REVISED STRUCTURE GEOTECHNICAL REPORT

BRIDGE REPLACEMENT IL 1 OVER SUGAR CREEK

F.A.P. ROUTE 332 (IL1) SECTION (21Y-NHR-BY) B-1 CRAWFORD COUNTY, ILLINOIS JOB NO P-97-029-05 PTB 152 ITEM 28 EXISTING STRUCTURE NO. 017-0004 PROPOSED STRUCTURE NO. 017-0032

Prepared by:

Kaskaskia Engineering Group, LLC 23 Public Square, Suite 404 Belleville, Illinois 62220 Phone: 618-233-5877 Fax: 618-233-5977 KEG No. 09-1049 WO # 1

> Authored By: Matthew D. Masterson, PE

Prepared for:

Allen Henderson & Associates, Inc 907 South 4th Street Springfield, Illinois 62703 Phone: 217.544.8033

May 2010

TABLE OF CONTENTS

1.0 PROJECT DESCRIPTION AND PROPOSED STRUCTURE INFORMATION	
1.1 Introduction	
1.2 Project Description	
1.3 Proposed Bridge Information	
2.0 EXISTING BRIDGE INFORMATION	
3.0 SITE INVESTIGATION, SUBSURFACE EXPLORATION, AND GENERALIZED	
SUBSURFACE CONDITIONS	
4.0 GEOTECHNICAL EVALUATIONS	
4.1 Settlement	
4.2 Slope Stability	4
4.3 Seismic Considerations	
4.4 Scour	
4.5 Mining Activity	
4.6 Lateral Pile/Pier Response	6
4.7 Liquefaction	7
5.0 FOUNDATION EVALUATIONS AND DESIGN RECOMMENDATIONS	8
5.1 General Feasibility	
5.2 Pile Supported Foundations	
6.0 CONSTRUCTION CONSIDERATIONS	12
6.1 Construction Activities	12
6.2 Temporary Sheeting and Soil Retention	12
6.3 Site and Soil Conditions	
6.4 Foundation Construction	13
7.0 COMPUTATIONS	13
8.0 GEOTECHNICAL DATA	13
9.0 LIMITATIONS	

TABLES

Table 3.1 – Estimated Bedrock Elevations	3
Table 4.1 – Slope Stability Critical FOS	
Table 4.2 – Summary of Seismic Parameters	5
Table 4.3 – Design Scour Elevations	6
Table 4.4 – Soil Parameters for Lateral Pile Load Analysis	7
Table 5.1 – LRFD Pile Design	
Table 6.1 – Temporary Sheet Piling Design Parameters 1	

EXHIBITS

Exhibit A – USGS Topographic Location Map Exhibit B – Plan and Profile with Boring Locations

Exhibit C – Boring Logs

Exhibit D – Subsurface Data Profile

Exhibit E – Preliminary Type, Size, and Location (TS&L) Plan Exhibit F – STABL Analyses Exhbit G – Pile Design Tables

1.0 PROJECT DESCRIPTION AND PROPOSED STRUCTURE INFORMATION

1.1 Introduction

The geotechnical study summarized in this report was performed for the proposed bridge on Illinois 1 over Sugar Creek in Crawford County, Illinois. The purpose of this report is to present design and construction recommendations for the proposed structure.

1.2 Project Description

The project entails the replacement of the existing single-span structure (017-0004) to carry Illinois 1 over Sugar Creek in Crawford County, Illinois. The project is located 0.34 miles north of Gordon Junction in Crawford County, Illinois. The general location of the bridge is shown on a USGS Topographic Location Map, Exhibit A. The site lies within the limits of the Second Principal Meridian, Section 36, Township 7N, Range 12W, in the Till Plains Section, specifically in the Springfield Physiographic region.

1.3 Proposed Bridge Information

The proposed structure (S.N. 017-0032) will consist of a single-span, 54-in. PPC I-beam structure with a 36 ft. and 0 in. horizontal clear width, with two, 12-ft. driving lanes and two, 4-ft. aggregate shoulders, as shown on the Preliminary Type, Size and Location (TS&L) Plan, Exhibit E, as provided by Allen Henderson & Associates, Inc. The proposed bridge centerline station will be at Station 209+37 over Illinois Route 1. The proposed substructure will consist of pile-supported integral abutments skewed 27 degrees right forward and have an approximate overall length of 90 ft. and 8 in. as measured from back to back of the abutments. Further substructure details will be based on the Structure Geotechnical Report (SGR). Pile foundations are anticipated to be used for supporting the new single-span bridge. The proposed improvements are shown on the Plan and Profile with Boring Locations, Exhibit B and the Preliminary Type Size & Location (TS&L) Plan, Exhibit E.

According to the Hydraulic Report dated January 27, 2009 prepared by IDOT District 7, a sufficient amount of grading is anticipated. The proposed roadway profile will be raised approximately 3 ft. over the existing profile to accommodate the proposed deeper superstructure. The flow line elevation is 454.95 ft., the proposed clear line elevation is 467.6 ft, and the stream flows from west to east. Stage construction will be considered for this project to maintain one-lane of traffic during construction.

2.0 EXISTING BRIDGE INFORMATION

The original structure (017-0004), constructed in 1935 as SBI-1, Section 21X-NRH-BY, at Station 209+35 as a single-span, reinforced tee beam structure on pile-supported closed abutments consists of a superstructure composed of four concrete tee beams providing a 24 ft. and 0 in. roadway width. The bridge was rehabilitated in 1958. The structure was widened to a 30 ft. roadway width. The parapet was removed, and the abutments were widened. Two tee beams were placed over the widened portion of the abutments, and new curb and rail were placed over the new constructed tee beams. The existing structure is skewed 27 degrees 10 minutes right forward. The existing superstructure has a length of 48 ft. and 4 in. from back to back of the abutments, and a width of 36 ft. and 4 in. from outside parapet to outside parapet.

The concrete deck has been given a poor NBIS rating due to the map cracking with leaching noted in the deck soffit located towards the ends of the deck. The entire wearing surface is map cracked. Potholes located at the deck ends and in the approach pavement can be seen forming through the bituminous wearing surface. The curb and steel bridge rail configuration are in fair condition, but does not meet today's standards. The superstructure is in fair condition due to the map cracking and efflorescence on exterior side of the original fascia beams. The bituminous is cracked and spalled at the joints. Four cast iron rocker bearings used for expansion on the original structure located at the north abutment are corroding. Two of the bearings are tilted back toward the abutment.

The substructure has been given a poor NBIS rating due to the amounts of map cracking and efflorescence while the majority of the map cracking and efflorescence is located around the construction joints.

In accordance with the Bridge Condition Report, dated September 8, 2008, the entire structure is recommended to be removed and replaced due to the extent of deterioration noted to the deck and the concrete tee beams, the age of the existing substructure, the fact that the substructure units are being founded on untreated timber piling, the deterioration of the abutments, and the evidence of scour.

3.0 SITE INVESTIGATION, SUBSURFACE EXPLORATION, AND GENERALIZED SUBSURFACE CONDITIONS

The site investigation was conducted by IDOT. A site visit by a representative of Kaskaskia Engineering Group, LLC (KEG) to observe all or part of the borings or to make site observations was not performed. Therefore, no site observations have been made by KEG relative to existing conditions of the structure, stream, roadway, or of subsurface sample condition.

Two standard penetration test (SPT) borings, designated 1 N Abut and 2 S Abut, were drilled between the proposed north and south abutments of the bridge on August 25-26,

2009 by IDOT. The locations of the borings are shown on the Preliminary Type, Size, and Location (TS&L) Plan, Exhibit E, as well as having stations and offsets shown on the logs.

Boring 1 N Abut extended to El. 391.06 (80 ft. below ground surface) where rock coring continued to El. 381.06. Boring 2 S Abut extended to El. 390.84 (80 ft. below ground surface). Detailed information regarding the nature and thickness of the soils and rock encountered and the results of the field sampling are shown on the Boring Logs, Exhibit C. The subsurface profiles are included in Subsurface Data Profile, Exhibit D.

Both borings exhibited similar lithology. Generally, from the ground surface to approximate EI. 435, layers of clay and silty clay were encountered for both borings with some exceptions for Boring 1 N Abut where layers of fine sand were interbedded from approximate EI. 435 to approximate EI. 421. Both borings encountered till materials at approximate EI. 421 and EI. 436, respectively, followed by intermittent layers of sandy clay until at approximate EI. 401 where silty and sandy clay shale continued to termination depths. Boring 1 N Abut was extended an additional 10 ft. using rock coring techniques. The rock core information indicates recoveries of 83% and 81% for the two 5 ft. long core runs. The RQD values were 0% and 23%, respectively. The recovered cores were defined as silty clay shale.

Materials were generally cohesive in the upper 36 ft. of the profile, exhibiting N-values from 1 to 26. Unconfined compressive strengths ranged from 0.1 to 4.5 tons per square foot (tsf) and moisture contents ranged from 22% to 36%. The granular and bedrock material encountered exhibited N-values ranging from 3 to 100 and moisture contents ranging from 9% to 36%. Detailed information on the nature and thickness of the materials in each boring are shown on the Subsurface Data Profile, Exhibit D.

Groundwater was encountered at Boring 1 N Abut at El. 435.5 during drilling, at El. 457.3 upon completion, and at El. 461.1 after 576 hours. At Boring 2 S Abut, groundwater was encountered at El. 456.1 during drilling, at El. 445.1 upon completion, and at El. 454.1 after 552 hours. It should be noted that the groundwater level is subject to seasonal and climatic variations and other factors and may be present at different depths in the future. In addition, without extended periods of observation, measurement of the true groundwater levels may not be possible

Table 3.1 summarizes the estimated top of bedrock elevations based on the data from Borings 1 N Abut and 2 S Abut.

Boring	Estimated Bedrock Elevation
1 N Abut	El. 391.06
2 S Abut	El. 390.84

Table 3.1 – Estimated Bedrock Elevations

4.0 GEOTECHNICAL EVALUATIONS

4.1 Settlement

KEG understands that during replacement of the existing structures at this site, the existing concrete abutments in the vicinity of Sugar Creek will be removed and replaced with 2H:1V backslopes covered with riprap. In KEG's opinion, settlements below and within the embankment for the existing loads have occurred long ago and re-grading these slopes as described above will not induce any additional settlements. In addition, with the approach slabs structurally supported by the integral abutments on one end and supported by the existing embankment subgrades at the other, settlement is not a concern, provided compaction utilizing static or vibratory methods is performed during placement of the porous granular embankment backfill adjacent to the integral abutments. In general, recommended pile units for the new structure should only experience settlements of less than 0.5 in.

4.2 Slope Stability

The proposed construction does not result in significant changes in roadway embankment sideslopes, but does result in changes to the backslopes at the abutments. Currently, the abutments are monolithic concrete abutments. When these abutments are replaced by open abutments supported by deep pile foundations, the existing vertical concrete wall face will be replaced with 2:1 (H:V) backslopes.

Slope stability was checked for the proposed backslopes using STABL for Windows 3.0, the soil properties at the site, and the geometrics of the embankments. Similar subsurface soil conditions were assumed along all the abutments, based on the conditions reported from Borings 1N Abut and 2S Abut. Three conditions were modeled: end-of-construction, long-term stability, and a design seismic event. A circular failure surface was assumed, and a critical factor of safety (FOS) was calculated for each condition. According to current standard of practice, the target FOS is 1.5 for end-of-construction and long-term slope stability and 1.0 for a design seismic event.

In order to model the end-of-construction condition, full cohesion was used with no friction angle assumed. Nominal values for cohesion were used to model the long term and seismic conditions to analyze the theoretical condition where pore water pressure has dissipated. For the new clay fill, cohesion of 250 was utilized. Friction angles ranged from 12 to 34 degrees.

The Bishop Circular Method, which generates circular-shaped failure surfaces, was used to calculate the critical failure surfaces and FOS for the proposed conditions. The FOS obtained in the analysis is shown in Table 4.1. Based on the assumptions used in the analysis, all FOS calculated exceed the minimum requirements. STABL program output from this analysis can be found in STABL Analyses, Exhibit F.

	C	alculated Critical FO	S
	End of Construction	Long Term	Seismic
North Abutment Back slope	1.67	1.66	1.19
South Abutment Back slope	1.52	1.59	1.04

Table 4.1 – Slope Stability Critical FOS

4.3 Seismic Considerations

The determination of the Seismic Site Class was based on the method described by IDOT AGMU *Memo 09.1 - Seismic Site Class Definition* and the IDOT-provided spreadsheet titled *Seismic Site Class Determination*. Using these resources, the controlling global site class for this project is Site Class D.

Additional seismic parameters were determined for use in design of the structure and evaluation of liquefaction potential. The USGS published information and mapping (<u>http://earthquake.usgs.gov/</u>), including software directly applicable to the AASHTO Guide Specifications for LRFD Seismic Bridge Design, was used to determine the parameters for the project site location. The values, based on a 1000-Year Return Period with a Probability of Exceedance (PE) of 7% in 75 years, and the Site Class previously determined, are summarized below.

Parameter	Value
Soil Site Class	D
Spectral Acceleration Coefficient at Period of 0.2 Sec, Ss	0.290g (Site Class B)
Spectral Acceleration Coefficient at Period of 1.0 Sec, S1	0.084g (Site Class B)
Site Factor, Zero Period, Fpga	1.52 (Site Class D)
Site Factor, Short Period, Fa	1.57 (Site Class D)
Site Factor, Long Period, Fv	2.40 (Site Class D)
Spectral Response Acceleration, 0.2 Sec, S _{DS}	0.445g (Site Class D)
Spectral Response Acceleration, 1.0 Sec, S _{D1}	0.202g (Site Class D)
Seismic Performance Zone	2

 Table 4.2 – Summary of Seismic Parameters

As indicated in Table 4.2, the Seismic Performance Zone is 2, based on S_{D1} and Table 3.15.2-1- *LRFD Seismic Performance Zones* in the IDOT Bridge Manual.

4.4 Scour

The approved Hydraulic Report anticipates channel contraction scour of 3 ft. using the 100-year flood design event. Scour countermeasures proposed include protecting the abutment slopes with stone riprap to accommodate the predicted scour. As shown on the Preliminary Type, Size, and Location (TS&L) Plan, Exhibit E, the integral abutments proposed for the bridge are positioned behind a 2:1 (H:V) embankment and lined with Class A5 stone riprap. This is considered an armored embankment and is deemed to be an adequate level of scour protection according to the Bridge Manual.

Table 4.3 shows the Design Scour Elevations. No reduction in the scour elevations was applied. The near surface soil profile anticipated clay material, which would not be considered more scour prone than the default properties assumed in the hydraulic analysis.

Decige Coour	N. Abut	S. Abut
Design Scour Elevation (ft)	464.79	464.78

4.5 Mining Activity

No visual indication of subsurface mining activities is evident at the site. According to the Coal Mines of Crawford County dated August 17, 2009, which was obtained from the Illinois State Geological Survey (ISGS) website, (<u>http://www.isgs.illinois.edu/maps-data-pub/coal-maps.shtml</u>), the project site was not undermined.

4.6 Lateral Pile/Pier Response

Generally, the geotechnical engineer provides soil parameters to the structural engineer so that an L-Pile program, or other approved program, can be used for the lateral or displacement analysis of the foundations. In Table 4.4, Soil Parameters for Lateral Pile Load Analysis, KEG has included the assumed soil parameters needed to perform a displacement or lateral pile analysis, if deemed necessary by the structural engineer.

		Elev. at Bottom	Y	Φ	к		% fines	с	
	Depth	of Layer	(pcf)	(degrees)	(pci)	Ν	< #200	(psf)	£ 50
	0-12.0	459.26	105	26	200	4	80	1400	0.007
	12.0-14.5	456.76	95	19	400	5	85	2400	0.005
	14.5-17.0	454.26	110	26	30	4	65	500	0.020
	17.0-22.0	449.26	105	26	200	6	85	1450	0.007
	22.0-24.5	446.76	105	26	200	9	80	1500	0.007
Poring 1	24.5-34.5	436.76	105	26	200	7	80	1370	0.007
Boring 1 North Abut	34.5-39.5	431.76	120	34	30	1	10	N/A	N/A
North Abut	39.5-44.5	426.76	110	26	30	0	65	100	0.020
	44.5-49.5	421.76	120	34	60	26	3	N/A	N/A
	49.5-59.5	411.76	110	26	800	28	26	5400	0.004
	59.5-69.5	401.76	105	26	20	3	80	N/A	N/A
	69.5-79.5	391.76	125	12	200	16	N/A	1900	0.005
	79.5-80.2	391.06	125	12	N/A	100/3"	N/A	N/A	0.0005
	0-9.5	461.64	105	26	800	15	80	3000	0.004
	9.5-14.5	456.64	90	19	400	9	85	2400	0.005
	14.5-17.0	454.14	110	26	100	7	65	1000	0.010
	17.0-27.0	444.14	110	26	100	4	65	975	0.010
Boring 2 South Abut	27.0-29.5	441.64	105	26	30	1	80	500	0.020
	29.5-34.5	436.64	110	26	400	11	65	2600	0.005
	34.5-49.5	421.64	110	26	800	33	65	4900	0.004
	49.5-59.5	411.64	120	19	200	34	85	2000	0.005
	59.5-69.5	401.64	120	19	200	14	25	1200	0.005
	69.5-80.3	390.84	125	12	200	100	N/A	1700	0.0005

Table 4.4 – Soil Parameters for Lateral Pile Load Analysis

4.7 Liquefaction

A liquefaction analysis was performed using the liquefaction worksheet provided by IDOT BBS Central Geotechnical Unit. The Maximum Horizontal Ground Surface Acceleration value in the spreadsheet was set equivalent to the PGA (0.118g), according the USGS seismic hazard deaggregation for the location. The Design Earthquake Mean Magnitude (6.35) was determined using the USGS data and deaggregation methods provided at <u>http://earthquake.usgs.gov/</u>., using the 2008 update.

The soil profiles for borings 1 N Abut and 2-S Abut were analyzed. At boring 1-N Abut, a 5 ft. thick layer of fine sand at approximate El. 435.46 was calculated to be a potentially liquefiable layer. However, this layer is confined above and below by cohesive soils which are not considered susceptible to liquefaction and is a fine grained mixture of sand with silty loam. The silty loam within the sand will act as a bonding agent to increase the cohesiveness of the soil. The results for the soil profile encountered in Boring 2-S Abut indicated no liquefiable layers.

Based on the generally cohesive nature of clay and silty clay subsurface materials (that will support structural elements) and their generally stiff consistency, it is not expected

that liquefaction will occur during a seismic event for these materials. Therefore, liquefaction was not considered as a reduction for the pile design capacity or other foundation considerations.

5.0 FOUNDATION EVALUATIONS AND DESIGN RECOMMENDATIONS

5.1 General Feasibility

In accordance with the Bridge Manual Section 3.8.3 on Open Abutments: Integral, a single row of H-piles or 12 in. and 14 in. metal shell piles are permitted for the foundation of a bridge having this type of abutment with lengths up to 90 ft. The Modified IDOT Static Method of Estimating Pile Length provided by IDOT BBS Foundations and Geotechnical Unit was used to determine the design length of the piles. Based on the subsurface conditions encountered, the depth to bedrock and the results of the pile design analysis, metal shell piles and H-piles are both considered for the support of the proposed structure. The pile design analysis also revealed that for the south abutment, the 12 in. and 14 in. metal shell piles with 0.25 in. walls would develop significant frictional as well as end bearing resistance at tip elevations before reaching the silty clay shale. The likelihood of pile damage occurring in the layer of stiff clay till material at El. 421, coupled with the risk of pile installation damage and the concern for inadequate penetration to develop lateral fixity, deters recommendation of these pile types. At the south abutment, H-piles are also deriving a majority of support due to friction before reaching the silty clay shale. However, H-piles deriving support primarily from friction, and limited end bearing, have shown unpredictable performance in practice. Therefore, there is potential risk if H-piles are not supported primarily in end bearing, i.e., driven to refusal in the silty or sandy clay shale material.

The Modified IDOT Static Method of Estimating Pile Length spreadsheet in accordance with AGMU 10.2 – Geotechnical Pile Design was used to calculate the pile lengths. Pile capacities were calculated versus increasing embedment up to the Maximum Nominal Required Bearing (RN MAX) for a given pile type. The results of this analysis are summarized for each structure location on the Pile Design Tables, Exhibit G.

The structure may benefit from the use of shallow foundations or drilled shafts. These types of foundations are not used with integral abutments, as indicated in the TS&L, however, the Structural engineer may consider a semi-integral abutment type which can be used with spread footings and drilled shafts.

The depth to competent bearing material capable of economically supporting the design loads makes the spread footings unfeasible. In accordance with the Geotechnical Manual, the maximum depth at which spread footings are considered economical, as compared to pile foundations, is 10 ft. below the normal depth of a footing.

Based on soil conditions, drilled shafts could be considered as a support system at both abutments. However, the use of drilled shafts is estimated to be cost prohibitive versus

driven piles due to the depths required to penetrate the overburden soils and bear in the silty or sandy clay shale. In addition, the occurrence of very soft zones below the water table, especially at the north abutment, could present problems requiring casing of the piers. The use of drilled shafts also is accompanied by significantly more complex detailing for seismic considerations. For these reasons, drilled shafts are not deemed as a support foundation alternative for this structure.

5.2 Pile Supported Foundations

The foundations supporting the proposed bridge must provide sufficient support to resist dead and live loads, including seismic loadings. Based on the subsurface conditions encountered, depth to the hard bedrock material, and the design information available to date, H-pile foundations driven to refusal on the shale bedrock are preferred. The Modified IDOT Static Method of Estimating Pile Length provided by IDOT BBS Foundations and Geotechnical Unit was used to estimate the pile lengths. Table 5.1 LRFD Pile Design shows the estimated pile lengths and corresponding pile tip elevations, based on the pile cutoff elevations as provided by Allen Henderson & Associates, at the abutment locations. The H-pile lengths identified in Table 5.1 assume a 3 ft. penetration into the sandy clay shale at the north abutment and a 6 ft. penetration into the silty clay shale at the south abutment.

The Nominal Required Bearing (R_N) represents the resistance the pile will experience during driving as well as assist the contractor in selecting a proper hammer size. The Factored Resistance Available (R_F) documents the net long term axial factored pile capacity available at the top of pile to support factored structure loadings. The potential influences of: (a) negative skin friction (down drag) from settlement of compressible layers, (b) loss of support from liquefaction, and (c) loss of support due to material removal (scour) were analyzed. The liquefaction analysis showed no potentially liquefiable layers, and significant additional settlement of the embankment and the foundation units is not anticipated since the subsurface materials mainly consist of cohesive material which are not susceptible to liquefaction and only minor grading is anticipated; hence, down drag forces should be negligible, and liquefaction values were not applied to obtain the R_F according to the Bridge Manual. Scour elevations were not applied during the pile design analyses to account for scour, since the design scour elevation for both abutments, according to the TS&L, is at the bottom of abutment caps.

The factored design loads provided by Allen Henderson & Associates are 1,525 kips at the abutments. In accordance with the Bridge Manual, when determining the final pile size, normally the lowest weight section necessary, which provides the factored or allowable resistance required, should be selected; however, utilizing the pile sections such as the HP 8x36, HP 10x57, HP 12x74, HP 12x84, HP 14x102, and HP 14x117 that have a limited supply compared to other piling, can cause construction delays and increase the cost of the project. Based on these restrictions and based on the factored design loads provided by Allen Henderson and Associates, Inc., the likely pile types to be considered in the pile design analysis were Steel HP 10x42 with an RN MAX of 335 kips, Steel HP 12x53 with an RN MAX of 419 kips, Steel HP 12x63 with an RN MAX of 497

kips, Steel HP 14x73 with an R_N MAX of 578 kips, and Metal Shell 14 in. with 0.312 in. walls with an R_N MAX of 516 kips. The LRFD Pile Design Guide Procedure (3.10.1) was used to estimate pile capacity at tip elevations for the pile types and sizes being considered.

At the north abutment, the Maximum Required Bearing (RNMAX) for each type of H-pile considered is attained when reaching the silty clay shale bedrock unit.

At the south abutment, the RNMAX for each type of H-pile considered is exceeded before reaching the silty clay shale bedrock unit. KEG recommends driving H-piles to bedrock. The higher available resistance can allow the number of piles to be reduced, resulting in a net savings despite the increased pile length. The potential for driving damage is minimized with H-pile type foundations, and fewer test piles are necessary when H-pile are driven to the shale. Although there is always a risk of damage to metal shell piles during driving, this risk can be minimized by selection of the thicker wall thicknesses. Metal shell would have less inherent risk than friction H-piles; however, it is recognized that IDOT is generally comfortable with H-piles in friction, and length estimates based on the current method of analysis. Therefore, the selection of pile types is left to the collective discretion of the designer and the owner.

If Metal Shell piles are to be used, pile shoes are recommended to reduce damage during driving through the dense layers encountered in the boring logs.

Pile groups were determined by taking the total factored loads for each substructure unit and dividing by the factored resistance available for each type of pile considered. The Minimum Pile Groups represent the minimum number of pile needed to support the factored structural loads provided by the structural engineer. Larger pile groups may be necessary to meet maximum spacing requirements at each substructure unit. The results are shown in Table 5.1 below.

	Pile Designation	R _n Nominal Required Bearing (kips)	R _F Factored Resistance Available (kips)	Total Factored Load (kips)	Estimated Pile Length (ft)	Pile Tip Elevation	Min. Pile Group
	HP10x42	323	178	1525	70	397.76	9
	HP12x53	394	217	1525	70	397.76	7
North	HP12x63	432	238	1525	72	395.26	7
Abutment	HP 14x73	514	283	1525	72	395.26	6
, ioutinent	Metal Shell 14"Ø w/.312 walls	365	201	1525	72	395.26	8
	HP10x42	328	180	1525	47	420.14	9
	HP12x53	412	227	1525	50	417.64	7
	HP12x63	491	270	1525	60	407.64	6
South Abutment	HP 14x73	555	305	1525	57	410.14	5
	Metal Shell 14"Ø w/.312 walls	426	234	1525	65	402.64	7

Table 5.1 – LRFD Pile Design

Although all of the above pile types are considerable options for foundation support, the structural engineer is responsible to determine what pile best suits the design. Some of the pile options may not be suitable alternatives due to spacing requirements or constructability concerns. It is recommended that if an H-pile is recommended for construction and the elevation noted above is within driving distance to sandy or silty clay shale, piles be driven 2 to 6 ft. into the shale.

At least one test pile at each abutment is recommended in the vicinity of the proposed structure, if metal shell piles are to be used. If H-piles are chosen as a foundation type, one test pile is recommended in the vicinity of the north abutment. A test pile is performed prior to production driving so that actual, on-site, field data can be gathered to determine pile driving requirements for the project. This also is the manner in which the contractor's proposed equipment and methodologies identified in their Pile Installation Plan can be assessed.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Construction Activities

The construction activities should be performed in accordance with the current IDOT *Standard Specifications for Road and Bridge Construction* and any pertinent *Special Provisions* or policies.

6.2 Temporary Sheeting and Soil Retention

KEG understands that temporary shoring will be required for this project. The soils from the boring logs indicate adequate unconfined compressive strengths. If the maximum retained height is 17.5 ft and temporary shoring depths do not exceed the embedment depths in Table 6.1, then IDOT temporary sheet piling design charts should be feasible for this project. The temporary sheet piling should extend from the start of the existing abutments to the end of the proposed abutments. The assumptions for these recommendations are summarized in Table 6.1- Temporary Sheet Piling Design Parameters.

The assumption on which the recommendations at both abutments are based upon, are shown in Table 6.1, below.

Structure Unit	Retained Height H (ft)	Embedment Depth Dreq (ft)	Dredge Line Elevation (ft)	Average Qu of Embedment (tsf)	Average Qu in the Upper 1/3 of Embedment (ft)
North Abutment	17.5	17.7	453.6	1.17	1.20
South Abutment	17.5	25.2	453.6	1.02	0.99

 Table 6.1 – Temporary Sheet Piling Design Parameters

If the retained height will exceed 17.5 feet, then further analysis will be required to evaluate whether a Soil Retention System will be required. An Illinois-licensed Structural engineer is required to seal the design of the soil retention system, if deemed necessary.

6.3 Site and Soil Conditions

The soil profile underlying the near surface soils reported in the boring logs, as provided by IDOT, are mostly stiff, cohesive soils which are not at high risk for deformation under loading. However, should any bridge or embankment design considerations assumed by either IDOT or KEG in the analysis stated in this report change, KEG should be contacted to determine if these recommendations still apply.

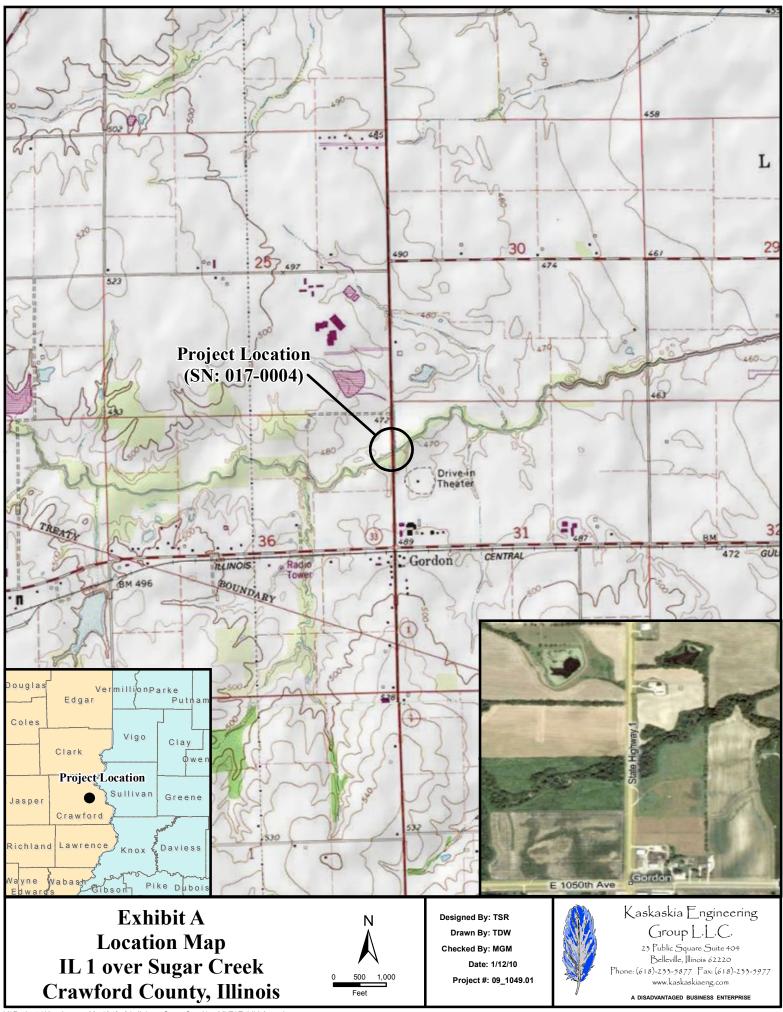
Soils with high moisture content could complicate construction activities. Soft or disturbed areas should be undercut (typically 1 to 2 ft.) and crushed rock, such as CA-6, can be used to provide a working platform.

6.4 Foundation Construction

Conventional pile driving equipment and methodologies should be assumed.

7.0 COMPUTATIONS

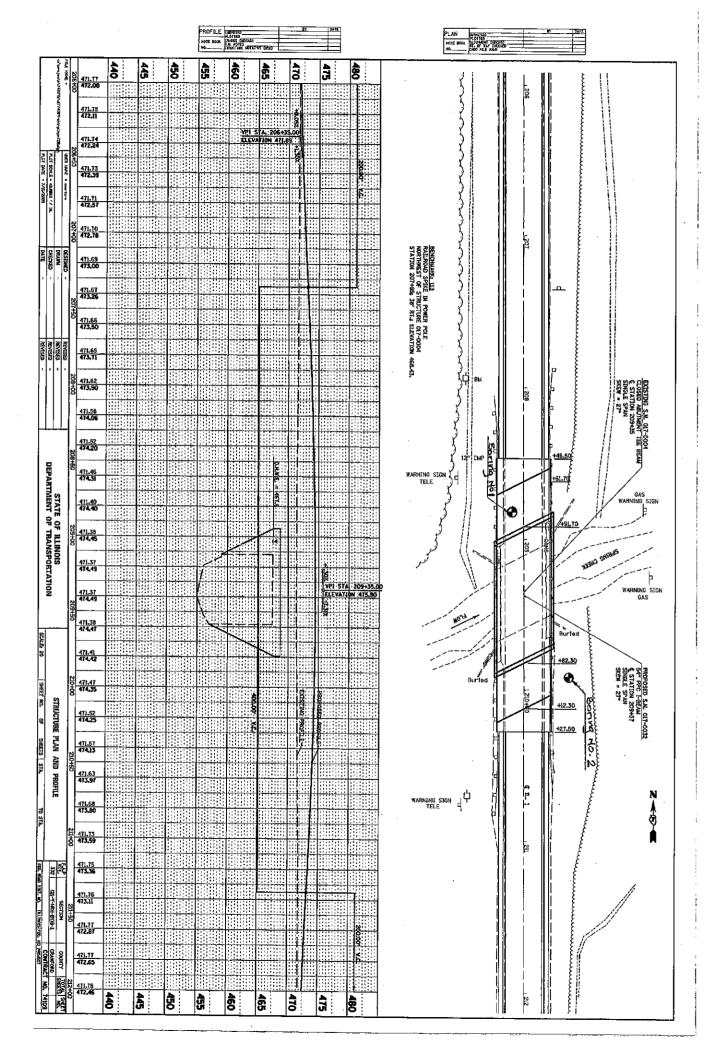
Computations and analyses for special circumstances, if any, are included as exhibits. Please refer to each section of the report for reference to the exhibit containing any such calculations or analysis used.

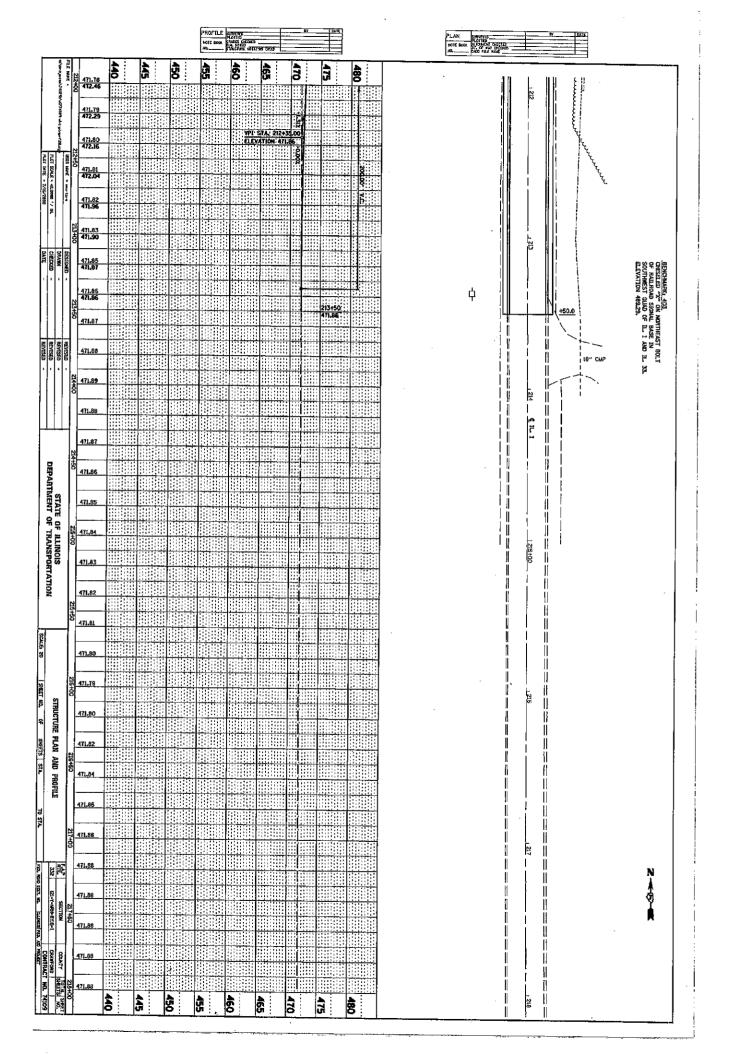

8.0 GEOTECHNICAL DATA

Soil borings can be found in Boring Logs, Exhibit C. The Subsurface Data Profile can be found in Exhibit D.

9.0 LIMITATIONS

The recommendations provided herein are for the exclusive use of Allen Henderson & Associates, Inc. and IDOT. They are specific only to the project described and are based on subsurface information obtained at two boring locations within the bridge area, KEG's understanding of the project as described herein, and geotechnical engineering practice consistent with the standard of care. No other warranty is expressed or implied. KEG should be contacted if conditions encountered during construction are not consistent with those described.


EXHIBIT A LOCATION MAP



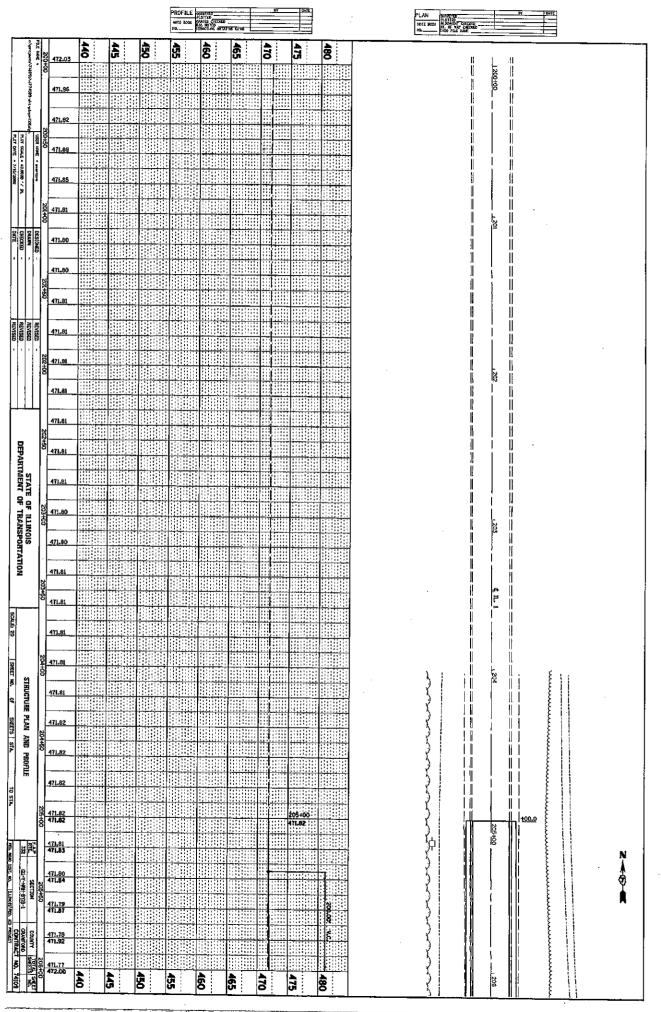

Y:\Projects\Henderson_09_1049_01_IL1overSugarCreek\a_MXD\ExhibitA.mxd

EXHIBIT B

PLAN & PROFILE WITH BORING LOCATIONS

ı

EXHIBIT C BORING LOGS

Illinois Department of Transportation

Memorandum

To:	Tim Jackson	Attn: Mike Allen
From:	Terry Hoekstra	By: David Miller
Subject:	Foundation Boring Logs*	
Date:	October 2, 2009	

Route:	FAP 332 (IL 1)
Section:	(21Y-NRH-BY)B-1
Structure No.:	017-0004
County:	Crawford
Location:	Spring Creek, 0.5 mile North of
	IL 33, East of Robinson.

Attached is one (1) copy of the foundation boring logs, and fence diagram, for the above captioned section.

If you have any questions, or require any additional information, please contact David Miller, District Geotechnical Engineer, at (217) 342-8233.

B١

Terry Hoekstra, P.E. District Materials Engineer

DKM

Attachments

Illinois Depa of Transport	rtme	ent		SC	IL BORING I		G		Page	<u> 1 </u>	of <u>4</u>
Division of Highways Illinois Department of Transporta	tion								Date	8/2	25/09
ROUTE FAP 332 (IL 1) DESCRIP					Spring Creek		LOGGE	ED B	Y <u>E.</u> S	Sandso	chafer
SECTION (21Y-NRH-BY)B-1	LOCAT		NE 1/4	1, Sec	35, R12W & NW 1/4, Sec 31,	R11W	, SEC. ,	TWF	P. 7 N,	RNG.	, 3 PM
COUNTY Crawford DRILL	ING MI	ΞΤΗΟΓ	D Hol	low st	em auger & split spoon HAI	MMER	TYPE		Auto	140#	
STRUCT. NO. 017-0004 Station 209+35	D E P	B L O	U C S	M O I	Surface Water Elev. 4 Stream Bed Elev. 4	<u>55.88</u> 55.17	_ ft _ ft	D E P	B L O	U C S	M O I
BORING NO. 1 N Abut	T H	W S	Qu	S T	Groundwater Elev.:	40E E		T H	W S	Qu	S T
Station 208+84 Offset 8.50ft Rt				-	First Encounter Upon Completion After _576 Hrs	435.5 457.3	_π _ft		-		
Ground Surface Elev. 471.26 3 1/2" asphalt on 17" concrete	ft (π)	(/6**)	(tsf)	(%)	After <u>576</u> Hrs Stiff, damp, gray, CLAY.	461.1	_ ft	(ft)	(/ 6'') 2	(tsf) 1.2	(%) 28
pavement.					(continued)				3	В	
469	.56	-					449.26				
		-			Medium, damp, gray, SILTY CLAY.		443.20		2	07	0.5
		-			CLAT.				4 5	0.7 B	25
		-									
	-5	; 1			Stiff to medium, damp, gray,	CLAY	446.76	-25	1		
Stiff, damp, gray, SILTY CLAY.	_	2	1.4 B	22	w/ some wood splinters.				3 4	1.6 B	27
		5							1		
No recovery.		2							2	1.5	28
	_	2							5	В	
									4		
No recovery.	10) 4 1						-30	1 2	1.0	32
		2							3	В	
459	.26	-									
Very stiff, damp, gray marbled brown, CLAY.		0	2.4	24							
		3	B	27							
450	76	-					426 76				
456 Soft to medium, damp, gray,	<u>.76</u>				Very soft, very damp, gray, S	SILTY	436.76	-35	0		
SILTY LOAM.	_	2	0.5 B	24	LOAM.		435.46		0 1	0.1 B	36
		-			Gray, fine grained, SAND.						
454 Stiff, damp, gray, CLAY.	.26	1									
		3	1.7 B	24							
	_	4									
		1					431.76		0		
	20) I]			40	U		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Latitude W 87 deg 41.077 min, Longitude N 39 deg 00.786 min, Map Datum WGS 84

Page	- 2	ot	4
	_		

Date 8/25/09

Division of Highways Illinois Department of Transportation ROUTE FAP 332 (IL 1) DESCRIPTION ____

Illinois Department of Transportation

Spring Creek

LOGGED BY E. Sandschafer

SECTION (21Y-NRH-BY)B-1 LOCATION NE 1/4, Sec 35, R12W & NW 1/4, Sec 31, R11W, SEC., TWP. 7 N, RNG., 3 PM

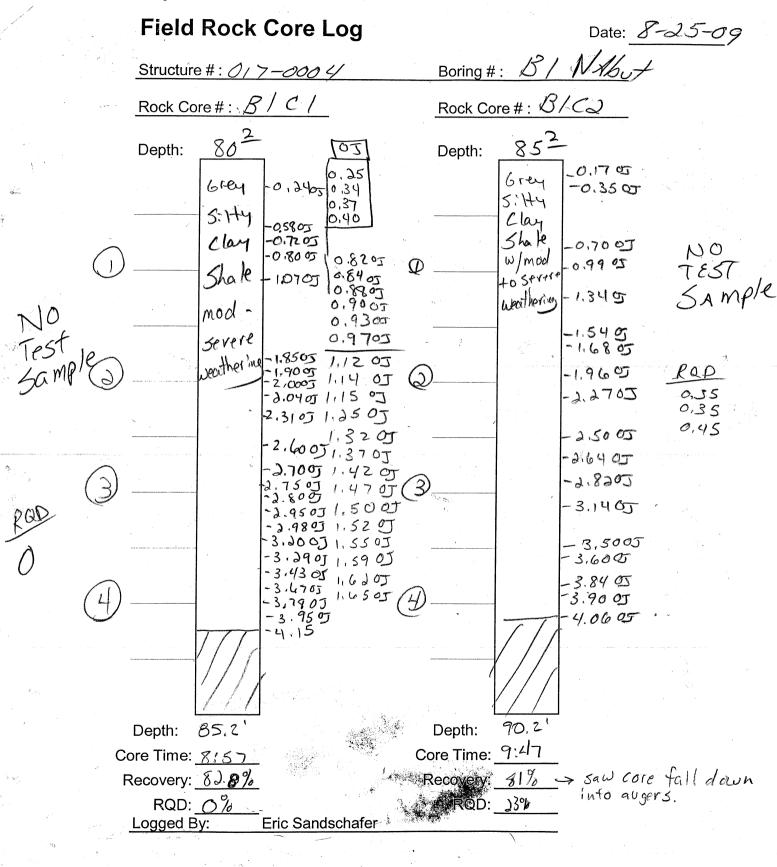
COUNTY Crawford DRILLING METHOD Hollow stem auger & split spoon HAMMER TYPE Auto 140#

Γ	STRUCT. NO. 017-0004 Station 209+35 BORING NO. 1 N Abut Station 208+84 Offset 8.50ft Rt Ground Surface Elev. 471.2 Very soft, very damp, gray, SILT LOAM. (continued)		D E P T H (ft)	B L O W S (/6") 0 0	U C S Qu (tsf) 0.1 B	M O I S T (%) 24	Surface Water Elev. 455.88 455.17 ft ft D E B U M Stream Bed Elev. 455.17 ft Fit Fit C O O S I Groundwater Elev.: T W S S I S Qu T First Encounter 435.5 ft H S Qu T Upon Completion 457.3 ft (ft) (/6") (tsf) (%) Very loose, wet, gray, fine grained, SAND. (continued) 410.56 2 21 21 Soft, wet, gray, SILTY CLAY.
	Medium, wet, gray, fine grained, SAND.	426.76	45	6 11 15		15	
	Hard, damp, gray, CLAY LOAM TILL.	421.76		6 11 17	5.4 B	12	401.76
		411.76	 				

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois Department of T			Date 8/25/09
ROUTE <u>FAP 332 (IL 1)</u> DES		Spring Creek	LOGGED BY E. Sandschafe
SECTION (21Y-NRH-BY)B-		<u>JE 1/4, Sec 35, R12W & NW 1/4, Sec</u>	ec 31, R11W, SEC. , TWP. 7 N, RNG. , 3
Crawford	DRILLING METHOD	Hollow stem auger & split spoon	HAMMER TYPE Auto 140#
STRUCT. NO. 017-0004 Station 209+35 BORING NO. 1 N Abut Station 208+84 Offset 8.50ft Rt	E L P O	UMSurface Water Elev.COStream Bed Elev.SISQuTFirst Encounter	<u>455.17</u> ft
Offset 8.50ft Rt Ground Surface Elev. 471.	.26 ft (ft) (/6")	(tsf) (%) Upon Completion (tsf)	457.3 ft
/ery dense, moist, gray, SILTY CLAY SHALE. (continued) Borehole continued with rock coring.			

Illinois Department of Transportation


Page $\underline{3}$ of $\underline{4}$

(T) Illinois De	epartment portation	ROCK				Ρ	age <u>4</u>	of <u>4</u>
Division of Highways Illinois Department of Tr	ansportation				•	D	ate <u>8</u> /	/25/09
ROUTE FAP 332 (IL 1) DES		Spring Creek	(I	OGGE	D BY	E. Sands	schafer
SECTION (21Y-NRH-BY)B-	1 LOCATION NE 1/4	4, Sec 35, R12W &	NW 1/4, Sec 31	<u>, R11W,</u>	SEC.,	TWP.	7 N, RNG	3. , 3 PN
COUNTY <u>Crawford</u> STRUCT. NO. <u>017-0004</u>			V, conv dbl bbl,		R E C O	R	CORE T	S T R E
Station 209+35 BORING NO. 1 N Abut	Core Diameter Top of Rock El	<u>2.06</u> ev. <u>401.76</u>	in ft	D C E O P R	V E	Q D	I M E	N G
Station 208+84 Offset 8.50ft Rt Ground Surface Elev. 471.	Begin Core Ele	ev. <u>391.06</u>	ft	T E H (ft) (#	R Y (%)	. (%)	(min/ft)	T H (tsf)
Gray, moderate to severe weath			391.06			0	1.8	. ,
Unable to test for Qu due to nun	nerous fractures.			 				
			381.06	B1C	2 81	23	2	
Extent of exploration.								
Benchmark: BM 113 RR spike ir 468.43' elevation. Provided by F	n PP NW of existing structu Program Development.	re, Sta 207+95, 38'	Rt =					

Color pictures of the cores <u>Available on request</u> Cores will be stored for examination until <u>08/25/2014</u>

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Field Rock Core Log a.xls

Page	<u> </u>	of	3

Date 8/26/09

LOGGED BY E. Sandschafer

Division of Highways Illinois Department of Transportation

Illinois Department of Transportation

ROUTE FAP 332 (IL 1) DESCRIPTION ____

SECTION (21Y-NRH-BY)B-1 LOCATION NE 1/4, Sec 35, R12W & NW 1/4, Sec 31, R11W, SEC., TWP. 7 N, RNG., 3 PM

Spring Creek

COUNTY Crawford DRILLING METHOD Hollow stem auger & split spoon HAMMER TYPE Auto 140#

Stat BOR Stat Offs Gro	und Surface Elev. 471.		D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev.455.88ftDBUMStream Bed Elev.455.17ftELCOPOSIGroundwater Elev.:TWSFirst Encounter456.1ftHSQuTUpon Completion445.1ft(ft)(/6")(tsf)(%)
	oulderstone and cold milling	470.44	_				Medium to stiff, damp, gray, SILTY 2 1.3 28 CLAY. (continued) 5 B	3
	, very moist, brown/gray/rec ′ LOAM.	1, -	_					
		-		4			o	
		-		5 7	+4.5		1 1.1 25	5
			_	1	PP		1 B	_
		-	_	13			-25 1	
		-	-5	16	+4.5	22	2 0.8 27	7
		-		10	PP		2 B	_
		-		3			444.14 0	
			_	4	3.1		0 0.5 28	3
				5	S			_
0.15		461.64					441.64	
Stiff, trace	damp, brown/gray, CLAY w Silt.		<u>-10</u>	3 3	1.9		Very stiff, damp, gray mottled303brown, SILTY CLAY.52.632	2
		-	_	5	В		6B	_
		-						
			_	1	2.8	24		
		-		5	В			
		456.64					436.64	
	n, very damp, SILTY LOAN		-15	1	0.8	24	Hard, damp, gray, CLAY LOAM	_
	um, damp, gray, SANDY //.	-		3	0.8 S	24	14 5.5 50 	<u>,</u>
		454.14	_					
Media CLA	um to stiff, damp, gray, SIL ⁻	TY		0	07	24		
		-		1 1	0.7 B	24		
			-20	1			7	

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page	2	of	3

Date 8/26/09

LOGGED BY E. Sandschafer

Division of Highways Illinois Department of Transportation

Illinois Department of Transportation

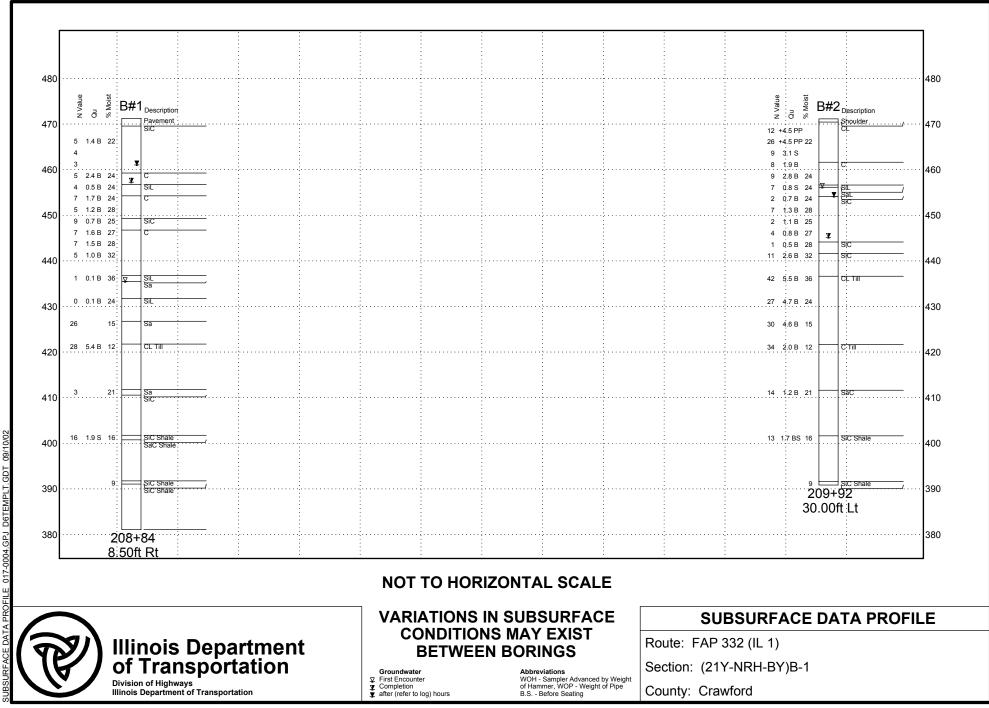
ROUTE FAP 332 (IL 1) DESCRIPTION

SECTION ____(21Y-NRH-BY)B-1 ___ LOCATION __NE 1/4, Sec 35, R12W & NW 1/4, Sec 31, R11W, SEC., TWP. 7 N, RNG., 3 PM

Spring Creek

COUNTY Crawford DRILLING METHOD Hollow stem auger & split spoon HAMMER TYPE Auto 140#

STRUCT. NO. 017-0004 Station 209+35 BORING NO. 2 S Abut Station 209+92 Offset 30.00ft Lt Ground Surface Elev. 471.14	 4 ft	D E T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev. 455.88 455.17 ft D B U M Stream Bed Elev. 455.17 ft E L C O Groundwater Elev.: T W S I First Encounter 456.1 ft H S Qu T Upon Completion 445.1 ft (ft) (/6") (tsf) (%)
Hard, damp, gray, CLAY LOAM TILL. <i>(continued)</i>			11 16	4.7 B	24	Stiff, damp, gray, SANDY CLAY. 6 1.2 21 (continued) 8 B -
		45 	7 13 17	4.6 B	15	
Stiff to very stiff, damp, gray, CLAY TILL.	421.64	-50	2 5 29	2.0 B	12	401.64
		55 				
Stiff, damp, gray, SANDY CLAY.	411.64		1			


The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Division of Highways Illinois Department of Trans	sportation				Date 8/26/0
ROUTE <u>FAP 332 (IL 1)</u> DESC			Spring Creek	LOGGED	BY E. Sandschaf
SECTION (21Y-NRH-BY)B-1		NE 1/4, Sec	35, R12W & NW 1/4, Se	ec 31, R11W, SEC. , TV	VP. 7 N, RNG. , 3
COUNTY Crawford D	RILLING METHOD	Hollow ste	em auger & split spoon	HAMMER TYPE	Auto 140#
STRUCT. NO. 017-0004 Station 209+35 BORING NO. 2 S Abut Station 209+92 Offset 30.00ft Lt Ground Surface Elev. 471.14	D B E L P O T W H S ft (ft) (/6")	U M C O S I S Qu T (tsf) (%)	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion After <u>552</u> Hrs.	ft 456.1ft	
/ery dense, moist, gray, SILTY CLAY SHALE. <i>(continued)</i>	<u>390.84</u> 50/2" 50/2"	9			
Extent of exploration.					
Benchmark: BM 113 RR spike in					
PP NW of existing structure, Sta 207+95, 38' Rt = 468.43' elevation					
Provided by Program Development.	-85				
	_				
	_				
	-90				
	-95				
	_				
	_				
	-100				

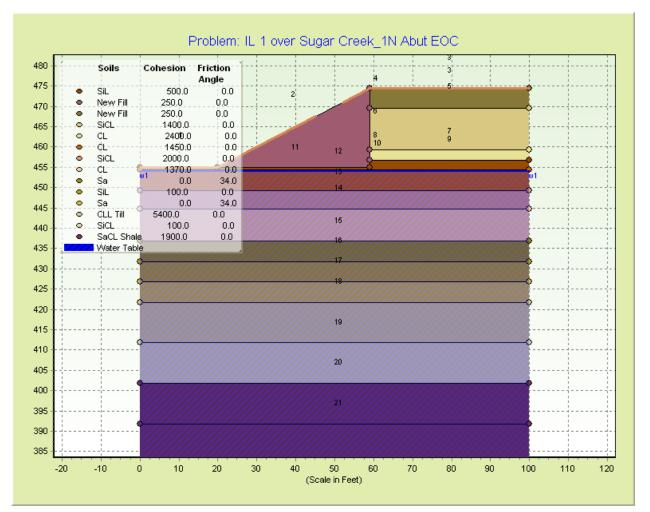
Illinois Department of Transportation Division of Highways Illinois Department of Transportation


EXHIBIT D SUBSUFRACE DATA PROFILE

Structure Number 017-0004 Spring Creek Located in the NE 1/4, Sec 35, R12W & NW 1/4, Sec 31, R11W of Section , Township 7 N, Range of the 3 P.M.

EXHIBIT E

PRELIMINARY TYPE, SIZE, AND LOCATION PLAN



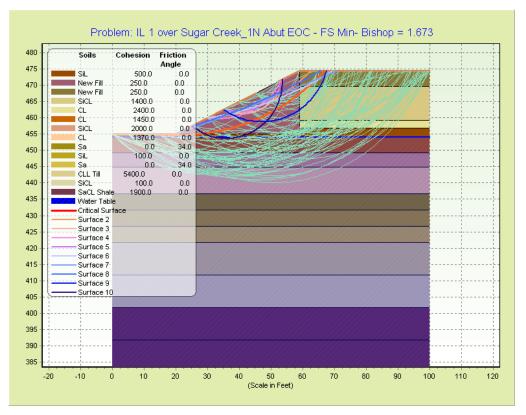
T NO.1	F.A.P. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
	332	(21-Y-NHR-BY)B-1	CRAWFORD	- 1	1
EETS			CONTRACT	NO. 74	109
	FED. RO	DAD DIST. NO ILLINOIS FED. A	ID PROJECT		

EXHIBIT F

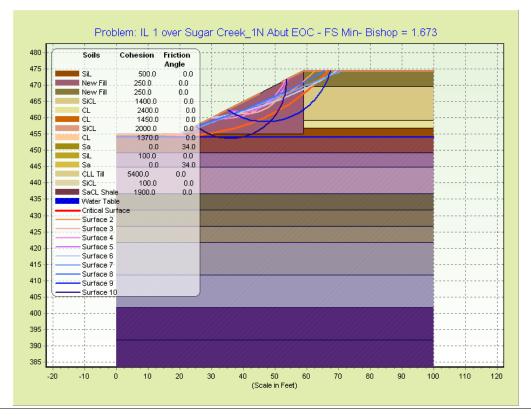
STABL ANALYSES

Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	0	454.95	20	454.95	4
2	20	454.95	58.96	474.43	14
3	58.96	474.43	100	474.43	1
4	58.96	474.43	58.96	469.56	14
5	58.96	469.56	100	469.56	2
6	58.96	469.56	58.96	459.26	14
7	58.96	459.26	100	459.26	3
8	58.96	459.26	58.96	456.76	14
9	58.96	456.76	100	456.76	4
10	58.96	456.76	58.96	454.95	14

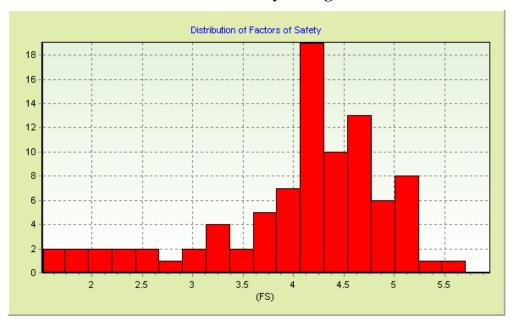
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	20	454.95	58.96	454.95	4
12	0	454.26	100	454.26	5
13	0	449.26	100	449.26	6
14	0	444.76	100	444.76	7
15	0	436.76	100	436.76	8
16	0	431.76	100	431.76	9
17	0	426.76	100	426.76	10
18	0	421.76	100	421.76	11
19	0	411.76	100	411.76	12
20	0	401.76	100	401.76	13
21	0	391.76	100	391.76	13

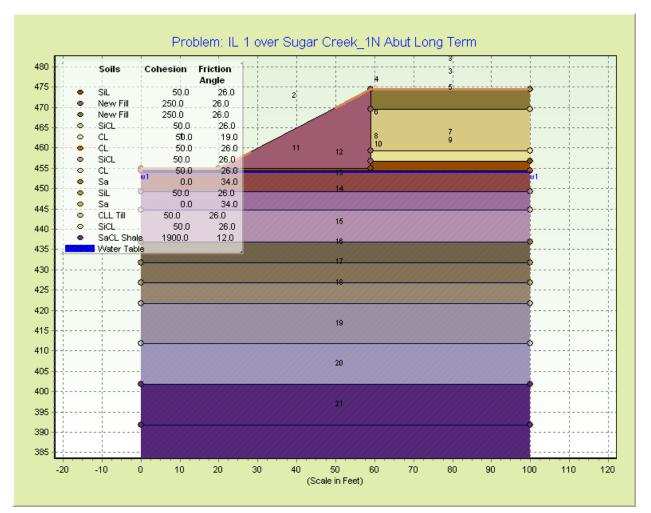

STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_1N Abut EOC

Soil Properties


Soil Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	125	0	250	0	0	0	1	New Fill
2	105	0	1400	0	0	0	1	SiCL
3	95	0	2400	0	0	0	1	CL
4	110	0	500	0	0	0	1	SiL
5	105	105	1450	0	0	0	1	CL
6	0	105	2000	0	0	0	0	SiCL
7	0	105	1370	0	0	0	0	CL
8	0	120	0	34	0	0	0	Sa
9	0	110	100	0	0	0	0	SiL
10	0	120	0	34	0	0	0	Sa
11	0	110	5400	0	0	0	0	CLL Till
12	0	105	100	0	0	0	0	SiCL
13	0	125	1900	0	0	0	0	SaCL Shale
14	125	0	250	0	0	0	1	New Fill

STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_1N Abut EOC

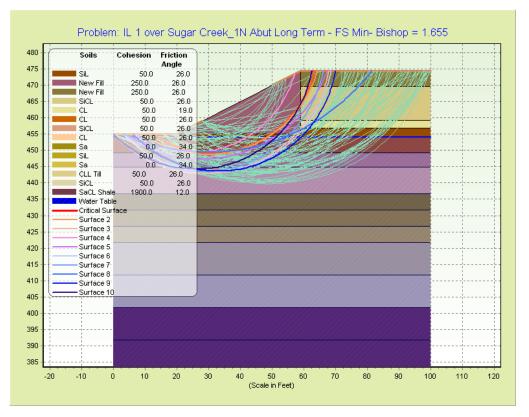




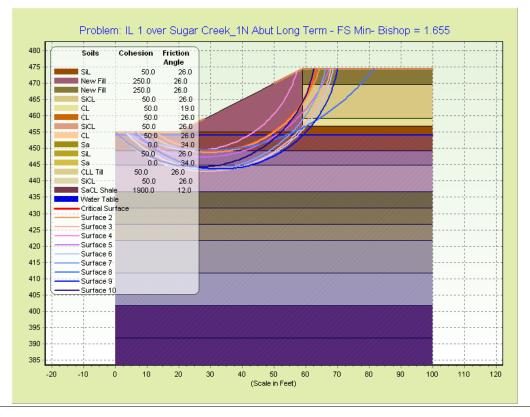
STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_1N Abut EOC

Surface Number	Factor of Safety
1	1.673
2	1.677
3	1.881
4	1.887
5	2.05
6	2.117
7	2.319
8	2.322
9	2.442
10	2.569

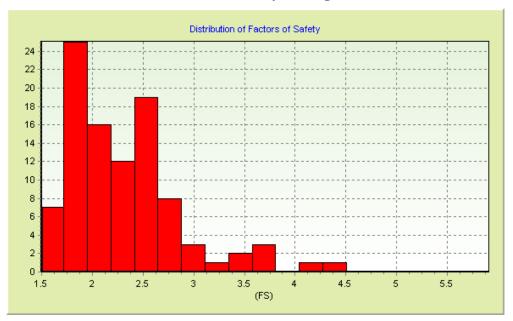
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	0	454.95	20	454.95	4
2	20	454.95	58.96	474.43	14
3	58.96	474.43	100	474.43	1
4	58.96	474.43	58.96	469.56	14
5	58.96	469.56	100	469.56	2
6	58.96	469.56	58.96	459.26	14
7	58.96	459.26	100	459.26	3
8	58.96	459.26	58.96	456.76	14
9	58.96	456.76	100	456.76	4
10	58.96	456.76	58.96	454.95	14

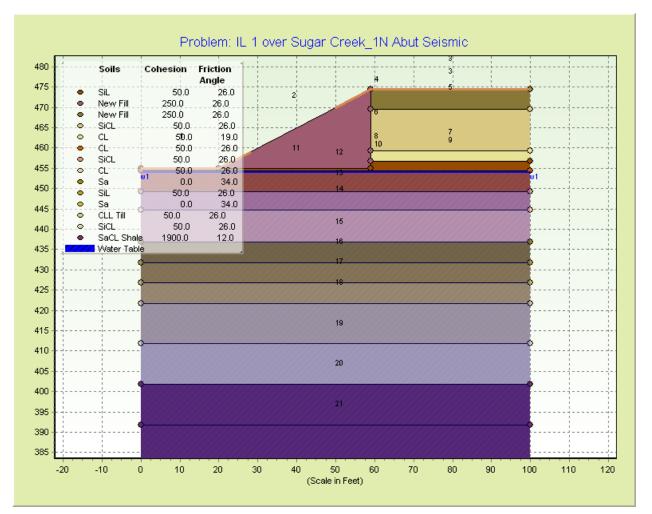

Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	20	454.95	58.96	454.95	4
12	0	454.26	100	454.26	5
13	0	449.26	100	449.26	6
14	0	444.76	100	444.76	7
15	0	436.76	100	436.76	8
16	0	431.76	100	431.76	9
17	0	426.76	100	426.76	10
18	0	421.76	100	421.76	11
19	0	411.76	100	411.76	12
20	0	401.76	100	401.76	13
21	0	391.76	100	391.76	13

STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_1N Abut Long Term


Soil Properties

Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	125	0	250	26	0	0	1	New Fill
2	105	0	50	26	0	0	1	SiCL
3	95	0	50	19	0	0	1	CL
4	110	0	50	26	0	0	1	SiL
5	105	105	50	26	0	0	1	CL
6	0	105	50	26	0	0	0	SiCL
7	0	105	50	26	0	0	0	CL
8	0	120	0	34	0	0	0	Sa
9	0	110	50	26	0	0	0	SiL
10	0	120	0	34	0	0	0	Sa
11	0	110	50	26	0	0	0	CLL Till
12	0	105	50	26	0	0	0	SiCL
13	0	125	1900	12	0	0	0	SaCL Shale
14	125	0	250	26	0	0	1	New Fill

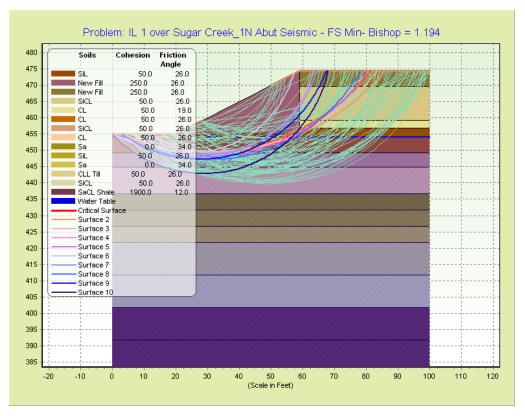




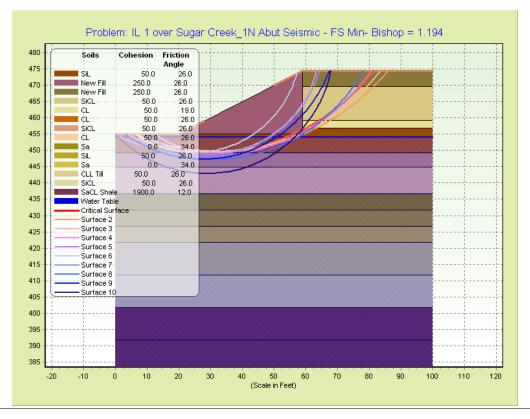
Surface Number	Factor of Safety
1	1.655
2	1.683
3	1.697
4	1.701
5	1.71
6	1.71
7	1.716
8	1.724
9	1.753
10	1.761

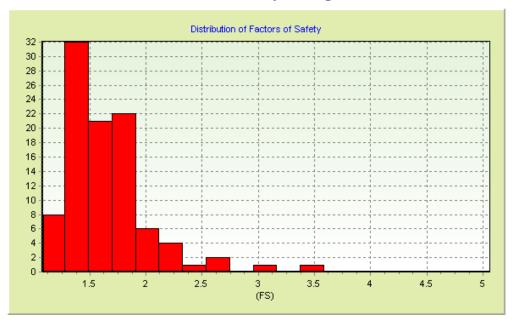
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	0	454.95	20	454.95	4
2	20	454.95	58.96	474.43	14
3	58.96	474.43	100	474.43	1
4	58.96	474.43	58.96	469.56	14
5	58.96	469.56	100	469.56	2
6	58.96	469.56	58.96	459.26	14
7	58.96	459.26	100	459.26	3
8	58.96	459.26	58.96	456.76	14
9	58.96	456.76	100	456.76	4
10	58.96	456.76	58.96	454.95	14

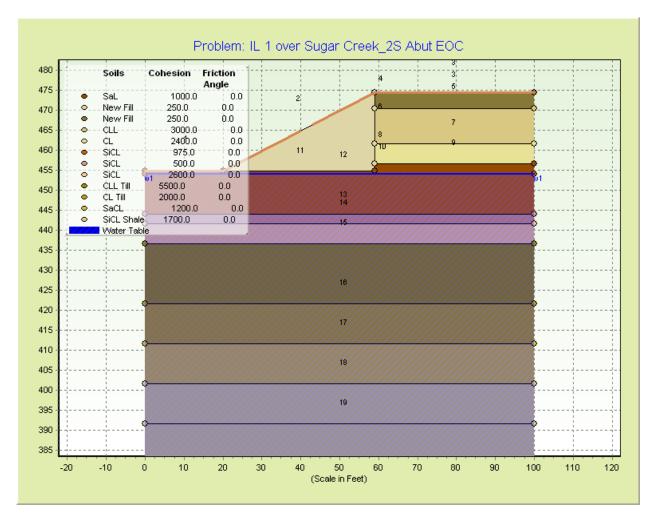
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	20	454.95	58.96	454.95	4
12	0	454.26	100	454.26	5
13	0	449.26	100	449.26	6
14	0	444.76	100	444.76	7
15	0	436.76	100	436.76	8
16	0	431.76	100	431.76	9
17	0	426.76	100	426.76	10
18	0	421.76	100	421.76	11
19	0	411.76	100	411.76	12
20	0	401.76	100	401.76	13
21	0	391.76	100	391.76	13


STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_1N Abut Seismic

Soil Properties


Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	125	0	250	26	0	0	1	New Fill
2	105	0	50	26	0	0	1	SiCL
3	95	0	50	19	0	0	1	CL
4	110	0	50	26	0	0	1	SiL
5	105	105	50	26	0	0	1	CL
6	0	105	50	26	0	0	0	SiCL
7	0	105	50	26	0	0	0	CL
8	0	120	0	34	0	0	0	Sa
9	0	110	50	26	0	0	0	SiL
10	0	120	0	34	0	0	0	Sa
11	0	110	50	26	0	0	0	CLL Till
12	0	105	50	26	0	0	0	SiCL
13	0	125	1900	12	0	0	0	SaCL Shale
14	125	0	250	26	0	0	1	New Fill

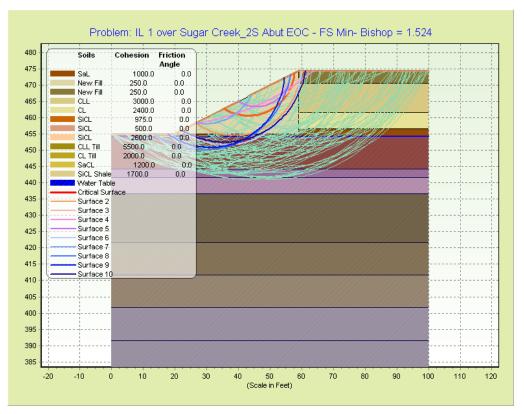

STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_1N Abut Seismic



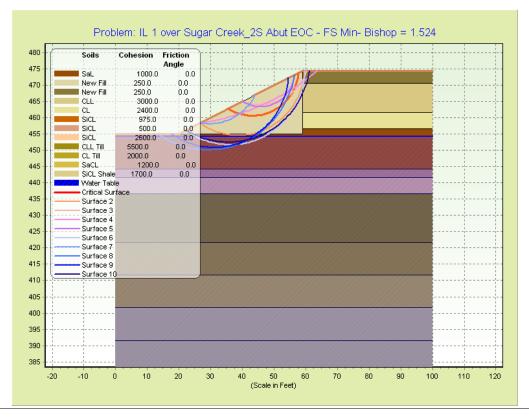
Surface Number	Factor of Safety
1	1.194
2	1.223
3	1.224
4	1.259
5	1.272
6	1.274
7	1.28
8	1.282
9	1.292
10	1.344

Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	0	454.95	20	454.95	4
2	20	454.95	58.94	474.42	12
3	58.94	474.42	100	474.42	1
4	58.94	474.42	58.94	470.44	12
5	58.94	470.44	100	470.44	2
6	58.94	470.44	58.94	461.64	12
7	58.94	461.64	100	461.64	3
8	58.94	461.64	58.94	456.64	12
9	58.94	456.64	100	456.64	4
10	58.94	456.64	58.94	454.95	12

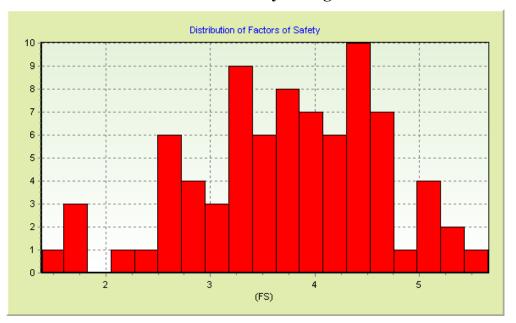
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	20	454.95	58.94	454.95	4
12	0	454.14	100	454.14	5
13	0	444.14	100	444.14	6
14	0	441.64	100	441.64	7
15	0	436.64	100	436.64	8
16	0	421.64	100	421.64	9
17	0	411.64	100	411.64	10
18	0	401.64	100	401.64	11
19	0	391.64	100	391.64	11

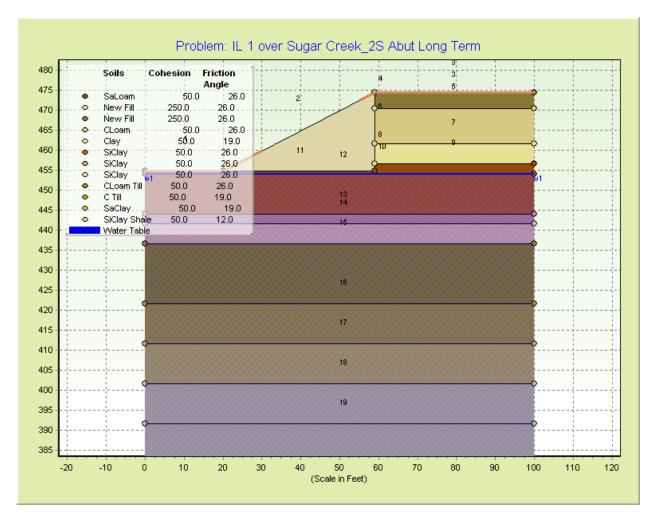

STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_2S Abut EOC

Soil Properties


Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	125	0	250	0	0	0	1	New Fill
2	105	0	3000	0	0	0	1	CLL
3	90	0	2400	0	0	0	1	CL
4	110	0	1000	0	0	0	1	SaL
5	0	110	975	0	0	0	0	SiCL
6	0	105	500	0	0	0	0	SiCL
7	0	110	2600	0	0	0	0	SiCL
8	0	110	5500	0	0	0	0	CLL Till
9	0	120	2000	0	0	0	0	CL Till
10	0	120	1200	0	0	0	0	SaCL
11	0	125	1700	0	0	0	0	SiCL Shale
12	125	0	250	0	0	0	1	New Fill

STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_2S Abut EOC

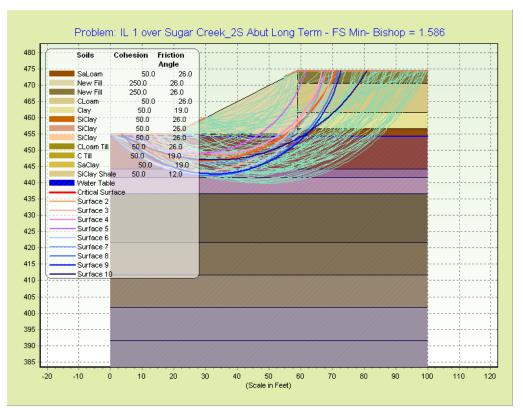




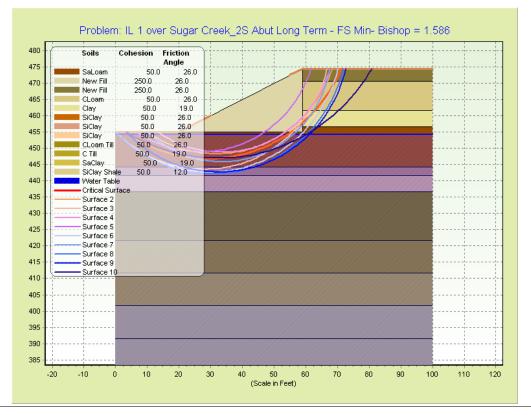
STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_2S Abut EOC

Surface Number	Factor of Safety
1	1.524
2	1.64
3	1.754
4	1.788
5	2.06
6	2.436
7	2.511
8	2.591
9	2.598
10	2.652

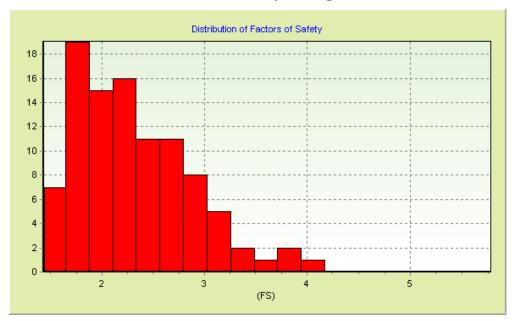
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	0	454.95	20	454.95	4
2	20	454.95	58.94	474.42	12
3	58.94	474.42	100	474.42	1
4	58.94	474.42	58.94	470.44	12
5	58.94	470.44	100	470.44	2
6	58.94	470.44	58.94	461.64	12
7	58.94	461.64	100	461.64	3
8	58.94	461.64	58.94	456.64	12
9	58.94	456.64	100	456.64	4
10	58.94	456.64	58.94	454.95	12

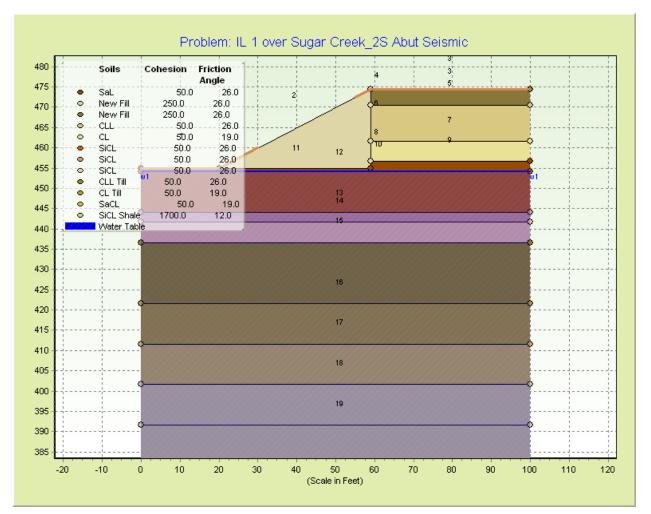

STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_2S Abut Long Term

Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	20	454.95	58.94	454.95	4
12	0	454.14	100	454.14	5
13	0	444.14	100	444.14	6
14	0	441.64	100	441.64	7
15	0	436.64	100	436.64	8
16	0	421.64	100	421.64	9
17	0	411.64	100	411.64	10
18	0	401.64	100	401.64	11
19	0	391.64	100	391.64	11


Soil Properties

Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	125	0	250	26	0	0	1	New Fill
2	105	0	50	26	0	0	1	CLoam
3	90	0	50	19	0	0	1	Clay
4	110	0	50	26	0	0	1	SaLoam
5	50	110	50	26	0	0	0	SiClay
6	0	105	50	26	0	0	0	SiClay
7	0	110	50	26	0	0	0	SiClay
8	0	110	50	26	0	0	0	CLoam Till
9	0	120	50	19	0	0	0	C Till
10	0	120	50	19	0	0	0	SaClay
11	0	125	50	12	0	0	0	SiClay Shale
12	125	0	250	26	0	0	1	New Fill

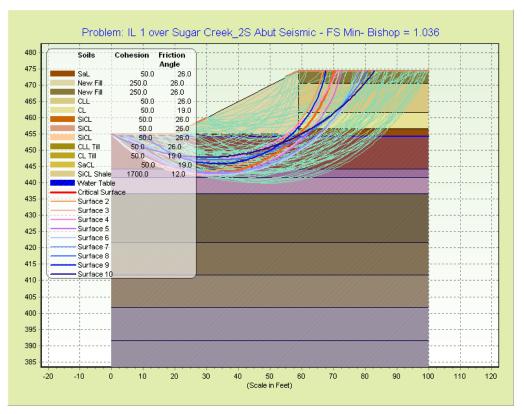




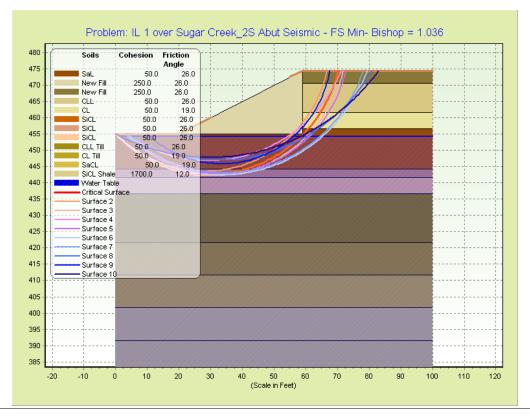
Surface Number	Factor of Safety
1	1.586
2	1.602
3	1.63
4	1.634
5	1.634
6	1.639
7	1.641
8	1.667
9	1.7
10	1.717

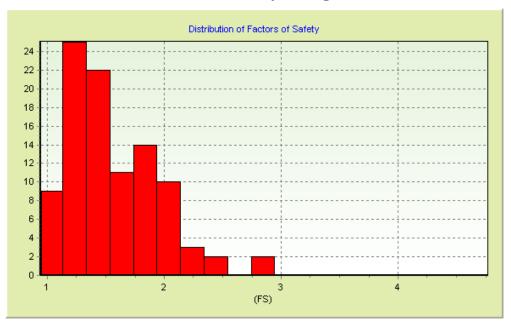
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
1	0	454.95	20	454.95	4
2	20	454.95	58.94	474.42	12
3	58.94	474.42	100	474.42	1
4	58.94	474.42	58.94	470.44	12
5	58.94	470.44	100	470.44	2
6	58.94	470.44	58.94	461.64	12
7	58.94	461.64	100	461.64	3
8	58.94	461.64	58.94	456.64	12
9	58.94	456.64	100	456.64	4
10	58.94	456.64	58.94	454.95	12

			ows 3.0 - Resu Sugar Creek_	ılts 2S Abut Seisı	nic
Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Unde Segment


Segment Number	Left Extreme X	Left Extreme Y	Right Extreme X	Right Extreme Y	Soil Under Segment
11	20	454.95	58.94	454.95	4
12	0	454.14	100	454.14	5
13	0	444.14	100	444.14	6
14	0	441.64	100	441.64	7
15	0	436.64	100	436.64	8
16	0	421.64	100	421.64	9
17	0	411.64	100	411.64	10
18	0	401.64	100	401.64	11
19	0	391.64	100	391.64	11

Soil Properties


Soil Number	Wet Unit Weight	Saturated Unit Weight	Cohesive Intercept	Friction Angle	Ru	Pressure Head	Water Table	Soil Name
1	125	0	250	26	0	0	1	New Fill
2	105	0	50	26	0	0	1	CLL
3	90	0	50	19	0	0	1	CL
4	110	0	50	26	0	0	1	SaL
5	0	110	50	26	0	0	0	SiCL
6	0	105	50	26	0	0	0	SiCL
7	0	110	50	26	0	0	0	SiCL
8	0	110	50	26	0	0	0	CLL Till
9	0	120	50	19	0	0	0	CL Till
10	0	120	50	19	0	0	0	SaCL
11	0	125	1700	12	0	0	0	SiCL Shale
12	125	0	250	26	0	0	1	New Fill


STABL for Windows 3.0 - Results Name: IL 1 over Sugar Creek_2S Abut Seismic

Surface Number	Factor of Safety
1	1.036
2	1.04
3	1.054
4	1.074
5	1.095
6	1.109
7	1.134
8	1.134
9	1.134
10	1.137

EXHIBIT G PILE DESING TABLES

Pile Design Table for North abut. utilizing Boring #1

1	Nominal	Factored	Estimated	•	Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
					•	Available			•		
	Bearing	Available	Length		Bearing		Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)	.	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal Shell 12"Φ w/.179" walls			Steel	HP 10 X 57			Steel I	HP 14 X 73			
	190	104	47		242	133	50		212	117	27
	215	118	50		251	138	55		218	120	35
	223	123	55		251	138	57		220	121	37
	224	123	57		252	138	60		297	163	40
	226	124	60		252	139	62		306	168	42
	227	125	62		273	150	65		308	170	47
	245	135	65		301	166	67		352	194	55
Metal S		w/.25" walls			330	182	70		353	194	57
motar	190	104	47		359	198	70		354	194	60
				Ctool		190	12				
	215	118	50	Steel	HP 12 X 53	100	10		354	195	62
	223	123	55		241	132	40		394	216	65
	224	123	57		248	136	42		434	239	67
	226	124	60		251	138	47		474	261	70
	227	125	62		293	161	50		514	283	72
	245	135	65		296	163	55	Steel I	HP 14 X 89		
1	267	147	67		297	163	57		215	118	27
1	288	158	70		298	164	60		221	121	35
1	309	130	70		298	164	62		223	122	37
Matal		w/.25" walls								122	
metal 3					326	179	65		301		40
1	229	126	47		360	198	67		310	170	42
	259	142	50		394	217	70		312	172	47
	262	144	55	Steel	HP 12 X 63				356	196	55
	263	145	57		243	134	40		357	196	57
	265	146	60		251	138	42		357	197	60
	267	147	62		254	140	47		358	197	62
	291	160	65		295	162	50		398	219	65
	316	174	67		299	164	55		439	241	67
	341	187	70		299	165	55 57		480	264	70
	365	201	72		300	165	60		520	286	72
Metal S		w/.312" wal			301	165	62	Steel	IP 14 X 10		
	229	126	47		329	181	65		217	119	27
	259	142	50		364	200	67		223	123	35
	262	144	55		398	219	70		225	124	37
	263	145	57		432	238	72		305	168	40
	265	146	60	Steel	HP 12 X 74				314	173	42
	267	147	62		247	136	40		317	174	47
	291	160	65		254	140	42		360	198	55
	316		67		258	140	47		360	198	57
		174									
1	341	187	70		300	165	50		361	199	60
L	365	201	72		302	166	55		362	199	62
Steel H	IP 8 X 36				303	167	57		403	222	65
1	200	110	55		304	167	60		444	244	67
1	201	110	57		305	168	62		485	267	70
1	201	111	60		334	184	65		526	290	72
1	202	111	62		368	203	67	Steel I	IP 14 X 11	7	
1	215	118	65		403	222	70		220	121	27
1	238	131	67		438	241	72		225	124	35
1	261	143	70	Steel	HP 12 X 84				225	124	37
1				Steer		400	40				
.	284	156	72		250	138	40		309	170	40
Steel F	IP 10 X 42				258	142	42		318	175	42
1	236	130	50		261	144	47		321	176	47
1	246	135	55		304	167	50		363	200	55
1	246	135	57		306	168	55		364	200	57
1	247	136	60		307	169	57		365	201	60
1	247	136	62		308	169	60		366	201	62
1	267	147	65		308	170	62		408	224	65
1	295	162	67		338	186	65		449	247	67
	323	178	70		373	205	67		491	270	70
1	525	170	10		409		70				70
						225			532	293	12
					444	244	72				
L											

Pile Design Table for South abut. utilizing Boring #2

Nominal	Factored	Estimated
Required		Pile
Bearing	Available	Length
(Kips)	(Kips)	(Ft.)
I HP 14 X 73	,	(1.1.)
294	162	32
343	189	35
343 390	215	35
439	242	40
455	250	42
472	259	47
491	270	50
510	281	52
530	291	55
555 I HP 14 X 89	305	57
298	164	32
347	191	35
395	217	37
445	245	40
460	253	42
477	262	47
496	273	50
516	284	52
535	295	55
562	309	57
586	323	60
611	336	62
636	350	65
I HP 14 X 10	02	
215	118	25
301	166	32
351	193	35
400	220	37
450	248	40
465	256	42
482	265	47
502	276	50
522	287	52
541	298	55
568	312	57
593	326	60
618	340	62
643	354	65
I HP 14 X 11	17	
218	120	25
305	168	32
356	196	35
405	223	37
455	250	40
470	259	42
487	268	47
507	279	50
527	290	52
547	301	55
574	316	57
599	330	60
625	344	62
650	358	65
867	477	67
897	477	70
924	493 508	70
924	508	12