

		٦
INDEX OF	STRUCTURAL SHEETS	2
1.) General Plan	and Elevation	
2.) General Data 3.) Staging Deta	ı IIIS	Se 14
4.) Temporary C 5.) West Abutme	oncrete Barrier ent Removal Details	
6.) Pier #1 Rem 7.) Pier #2 Rei	ioval Details moval Details	
8.) East Abutme	int Removal Details Soil Resention System and Temporary Shoet Billing	1 - A.
10.) Top of Slab	Elevations System and remporary sheet rining	
12.) Top of East	Approach Slab Elevations	1.0
13.) Superstructu 14.) Superstructu	ire Details	(1940) (1944) 42
15.) Diaphragm D 16.) West Bridge	efalis Approach Slab Details	- e
17.) East Bridge 18-19.) Structural S	Approach Slab Details teel Details	-
20.) Bearing Deto 21) West Abutme	ills	1.0
22.) West Abutme	nt Details	
24.) East Abutme	nt Details	1
26.) MSE Wall De	tails - Northwest tails - Southwest	
27.) MSE Wall De 28.) Pier #1 Det	Talis-Southeast jils	
29.) Pier #2 Det 30.) Bar Splicer	ails Assembly and Mechanical Splicer Details	
31.) Cantilever Fo	orming Brackets Inas	5 - B
33-37.) Existing Plan	15	
A		
	\$ 2 ⁴ 2 ⁴ 2 ⁵ 2 ⁵ 2 ⁵	
		a na h
BY	* ** ***	
-00-BR 120K F	PERMIT TRUCK CONFIGURATION	
ON 20+00		S. 19
	LOADING AL-95 &	
TERING Allow	50#/sa. ft. for future wearing surface.	
5001	DESIGN SPECIFICATIONS	1. 1. 1.
me Plate. Design in Specific	accordance with AASHTO LRFD Bridge Design ations 6th Ed. with 2013 Interim Revisions	
-101e S.	SEISMIC DATA	
Decise See	Seismic Performance Zone (SPZ) = 1	
Design Spe	ctral Acceleration at 0.2 sec. $(S_{DI}) = 0.095 \text{ g}$	1 -
	DESIGN STRECTOSS = D	
, F	FIELD UNITS (NEW CONSTRUCTION)	1
	f'c = 3,500 psi	
	ry = 50,000 psi (structural Steel) fy = 60,000 psi (Reinforcement)	1.5
<u>F1</u>	ELD UNITS (EXIST. CONSTRUCTION)	
. <i>M</i> .	fy = 60.000 psi (Reinforcement)	
é.		
SENE	RAL PLAN AND FLEVATION	
CATON FA	ARM ROAD OVER DUPAGE RIVER	1 m. 1
	F.A.U. ROUTE 292	. °
	SEC. 09-00425-00-RR	
CITY O	F JOLIET STATION 20+00.00	
TCH ST	TRUCTURE NO. 099-3323	1.4
		2.0
	RTE. SECTION COUNTY IOTAL SHEETS NO. 292 09-00425-00-BR WILL TB 24	
EETS	WHA= 1304D14 CONTRACT NO. 61B98	1.0

GENERAL NOTES:

Fasteners shall be ASTM A325 Type 3, mechanically galvanized bolts, Bolts 7_8 " ϕ , holes $^{15}_{16}$ " ϕ , unless otherwise noted.

Calculated weight of Structural Steel = 172,470 lbs.

All structural steel shall be AASHTO M 270 Grade 50.

All structural steel shall be galvanized per ASTM A123/A123M-13 and AASHTO M111. See Special Provisions for Hot-Dip Galvanizing for Structural Steel.

Painting of galvanized structural steel is NOT specified for this project.

No field welding is permitted except as specified in the contract documents.

Reinforcement bars designated (E) shall be epoxy coated.

If the Contractor elects to use cantilever forming brackets on the exterior beams or girders, the brackets shall be placed at the same locations as required for the hardwood blocks in Article 503.06(b) of the Standard Specifications. If additional cantilever forming brackets are required, hardwood blocking shall be wedged between the exterior and first interior beam at each of these additional bracket locations.

Bearing seat surfaces shall be constructed or adjusted to the designated elevations within a tolerance of ${}^{l}_{B}$ " (0.01'). Adjustment shall be made either by grinding the surface or by shimming the bearings.

Existing vertical reinforcement shall be cleaned and incorporated into the new construction. Cost included with Concrete Removal. See Special Provisions

Plan dimensions and details relative to existing plans are subject to nominal construction variations. The Contractor shall field verify existing dimensions and details affecting new construction and make necessary approved adjustments prior to construction or ordering of materials. Such variations shall not be cause for additional compensation for a change in scope of the work, however, the Contractor will be paid for the quantity actually furnished at the unit price bid for the work.

The work governed by this contract includes no discharge or fill into the Waters of the United States and disturbs no wetlands. The Contractor shall obtain permit(s) for any work to be performed in-stream that is not included in these plans or special provisions.

Concrete Removal of the existing abutments and piers shall be executed with the use of defined saw cuts. The use of drilling or other means of pier splitting shall not be allowed. The Contractor's Structural Assessment Report for Means and Methods shall define the removal line appropriately and provide a method that employs the use of saw cutting.

The existing piers and abutments below the proposed removal lines shall remain in place during Stage I and II Construction. The Contractor may substitute a temporary support system to facilitate construction. The use of a temporary system shall be executed according to the General Bridge Specifications Standard Assessment Report for Contractors means and methods.

The Contractor is advised that the existing structure contains prestressed precast deck beams that are in a deteriorated condition with reduced load carrying capacity. It is the Contractor's responsibility to account for the condition of the existing structure when developing construction procedures for the complete or partial removal, or replacement of the structure. An Existing Structure Information Package is available upon request as noted in the Special Provisions.

The Contractor shall retain the services of an Engineering Firm, pre qualified in the IDOT consultant selection category of Highway Bridges (Advanced Typical), for preparation of the Structural Assessment Report. Contractor's preapproval shall not be applicable for the project. See Special Provisions.

Current Ratings on File for Existing Structure

Inventory: HS 7.0 Operatina: HS 11.7 Live Load Restrictions: 18 Tons Inventory and Operating Ratings are provided for information only. Inventory and Operating Ratings are based on HS loading and configuration. The Ratings are not necessarily representative of capacities to support the Contractor's eauipment.

<u>BILL OF MATERIAL - BRIDGE</u>										
ITEM	UNIT	SUPER.	SUB.	TOTAL						
Removal Of Existing Superstructures	Each	1		1						
Concrete Removal	Cu. Yd.	76.0		76.0						
Structure Excavation	Cu. Yd.		341.4	341,4						
Floor Drains	Each	16		16						
Concrete Structures	Cu. Yd.		133.2	133.2						
Concrete Superstructure	Cu. Yd.	469.3		469.3						
Bridge Deck Grooving	Sq. Yd.	1,273		1,273						
Protective Coat	Sq. Yd.	1,465		1,465						
Furnishing And Erecting Structural Steel	L. Sum	1		1						
Stud Shear Connectors	Each	4,992		4,992						
Reinforcement Bars, Epoxy Coated	Pound	118,040	17,620	135,660						
Bar Splicers	Each	702	<i>152</i>	854						
Name Plates	Each	1		1						
Elastomeric Bearing Assembly, Type I	Each	16		16						
Anchor Bolts, ³ 4"	Each	64		64						
Epoxy Crack Injection	Foot		131	131						
Geocomposite Wall Drain	Sq. Yd.		76	76						
Granular Backfill For Structures	Cu. Yd.		<i>151</i> .5	151.5						
Structural Repair Of Concrete (Depth Equal	Sa Et		537.0	537.0						
To Or Less Than 5 Inches)	54. 11.		557.0	557.0						
Temporary Sheet Piling	Sq. Ft.		1,150	1,150						
Mechanically Stabilized Earth Retaining Wall	Sq. Ft.		1,075	1,075						
Pipe Underdrains For Structures 4"	Foot		118	118						
Temporary Soil Retention System	Sq. Ft.		120	120						

*See Special Provisions

WILLETT HOFMANN	DESIGNED - PETER PASCUA	REVISED -			F.A.U. SECTION	со	DUNTY TO	TAL SHEET
& A S S O C I A T F S I S C	CHECKED - BRIAN CONVERSE	REVISED -	STATE OF ILLINOIS		292 09-00425-00	-BR W	WILL 7	78 25
ENGINEERING ARCHITECTURE LAND SURVEYING	DRAWN - RON ALLEN	REVISED -	DEPARTMENT OF TRANSPORTATION		WHA# 1304D14	СС	ONTRACT N	10. 61B98
T: 815-284-3381 DESIGN FIRM: #184-000918	CHECKED - BRIAN CONVERSE	REVISED -		STRUCTURAL SHEET NO. 2 OF 37 SHEETS	ILLIN	DIS FED. AID PRO.	JECT BHM-900)3(658)

BILL	0F	MATERIAL	-	BRIDGE

GENERAL DATA CATON FARM ROAD OVER DUPAGE RIVER F.A.U. ROUTE 292 SEC. 09-00425-00-BR CITY OF JOLIET STATION 20+00.00 STRUCTURE NO. 099-3323

1. Execute Stage I Traffic Plan & Relocate/Brace Utilities as required 2. Install Temporary Sheet Piling and Temporary Soil Retention System 3. Remove Existing PPC Deck Beams 1-8 ,North Parapet, and Portions of Existing Wingwalls/Abutments/Piers 4. Repair Spalled Vertical Faces of Abutments and Piers 5. Construct Proposed Abutments, Piers, MSE Walls, and Install Proposed Bearings at Piers and Abutments

	WILLETT HOFMANN	DESIGNED - PETER PASCUA	REVISED -		STAGING DETAILS	F.A.U. RTE.	SECTION	COUNTY	TOTAL	SHEET NO.
& A S S O C I A T F S I N C ENGINEERING ARCHITECTURE LAND SURVEYING 809 EAST XND STREET, DIXON, U.61021-0367 T.815-284-3381 DESIGN FIRM: #184-000018	CHECKED - BRIAN CONVERSE DRAWN - RON ALLEN	REVISED - REVISED -	STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 099–3323	292	09-00425-00-BR	WILL	78 77 NO E	26	
	809 EAST 2ND STREET, DIXON, IL 61021-0367 T: 815-284-3381 DESIGN FIRM: #184-000918	CHECKED - BRIAN CONVERSE	REVISED -		STRUCTURAL SHEET NO. 3 OF 37 SHEETS		ILLINOIS FED.	AID PROJECT BHN	M-9003(658)	10.50

CTURE		SECTION			COUNTY		TOTAL SHEETS	SHEET NO.
000_3323		09-00425-00-BR			WILL		78	36
033-3323		WHA# 1304	D14		CONTR	RAC	T NO.	61B98
3 OF 37 SHEETS			ILLINOIS	FED. 4	AID PROJECT	BHM	-9003(658)

SUPE	- 85	TRUCTURE
<u>BILL</u>	0F	MATERIAL

Bar No. Size Length Shape $a(E)$ 338 #5 $25'-1"$					
$a(E)$ 338 #5 $25' \cdot 1"$	Bar	No.	Size	Length	Shape
$a_1(E)$ 214 #5 $25' \cdot 1"$	a(E)	338	#5	25′-1″	
$a_2(E)$ 338 #5 $29' - 3"$	a1(E)	214	#5	25′-1″	
$a_3(E)$ 214 #5 $29'-3"$	a2(E)	338	#5	29'-3"	
$a_4(E)$ 676 #6 $6'-6"$	a3(F)	214	#5	29'-3"	
$b(E)$ 360 #5 $30'-10"$ $b_1(E)$ 112 #6 $35'-0"$ $b_2(E)$ 245 #6 $36'-10"$ $b_2(E)$ 245 #6 $36'-10"$ $d(E)$ 370 #5 $5'-7"$ $d_1(E)$ 370 #5 $5'-7"$ $d_1(E)$ 370 #5 $8'-4"$ $e(E)$ 84 #4 $15'-7"$ $e_1(E)$ 56 #4 $8'-3"$ $e_2(E)$ 28 #4 $19'-2"$ $e_3(E)$ 4 #8 $47'-6"$ $e_4(E)$ 8 #8 $8'-4"$ $e_6(E)$ 4 #4 $47'-6"$ $e_6(E)$ 2 #8 $38'-8"$ $e_6(E)$ 2 #4 $38'-8"$ $m(E)$ 12 #6 $25'-3"$ $m_1(E)$ 12 #6 $29'-3"$ $m_2(E)$ 28 #6 $6'-6"$ $m_3(E)$ 8 #6 $3'-4"$ $m_4(E)$ 32 #5 <td>04(F)</td> <td>676</td> <td>#6</td> <td>6'-6"</td> <td></td>	04(F)	676	#6	6'-6"	
b(E) 360 #5 30'-10"	<u>u, (2)</u>	0.0			
$b_1(E)$ 112 #6 $35' \cdot 0"$ $b_2(E)$ 245 #6 $36' \cdot 10"$ $d(E)$ 370 #5 $5' \cdot 7"$ Λ $d(E)$ 370 #5 $8' \cdot 4"$ Λ $e(E)$ 84 #4 $15' \cdot 7"$ Λ $e(E)$ 84 #4 $19' \cdot 2"$ Λ $e(E)$ 28 #4 $19' \cdot 2"$ Λ $e_1(E)$ 56 #4 $8' \cdot 3"$ Λ $e_1(E)$ 56 #4 $8' - 4"$ Λ $e_1(E)$ 56 #4 $8' - 4"$ Λ $e_1(E)$ 28 #4 $19' \cdot 2"$ Λ $e_3(E)$ 2 #8 $38' \cdot 8"$ Λ $e_1(E)$ 8 #4 $8' - 4"$ Λ $e_1(E)$ 12 #6 $25' \cdot 3"$ Λ $m(E)$ 12 #6 $25' - 3"$ Λ $m(E)$ 12 #6 $25' - 3"$ Λ $m(E)$ 12 #6	h(F)	360	#5	30'-10"	
$B_1(E)$ 245 #6 $36' \cdot 10"$ $d(E)$ 370 #5 $5' \cdot 7"$ Λ $d_1(E)$ 370 #5 $8' \cdot 4"$ Λ $e(E)$ 84 #4 $15' \cdot 7"$ Λ $e_1(E)$ 56 #4 $8' \cdot 3"$ $$ $e_1(E)$ 56 #4 $8' \cdot 3"$ $$ $e_2(E)$ 28 #4 $19' \cdot 2"$ $$ $e_3(E)$ 4 #8 $47' \cdot 6"$ $$ $e_3(E)$ 2 #8 $38' \cdot 8"$ $$ $e_3(E)$ 2 #4 $38' \cdot 8"$ $$ $e_6(E)$ 4 #4 $47' \cdot 6"$ $$ $e_6(E)$ 4 #4 $8' \cdot 4"$ $$ $e_6(E)$ 4 #4 $8' - 4"$ $$ $e_6(E)$ 4 #4 $8' - 4"$ $$ $e_6(E)$ 12 #6 $25' \cdot 3"$ $$ $m(E)$ 12 #6 $25' - 3"$ $$ $$	$b_1(F)$	112	#6	35'-0"	
$d(E)$ 370 #5 5'-7" $d_1(E)$ 370 #5 8'-4" $e(E)$ 84 #4 15'-7" $e_1(E)$ 56 #4 8'-3" $e_2(E)$ 28 #4 19'-2" $e_3(E)$ 4 #8 47'-6" $e_3(E)$ 4 #8 8'-4" $e_5(E)$ 2 #8 38'-8" $e_6(E)$ 4 #4 47'-6" $e_7(E)$ 8 #4 8'-4" $e_8(E)$ 2 #4 38'-8" $m(E)$ 12 #6 25'-3" $m(E)$ 12 #6 29'-3" $m_1(E)$ 12 #6 29'-3" $m_2(E)$ 28 #6 6'-6" $m_3(E)$ 8 #6 3'-4" $m_4(E)$ 32 #5 4'-0" $m_4(E)$ 32 #5 4'-0" $m_4(E)$ 32 #5 4'-0" $m_4(E)$ 116 #5 7'-1" $u(E)$	$b_0(E)$	245	#6	36'-10"	
$d(E)$ 370 $\#5$ $5'-7"$ \bigwedge $d_1(E)$ 370 $\#5$ $8'-4"$ \checkmark $e(E)$ 84 $\#4$ $15'-7"$ \frown $e_1(E)$ 56 $\#4$ $8'-3"$ \frown $e_2(E)$ 28 $\#4$ $19'-2"$ \frown $e_3(E)$ 4 $\#8$ $47'-6"$ \frown $e_4(E)$ 8 $\#8$ $8'-4"$ \frown $e_4(E)$ 8 $\#8$ $8'-4"$ \frown $e_4(E)$ 8 $\#4$ $47'-6"$ \frown $e_4(E)$ 8 $\#4$ $8'-4"$ \frown $e_6(E)$ 4 $\#4$ $47'-6"$ \frown $e_5(E)$ 2 $\#4$ $38'-8"$ \frown $m(E)$ 12 $\#6$ $25'-3"$ \frown $m_1(E)$ 12 $\#6$ $25'-3"$ \frown $m_2(E)$ 28 $\#6$ $5'-6"$ \frown $m_3(E)$ 8 $#6$ $3'-4"$ \frown $m_1(E)$	02(L)	2.15		30 10	
GL2 370 #5 $8'-4"$ $d_1(E)$ 370 #5 $8'-4"$ $e(E)$ 84 #4 $15'-7"$ $e_1(E)$ 56 #4 $8'-3"$ $e_2(E)$ 28 #4 $19'-2"$ $e_3(E)$ 4 #8 $47'-6"$ $e_4(E)$ 8 #8 $8'-4"$ $e_5(E)$ 2 #8 $38'-8"$ $e_6(E)$ 4 #4 $47'-6"$ $e_6(E)$ 4 #4 $8'-4"$ $e_6(E)$ 4 #4 $8'-4"$ $e_6(E)$ 2 #8 $38'-8"$ $e_6(E)$ 2 #4 $38'-8"$ $e_6(E)$ 2 #4 $38'-8"$ $e_8(E)$ 2 #4 $8'-4"$ $e_8(E)$ 2 #4 $38'-8"$ $m(E)$ 12 #6 $25'-3"$ $m_1(E)$ 12 #6 $25'-3"$ $m_2(E)$ 28 #6 $6'-6"$ $m_3(E)$ 8 #6 $3'-4"$	d(F)	370	#5	5'-7"	Λ
O(12) $O(12)$ $O(12)$ $O(12)$ $e(E)$ $B4$ $#4$ $15'-7"$	$\frac{d(L)}{d(F)}$	370	#5	8'-4"	0
e(E) $B4$ #4 $15'-7"$	UTL	570		0 7	
$G(E)$ $G(F)$ $G(F)$ $G(F)$ $e_1(E)$ 56 #4 $8' - 3"$ $e_2(E)$ $e_2(E)$ 28 #4 $19' - 2"$ $e_2(E)$ $e_4(E)$ 8 #8 $8' - 4"$ $e_2(E)$ $e_4(E)$ 8 #8 $8' - 4"$ $e_2(E)$ $e_5(E)$ 2 #8 $38' - 8"$ $e_2(E)$ $e_6(E)$ 4 #4 $47' - 6"$ $e_2(E)$ $e_7(E)$ 8 #4 $8' - 4"$ $e_2(E)$ $e_6(E)$ 4 #4 $47' - 6"$ $e_2(E)$ $e_6(E)$ 4 #4 $47' - 6"$ $e_2(E)$ $e_7(E)$ 8 #4 $8' - 4"$ $e_2'' = 1"$ $m(E)$ 12 #6 $29' - 3"$ $e_2'' = 10''$ $m_1(E)$ 12 #6 $29' - 3"''$ $e_2'' = 10'''$ $m_2(E)$ 28 #6 $6' - 6"''$ $e_2'' = 10'''''$ $e_2'' = 10'''''''''''''''''''''''''''''''''$	$\rho(F)$	81	#1	15'- 7"	
$C_1(L)$ 30 $m+7$ 0 $m-7$ $e_2(E)$ 28 $\#4$ $19' \cdot 2"$ $m-7$ $e_3(E)$ 4 $\#8$ $47' \cdot 6"$ $m-7$ $e_4(E)$ 8 $\#8$ $8' \cdot 4"$ $m-7$ $e_5(E)$ 2 $\#8$ $38' \cdot 8"$ $m-7$ $e_6(E)$ 4 $\#4$ $47' \cdot 6"$ $m-7$ $e_6(E)$ 4 $\#4$ $8' \cdot 4"$ $m-7$ $e_6(E)$ 4 $\#4$ $8' \cdot 4"$ $m-7$ $e_6(E)$ 2 $\#4$ $8' \cdot 4"$ $m-7$ $e_8(E)$ 2 $\#4$ $8' \cdot 4"$ $m-7$ $m(E)$ 12 $\#6$ $25' \cdot 3"$ $m-7$ $m_1(E)$ 12 $\#6$ $2' - 3"$ $m-7$ $m_1(E)$ 12 $\#6$ $3' - 4"$ $m - 7$ $m_4(E)$ 32 $\#5$ $4' - 0"$ $m - 7$ $m_4(E)$ 32 $\#5$ $7' - 1"$ $\square 7$ $u(E)$ 116 $\#5$ $7' - 1"$ <	0(L)	56	#A	81-3"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	#4 #1	10'-2"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07(E)	20	#9	13 - 2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e3(E)	4	#0	47-0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C4(E)	0	#0 #0	0 - 4 70/ 0"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e5(E)	2	#8	388.	
$e_7(E)$ 8 #4 $8'-4''$	e6(E)	4	#4	476"	
eg(E) 2 #4 38'-8" m(E) 12 #6 25'-3" m1(E) 12 #6 29'-3" m2(E) 28 #6 6'-6" m3(E) 8 #6 3'-4" m4(E) 32 #5 4'-0" s(E) 116 #5 7'-1" u(E) 116 #5 8'-0" u(E) 112 #4 2'-1" u(E) 112 #4 2'-1" u(E) 111 #5 2'-10" Floor Drains Each 16 Concrete Cu. Yd. 306.9 Superstructure Cu. Yd. 306.9 Bridge Deck Grooving Sq. Yd. 1.087 Reinforcement Bars, Pound 80,670 Bar Splicers Each 560	e7(E)	8	#4	8'-4"	
m(E) 12 #6 $25' \cdot 3"$	es(E)	2	#4	38'-8"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m(E)	12	#6	25'-3"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m1(E)	12	#6	29′-3″	
m3(E) 8 #6 3'-4" m4(E) 32 #5 4'-0" s(E) 32 #5 7'-1" s1(E) 116 #5 7'-0" u(E) 116 #5 8'-0" u(E) 112 #4 2'-1" u(E) 111 #5 2'-10" Floor Drains Each 16 Concrete Superstructure Cu. Yd. 306.9 Bridge Deck Grooving Sq. Yd. 938 Protective Coat Sq. Yd. 1.087 Reinforcement Bars, Epoxy Coated Pound 80.670 Bar Splicers Each 560	m2(E)	28	#6	6′-6″	
m4(E) 32 #5 4'-0" s(E) 116 #5 7'-1" s1(E) 116 #5 8'-0" u(E) 112 #4 2'-1" u(E) 111 #5 2'-10" r - - - v(E) 111 #5 2'-10" Floor Drains Each 16 Concrete Cu. Yd. 306.9 Superstructure Cu. Yd. 306.9 Bridge Deck Grooving Sq. Yd. 1.087 Reinforcement Bars, Epoxy Coated Pound 80.670 Bar Splicers Each 560	тз(Е)	8	#6	3′-4″	
s(E) 116 #5 7'-1" □ s1(E) 116 #5 8'-0" □ u(E) 112 #4 2'-1" □ u(E) 111 #5 2'-10" Γ v(E) 111 #5 2'-10" Γ Floor Drains Each 16 Concrete Cu. Yd. 306.9 Superstructure Cu. Yd. 306.9 Bridge Deck Grooving Sq. Yd. 938 Protective Cat Sq. Yd. 1,087 Reinforcement Bars. Pound 80,670 Bar Splicers Each 560	m4(E)	32	#5	4′-0″	
s(E) 116 #5 7'-1" □ s1(E) 116 #5 8'-0" □ u(E) 112 #4 2'-1" □ u(E) 112 #4 2'-1" □ v(E) 111 #5 2'-10" Γ Floor Drains Each 16 Concrete Cu. Yd. 306.9 Bridge Deck Grooving Sq. Yd. 938 Protective Coat Sq. Yd. 1,087 Reinforcement Bars. Pound 80,670 Bar Splicers Each 560					
s1(E) 116 #5 8'-0" □ u(E) 112 #4 2'-1" □ v(E) 111 #5 2'-10" Γ v(E) 111 #5 2'-10" Γ Floor Drains Each 16 16 Concrete Cu. Yd. 306.9 Bridge Deck Grooving Sq. Yd. 938 Protective Coat Sq. Yd. 1.087 Reinforcement Bars. Pound 80.670 Bar Splicers Each 560	s(E)	116	#5	7'-1"	
u(E) 112 #4 2'-1" □ v(E) 111 #5 2'-10" Γ Floor Drains Each 16 Concrete Cu. Yd. 306.9 Bridge Deck Grooving Sq. Yd. 938 Protective Coat Sq. Yd. 1.087 Reinforcement Bars. Pound 80.670 Bar Splicers Each 560	s1(E)	116	#5	8'-0"	L 1
u(E) 112 #4 2'-1" L v(E) 111 #5 2'-10" Γ Floor Drains Each 16 Concrete Superstructure Cu. Yd. 306.9 Bridge Deck Grooving Sq. Yd. 938 Protective Coat Sq. Yd. 1,087 Reinforcement Bars, Epoxy Coated Pound 80,670 Bar Splicers Each 560					
v(E) 111 #5 2'-10" Γ Floor Drains Each 16 Concrete Cu. Yd. 306.9 Bridge Deck Grooving Sq. Yd. 938 Protective Coat Sq. Yd. 1.087 Reinforcement Bars, Epoxy Coated Pound 80,670 Bar Splicers Each 560	u(E)	112	#4	2'-1"	L L
v(E)111#52'-10"ГFloor DrainsEach16Concrete SuperstructureCu. Yd.306.9Bridge Deck GroovingSq. Yd.938Protective CoatSq. Yd.1,087Reinforcement Bars, Epoxy CoatedPound80,670Bar SplicersEach560					
Floor DrainsEach16ConcreteCu. Yd.306.9SuperstructureCu. Yd.306.9Bridge Deck GroovingSq. Yd.938Protective CoatSq. Yd.1,087Reinforcement Bars, Epoxy CoatedPound80,670Bar SplicersEach560	v(E)	111	#5	2'-10"	Г
Floor DrainsEach16ConcreteCu. Yd.306.9SuperstructureCu. Yd.306.9Bridge Deck GroovingSq. Yd.938Protective CoatSq. Yd.1,087Reinforcement Bars.Pound80,670Bar SplicersEach560			-		
ConcreteCu. Yd.306.9SuperstructureCu. Yd.306.9Bridge Deck GroovingSq. Yd.938Protective CoatSq. Yd.1,087Reinforcement Bars, Epoxy CoatedPound80,670Bar SplicersEach560	Floor I	Drains		Each	16
SuperstructureCu. Yd.306.9Bridge Deck GroovingSq. Yd.938Protective CoatSq. Yd.1,087Reinforcement Bars, Epoxy CoatedPound80,670Bar SplicersEach560	Concrete			2001	
Bridge Deck GroovingSq. Yd.938Protective CoatSq. Yd.1,087Reinforcement Bars, Epoxy CoatedPound80,670Bar SplicersEach560	Supers	tructure	,	Cu. Yd.	306.9
Protective CoatSq. Yd.1,087Reinforcement Bars, Epoxy CoatedPound80,670Bar SplicersEach560	Bridae	Deck G	roovina	Sa. Yd	938
Reinforcement Bars, Epoxy CoatedPound80,670Bar SplicersEach560	Protective Coat			Sa. Yd	1.087
Remin of centerinBars, EpoxyPound80,670Bar SplicersEach560	Poinfa		Para		1,007
Bar Splicers Each 560	FROM	Coated	⊡ars,	Pound	80,670
Bar Splicers Each 560	LPUXY	courea			560
	Bar Sp	nicers		Each	560

E DETAILS 099–3323		SECTION			COUNTY		TOTAL SHEETS	SHEET NO.
		09-00425-00-BR			WILL		78	37
		WHA# 1304	D14		CONTR	ACT	NO. (51B98
4 OF 37 SHEETS			ILLINOIS	FED. AI	D PROJECT	BHM	9003(658)