STRUCTURE GEOTECHNICAL REPORT

SN 061-0093 Existing SN: 061-0065

US 50 over Brubaker Creek Tributary FAP Route 327 Section 15BR Marion County D-98-017-06 Contract #76949 PTB #153/053

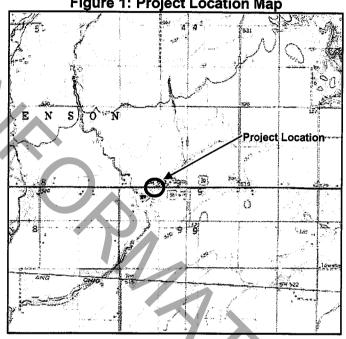
Prepared By:

Sarah L. Wiszkon Geotechnical Investigations Engineer IDOT, Region 5, District 8 Geotechnical Unit Checked By: LC / RW

Date: Revised: August 27, 2010 December 2, 2010

Prepared For:

F. Allen Smith, P.E., S.E. TranSystems Saint Louis, Missouri (314) 997-2459


Attachments

- Preliminary TS&L Plans
- Soil Profile
- Soil Boring Logs
- Liquefaction Analysis
- Settlement Analysis
- Slope Stability
- Pile Analysis
- Preliminary Abutment Loads

This report has been prepared based on a preliminary TS&L dated 8/16/10 and a preliminary plan and profile sheet dated 8/16/10. Contact the author if there are any questions regarding this report of if there are modifications to structure location, size, geometry, or vertical alignment.

Project Description

This project consists of the complete replacement of existing structure 061-0065 with proposed structure 061-0093. The structure is located at the intersection of FAP 327 (US 50) over Brubaker Creek Tributary at Station 1100+61 in Marion County. Specifically, the structure is located in the west half of Section 9, Township 2 North, Range 3 East, 3rd Principal Meridian. The location of the structure is 2.3 miles east of Salem. See Figure 1 for the Project Location Map.

Figure 1: Project Location Map

Existing and Proposed Structure Information

The existing structure consists of a single span concrete deck slab bridge on abutments with attached wingwalls supported by spread footings. The existing structure is 22'-0" back-to-back abutments and 40'-6" out-to-out deck. It was originally constructed in 1920 as SBI Route 12, Section 15-BY, and was reconstructed in 1951 by widening the deck and abutments. The existing structure has been programmed for total replacement due to the deteriorated condition of the deck and existing substructure.

The proposed structure will consist of a single span slab bridge on integral abutments. The planned length is 43'-0" back-to-back abutments and 47'-2" out-toout deck. The proposed structure station is 1100+61. There is no skew.

Soils Investigation

Area Geology

The proposed structure lies in the Springfield Plain physiographic province of Illinois and the Tills Plains Section of the Central Lowlands Province of the United States. The location consists of surficial materials from the Glasford Formation (Radnor Till and Sterling Till Members). Bedrock is generally limestone, sandstone, shale, and underclay of the Spoon Formation, formed during the Pennsylvanian period. There are four coal layers in the bedrock, the DeKoven Coal, the Davis Coal, and two unnamed layers.

Based on a review of the Marion County Soil Survey, the primary soil type at the proposed structure is the Hoyleton-Darmstadt Silt Loam. This soil is eroded and somewhat poorly drained, and consists of loess over mixed loess and drift.

Subsurface Profile

Two borings were conducted by District 8 in June 2010. Boring 1, E Abut is located at Station 1100+33 with a 14 foot Right offset. Boring 2, W Abut is located at Station 1100+91.5 with a 14 foot Left offset. These borings describe a soil profile of stiff clay loam, silty clay, and silty clay loam over hard sandy loam and silty loam. Sand was encountered from Elev 488.5 to Elev 483.0 at the West Abutment. Weathered shale was encountered at Elev 470.5 at the West Abutment and competent shale was encountered at Elev 466.5 at the East Abutment. Groundwater elevations were recorded at Elev 500.0 at the West Abutment and at Elev 513.5 at the East Abutment.

Geotechnical Evaluation

Liquefaction

Liquefaction analysis was conducted as per AGMU Memo 10.1. The analysis indicates that the potentially liquefiable layer at Elev. 470.0 at the West Abutment exhibits an adequate factor of safety against liquefaction. The remaining layers are considered to be non-liquefiable.

Mining Activity

According to the Illinois State Geological Survey's collection of County Coal Mine Maps and Directories, there has been no recorded mining activity in the effective area of the project.

Scour

According to the District 8 Hydraulic Report, the proposed structure is subject to 3 feet of contraction scour at the 100-year event level. The existing overtopping frequency occurs at the 135-year event level. The entire bridge opening is protected with RR-5 riprap, which extends from 10 feet upstream to 10 feet downstream of the existing structure.

The Design Scour Table provides the appropriate elevations at each of the substructure units. Note that the scour elevation at each of the abutments is at the bottom of the abutment pile casing. Assuming that the RR-5 riprap is an appropriate scour countermeasure, the piles do not need to be designed for scour.

Design Scour	West Abutment	East Abutment	
Elevation	512.01 ft	512.01 ft	

Seismic

The area is within the Seismic Performance Zone 2. The site's soil profile is most accurately described as Soil Site Class C. The Design Spectral Acceleration at 1 second is 0.19 g and 0.51 g at 0.2 seconds.

Settlement

Since only 0.7 feet of additional embankment is to be added to the existing bridge cones, any settlement that occurs is expected to be insignificant. Our calculations, utilizing split spoon boring data available at the site, estimate the settlement to be on the order of 0.12 to 0.16 inches. This amount of settlement is considered negligible and should have little to no impact on the structure.

Slope Stability

Based on information obtained for the boring and recommendation from the IDOT Geotechnical Manual, slope stability calculations have been performed using the computer program XSTABL. The use of 1:2 (V:H) end slopes results in acceptable Factors of Safety ranging from 10.918 for the static analysis to 8.306 for the seismic analysis.

Design Recommendations

Spread Footings

Spread footings are not appropriate for integral abutments, due to the necessity of an integral abutment foundation being able to deflect laterally with the expansion and contraction of the bridge.

Drilled Shafts

Drilled shaft foundations will not allow the deflection tolerances required for an integral abutment, and therefore, are not recommended for this location.

Piles

It appears that pile-supported substructures should be feasible at this location given the preliminary axial loads provided by TranSystems. With the soil conditions present, it appears that metal shell piles or end-bearing steel H-piles can be used both abutments.

Design Capacity Limitations

No geotechnical losses were taken into account in the design of the abutment piles because the end slopes have effective scour countermeasures. According to our analyses, liquefaction is not an issue at any of the substructure locations.

Pile Des	sigii ia	inie –	ANGOT N	waam	ent							
Est. Pile Length	12" MS 0.25" Wall <i>Max R_N</i> 355 kips		0.25" Max	MS Wall (R _N kips	0.312 [,] Max	MS ' Wall < R _N kips	Max	0x42 k R _N kips	HP 12x53 Max R _№ 418 kips			(R _N kips
(ft)	R _N R _F (kips) (kips)		R _N R _F		R _N	R _F	R _N	R _F	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)
	(KIPS)	(KIPS)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)		the state of the s		
15	117	64	143	79	143	79	142	78	178	98	180_	99
17	146	80	178	98	178	98	179	99	223	123	225	124
19	159	88	193	106	193	106	196	108	244	134	246	135
21	185	102	222	122	222	122	231	127	285	157	288	158
27	_				383	211	271	149	335	184	338	186

Pile Design Table – West Abutment

Pile Design Table – East Abutment

1 110 000														
Est. Pile Length	12" MS 0.25" Wall Max R _N 355 kips		0 .25" Wall Max R _N 355 kips		0.25" Max	MS Wall KR _N kips	0.312 Max	MS " Wall x R _N kips	Ma	0x42 x R _N kips	Max	2x53 x R _N kips	Ma	2x63 x R _N kips
(ft)	R _N (kips)	R _⊧ (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)	R _N (kips)	R _F (kips)		
14	240	132	313	172	313	172	143	79	172	94	176	97		
16	256	141	330	181	330	181	157	87	188	104	192	106		
18	263	145	338	186	338	186	161	89	196	108	200	110		
22							220	121	263	145	270	148		
26							280	154	335	184	343	189		
30							329	171	405	223	414	228		

Lateral Loading

The factored lateral loading for each abutment is anticipated to be less than 3 kips per pile, therefore, no lateral loading analysis was conducted.

Test Piles

We recommend that one test pile be driven, due to relatively uniform rock elevations between the abutments. The test pile should be driven at the west abutment because of the presence of highly weathered rock and longer estimated pile lengths.

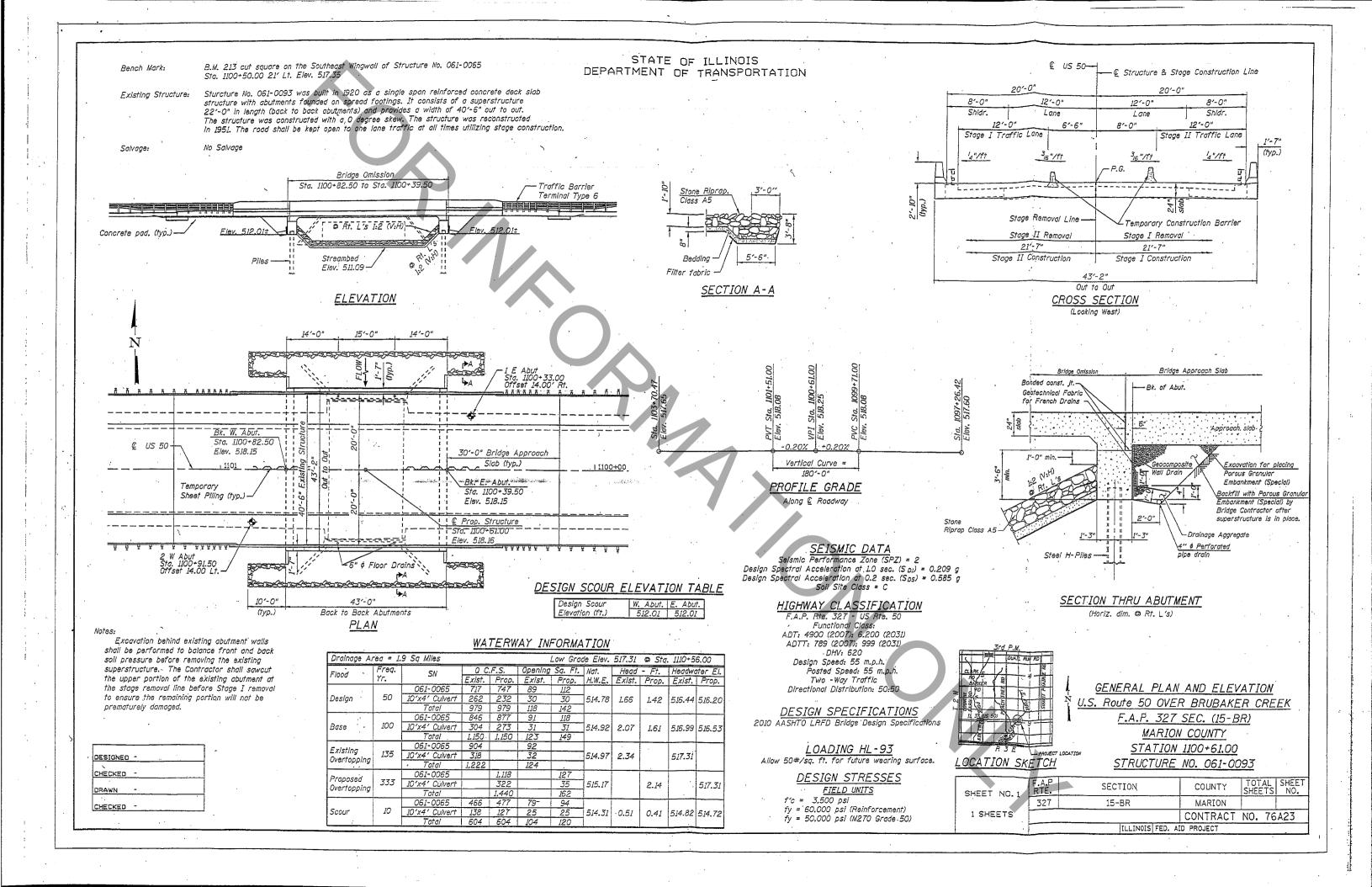
Metal Shoes

No conditions exist which would require metal shoes to be installed on any of the piles at this site.

Final Plans

The following is an example of the information that should be shown for each substructure unit on the Final Plans:

PILE DATA


Type and Size: Steel HP XX x XX Nominal Required Bearing: XXX kips Factored Resistance Available: XXX kips Estimated Pile Length: XXX ft Number of Production Piles: XXX Number of Test Piles: XXX

Under the General Notes, the following note should be included:

"The Contractor shall drive test piles to 110% of the nominal required bearing specified in permanent locations at substructures specified or approved by the Engineer before ordering the remainder of the piles."

Construction Considerations

Because of stage construction requirements, temporary retention will be necessary at both abutments for Stage 1 and Stage 2 traffic. Based on our analyses, cantilevered sheet piling is feasible at both abutments between the proposed abutments and the existing abutments.

Log Plot (SLW 81810).xls 110110 16 0.97 26 US 50 over Brubaker Creek Tributary - 061-0065 (E) / 061-0093 (P) 1.63 28 12 12 12 1.55 24 13 14 21 1.32 25 2.24 15 7.33 21 3.67 4.28 4.89 2 W Abut 6.11 6.93 Ч 110090 25 22 28 30 59 32 75 22 98 110070 Station 110050 1.16 25 0.77 25 1.55 29 1.94 22 2.65 23 21 11 11 11 13 17 ≥ LE Abut (14' RT) 1.55 4.28 4.69 5.09 ЫN Я Z 110030 54/1" 11 2 78 13 34 73 ß 12/3/2010 110010 450 515 520 510 525 505 Elevation 85 85 500 495 480 475 470 465 460 455

.

	(P)	Illino	ois Dep anspo	bartn	nei	nt		SC				Page	<u>1</u> (of <u>3</u>
		Division of H Illinois Depa	diispu lighways rtment of Transp	ortation								Date	6/2	1/10
	ROUTE				I		<u>US 50</u>	over	Brubaker Creek Tributar	y LOGGE	ED BY	·	VPG	
	SECTION _	15	BR	LOO	CATI	ON _	, <u>SEC.</u>	9, TW	P. 2N, RNG. 3E, 3 PM	· · · · · · · · · · · · · · · · · · ·				
5. a									low Stem Auger					
		061- 0. 061			D E P	B L O	U C S	M O I	Surface Water Elev Stream Bed Elev	ft ft	D E P	B L O	U C S	M O I
	Station Offset	D. 1 1 14.0	100+33 00ft Right		T H	W S	Qu	.S T	Groundwater Elev.: First Encounter _ Upon Completion _	ft		W S (/6")	Qu (tsf)	S T (%)
••••	Ground Solarit	urface Elev.	517.5	ft 516.5	(11)	(/6")	(tsf)	(%)	After Hrs. Gray Sandy LOAM A-2-4(0) (continued)	π		(0) 14 20	4.28 S/0	11
	Brown Silty A-6(13)	CLAY	V			1	· .					:		
					V	2	0.77 S/15	25					-	
					-5	3	1.16	25			-25	10 36	4.69	.11
						4	S/5					34	S/0	
n de la constante de la constan La constante de la constante de	Straffansen en konfilmen e	•		509.0		3 3 4	1.55 S/5	29	YX.					
	Brown Clay A-7-6(14)	LOAM			-10	3			1			25		
·		· .		506.0		5 6	1.94 S/5	22		1,		30 43	5.09 S/0	11
	Gray Clay A-7-6(16)	LOAM				4	2.65 S/15	23						
							0/10		Sandy LOAM	484.0	1_	3		
		· .			<u>-15</u>	2 3 4	1.55 S/5	21		▼	-35	3 29 49	NĊ	13
				500.0										
	Gray Sand A-2-4(0)	y LOAM							With Shale					
					-20) 10					-40	7		

						• •	
(ന	Illinois	Departn	nent				Page <u>2</u> of <u>3</u>
	J of Trai	s Departn nsportati	on	S	OIL BOR	ING LOG	
	Division of Highw Illinois Departme	vays nt of Transportation					Date
ROUTE	FAP 327	DESCRIPTION	I	US 50 ov	<u>er Brubaker Creek Tr</u>	ibutary LOGO	ED BY VPG
SECTION	15BR			, SEC. 9,	TWP. 2N, RNG. 3E, 3	PM	· · · · · · · · · · · · · · · · · · ·
COUNTY	Marion	DRILLING	METHOD		Hollow Stem Auger	HAMMER TYPE	140# Automatic
STRUCT. N Station	NO. 061-00	65 (E) /)93 (P)	D B E L P O	C (M Surface Water E Stream Bed Ele	dev ft ev ft	· .
BORING N Station Offset	<u>1100</u> 14.00ft	t Right	T W H S	Qu ⁻	Upon Completi	r <u>513.5</u> ft ion <u>ft</u>	⊻
	Surface Elev		(ft) (/6") 24	1. 1	%) After Hr	rs ft	
Sanuy LOF		\sim	29 	NC			
	· .					. <i>.</i> .	
			-45	S.			
		469.5	54/1"		7		
Borehole c coring.	continued with r	OCK					
					Č Č		
						·V	
	·	:				C	1.
			 				V.
							イ
			-60		· · ·		

	Division of Highways Illinois Department of Transport		50 over Brubaker Creek	k Tributarv		LC	GGED		ate <u>6/</u>	
			C. 9, TWP. 2N, RNG. 3							
	Marion COF	RING METHOD	<u></u>				R E	R	CORE	S T
STRUCT. NO	061-0065 (E) / 061-0093 (P)	CORING BARRI		n	D E P	C O R	С О V Е	Q D	T I M E	R E N G
SORING NO. Station Offset	1 E Abut 1100+33 14.00ft Right ace Elev. 517.5	Top of Rock E Begin Core E		t t	T H (ft)	E (#)	R Y (%)	•	(min/ft)	T H (tsf
		n		469.50					19.82	
/eathered SH	IALE					,			19.41	
			•	•	50				15.46	
				466.50) '				32.64	
ray SHALE	·			465.25	<u>;</u>					
ore Barrel C	logged - End of Boring	g	1							•
2	·			•	55					
			Y X					1		
							· ·			
				6						
				O,						
- - - -	· · · · · · · · · · · · · · · · · · ·			Ò,	60					
				0	-60					
				0	60)			
				Ċ,	60		2			
					60					
· · · · · · · · · · · · · · · · · · ·					60					
					-60					

Color pictures of the cores <u>Yes</u> Cores will be stored for examination until <u>Indefinite</u> The "Strength" column represents the uniaxial compressive strength of the core sample (ASTM D-2938) BBS, form 138 (Rev. 8-99)

Illinois Depart of Transporta	tion	nt		SC	IL BORING LOG		<u>1</u> of <u>2</u>
Division of Highways Illinois Department of Transportation						Date	6/23/10
ROUTEFAP 327 DESCRIPTIO	ON		<u>US 50</u>	over E	Brubaker Creek Tributary LOGGED	BY	VPG
SECTION15BR L	OCAT		, SEC.	9, TW	P. 2N, RNG. 2E, 3 PM		
COUNTY Marion DRILLI	NG ME	THOD		Hol	ow Stem Auger HAMMER TYPE	140# A	utomatic
061-0065 (E) / STRUCT. NO. 061-0093 (P) Station	D E P T H		U C S Qu (tsf)	M O I S T (%)	Surface water Elev. It Stream Bed Elev. ft Groundwater Elev.: ft First Encounter 500.0 Upon Completion ft	D B E L P O T W H S ft) (/6")	U M C O S I S Qu T (tsf) (%)
				(/	Gray Sandy LOAM A-4(2) (continued)	10	4.28 12 S/0
Brown and Gray Silty CLAY	-	- 3					5/0
• •		2	1.02 S/0	23	-		
· · · · · · · · ·		5 2 3	0.97	26			4.89 12
		4	S/5		-	18	S/0
509		2	1.32 S/5	25		5 15 17	13
Gray CLAY A-7-6(16)		0 2 3	1.63	28	488.5	55	12
	 	4	S/20			<u> </u>	NC
Brown		3 3 3	1.55 S/5	24			
	 1	5 6 10 18	3.67 S/0		483.0 Gray Silty LOAM A-4(8)	- <u>35</u> 10 - <u>26</u> 49	6.93 14 S/0
Gray Sandy LOAM A-4(2)							4
		20 8			_	12	

...

	Department of Transpor					over	Brubaker Creek Tributar		DBY VPG
							P. 2N, RNG. 2E, 3 PM		
							low Stem Auger		140# Automatic
	061-0065 (E) / 061-0093 (P)		DE	B L	U C	M O	Surface Water Elev Stream Bed Elev	ft	
BORING NO	1100+91.5 14.00ft Left	— — — ft	P T H (ft)	O W S (/6'')	S Qu (tsf)	 	Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs		•
Gray Silty LOAM A-4(8) (continued)				22 37	6.11 S/0	21	Alter 113	1	· · · · ·
									. *
· . · .		470.5							
Gray Weathered S	SHALE	·		3 7 15	2.24 S/0	15	Y,		·
•	· . ·			- - - - - - - - - -			C		
		464.0		8 24 74	7.33 S/0	21		0	
END OF BORING			55						
				- - -					< L

LIQUEFACTION ANALYSIS I.D.O.T. Bureau of Bridges and Structures FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 3/11/10

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.701

REFERENCE BORING NUMBER		(1015F) = 2.701
LLEVATION OF BORING GROUND OUR HOL	517.50 FT.	
DEPTH TO GROUNDWATER - DURING DRILLING ====================================	4.00 FT. (Below Boring Ground Surface)	AVG. SHEAR WAVE VELOCITY (top 40')
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ====================================	4.65 FT. (Below Finished Grade Cut or Fill Surface)	V _{s,40} = 791 FT/SEC.
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) =====	0.203	
EARTHQUAKE MOMENT MAGNITUDE ====================================	4.8	PGA CALCULATOR
FINISHED GRADE FILL OR CUT FROM BORING SURFACE ================		Earthquake Moment Magnitude = 4.8
HAMMER EFFICIENCY		Source-To-Site Distance, R (km) = 12.4
BOREHOLE DIAMETER===================================	2.5 to 4.5 IN.	Ground Motion Prediction Equations = CEUS
SAMPLING METHOD====================================	Sampler w/out Liners	PGA = 0.169
ROBING DATA CON	DITIONS DURING DRILLING CONDITIONS DURING EA	IRTHQUAKE

.....

				BOR	ING DA	ΓA			, cor	VDITIONS I	DURING D	RILLING		CONDI	10113 00	10.00	ATTIQUARE				
Ī	ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS	•	FACTOR
		SAMPLE		COMPR.		INDEX	LIMIT	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
	SAMPLE			STR., Q			ш	w,	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	NDUCED	
	(FT.)		(BLOWS)		(%)			(%)	(KCF.)	(KSF.)	(N 1) 60	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r_d)	CSR	CRR/CSR
	515	2.5	4	0.77	84.3	22	38	25	0.119	0.298	6.590	12.908	0.140	0.119	0.375	0.375	1.500	0.566	0.999	0.132	N.L. (1)
	512.5	5	7	1.16	84.3	22	38	25	0.061	0.450	11.035	18.242	0.195	0.061	0.528	0.590	1.482	0.779	0.997	0.147	N.L. (2)
	510	7.5	7	1.55	84.3	22	38	29	0.064	0.610	10.491	17.589	0.187	0.064	0.688	0.906	1.369	0.692	0.995	0.173	N.L. (2)
	507.5	10	11	1.94	60	31	47	22	0.067	0.778	17.681	26.218	0.318	0.067	0.855	1.230	1.353	1.163	0.993	0.188	N.L. (2)
	505	12.5	13	2.65	71.6	29	43	23	0.071	0.955	21.272	30.526	0.509	0.071	1.033	1.563	1.295	1.782	0.990	0.197	N.L. (2)
	502.5	15	7	1.55	71.6	29	43	21	0.064	1.115	10.665	17.798	0.190	0.064	1.193	1.879	1.175	0.602	0.986	0.205	N.L. (2)
	497.5	20	34	4.28	30.4			11	0.077	1.500	57.965	71.833	0.501	0.077	1.578	2.576	1.125	1.522	0.975	0.210	N.L. (3)
	492.5	25	70	4.69	30.4			11	0.078	1.890	111.332	133.611	0.975	0.078	1.968	3.278	1.030	2.712	0.958	0.210	N.L. (3)
	487.5	· 30	73	5.08	30.4			11	0.079	2.285	107.894	129.632	0.945	0.079	2.363	3.985	0.958	2.444	0.932	0.207	N.L. (3)
	482.5	35	78	0.00	34.2			13	0.080	2.685	107.292	132.619	0.967	0.080	2.763	4.697	0.899	2.350	0.897	0.201	N.L. (3)
	477.5	40	53		34.2			17	0.076	3.065	68.392	86.328	0.615	0.076	3.143	5.389	0.854	1.420	0.853	0.193	N.L. (3)
	470	47.5	648		34.2				0.103	3.838	740.965	886.693	6.562	0.103	3.916	6.630	0.782	13.868	0.780	0.174	N.L. (3)
	-''	-1.5	0-10					'						1					1	1	

 $\frac{+ FACTOR OF SAFETY DESCRIPTIONS}{N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION N.L. (2) = NOT LIQUEFIABLE, PI \ge 12 & w/LL \le 0.85$ N.L. (3) = NOT LIQUEFIABLE, $(N_{1})_{eo} > 25$ (C) = CONTRACTIVE SOIL TYPES (D) = DILATIVE SOIL TYPES

LIQUEFACTION ANALYSIS

Modified 3/11/10

EQ MAGNITUDE SCALING FACTOR (MSF) = 2.701

REFERENCE BORING NUMBER ====================================	(MSF) = 2.701
ELEVATION OF BORING GROUND SURFACE ====================================	
DEPTH TO GROUNDWATER - DURING DRILLING ====================================	AVG. SHEAR WAVE VELOCITY (top 40')
DEPTH TO GROUNDWATER - DURING EARTHQUAKE ====================================	V _{s,40} = 729 FT./SEC.
PEAK HORIZ. GROUND SURFACE ACCELERATION COEFFICIENT (As) ===== 0.203	
EARTHQUAKE MOMENT MAGNITUDE ====================================	PGA CALCULATOR
FINISHED GRADE FILL OR CUT FROM BORING SURFACE ====================================	Earthquake Moment Magnitude = 4.8
HAMMER EFFICIENCY	Source-To-Site Distance, R (km) = 12.4
BOREHOLE DIAMETER===================================	Ground Motion Prediction Equations = CEUS
SAMPLING METHOD====================================	PGA = 0.169
PORING DATA CONDITIONS DURING DRILLING CONDITIONS DURING EA	RTHQUAKE

			DUR	IIVG DA	1.4				Dinonsi											
ELEV.	BORING	SPT	UNCONF.	%	PLAST.	LIQUID	MOIST.	EFFE	CTIVE	CORR.	EQUIV. CLN.	CRR	EFFE	CTIVE	TOTAL	OVER-	CORR.	SOIL MASS		FACTOR
OF	SAMPLE		COMPR.			1	CONTENT	UNIT	VERT.	SPT N	SAND SPT	RESIST.	UNIT	VERT.	VERT.	BURDEN	RESIST.	PART.	EQ	OF
SAMPLE		VALUE	STR., Q			ш	we	WT.	STRESS	VALUE	N VALUE	MAG 7.5	WT.	STRESS	STRESS	CORR. FACT.	CRR 7.5	FACTOR	INDUCED	SAFETY *
(FT.)	1	(BLOWS)		(%)			(%)	(KCF.)	(KSF.)	(N 1) 60	(N 1) 60cs	CRR 7.5	(KCF.)	(KSF.)	(KSF.)	(Ks)	CRR	(r_d)	CSR	CRR/CSR
515	2.5	5	1.02	90			23	0.122	0.305	8.216	14.859	0.159	0.122	0.383	0.383	1.500	0.643	0.997	0.131	N.L. (1)
512.5	5	7	0.97	90			26	0.121	0.608	10.432	17.519	0.186	0.121	0.685	0.685	1.369	0.690	0.995	0.131	N.L. (1)
510	7.5	7	1.32	90			25	0.125	0.920	9.522	16.426	0.175	0.125	0.998	0.998	1.227	0.579	0.991	0.131	N.L. (1)
507.5	10	7	1.63	74.3	28	44	28	0.127	1.238	9.417	16.300	0.173	0.127	1.316	1.316	1.138	0.533	0.987		N.L. (1)
505	12.5	6	1.55	74.3	28	44	24	0.127	1.555	7.857	14.429	0.154	0.127	1.633	1.633	1.070	0.446	0.981		N.L. (1)
502.5	15	28	3.67	74.3	28 28	44	16	0.137	1.898	41.343	54.611	0.351	0.137	1.976	1.976	1.029	0.976	0.974		N.L. (1)
497.5	20	25	4.28	43	10	24	12	0.077	2.283	34.106	45.928	0.252	0.077	2.361	2.517	0.958	0.651	0.954		N.L. (3)
492.5	25	30	4.89	43	10	24	12	0.079	2.678	39.519	52.423	0.329	0.079	2.756	3,224	0.900	0.801	0.925		N.L. (3)
490	27.5	32		43	10	24	13	0.071	2.855	41.321	54.586	0.351	0.071	2.933	3.557	0.878	0.832	0.906	1	N.L. (3)
487.5	30	22		3.4			12	0.068	3.025 .	25.685	25.685	0.306	0.068	3.103	3.883	0.882	0.729	0.884	1	N.L. (3)
482.5	35	75	6.93	73.2	7	20	14	0.084	3.445	90.074	113.088	0.820	0.084	3.523	4.615	0.816	1.808	0.834	1	N.L. (3)
477.5	40	59	6.11	73.2	7	20	21	0.082	3.855	66.735	85.083	0.606	0.082	3.933	5.337	0.781	1.278	0.777		N.L. (3)
470	47.5	22	2.24	90			15	0.069	4.373	20.503	29.603	0.442	0.069	4.451	6.323	0.769	0.919	0.696	0.130	7.069 (D)
465	52.5	98	7.33	90			21 -	0.084	4.793	97.878	122.453	0.891	0.084	4.871	7.055	0.717	1.725	0.653	0.125	N.L. (3)
1																				

1/1/2

*FACTOR OF SAFETY DESCRIPTIONS N.L. (1) = NOT LIQUEFIABLE, ABOVE EQ GROUND WATER ELEVATION N.L. (2) = NOT LIQUEFIABLE, PI \geq 12 & w_q/LL \leq 0.85 N.L. (3) = NOT LIQUEFIABLE, (N,)₆₀ > 25 (C) = CONTRACTIVE SOIL TYPES (D) = DILATIVE SOIL TYPES

SETTLEMENT ANALYSIS

Modified on 1/31/05

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

_____ DEPTH TO WATER TABLE (below surf. of exist. embank. or exist. rectang. surch.) ==:

NEW EMBANKMENT:

10

-20

-30

-40

-50

- 1 (1=ENGLISH, 2=METRIC)
- 1 (1=bridge cone, 2=continuous embankment, 3=rectangular)
- 4 FT.

120 PCF.

0.7 FT.

47.167 FT. WHICH WOULD BE A 3.0:1 SIDE SLOPE 51.3 FT. 0 FT.

PROPOSED LENGTH OF EMBANK. OR SURCHARGE (RECTANGULAR ONLY) EXISTING EMBANKMENT (IF ANY):

NEW EMBANKMENT FILL UNIT WEIGHT =======

WIDTH AT BASE -----EXISTING LENGTH OF EMBANK. OR SURCHARGE (RECTANGULAR ONLY) ==

PCF.	۰.
FT.	
FT.	
FT.	WHICH WOUL
FT	

<u>0.16 IN</u>

٠	•	
	WHICH WOULD BE A 0.0:1	SIDE SLOPE

						PRESSURE	INVITIAL	COMPRESSION	LAYER
	LAYER	TOTAL	UNCONFINED	MOIST.	OVERBURDEN	PRESSURE	INITIAL		
	THICK	UNIT WT.	COMP. STR.	CONTENT	PRESSURE	INCREASE	VOID	INDEX, Cc	SETTLEMENT
	(FT.)	(PCF.)	(TSF.)	(%)	(KSF.)	(KSF.)	RATIO		(IN.)
1	2.5	120	0.77	25	0.150	0.067	0.675	0.030	0.09
	2.5	120	1.16	25	0.450	0.052	0.675	0.025	0.02
	2.5	120	1.55	29	0.610	0.048	0.783	0.025	0.01
	3.0	120	1.94	22	0.768	0.045	0.594	0.011	0.01
	3.0	120	2.65	23	0.941	0.043	0.621	0.000	0.00
	3.0	120	1.55	21	1,114	0.042	0.567	0.014	0.01
	5.3	120	4.28	11	1.354	0.039	0.297	0.000	0.00
	5.3	120	4.69	11	1.661	0.036	0.297	0.000	0.00
	5.3	120	5.09	11	1.968	0.033	0.297	0.000	0.00
	7.3	120	0.00	13	2.330	0.029	0.351	0.027	0.01
			0.00	17	2.747	0.026	0.459	0.063	0.02
	7.3	120	0.00	17	1 2.141		1 0.400		AS
									SOIL

TOTAL SETTLEMENT UNDER CENTER OF EARTH EMBANKMENT =

SSUMPTIONS: SOIL IS NORMALLY CONSOLIDATED SOIL IS SATURATED

Eo=2.7*(MOIST CONT.%)/100 Cc=0.009*(LL-10) LL=MOIST CONT.% SOIL HAS A LOW SENSITIVITY

	EMBANKMENT AND SC	DILPROFILE	
· · · ·		· (·) ,	
	PROPOSED EMBANKMT 0 7 ET		
	SETTLEMENTED.09 INCHES		
	SETTLEMENT=0.02 INCHES		
	SETTLEMENT=0.01 INCHES		
	SETTLEMENT=0.01 INCHES		
	· ·		
	SETTLEMENT=0.01 INCHES		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		· ·	
· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·	
	SETTLEMENT=0.01 INCHES		
·			
	SETTLEMENT=0.02 INCHES		
		TOTAL SETTLEMENT=0.16 INCHES	

SETTLEMENT ANALYSIS

Modified on 1/31/05

METRIC OR ENGLISH =============	
TYPE OF SURCHARGE ====================================	
DEPTH TO WATER TABLE (below surf. of	exist. embank. or exist. rectang. surch.) ==

NEW EMBANKMENT:

EXISTING EMBANKMENT (IF ANY):

 1 (1=ENGLISH, 2=METRIC)

1 (1=bridge cone, 2=continuous embankment, 3=rectangular)

120 PCF.

17.5 FT.

- 0.7 FT.
- 47,167 FT.

51.3 FT. WHICH WOULD BE A 3.0:1 SIDE SLOPE 0 FT.

PCF. FT. FT.

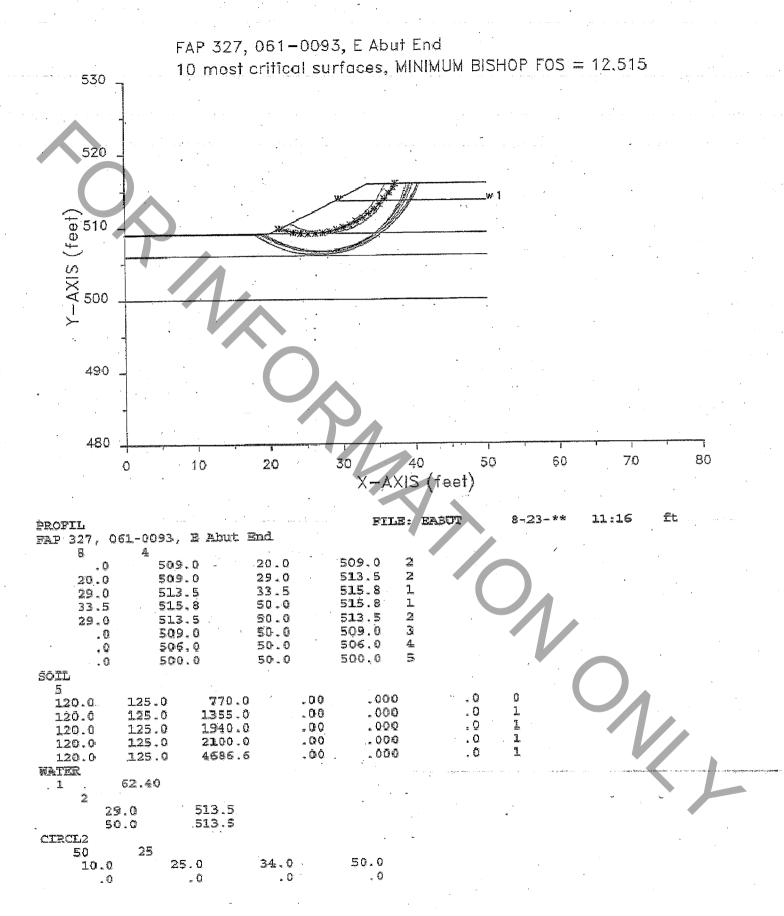
0.12 IN

FT. WHICH WOULD BE A 0.0:1 SIDE SLOPE

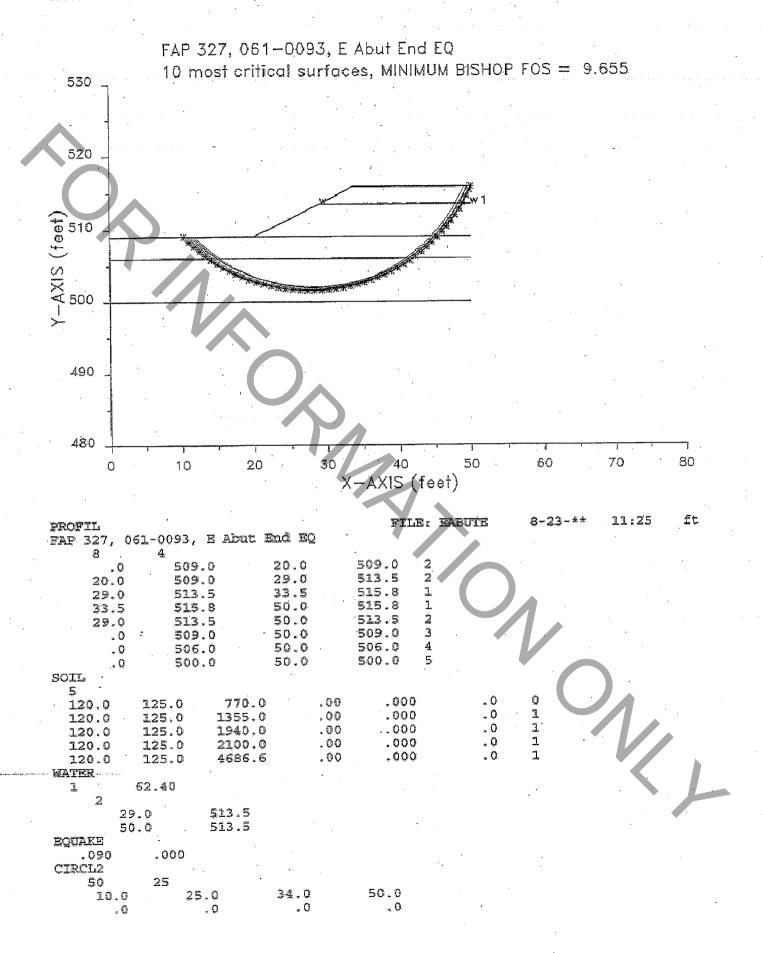
FT.

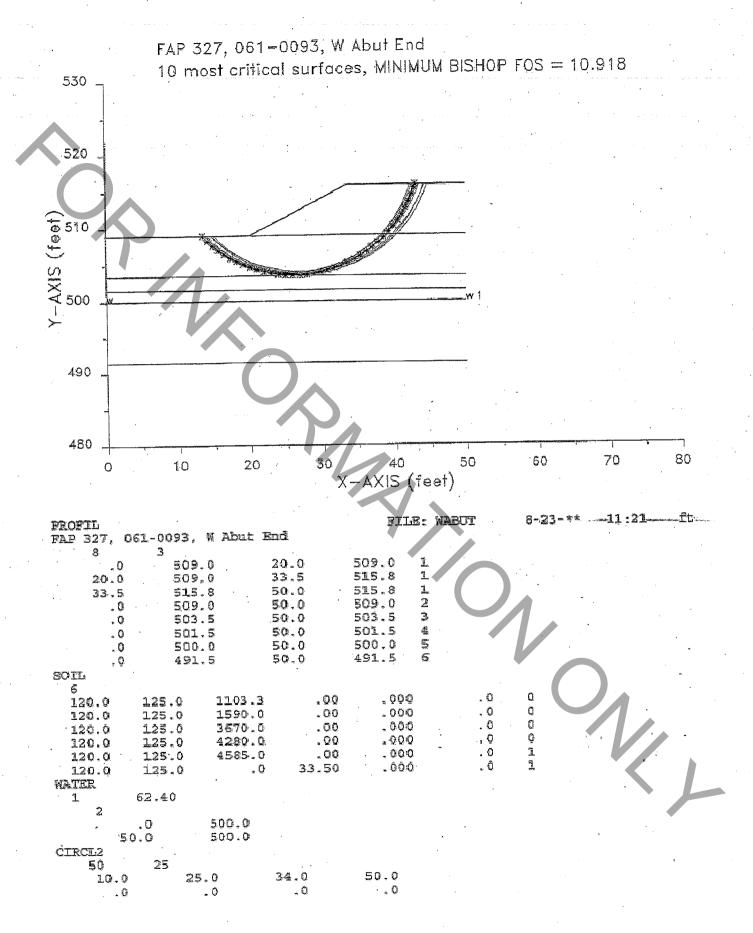
•									
	LAYER	TOTAL	UNCONFINED	MOIST.	OVERBURDEN	PRESSURE	INITIAL	COMPRESSION	LAYER
	THICK	UNIT WT.	COMP. STR.	CONTENT	PRESSURE	INCREASE	VOID	INDEX, Cc	SETTLEMENT
	(FT.)	(PCF.)	(TSF.)	(%)	(KSF.)	(KSF.)	RATIO		(IN.)
-	2.8	120	1.02	23	0.170	0.065	0.621	0.023	0.07
	2.8	120	0.97	26	0.509	0.051	0.702	0.029	0.02
	2.8	120	1.32	25	0.849	0.047	0.675	0.023	0.01
	2.5	120	1.63	28	1.169	0.045	0.756	0.022	0.01
	2.5	120	1.55	24	1.469	0.043	0.648	0.018	0.00
	2.5	120	3.67	16	1.769	0.042	0.432	0.000	0.00
	5.3	120	4.28	12	2.164	0.039	0.324	0.000	0.00
	5.3	120	4.89	12	2.467	0.036	0.324	0.000	0.00
	2.5	120	0.00	13	2.690	0.034	0.351	0.027	0.00
	5.5	120	0.00	12	2.920	0.032	0.324	0.018	0.00
	12.5	120	6.52	17.5	3.439	0.027	0.473	0.000	0.00
					•		•		AS

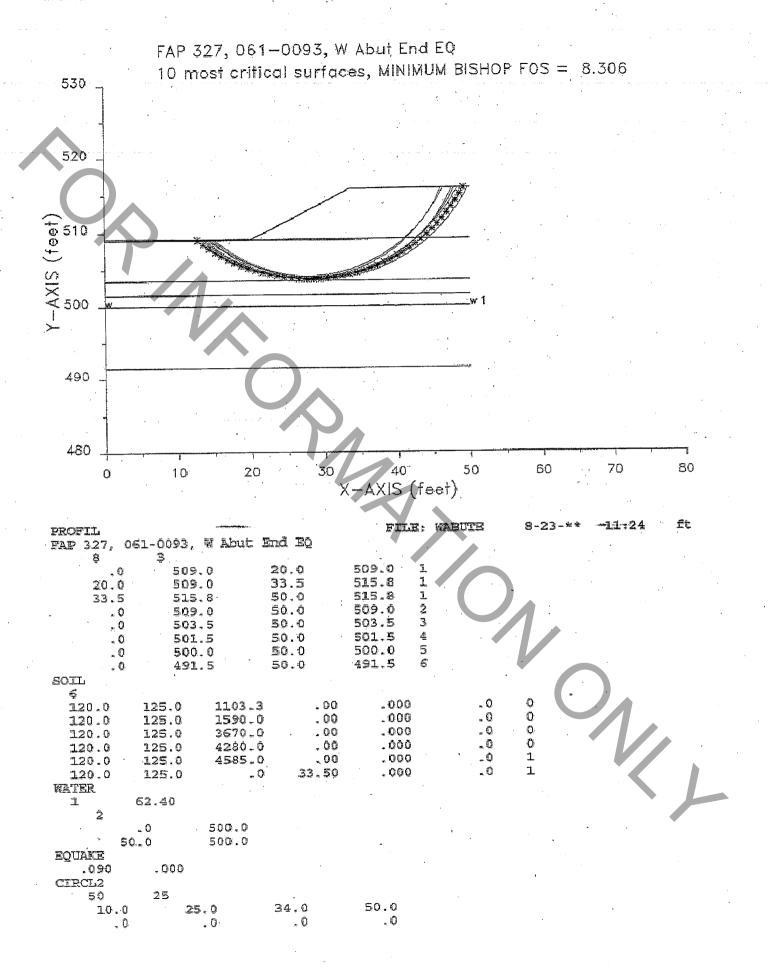
TOTAL SETTLEMENT UNDER CENTER OF EARTH EMBANKMENT =


ASSUMPTIONS:

SOIL IS NORMALLY CONSOLIDATED SOIL IS SATURATED Eo=2.7*(MOIST CONT.%)/100 Cc=0.009*(LL-10) LL=MOIST CONT.% SOIL HAS A LOW SENSITIVITY


EMBANKMENT AND SOIL PROFILE


•	PROPOSED EMBANKMT 0.7 FT		
0 -	SETTLEMENT=0.07 INCHES		
-	SETTLEMENT=0.02 INCHES		
-	SETTLEMENT=0.01 INCHES		
-10	SETTLEMENT=0.01 INCHES		
	SETTLEMENT=0.00 INCHES		<u> </u>
•			-/, -
-20	need agent to a second		
-			` <
•	SETTLEMENT=0.00 INCHES		
-30	SETTLEMENT=0.00 INCHES		
•		· · ·	
-40			
		TOTAL SETTLEMENT=0.12 INCHES	•


-50

EABUT

MODIFIED IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

SUBSTRUCTURE====================================	ut 1	MAX. REQUIRED	BEARING & RESIS	STANCE for Selected Pile	, Soil Profile, & Losses
GROUND SURFACE ELEV, AT BORING ====================================	.FT	Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
PILE CUTOFF ELEV. ====================================	FT.			Resistance Available in Boring	
GROUND SURFACE ELEV, AGAINST PILE DURING DRIV 512.77	FT.	418 KIPS	405 KIPS	223 KIPS	30 FT.
GROUND WATER ELEVATION====================================	FT.			· · · · · · · · ·	
	3 %				
LRFD or ASD or SEISMIC ====================================)				
	KIDO				
	KIPS				
TOTAL WIDTH OF SUBSTRUCTURE ====================================	F1.				
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE == 1	- 407 53 1/100				
Approx. Factored Loading Applied per pile at 8 ft. Cts ====	= 107.03 KIPS				
Approx. Factored Loading Applied per pile at 3 ft. Cts ====	- 02.02 NFS	1			
PILE TYPE AND SIZE ====================================	3				
Pile Pile Perimeter===================================		rimeter========	5.800 FT.		
Plugged Pile End Bearing Area===== 0.983 SQFT.	Unplugged Pile En	d Bearing Area====	0.108 SQFT.		
Plugged Plie Ella Deaning Plicate Control Call Pl					
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) : Non	e	•			
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ======= N/A	FT.				
TOP ELEV. OF LIQUEF. (so layers above apply DD) ===== N/A	FT.	•			

									•			· ·			
BOT.										010		FACTORED	FACTORED		
OF		UNCONF.	S.P.T.	GRANULAR	NO	MINAL PLU	GGED	NON	INAL UNPLU	GD	NOMINAL.	GEOTECH.	GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)		(KIPS)	(KJPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
511.00	1.77	1.16	7		11.2		25.5	16.4		18.0	18	0	0	10	3
509.00	2.00	1.55	7		15.6	14.3	44.7	22.9	1.6	41.2	41 '	0	0	23	5
507.50	1.50	1.94	11	-	13.6	17.9	58.3	19.9	2.0	61.2	58	0	0	32	6
506.00	1.50	1.94	11		13.6	17.9	78.5	19.9	2.0	81.8	78	0	0	43	8
504.50	1.50	2.65	13		16.7	24.4	95.2	24.4	2.7	106.2	95	0	0	52	9
503.00	1.50	2.65	13		16.7	24.4	101.8	24.4	2.7	129.5	102	0	0	56	11 12
501.50	1.50	1.55	7		11.7	14.3	113.5	17.1	1.6	146.7	114	0	0.	62 94	12
500.00	1.50	1.55	7		11.7	14.3	195.7	17.1	1.6	171.5	172	0 .	0	94	14
498.67	1.33		34	Hard Till	5.9	84.7	199.7	8.7	9.3	180.0	180	0	0	104	16
497.34	1.33		34 ·	Hard Till	5.7	82.8	203.6	8.4	9.1 ·	188.2	188	0	0	104	18
496.01	1.33		34	Hard Till	5.6	81.0	207.3	8.1	8.9	196.1	196	-		108	19
494.67	1.34		34	Hard Till	5.4		293.8	7.9	8.7	212.9	213	0	0	131	20
493.34	1.33		70	Hard Till	17.5	160.1	309.4	25.6	17.5	238.3	238 263			145	22
492.01	1.33		70	Hard Till	17.2	158.3	322.9	25.1	17.3	263.0 286.8	283	.0	· 0	158	23
490.68	1.33		70	Hard Till	16.4	154.6	337.5	24.0	16.9	310.9	311	0	ő	171	24
489.34	1.34	1	70	Hard Till	16.2	152.8	357.4	23.7	17.1	335.2	335	0.	. 0	184	26
488.01	1.33	1	73	Hard Till	16.8	156.5	372.3	24.6 24.0	16.9	358.9	359	ő	ŏ	197	27
486.68	1.33		73	Hard Till	16.4	154.6 150.9	385.1 398.9	24.0	16.5	381.6	382	0	ŏ	210	28
485.35	1.33		73	Hard Till	15.7	149.1	421.9	22.8	16.3	405.2	405	ŏ	0	223	30
484.00	1.35		73	Hard Till	15.6	149.1	441.1	33.5	17.1	438.3	438	Ð	. 0	241	-32
482.19	1.81		78	Hard Till	22.9 21.9	150.5	461.2	32.0	16.7	470.1	461	0		254	-33
480.38	1.81		78	Hard Till	21.9	152.8	478.9	31.3	16.5	501.0	479	Q	Ð	- 263	- 35
478.56	1.81		78	Hard Till	21.4	147.3	470.5	29.9	16.1	525.7	452	\$	e e	248	37
476.75	1.81		78	Hard Till Hard Till	10.4	99.4	460.0	15.1	10.9	540.6	469	Ð	, e	253	-39
474.94	1.81		53 53	Hard Till	10.4	97.6	468.2	14.7	10.7	555.1	468	Q	Ð	258	41
473.13	1		53	Hard Till	9.7	95.7	476.1	14.3	10.5	569.2	476	Ð	φ	-262	42
471.31	1.81		53	Hard Till	9.5	93.9	514.4	13.8	10.3	586.2	514	Q	Ð	-283	44
469.50	1.81		,00	Shale	49.5	122.7	563.9	72.4	13.4	658.6	564	9	Ð	310	45.3
468.50	1		1	Shale	49.5	122.7	613.4	72.4	13.4	730.9	643	θ	Q	-337	46.3
467.50 466.50				Shale	49.5	122.7	540.2	72.4	13.4	789.9	540	e e	Q	297	47.3
465.00		1		Stidle	-0.0	0.0			0.0						
400.00	1.00				1								ľ		
			l				ļ	l	1]	I		1		

METHOD OF ESTIMATING PILE LENGTH STATIC IDOT MODIFIED Modified 5/3/2010 I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

SUBSTR	RUCTUR	(E=======					HONS AND			BEARIN	RESIS	STANCE for S	elected Pile	. Soil Profile	& Loss <u>es</u>
REFERE GROUN PILE CU	NCE BO D SURF	ORING ===: ACE ELEV.	AT BOR	 ING ====================================	2 517.50 513.77	FT. FT.	··. · · ·	Maximun	n Nominal aring of <u>Pile</u>	Maximur Req.d Bea	n Nominal	Maximum Resistance Avai 189	Factored lable in <u>Boring</u>	Maxim	um Pile Igth in <u>Boring</u>
GROUN HAMME	D WATE	ER ELEVAT	ION==== =========	T PILE DURING DRIV	512.// 500.00 73 LRFD	FT. FT. %	· L	410	KIPS	343		100	KIFO .		· · ·
TOTAL I	ACTOR		RUCTUF	RE LOAD ====================================	988	KIPS FT.					•				
IUMBE	R OF RO	DWS OF PI	LES PER	SUBSTRUCTURE == oplied per pile at 8 ft. C oplied per pile at 3 ft. C	1 ts =====	167.53	KIPS KIPS								
PILE TY	PE AND Plugged) SIZE ==== I Pile Perime	 eter=	Steel HP	12 X 53 FT.	Unpluga	ed Pile Per ed Pile Enc	imeter==		= 5.800 - 0.108	FT.	.*			
GEOTE	CHNICA	I Pile End B	PE (None	ea======: 0.983 e, Scour, Liquef., DD) = ;F., or DD ===========	None	FT.	ed Pile End	Deaning	Alea	. 0.100					
OP EL	EV. OF	LIQUEF. (so	o layers a	bove apply DD) ====	N/A	FT.	۰. 								
BOT. OF		UNCONF.	S.P.T.	GRANULAR OR ROCK LAYER	NOI	MINAL PLU	GGED TOTAL	NON	INAL UNPL	UG'D TOTAL	NOMINAL REQ'D	FACTORED GEOTECH. LOSS FROM	FACTORED GEOTECH. LOSS LOAD	FACTORED RESISTANCE	ESTIMATEL PILE
LAYER ELEV. (FT.)	LAYER THICK. (FT.)	COMPR. STRENGTH (TSF.)	N VALUE (BLOWS)	DESCRIPTION	RESIST. (KIPS) 10.4	RESIST. (KIPS)	RESIST. (KIPS) 22.5	RESIST. (KIPS) 15.2	RESIST. (KIPS)	RESIST. (KIPS) 16.5	BEARING (KIPS) 17	SCOUR or DD (KIPS) 0	FROM DD (KIPS) 0	AVAILABLE (KIPS) 9	LENGTH (FT.) 3
510.89 509.00 507.75 506.50	1.89 1.89 1.25 1.25	0.97 1.32 1.63 1.63	7 7 7 7		13.2 10.1 10.1	12.1 15.0 15.0	38.6 48.7 58.1	19.3 14.8 14.8	1.3 1.6 1.6	36.1 50.9 65.6	36 49 58	0 0 0	0 0 0	20 27 32	5 6 7
505.25 504.00 502.75	1.25 1.25 1.25	1.55 1.55 3.67	6 6 28		9.8 9.8 17.6	14.3 14.3 33.8	67.8 97.1 114.7	. 14.3 14.3 25.8	1.6 1.6 3.7	79.9 96.3 122.1	68 96 115 138	0 0 0	0 0 0	37 53 63 76	9 10 11 12
501.50 500.25 499.00 497.75	1.25 1.25 1.25 1.25	3.67 4.28 4.28 4.28	28 25 25 25		17.6 19.9 19.9 19.9	33.8 39.4 39.4 39.4	138.0 157.9 177.7 197.6	25.8 29.0 29.0 29.0	3.7 4.3 4.3 4.3	148.5 177.5 206.5 235.6	158 178 198	0 0	0	87 98 109	14 15 16
496.50 495.25 494.00	1.25 1.25 1.25	4.28 4.89 4.89	25 30 30		19.9 20.7 20.7	39.4 45.0 45.0	223.0 243.7 264.3 285.0	29.0 30.2 30.2 30.2	4.3 4.9 4.9 4.9	265.2 295.4 325.6 355.8	223 244 264 285	0 0 0		123 134 145 157	17 19 20 21
492.75 491.50 490.00 488.50	1.25 1.25 1.50 1.50	4.89 4.89	30 30 32 32	Very Fine Silty Sand Very Fine Silty Sand	20.7 20.7 6.5 6.2	45.0 45.0 62.6 60.7	323.2 327.8 354.3	30.2 9.4 9.1	4.9 6.8 6.6	387.9 397.2 408.5	323 328 354	0 0	0 0	178 180 195	22 24 25 27
487.13 485.75 484.38 483.00	1.38 1.38 1.38 1.38		32 22 22 22	Medium Sand Medium Sand Medium Sand	7.2 4.4 4.4 4.4	81.0 54.0 54.0 54.0	334.5 338.9 343.3 428.0	10.5 6.4 6.4 6.4	8.9 5.9 5.9 5.9	416.1 422.5 428.9 444.1	335 339 343 428	0 0 0	0 0 0 0	184 186 189 235	27 28 29 34
481.44 479.88 478.31	1.56 1.56 1.56		75 75 75	Hard Till Hard Till Hard Till	14.9 14.6 14.2	134.4 132.5 130.7	441.1 453.9 466.3	21.9 21.3 20.8 20.3	14.7 14.5 14.3 14.1	465.7 486.9 507.5 524.7	441 454 466 453	0 0 0	0 0 0 0	243 250 256 249	32 3 4 3 5 3 7
476.75 475.19 473.63 472.06	1.56 1.56 1.56 1.56		75 59 59 59	Hard Till Hard Till Hard Till Hard Till	13.9 9.2 8.9 8.7	128.9 101.2 99.4 97.6	452.5 459.9 467.0 475.6	13.4 13.1 12.7	11.1 10.9 10.7	538.0 550.8 563.5	460 467 476	Ф Ф	0 0 0 0	253 257 262 280	39 40 42 43
470.50 469.50 468.50 467.50	1.56 1.00 1.00 1.00		59	Hard Till Shale Shale Shale	8.7 49.5 49.5	97.6 122.7 122.7 122.7	509.4 559.0 608.5	12.7 72.4 72.4	10.7 13.4 13.4 13.4	578.9 651.3 723.7	509 559 608	0 0 0	9 9	200 307 335	44.3 ± 45.3
	· ·	!			1	1		I	l	1	1	I	l	1	

Brubaker Creek TSL Design Forces

Wind Load to Superstructure 7 kips per abutment Transverse Wind Load to Substructure from Superstructure 6 kips per abutment Transverse 2 kips per abutment Longitudinal Wind Load Applied Directly to the Substructure 19 kips per abutment Longitudinal Transverse 1 kips per abutment Wind Load from Vehicles 3 kips per abutment Transverse 1 kips per abutment Longitudinal

Braking Force

18 kips per abutment

3 kips per abutment

0 kips per abutment

Stream Pressure

Longitudinal Transverse

Seismic Forces

215 kips per abutment

,		1				
Factored Vertical Loads -		· · · · · · · · · · · · · · · · · · ·	مضما متطلم المحملات	I reaction timps	act only no lat	aral loans
m to mail Variant Londo	Dor Abutmar	nt includes dea	d loads, live load	пеаснон тнира	LUCE OHIN, HO HO	ciu iouuo
Factored Vertical Ludus		IL MOIGGOO GOG	a loudo, nie loud			
	N. C.	and the second se	the second s		a	•

	Gamma	DC kips	Gamma	DW kips	Factor	LL+IM kips	Total (kips)
Strength 1	1.25	491	1.5	46.2	1.75	172.4	984.75
Strength 2	1.25	491	.1.5	46.2	1.35	172.4	915.79
Strength 3	1.25	491	1.5	46.2	-	-	683.05
Strength 4	1.25	491	1.5	46.2	· _	-	683.05
Strength 5	1.25	491	1.5	46.2	1.35	172.4	915.79
Service 1	1	491	1	46.2	1	172.4	709.6
0 feet of pie	f contraction sco er scour (no pier essure flow scou	s)					