

ESCA	USER NAME = has	DESIGNED - SHL 11/11	REVISED -		STEEL FRAMING DETAILS	F.A.P. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
	ESCA PROJECT NO. 933.14 PLOT SCALE = 0:2 ':' / IN.	CHECKED - ELH/RDP 01/14 DRAWN - HAS 11/11	REVISED - REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 093-0025	332	(12,B2)B-1	WABASH	68	37
								CONTRACT	「 NO. 74	219
	PLOT DATE = 6/10/2014	8:52:11 AM CHECKED - SHL 11/11	REVISED -		SHEET NO. 17 OF 31 SHEETS		ILLINOIS FED. A	ID PROJECT		

Is, Ss:	Non-composite moment of inertia and section modulus of the
	steel section used for computing f_s (Total-Strength I, and
	Service II) due to non-composite dead loads (in. ⁴ and in. ³).
I _c (n), S _c (n):	Composite moment of inertia and section modulus of the steel
	and deck based upon the modular ratio, "n", used for computing
	fs(Total-Strength I, and Service II) in uncracked sections due
	to short-term composite live loads (in.4 and in.3).
Ic(3n), Sc(3n):	Composite moment of inertia and section modulus of the steel
	and deck based upon 3 times the modular ratio, "3n", used for
	computing f_s (Total-Strength I, and Service II) in uncracked
	sections, due to long-term composite (superimposed) dead loads
	(in.4 and in.3).
Ic(cr), Sc(cr):	Composite moment of inertia and section modulus of the steel
	and longitudinal deck reinforcement, used for computing f_s
	(Total-Strength I and Service II) in cracked sections, due to
	both short-term composite live loads and long-term composite
0.01	(superimposed) dead loads (in.4 and in.5).
	Un-tactorea non-composite dead load (kips/tt.).
M DC1 :	Un-factored moment due to non-composite dead load (Kip-tit.).
DC2:	un-raciored long-rerm composite (superimposed excluding rulure -
Massa	Wearing Sarrace action and the long-term composite (superimposed
WDC2;	excluding future wearing surface) dead load (kin-ft.)
DW.	In-factored long-term composite (superimposed future wearing
<i>Dm</i> .	surface only) dead load (kips/ft.).
Mow:	Un-factored moment due to lona-term composite (superimposed
	future wearing surface only) dead load (kip-ft.).
M4 + IM:	Un-factored live load moment plus dynamic load allowance (impact)
	(kip-ft.).
Mu (Strength I):	Factored design moment (kip-ft.).
	1.25 (Mdci + Mdc2) + 1.5 Mdw + 1.75 M&+ + IM
$\phi_f M_n$:	Compact composite positive moment capacity computed according
	to Article 6.10.7.1 or non-slender negative moment capacity
6 004	according to Article A6.1.1 or A6.1.2 (kip-ft).
ts DCI:	Un-tactored stress at edge of flange for controlling steel
	flange due to vertical non-composite dead loads as calculated
	Delow (KSI).
f DC2.	MDC1/ Snc Up-fastered stress at edge of flange for controlling steel
is DUZ:	flange due to vertical composite dead leads as calculated
	helow (ksi)
	More $/$ Sc(3n) or More $/$ Sc(cr) as applicable
fs DW:	lin-factored stress at edge of flange for controlling steel
	flanae due to vertical composite future wearing surface
	loads as calculated below (ksi),
	Mpw / S _c (3n) or Mpw / S _c (cr) as applicable.
fs (4+IM):	Un-factored stress at edge of flange for controlling steel
	flange due to vertical composite live load plus impact loads as
	calculated below (ksi).
	Мц+ ім / Sc(n) or Мц+ ім / Sc(cr) as applicable.
ts (Service II):	Sum of stresses as computed below (ksi).
0.055 5 5	tsDC1 + tsDC2 + fsDW + 1.3 fs(4 + IM)
0.95R _h Fyf:	Composite stress capacity for Service II loading according
17-	10 ATTICLE 6.10.4.2 (KSI).
vf:	maximum racioned snear range in span computed according
	10 /11/10/0 0.10.10.

0.5 Sp. 2

2,850

9,067

6,814

213

342

309

0.790

147.7

0.150

29.2

0.300

58.4

545.6

1,263.5

1,688.3

8,32

1.13

2.27

19.14

36.61

47.50

19.6

\rightarrow $=$ $\frac{2^{"}}{2}$	

m

<u>*</u>€ Beam web

and € C12x25

at end of channel

DETAIL C

P

ž

€¹³16 " x 1⁷8

slotted holes