REVISED STRUCTURE GEOTECHNICAL REPORT

BRIDGE REPLACEMENT ILLINOIS ROUTE 1 OVER SUGAR CREEK

F.A.P. 332 (IL Route 1) Section (21-X-NRH-BY)B-1 Crawford County, Illinois P-97-028-05 D-97-037-05 Contract No. 74108 PTB 147 Item 27 WO #8 Existing Structure No. 017-0003 Proposed Structure No. 017-0033

Prepared by:

Kaskaskia Engineering Group, LLC 23 Public Square, Suite 404 Belleville, Illinois 62220 Phone: 618-233-5877 Fax: 618-233-5977 KEG No. 08-0077.08

> Authored By: Marsia Geldert-Murphey, PE

Prepared for:

IE Consultants, Inc. 6420 South Sixth Street Springfield, IL 62712 Phone: 217-529-8027 Fax: 217-529-4543

May 2010

TABLE OF CONTENTS

1.0 PROJECT DESCRIPTION AND PROPOSED STRUCTURE INFORMATION	1
1.1 Introduction	1
1.2 Project Description	1
1.3 Proposed Bridge Information	1
2.0 EXISTING BRIDGE INFORMATION	1
3.0 SITE INVESTIGATION, SUBSURFACE EXPLORATION AND GENERALIZED	
SUBSURFACE CONDITIONS	2
4.0 GEOTECHNICAL EVALUATIONS	3
4.1 Settlement	3
4.2 Slope Stability	4
4.3 Seismic Considerations	4
4.4 Scour	5
4.5 Mining Activity	5
4.6 Lateral Pile/Pier Response	5
4.7 Liquefaction	5
4.8 Approach Slab	3
5.0 FOUNDATION EVALUATIONS AND DESIGN RECOMMENDATIONS	3
5.1 General Feasibility	3
5.2 Pile Supported Foundation	7
6.0 CONSTRUCTION CONSIDERATIONS10)
6.1 Construction Activities10)
6.2 Temporary Sheeting and Soil Retention10)
6.3 Site and Soil Conditions10)
6.4 Foundation Construction10)
7.0 COMPUTATIONS)
8.0 GEOTECHNICAL DATA	1
9.0 LIMITATIONS	1

TABLES

Table 3.1 – Estimated Bedrock Elevation	3
Table 4.1 – Summary of Seismic Parameters	4
Table 4.2 – Design Scour Elevation	5
Table 5.1 – LRFD Pile Design	8

EXHIBITS

- Exhibit A USGS Topographic Location Map
- Exhibit B Provided Type, Size and Location (TS&L) Plan
- Exhibit C IDOT-Provided Boring and Rock Core Logs and Subsurface Data Profile
- Exhibit D Soil Parameters for Lateral Pile Load Analysis
- Exhibit E Pile Design Tables

1.0 PROJECT DESCRIPTION AND PROPOSED STRUCTURE INFORMATION

1.1 Introduction

The geotechnical study summarized in this report was performed for the proposed bridge on Illinois Route 1 over Sugar Creek in Crawford County, Illinois. The purpose of this report is to present design and construction recommendations for the proposed structure.

1.2 Project Description

The project includes replacement of the existing bridge (S.N. 017-0003) located at Illinois Route 1 over Sugar Creek in Crawford County, Illinois. The project is located 2.25 miles north of Illinois Route 33 in Crawford County. The general location of the bridge is shown on a United States Geological Survey (USGS) Topographic Location Map, Exhibit A. The site lies within the limits of the Second Principal Meridian (Sec.19, T7N, R11W) in the Till Plains Section, specifically the Springfield Plain.

1.3 Proposed Bridge Information

The proposed structure (S.N. 017-0033) will consist of a single-span steel I-beam, as shown on the Type, Size and Location (TS&L) Plan as provided by IE Consultants, Inc. (IE), Exhibit B. The structure will be built on a 0 degree skew. The proposed bridge centerline station will be at Station 114+00. The proposed substructure will consist of open integral abutments, with an approximate overall length of 79 feet (ft.) as measured back to back of the abutments. The clear width of the new structure will be 36 ft. Further substructure details will be based on the Structure Geotechnical Report (SGR). H-pile foundations are anticipated to be used for supporting the new bridge. No substantial grading is anticipated. The proposed maximum change in grade is approximately 2 ft. of fill at the approaches according to the undated plan and profile sheets provided by IE for Kaskaskia Engineering Group's (KEG) use. The design high water elevation for the structure is El. 469.2. Staged construction is recommended.

2.0 EXISTING BRIDGE INFORMATION

The original single-span reinforced concrete tee beam structure was constructed in 1935. It consisted of a superstructure 45 ft. in length back to back of abutments and a 23 ft.-2 inch (in.) roadway width. The structure was constructed with 0 degree skew. The superstructure was supported by north and south closed abutments on untreated timber piling. In 1959, the bridge and abutments were widened to a 43 ft.-0 in. roadway.

The Bridge Condition Report (BCR), dated September 10, 2008, recommends a complete structure replacement due to poor condition of the existing tee beams and substructure. The following observations are excerpts from the BCR:

"The original fascia beams exhibit an extreme amount of map cracking with leaching on the bottom and side of these beams. The bottom of the concrete tee beams are map cracked with leaching at the ends at the abutments due to leaking joints. There is some spalling with exposed reinforcement on the bottom of the concrete tee beams due to extreme map cracking with leaching. There is erosion evident behind the guardrail at all four corners of the structure. The substructure has extensive cracking with leaching evident on the abutments. A vertical leaching crack spans the face of the south abutment. There is also another vertical crack that spans the south abutment face that is not leaching. Riprap is in failure in the front of the southeast and southwest wingwall."

3.0 SITE INVESTIGATION, SUBSURFACE EXPLORATION AND GENERALIZED SUBSURFACE CONDITIONS

The site investigation plan was determined and conducted by the Illinois Department of Transportation (IDOT). A site visit by a representative of KEG to observe all or part of the borings or to make site observations was not included in the scope of services for this project. Therefore, no observations have been made relative to existing conditions of the structure, stream, roadway, or of subsurface sample conditions.

Two standard penetration tests (SPT) borings, designated as Boring No. 1 N Abut and Boring No. 2 S Abut, were drilled near the proposed north and south abutments from August 12-13, 2009. Boring No. 1 N Abut was located near the north abutment at Sta. 113+58, 15 ft. left of the centerline. Boring No. 2 S Abut was located near the south abutment at Sta. 114+42, 12 ft. right of the centerline. Both borings extended to bedrock. Detailed information regarding the nature and thickness of the soils and rock encountered and the results of the field sampling are shown on the IDOT-Provided Boring Logs, Exhibit C. The boring profiles are shown on the Subsurface Data Profile also included in Exhibit C, as provided by IDOT.

The general soil profile in Boring No. 1 N Abut consisted of a ground surface of 8 in. of mixture shoulder aggregate, cinders, and sandy clay. This was followed by a 25 ft. layer of very soft to medium silty, sandy clay and silty, sandy loam from approximate El. 469 to El. 444. This thick, weak layer had an average N-value of 1.4 blows per foot (bpf) and an average unconfined compressive strength of 0.44 tons per square foot (tsf). The subsurface conditions transitioned to sandy clay and sandy clay loam till until approximate El. 434 where clay shale was encountered. The boring terminated in clay shale at El. 433.65 and continued with rock coring. A 10 ft. rock core sample was retrieved from this borehole. The rock core information provided by IDOT indicates recoveries of 83.4 and 98.8 percent for the two, 5 ft. runs. The Rock Quality Designation (RQD) values were 81.8 and 80.2 percent, respectively. The recovered cores were

described as silty clay shale. The two reported strength values for the silty clay shale were 4.2 and 21.0 tsf. The IDOT Rock Core Log is also included in Exhibit C.

The profile at Boring No. 2 S Abut showed approximately 12 in. of asphalt and concrete pavement followed by a 14 ft. weak layer very soft to medium silty clay and silty loam from approximate El. 474 to El. 460. This weak layer had an average N-value of 1 bpf with average unconfined compressive strength of 0.42 tsf. The subsurface conditions transitioned to medium to hard sandy clay and sandy clay loam till until approximate El. 436 where a silty clay shale material was encountered. The shale continued until the boring was terminated in rock at El. 430.29. No coring was conducted in this boring.

Table 3.1 shows the estimated top of rock elevations for Borings No. 1 N Abut and No. 2 S Abut.

Boring	Bedrock Elevation
1 N Abut	434.65
1 S Abut	435.89

Table 3.1 – Estimated Bedrock Elevation

Groundwater elevation, encountered during drilling, was at approximate El. 446.7 in Boring No. 1 N Abut, and at Boring No. 2 S Abut groundwater was not encountered. At Boring No. 1 N Abut, groundwater was present at El. 464.5 upon completion and El. 460.8, seven days later. At Boring No. 2 S Abut, groundwater was not present upon completion and El. 461.4, 24 hours later. It should be noted that the groundwater level is subject to seasonal and climatic variations, as well as other factors, and may be present at different depths in the future. In addition, without extended periods of observation, measurement of the true groundwater levels may not be possible.

4.0 GEOTECHNICAL EVALUATIONS

4.1 Settlement

KEG understands that during replacement of the existing structures at this site, the existing concrete abutments in the vicinity of Sugar Creek will be removed and replaced with 2H:1V backslopes covered with riprap. It should be noted that highly compressible layers of silty, sandy loam, and clay were encountered in Boring No.1 at the north abutment from EI. 469.65 to EI. 444.65. In KEG's opinion, settlements below and within the embankment for the existing loads have occurred long ago, and re-grading these slopes as described above will not induce any additional settlements. In addition, with the approach slabs structurally supported by the integral abutments on one end and supported by the existing embankment subgrades at the other, settlement is not a concern, provided compaction utilizing static or vibratory methods is performed during placement of the porous granular embankment backfill adjacent to the integral

abutments. In general, recommended pile units for the new structure should not experience settlements more than 0.4 in.

4.2 Slope Stability

The proposed construction does not result in any significant changes in sideslopes (3:1), backslopes (2:1), or grade changes. Also, the heights of the slopes are less than 15 ft. No issues or concerns regarding the existing slopes are reflected in the documentation, and it has been assumed that the existing slopes are performing adequately. For these reasons, a detailed slope stability analysis was not performed, and slope stability is not considered a concern for this structure.

4.3 Seismic Considerations

The determination of the Seismic Site Class was based on the method described by IDOT AGMU *Memo 09.1 - Seismic Site Class Definition* and the IDOT-provided spreadsheet titled *Seismic Site Class Determination*. Using these resources, the controlling global site class for this project is Site Class C.

Additional seismic parameters were determined for use in design of the structure and evaluation of liquefaction potential. The USGS published information and mapping (<u>http://earthquake.usgs.gov/</u>), including software directly applicable to the AASHTO Guide Specifications for LRFD Seismic Bridge Design, was used to determine the parameters for the project site location. The values, based on a 1000-Year Return Period with a Probability of Exceedance (PE) of 7% in 75 years, and the Site Class previously determined, are summarized below.

Parameter	Value
Soil Site Class	С
Peak Ground Acceleration, PGA	0.138g (Site Class B)
Spectral Acceleration Coefficient at Period of 0.2 Sec, Ss	0.285g (Site Class B)
Spectral Acceleration Coefficient at Period of 1.0 Sec, S1	0.083g (Site Class B)
Site Factor, Zero Period, Fpga	1.20 (Site Class C)
Site Factor, Short Period, Fa	1.20 (Site Class C)
Site Factor, Long Period, Fv	1.70 (Site Class C)
Spectral Response Acceleration, 0.2 Sec, S _{DS}	0.342g (Site Class C)
Spectral Response Acceleration, 1.0 Sec, S _{D1}	0.141g (Site Class C)
Seismic Performance Zone	1

Table 4.1 – Summary of Seismic Parameters

4.4 Scour

The approved Hydraulic Report anticipates a contraction scour of 6 ft. using the 100year flood design event. Scour countermeasures proposed include protecting the abutment slopes with stone riprap to accommodate the predicted scour. As shown on the Provided Type, Size and Location (TS&L) Plan, Exhibit B, the integral abutments proposed for the bridge are positioned behind a 2:1 (H:V) embankment and lined with Class A5 stone riprap. This is considered an armored embankment and is deemed to be an adequate level of scour protection according to the Bridge Manual.

Table 4.2 shows the Design Scour Elevations. The design scour elevations are located at the base of the pile caps; therefore, no reduction in the scour elevations was applied in the pile design. The near surface soil profile anticipated silty loam material, which would not be considered more scour prone than the default properties assumed in the hydraulic analysis.

Table 4.2 – Design	Scour Elevation
--------------------	------------------------

Design Scour	N. Abut.	S. Abut.
Elevation (ft)	467.94	468.40

4.5 Mining Activity

No visual indication of subsurface mining activities was evident at the site. According to the Coal Mines Crawford County, dated August 17, 2009, which was obtained from the Illinois State Geological Survey (ISGS) website, the project site was not undermined. (<u>http://www.isgs.illinois.edu/maps-data-pub/coal-maps.shtml</u>). The nearest abandoned mine is more than seven miles south of the project location.

4.6 Lateral Pile/Pier Response

Generally, the geotechnical engineer provides soil parameters to the structural engineer so that an LPile program, or other approved program, can be used for the lateral or displacement analysis of the foundations. Therefore, in Soil Parameters for Lateral Pile Load Analysis, Exhibit D, KEG has included a copy of the subsurface profile provided by IDOT and has added the assumed soil parameters needed to perform a displacement or lateral pile analysis, if deemed necessary by the structural engineer.

4.7 Liquefaction

As per IDOT AGMU 10.1-Liquefaction Analysis, a site located in Seismic Performance Zone 1 (See Section 4.3 Seismic Considerations) does not require consideration of the geotechnical conditions present and potential for liquefaction. Therefore, a liquefaction analysis was not performed and liquefaction was not considered as a reduction for the pile design capacity or other foundation considerations.

4.8 Approach Slab

In accordance with the ABD memo 08.3, KEG has evaluated the foundation soils at the approach slabs for bearing capacity and excessive settlement. Based on the IDOT Bridge Manual, Section 3.8.10 - Approach Slab Support, the unfactored dead load reaction of the standard approach pavement with parapets is 3.4 kips per ft. of width. Our calculations show that the allowable bearing capacity of the soils under the approach slabs is greater than the actual applied soil pressure under the footing. Therefore, ground modification treatments and/or Special Provisions to satisfy the bearing requirements are not necessary to be included, and excessive settlement for the foundation soils at the approach slabs is not a concern.

5.0 FOUNDATION EVALUATIONS AND DESIGN RECOMMENDATIONS

5.1 General Feasibility

Several foundation types have been considered for use on this structure. In accordance with the Bridge Manual Section 3.8.3 on Open Abutments: Integral, a single row of H-piles or 12 in. and 14 in. metal shell piles are permitted for the foundation of a bridge having this type of abutment with lengths up to 90 ft. The Modified IDOT Static Method of Estimating Pile Length spreadsheet in accordance with AGMU 10.2 – Geotechnical Pile Design was used to calculate the pile lengths. Pile capacities were calculated versus increasing embedment up to the Maximum Nominal Required Bearing (RN MAX) for a given pile type. The results of this analysis are summarized for each structure location in Table 5.1 and in the Pile Design Tables, Exhibit E.

Based on the subsurface conditions encountered, the depth to bedrock and the results of the pile design analysis, metal shell piles and H-piles are both considered for the support of the proposed structure. The pile design analyses revealed that the metal shell piles would not achieve the capacities required to meet preliminary load demands before reaching the hard till. The likelihood of pile damage occurring in the layer of stiff sandy clay loam till coupled with the risk of pile installation damage and the concern for inadequate penetration to develop lateral fixity, deters recommendation of these pile types. The pile design analyses revealed that the RNMAX for each type of H-pile considered at the north abutment is not achieved before reaching the clay shale material. At the south abutment, the smaller sized H-piles meet their RNMAX in the till before reaching the shale. However, H-piles deriving support primarily from friction, and limited end bearing, have shown unpredictable performance in practice. Therefore, there is potential risk if H-piles are not supported primarily in end bearing, i.e., driven to refusal in the clay shale material. The structure may benefit from the use of shallow foundations or drilled shafts. These types of foundations are not used with integral abutments, as indicated in the TS&L; however, the structural engineer may consider a semi-integral abutment type which can be used with spread footings and drilled shafts.

The depth to competent bearing material capable of economically supporting the design loads at the north abutment makes the spread footings unfeasible. In accordance with the Geotechnical Manual, the maximum depth at which spread footings are considered economical, as compared to pile foundations, is 10 ft. below the normal depth of a footing.

Based on soil conditions, drilled shafts could be considered as a support system at south abutment. However, the use of drilled shafts is estimated to be cost prohibitive versus driven piles due to the depths required to penetrate the overburden soils and bear in the silty clay shale. In addition, the occurrence of very soft zones below the water table, especially at the north abutment, could present problems requiring casing of the piers. The use of drilled shafts also is accompanied by significantly more complex detailing for seismic considerations. For these reasons, drilled shafts are not deemed as a support foundation alternative for this structure.

5.2 Pile Supported Foundation

The foundations supporting the proposed bridge must provide sufficient support to resist dead and live loads, including seismic loadings. Based on the subsurface conditions encountered, depth to the shale bedrock material, and the design information available to date, H-pile foundations driven to refusal on the shale bedrock are preferred. Table 5.1 LRFD Pile Design shows the practical pile lengths for both Metal Shell Pile and H-pile corresponding to the Maximum Nominal Required Bearing (RN MAX) values based on the cutoff elevations as provided by IE at the abutment locations. Additional information showing a range of pile capacities and their corresponding pile lengths can be found in Pile Design Tables, Exhibit E.

The Nominal Required Bearing (R_N) represents the resistance the pile will experience during driving as well as assist the contractor in selecting a proper hammer size. The Factored Resistance Available (R_F) documents the net long term axial factored pile capacity available at the top of pile to support factored structure loadings. The potential influences of: (a) negative skin friction (down drag) from settlement of compressible layers, (b) loss of support from liquefaction, and (c) loss of support due to material removal (scour) were analyzed. The liquefaction analysis showed no potentially liquefiable layers, and significant additional settlement of the embankment and the foundation units is not anticipated since the subsurface materials mainly consist of cohesive material which are not susceptible to liquefaction and only minor grading is anticipated. Hence, down drag forces should be negligible, and liquefaction values were not applied to the R_F according to the Bridge Manual. Scour elevations were not applied during the pile design analyses to account for scour, since the design scour elevations for both abutments is at the bottom of the abutment caps.

The factored design loads provided by IE are 1236 kips at the abutments. In accordance with the Bridge Manual, when determining the final pile size, normally the lowest weight section necessary, which provides the factored or allowable resistance required, should be selected; however, utilizing the pile sections such as the HP 8x36, HP 10x57, HP 12x74, HP 12x84, HP 14x102, and HP 14x117 that have a limited supply compared to other piling, can cause construction delays and increase the cost of the project. Based on these restrictions and based on the factored design loads provided by IE, the likely pile types to be considered in the pile design analysis were Steel HP 14x73 with an RN MAX of 578 kips, Steel HP 12x63 with an RN MAX of 419 kips, Steel HP 10x42 with an RN MAX of 335 kips, and Metal Shell 14 in. with 0.312 in. walls with an RN MAX of 516 kips. The LRFD Pile Design Guide Procedure (3.10.1) was used to estimate pile capacity at tip elevations for the pile types and sizes being considered.

At both abutments, the RNMAX for each type of pile considered is achieved prior to reaching the clay shale unit or once driven into the shale material. KEG recommends driving H-piles to the RNMAX. The higher available resistance can allow the number of piles to be reduced, resulting in a net savings despite the increased pile length. The potential for driving damage is minimized with H-pile type foundations, and fewer test piles are necessary when H-pile is driven to the shale. If metal shell piles are to be used, although there is always a risk of damage to metal shell piles during driving, this risk can be minimized by selection of the thicker wall thicknesses. Metal shell would have less inherent risk than friction H-piles; however, it is recognized that IDOT is generally comfortable with H-piles in friction and length estimates based on the current method of analysis. Therefore, the selection of pile types is left to the collective discretion of the designer and the owner.

The minimum pile group shows the minimum number of piles needed at each substructure unit to support the factored design loads after load adjustments described previously. Pile groups were determined by taking the total factored loads for each substructure unit and dividing by the Maximum Factored Resistance Available (RFMAX) for each type of pile considered. The Minimum Pile Groups represent the minimum number of piles needed to support the Strength I loading condition factored structural loads provided by the structural engineer. Larger pile groups may be necessary to meet maximum spacing requirements at each substructure unit. The results are shown in Table 5.1—LRFD Pile Design.

	Pile Designation	R _{N max} Max Nominal Required Bearing (kips)	R _{F max} Max Factored Resistance Available (kips)	Total Factored Load (kips)	Estimated Pile Length (ft)	Pile Tip Elevation	Min. Pile Group
	HP10x42	335	184	1236	39	430.94	7
	HP12x53	418	230	1236	39	430.94	6
North	HP12x63	497	273	1236	41	428.94	5
Abutment	HP 14x73	578	318	1236	40	429.94	4
	Metal Shell 14"Ø w/.312 walls	134	74	1236	34	435.94	17
	HP10x42	332	183	1236	31	439.4	7
	HP12x53	408	225	1236	31	439.4	6
	HP12x63	497	273	1236	36	434.4	5
South	HP 14x73	578	318	1236	36	434.4	4
Abutment	Metal Shell 14"Ø w/.312 walls	36	20	1236	13	457.4	62

Table 5.1 – LRFD Pile Design

Because of the variations in subsurface conditions, it is recommended that one test pile be driven at each abutment. A test pile is performed prior to production driving so that actual, on-site, field data can be gathered to determine pile driving requirements for the project. This also is the manner in which the contractor's proposed equipment and methodologies identified in their Pile Installation Plan can be assessed. Actual driving equipment and methodologies will affect the estimated pile lengths shown here.

It should be noted that pile driving at the north abutment in the area of the compressible soil should be delayed as long as possible after fill placement to allow for settlement. KEG also recommends driving the production pile for the south abutment prior to the north abutment.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Construction Activities

The construction activities should be performed in accordance with the current IDOT *Standard Specifications for Road and Bridge Construction* and any pertinent *Special Provisions* or policies.

6.2 Temporary Sheeting and Soil Retention

KEG understands that temporary shoring will be required at the abutments during construction. The subsurface conditions below the estimated dredge line indicate weak soils with low unconfined compressive strengths. Therefore, use of the IDOT temporary sheet piling design charts is not feasible at the abutments. The soil retention system should extend from the start of the existing abutments to the end of the proposed abutments and will require more analysis. An Illinois-licensed structural engineer is required to seal the design of the temporary soil retention system.

6.3 Site and Soil Conditions

The soil profile underlying the near surface soils reported in the boring logs, as provided by IDOT, are very soft, saturated soils which are at high risk for deformation under loading. Should any bridge or embankment design considerations assumed by either IDOT or KEG in the analysis stated in this report change, KEG should be contacted to determine if these recommendations still apply.

Soils with high moisture content could complicate construction activities. Soft or disturbed areas should be undercut (typically one to two ft.) and crushed rock, such as CA-6, can be used to provide a working platform.

6.4 Foundation Construction

Conventional pile driving equipment and methodologies should be assumed.

7.0 COMPUTATIONS

Computations and analyses for special circumstances, if any, are included as exhibits. Please refer to each section of the report for reference to the exhibit containing any such calculations or analysis used.

8.0 GEOTECHNICAL DATA

Soil borings can be found in Exhibit C. The Subsurface Profile can also be found in Exhibit C.

9.0 LIMITATIONS

The recommendations provided herein are for the exclusive use of IE and IDOT. They are specific only to the project described and are based on subsurface information obtained at two boring locations within the bridge area, KEG's understanding of the project as described herein, and geotechnical engineering practice consistent with the standard of care. No other warranty is expressed or implied. KEG should be contacted if conditions encountered during construction are not consistent with those described.

Exhibit A

USGS Topographic Location Map

Y:\Projects\08_0056_IL160_over_Branch_Lake\a_MXD\ExhibitA.mxd

Exhibit **B**

Provided Type, Size and Location (TS&L) Plan

LEGEND

1	EX PCC PAVEMENT WITH 18" BRICK SURFACE
2	EX BASE COURSE WIDENING, 9"
3	EX BITUMINOUS RESURFACING
4	EX AGGREGATE SHOULDERS
•(5)	EX GUARDRAIL
6	HMA SURFACE REMOVAL, VAR. DEPTH
1	HOT-MIX ASPHALT SURFACE COURSE MIX C. NTO
₿	AGGREGATE SHOULDERS, TYPE B
9	PAINT PAVEMENT MARKING - LINE 4"
10	BASE COURSE WIDENING 8"
(1)	HOT-MIX ASPHALT SHOULDERS, 2"
(12)	HOT-MIX ASPHALT SURFACE REMOVAL- BUTT JOINT
(13)	HMA BINDER COURSE, IL 19.0 N70
14	GUARDRATI

* SEE "PLAN SHEETS" FOR GUARDRAIL LOCATIONS.

BUTT – JOINT DETAIL

^{1.} NOTE:

WHERE EXISTING GUARDRAIL IS WITHIN WIDENING LIMITS, CONSTRUCT WIDENING TO EXISTING GUARDRAIL PRIOR TO STAGE 1 AND CONSTRUCT THE REMAINDER IN STAGE 2, OTHERWISE CONSTRUCT ALL WIDENING ON LT IN STAGE 1.

TIONS		F.A.P. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
		332	332 (21-Y-NHR-BY) B-1		D	
				CONTRA	ACT NO.	74108
STA.	TO STA.	FED. RO	AD DIST. NO. ILLING	DIS FED. AID PROJECT		

Exhibit C

IDOT Provided Boring and Rock Core Logs

and Subsurface Profile

Page	<u> </u>	of	3
------	----------	----	---

SOIL BORING LOG

Date 8/13/09

LOGGED BY E. Sandschafer

Division of Highways Illinois Department of Transportation

Illinois Department of Transportation

SECTION (21-X-NRH-BY)B-1 LOCATION R12W, Sec 24, NE 1/4; R11E, Sec 19, NW 1/4, SEC., TWP.7N, RNG., 3 PM

Sugar Creek

COUNTY Crawford DRILLING METHOD Hollow stem auger & split spoon HAMMER TYPE Auto 140#

STRUCT. NO. 017-0003 Station 114+00 BORING NO. 1 N Abut Station 412+59	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. 457.54 Stream Bed Elev. 457.16 Groundwater Elev.:	ft ft	D E P T H	B L O W S	U C S Qu	M O I S T
Station 113+58 Offset 15.00ft Lt Ground Surface Elev. 474.15 ft	(ft)	(/6")	(tsf)	(%)	First Encounter 446.7 Upon Completion 464.5 After 168 Hrs. 460.8	ft ft	(ft)	(/6")	(tsf)	(%)
8" mixture of aggregate shoulder, cinders and sandy clay.					Medium, damp, red marbled gray, CLAY. <i>(continued)</i>			1 2	0.8 B	26
SILTY CLAY.		4						1		
		7 6	1.5 B	17	Vanusoft voru damp grav	450.85		1 2	0.8 B	25
469.65		1			SANDY LOAM.			0		
Solt, damp, gray, SIETT LOAN.	<u>-5</u>	0	0.4 B	22			<u>-25</u>	0 4	0.1 S	14
		0					_	0		
		0	0.3 B	21				0 2 0	0.1 S	16
						444.65				
	<u>-10</u>	0 1 0	0.4 B	25	CLAY.		30	0 3 4	0.4 B	13
462.15	_						_			
Very soft, very damp, gray, SANDY LOAM.		0 0 0	0.1 B	25						
						439.65				
458.95 Medium, damp, red marbled gray,	<u>-15</u> 	0	0.6 B	31	Very stiff, damp, gray, SANDY CLAY LOAM TILL.		35	12 16 14	3.6 B	9
	_						_		-	
		0	0.8 B	22						
		0				434.65		39		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Illinois Department of Transportation								Date <u>8/13/09</u>
ROUTE FAP 332 (IL 1) DESCRIPTIO	N				Sugar Creek		LOGGED BY	E. Sandschafer
SECTION (21-X-NRH-BY)B-1 LO	CATI	ON	R12W	, Sec 2	24, NE 1/4; R11E, Sec 1	9, NW 1/4, S	EC., TWP.7	'N, RNG. , 3 PM
COUNTY Crawford DRILLING	G ME	тнор	Hol	low ste	em auger & split spoon	HAMMER	TYPE	Auto 140#
STRUCT. NO. 017-0003 Station 114+00	D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	457.54 457.16	_ ft _ ft	
BORING NO. 1 N Abut Station 113+58 Offset 15.00ft Lt	T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	446.7	_ ft _ ft	
Ground Surface Elev. 474.15 ft	(ft)	(/6")	(tsf)	(%)	After <u>168</u> Hrs	460.8	_ ft	
Ground Surface Elev. 474.15 ft	(ft)	(/6'') 50/3" 50/2"/		(%) 8	After <u>168</u> Hrs	460.8	<u>_ ft</u>	
	-60							

SOIL BORING LOG

D-4-8/13/00

Page <u>2</u> of <u>3</u>

Illinois Department of Transportation

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)_____ BBS, from 137 (Rev. 8-99)

(Reference) Illinois Departm	ent ROCK COR	FIC	G		Р	age <u>3</u>	of <u>3</u>
Division of Highways Illinois Department of Transportation					D	ate <u>8</u>	/13/09
ROUTE _FAP 332 (IL 1) _ DESCRIPTION _	Sugar Creek		_ LC	GGEI	D BY _	E. Sand	schafei
SECTION(21-X-NRH-BY)B-1 LOCA	TION _ R12W, Sec 24, NE 1/4; R11E, Sec 1	19, NW 1/4	4, SEC	С., ТV	VP. 7N	, RNG. ,	3 PM
COUNTY Crawford CORING M	ETHOD Rotary, surf set diamond bit			R	Б	CORE	S
STRUCT. NO. 017-0003 CO	NW, conv dbl	l bbl,	•	C C	к	Ţ	R
Station 114+00 C	core Diameter <u>2.06</u> in	E	0	V	Q	M	E N
BORING NO. <u>1 N Abut</u> T	op of Rock Elev. <u>434.65</u> ft equin Core Elev. 433.65 ft	P T	R E	E R	D	E	G T
Offset		H (ff)	(#)	Y (%)	(%)	(min/ft)	H (tsf)
Gray, slight to moderate weathered, SILTY C	CLAY SHALE. 43	33.65	(#) B1C1	83	82	1.2	((31)
Rock core B1C1 from 44 2' to 44 7' denth O	u = 4.2 tsf						
	u = 7.2 (0).	45					
			B1C2	99	80	1.1	
		_					
Rock core B1C2 from 49.2' to 49.7' depth, Q	u = 21 tsf.						
	42	 23.65					
Extent of exploration.							
Repetiments: RM 110 Cut aquere en NW/ wine	well of ovicting structure. Sto 112+70, 24						
Rt = 475.36' elevation. Provided by Program	Development.						
		-55					
		_					
		-60					

Color pictures of the cores <u>Available on request</u> Cores will be stored for examination until <u>08/13/2014</u>

The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938)

Page $\underline{3}$ of $\underline{3}$

Field Rock Core Log a.xls

1

Page	1	of	2

SOIL BORING LOG

Date 8/12/09

Division of Highways Illinois Department of Transportation

Illinois Department of Transportation

ROUTE FAP 332 (IL 1) DESCRIPTION Sugar Creek

LOGGED BY E. Sandschafer

SECTION (21-X-NRH-BY)B-1 LOCATION R12W, Sec 24, NE 1/4; R11E, Sec 19, NW 1/4, SEC., TWP. 7N, RNG., 3 PM

COUNTY Crawford DRILL

DRILLING METHOD Hollow stem auger & split spoon HAMMER TYPE Auto 140#

STRUCT. NO. 017-0003 Station 114+00 BORING NO. 2 S Abut Station 114+42 Offset 12.00ft Rt		D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev. 457.54 ft Stream Bed Elev. 457.16 ft Groundwater Elev.: First Encounter Dry ft Upon Completion Dry ft	D E P T H	B L O W S	U C S Qu	M O I S T
Ground Surface Elev. 475.39	ft	(ft)	(/6")	(tsf)	(%)	After 24 Hrs. 461.4 ft	(ft)	(/6")	(tsf)	(%)
4 1/2" asphalt on 7 1/2" concrete pavement.	474.39	_				Hard, damp, gray, SANDY CLAY LOAM TILL. <i>(continued)</i>		35 48	4.5 BS	7
Soft to medium, damp, gray, SILTY CLAY.										
			1					24		
			1	0.4	28			50	+4.5	6
			-	В				50/5		
			0					00		
		-5	1	0.6	16		-25	30	+4.5	7
			1	PP				38	PP	
			0		10			17		
			0	0.6 B	16			29 36	7.8 S	1
		_								
Very soft, damp, gray, SILTY	465.89	-10	0				-30	16		
LOÁM.			0	0.2	25			27	6.6	7
			0	в				39	5	
			0							
		_	0	0.3	22					
		_	0	В						
	460.89									
Medium, damp, brown mottled		-15	6	0.7	44		-35	18	0.7	7
gray, OANDT OLAT TILL.		_	2 3	0.7 B	11		_	35 50	о. <i>1</i> S	1
			6							
			10	1.0	9					
			20	BS						
	455.89		_			435.89				
		-20	24				-40	60		

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

of Trai	nsportatio	n		SC	IL BORIN	G LOG	u
Division of Highv Illinois Departme	ways ent of Transportation						Date 8/12/09
ROUTE _ FAP 332 (IL 1)					Sugar Creek	LOGGED	BY E. Sandschafer
SECTION (21-X-NRH-I	BY)B-1 LOCA		R12W	, Sec 2	24, NE 1/4; R11E, Sec 1	9, NW 1/4, SEC. , TW	P. 7N, RNG. , 3 PM
COUNTY Crawford		ETHOD	Hol	low ste	em auger & split spoon	HAMMER TYPE	Auto 140#
STRUCT. NO017-0 Station114	0003 D +00 P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	<u>457.54</u> ft 457.16 ft	
BORING NO. 2 S A Station 114+ Offset 12.00	Abut T +42 H ft Rt	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	Dry ft Dry ft	
Ground Surface Elev.	<u>475.39</u> ft (ft ILTY) (/6") 50/4"	(tst)	(%) 8	After <u>24</u> Hrs	461.4 ft	
CLAY SHALE. (continued)		\50/2"/					
		_					
	-	_					
	430.294	50/4"		7			
Extent of exploration.		50/2"					
Benchmark: BM 110 Cut so on NW wingwall of existing structure, Sta 113+79, 24' 475.36' elevation. Provider Program Development.	quare						

Illinois Department

Structure Number 017-0003 Sugar Creek Located in the R12W, Sec 24, NE 1/4; R11E, Sec 19, NW 1/4 of Section , Township 7N, Range of the 3 P.M.

0/60/60

GPJ

Exhibit D

Soil Parameters

for Lateral Pile Load Analysis

Structure Number 017-0003 Sugar Creek Located in the R12W, Sec 24, NE 1/4; R11E, Sec 19, NW 1/4 of Section , Township 7N, Range of the 3 P.M.

NOT TO HORIZONTAL SCALE

017-0003.GP,

VARIATIONS IN SUBSURFACE CONDITIONS MAY EXIST BETWEEN BORINGS

Groundwater ♀ First Encounter ♥ Completion ♥ after (refer to log) hours Abbreviations WOH - Sampler Advanced by Weight of Hammer, WOP - Weight of Pipe B.S. - Before Seating LATERAL PILE SOIL PARAMETERS

Route: FAP 332 (IL 1)

Section: (21-X-NRH-BY)B-1

County: Crawford

Exhibit E Pile Design Tables

MODIFIED IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 5/3/2010

T

Maximum Pile

Driveable Length in Boring

42 FT.

SUBSTRUCTURE====================================	MAX. REQUIRED	BEARING & RESI	STANCE for Selected Pi
GROUND SURFACE ELEV. AT BORING ====================================	Maximum Nominal	Maximum Nominal	Maximum Factored
PILE CUTOFF ELEV. ====================================	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Borin
GROUND SURFACE ELEV. AGAINST PILE DURING DRIV 464.94 FT.	335 KIPS	335 KIPS	184 KIPS
GROUND WATER ELEVATION====================================			
HAMMER EFFICIENCY====================================			
LRFD or ASD or SEISMIC ====================================			
TOTAL FACTORED SUBSTRUCTURE LOAD 1236 KIPS TOTAL WIDTH OF SUBSTRUCTURE 39.20 FT. NUMBER OF ROWS OF PILES PER SUBSTRUCTURE == 1 Approx. Factored Loading Applied per pile at 8 ft. Cts 252.24 KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts 94.59 KIPS			
PILE TYPE AND SIZE ======= Steel HP 10 X 42 Plugged Pile Perimeter======= 3.300 FT. Unplugged Pile Plugged Pile End Bearing Area===== 0.680 SQFT. Unplugged Pile	Perimeter======== End Bearing Area====	4.858 FT. 0.086 SQFT.	

GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) = None TOP ELEV. OF LIQUEF. (so layers above apply DD) ===== 0.00 FT.

Г

BOT.				0044//// 40	NO	MINAL PLU	GGED	NON	IINAL UNPLU	IG'D		FACTORED	FACTORED		
		COMPR	S.P.1. N	GRANULAR OR POCK I AVER	SIDE		τοτλι	SIDE		τοτλι	NOMINAL REO'D	GEOTECH.	GEOTECH.	PACIORED	ESTIMATED DILE
FLEV	THICK	STRENGTH		DESCRIPTION	RESIST	RESIST.	RESIST	RESIST	RESIST.	RESIST	BEARING	SCOUR or DD	FROM DD		I ENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)	2200111 11011	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
462.65	2.29	0.30			3.7		6.2	5.4		5.7	6	0	0	3	7
460.15	2.50	0.40			5.2	2.5	9.6	7.7	0.3	13.2	10	0	0	5	10
457.65	2.50	0.10			1.4	0.6	14.1	2.0	0.1	15.6	14	0	0	8	12
455.15	2.50	0.60			7.6	3.8	23.0	11.2	0.5	27.0	23	0	0	13	15
452.65	2.50	0.80			9.8	5.1	32.7 42 E	14.4	0.6	41.4	33	0	0	18	17
430.13	2.50	0.80			9.0	5.1	42.3	14.4	0.6	55.7 69.5	43	0	0	23	20
445 15	2.50	0.00			1.4	0.6	49.2	2.0	0.0	71.6	40	0	0	20	25
442.65	2.50	0.10			1.4	0.6	52.5	2.0	0.1	73.8	52	0	0	29	27
440.15	2.50	0.40			5.2	2.5	57.7	7.7	0.3	81.6	58	0	0	32	30
437.65	2.50	0.40			5.2	2.5	83.4	7.7	0.3	91.9	83	0	0	46	32
435.15	2.50	3.60	30		28.9	22.9	112.3	42.6	2.9	134.4	112	0	0	62	35
434.15	1.00	3.60	30		11.6	22.9	123.8	17.0	2.9	151.5	124	0	0	68	36
433.15	1.00	3.60	30		11.6	22.9	135.4	17.0	2.9	168.5	135	0	0	74	37
432.13	1.00	3.60	100	Hard Till	15.6	133.7	207.0	23.0	2.9	216 4	200	0	0	110	30
430 15	1.00		100	Shale	41.2	84.9	265.8	60.6	10.3	277.0	266	0	0	146	39.8
429.15	1.00			Shale	41.2	84.9	307.0	60.6	10.7	337.7	307	0	õ	169	40.8
428.15	1.00			Shale	41.2	84.9	348.2	60.6	10.7	398.3	348	θ	θ	191	41.8
427.15	1.00			Shale	41.2	84.9	389.3	60.6	10.7	458.9	389	θ	θ	214	42.8
426.15	1.00			Shale	41.2	84.9	430.5	60.6	10.7	519.6	431	θ	θ	237	43.8
425.15	1.00			Shale		84.9			10.7						

Pile Design Table for North abut. utilizing Boring #1

	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"Ф	w/.179" wa	ls	Steel	HP 10 X 57			Steel I	HP 14 X 73		
	110	61	37		139	76	37		133	73	32
Metal S	Shell 12"Ф	w/.25" wall	s		207	114	38		174	96	35
	110	61	37		221	122	39		190	105	36
Metal S	Shell 14"Ф	w/.25" wall	s		454	250	45		207	114	37
	134	74	37	Steel	HP 12 X 53				291	160	38
Metal S	Shell 14"Ф	w/.312" wa	ls		168	93	37		314	173	39
	134	74	37		239	132	38		578	318	43
Steel H	IP 8 X 36				259	142	39	Steel I	HP 14 X 89		
	272	149	42		418	230	42		134	74	32
Steel H	IP 10 X 42			Steel	HP 12 X 63				176	97	35
	135	74	37		170	94	37		193	106	36
	200	110	38		246	135	38		209	115	37
	216	119	39		265	146	39		300	165	38
	335	184	42		497	273	44		320	176	39
				Steel	HP 12 X 74				705	388	45
					158	87	36	Steel I	HP 14 X 10	2	
					173	95	37		136	75	32
					252	139	38		178	98	35
					269	148	39		195	107	36
					589	324	45		212	117	37
				Steel	HP 12 X 84				306	168	38
					161	88	36		325	179	39
					175	96	37		810	445	45
					257	141	38	Steel I	HP 14 X 11	7	
					273*	150	39		138	76	32
					664	365	45		181	99	35
									198	109	36
									215	118	37
									314	173	38
									331	182	39
									929 ~	511	45
								Precas	st 14"x 14"	_	_
									170	94	37
								Timbe	r Pile	_	
									93	51	37
1											

* In lieu of the hammer selection criteria and use of the FHWA Modified Gates formula specified in Section 512 of the Standard Specifications, the Contractor shall conduct a wave equation analysis to establish the driving criteria at all pile foundations which specify a nominal required bearing above 600 kips. The analysis and calculations shall be submitted to the Engineer for approval.

MODIFIED IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 5/3/2010

T

	=====:South al	out.	MAX. REQUIRED	BEARING & RESI	STAN
GROUND SURFACE ELEV. AT BORING =======	===== 2 ===== 475.39	FT.	Maximum Nominal	Maximum Nominal	N
PILE CUTOFF ELEV. ====================================	===== 470.40	FT.	Req'd Bearing of Pile	Req.d Bearing of Borin	Resista
GROUND SURFACE ELEV. AGAINST PILE DURING	G DRIV 465.40	FT.	335 KIPS	332 KIPS	
GROUND WATER ELEVATION==============	===== 461.40	FT.			
HAMMER EFFICIENCY=================	===== 73	%			
LRFD or ASD or SEISMIC ====================================	===== LRFD				
		_			
TOTAL FACTORED SUBSTRUCTURE LOAD =====	===== 1236	KIPS			
TOTAL WIDTH OF SUBSTRUCTURE =======	39.20	FT.			
NUMBER OF ROWS OF PILES PER SUBSTRUCTU	JRE == 1				
Approx. Factored Loading Applied per pile a	t 8 ft. Cts =====	= 252.24 KIPS			
Approx. Factored Loading Applied per pile a	t 3 ft. Cts =====	= 94.59 KIPS			
		_			
PILE TYPE AND SIZE ======= S	teel HP 10 X 42	2			
Plugged Pile Perimeter============	3.300 FT.	Unplugged Pile Per	imeter=======	4.858 FT.	
Plugged Pile End Bearing Area=====	0.680 SQFT.	Unplugged Pile End	d Bearing Area====	0.086 SQFT.	

GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) = None BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ======= 468.40 TOP ELEV. OF LIQUEF. (so layers above apply DD) ===== 0.00 FT.

Г

BOT.					NO		CCED	NO				FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR	Nor		GGLD	NON		00	NOMINAL	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
463.90	1.50	0.60			4.6		5.8	6.7		6.9	6	0	0	3	7
461.40	2.50	0.20			2.7	1.3	9.2	4.0	0.2	10.9	9	0	0	5	9
458.90	2.50	0.30			4.0	1.9	15.7	5.9	0.2	17.2	16	0	0	9	12
456.40	2.50	0.70			8.7	4.5	26.3	12.8	0.6	30.2	26	0	0	14	14
455.90	0.50	1.00			2.3	6.4	28.7	3.5	0.8	33.7	29	0	0	16	15
455.40	0.50	1.00			2.3	6.4	31.0	3.5	0.8	37.1	31	0	0	17	15
454.90	0.50	1.00			2.3	6.4	33.4	3.5	0.8	40.6	33	0	0	18	16
454.40	0.50	1.00			2.3	6.4	35.7	3.5	0.8	44.0	36	0	0	20	16
453.90	0.50	1.00		111 T 20	2.3	6.4 100.0	160.4	3.5	0.8	63.U 72.5	63	0	0	35	17
453.40	0.50		83	Hard Till	7.3	128.0	100.3	10.7	10.3	73.5	74	0	0	40	17
452.90	0.50		83	Hard Till	7.1	127.4	172.2	10.5	16.1	03.0	84	0	0	40	18
452.40	0.50		00 83	Hard Till	7.0	120.1	179.2	10.3	16.0	94.1 104 3	94 104	0	0	57	10
451.30	0.50		83	Hard Till	6.9	124.8	212.1	10.3	15.8	116.9	117	0	0	64	19
448.90	2.50		100	Hard Till	45.8	145.2	209.5	67.4	18.4	178.2	178	Ő	õ	98	22
446.40	2.50		68	Hard Till	21.4	96.8	223.3	31.5	12.2	208.8	209	0	0	115	24
443.90	2.50		65	Hard Till	18.5	89.2	241.8	27.2	11.3	235.9	236	0	0	130	27
441.40	2.50		66	Hard Till	18.5	89.2	257.7	27.2	11.3	262.8	258	0	0	142	29
438.90	2.50		66	Hard Till	17.5	86.6	296.9	25.8	11.0	291.4	291	0	0	160	32
436.40	2.50		85	Hard Till	26.3	108.3	323.1	38.7	13.7	330.0	323	0	0	178	34
435.40	1.00		85	Hard Till	10.5	108.3	332.3	15.5	13.7	345.3	332	0	0	183	35
434.40	1.00		85	Hard Till	10.3	107.0	341.3	15.1	13.5	360.3	341	θ	θ	-188	-36
433.40	1.00		85	Hard Till	10.1	105.7	369.2	14.8	13.4	377.3	369	θ	θ	203	37
432.40	1.00		100	Hard Till	13.5	123.5	344.0	19.8	15.6	392.3	344	θ	θ	-189	-38
431.40	1.00			Shale	41.2	84.9	385.2	60.6	10.7	452.9	385	θ	θ	212	39
430.40	1.00			Shale	41.2	84.9	426.4	60.6	10.7	513.5	4 26	θ	θ	235	40
429.40	1.00			Shale	41.2	84.9	467.6	60.6	10.7	574.2	4 68	θ	θ	257	41
428.40	1.00			Shale	41.2	84.9	508.8	60.6	10.7	634.8	509	θ	θ	280	42
427.40	1.00			Shale		84.9			10.7						

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Req'd Bearing of <u>Pile</u> Req.d Bearing of <u>Boring</u> Resistance Available in <u>Boring</u> Driveable Length in <u>Boring</u>	Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
335 KIPS 332 KIPS 183 KIPS 35 FT.	335 KIPS	332 KIPS	183 KIPS	35 FT.

Pile Design Table for South abut. utilizing Boring #2

	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Metal S	Shell 12"¢	w/.179" wa	lls	Steel I	HP 10 X 57			Steel I	HP 14 X 73		
	29	16	16		124	68	19		154	85	19
Metal S	Shell 12"Ф	w/.25" walls	s		183	101	22		173	95	19
	29	16	16		214	118	24		259	143	22
Metal S	Shell 14"C	w/.25" walls	s		241	133	27		303	167	24
	36	20	16		265	145	29		342	188	27
Metal S	Shell 14"@	w/.312" wal	lls		298	164	32		380	209	29
	36	20	16		332	182	34		422	232	32
Stool H	IP 8 X 36	20	10		3/1	188	35		178	263	3/
Olecit	168	02	24		350	103	36		500	205	35
	100	92 101	24		350	193	20		500	275	30
	104	101	27		353	194	30		521	207	30
	197	109	29	04	454	250	41		541	298	38
	226	124	32	Steel	IP 12 X 53				5/8	318	39
	248	136	34		141	77	19	Steel	HP 14 X 89		
	255	140	35		213	117	22		161	89	19
	263	145	36		250	137	24		181	100	19
	268	148	38		282	155	27		266	146	22
	286	157	39		314	173	29		310	170	24
Steel H	IP 10 X 42				349	192	32		349	192	27
	117	64	19		395	217	34		388	213	29
	178	98	22		413	227	35		431	237	32
	209	115	24	Steel I	IP 12 X 63				487	268	34
	236	130	27		147	81	19		509	280	35
	258	142	29		219	121	22		530	292	36
	291	160	32		256	141	24		549	302	38
	323	178	34		289	159	27		705*	388	41
	332	183	35		321	177	29	Steel H	HP 14 X 10	2	
	002	100	00		357	196	32	0.0011	167	- 02	10
					403	222	34		188	103	19
					400	222	25		271	140	22
					422	232	20		211	149	22
					439	241	30		054	173	24
				Cto al I	497	215	40		304	195	27
				Steer	1 12 1 /4		10		392	216	29
					152	84	19		437	240	32
					223	123	22		493	271	34
					260	143	24		515	283	35
					293	161	27		536	295	36
					326	179	29		557	306	38
					362	199	32		810	445	43
					409	225	34	Steel I	HP 14 X 11	7	
					427	235	35		159	87	18
					445	245	36		173	95	19
					446	245	38		195	107	19
					589	324	41		277	152	22
				Steel I	HP 12 X 84				321	176	24
					157	86	19		360	198	27
					227	125	22		399	220	29
					264	145	24		445	245	32
L					297	163	27		501	276	34
* In lieu	of the ham	mer selection	criteria		330	181	29		524	288	35
and use	of the FHW	A Modified Ga	tes		367	202	32		545	300	36
formula	specifica d Specifica	in Section 51 tions. the Co	∠ of the ntractor		414	228	34		564	310	38
shall co	onduct a wa	ve equation a	nalysis to		433	238	35		929	511	43
establi	sh the driv	ing criteria	at all pile		451	248	36	Precas	st 14"x 14"	-	-
toundat:	ions which d bearing a	specify a nom bove 600 kipe	inal . The		453	249	38		45	25	16
analysis	s and calcu	lations shall	be		-00 664 [*]	365	43	Timbo	r Pile	20	10
submitte	ed to the E	ngineer for a	pproval.		007	000	.0		151	83	17
┣									101	00	17
I				I							