
TYPE I ELASTOMERIC EXP. BRG.

- € 2⁻³⁄₄" ¢ H.S. Bolts w∕lock washers (Typ. ea. side) (Coat_bolts with anti-seize compound) Tapped holes in top P_{i} ; $r_{g''} \phi$ holes in bearing P_{i}

BEARING ASSEMBLY

Note: Shim plates shall not be placed under Bearing Assembly.

Equivalent rolled angle with stiffeners will be allowed in lieu of welded plates.

Notes:

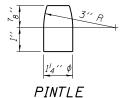
 \oplus

4"

Anchor bolts shall be ASTM F1554 all-thread (or an Engineer-approved alternate material) of the grade(s) and diameter(s) specified. The corresponding specified grade of AASHTO M314 anchor bolts may be used in lieu of ASTM F1554.

Anchor bolts at fixed bearings may be either cast in place or installed in holes drilled after the supported member is in place.

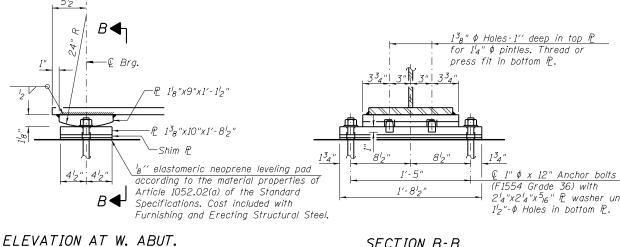
Anchor bolts for side retainers may be cast in place or installed in holes drilled before or after members are in place.


Drilled and set anchor bolts shall be installed according to Article 521.06 of the Standard Specifications.

Side retainers and other steel members required for the elastomeric bearing assembly shall be included in the cost of Elastomeric Bearing Assembly, Type I.

The structural steel plates of the Bearing Assembly shall conform to the requirements of AASHTO M 270 Grade 50W.

INTERIOR	GIRDER	MOMENT TABLE
		0.5 Span
Is	(in ⁴)	12252
Ic(n)	(in4)	33758
Ic(3n)	(in4)	25060
Ss	(in ³)	603
Sc(n)	(in ³)	860
Sc(3n)	(in ³)	791
DC1	(k/′)	0.833
M DC1	(′k)	717
DC2	(k/′)	0.150
M DC2	(′k)	129
DW	(k/′)	0.300
Mow	(′k)	258
M4 + IM	(′k)	1241
Mu (Strength I)	(′k)	3617
φ _f M _n	(′k)	4393
fs DC1	(ksi)	14.27
fs DC2	(ksi)	1.96
fs DW	(ksi)	3.91
fs (4+IM)	(ksi)	17.32
fs (Service II)	(ksi)	42.65
0.95RhFyf	(ksi)	47.50
Vf	(k)	28.9


INTERIOR	GIRDI	ER REACTION TABLE
		Abut.
RDCI	(k)	72.3
R _{DC2}	(k)	6.2
Row	(k)	12.5
R4 + IM	(k)	96.3
R Total	(k)	187.3

	L	ocation	Thickness
W.	Abut.	Girder 4	38"
Ε.	Abut.	Girder 3	38"

SECTION B-B

FIXED BEARING

DESIGNED - HP REVISED -USER NAME = **BEARING DE** LIN ENGINEERING, LTD. FILE NAME = STATE OF ILLINOIS СНЕСКЕD – МТН REVISED Consulting Engineers STRUCTURE NO. PLOT SCALE = DRAWN AJF REVISED **DEPARTMENT OF TRANSPORTATION** Springfield, Illinois SHEET NO. 14 OF PLOT DATE = CHECKED - MTH REVISED

Is, Ss:	Non-composite moment of inertia and section modulus of the steel section used for computing f_s (Total-Strength I, and
I _c (n), S _c (n):	Service II) due to non-composite dead loads (in. ⁴ and in. ³). Composite moment of inertia and section modulus of the steel and deck based upon the modular ratio, "n", used for computing f_s (Total-Strength I, and Service II) in uncracked sections due
$I_{\alpha}(3n) = S_{\alpha}(3n)$	to short-term composite live loads (in. ⁴ and in. ³). Composite moment of inertia and section modulus of the steel
	and deck based upon 3 times the modular ratio, "3n", used for computing f_s (Total-Strength I, and Service II) in uncracked sections, due to long-term composite (superimposed) dead loads (in. ⁴ and in. ³).
	Un-factored non-composite dead load (kips/ft.).
	Un-factored moment due to non-composite dead load (kip-ft.).
	Un-factored long-term composite (superimposed excluding future wearing surface) dead load (kips/ft.).
MDC2 :	Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead load (kip-ft.).
DW:	Un-factored long-term composite (superimposed future wearing surface only) dead load (kips/ft.).
Mow:	Un-factored moment due to long-term composite (superimposed
	future wearing surface only) dead load (kip-ft.).
M4 + IM:	Un-factored live load moment plus dynamic load allowance (impact)
	(kip-ft.).
Au (Strength I):	Factored design moment (kip-ft.).
	1.25 (Mdc1 + Mdc2) + 1.5 Mdw + 1.75 M4 + IM
$\phi_f M_n$:	Compact composite positive moment capacity computed according
	to Article 6.10.7.1 (kip-ft.).
fs DC1.	Un-factored stress at edge of flange for controlling steel
	flange due to vertical non-composite dead loads as calculated below (ksi).
	M _{DCI} / S _{nc}
fr DC2	UN-factored stress at edge of flange for controlling steel
75 DOL	flange due to vertical composite dead loads as calculated
	below (ksi).
	$M_{DC2}/S_c(3n)$
fs DW	Un-factored stress at edge of flange for controlling steel
	flange due to vertical composite future wearing surface
	loads as calculated below (ksi).
	$M_{DW} \neq S_c(3n)$
fs (4+IM).	Un-factored stress at edge of flange for controlling steel
	flange due to vertical composite live load plus impact loads as
	calculated below (ksi).
	M4+IM / Sc(n)
fs (Service II):	Sum of stresses as computed below (ksi).
	fsDC1 + fsDC2 + fsDW + 1.3 fs(4 + IM)
0.95RhFyf:	
	to Article 6.10.4.2 (ksi).
V_f :	Maximum factored shear range in span computed according
	to Article 6.10.10. (kip).

 $2_4''x2_4''x_{16}^{5}'' P$ washer under nut

BILL OF MATERIAL

Item	Unit	Total
Elastomeric Bearing Assembly Type I	Each	6
Anchor Bolts, 1"	Each	24

PETAILS	F.A.P. RTE	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
D. 075–0511	745	108B-3	PIKE	69	49
5. 075-0511	CONTRACT NO. 72B6			72B61	
19 SHEETS	ILLINOIS FED. AID PROJECT				