SOIL BORING LOG

 COUNTY ROCK SISAR DRILING METHOD HSA, CME 55 HAMMERTTPE CME AUTOMATIC ${ }^{\text {sTruct. No. }}$
 \qquad

llinois Department
SOIL BORING LOG

sTruct. .No.
Station

 Itace Water Fliv. \qquad

 ${ }_{\text {BBS, for }}$ (137(Reve. 8.99)

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

Date gr2007

 COUNIT ROKK SIAnd DRILING METHOD HSA, CME 55 HAMMER TTPE CME AUTOMATIC | struct. No. |
| :---: |
| Station |

 \qquad ${ }^{\#}{ }^{\#}$

 ${ }^{570.2}{ }_{A}^{+\pi}$

Casey Fine to Medium Sar

Id of Boring
19.

Note:
Note: Rhe Rock Core Log designated as "Preliminary" is the
final Rock Core Log.

CH2MHILL

\square

${ }_{\text {BBS, tor }}^{\text {D.2938) }} 138$ (Rev. 8.99$)$

Uition spoatment
Date gror

 county_rock ksiand_ CORING METHOO Na Core ${ }_{\substack{\text { stpuct. No. } \\ \text { Station }}}^{48+91}$
 Core Diante ITPE STIE No Wireine

[^0]

 (ti) | (tsf) |
| :---: |

GENERAL NOTES

1. Reinforcement bars designated (E) shall be epooxy cooted.
2. Wall stations and offsets ore given to the front foce (FF) of the wall and are
measured from the centerline of Proposed $I-74$ except as noted. FF of the measured from the centerline of Proposed I-74 except
wall is to be considered edge of panel or form liner.
3. See Special Provision for Mechanically Stabilized Earth Retaining Walls,
Aggregate Column Ground Improvement, and Temporary Mechonically Stabilized Aggregote Column Ground Improvement, and Temporary Mechania
Earth Retooining Wolls for design and construction requirements.
4. For existing soils laboratory data, see Geotechnical Investigation Laboratory
5. The piles for SN 081-0179, SN 081-0180, and SN 081-0181 are located within the reinforced soil mass and will be driven prior to placement of the
reinforced soil mass. See SN 081 -0179, SN 081 -0180, and SN 081 -0181 plans for additional pile requirements.
6. Wall system supplier shall coordinate proposed wall configuration with

Ground Improvement subcontractor.
7. Wall construction shall not begin until after Aggregate Column Ground Woll construction shall not begin until after Aggregate Column Ground
Improvement ond removal ond replacement of the unsuitoble moterial has been
completed in the areo of the new wall.
8. In areas where ground improvements are not required, the native soils shall
be inspected when excovation reaches the base of the proposed wall. Any bo inspected when exacovation reaches the base of the proposed wall. Any
soft or otherwise unsuitable moterial should be removed and replaced with soft or otherwise unsulitable material should be removed and replaced with
compacted rock fill. Removals shall be paid for os Removal and Disposal of compacted rock fill. Removals shall be paid for as Removal and Disposal of
Unsuitable Moterial for Structures. Rock fill shall be paid for as Rock Fill.
9. See SN 081-0181 plans for maskwall details.

MSE WALL SETTLEMENT

The Top of Exposed Panel Elevations shown on these plans are fina
. For MSE Wall on top of the aggregate columns, the wall settlement will be
determined by the ground improvement desion
 coor dinate with the Aggregate Column Ground In
accommodate this settlement in the wall design.
3. For MSE wall outside the ground improvement limits, 2.5 inches of settlement are anticipated from Ramp 7 th- -8 Sta. $522+95.01$ to Sta. $531+47.55$. 2. 25
chenes, 2.75 inches, and 0.625 inches of settlement are anticipated olong the I-74 EB, I-74 WB, and Ramp 7th-A abutments, respectively. The wall system $I-74$ EB, I-74 WB, and Ramp 7 th-A abutments, respectively. The wall system
supplier shall toke appropriate measurres to accommodate this settlement in supplier sholif toke appopopriate measures to accommodate this settlement in
the wall e eign. Total settlement measured on the povement shall not exceed
1.0 inch

* See additional retaining walls within this contract
for remainder of L. Sum quantity.

GROUND IMPROVEMENT PERFORMANCE REQUIREMENTS

Minimum factor of soffety for global slope stability shall be 1.5 for both
permanent and femporary conditions.
2. Allowable bearing pressure (with F.S.) shall be equal to or greater than the
equivalent uniform service bearing pressure as shown on Sheet 5. Intermediate values may be defined by interpolating between the values shown.
Minimum factor of safety against equivalent uniform service bearing
pressure shall be 2.0 if a load test is performed. pressure shal be 2.0 If aco test is performed.
Minimum factor of safety against equivalent uniform service bearing
pressure shall be 2.5 if o lood test is not performed.
Total settlement measured at the theoretical top of leveling pad shall not exceed 4.0 inches.

Total settlement measured on the povement shall not exceed 1.0 inch.
5. Differential settlement measured along the theoretical top of leveling pad shall not exceed $1 / 100$.
The assumed structure life for settlement computations shall be 75 years.
7. Controctor's verification program shall include monitoring points or other instrumentation
requirements.
8. The Shop Drawings and construction procedures submittal shall indicate the Improvement. The aggregate column installation shall be coordinated with utility removal, structure removals, column installation shall be coordinated with utinty
9. Aggregote columns shall be installed before the bridge piles are driven: however, aggregate column loyout shall provide clearance for the bridge piles.

PROFILE GRADE

PROFILE GRADE

$\frac{\text { PROFILE GRADE }}{\text { (Along PGL }- \text { Ramo }} \mathbf{7 + h - B)}$

\square

TYPICAL WALL SECTION

\square Usen

TYPICAL WALL SECTION
TYPICAL WALL SECTION

horizontal slidionog force of of 0.5 Kips frst of woll.

...
Between Stations 60 .77.59 and $60+9.34$ the top of

$$
\begin{aligned}
& \text { Notes: } \\
& \text { For location of Sections } C-C \text { and } D-D \text {, see Sheet } 5 \text {. } \\
& \text { For Pier } 3 \text { ond Pier } 4 \text { Foundation detalis, see SNo81-O179 } \\
& \text { and SNOB1-181 plons. }
\end{aligned}
$$

C.I.P. FACING TYPICAL SECTION Concrete and reinforcing steel for C.I.P. Facing are
included in the cost of Mechonically Stabilized Earth Retaining Wall

ELEVATION VIEW OF C.I.P. FACING ALONG I-74 EB

(I-74 WB Abutment and WB Parapet not shown for clarity)

ELEVATION VIEW OF C.I.P. FACING ALONG I-74 WB
(Looking West)
(Ramp 7th-A Abutment and 7th-A Parapet not shown for clarity)

\square

 REVVEO
REVISEO
REVIVEO
REVISED

SECTION THRU PARAPET AND ANCHORAGE SLAB

GENERAL NOTES
All dimensions shall remain the same as shown on superstructure details, except dimensions A and B which are to be revised as shown to provide additional clearance. Adaritional concrete needed to revise dimension A
equals 0.016 cu. yds./ff. equals 0.016 cu. yds./ft.
Full thickness sow cut at all joint locations in lieu of cork joint filler.

ALTERNATE BAR \#5-dI(F)
$\underset{\text { (When conduit is present) }}{\text { EOR 34" }}$

ALTFRNATF BAR \#5-dI(E)
EOR 42" F-SHAPF

GFRP REBAR STIFFENING DETAIL
Obenesch
(Place as shown in parapet section

usen	DESIG
CHEKE	
CREAN	
ORAN	

SOIL BORING LOG

-

 struct. No.
Station

 -74/RAMP 7TH-A RETA
STRUCTURE NO. O81-6015
 Usen

Modesskimastres \mid	OESIG
CHECK	
ORAM	

USER	OESIGN
CHECR	
ORAMN	
ROMN	

STRUCTURE NO. 081 RE015

 | User |
| :--- | :--- |
| plor |

Corors silitus be stored for oxamination until
The

of Tris Departmen
 of Transportation
 SOIL BORING LOG

 countr Rook siand DRLLING METHOD_Hollow Stem Auger HAMMER TYPE B. 53 Diedricich Automatic

\qquad

Yery stif tan Clay loam
VERY STIF gray clay LoAM

Ss, from 137 (Rov. 8.99

 \begin{tabular}{|l|l|}
\hline User

\hline Plot

\hline

\hline OESIGN

CHECR

ORAMN

ROMN
\end{tabular}

Modeskimastres

GENERAL NOTES

1. Reinforcement bars designated (E) shall be epoxy cooted.
2. Wall stations and offsets are given to the front face (FF) of the wall and are measured from the centerline of Proposed I-74 except as noted.
FF of the wall is to be considered edge of panel or form liner.
3. See Special Provision for Mechonically Stabilized Earth Retaining Walls and Temporary Mechanically Stabilized Earth Retaining Walls for design
4. The piles for SN O81-0179, SN 081 -0180, and SN 081 -0181 are locoted within reinforced soil mass see SN 081-0179, SN 081-0180, and SN 081 -0181 plans reinforcee soil mass. See SN
for additional pile requirements.
5. Wall construction shall not begin until ofter removal and replacement of the
unsulitable moteriol has beeen completed in the area of the new wall.
6. During construction, a test pit shall be started ot the outside corner of the excovations may be used os the test pits ot WB I-74 and Ramp 7 th- - . Each tes
pit shall be expanded as required to remove any unsuitable materials encountered pit shall be expanded as requirid to remove any unsulitable materials encountered

In areas where ground improvement is not required, the native soils shall be
inspected when excovation reaches the base of the proposed wall. Any soft or otherwise unsuittoble material should be removed and replaced with compacted rock fill. Removals shall be paid for as Removal and Disposal of
8. See SN 081-0180 and SN 081-0181 plans for maskwall details.

MSE WALL SETTLEMENT

The Top of Exposed Panel Elevations shown on these plans are final elevations ofter any settlement. The MSE Wall supplier is alerted to the foct that up to o. 75 inches of settlement are anticipated along the length accommodate this settlement in the wall design.

PROFILE GRADE
\square

ELEVATION VIEW OF C.I.P. FACING ALONG I-74 WB

(I-74 EB (Looking Eost)

LEVATION VIEW OF C.I.P. FACING ALONG RAMP 7th-A
(Looking East)
(I-74 WB Abutment and WB Parapet not shown for clarity)

* The M.S.E. wall suppliers internal stability design
shall account for the approach slabs bearing pressure surcharge of 1.0 kst and horizontal Pressure surcharge of 1.0 ksf and holiz
sliding force of 0.5 Kips ftt of wall.
** Cross Slope varies throughout retaining wall
$* * *$ For limits of Unsuitable Material os measured
along front face of wall, see Sheet 3 .

\square	OESIN
CHEC	
ORRA	
CHEC	

* The M.S.E. wall supplier's internal stability design shall account for the
anchoroge slob's bearing pressure anchorage slab ${ }^{\text {sear }}$ bearing phosiure
surcharge of 1.0 kst and horizontal sliding force of 0.5 kips/ft. of wall.
*** The M.S.E wall supplier shall design
the obutment soil reinforcement to resist a horizontal force of
 $I-74$ EB, I-7 WB, and Ramp 7 th-A
abutments. respectiveld. Cost shall be
included with the cost of "Wechonically includid with the cost of "Mecho
Stobilized Earth Retaining Woll"
*** Concrete, geotextile fabric, and reinforcing steel for c.I.P. Concrete Coping are included
in the cost of "Mechanically Stobilized Earth
Retaining Woll|
**** For limits of Unsuitoble Moterial os measured along the front
see Sheet 3 .

DETAIL A C.I.P. CONCRETE COPING
$* * * * *$ See Proposed Bridge SN $081-0179$ (I-74 WB) and
SN 081-0181 (Ramp 7 Th-A)

[^1]\square

\[

$$
\begin{aligned}
& \begin{array}{l}
\text { Sheer 5. } \\
\text { For Sections B-B. F-F }
\end{array} \\
& \begin{array}{l}
\text { For Sections B-B, F-F, Bill of Material, and Min. Bar } \\
\text { Lop table, see Sheet 12. }
\end{array} \\
& \begin{array}{l}
\text { Lap table, see Sheet } 12 \text {. } \\
\text { Bars indicated thus } 9 \times 4 \text { - \#5 etc. indicates } 9 \text { lines of } \\
\text { bars with } 4 \text { lengths per line. }
\end{array} \\
& \begin{array}{l}
\text { Joints in the odijocent line. } \\
\text { the anchement shall be aligned with }
\end{array}
\end{aligned}
$$
\]

User Neme $=$	
Plot scale $=$	
ReOt	

 STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

PARAPET JOINT DETAILS

TRANSVERSE CONTRACTION JOINT

ANCHORAGE SLAB EXPANSION JOINT

ANCHORAGE SLAB INLET PLAN

ANCHORAGE SLAB INLET SECTION

Notes:
in place Contractor may substitute at his option, formed
tie bars provided the bar lenath is increased 30" ond the tie bar is centered across the joint.
Preformed or drilled hole shall be in the first pour.

ONGITUDINAL CONSTRUCTION JOINT GROUTED-IN-PLACE TIE BAR

ANCHOR ROD
Diameter as specified for light poles
(ASTM F 1554 Grade 105). Full length
(ASTM F 1554 Grode 105).
hot dipped galvanized.

Note:
Cost of anchor rods is included with
PLAN
*M.S.E. supplier to desian load transfer system to accommodate
concrete pipe and catch basin.
(See Drainoge and Utilities Plons for inlet details.)
\square

I-74 (EB) /(WB) \& REEAMP TTH-A RETAINING WALL 07 STHUETURE NO. 13 NO. $081-6016$
SO SUETS

SECTION THRU PARAPET AND ANCHORAGE SLAB

GENERAL NOTES
All dimensions shall remain the same as shown
on superstructure details, except dimensions A and B which
are to be revised os shown to provide additional a learane Additional concrete needed to revise dimension A
equals 0.016 cu. yds.ft
equals 0.016 cu. yds. Ift.
Full thickness sow cut at all joint locations in lieu of cork joint filler.

\#3 (E) BAR

ALTERNATF BAR \#5-dI(F)

ALTERNATE BAR \#5-dI(E)
$\underset{\text { (When conduit is present) }}{\text { EOR } 42^{\prime \prime} \text { F-SHAPE }}$

GFRP REBAR STIFFENING DETAIL
(Place as shown in parapet section
Obenesch

 User Nane
 $\stackrel{\text { REVVSED }}{\text { REVISED }}$

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

Modeskimastres

| OESCIN |
| :--- | :--- |
| CHEC |
| ORAM |

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

Modussumastress

Wall stations ond off sets ore given to the front froe (FF) of the wall
and dre mesurred from the Remp
Tht - bosesiline except os noted.
2. Reifforcement bars designoted (E) shall be epoxy cooted.
3. The Cantractor is responsible for the design and performance of the

4. Fill ploced wititin 5 feet of the bock of the facing shall be granuar
 Setting Soldier Piles (In Soil).
5. All concrete for the C.I.P. focing with a form liner textured surface
 loz2 of the Standard Specificactions. This work shall be inclucde
cost of the concrete used and no additional compensation will be

TOTAL BILL OF MATERIAL

STATION $530+55.00$
BULT $201-$ BY
BUILT 201- BY
F.A.I. RT. 74 SEC. ($81-1$ I)
LOADING HL- 93

NAME PLATE

SUGGESTED SEQUENCE OF CONSTRUCTION

1. Complete Structure Excavation to the top of Soldier Piles.
2. Drill shaft excavations for Soldier Piles to specified bottom elevations
3. Remove loose material and excess water from excovated shofts. Place
Soldier Piles in holes and propery locate and brace.
4. Place Class DS Concrete in the holes to the level of the base of the
prooposed Conarete Facing, then place Controlled Low Strength Material Proposed to the existing ground surfoce.
5. After all concrete has attained the required design strength, excovate removal of CLSM at the face of the Soldier Piles and place lagging as
specified. removal
specified.
6. Construct wall drainage features at the base of the wall.
7. Place shear studs on Soldier Piles and construct Concrete Facing.
8. Complete final grading at the base and top of the wall

\square

Moojescumastress
${ }^{\text {Usse }}$

2. Reinforcement bars designoted (E) shall be epoxy cooted.
3. The Contractor is responsible for the design and performance of the timber lagging using no less thon a 3 in. nominal rough- sown th
and timber with a minimum allowable bending stress of 1000 psi.
4. Fill placed within 5 feet of the bock of the focing shall be granular
moterial. Cost included with Drilling and Setting Soldier Piles (In Soil).
5. Special attention shall be paid to the subsurface and surface drainage conditions during Stage 2 and Stage 3 Construction. Woter should b
oway from areas where it may surchorge the wall drainoge system.

STATION 64+35.00 BUILT 201- BY F.A.I. RT. 74 SEC. (81-1) LOADING HL-93
6. Drainage structures shall be installed prior to retaining wall construction. The retaining wall
installation loading.
7. Slipforming of the parapet is not allowed.

SUGGESTED SEQUENCE OF CONSTRUCTION

1. Install drainoge structures prior to retaining wall construction.
2. Complete Structure Excavation to the top of Soldier Pilles.
3. Drill shoft excovations for Soldier Piles to specified bottom elevations
4. Remove loose material and excess water from excovated shafts. Plac

Remove loose material and excess water from excavacta
Soldier Piles in holes and properyly locote and brace.
5. Place Class DS Concrete in the holes to the level of the base of the proposed Concrete Facing, then place Cont
(C.L.S.M.) to the existing ground surface.
6. After all concrete has attained the required design strength, excovate the soil in front of the wall to proposed grode with simultaneous
removal of C.L.S.M. ot the foce of the Soldier Piles ond place lagging as removal of
specified.
7. Place and compact any required fill behind the wall. Hand operated equipment such os a jumping jack or plate compoctor shall be used
to compact the fill within 5 feet of the back of the wall.
8. Construct wall drainage features at the base of the wall
. Place shear studs on Soldier Piles and construct Conorete Facing.
10. Complete final grading and povement at the base and top of the wall

NAME PLATE

use	OESIC
CHECO	
ORAW	
OAM	

TYPICAL WALL SECTION AT LIGHT POLE
Barrier tapered of 20:1 for light pole blister)

$\frac{\text { TYPICAL WALL SECTION }}{\text { (Looking North) }}$

PIPE UNDERDRAIN DETAIL
 BETWEEN SOLDIER PILES

*Included in the cost of Pipe
Underdroins for Structures

Note: cost of Controlled Low Strength Moterial included in
Cost of Controlled Low Strength Materia
Drilling and Setting Soldier Piles (In Soil).

SECTION THRU PARAPET, ANCHORAGE SLAB AND CONCRETE FACING

DETAIL 1

TYPICAL SECTION THRU WALL

SHEAR STUD CONNECTORS LAYOUT

CONSTRUCTION JOINT

Cost of Controlled Low Strength Moterial included in
Drilling ond Setting Soldier Piles (In Soil.

\square \mid	
CHECCI	
ORAM	
ORAC	REVISED

RERISED
REVISED
REVYISED

Notes:
See Drainage and Utilities Plans for inlet details. See Electrical Plans for lighting and conduit details.
See Sign Structure Plans for sign structure detalis.

USER NMEE
Ion

* See Sections for additional reinforcement

$\begin{gathered} \text { Pile } \\ \text { Number } \end{gathered}$	Station	$\begin{aligned} & \text { Pile } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { Length } \\ (f f) \end{gathered}$		$\begin{gathered} \text { Top } \\ \text { Elevation } \\ (f t) \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { of Studs } \end{aligned}$
64	69+82.86	HP 12×63	18	658.75	676.75	8
65	69+91.87	HP 12×63	18	659.03	677.03	8
66	70+00.87	W 14×120	23	654.30	677.30	10
67	70+09.87	W 14×120	23	654.57	677.57	10
68	70+18.88	W 14×120	23	654.84	677.84	12
69	70+27.88	W 14×120	23	655.10	678.10	14
70	70+36.88	W 14×120	23	655.36	678.36	14
71	$70+45.88$	W 14×120	23	655.61	678.61	16
72	70+49.15	W 14×120	23	655.70	678.70	16
73	70+55.61	W 14×120	23	655.88	678.88	18

PARTIAL ELEVATION - SOLDIER PILE WALL

Pile Number	Station	Pile Size	Length $(f t)$	Tip Elevation (ft)	Top Elevation $(f t)$	Number of Studs
55	$69+04.84$	HP 12×63	18	656.23	674.23	8
56	$69++22.84$	HP 12×63	18	656650	674.50	8
57	$69+20.84$	HP 12×63	18	656.76	674.76	8
58	$69+28.85$	HP 12×63	18	657.02	675.02	8
59	$69+37.85$	HP 12×63	18	657.31	675.31	8
60	$69+46.85$	HP 12×63	18	657.60	675.60	8
61	$69+55.86$	HP 12×63	18	657.89	675.89	8
62	$69+64.86$	HP 12×63	18	658.18	676.18	8
63	$69+73.86$	HP 12×63	18	658.47	676.47	8

 DESIINED - ACK/ZJB
CHECKED $-2 \mathrm{ZB} /$ ACK REVISEO
REVIEI
REVIISE

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

Pile Number	Station	Pile Size	Length (ff) $)$	Tip Elevafion (ft)	Top Elevoftion (ft)	Number of Studs
45	$68+18.81$	HP 12×63	18	653.19	671.19	8
46	$68+27.81$	HP 12×63	18	653.53	671.53	8
47	$68+36.81$	HP 12×63	18	653.86	671.86	8
48	$68+45.82$	HP 12×63	18	654.19	672.19	8
49	$68+54.82$	HP 12×63	18	654.51	672.51	8
50	$68+63.82$	HP P 12×63	18	654.83	672.83	8
51	$68+7.83$	HP 12×63	18	65.14	673.14	8
52	$68+80.83$	HP 12663	18	655.42	673.42	8
53	$68+88.83$	HP 12×63	18	655.69	673.69	8
54	$68+96.84$	HP 12×63	18	655.97	673.97	8

PARTIAL ELEVATION - SOLDIER PILE WALL

Pile Number	Station	Pile Size	Lengoth $(f t)$	Tip Elevation (ft)	Top Elevaftion (ft)	Number of Studs
35	$67+32.78$	HP 12×63	18	649.90	667.90	8
36	$67+40.78$	HP 12×63	18	650.21	668.21	8
37	$67+48.78$	HP 12×63	18	650.52	668.52	8
38	$67+566.79$	HP 12×63	18	650.82	668.82	8
39	$67+64.79$	HP 12263	18	651.13	699.13	8
40	$67+73.79$	HP 12×63	18	651.47	669.47	8
41	$67+82.80$	HP 12×63	18	651.82	669.82	8
42	$67+991.80$	HP 12×63	18	652.16	670.16	8
43	$68+00.80$	HP 12×63	18	652.51	670.51	8
44	$68+09.81$	HP 12×63	18	652.85	670.85	8

PARTIAL ELEVATION - SOLDIER PILE WALL

Pile Number	Station	Pile Size	Length (ft)	Tip Elevotion (ft)	Top Elevation (ft)	Number of Studs
8	$64+97.96$	HP 12×63	17	641.90	658.90	6
9	$65+06697$	HP 12663	17	642.24	659.24	6
10	$65+15.97$	HP 12×63	17	642.59	659.59	8
11	$65+23.97$	HP 12×63	17	642.90	659.90	8
12	$65+31.97$	HP 12×63	17	643.20	660.20	8
13	$65+39.97$	HP 12×63	17	643.51	660.51	8
14	$65+47.98$	HP 12×63	17	643.82	660.82	8

Pile Number	Station	Pile Size	Length (ff)	Tip Elevaction (ft)	Top Elevoftion (ft)	Number of Studs
1	$64+35.94$	HP 12×63	17	639.52	656.52	6
2	$64+43.95$	HP 12×63	17	639.83	656.83	6
3	$64+52.95$	HP 12×63	17	640.17	657.17	6
4	$64+61.95$	HP 12×63	17	640.52	657.52	6
5	$64+7.096$	HP P 12×3	17	640.86	657.86	6
6	$64+79.96$	HP 12×63	17	64.21	658.21	6
7	$64+88.96$	HP 12×63	17	641.55	658.55	6

$\frac{\text { PARTIAL PLAN - SOLDIER PILE WALL }}{\text { Note: Anchoroge slab not shown for clarity. }}$
Notes:
For soldier pile wall Bill of Material, see Sheet 11 .
For Section $A-A$, see Sheet 10 .

- (n)

Note: Anchorage slab not shown for clarity.

$$
\begin{aligned}
& \begin{array}{l}
\text { For soldier ple wall Bill of Materia. } \\
\text { For Section AA-A, see Sheeet } 10 \text {. } \\
\text { Stations and offsets on this sheet }
\end{array} \\
& \begin{array}{l}
\text { Stations ond offsets on hhis sheet ore given to the front } \\
\text { foce of wall and are measured from \& Proposed I-74. }
\end{array} \\
& \begin{array}{l}
\text { face of wall and are measured from } \varepsilon \text { Proposed I-74. } \\
\text { Joint }
\end{array} \\
& \begin{array}{l}
\text { front foce of the wall. } \\
\text { Pill dimessions and spacings are measured along the }
\end{array}
\end{aligned}
$$

 DESICNED - ACK/ZUB
CHECKED STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

EAAI:	SECTION

Motch Line
Sta. $65+48.92$
Se. Sheet 14

MIN. BAR LAP

Notes:
For lo
For location of Section K-K, see Sheet 12 .
For Light Pole Blister reinforcement, see Sheet 18 .

EARALT:	sEction	countr		
	(88-1)R-1	ROCK ISLAND 2042 CONTRACT NO. 1384		
${ }^{4}$	(88-1) ${ }^{\text {R-1 }}$			

 Usser User Name

,
 Escriptio

SOIL BORING LOG

 homogenous Silly Clayic(c-1)L")

\square User PLot Scale =	DESI
CHEC	
ORAM	
OAN	

$s \mid$

1. Reinforcement bors designated (E) shall be epoxy coated
2. Wall stations and offsets are given to the front face (FF) of the wall and are
measured from baseline of Ramp $7 T H-A$ and center line of F.A.I. Route 74 , e. measured from baseline of Ramp 7TH-A and centerline of F.A.I. Route 74. except as
noted. FF of the wall is to be considered edge of panel, form liner or C.I.P. facing.
3. See Special Provision for Mechanically Stabilized Earth Retaining Walls, Aggregate
Column Ground Improvement, and Temporary Mechanically Stabilized Earth Retaining Walls Cor design and construction requirements.
4. For existing soils laboratory data, see Geotechnical Investigation Laboratory Dato
5. In areas where ground improvements are not required, the native soils should be inspected when the excavation reaches the bose of the proposed wall. Any soft or
otherwise unsuitable material should be removed and replaced with rock fill, as determined by the Engineer. Removals shall be paid for os Removal and Disposal of
6. Removal of the existing N.E. retaining wall shall be paid for os Concrete Removal
7. The piles for SN 081-0182 and SN 081-0183 are located within the reinforced soil moss. Coordination is required for the installation of pile sleeves within the reinforced
8. Wall system supplier shall coordinate proposed wall configuration with Aggregate Column
Ground Improvement subcontractor.
9. Wall construction shall not begin until after Aggregate Column Ground Improvement has been completed in the area of the new wall.
10. See SN 081-0182 and SN 081-0183 plans for maskwall details.
11. All concrete for the C.I.P. facing with a form liner textured surface shall be self-c-onsolididting concrete e meeting the requirements of Section 1020 of the Standard
Specifications. This work shall be included in the cost of the concrete used and no Specifications. This work shall be inc
additional compensation will be allowed.

ME WALL SETTLEMENT

1. The Top of Exposed Panel Elevations shown on these plans are final
2. For MSE wall on top of the aggregate columns, the wall settlement will be determine ob the ground imporvement ensign. The wall system supplier shot
coordinate with Aggregate Column Ground Improvement subcontractor to coordinate with Aggregate Column Ground Improve.
accommodate this settlement in the wall design.
3. For MSE wall outside the ground improvement limits, 1.5 inches of settlement $623+26.10$. $623+26.84$. The wall system supplier shall took
accommodate this settlement in the wall design.

DRAINAGE STRUCTURE TABLE

TOTAL BILL OF MATERIAL

* See additional retaining walls within this contract for remainder
of L. Sum quantity.

STATION 70+34.40 BUILT 201 BY

STATE OF ILLINOIS
AI. RT. 74 SEC. ($81-$ II LOADING HS-20
STR. No. 081-6017

NAME PLATE

PROFILE GRADE

PROFILE GRADE
Along WB PGL - F.A. I Rout

$\frac{\text { Mainline Profile }}{\text { Governs }}$
PROFILE GRADE

GROUND IMPROVEMENT PERFORMANCE REQUIREMENTS

1. Minimum factor of safety for global slope stability shall be 1.5 for both the permanent and
2. Allowable bearing pressure (with F.S.) shall be equal to or greater than the equivalent uniform service bearing pressure as shown on Sheet 3. Intermediate values may be defined by
interpolating between the values shown.

Minimum factor of safety against equivalent uniform service bearing
Minimum factor of safety against equivalent uniform service bearing
pressure shall be 2.5 if a load test is not performed.
3. Total settlement measured at the theoretical top of leveling pad shall not exceed 4.0 inches.
4. Total settlement measured on the pavement shall not exceed 1.0 inch.
5. Differential settlement measured along the theoretical top of leveling pad shall not exceed $1 / 100$.
6. The assumed structure life for settlement computations shall be 75 years.
7. Contractor's verification program shall include monitoring points or other instrumentation to
demonstrate compliance with the stated performance requirements.
8. The Shop Drawings and construction procedures submittal shall indicate the sequence of construction within the limits of Aggregate Column Ground Improvement. The aggregate column
installation shall be coordinated with utility removal, structure removals, proposed utility installation, installation shall be coors
and bridge pile driving.
9. If the existing bridge piles interfere with the aggregate columns or new bridge piles, they will be 081-0182 and SN 081-0183. If the existing N.E. retaining wall piles interfere with the aggregate columns, they will be completely removed. Cost of removal is included with Concrete
Removal. Existing piles to remain in place shall be cut off ot least one foot below the base of the wall. The hole shall be backfilled with compacted native soil.
10. Aggregate columns shall be installed before the bridge piles are driven; however, the piles shall
not be driven through the aggregate of an installed column. The aggregate column layout shall provide clearance for the bridge piles.

Primary consolidation of the soil within the depth of the ACGI to be at least 90 percent complete when the bridge piles ore to be
the bridge construction schedule.

* The M.S.E. wall supplier's internal stobility design shall account for the approach slab's bearing gress.
kips/ft of wall.
** Cross slope transition vories throughout retaining wall limits. See Roodway Plans for

$\frac{\text { SECTION A-A }}{\text { (Looking North) }}$

Notes:
See SN $081-0182$ and 0183 plans for abutment approach slab details, sand fill, and concrete cop.
\square

 STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

[^0]: \qquad

[^1]: Notes: SNe $081-0179$ (WB) and SN $081-0180$ (EB) and SN 081 -0181 (Ramp 7 Tht-A) plans for abutment and pproach slab details.
 For location of Detail 3 , see Sheet 3 .
 For location of Section $B-B$, see Sheet 3 .

