22 2.0P		76/9" 4. 5P	Fine sand in shoe				
	27 1.94B 15										18	3.0P	very stiff
	2.91B 25 3.38B 14			22 2.0P	580.00 —	~		50/6"	Poorly graded sand seam, gray, wet, very dense, fine to medium sand, rapid dilatancy, estimated 50% fines, this seam extends to about 93'				
609.80	23 3.30B 11 27 3.49B 13								estimated 50% fines, this seam extends to about 93′		17	3.0P	very stiff
009.00		Bottom of hole = 65.0 feet		22 2.5P				50/2" 3 80		608.82	17	5.07	Bottom of hole = 50.0 feet
							558.49	50/2" 3.8P					
				16 3.0P			556.24	E0 /7"	weathered, weak rock, Possible bedrock at 97'				
									Bottom of hole = 99.25 feet				

600.00

<u>LEGEND</u>

N Standard Penetration Test N (blows/ft)

Qu Unconfined Strength (tsf)

w% Natural Moisture Content (%)

Q Unconsolidated Undrained Triaxial Test

R Consolidated Undrained Triaxial Test

C Consolidation Test

DD Water Surface Elevation Encountered in Boring 558.10 \square DD = during drilling 24h = 24 hours after completion

PROFESSIONAL DESIGN FIRM LICENSE #184-001084

SUBSURFACE DATA PROFILE STRUCTURE NO. 081-6017

NO.2	F.A.I RTE.			SEC	TION			CO	UNTY	TOTAL SHEETS	SHEET NO.
	74			81-	1-2			ROCK	ISLAND	-	
HEETS								CON	TRACT	NO. 6	4C08
	FED. F	ROAD	DIST.	NO	ILLINOIS	FED.	AIC) PROJ	ECT		

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

	0.7			ILR1. Sta. 67+69		Т		
ILR11 Sta. 68+98	03 . 86' I	Т		660.57 -	, <u>N</u>	<u>Qu</u>	<u>w%</u>	
659.15	N	<u>Qu</u> <u>w%</u>		660.07 =				2" Asphalt
059,15			Silt (ML) - yellowish brown, slightly moist, firm, low plasticity		10			Silt (ML) - yellowish brown, slight stiff, low plasticity, trace fine sc
	6				6	2.1S		
	6	3.0B	RIMAC: Pu = 50lbs (bulging)	654.57 —	9			Silty Sand (SM) - yellowish brown loose, fine to medium grained, lov
651.15 —	5			652.57 —	8	4.25	18.0	
649.15	16		Silty Sand (SM) - grayish brown, wet, medium, fine to medium grained, low plasticity RIMAC: Pu = 30lbs (shear)		14			Silt (ML) - yellowish brown, slight firm, moderate plasticity, some fi RIMAC: Pu = 70lbs (shear) (LL=3 stiff, trace of coarse sand
043.15	7	1.85		648.57 —	9		13.0	Clay (CL) - gray, slightly moist, s plasticity, trace of fine sand (LL
	10		Clay (CL) - gray, moist, firm, moderate plasticity, trace of fine sand		18	3.0P	13.0	
	10	4.8B						
	12	2.0P	trace of coarse sand		13	3.0P		stiff
	15	3.0P	trace of coarse sand		13	6 . 6B		stiff, trace of fine sub-angular (<1" in size, RIMAC: Pu = 1101bs (
	15	5.01			11	4.0P	12.0	
	17	6.65	trace of fine sand RIMAC: Pu = 110lbs (shear)					dark gray, slightly moist, stiff, lo trace of fine sand
626.15					17	3 . 5P		
	17	2.0P	Silt With Trace Of Sand (ML) - yellowish brown, moist, very stiff, fine to medium grained, moderate plasticity					
621.15 —	16	3.5P	Clay With Trace of Crayel (CL) area		18	3.5P		very stiff, trace of coarse sand
	10	J.JI	Clay With Trace Of Gravel (CL) - gray, moist, very stiff, fine to medium grained, moderate plasticity, gravel size <1″					
	16	3.5P			17	4.0P		very stiff
					19	4.5P		very stiff
600 IF	18	3.0P	no gravel; trace of coarse sand	610.57 —				Bottom of hole = 50.0 feet
<i>609.1</i> 5⊥			Bottom of hole = 50.0 feet					

<u>LEGEND</u>

- N Standard Penetration Test N (blows/ft)
- Qu Unconfined Strength (tsf)
- w% Natural Moisture Content (%)
- Q Unconsolidated Undrained Triaxial Test
- R Consolidated Undrained Triaxial Test
- C Consolidation Test
- DD Water Surface Elevation Encountered in Boring DD = during drilling 24b = 24 hours after completion
 - 24h = 24 hours after completion

PROFESSIONAL DESIGN FIRM LICENSE #184-001084

ightly moist, sand

wn, slightly moist, low plasticity ightly moist, fine sand _=35 PI=21)

, stiff, low LL=31 PI=14)

r gravel, s (bulging)

low plasticity,

SUBSURFACE DATA PROFILE STRUCTURE NO. 081-6017

NO. 3	F.A.I RTE.			SEC	TION		CO	UNTY	TOTAL SHEETS	SHEET NO.
	74			81-	1-2		ROCK	ISLAND	-	
HEETS							CON	TRACT	NO. 6	4C08
	FED. R	ROAD	DIST.	NO	ILLINOIS	FED. A	AID PROJ	ECT		

	TEST BORING NO. I STATION 10+80 - BI'LT.		ST BORING NO. 2 II+14 - 186'	LT.	TEST BORING NO. 3 Station 9+65 - 44		TEST BORING NO. 4 TATION 9+98 - IE	52' LT.	TEST BORING NO. 5 STATION 11+64 - 1		TEST BORING NO. 6 Station 12+84 - 9		TEST BORING NO. 7 TATION 13+56 - 3	
ELEV. 685	N Q _U W(\$)		N Q _u W(%)		N Qu W(%)		N Q _u W(%)		H Q _u W(\$6)	<u> </u>	N Q _u W(%)		N Q _u W(%)
		684.2 Se	eat Augers											
680	· · · · · · · · · · · · · · · · · · ·	680.7-Ve	ery Stiff to Hard	-17 1,15 11				· · · · · · · · · · · · · · · · · · ·						
		51	LOAM	B → 22 1,40 7										
675		3		_ 39 _ 4								67	/3.0 	
670	S 	1	Stiff to - Hard	-50 4.00 $5-32$ -5		. <u> </u>							Medium to	<u> 13 1.05 </u>
	Stiff Grey 25 1.0	5 13 Ye	ellow and			. 66	7.0	1					1	n 20 1.52
665	and Tan 32—1.11 SILT		irey SILT	22 .38 9 B			Medium	3-0-58-20)	;				- 19 1.32 S
660	- 28 0.9	7 18 2-23 <u>660.2</u>		13 1,68 20 B	· .		Brown SłLT	- 3 0.66 21 E				66	50 . 0	21 0.97 \$ 20 1.09
	659.0 Stiff to Very Stiff - 25 2.7	\	Medium to	- 14 0.93 21 B	652.5 Medium	7	9.0Stiff to	B 14 2.10 24	658.5 Bituminous		658.5 Bituminous	s	Medium Brown to	- 7 0.89
655	Brown CLAY LOAM 22-3.10	V V		14 1.55 25 S 15 2.13 19	050.0-	B B 4 1.09 22	Very Stiff SILTY CLAY	B 	Stiff Brown	n - 12 - 1 , 25 - 21 -		EE	Grey SILT (Wet)	<u>90.81</u>
	652.5 Medium Brown - 20 1.4	IB 15	LOAM to	B 	Very Stiff Brown	B 65	2.8 Very Stiff			- 16 1.75 15 B - 15 1.40 13		n 11 1.78 22 05 B 10 0.89 20	Stiff Brow	1
650		6118 2	CLAY LOAM		648.5 LOAM	B 	Brown CLAY LOAM 9.0	3.60 _E 25 2,91 15 B	650.5	8		B	0.0	<u>-11 1.82</u> B -14 2.13
645			Hard Grey CLAY LOAM ith Gravel	- 30 4.40 12 S	Medium to	6 0 89 21		- 52 5.02 10 B	0.11	B 		B 13 1.55 14 		B
		78 12 643.2	(Till)		Brown and		Hard to		Very Stiff	i	Stiff to		Stiff to	B 21 2,43 B
640				17 1.94 13	Grey SILT	- 3 0.54 25 B - 4 0.43 32	Very Stiff	B 24 3,10 13			Very Stiff Brown to	20 2.52 12	Hard	<u>—21 3.30</u> B
	24 2.9 B		Stiff to	22 2.13 13 B	636.0	E 7 0.35 21	Brown to Grey	B 	with Gravel (Till)	1 - 18 2.40 15 B - 17 2.52 14	Grey CLAY LOAM with Gravel		Brown to Grey	20 2.52 B
635	Brown to 27-3.4 B 28 3.8		Very Stiff Grey			- 16 1.75 14 B	CLAY LOAM				(Till)		CLAY LOAN	<u>н</u> В
630	Grey 23.3.0 Grey 23	0_12		-24 3.02 12 B	C1:55 1-	- 22 5,15 13 B	with Gravel	22 2.42 14 		BBB		B 	(1111)	B - 21 3.20
	CLAY LOAM - 25 2.8		ith Gravel (Till)	25 2,82 12 B 22 3,20 12	Hard	-27 4.46 15 B	(Till)			-23 1.36 12 B		-19 3.30 I3 B		23 3.30 B
625	243.4 B	9-13		B 	Brown to	- 25 4.27 14 B - 28 3.10 15		B 		29 2.82 13 B 23 1.25E 14				-22 3.10
	with Gravel 28 3.8 B	8 12		B 18 .12 5 B	Grey CLAY LOAM	B 		B 23 2.33 15 B	(110010111 110	t 2.93B		-20 3.02 12 B -18 2.52 13		-21 2.91 B 28 4.10
620	(Till) 32-4,2 B			25 2,72 13 B	with Gravel			28 3.30 14 B	from 620.	6 20 2.75B I				29 4.30
615						32 4.07 16 B			(Medium We	-22 2 72 15		B 		B 21 3.52 B
	2.9 	B		24 2.60 14 B 27 3.02 13		29 3.30 16 B 29 3.05 15 ⁶¹	2.0	B 31 3.49 13	SANDY CLA	Y 25 3.49 14 B		30 2.20B 13 2.91B		26 3,49 8
610	610.0273.4	9-13-609.2		25 2,96 15			BOTTOM OF BOR	B	from 617.	8888)24 3,15 12		28 2.80 12 		<u>—36 3.88</u> B
605	BOTTOM OF BORING (BORING DRY ON COMPLETION)		OM OF BORING			B 				B 25 3,20 13	from 600.7 to 601.2}	B 		30 3.30 31 3.10
005		(BORING DR	RY ON COMPLE	- (TON)		-31 3.40 I4 B				B 26 3,30 12		25 2 20 11 0	05.0 hrs. j03,0	31 3.49
600	BORING	LOG NOTES			· · · · · · · · · · · · · · · · · · ·		i			-29 3,49 12			BOTTOM OF BOR	ING
	CLASSIFICATIONS BY VISUAL N VALUES INDICATE NUMBER SAMPLING SPOON ONE FOOT.	OF BLOWS REQUIR	RED TO DRIV	E A 2" O.D.							598.5	⊥30 2.95 I3 B		
595	FOR 30 INCHES. Q ₁ VALUES BY UNCONFINED C				594.0	B 37 3.30 15				-28 2.33 14 -30 3.30 14	(BORING DRY ON COM	PLETION)		
590	TYPE FAILURE: B - BULGE S - Shear E - Estima	TED			BOTTOM OF BORI	NG				B - 29 3.25 14			12	n -
	TEST BORING DATA FURNISHE W% = WATER CONTENT - PERC	ENT OF OVEN DRY	Y WEIGHT.						588.5	B				STATION
585	OFFSETS ARE REFERENCED TO	BORING BASE L	INE SHOWN O	N SHEET					BOTTOM OF BO					BUIL
				SPECIAL	<u>NOTE</u>								I F	STATE A.I. RT. 74
						THE STRUCTURAL I R OTHER SECTIONS						7 ₁₆ [™] Ø COUNTERSUNK		F.A. PROJE
DESIGN	BYH DE PERCZEL			DRAWINGS Erences	ARE INDEPENDEN ARE MADE OR INT	TLY NUMBERED FOR ENDED TO DRAWING	SECTION 81-1 S FOR A DIFFE	HB-1 AND NO RENT SECTION	CROSS-REF- . ALL PROFILE		HOLES FOR	BOLTS WHEN REQUIR	RED	
CHECKE	DG. C. WAY			REFER TO	TOP OF CONCRET	RTICAL CURVE DAT E AND DO NOT INC								ERING F
L		·····		SURFACE	LUUKSE.								FOR	DETAILS SE

TEST BORING NO. B			
NO. 8			
TIL - DR+RI KOTTATS			

N Q_u W(%)

 TEST BORING
 поите но.
 section
 county
 тота.
 sheet
 NO.

 NO.
 B
 FAI.
 74
 81.1HB-1
 ROCK ISLAND
 389.
 255

 STATION
 14+40 - 11'
 LT.
 FED. ROAD DIST. NO. 7
 ILLINOIS
 FED. AND PROJECT 1-74-1 (
 11.4

16					
17					
17					
16		×			
18					
24	659.0-	· ·	I .		
24		Medium Tan	13	0.78 6	11
19	653.0-	SILT	- 16	0.92 B	9
14		Stiff Tan	- 19	1.40 s	16
17		SILTY CLAY LOAM	- 19	1.60 S	12
14	- 645.0-	with Gravel	-20	1.63	14
11	5,0,0-		27	3.10 B	13
12			31	4.65 \$	12
13			26	3.50 S	12
12		Very Stiff	24	З. 10 — В —	13
13		Brown to	-21	2.91 B	14
11	_	Grey CLAY LÖAM	-19	2.91 	12
13		with Gravel	18	2.72 B	13
12		(1111)	- 20	2.52 	13
14			-18	I.55 B	19
12			20	в 1.78 — В —	14
11		1	26	— в — 3.55 в	13
12			- 22	2,72	14
14			_21	— В — 2.52 В	14
13			-28	3,98 	13.
12		1	-23	2,13 8	15
14				3.10 8	12
13	603.5	L	32	ช 3:15 8	12
-		OTTOM OF BOR			
	- (BOR I N	G DRY ON COM	PLETIO	N)	

15" N 300+20.11 ILT 197 BY OF ILLINOIS SECTION 81-IHB-I ECT I-74-1(51)0 HS 20-44 & ALT. _____ OR NAME PLATES

TEST BORINGS AND NAME PLATES

F. A. I. 74 - SECTION 81 - IHB - I F. A. I. 74 OVER I2 TH AVE.

ROCK ISLAND COUNTY

STATION 300 + 20.11

SCALE: AS NOTED DATE:

Illinois Depa of Transport	artn tati	ne	nt		SC		G		Page	<u> 1 </u>	of <u>2</u>
Division of Highways CH2M HILL	ιαι	01	•				J		Date	10/	2/07
ROUTE	DES	CR	ΙΡΤΙΟΙ	Ne N	w I-74	Bridge Over Mississippi River - Illino	ois L	066		′k	(B
I-74 Bridge over Mississ	sippi										
SECTION River		_ L			<u>(N=56</u>	<u>1111.597, E=2459861.347), SEC. 32</u>	<u>2, TWP</u>	. 18N	, RNG.	. 1W, 4	" PM
COUNTY Rock Island DRIL	LING	ME	THOD)	 	HSA, CME 55 HAMMER	TYPE	CN	ME AU	ТОМА	TIC
STRUCT. NO	-	D E	BL	U C	M O	Surface Water Elev	_ ft	D E	B L	U C	M
Station	-	Ρ	0	S	1	Stream Bed Elev.	_ ft	P		S	0 1
BORING NOILR1101	_	Т	W		S	Groundwater Elev.:		T	W		S
Station	-	Н	S	Qu	Т	First Encounter	_ ft	H	S	Qu	Т
Offset Ground Surface Elev. 660.57	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs	_ ft	(ft)	(/6")	(tsf)	(%)
2" Asphalt 66						Clay (CL) gray, slightly moist, stiff, low					
Silt (ML) yellowish brown, slightly moist,	-					plasticity, trace of fine sand					
stiff, low plasticity, trace fine sand						(continued)					
	-		3					_			
	-		5			stiff, trace of fine sub-angular			2		
						gravel,<1" in size			5	6.6	
	-	_	3	0.1		ŘIMAC: Pu = 110lbs (bulging)		_	8	В	
	-	-5	3	2.1 S				-25			
65	64.57										
Silty Sand (SM) yellowish brown, slightly moist,			2								
loose, fine to medium grained, low	-		4 5								
plasticity 65	2.57	_									
Silt (ML) yellowish brown, slightly moist,			3	4.2	18.0				5 5	4.0	12.0
firm, moderate plasticity, some fine	-		5	4.2 S	10.0				6	4.0 P	12.0
sand RIMAC: Pu = 70lbs (shear)	_	-10						-30			
stiff, trace of coarse sand			2			dark gray, slightly moist, stiff, low plasticity, trace of fine sand					
	-		8								
64	8.57										
Clay (CL) gray, slightly moist, stiff, low			2		13.0						
plasticity, trace of fine sand	-		6		10.0				5		
	_		_						7	3.5	
very stiff			5 8	3.0	13.0				10	Р	
	-	-15	10	P.0.0	10.0			-35			
	-										
	-										
	_								_		
stiff			4	3.0		very stiff, trace of coarse sand			5 8	3.5	
	-		8	- 3.0 P					10	9.5 P	
		-20						-40			

OUTEI-74			Ne N	w I-74	Date 10/2/07 Bridge Over Mississippi River - Illinois Approach LOGGED BY KB
I-74 Bridge over Mississi	opi				1111.597, E=2459861.347), SEC. 32, TWP. 18N, RNG. 1W, 4 th P
		ETHO)	ŀ	HSA, CME 55 HAMMER TYPECME AUTOMATIC
STRUCT. NO Station SORING NOILR1101	T	L O W	U C S Qu	M O I S T	Surface Water Elev. ft Stream Bed Elev. ft Groundwater Elev.: ft
Station Offset Ground Surface Elev. 660.57					First Encounter ft Upon Completion ft
Clay (CL) gray, slightly moist, stiff, low plasticity, trace of fine sand continued)		-			After Hrs ft
ery stiff		6 8 9	4.0 P		
rery stiff		4	4.5		
End of Boring	 .57 <u>-50</u> 	11	P		
		-			
	55 	- - -			
		-			

シ	Illinois Dep of Transpo Division of Highways CH2M HILL	partment rtation	SOIL BORING LOG
	I-74	DESCRIPTION	New I-74 Bridge Over Mississippi River - Illinois Approach
	I-74 Bridge over Miss	issippi	· · · · · · · · · · · · · · · · · · ·

Date 10/3/07

L

inois LOGGED BY KB ROUTE River LOCATION (N=560989.55, E=2459888.561), SEC. 32, TWP. 18N, RNG. 1W, 4th PM SECTION COUNTY ____ Rock Island ___ DRILLING METHOD ___ HSA, CME 55 HAMMER TYPE CME AUTOMATIC В U D В U Μ D Μ STRUCT. NO. _____ Surface Water Elev. ft Е Е L С 0 L С Ο Station _____ Stream Bed Elev. ft Ρ S Ρ S 0 L Ο т BORING NO. ILR1103 W т S W S Groundwater Elev.: н S Qu т н S Qu т Station _____ First Encounter ft Offset Upon Completion ft (%) (ft) (/6") (ft) (/6") (%) (tsf) (tsf) Ground Surface Elev. 659.15 ft After Hrs. ft Clay (CL) Silt (ML) gray, moist, firm, moderate vellowish brown, slightly moist, plasticity, trace of fine sand firm, low plasticity (continued) 3 3 3 3 trace of coarse sand 6 3.0 RIMAC: Pu = 50lbs (bulging) 1 9 Ρ 3.0 3 -25 В 3 2 2 3 651.15 Silty Sand (SM) 4 trace of fine sand 3 gravish brown, wet, medium, fine RIMAC: Pu = 110lbs (shear) 10 7 6.6 to medium grained, low 6 10 S plasticity RIMAC: Pu = 30lbs 649.15 _-10 -30 (shear) 1 Clay (CL) 2 1.8 gray, moist, firm, moderate plasticity, trace of fine sand 5 S 3 4 626.15 6 Silt With Trace Of Sand(ML) 1 yellowish brown, moist, very stiff, 8 2.0 fine to medium grained, moderate 3 9 Р plasticity 4.8 5 В 5

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

2.0

Р

3

5

7

trace of coarse sand

-40

5

7

9

3.5

Р

621.15

Clay With Trace Of Gravel(CL)

gray, moist, very stiff, fine to

medium grained, moderate

plasticity, gravel size < 1"

Division of Highways CH2M HILL	DESC		Ne N	ew I-74	Date 10/3/01 Bridge Over Mississippi River - Illinois Approach LOGGED BY KB
I-74 Bridge over Missi	ssippi				0989.55, E=2459888.561), SEC. 32, TWP. 18N, RNG. 1W, 4 th PN
OUNTY Rock Island DR)	<u> </u>	HSA, CME 55 HAMMER TYPE CME AUTOMATIC
TRUCT. NO		L O W	U C S	M O I S	Surface Water Elev ft Stream Bed Elev ft Groundwater Elev.:
ORING NO. <u>ILR1103</u> Station Offset			Qu		First Encounter ft Upon Completion ft
Ground Surface Elev. 659.15	ft (ft)	(/6")	(tsf)	(%)	After Hrs. ft
lay With Trace Of Gravel(CL) ray, moist, very stiff, fine to redium grained, moderate asticity, gravel size < 1"		_			
continued)		_			
		5			
		5	3.5		
	4	9	P		
	4	<u> </u>			
		_			
o gravel; trace of coarse sand	-	5 8	3.0		
		10	Р		
nd of Boring	<u>-509.15</u>	<u>)</u>			
		_			
		_			
	_	-			
		_			
	-5	5			
		_			
	_	_			
		-			
		4			

Illinois Department of Transportation	SOIL BO
Division of Highways CH2M HILL	

RING LOG

Page <u>1</u> of <u>2</u>

Date 10/2/07

	DESCRIPTION	New I-74 Bridge Over Mississippi River - Illinois Approach	LOGGED BY	KB
ver Mississi				

I-74 Bridge over Mississippi River

I-74

ROUTE

SECTION

_ LOCATION _(N=560893.607, E=2459916.795), SEC. 32, TWP. 18N, RNG. 1W, 4th PM

COUNTY Rock Island DRILLIN	g me	THOD)	ŀ	HSA, CME 55 HAMMER	R TYPE	CN	/E AU	ΤΟΜΑ	TIC
STRUCT. NO.	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion	ft	D E P T H	B L O W S	U C S Qu	M O I S T
Ground Surface Elev. 658.82 ft	(ft)	(/6")	(tsf)	(%)	After Hrs	ft	(ft)	(/6")	(tsf)	(%)
Silt With Trace Of Sand(ML) yellowish brown, slightly moist,		-			dark gray, moist, stiff, moderate					
firm, fine to medium grained, low plasticity		-			plasticity, trace of coarse sand RIMAC: Pu = 70lbs (shear)					
		2			(continued)					
		3			- 1:00					
		3			stiff			4 5	2.5	
firm RIMAC: Pu = 35lbs (shear)	_	2	24	15.0				8	Р	
	5	5	2.1 S	15.0			25			
stiff		1								
Sun		3	2.0							
		6	Р				_			
firm		3			stiff, low plasticity			3		
		3	2.0 P		RIMAC: Pu = 80lbs (shear)			6 9	4.8 S	
	-10						-30			
firm		2	2.0	13.0			_			
		5	Р							
firm		1								
		3 5	2.0 P		stiff no cond cheenved			4		
644.82		5			stiff, no sand observed		_	4 6	3.0	
Clay (CL) dark gray, moist, stiff, moderate		3	4.2	12.0			_	9	Р	
plasticity, trace of coarse sand RIMAC: Pu = 70lbs (shear)	-15	6	4.2 S	12.0			-35			
		-								
		-								
stiff		3			very stiff, trace coarse sand			3		
		5 9	2.0 P					7 9	3.0 P	
	-20						-40	5	•	

CH2M HILL			Ne N	w I-74	Date <u>10/2/07</u> Bridge Over Mississippi River - Illinois Approach LOGGED BY KB
I-74 Bridge over Mississ	sippi		· · · · ·		
SECTION River		LOCA		<u>(N=56</u>	0893.607, E=2459916.795), SEC. 32, TWP. 18N, RNG. 1W, 4 th P
COUNTY Rock Island DRIL	LING MI	ETHOD)	ŀ	HSA, CME 55 HAMMER TYPE CME AUTOMATIC
STRUCT. NO Station	- D E	BL	U C	M	Surface Water Elev ft Stream Bed Elev ft
Station	- E P		S	0	Stream Bed Elev ft
BORING NO. ILR1105		W		S	Groundwater Elev.:
BORING NOILR1105 Station	_ H		Qu	Т	First Encounter ft
Offset Ground Surface Elev. 658.82		(/6")	(+of)	10/	Upon Completion ft
	_ ft (it)	(/0)	(tst)	(%)	After Hrs. ft
Clay (CL) lark gray, moist, stiff, moderate rlasticity, trace of coarse	_	_			
and RIMAC: $Pu = 70lbs$ (shear)	_	4			
continued)		-			
	_	-			
ery stiff		5			
		8	3.0		
	_	10	P		
	45	<u>i</u>			
	_	-			
		-			
	_	-			
		1			
very stiff	_	5			
		7	3.0 P		
			P		
End of Boring)8.82 - <u>50</u>				
	_	1			
		1			
]			
	_				
		4			
	_	-			
		-			
	-55				
		1			
]			
	_	4			
		-			
	_	-			
		-			
	-	1			
		1			
	-60	1			

			partment
of	Trans	spo	ortation
Divisio CH2M	on of Highways HILL	-	

SOIL BORING LOG

Page <u>1</u> of <u>3</u>

Date 12/6/05

ROUTEI-74	DES	SCR	IPTIOI	Ne	w I-74	Bridge Over Mississippi Approach	i River - Illinois	OGG	ED BY	′ <u>В.К</u>	arnik
I-74 Bridge over Mis SECTION River	sissippi	_ L	OCA		<u>(N=56</u>	0798.355, E=2459947.2	258), SEC. 32, TWP.	. 18N	, RNG	. 1W, 4	I th PM
COUNTY Rock Island D		ME	THOD)	ł	HSA, CME 55	HAMMER TYPE		ME AU	ТОМА	TIC
STRUCT. NO Station		D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	ft ft	D E P	B L O	U C S	M O I
BORING NO. PB1001 Station 71+99.57 Offset 82.08ft		T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	647.5ft ⊻ft	T H	W S	Qu	S T
Ground Surface Elev. 655.49	ft	(ft)	(/6")	(tsf)	(%)	After Hrs	ft	(ft)		(tsf)	(%)
Asphalt 2.5 inches of asphalt followed by gravel sub-base Hole offset 9' east of abutment wall Silty Clay (CL)	654.49		2			Sandy Lean Clay, Tra (CL) Brown to dark gray, me rounded-subrounded g embedded throughout	oist, fine gravel		2 5 6 7	2.5 P	
Light grayish brown, moist, stiff, low plasticity, with iron oxide staining and small metal and miscellaneous fill material,	652.49		3 4 2	4.5		glacial till (continued)	, ,				
possibly fill Sandy Lean Clay, Trace Gravel (CL) Reddish brown, moist, hard, low	 	-5	8 5 10 5	P				-25	4		
plasticity, fine sand with fine to coarse, subrounded-subangular gravel embedded throughout, possibly fill	-		12 14 15	2.0 P					6 7 9	2.3 P	
Silty Clay (CL) Reddish brown, moist/dry, stiff, some gravel, possibly loess Reddish brown, wet, soft, trace very fine sand, loess Power auger to 7', start HSA Sandy Lean Clay, Trace Gravel	 	<u>▼</u>	4 9 9 8 4 6<0	0.3 P	5+						
(CL) Brown to dark gray, moist, fine rounded-subrounded gravel embedded throughout, hard, glacial till	-		7 8 4 8	4.5					5 7 9 10	3.5 P	
Dark gray	-	-15	12 13 4 8 9 9	P 3.0 P					6		
	-								7 10 10	4.0 P	
	-	-20						 -40			

Illinois Department of Transportation

SOIL BORING LOG

Date <u>12/6/05</u>

Page $\underline{2}$ of $\underline{3}$

POUTE			DES		וסדוסו	Ne	w I-74	Bridge Over Mississippi Approach	River - Illino	is			,	ornik
	I-74 Bridae a	over Mississ	iadi											
SECTION _	R	liver		_ L	OCA1		<u>(N=56</u>	0798.355, E=2459947.2	58), SEC. 32	, TWP.	18N	RNG	1W, 4	th PM
	Rock Island		LING	ME	THOD)	ŀ	HSA, CME 55	HAMMER	TYPE	C	ME AU	ΤΟΜΑ	TIC
STRUCT. N Station	0		-	D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev		_ ft _ ft	D E P	B L O	U C S	M O I
BORING NO	D. PB1	001		т	W		S	Groundwater Elev.:			Т	W		S
Station	71+9	9.57	_	н	S	Qu	T	First Encounter	647.5	ft 👤	н	S	Qu	Т
Offset	82.0	D8ft	_	<i>(</i> 1)	((0))	4.0	(0/)	Upon Completion _		ft		((0))	((0/)
	urface Elev.		ft	(ft)	(/6")	(tsf)	(%)	After Hrs		_ ft	(ft)	(/6")	(tsf)	(%)
	n Clay, Trace	Gravel			7			Sandy Lean Clay, Tra	ace Gravel			6		
rounded-sub	rk gray, moist, prounded grav hroughout, ha	el	-		10 12 13	2.0 P		(CL) Brown to dark gray, mo rounded-subrounded g embedded throughout,	gravel			9 11 13	2.3 P	
glacial till (co	ontinued)	-,	_					glacial till (continued)	,,					
			-											
			-	-45	7	0.5					-65	6	0.5	
			-		8 14 12	2.5 P						8 11 12	2.5 P	
			-											
			-											
			-	-50	6						-70	6		
			-		7 9 11	3.0 P						7 15 14	2.0 P	
			_											
			_											
			-	- <u>55</u>	6 9	2.8					-75	6 10	3.0	
			-		9 11 13	2.0 P						16 14	з.0 Р	
			_											
			_	_							_			
			_											
				-60							-80			

(The second seco	partment	t,		0 00	Page <u>3</u> of <u>3</u>
of Transpe	ortation		SOIL BORIN	g log	Date 12/6/05
ROUTE I-74	DESCRIPT	New ION	I-74 Bridge Over Mississipp Approach	i River - Illinois LO	
I-74 Bridge over Mis SECTION River	ssissippi				
COUNTY Rock Island D					
		3 U	••		
STRUCT. NO Station	- -	_ C	M Surface Water Elev. O Stream Bed Elev.	ft ft	
BORING NO. PB1001 Station 71+99.57 Offset 82.08ft	T V	V S Qu	I S Groundwater Elev.: T First Encounter Upon Completion	<u> </u>	
Ground Surface Elev. 655.49 Sandy Lean Clay, Trace Gravel			(%) After Hrs.	ft	
(CL) Brown to dark gray, moist, fine rounded-subrounded gravel		0 3.5 6 P			
embedded throughout, hard, glacial till <i>(continued)</i>					
Fine sand in shoe	<u>-85</u>	4			
	2				
	-90				
Poorly graded sand seam, gray, wet, very dense, fine to medium	50	0/6			
sand, rapid dilatancy, estimated 50% fines, this seam extends to about 93'					
about 95					
	<u>-95</u> 3				
	50	/2 3.8 P			
Shale	558.49				
Dark gray/black, moderately weathered, weak rock Possible bedrock at 97'	 	8			
End of Boring	556.24 50				

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

-100

Illinois Department of Transportation Division of Highways CH2M HILL

SOIL BORING LOG

Date 12/13/05

ROUTEI-74	DE	SCR	ΙΡΤΙΟΙ	Ne	W I-74	Approach	DIS L(OGG	ED BY	′ <u>В.К</u>	(arnik
I-74 Bridge over Miss	sissippi	_ I			<u>(N=56</u>	0773.1, E=2459776.703), SEC. 32, ⁻	FWP. 18	3N, R	NG. 1	W, 4 th I	РМ
COUNTY Rock Island D	RILLING	3 ME	тнор)	ŀ	HSA, CME 55 HAMMER	TYPE		ME AU	TOMA	TIC
STRUCT. NO Station		D E P T	ο	U C S	M O I	Surface Water Elev Stream Bed Elev	_ ft _ ft	D E P T	B L O W	U C S	M O I
BORING NO. RW701 Station 70+70.19 Offset 87.11ft		н	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	ft	н	S	Qu	S T
Ground Surface Elev. 669.09		L	(/6 ") 6	(tsf)	(%)	After Hrs Sandy Lean Clay Trace Gravel	_ ft	(ft)	(/6")	(tsf)	(%)
Topsoil Grass root matter Hole offset to	668.59		10			(CL)		_	4	4.5	
bottom of slope adjacent to	667.59		10			Gray, moist, soft/stiff, medium			12	P	
existing manhole gps point #48 Silty Clay (CL-ML)			6			plasticity, fine to medium, rounded-subrounded gravel, till			14		
Gray brown, stiff, dry, fine to			4			(continued)		_			
coarse, rounded-subrounded gravel, fill			4			Piece of coarse gravel in toe, possibly caused poor recovery					
Poorly Graded Sand With Grave]		2			Stop for day at 3:30 pm, Start on					
(SP)			2			12/14/05 at 8:30 am, start mud rotary at 20' after sampling					
Brown, dry, fine to coarse, fine to medium rounded-subrounded		-5	2					-25			
gravel, fill			3					_	4		
			2						5	1.5 P	
		_	3						7		
			1								
			2								
Soft silty clay with wood piece in shoe followed by dark reddish		_	2	1							
brown sand and silty clay and old			1								
concrete pieces, fill	659.09	10	1								
Silty Clay (CL-ML)	609.09	-10				No recovery, possibly pounded on		-30	4		
Gray, moist/wet, soft, high			3	1.3		gravel			6		
plasticity, fine to coarse, subangular-angular gravel, fill			2	P					8		
	657.09		3	ļ					10		
Sandy Lean Clay Trace Gravel (CL)			3	1.3				_			
Gray, moist, soft/stiff, medium			4	P							
plasticity, fine to medium, rounded-subrounded gravel, till			6								
			6	1				_			
		-15	-					-35	2		
		_						_	2	2.5	
									5	P	
]					_	6		
								_			
			-								
		-20	1					-40	1		1

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page <u>1</u> of <u>3</u>

L-74 Brid N/ia oid Illinoi κ. \cap

Illinois Department of Transportation Division of Highways CH2M HILL

SOIL BORING LOG

Date 12/13/05

ROUTE	I-74	DE	SCR	IPTIO	Ne	w I-74	Approach	L(ogg	ED BY	′ <u>В. К</u>	arnik
	I-74 Bridge over Mississ River	sippi	_ L			<u>(N=56</u>	0773.1, E=2459776.703), SEC. 32,	TWP. 18	3N, R	NG. 1\	<i>N</i> , 4 th I	PM
							HSA, CME 55 HAMMER					
Station	D	_	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev Stream Bed Elev. Groundwater Elev.: First Encounter	_ ft _ ft	D E P T H	B L O W S	U C S Qu	M O I S T
Offset	87.11ft rface Elev. 669.09		(ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs	ft	(ft)	(/6")	(tsf)	(%)
Sandy Lean (CL) Gray, moist, plasticity, fine	Clay Trace Gravel soft/stiff, medium	_ "		3 3 7 8	2.0 P		Sandy Lean Clay Trace Gravel (CL) Gray, moist, soft/stiff, medium plasticity, fine to medium, rounded-subrounded gravel, till (continued)				2.5 P	
Gray, unwea	thered glacial clay			5 6 10 11	2.5 P					6 9 14 15	2.5 P	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page $\underline{2}$ of $\underline{3}$

174 Drid Illir ~ N /: . . .: D: .

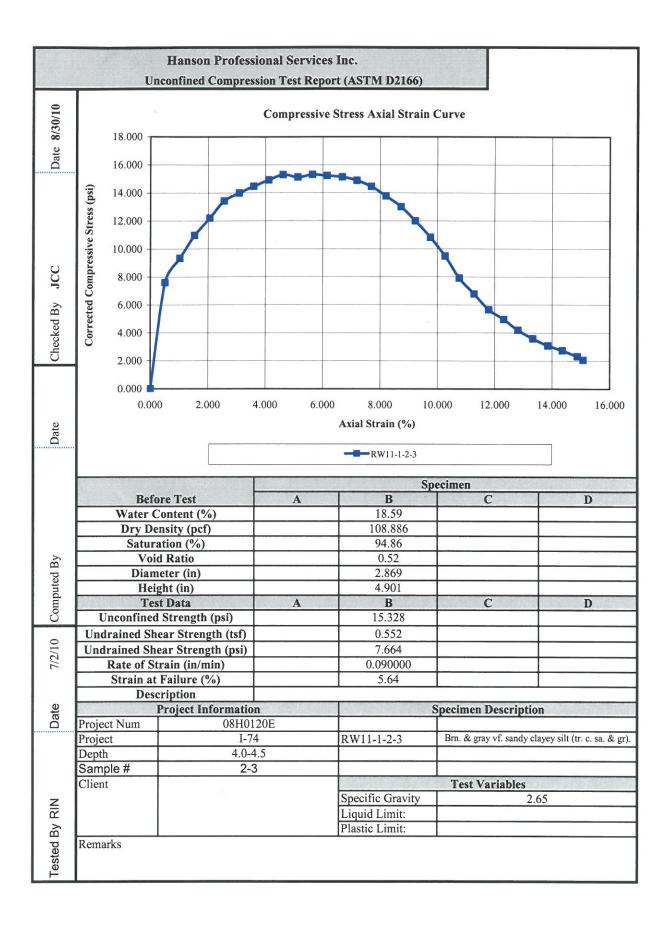
Illinois Department of Transportation Division of Highways CH2M HILL

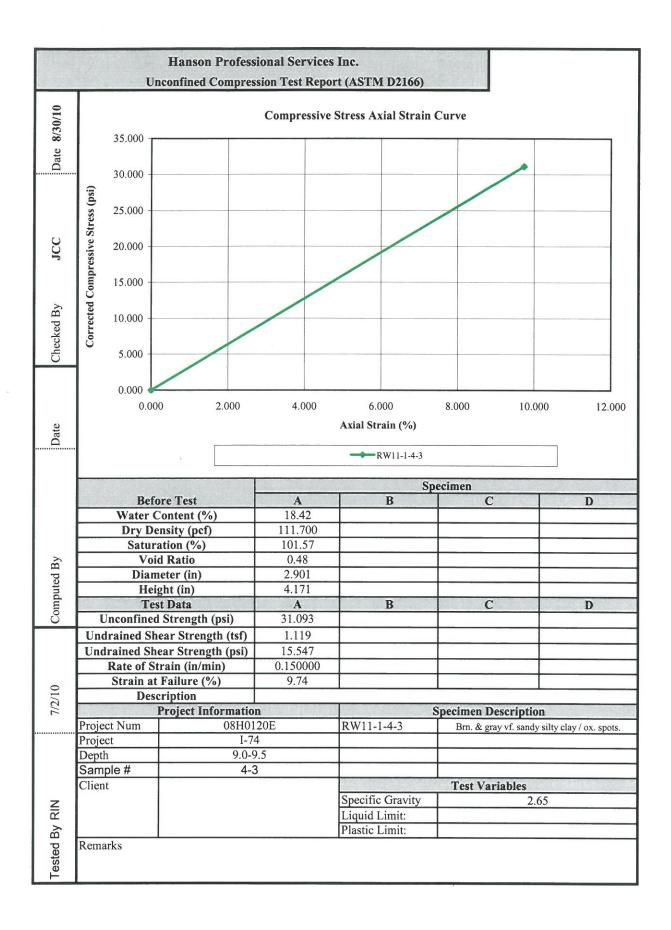
SOIL BORING LOG

Date 12/13/05

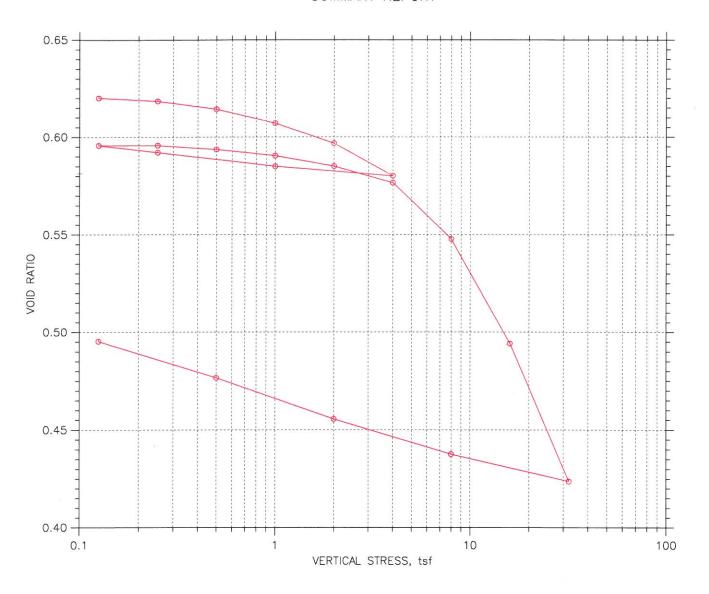
Page $\underline{3}$ of $\underline{3}$

					Ne	w I-74	Bridge Over Mississippi	River - Illinois	
ROUTE	I-74	0	ESCR	IPTIO	N		Approach	L	OGGED BY B. Karnik
	I-74 Bridge over	Mississin	oi						
SECTION	River	r				(N=56	0773.1, E=2459776.703), SEC. 32, TWP. 1	8N, RNG. 1W, 4 th PM
COUNTY	Rock Island	DRILLI	NG ME	THO) (ŀ	HSA, CME 55	HAMMER TYPE	CME AUTOMATIC
				1					
STRUCT, NO	D		D	В	U	M	Surface Water Elev.	ft	
Station			E	L	С	0	Stream Bed Elev.	ft	
			P	0	S				
BORING NO	. RW701		T	W		S	Groundwater Elev.:		
Station	70+70.1	9	Н	S	Qu	Т	First Encounter	ft	
Offset	87.11ft						Upon Completion	ft	
Ground Su	rface Elev. 66	9.09 f	: (ft)	(/6")	(tsf)	(%)	After Hrs.	ft	
Sandy Lean	Clay Trace Grav	/el							
(CL)	···,		_	-					
Gray, moist,	soft/stiff, medium			-					
plasticity, fine	e to medium,			-					
	rounded gravel, t	ill		1					
(continued)									
			-85	1					
			00	6					
				9	2.5		-		
				11	P				
			_	13	'				
				15			-		
				_					
			-90						
				1					
				-					
			_	-					
				-					
				-					
				_					
			-95						
				6					
				10	2.3				
				14	P				
		572.0	ng	15					
End of Boring	נ	572.0		-			-		
	U Contraction of the second se			1					
				-					
				-					
				1					
			_	1					
			-100						


SOIL BORING LOG


Page $\underline{1}$ of $\underline{1}$

									Date _	6/24/10
ROUTE	F.A.I. 74	DES	SCRI	PTION	I		I-74 Over Mississippi F	River LOC	GGED BY	JMB
SECTION	81-1-2		_ L	OCAT	ION _	SW1⁄4	of SEC. 33, TWP. 18N,	, RNG. 1W, 4th P.M.		
	Rock Island D	RILLING	ME	THOD		Ho	llow Stem Auger	_ HAMMER TYPE _	Aut	:0
Station BORING NO Station Offset	081-6017 RW 11-1 71+08 2' Rt. ce Elev. 659.9		D P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After Hrs.	NE_ft		
ASPHALT		_∕ 659.70 659.10								
	n mottles, moist,		 2	4 4 5	0.96S	20				
Brown with gray	/ mottles, moist,	656.90			2.13S	20				
stiff, silty CLAY very-fine graine			4		1 100	10				
		050.00			1.10S	19				
with trace sand Brown, wet, ver	y stiff, sandy	653.90 652.65 652.40	_	5 7 10	1.77B	17				
clayey SILT with gravel	h trace sand and		8—		0.42S	21	-			
Brown, slightly r	moist, very stiff,				2.00P	-				
SILT with trace	sand and clay				2.24S	18				
			10— _				-			
Gray, slightly m CLAY with trace	oist, very stiff, silty e sand and gravel	648.40	 12	10 13 16	3.44S	13				
				7	5.01B	10				
		644.90	14	15 18						
End of Boring		044.30								

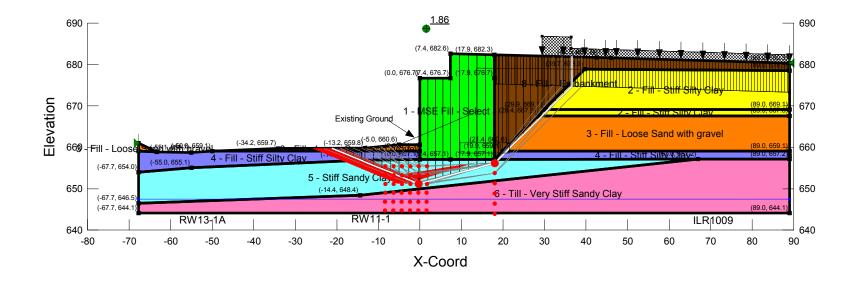

Summary of Laboratory Test Results, I-74 Corridor, 081-6017

Boring	Soil	Depth to Top of Sample (ft)	Sample #	Unified Classification	AASHTO Classification	IDH Classification	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	TT	ΓJ	Id	#10 (%)	#40 (%)	#200 (%)	In-Situ WC (%)	Dry Density (pcf)	Total Stress Friction Angle (deg.)	Total Stress Cohesion (psf)	Effective Stress Friction Angle (deg.)	Effective Stress Cohesion (psf)
	Silt	8-10	4	CL							35	14	21				18					
ILR1101	Clay	12	6	CL	A-6(6)	CL.LO.	12	26	41	21	31	17	14	88	80	62	13					
	Clay	14	7	CL		CL					35	17	18				13					
	Clay	30	10	CL		CL.LO.	5	30	37	28				95	86	65	12					
	Silt	2	1	CL	A-6(7)		2	28	7	'0	30	16	14	98	90	70						
ILR1105	Silt	4	3	CL							29	15	14				15	118	22	173	29	115
	Silt	10	5	CL	A-6(8)	CL.LO.	2	34	43	21	30	13	17	98	89	64	13					
	Clay	14	7	CL		CL					34	12	22				12					

CONSOLIDATION TEST DATA SUMMARY REPORT

					Before Test	After Test
Overburden Pressure: 0 tsf				Water Content, %	24.41	21.52
Preconsolidation Pressure: 0 tsf				Dry Unit Weight, pcf	102.	110.6
Compression Index: 2.54639e-313				Saturation, %	104.00	115.13
Diameter:	2.5 in	Height: 0.	998 in	Void Ratio	0.62	0.50
LL: 0	PL: 0	PI: 0	GS: 2.65			

	Project: 174	Location: Quad Cities	Project No.: 08H0120E				
	Boring No.: RW11-1	Tested By: RIN	Checked By: JCC				
-	Sample No.: 4-1	Test Date: 6/29/10	Depth: 8.2-8.5				
Hanson	Test No.: 1	Sample Type: Tube	Elevation: N/A				
	Description: Orange brn. & gray vf. sandy clayey silt.						
	Remarks: LT107 2000# 2009 Calibration						

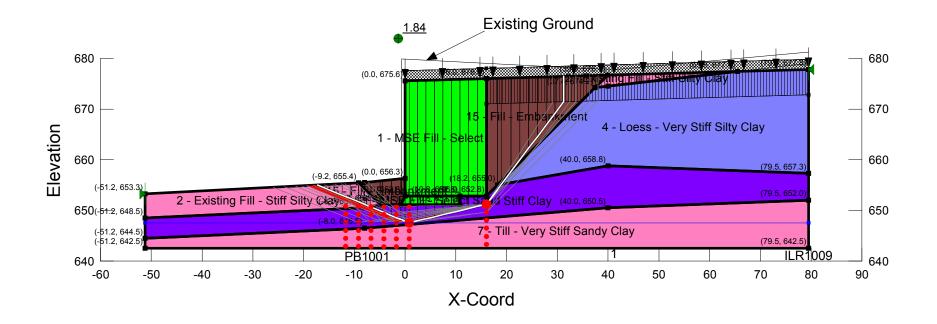

7

Project: I74 Boring No.: RW11-1 Sample No.: 4-1 Test No.: 1

Location: Quad Cities Tested By: RIN Test Date: 6/29/10 Sample Type: Tube Project No.: 08H0120E Checked By: JCC Depth: 8.2-8.5 Elevation: N/A

Soil Description: Orange brn. & gray vf. sandy clayey silt. Remarks: LT107 2000# 2009 Calibration

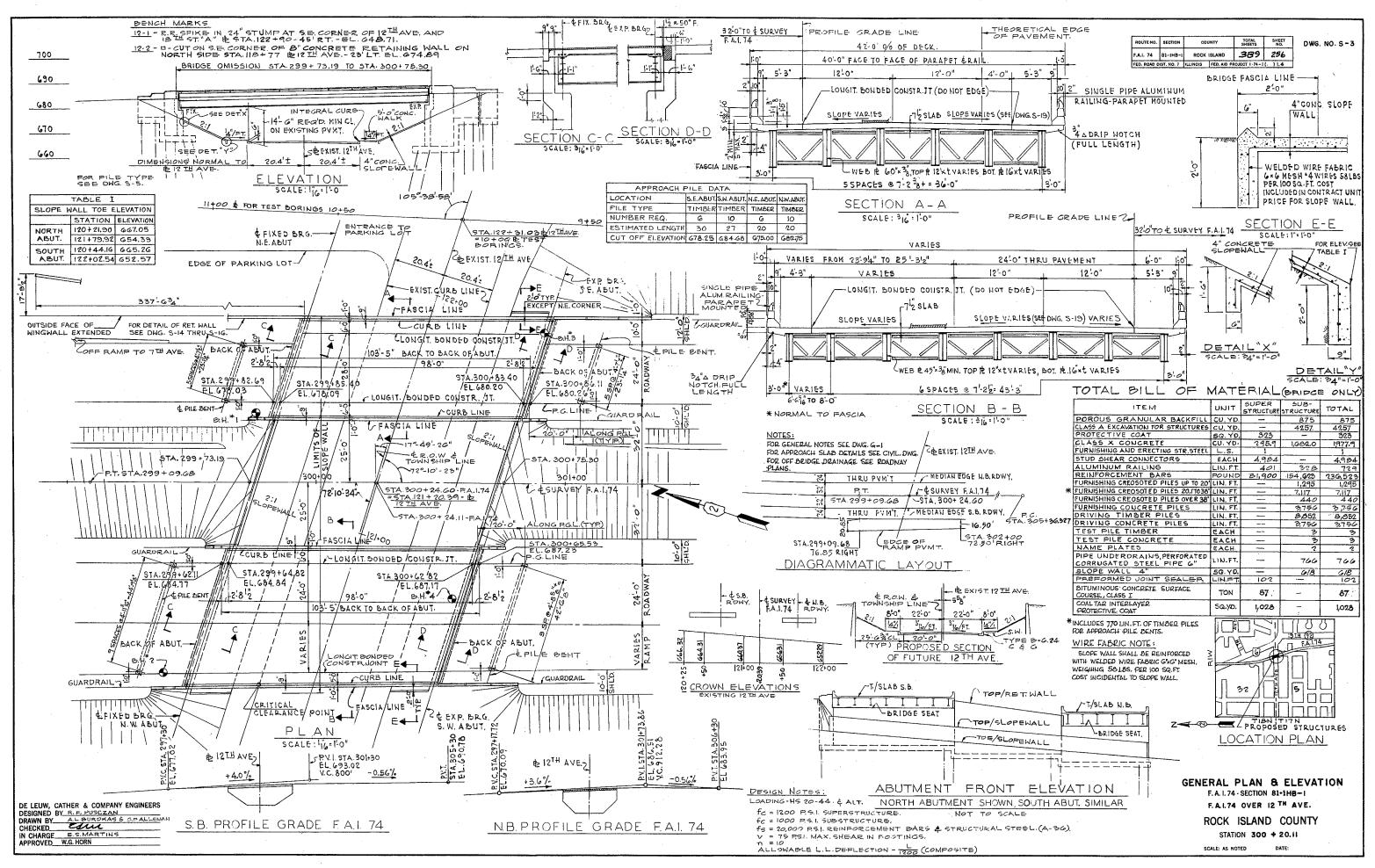
	Applied	Final	Void	Strain	T50	Fitting	Coeffic	cient of Con	solidation
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		8	min	min	in^2/sec	in^2/sec	in^2/sec
1	0.125	0.001291	0.620	0.13	0.0	0.0	2.65e-002	2.85e-002	2.75e-002
2	0.25	0.002291	0.618	0.23	0.3	0.0	2.42e-003	0.00e+000	2.42e-003
3	0.5	0.004821	0.614	0.48	0.3	0.1	3.25e-003	1.38e-002	5.27e-003
4	1	0.009281	0.607	0.93	0.1	0.0	6.61e-003	2.00e-002	9.94e-003
5	2	0.01566	0.597	1.57	0.1	0.0	1.02e-002	3.39e-002	1.57e-002
6	4	0.02592	0.580	2.60	0.2	0.0	4.68e-003	0.00e+000	4.68e-003
7	1	0.02296	0.585	2.30	0.0	0.0	6.55e-002	8.82e-002	7.52e-002
8	0.25	0.01847	0.592	1.85	0.2	0.1	3.43e-003	1.24e-002	5.38e-003
9	0.125	0.0163	0.596	1.63	0.9	0.4	8.43e-004	1.97e-003	1.18e-003
10	0.25	0.01625	0.596	1.63	0.1	0.0	1.34e-002	2.98e-002	1.85e-002
11	0.5	0.01757	0.594	1.76	0.1	0.0	1.24e-002	2.92e-002	1.74e-002
12	1	0.01958	0.590	1.96	0.1	0.0	1.21e-002	2.97e-002	1.72e-002
13	2	0.02291	0.585	2.30	0.0	0.0	2.49e-002	4.89e-002	3.30e-002
14	4	0.02804	0.577	2.81	0.1	0.0	1.01e-002	5.00e-002	1.67e-002
15	8	0.04581	0.548	4.59	0.2	0.1	3.28e-003	1.11e-002	5.07e-003
16	16	0.07868	0.494	7.88	0.2	0.2	3.02e-003	4.24e-003	3.53e-003
17	32	0.1221	0.424	12.24	0.4	0.3	1.85e-003	2.05e-003	1.95e-003
18	8	0.1135	0.438	11.37	0.0	0.0	6.72e-002	0.00e+000	6.72e-002
19	2	0.1024	0.456	10.26	0.2	0.0	3.76e-003	1.42e-002	5.95e-003
20	0.5	0.0895	0.477	8.97	1.8	0.0	3.72e-004	0.00e+000	3.72e-004
21	0.125	0.07804	0.495	7.82	7.0	0.0	9.80e-005	0.00e+000	9.80e-005

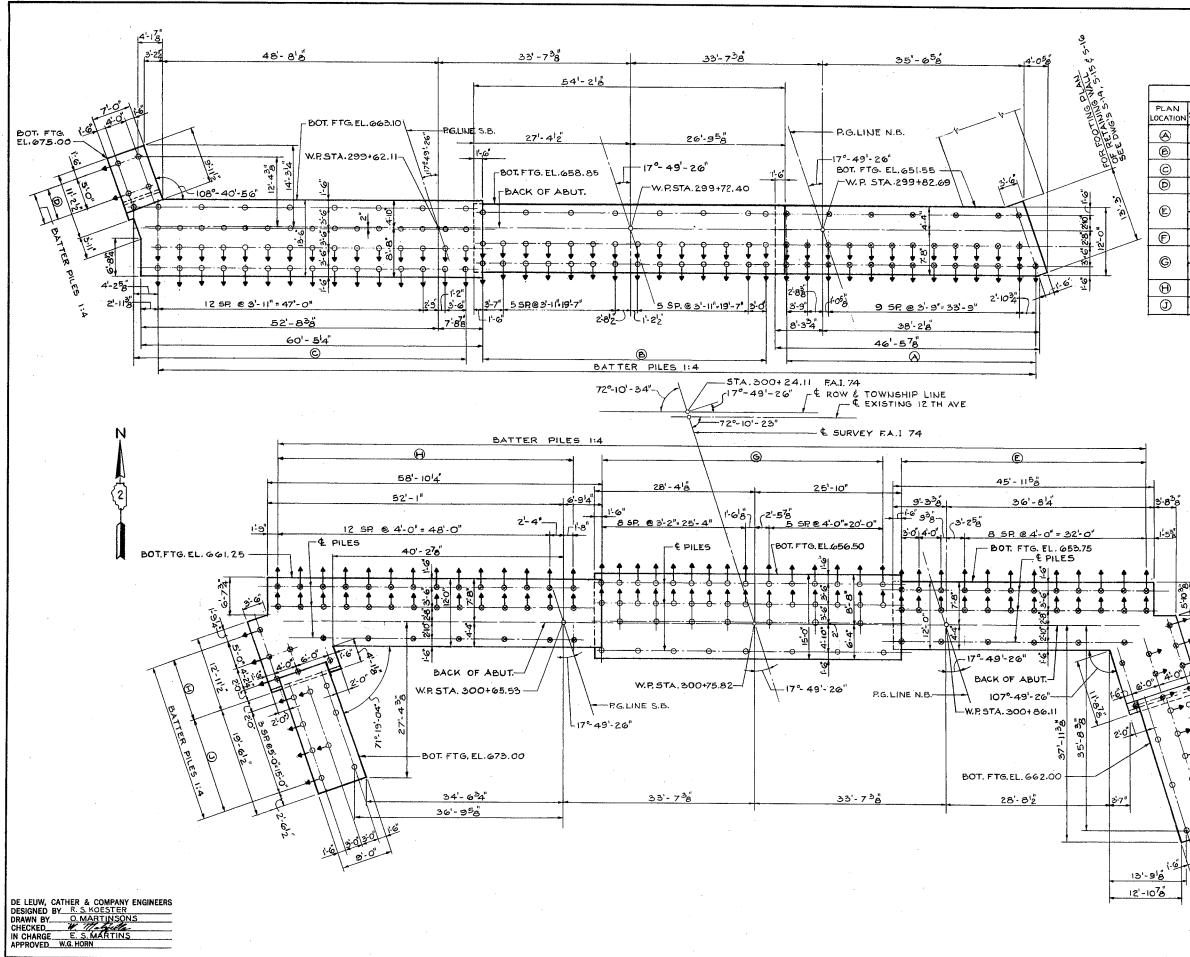


Material Properties

Name: 1 - MSE Fill - Select SandModel: Mohr-CoulombUnit Weight: 125 pcfCohesion: 0 psfPhi: 34 °Name: 2 - Fill - Stiff Silty ClayModel: Mohr-CoulombUnit Weight: 120 pcfCohesion: 1000 psfPhi: 0 °Name: 3 - Fill - Loose Sand with gravelModel: Mohr-CoulombUnit Weight: 115 pcfCohesion: 0 psfPhi: 30 °Name: 4 - Fill - Stiff Silty ClayModel: Mohr-CoulombUnit Weight: 120 pcfCohesion: 1000 psfPhi: 0 °Name: 5 - Stiff Sandy ClayModel: Mohr-CoulombUnit Weight: 120 pcfCohesion: 1000 psfPhi: 0 °Name: 6 - Till - Very Stiff Sandy ClayModel: Mohr-CoulombUnit Weight: 130 pcfCohesion: 3500 psfPhi: 0 °Name: 8 - Fill - EmbankmentModel: Mohr-CoulombUnit Weight: 125 pcfCohesion: 1000 psfPhi: 0 °

SN 081-6017 IL-RW11 SN 081-0183 (N. Abut) (A-A') Case 2 - Through Abutment - Wedge File Name: I-74 N Abut 081-0183 6017 - Through Abutment.gsz Last Edited By: Ryan English Date: 4/19/2011 11:57:55 AM I-74 OVER THE MISSISSIPPI RIVER CENTRAL SECTION FINAL DESIGN ILLINOIS DEPARTMENT OF TRANSPORTATION ROCK ISLAND COUNTY, ILLINOIS




Material Properties

Name: 1 - MSE Fill - Select Sand Model: Mohr-Coulomb Unit Weight: 125 pcf Cohesion: 0 psf Phi: 34 ° Cohesion: 1000 psf Name: 2 - Existing Fill - Stiff Silty Clay Model: Mohr-Coulomb Unit Weight: 120 pcf Phi: 0 ° Name: 4 - Loess - Very Stiff Silty Clay Unit Weight: 120 pcf Cohesion: 2000 psf Model: Mohr-Coulomb Phi: 0 ° Name: 6 - Stiff Clay Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 1000 psf Phi: 0 ° Name: 7 - Till - Very Stiff Sandy Clay Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion: 3500 psf Phi: 0 ° Name: 15 - Fill - Embankment Unit Weight: 125 pcf Cohesion: 1000 psf Phi: 0 ° Model: Mohr-Coulomb

SN 081-6017 IL-RW11 SN 081-0183 (N. Abut) (B-B') Case 1 - Through East Side - Wedge File Name: I-74 N Abut 081-0183 6017 - Through East Side.gsz Last Edited By: Ryan English Date: 4/19/2011 1:01:24 PM I-74 OVER THE MISSISSIPPI RIVER CENTRAL SECTION FINAL DESIGN ILLINOIS DEPARTMENT OF TRANSPORTATION ROCK ISLAND COUNTY, ILLINOIS

ROUTE NO.	SECTION	00	UNTY	TOTAL SHEETS	BHEET NO.
F.A.I. 74	81-IHB-I	ROCK	ISLAND	389	258
FED. ROAD D	IST. NO. 7	ILLINOIS	()1.4		

DWG. NO. S-5

PILE DATA											
PLAN LOCATION	STRUCTURE	PILE TYPE	MINIMUM CAPACITY TONS	NUMBER REQUIRED	ESTIMATED	CUT OFF ELEVATION					
۲	N.E.ABUT	CONCRETE	45	32	24	652.55					
B	N.MIDWALL	TIMBER	24	36	20	659.85					
©	N.W. ABUT.	TIMBER	24	54	26	664.10					
Ð	N.W. ABUT. WINGWALL	TIMBER	24	4	38'	676.00					
E	S.E. ABUT. E. END	CONCRETE	45	39	44	15175					
C)	S.E. ABUT. W. END	CONCRETE	45	57	34	654,75					
Ē	S.E. ABUT. WINGWALL	TIMBER	24	10	44	663.00					
G	S. MIDWALL E. END	TIMBER	24	45	28	657.50					
0	S.MIDWALL W.END		24	45	14	057.50					
Θ	S.W. ABUT.	CONCRETE	45	41	27	662.25					
C	S.W.ABUT.	TIMBER	24	9	30	674.00					

DENOTES BATTER PILES 0

O DENOTES TIMBER PILES DENOTES CONCRETE PILES

5P. @ 4-

10-0

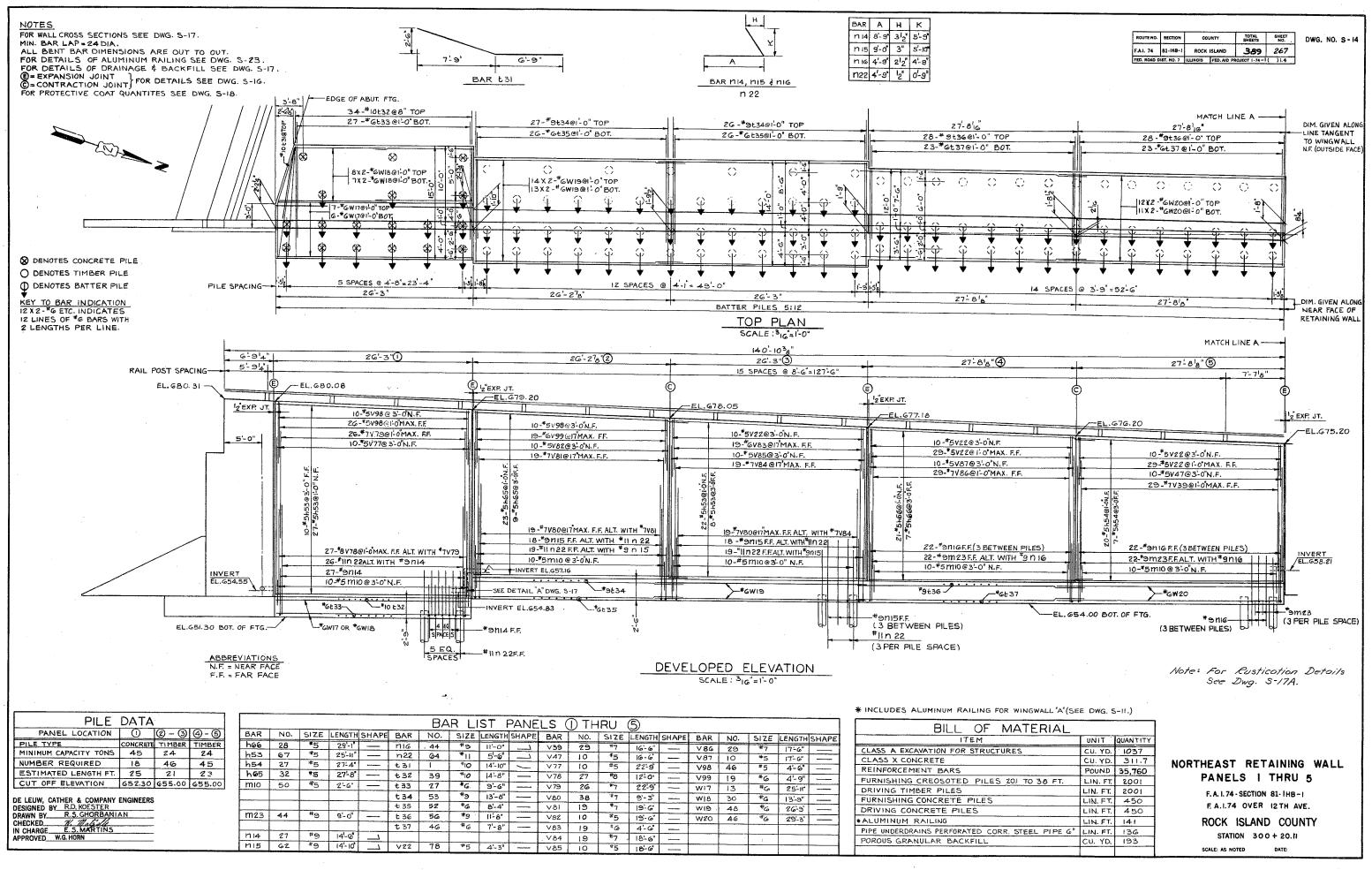
'n,

3-83

52

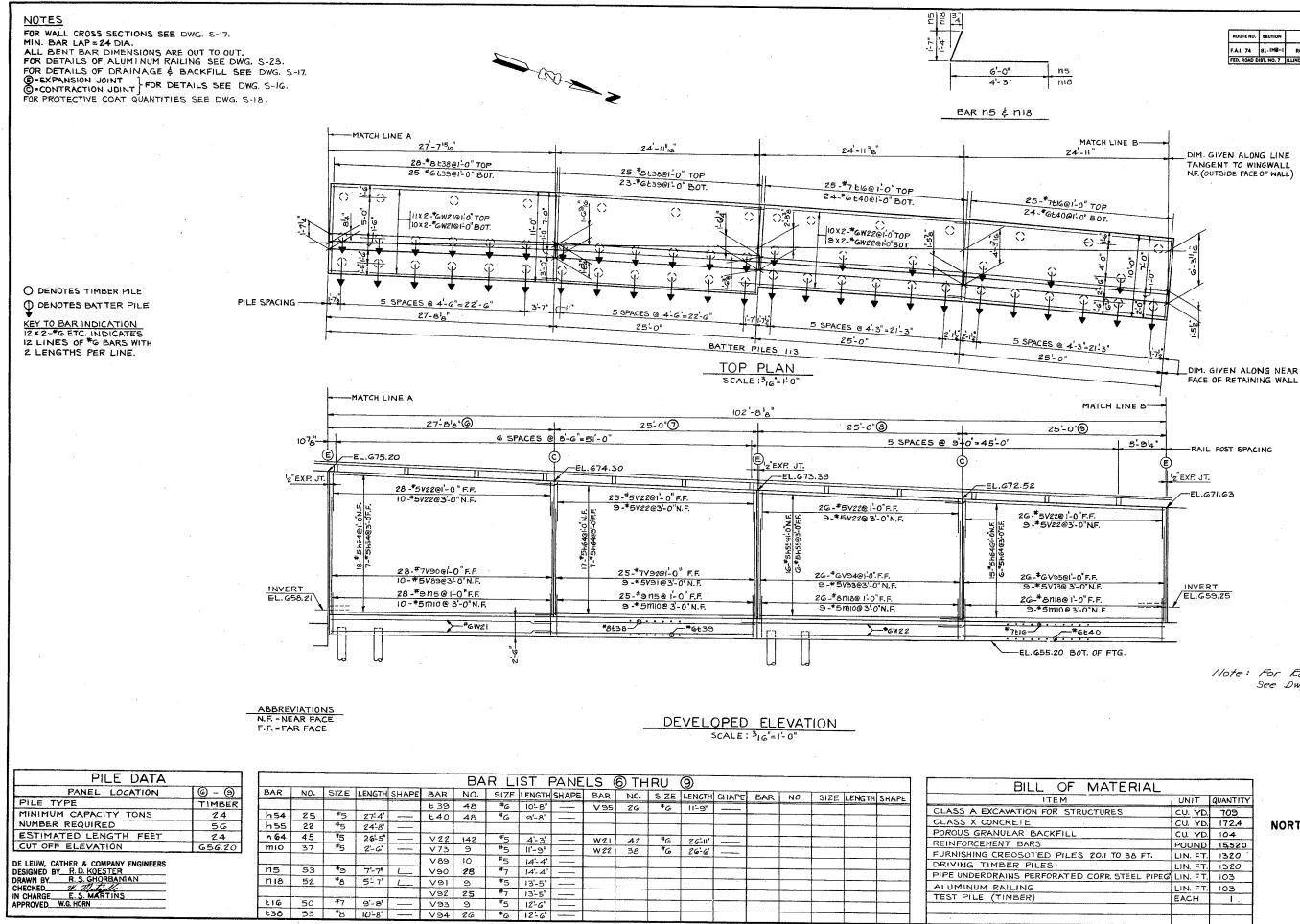
9⁰9

ITEM	UNIT	QUANTIT
FURNISHING CREOSOTED PILES UP TO 20'	LIN. FT.	975
FURNISHING CREOSOTED PILES FROM 20,1'TO 38'	LIN. FT.	2496
FURNISHING CREOSOTED PILES OVER 38	LIN. FT.	440
DRIVING TIMBER PILES	LIN. FT.	3911
TEST PILES (TIMBER)	EACH	2
FURNISHING CONCRETE PILES	LIN. FT.	3306
DRIVING CONCRETE PILES	LIN. FT.	3306
TEST PILES (CONCRETE)	EACH	3


PILE PLAN

F. A. I. 74 - SECTION 81-1HB-1 FA.I.74 OVER 12TH AVE.

ROCK ISLAND COUNTY


STATION 300+20.11

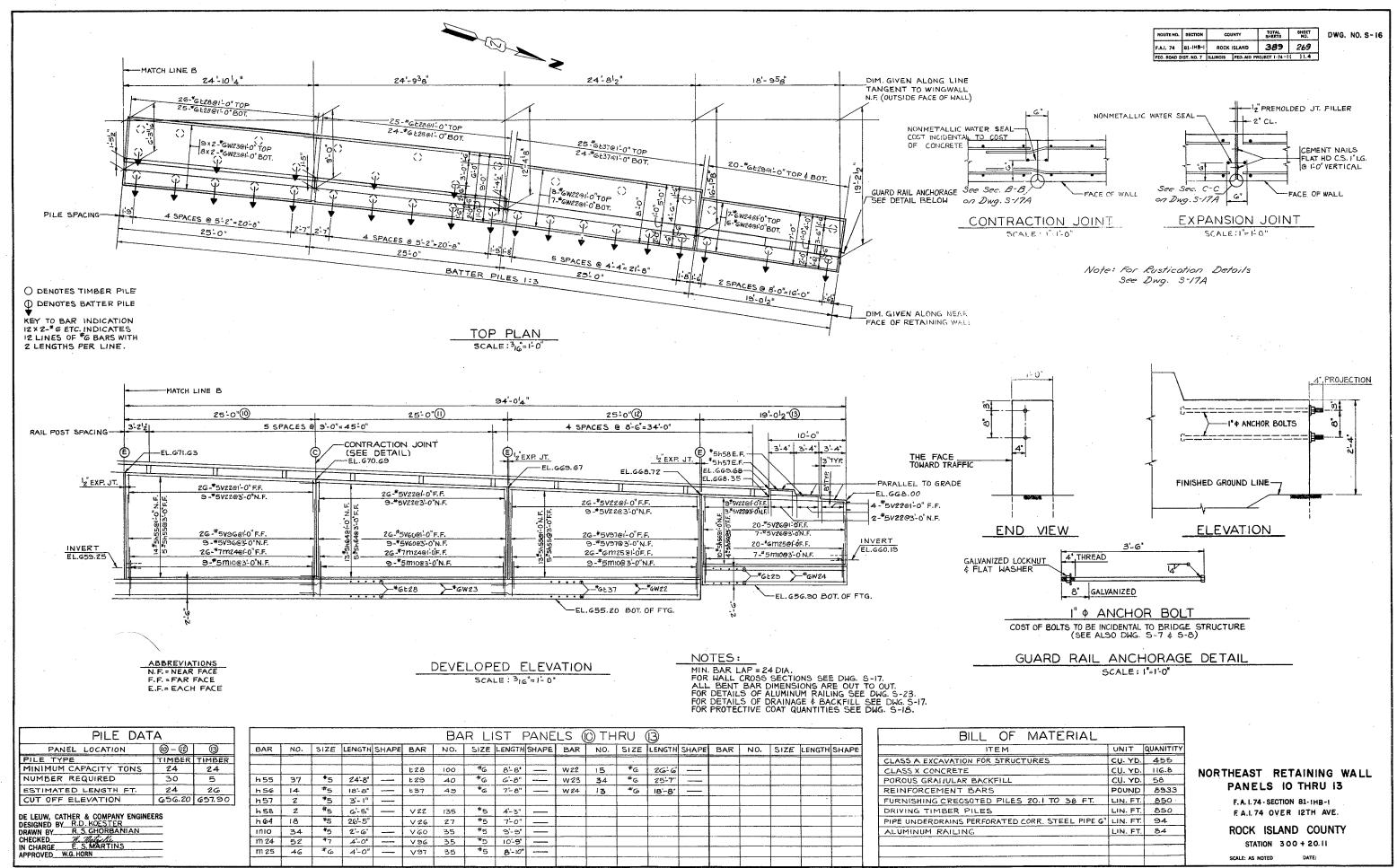
SCALE: 8"= 1'- 0" DATE:

14E IO 1194 🕐

.....

ROUTE NO.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.	DWG. NO. S-15
F.A.1. 74	81-IHØ-I	ROCK ISLAND,	389	268	
FED. ROAD D	181. NO. 7	ILLINOIS FED. AID PI	ROJECT 1-74-1	()1.4	

Note: For Rustication Details See Dwg. S-17A.


ATERIAL		
	UNIT	QUANTITY
URES	CU. YD.	709
	CU. YD.	172.4
	CU. YD.	104
	POUND	15,520
D.I TO 38 FT.	LIN. FT.	1320
	LIN. FT.	1320
RR. STEEL PIPEG	LIN. FT.	103
	LIN. FT.	103
	EACH	Ι.

NORTHEAST RETAINING WALL PANELS 6 THRU 9

F. A. I. 74 - SECTION 81-1HB-1 F.A.I.74 OVER 12 TH AVE.

ROCK ISLAND COUNTY STATION 300 + 20.11

SCALE: AS NOTED DATE:

