

PRELIMINARY SITE INVESTIGATION REPORT

ILLINOIS ROUTE 47 FROM UNION/FOSTER ROAD TO HAWTHORNE WAY, HUNTLEY-WOODSTOCK, MCHENRY COUNTY, IL

IDOT Job No.: D-91-103-16 **Project Job No.:** P-91-101-07

District: 1

County: McHenry

Municipality: Huntley, Woodstock Contract No.: 62A80 Route: FAP 326 Section No.: Not Liste

Marked: IL 47

Street: S. Eastwood Avenue **From To/At:** Union/Foster Road

To Hawthorne Way

PTB: 178-008 / H&H-1 Work Order No.: 025A BDE Sequence No.: 14677B Requesting Agency: DOH Contract No.: 62A80 Section No.: Not Listed ISGS PESA No.: 1789V2

Letting Date: January 17, 2020

Final PSI Completion: October 11, 2019

Date: December 3, 2019 File No. 81.0220509.48

Huff & Huff, A Subsidiary of GZA

915 Harger Road | Oak Brook, IL 60523 630-648-9100

GZA has 31 Offices Nationwide www.huffnhuff.com www.gza.com

Known for excellence. Built on trust.

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

915 Harger Road Suite 330 Oak Brook, IL 60523 T: 630.684.9100 F: 630.684.9120 www.huffnhuff.com www.gza.com

December 3, 2019 Via IDOT Extranet

Kari Smith, P.E.
Economic Analysis Coordinator
Illinois Department of Transportation, District One
Bureau of Design
201 West Center Court
Schaumburg, Illinois 60196-1096

Re: Preliminary Site Investigation Report

 IDOT Job No.: D-91-103-16
 PTB: 178-008 / H&H-1

 Project Job No.: P-91-101-07
 Work Order No.: 025A

 District: 1
 BDE Sequence No.: 14677B

 County: McHenry
 Requesting Agency: DOH

Municipality: Huntley, Woodstock
Route: FAP 326
Marked: IL 47
Contract No.: 62A80
Section No.: Not Listed
ISGS PESA No.: 1789V2

Street: S. Eastwood Avenue Letting Date: January 17, 2020
From To/At: Union/Foster Road Final PSI Completion: October 11, 2019

To Hawthorne Way

Dear Ms. Smith,

Huff & Huff, Inc., a subsidiary of GZA GeoEnvironmental, Inc. (H&H) is pleased to submit this *Preliminary Site Investigation* (PSI) Report for the above referenced Project based on a review of the Site Inspection Letter Report (SILR) (ISGS PESA # 3751) dated May 28, 2019. A revised PESA response form was not prepared because IDOT has stated that construction limits and excavation quantities have not changed for this project.

The scope and depth of this study are consistent with those proposed in the Final Revised Work Plan, dated April 12, 2019, and accepted by the Illinois Department of Transportation, District One on April 15, 2019. The field observations and results reported herein are considered sufficient in detail and scope to form an informed and professional opinion as to the obvious potential environmental hazards along the Project Area.

If you have any questions or comments, please do not hesitate to contact us at 630-684-9100.

Shane Cuplin, P.G.

Consultant Reviewer

Very truly yours,

HUFF & HUFF, INC.

Jill Connolly Project Manager

Jeremy Reynolds, P.G. Associate Principal

levery /: Kyndl

Attachments: PTB 178-008 WO-025A Revised Final PSI Report

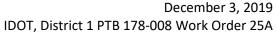
TOC | I

TABLE OF CONTENTS

GLOS	SARY OF A	ACRONYMS	ν
1.0	INTRO	DUCTION	1
2.0	BACKG	ROUND INFORMATION	4
	2.1	PROJECT DESCRIPTION	4
	2.2	SITE GEOLOGICAL AND HYDROGEOLOGICAL CONDITIONS	5
3.0	FIELD II	NVESTIGATION PROCEDURES	6
	3.1	SOIL SAMPLING METHODOLOGY	6
4.0	INVEST	IGATION RESULTS	11
	4.1	REFERENCE CONCENTRATIONS	11
	4.1.1	Soil Reference Concentrations – Construction Areas	11
	4.1.2	Soil Reference Concentrations – Acquisition Areas	12
	4.1.3	Hazardous Waste Reference Concentrations	12
	4.2	FIELD OBSERVATIONS	13
	4.3	AGRICULTURAL LAND (ISGS SITE 3751-2 (NO. 1789V2-98))	13
	4.3.1	Analytical Results	13
	4.3.2	Nature and Extent of COCs	13
	4.3.2.1	Soil	14
	4.3.2.2	Groundwater	16
	4.4	RESIDENCES (ISGS SITE NO. 3751-1 (1789V2-99))	16
	4.4.1	Analytical Results	16
	4.4.2	Nature and Extent of COCs	17
	4.4.2.1	Soil	
	4.4.2.2	Groundwater	19
	4.5	VACANT LAND (ISGS SITE NO. 3751-3 (1789V2-101))	19
	4.5.1	Analytical Results	19
	4.5.2	Nature and Extent of COCs	19
	4.5.2.1	Soil	20
	4.5.2.2	Groundwater	21
	4.6	KISHWAUKEE RIVER (ISGS SITE NO. 3751-4 (1789V2-102))	21
	4.6.1	Analytical Results	21
	4.6.2	Nature and Extent of COCs	21
	4.6.2.1	Soil	22
	4.6.2.2	Groundwater	23
	4.7	BRIDGE (ISGS SITE NO. 3751-5 (1789V2-103))	23
	4.7.1	Analytical Results	23
	4.7.2	Nature and Extent of COCs	23
	4.7.2.1	Soil	24
	4.7.2.2	Groundwater	25
	4.8	AGRICULTURAL LAND (ISGS SITE NO. 3751-2 (1789V2-104))	25

TOC | II

TABLE OF CONTENTS


	4.8.1	Analytical Results	25
	4.8.2	Nature and Extent of COCs	25
	4.8.2.1	1 Soil	26
	4.8.2.2	2 Groundwater	27
	4.9	OZINGA CONCRETE (ISGS SITE NO. 3751-6 (1789VS-105))	27
	4.9.1	Analytical Results	27
	4.9.2	Nature and Extent of COCs	28
	4.9.2.1	1 Soil	28
	4.9.2.2	2 Groundwater	30
	4.10	RESIDENCE (ISGS SITE NO. 3751-7 (1789V2-106))	30
	4.10.1	Analytical Results	30
	4.10.2	Nature and Extent of COCs	31
	4.10.2	.1 Soil	
	4.10.2	.2 Groundwater	33
5.0	CONCI	LUSIONS AND RECOMMENDATIONS	52
	5.1	AGRICULTURAL LAND (ISGS SITE NO. 3751-2 (1789V2-98))	52
	5.1.1	Conclusions	
	5.1.2	Recommendations	53
	5.2	RESIDENCES (ISGS SITE NO. 3751-1 (1789V2-99))	53
	5.2.1	Conclusions	
	5.2.2	Recommendations	54
	5.3	VACANT LAND (ISGS SITE NO. 3751-3 (1789V2-101))	54
	5.3.1	Conclusions	54
	5.3.2	Recommendations	55
	5.4	KISHWAUKEE RIVER (ISGS SITE NO. 3751-4 (1789V2-102))	55
	5.4.1	Conclusions	
	5.4.2	Recommendations	55
	5.5	BRIDGE (ISGS SITE NO. 3751-5 (1789V2-103))	56
	5.5.1	Conclusions	56
	5.5.2	Recommendations	56
	5.6	AGRICULTURAL LAND (ISGS SITE NO. 3751-2 (1789V2-104))	56
	5.6.1	Conclusions	56
	5.6.2	Recommendations	57
	5.7	OZINGA CONCRETE (ISGS SITE NO. 3751-6 (1789V2-105))	57
	5.7.1	Conclusions	57
	5.7.2	Recommendations	58
	5.8	RESIDENCE (ISGS SITE NO. 3751-7 (1789V2-106))	
	5.8.1	Conclusions	
	5.8.2	Recommendations	

TOC | III

TABLE OF CONTENTS

6.0	PREVENTION OF ACCELERATED CONTAMINANT MIGRATION	62							
	6.1 SOURCE REDUCTION/ELIMINATION	62							
	6.2 LIMITED RESTRICTIVE BARRIERS	62							
	6.3 STORM WATER RUNOFF CONTROLS	62							
7.0	.0 ENDORSEMENTS								
TABLI	LES								
	LE 1-1 PESA SITE NUMBERS								
TABLE	LE 3-1 SOIL SAMPLING SUMMARY	10							
TABLE	LE 4-1 PID SOIL SCREENING RESULTS	40							
TABLE	LE 4-2.1 COMPARISON OF DETECTED CONSTITUENTS TO APPLICABLE REFERENCE CO								
TABLE	LE 4-2.2 (CONTINUED) COMPARISON OF DETECTED CONSTITUENTS TO APPLICABLE CONCENTRATIONS— ORGANICS								
TABLE	LE 4-2.3 (CONTINUED) COMPARISON OF DETECTED CONSTITUENTS TO APPLICABLE CONCENTRATIONS— ORGANICS								
TABLE	LE 4-2.4 (CONTINUED) COMPARISON OF DETECTED CONSTITUENTS TO APPLICABLE CONCENTRATIONS— ORGANICS								
TABLE	LE 4-2.5 (CONTINUED) COMPARISON OF DETECTED CONSTITUENTS TO APPLICABLE CONCENTRATIONS— ORGANICS								
TABLE	LE 4-3.1 COMPARISON OF DETECTED CONSTITUENTS TO APPLICABLE REFERENCE CO								
TABLE	LE 4-3.2 (CONTINUED) COMPARISON OF DETECTED CONSTITUENTS TO APPLICABLE CONCENTRATIONS— INORGANICS								
TABLE	LE 4-3.3 (CONTINUED) COMPARISON OF DETECTED CONSTITUENTS TO APPLICABLE CONCENTRATIONS— INORGANICS								
TABLE	LE 4-3.4 (CONTINUED) COMPARISON OF DETECTED CONSTITUENTS TO APPLICABLE CONCENTRATIONS—INORGANICS	REFERENCE							
TABLE	LE 4-3.5 (CONTINUED) COMPARISON OF DETECTED CONSTITUENTS TO APPLICABLE CONCENTRATIONS— INORGANICS	REFERENCE							
TARIF	LE 4-4 ESTIMATED CONSTRUCTION MANAGEMENT COSTS								
	LE 5-1 SUMMARY OF NON-SPECIAL WASTE VOLUME CALCULATIONS								

TABLE OF CONTENTS

	IGI	JR	CC
ы	IGil	JK	F.3

FIGURE 1-1 SITE LOCATION MAP	3
FIGURE 3-1.1 SOIL BORING LOCATION MAP	
FIGURE 3-1.2 SOIL BORING LOCATION MAP (CONTINUED)	<u>9</u>
FIGURE 4-1.1 EXTENT OF POTENTIALLY IMPACTED SOIL	34
FIGURE 4-1.1 EXTENT OF POTENTIALLY IMPACTED SOIL – EXCEEDANCES TABLE (1 OF 2)	35
FIGURE 4-1.1 EXTENT OF POTENTIALLY IMPACTED SOIL – EXCEEDANCES TABLE (2 OF 2)	36
FIGURE 4-1.2 EXTENT OF POTENTIALLY IMPACTED SOIL	37
FIGURE 4-1.2 EXTENT OF POTENTIALLY IMPACTED SOIL – EXCEEDANCES TABLE (1 OF 2)	38
FIGURE 4-1.2 EXTENT OF POTENTIALLY IMPACTED SOIL – EXCEEDANCES TABLE (2 OF 2)	39

APPENDICES

APPENDIX A Site Inspection Letter Report (SILR) (ISGS PESA # 3751)

ISGS PESA Excerpts

IDOT Work Order 25A Request

APPENDIX B **Boring Logs**

Table C-1.1 Comprehensive Comparison of Constituents to Applicable Ref Concentrations – Organics (VOCs) APPENDIX C

Table C-1.2 Comprehensive Comparison of Constituents to Applicable Ref Concentrations – Organics (SVOCs)

Table C-2 Comprehensive Comparison of Constituents to Applicable Reference Concentrations – Inorganics

Laboratory Analytical Reports

LPC-663 CCDD Documents APPENDIX D

IDOT, District 1 PTB 178-008 Work Order 25A IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

PSI Report

Glossary of Acronyms | V

GLOSSARY OF ACRONYMS

bgs	below ground surface
BDE	Bureau of Design and Environment
CCDD	Clean Construction or Demolition Debris
COC	Contaminants of Concern
ft	feet
н&н	Huff & Huff, Inc., a Subsidiary of GZA GeoEnvironmental, Inc.
IAC	Illinois Administrative Code
IDOT	Illinois Department of Transportation
IEPA	Illinois Environmental Protection Agency
ISGS	Illinois State Geological Survey
m	meters
MAC	Maximum Allowable Concentration
MSA	Metropolitan Statistical Area
PESA	Preliminary Environmental Site Assessment
PID	Photoionization Detector
PNA	Polynuclear Aromatic Hydrocarbons
PSI	Preliminary Site Investigation
QAP	Quality Assurance Plan
QAQC	quality assurance / quality control
RCRA	Resource Conservation and Recovery Act
REC	Recognized Environmental Condition
ROW	Right of Way
SOP	standard operating procedure
SPLP	synthetic precipitation leaching procedure
SRO	Soil Remediation Objective
s.u.	standard units (soil pH)
SVOC	semi-volatile organic compound
TACO	Tiered Approach to Corrective Action Objectives
TCLP	toxicity characteristic leaching procedure
USEPA	United States Environmental Protection Agency
USFO	Uncontaminated Soil Fill Operation
VOC	volatile organic compound

December 3, 2019
IDOT, District 1 PTB 178-008 Work Order 25A
IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL
PSI Report

Page | 1

1.0 INTRODUCTION

This Preliminary Site Investigation (PSI) report was prepared for Illinois Department of Transportation (IDOT) District One pursuant to Work Order 25A, which was issued to Huff & Huff, Inc., a Subsidiary of GZA GeoEnvironmental, Inc. (H&H) under IDOT Work Order Agreement for Consultant Services, Contract Job No. PTB 178-008, Statewide Hazardous Waste Investigations. The Project Area is comprised of Illinois Route 47 (Eastwood Drive) [IL 47]) from Union/Foster Road to Hawthorne Way located approximately 7.5 miles north of I-90. The proposed improvements include roadway realignment, channel excavation, a compensatory storage area, and wildlife crossing culverts. The Project Area is depicted on Figure 1-1. The referenced figures and tables are presented at the end of each respective Section within this report.

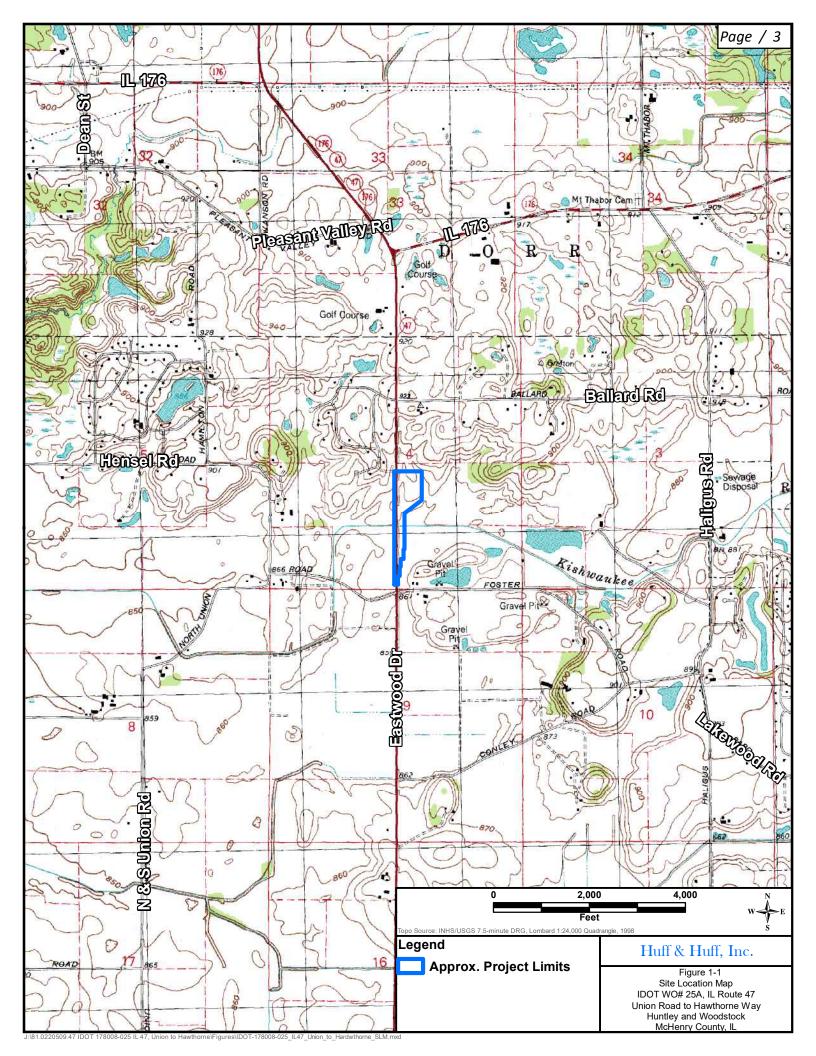
The purpose of the PSI is to:

- Determine, to the degree possible pursuant to this scope of work, the nature and extent of subsurface contamination within the soil of the Project Area. This determination specifically includes those areas in which subsurface excavation activities will be completed in support of construction activities.
- Develop an approach, including approximate volume estimates and associated cost estimates, for the proper handling and/or disposal of contaminated soil that is likely to be encountered during the proposed construction activities within the existing and/or proposed IDOT ROW.
- Assess the potential for further or continued contamination of existing IDOT property caused by the migration of contaminants from adjacent properties to the Project Area.
- Assess the potential for the release of contaminants resulting from the proposed construction activities within the Project Area.
- Generate the data necessary to evaluate the potential for construction workers on site to be exposed to contaminants.
- Prepare a preliminary site investigation report presenting the findings of the investigation, conclusions, and recommendations addressing all the above-referenced objectives.

A *Preliminary Environmental Site Assessment* (PESA) (ISGS PESA # 1789V2) for the Project Area was conducted by ISGS on August 17, 2016 to evaluate the Project Area for RECs. A Site Inspection Letter Report (SILR) (ISGS PESA # 3751) was prepared for this project on May 28, 2019. According to IDOT, the construction limits, areas of planned excavation, and excavation quantities for this project have not changed. Excerpts from these documents are included in Appendix A for reference. The Work Order request document from IDOT, also included in Appendix A, lists the areas and depths of planned excavation activities along the Project Area in relation to the identified Recognized Environmental Conditions (RECs). This Work Order request document indicates that excavation is planned within the IDOT ROW adjacent to three (3) of the identified REC sites. Based on standard IDOT practices, all District One roadway projects require characterization of all soil that is planned for excavation during the Project. This includes soil associated with properties that were determined to contain de minimis conditions only or determined not to contain RECs or de minimis conditions. The Work Order request document indicates additional excavation planned adjacent to five (5) non-REC sites. Therefore, a total of eight (8) sites are documented within this report.

PSI Report Page | 2

H&H and GSG Consultants, Inc. conducted the fieldwork for the investigation, and traffic control services were provided by MCC Traffic. Boring logs are included in Appendix B. STAT Analysis Corporation provided the laboratory analysis services. The laboratory analytical report is included in Appendix C.


IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

This report utilizes the Tiered Approach to Corrective Action Objectives (TACO) from 35 Illinois Administrative Code (IAC) Part 742, as well as the Maximum Allowable Concentrations (MAC) list for Clean Construction or Demolition Debris (CCDD) facility disposal for the comparison of analytical results to determine areas of soil management, including estimated costs and quantities. The results were also used to generate Form LPC 663 for CCDD disposal of soils which achieve the MAC list objectives, included in Appendix D of this document. Based on the analytical results, LPC 663 forms were prepared for (1) unrestricted acceptance of soils at any CCDD/Uncontaminated Soil Fill Operation (USFO) facility and (2) acceptance of soils at a CCDD/USFO facility within a Metropolitan Statistical Area (MSA) county including Chicago.

TABLE 1-1 PESA SITE NUMBERS

Comparison of the PESA site numbers used in the PSI report from the previous PESA with ISGS Report #1789V2 (dated August 17, 2016), and the corresponding PESA site numbers in the updated SILR with ISGS Report #3751 (dated May 28, 2019).

PESA Site Numbers in Previous PESA Report (ISGS Report #1789V2)	Corresponding PESA Site Numbers in SILR (ISGS Report #3751)
98	2
99	1
101	3
102	4
103	5
104	2
105	6
106	7

PSI Report

Page | 4

2.0 BACKGROUND INFORMATION

IDOT provided relevant background data and information, which was used to develop and carry out the PSI scope of work, as detailed in the Work Plan for this project. This includes information describing proposed IDOT construction activities and key findings of previous investigations. A brief project description, as well as a description of the site geological and hydrogeological conditions encountered, are provided below. Additional background information is included in Appendix A.

2.1 PROJECT DESCRIPTION

ISGS PESA Report No. 1789V2 evaluated the Project Area for RECs. The Work Order request document from IDOT lists the areas and depths of planned excavation activities along the Project Area in relation to the identified RECs. This Work Order request document indicates that excavation is planned within the IDOT ROW adjacent three (3) of the identified REC sites. Based on standard IDOT practices, all District One roadway projects require characterization of all soil that is planned for excavation during the Project. This includes soil associated with properties that were determined to contain de minimis conditions only or determined not to contain RECs or de minimis conditions. The Work Order request document indicates that excavation is planned within the IDOT ROW adjacent to five (5) additional sites not identified as RECs. Therefore, an additional five (5) sites that have the potential of impacting the proposed construction activities were investigated, for a total of eight (8) sites that are documented within this report. These eight (8) properties are listed below:

ISGS Site No. Estimated Volume of Excavation (cu yd)		Max. Depth of Excavation (ft)	Name or Address	Type of Work	REC? (y/n)
3751-2 (1789V2-98)	31,155	10.9	Agricultural land, 6100-7000 blocks of S. IL 47, unincorporated Grafton Township	Roadway Realignment, Compensatory Storage Area, Channel Excavation, Temporary Pavement	N
3751-1 (1789V2-99)	546	1.8	Residences, 11500-11516 Ballard Road, 11605-11703 Hawthorne Way, and 6363- 6521 Suttondale Road, unincorporated Grafton Township	Roadway Realignment, Temporary Pavement	N
3751-3 (1789V2-101)	58	1.5	Vacant land, 6600 block of S. IL 47, unincorporated Grafton Township	Roadway Realignment, Temporary Pavement	N
3751-4 (1789V2-102) 130 2.5		2.5	Kishwaukee River, 6800 block of S. IL 47, unincorporated Grafton Township	Channel Excavation	Y
3751-5 (1789V2-103)	407	3.5	Bridge, 6800 block of S. IL 47, unincorporated Grafton Township	Channel Excavation	Ν

PSI Report Page | 5

ISGS Site No.	Estimated Volume of Excavation (cu yd)	Max. Depth of Excavation (ft)	Name or Address	Type of Work	REC? (y/n)
3751-2 (1789V2-104)	5,610	10.6	Agricultural land, 7000-8300 blocks of S. IL 47, unincorporated Grafton Township	Temporary Pavement, Roadway Realignment, Wildlife Crossing Culvert	N
3751-6 (1789V2-105)	1 /0 /80 1 13 3 1		Ozinga Concrete, 10950 Foster Road, unincorporated Grafton Township	Roadway Realignment, Wildlife Crossing Culvert, Channel Excavation	Y
3751-7 (1789V2-106)	10,989	10.8	Residence, 7090 S. IL 47, unincorporated Grafton Township	Temporary Pavement, Roadway Realignment	Y

Excerpts from the ISGS PESA Report are included in Appendix A for reference.

2.2 SITE GEOLOGICAL AND HYDROGEOLOGICAL CONDITIONS

Soils along the project ROW consist mainly of silty clay loams.

A former sand and gravel pit is located at the northeast corner of IL 47 and Foster Road, approximately 215 m (700 ft) east of IL 47 and 30 m (100 ft) north of Foster Road. According to aerial photographs, this pit began operations sometime between 1962 and 1967; by the time of the 2005 aerial photograph, the pit appeared to be no longer active. A current sand and gravel pit is in operation in the southeast quadrant of IL 47 and Foster Road at Site 1789V2-108. According to aerial photographs, this pit started in the eastern half of that site between 1980 and 1988.

The Kishwaukee River crosses IL 47 at two locations. The first location is approximately 226 m (740 ft) south of Cobblestone Way; surficial drainage in the project area north of this crossing and between the second crossing is generally in a south to southwest direction. The second crossing is approximately 400 m (1312 ft) north of Foster Road; in the area south of this crossing, drainage direction is generally to the northwest. However, in the part of the project area that is urbanized, most surficial runoff will be controlled by the storm sewer system; such systems typically are designed to follow natural drainage patterns. In addition, drainage ditches run on either side of IL 47 and IL 176 in less urban areas of the project route. Ditch systems are typically designed to follow natural drainage patterns.

Neither the near surface nor the shallow unconfined groundwater flow direction was specifically determined for this project but are anticipated to generally mimic local topography. During subsurface testing for ISGS #1789 in January of 2009, no water was encountered in boreholes completed to depths of up to 8 ft.

Page | 6

3.0 FIELD INVESTIGATION PROCEDURES

The PSI field activities for this Project included the collection of soil samples adjacent to the eight (8) subject properties where excess soil was planned to be generated as a result of the proposed modifications to the existing roadway, according to the PESA Response Form. The work conducted for this investigation was completed in accordance with standard operating procedures (SOPs) for field investigations included in the IDOT-approved work plan for Work Order 25. GSG Consultants, Inc. was contracted to provide drilling services for this project under the direct supervision of a H&H field geologist. STAT Analysis Corporation located in Chicago, Illinois performed sample analyses. Section 3.1 summarizes the procedures for the soil sampling activities.

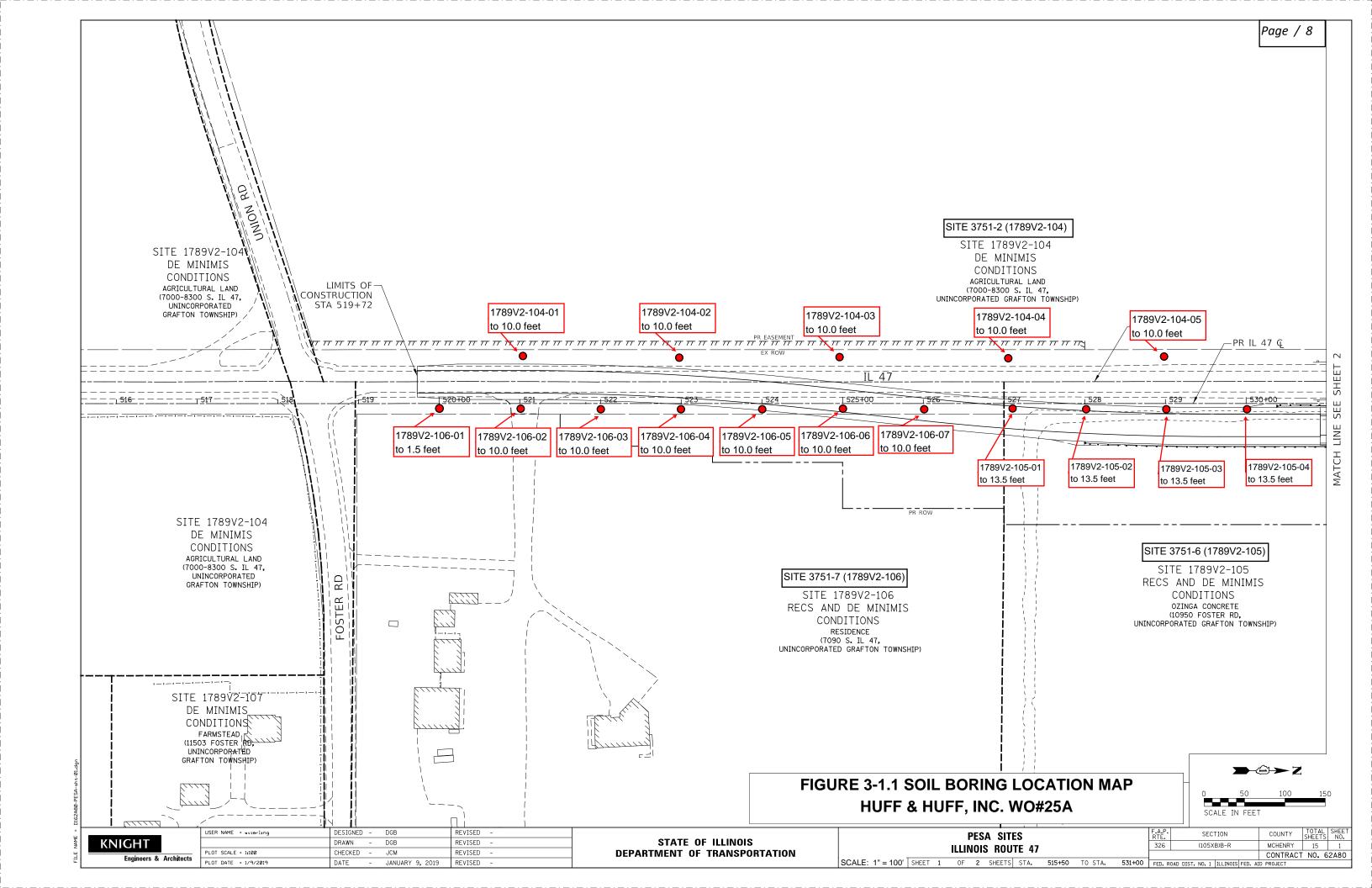
3.1 SOIL SAMPLING METHODOLOGY

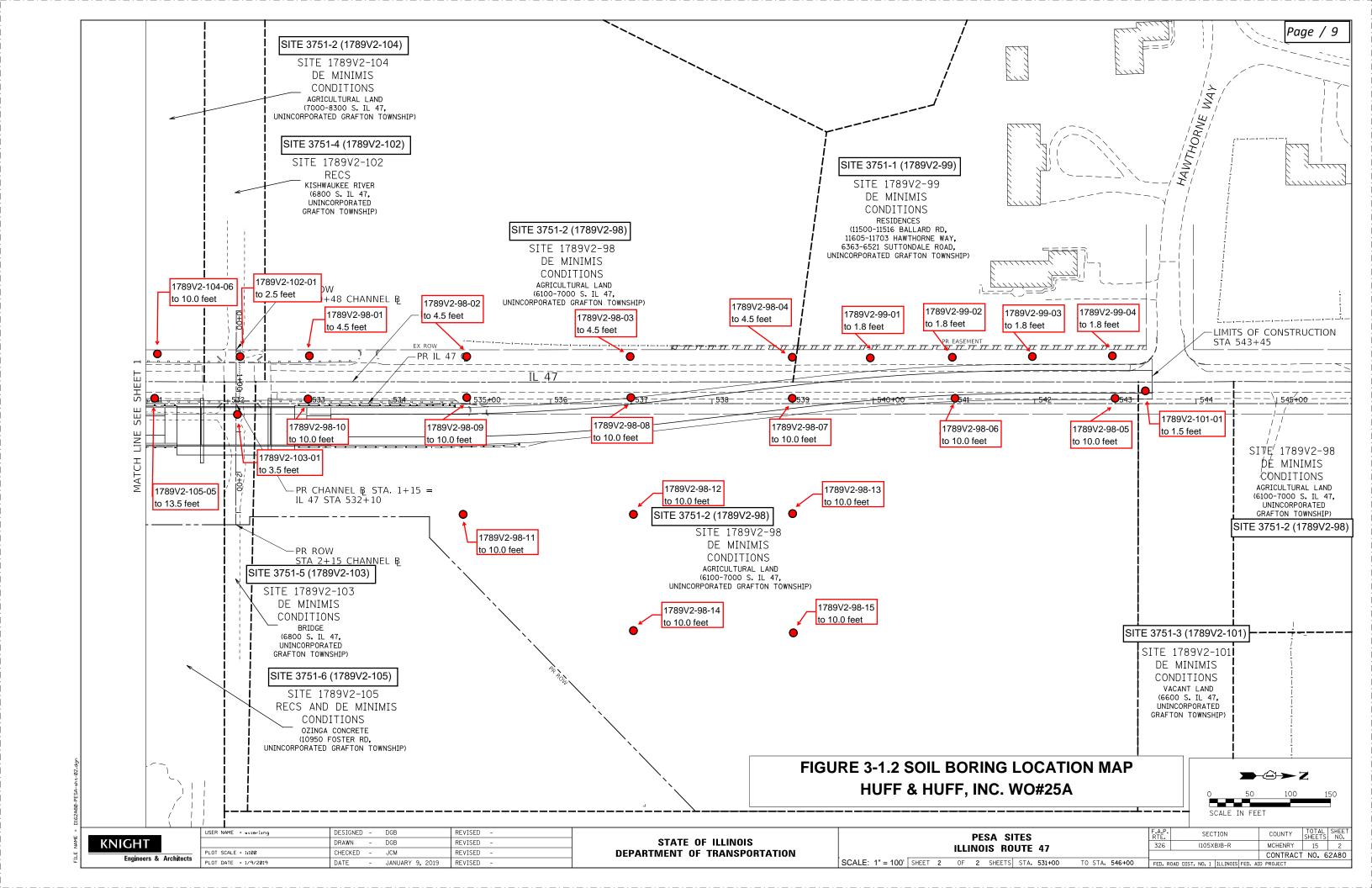
A total of forty (40) borings were advanced adjacent to the eight (8) subject properties. Below is a list of borings completed for each subject property:

- The following 15 borings were completed for ISGS Site No. 3751-2 (1789V2-98): 1789V2-98-01, 1789V2-98-02, 1789V2-98-03, 1789V2-98-04, 1789V2-98-05, 1789V2-98-06, 1789V2-98-07, 1789V2-98-08, 1789V2-98-09, 1789V2-98-10, 1789V2-98-11, 1789V2-98-12, 1789V2-98-13, 1789V2-98-14, and 1789V2-98-15.
- The following 4 borings were completed for ISGS Site No. 3751-1 (1789V2-99): 1789V2-99-01, 1789V2-99-02, 1789V2-99-03, and 1789V2-99-04.
- The following 1 boring was completed for ISGS Site No. 3751-3 (1789V2-101): 1789V2-101-01.
- The following 1 boring was completed for ISGS Site No. 3751-4 (1789V2-102): 1789V2-102-01.
- The following 1 boring was completed for ISGS Site No. 3751-5 (1789V2-103): 1789V2-103-01.
- The following 6 borings were completed for ISGS Site No. 3751-2 (1789V2-104): 1789V2-104-01, 1789V2-104-02, 1789V2-104-03, 1789V2-104-04, 1789V2-104-05, and 1789V2-104-06.
- The following 5 borings were completed for ISGS Site No. 3751-6 (1789V2-105): 1789V2-105-01, 1789V2-105-02, 1789V2-105-03, 1789V2-105-04, and 1789V2-105-05.
- The following 7 borings were completed for ISGS Site No. 3751-7 (1789V2-106): 1789V2-106-01, 1789V2-106-02, 1789V2-106-03, 1789V2-106-04, 1789V2-106-05, 1789V2-106-06, and 1789V2-106-07.

Soil boring locations are depicted on Figures 3-1.1 and Figure 3-1.2. Soil boring logs are included in Appendix B. Drilling was performed on September 3, 4, and 5, 2019, using a GeoProbe[®] track rig equipped with a 2-inch inside diameter sampler with disposable plastic liners. The rationale used to determine the sampling frequency and the sample intervals was in accordance with the IDOT-approved scope of work outlined in the Final Revised Work Plan dated April 12, 2019 and approved on April 15, 2019. Field investigation procedures (i.e., drilling procedures, soil sampling procedures, subsurface characterization, and field screening protocols) were performed in accordance with the approved SOPs.

Soil borings were continuously sampled using appropriately decontaminated stainless-steel samplers. Disposable plastic liners were used at each location. Each soil core recovered was field screened with a photo-ionization detector (PID) equipped with a 10.6 eV lamp using headspace-screening procedures. Soil samples were collected from soil borings for analysis based on IDOT guidelines as described in the approved PSI Work Plan. The depth intervals selected for sample analysis and borehole spacing were based on the anticipated maximum depth of excavation and the proposed construction activity at the subject properties. Based on current and historic land use identified at each property, as well as standard IDOT procedures, soil samples were analyzed for the following constituents: volatile organic compounds


December 3, 2019 IDOT, District 1 PTB 178-008 Work Order 25A


IDOT, District 1 PTB 178-008 Work Order 25A
IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

PSI Report Page | 7

(VOCs), semi-volatile organic compounds (SVOCs), total metals, toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) metals (8 RCRA plus Be, Co, Cu, Fe, Mn, Ni, and Zn), and soil pH.

A total of eight (8) quality assurance / quality control (QA/QC) field duplicate soil samples were collected and analyzed for the same parameters as their respective investigative samples. Soil samples were maintained under chain of custody and appropriately preserved until delivery to STAT Analysis Corporation for analysis. Refer to Table 3-1 for the soil sampling summary which includes a list of borings completed for each subject property, the soil samples collected (including the identification of field duplicates), the ISGS findings associated with each of the identified sites, road and approximate stationing information, and the laboratory analytical testing conducted. Groundwater was not identified during the investigation activities.

TABLE 3-1 Soil Sampling Summary Illinois Route 47 from Union/Foster Road to Hawthorne Way Huntley and Woodstock, McHenry County, Illinois BDE Sequence No.: 14677B PTB: 178-008 / H&H-1, Work Order No.: 025A

										SOIL ANALYSES a/							
Boring ID	Max. Depth (ft)	Soil Sample Interval (ft)	Number of Soil Borings	Number of Soil Samples Per Boring	Excavation Area (ISGS Site No.)	ISGS REC Yes / No - Basis	Proximal to Other nearby Excavations (ISGS Site No.)	Road / Approx. Stationing	Groundwater Sample	Soil pH	22 Total Metals	Metals (8 RCRA Metals plus Be, Co, Cu, Fe, Mn, Ni, and	VOCs	SVOCs	Duplicate (Depth-ft)		
1789V2-98-01	4.5	(0-4.5)		1				IL RT 47 533+00, 15 Left		х	х	x	х	Х	Dup-02		
1789V2-98-02	4.5	(0-4.5)		1				IL RT 47 535+00, 15 Left		х	х	х	х	х			
1789V2-98-03	4.5	(0-4.5)		1				IL RT 47 537+00, 15 Left		х	х	х	х	Х	Dup-01		
1789V2-98-04	4.5	(0-4.5)		1				IL RT 47 539+00, 15 Left		х	х	х	х	Х			
1789V2-98-05	10	(0-5) (5-10)		2				IL RT 47 543+00, 15 Right		х	х	х	х	Х			
1789V2-98-06	10	(0-5) (5-10)		2				IL RT 47 541+00, 15 Right		х	х	х	х	х	Dup-08 (5-10)		
1789V2-98-07	10	(0-5) (5-10)		2				IL RT 47 539+00, 15 Right		х	х	х	х	Х			
1789V2-98-08	10	(0-5) (5-10)	15	2	3751-2 (1789V2-98)	No	1789V2-99, 1789V2-101, 1789V2-102, 1789V2-103	IL RT 47 537+00, 15 Right	0	х	х	х	х	х			
1789V2-98-09	10	(0-5) (5-10)		2				IL RT 47 535+00, 15 Right		х	х	х	х	х			
1789V2-98-10	10	(0-5) (5-10)		2				IL RT 47 533+00, 15 Right		х	х	х	х	Х			
1789V2-98-11	10	(0-5) (5-10)		2				IL RT 47 535+00, 165 Right		х	х	х	х	х			
1789V2-98-12	10	(0-5) (5-10)		2				IL RT 47 537+00, 165 Right		х	х	х	х	Х			
1789V2-98-13	10	(0-5) (5-10)		2			-	IL RT 47 539+00, 165 Right		х	х	х	х	Х			
1789V2-98-14	10	(0-5) (5-10)		2				IL RT 47 537+00, 315 Right		х	х	х	х	х			
1789V2-98-15	10	(0-5) (5-10)		2				IL RT 47 539+00, 315 Right		х	х	х	х	х			
1789V2-99-01	1.8	(0-1.8)		1				IL RT 47 540+00, 15 Left		х	х	х	х	х			
1789V2-99-02	1.8	(0-1.8)	4	4		1	3751-1		470010 00 470010 404	IL RT 47 541+00, 15 Left		х	х	х	х	х	
1789V2-99-03	1.8	(0-1.8)			1	(1789V2-99)	No	1789V2-98, 1789V2-101	IL RT 47 542+00, 15 Left	0	х	х	х	х	х		
1789V2-99-04	1.8	(0-1.8)		1				IL RT 47 543+00, 15 Left		х	х	х	х	х			
1789V2-101-01	1.5	(0-1.5)	1	1	3751-3 (1789V2-101)	No	1789V2-98, 1789V2-99	IL RT 47 543+40, 10 Right	0	х	х	х	х	х			
1789V2-102-01	2.5	(0-2.5)	1*	1	3751-4 (1789V2-102)	Yes - Non-attainable water quality	1789V2-98, 1789V2-103, 1789V2-104, 1789V2-105	IL RT 47 532+00, 15 Left	0	х	х	х	х	х			
1789V2-103-01	3.5	(0-3.5)	1*	1	3751-5 (1789V2-103)	No	1789V2-98, 1789V2-102, 1789V2-104, 1789V2-105	IL RT 47 532+00, 25 Right	0	х	х	х	х	х			
1789V2-104-01	10	(0-5) (5-10)		2	, , , , , , , , , , , , , , , , , , , ,		,	IL RT 47 521+00, 15 Left		х	х	х	х	Х			
1789V2-104-02	10	(0-5) (5-10)		2				IL RT 47 523+00, 15 Left		х	х	х	х	Х	Dup-04 (5-10)		
1789V2-104-03	10	(0-5) (5-10)	_	2	3751-2		1789V2-102, 1789V2-	IL RT 47 525+00, 15 Left	1	х	х	х	х	Х	(5 = 5)		
1789V2-104-04	10	(0-5) (5-10)	6	2	(1789V2-104)	No	103, 1789V2-105, 1789V2- 106	IL RT 47 527+00, 15 Left	0	х	х	х	х	х			
1789V2-104-05	10	(0-5) (5-10)		2				IL RT 47 529+00, 15 Left		х	х	х	х	х			
1789V2-104-06	10	(0-5) (5-10)		2				IL RT 47 531+00, 15 Left		х	х	х	х	х	Dup-03 (5-10)		
1789V2-105-01	13.5	(0-5) (5-10) (10-13.5)		3				IL RT 47 527+00, 15 Right		х	х	х	х	х	(5 = 5)		
1789V2-105-02	13.5	(0-5) (5-10) (10-13.5)		2		Yes - Former dumping;		IL RT 47 528+00, 15 Right		х	х	х	х	х			
1789V2-105-03	13.5	(0-5) (5-10) (10-13.5)	5	3	3751-6 (1789V2-105(AST; fill; evidence of chemical use; potential	1789V2-102, 1789V2-103, 1789V2-104, 1789V2-106	IL RT 47 529+00, 15 Right	0	х	х	х	х	Х	Dup-07 (10-13.5)		
1789V2-105-04	13.5	(0-5) (5-10) (10-13.5)		3		ACM and lead paint		IL RT 47 530+00, 15 Right		х	х	х	х	х			
1789V2-105-05	13.5	(0-5) (5-10) (10-13.5)		3				IL RT 47 531+00, 15 Right		х	х	х	х	х			
1789V2-106-01	1.5	(0-1.5)		1				IL RT 47 520+00, 15 Right		х	х	х	х	х			
1789V2-106-02	10	(0-5) (5-10)		2]			IL RT 47 521+00, 15 Right]	х	х	Х	х	Х			
1789V2-106-03	10	(0-5) (5-10)		2				IL RT 47 522+00, 15 Right	1	х	х	х	х	Х	Dup-05 (5-10)		
1789V2-106-04	10	(0-5) (5-10)	7	2	3751-7 (1789V2-106)		1789V2-104, 1789V2-105	IL RT 47 523+00, 15 Right	0	х	х	х	х	Х	(3.20)		
1789V2-106-05	10	(0-5) (5-10)		2	,	paint		IL RT 47 524+00, 15 Right	1	х	х	х	х	Х			
1789V2-100-03	10	(0-5) (5-10)		2	1			IL RT 47 525+00, 15 Right	1	х	х	Х	х	Х			
1789V2-100-00 1789V2-106-07	10	(0-5) (5-10)		2	1			IL RT 47 526+00, 15 Right	1	х	х	Х	х	Х	Dup-06 (0-5)		

Strikethrough indicates proposed borings which could not be completed $\label{eq:completed} \ensuremath{\mathsf{Strikethrough}}$ $\ensuremath{^{*}}$ Indicates sediment grab sample collected from the Kishwaukee River.

December 3, 2019
IDOT, District 1 PTB 178-008 Work Order 25A
IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL
PSI Report

Page | 11

4.0 INVESTIGATION RESULTS

This section presents a discussion of the investigation results obtained from the PSI completed in support of the proposed improvements along of IL-47 from Union/Foster Road to Hawthorne Way. The proposed improvements include roadway realignment, channel excavation, a compensatory storage area, and wildlife crossing culverts. The proposed maximum depth of excavation is 13.5 ft bgs.

Section 4.1 presents the screening criteria used to evaluate the data. Field observations, including headspace-screening PID results, sample collection rationale, and geological and hydrogeological information are summarized in Section 4.2 This information is detailed on Table 4-1 and on the soil boring logs presented in Appendix B.

The discussion for each property is included in Section 4.3 and summarizes the soil sampling analytical results. Analytical results were reviewed and validated in accordance with applicable United States Environmental Protection Agency (USEPA) *Guidance for Data Quality Objective Process* procedures. STAT Analysis Corporation provided an analytical quality control summary package with the analytical report, included in Appendix C, and H&H performed data validation in accordance with the Consultant Quality Assurance Plan (QAP) and the IDOT-approved Work Plan for the Project. Appendix D contains the Illinois Environmental Protection Agency (IEPA) LPC-663 Forms, Uncontaminated Soil Certifications, for portions of the Project Area where soil may be managed to a Clean Construction or Demolition Debris (CCDD) or Uncontaminated Soil Fill Operation (USFO). The PESA Response Form with excavation volumes for the identified ISGS Sites associated with the Project Area is included in Appendix A for reference. This PSI Report incorporates the volumes provided by IDOT for the Project. All quantities presented are rounded up to the next whole number (in cubic yards).

4.1 <u>REFERENCE CONCENTRATIONS</u>

4.1.1 <u>Soil Reference Concentrations – Construction Areas</u>

An evaluation of the nature and extent of the contaminants of concern (COC), based on the results of this PSI, is also contained in the discussion. This includes a description and comparison of detected constituents to applicable environmental standards, used herein as reference concentrations. Soil analytical results were compared to the concentrations presented in the table titled *Summary of Maximum Allowable Concentrations (MACs) of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regulated Fill Operations*, dated August 27, 2012. This table, referred to as the MAC table, is incorporated under Title 35 of the Illinois Administrative Code (IAC), Part 1100, Subpart F.

Soil analytical results from TCLP and SPLP analyses were compared to the Soil Component of the Groundwater Ingestion Exposure Route Values for Class I Groundwater, presented in Title 35, IAC, Part 742: Tiered Approach to Corrective Action Objectives (TACO), Appendix B, Table A: Tier 1 Soil Remediation Objectives (SROs) for Residential Properties.

A constituent in soil is considered to be a COC if it exceeds the most stringent value listed in the MAC table. However, the constituent may be further evaluated by comparing soil sample extraction results (TCLP/SPLP), as indicated on the MAC Table. The constituent is considered a COC if the total concentration exceeds the most-stringent MAC Table value and both the TCLP and SPLP concentrations exceed the TACO SRO for the Soil Component of the Groundwater Ingestion Exposure Route. Additionally, if only the TCLP and SPLP concentrations exceed the TACO SRO for the Soil Component of the Groundwater Exposure Route for a given constituent, the contaminant is considered a COC.

Furthermore, based on guidance from IDOT, soil is not considered suitable for management to a CCDD/USFO if headspace readings in the soil boring are above background levels. Background levels for headspace readings are considered to be

December 3, 2019

PSI Report Page | 12

less than 1.0 PID units, which are given in parts per million (ppm) for the PID unit used for this Project (MiniRae 3000 with a 10.6 eV lamp).

Soil Reference Concentrations – Acquisition Areas 4.1.2

Soil located within proposed acquisition areas will be evaluated by comparing soil analytical results to the lowest applicable Tier 1 SROs for residential properties presented in Appendix C, Table A of TACO. The following outlines the approach to identifying COCs:

- Constituents with concentrations exceeding the Tier 1 SROs for the inhalation and/or ingestion exposure pathways will be considered COCs.
- A polynuclear aromatic hydrocarbon (PNA) constituent which has a background value listed in Appendix A, Table H of TACO, which is greater than the most stringent SRO in Appendix B, Table A of TACO, is considered a COC if the background value for the applicable area is exceeded.
- Inorganic and ionizing organic constituent concentrations will be compared against the pH-specific SROs for Class I groundwater presented in Appendix B, Table C of TACO, as applicable. A constituent that has a pH-specific SRO will be considered a COC if its total concentration exceeds the pH-specific SRO, and both the TCLP and SPLP concentrations exceed the TACO SRO for the Soil Component of the Groundwater Ingestion Exposure Route.
- If an inorganic constituent does not have a pH-specific SRO (e.g., total chromium), or if the sample pH is outside of the range of pH values provided (4.5 to 9.0 standard units), the SPLP and TCLP concentrations will be used to evaluate the Soil Component of the Groundwater Ingestion Exposure Route. Inorganic constituents will be considered COCs if both SPLP and TCLP concentrations exceed the SRO, and the total concentration exceeds the appropriate background value listed in Appendix A, Table G of TACO.

For the purposes of this report, only constituent results with one or more detection are presented in the embedded tables within the document narrative. Refer to Appendix C for comprehensive analytical summary Tables C-1.1, C-1.2, and C-2, which compare the results for all analytical results to applicable reference concentrations for inorganic and organic constituents, respectively.

Tables 4-2 and 4-3 present the soil analytical data for organic and inorganic constituents, respectively, and compare the detected constituents to reference concentrations. Figures 4-1.1 through 4-1.6 depict the boring locations and the extent of potentially impacted soil that may impact proposed construction activities during this Project. As the MAC Table includes provisions to evaluate select constituents against background values, Figures 4-1.1 through 4-1.6 identify soil that is considered to be non-special waste and soil that may be managed by a CCDD/USFO.

4.1.3 Hazardous Waste Reference Concentrations

The TCLP metals analytical results for soil are also screened against the values listed in 35 IAC, Part 721, Identification of Listing of Hazardous Waste, Section 721.124, Toxicity Characteristic. Soil in the vicinity of a boring with one or more TCLP metals with concentrations exceeding the Toxicity Characteristic reference concentrations will be considered a characteristic hazardous waste. None of the TCLP metals were found to exceed the hazardous waste reference criteria.

PSI Report Page | 13

4.2 FIELD OBSERVATIONS

Headspace measurements using a PID were collected from each sample interval. Table 4-1 presents the soil PID screening results for each soil boring, along with the planned construction excavation depths and sample collection depth. Headspace screening data are also presented on the soil boring logs presented in Appendix B. The highest headspace reading for this Project was 0.9 ppm, indicating background levels (<1.0 ppm).

Detailed field observations and geological descriptions were recorded by a H&H field geologist during the PSI and are included on the boring logs provided in Appendix B. Subsurface material encountered in the borings advanced adjacent to the subject properties generally includes silty clay soil types with varying quantities of trace gravel. Saturated conditions were not encountered at any of the properties investigated.

4.3 AGRICULTURAL LAND (ISGS SITE NO. 3751-2 (1789V2-98))

The investigative soil samples collected within the IDOT right-of-way were collected from within the proposed maximum depth of excavation of approximately 10 ft bgs.

4.3.1 Analytical Results

Soil Analytical Results

A total of fifteen (15) soil borings were advanced at this location. The fifteen (15) soil borings were advanced to a maximum total depth of approximately 10 ft bgs based on the design plans provided in the PESA Response Form. The soil samples were analyzed for VOCs, SVOCs, total metals, TCLP and SPLP metals (8 RCRA plus Be, Co, Cu, Fe, Mn, Ni, and Zn), and soil pH. Analytical data summary tables presenting detected constituents analyzed and their corresponding results are presented in Tables 4-2 and 4-3. Constituents detected in the soil borings advanced adjacent to this property include organics and inorganics, as listed below:

- Two (2) VOCs, acetone and toluene, were detected in the soil borings adjacent to the subject property.
- Eight (8) SVOCs were detected in the soil borings adjacent to the subject property.
- A total of nineteen (19) metals were detected (via total analysis method) in the soil borings adjacent to the subject property.
- A total of seven (7) metals were detected (via TCLP method analysis) in the soil borings adjacent to the subject property.
- A total of twelve (12) metals were detected (via SPLP method analysis) in the soil borings adjacent to the subject property.
- The pH values measured ranged from 7.51 to 9.38 standard units (s.u.) in the soil borings adjacent to the subject property.

Groundwater Analytical Results

A groundwater evaluation was not conducted adjacent to non-REC sites.

4.3.2 Nature and Extent of COCs

H&H evaluated the soil analytical data to determine whether reference concentrations were exceeded adjacent to the agricultural land (ISGS Site No. 3751-2 (1789V2-98)). Soil with constituents exceeding applicable environmental regulations was classified as being potentially impacted. Depending upon the contaminants of concern, management of

December 3, 2019
IDOT, District 1 PTB 178-008 Work Order 25A

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

PSI Report

Page | 14

potentially impacted soil on site, off site to a CCDD/USFO, or off site as a non-special waste is considered for soil that will be generated during construction activities. Costs for off-site CCDD/USFO management and non-special waste management and disposal have been included as appropriate. A discussion of the criteria used in this analysis is contained in the following subsections.

4.3.2.1 Soil

An evaluation of the analytical results from the soil samples collected adjacent to the subject property indicates the presence of organic and inorganic constituents. As summarized on Tables 4-2 and 4-3, the following constituents were detected at concentrations exceeding their respective reference concentrations:

- Total arsenic was detected at a concentration exceeding its reference concentration in four (4) soil borings.
- Total chromium was detected at a concentration exceeding its reference concentration in seven (7) soil borings.
- Total cobalt was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- Total iron was detected at a concentration exceeding its reference concentration in twelve (12) soil borings.
- Total manganese was detected at a concentration exceeding its reference concentration in six (6) soil borings.
- Total selenium was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- TCLP lead was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- TCLP manganese was detected at a concentration exceeding its reference concentration in all fifteen (15) soil borings.
- SPLP chromium was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- SPLP iron was detected at a concentration exceeding its reference concentration in thirteen (13) soil borings.
- SPLP lead was detected at a concentration exceeding its reference concentration in two (2) soil borings.
- SPLP manganese was detected at concentrations exceeding its reference concentration in five (5) soil borings.
- SPLP nickel was detected at concentrations exceeding its reference concentration in one (1) soil boring.
- Soil pH was detected at a level outside the required pH range of 6.25 to 9.0 in five (5) soil borings.

In order for a metal to be considered a COC, the total, TCLP, and SPLP results, or the TCLP and SPLP results (with the exception of arsenic, magnesium, and vanadium) must be found to exceed their reference concentrations in a given sample. This COC condition was met for total arsenic; total, TCLP, and SPLP manganese; and TCLP and SPLP lead adjacent to the subject property.

IDOT Construction Activities Within Impacted Soil Areas

Proposed IDOT construction activity adjacent to the agricultural land (ISGS Site No. 3751-2 (1789V2-98)) roadway realignment, compensatory storage area, channel excavation, and temporary pavement.

Soil in the vicinity of borings 1789V2-98-01, 1789V2-98-04, 1789V2-98-05, and 1789V2-98-06, as depicted with **yellow** hatching on Figure 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).

Soil in the vicinity of borings 1789V2-98-02, 1789V2-98-08, 1789V2-98-10, 1789V2-98-12, and 1789V2-98-14, as depicted with **blue** hatching on Figure 4-1.2, exceeded soil reference concentrations, is greater than the most stringent MAC value, and achieved the MAC for MSA counties. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County (a(2)) using the attached LPC-663 form in Appendix D.

December 3, 2019 IDOT, District 1 PTB 178-008 Work Order 25A

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL **PSI Report** Page | 15

Soil in the vicinity of borings 1789V2-98-03, 1789V2-98-11, and 1789V2-98-13, achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.

Soil in the vicinity of borings 1789V2-98-07 and 1789V2-98-15 as depicted with purple hatching on Figure 4-1.2, has a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil borings may be managed onsite as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).

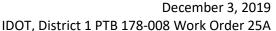
Soil in the vicinity of boring 1789V2-98-09 as depicted with orange hatching on Figure 4-1.2 is considered impacted, exceeding soil reference concentrations. Soil in the vicinity of this soil boring may be managed off site as non-special waste (a(5)).

Based on the information provided by the IDOT PESA Response Form, a total of approximately 31,155 CY of soil will be excavated during construction activities from Site 3751-2 (1789V2-98).

The total estimated volume of soil requiring management as non-special waste adjacent to Site 3751-2 (1789V2-98) is approximately 1,704 CY within the IDOT ROW and approximately 506 CY outside of the IDOT ROW, for a total of 2,210 CY. Special Waste Plans and Reports and field monitoring/oversight will be required, and additional analytical testing will be necessary to characterize the material for landfill disposal as non-special waste. The total construction cost estimate for the management of soils is approximately \$353,930, as detailed in Table 4-4.

Potential IDOT Property Acquisition – Soil Remediation Cost

Based on a review of IDOT construction plans and specification provided by District One, acquisition of a ROW partial take and temporary easement is anticipated adjacent to Site 3751-2 (1789V2-98). Soil from this area would require management as non-special waste, as detailed in Table 4-4. Therefore, the total estimated remediation cost estimate for the management of soils outside the IDOT ROW is approximately \$68,537, as detailed in Table 4-4.


Comparison of Soil Concentrations with Construction Worker Reference Concentrations

Tables 4-2 and 4-3 contain a comparison of detected constituents to the most conservative of the TACO Tier 1 Construction Worker ingestion or inhalation values. No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.

Management of Excavated Soil

Soil in the vicinity of borings 1789V2-98-01, 1789V2-98-04, 1789V2-98-05, and 1789V2-98-06, as depicted with yellow hatching on Figure 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).

Soil in the vicinity of borings 1789V2-98-02, 1789V2-98-08, 1789V2-98-10, 1789V2-98-12, and 1789V2-98-14, as depicted with blue hatching on Figure 4-1.2, exceeded soil reference concentrations, is greater than the most stringent MAC value, and achieved the MAC for MSA counties. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County (a(2)) using the attached LPC-663 form in Appendix D.

PSI Report Page | 16

Soil in the vicinity of borings 1789V2-98-03, 1789V2-98-11, and 1789V2-98-13, achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.

Soil in the vicinity of borings 1789V2-98-07 and 1789V2-98-15, as depicted with **purple** hatching on Figure 4-1, may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil".

Based on the concentration of arsenic above the reference concentration within the maximum excavation depth, the soil in the vicinity of boring 1789V2-98-09, as depicted with **orange** hatching, may be managed off site as non-special waste, providing that a "non-special waste certification" is submitted by the generator according to the conditions in 415 ILCS 5/22.48 and 415 ILCS 4/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within these properties during construction activities.

4.3.2.2 Groundwater

A groundwater evaluation was not conducted adjacent to non-REC sites.

4.4 RESIDENCES (ISGS SITE NO. 3751-1 (1789V2-99))

The investigative soil samples collected adjacent to the residential buildings were collected from within the proposed maximum depth of excavation of 2 ft bgs.

4.4.1 Analytical Results

Soil Analytical Results

A total of four (4) soil borings were advanced at this location to evaluate to soil conditions at Site 3751-1 (1789V2-99) (1789V2-99-01, 1789V2-99-02, 1789V2-99-03, and 1789V2-99-04). The four (4) soil borings were advanced to a maximum total depth of 2 ft bgs based on the design plans provided in the PESA Response Form. The soil samples were analyzed for VOCs, SVOCs, total metals, TCLP and SPLP metals (8 RCRA plus Be, Co, Cu, Fe, Mn, Ni, and Zn), and soil pH. Analytical data summary tables presenting detected constituents analyzed and their corresponding results are presented in Tables 4-2 and 4-3. Constituents detected in the soil borings advanced adjacent to this property include organics and inorganics, as listed below:

- Two (2) VOCs, acetone and toluene, were detected in the soil borings adjacent to the subject property.
- A total of ten (10) SVOCs were detected in the soil borings adjacent to the subject property.
- A total of eighteen (18) metals were detected (via total analysis method) in the soil borings adjacent to the subject property.
- A total of six (6) metals were detected (via TCLP method analysis) in the soil borings adjacent to the subject property.
- A total of thirteen (13) metals were detected (via SPLP method analysis) in the soil borings adjacent to the subject property.
- The pH values measured ranged from 8.41 to 9.32 standard units (s.u.) in the soil borings adjacent to the subject property.

PSI Report Page | 17

Groundwater Analytical Results

A groundwater evaluation was not conducted adjacent to non-REC sites.

4.4.2 Nature and Extent of COCs

H&H evaluated the soil analytical data to determine whether reference concentrations were exceeded adjacent to the residences (ISGS Site No. 3751-1 (1789V2-99)). Soil with constituents exceeding applicable environmental regulations was classified as being potentially impacted. Depending upon the contaminants of concern, management of potentially impacted soil on site, off site to a CCDD/USFO, or off site as a non-special waste is considered for soil that will be generated during construction activities. Costs for off-site CCDD/USFO management and non-special waste management and disposal have been included as appropriate. A discussion of the criteria used in this analysis is contained in the following subsections.

4.4.2.1 Soil

An evaluation of the analytical results from the soil samples collected adjacent to the subject property indicates the presence of organic and inorganic constituents. As summarized on Tables 4-2 and 4-3, the following constituents were detected at concentrations exceeding their respective reference concentrations:

- Benzo(a)pyrene was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- Total arsenic was detected at a concentration exceeding its reference concentration in two (2) soil borings.
- Total chromium was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- Total iron was detected at a concentration exceeding its reference concentration in three (3) soil borings.
- Total manganese was detected at a concentration exceeding its reference concentration in two (2) soil borings.
- Total selenium was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- TCLP manganese was detected at a concentration exceeding its reference concentration in all four (4) soil borings.
- SPLP iron, lead, and manganese were detected at concentrations exceeding their reference concentration in each of the four (4) soil borings.
- SPLP arsenic, beryllium, chromium, and selenium were detected at concentrations exceeding their reference concentration in one (1) soil boring.
- Soil pH was detected at a level outside the required pH range of 6.25 to 9.0 in three (3) soil borings.

In order for a metal to be considered a COC, the total, TCLP, and SPLP results, or the TCLP and SPLP results (with the exception of arsenic, magnesium, and vanadium) must be found to exceed their reference concentrations in a given sample. The COC condition was met for total arsenic and for total, TCLP, and SPLP manganese adjacent to the subject property.

IDOT Construction Activities Within Impacted Soil Areas

Proposed IDOT construction activity adjacent to the residential buildings (ISGS Site No. 3751-1 (1789V2-99)) includes roadway realignment and temporary pavement.

Soil in the vicinity of boring 1789V2-99-01, as depicted with **orange** hatching on Figure 4-1.2 is considered impacted, exceeding soil reference concentrations. Soil in the vicinity of this soil boring may be managed off site as non-special waste (a(5)).

December 3, 2019
IDOT, District 1 PTB 178-008 Work Order 25A

47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, II.

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL
PSI Report

Page | 18

Soil in the vicinity of borings 1789V2-99-02, 1789V2-99-04, and 1789V2-98-04 (located on the property adjacent to the subject property), as depicted with **yellow** hatching on Figure 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).

Soil in the vicinity of boring 1789V2-99-03, as depicted with **green** hatching on Figure 4-1.2, exceeded a reference concentration, is greater than the most stringent MAC value, and achieved the MAC for MSA counties excluding Chicago and achieved the MAC for Chicago corporate limits. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County including Chicago (a(3)) using the attached LPC-663 form in Appendix D.

Based on the information provided by the IDOT PESA Response Form, a total of approximately 546 CY of soil will be excavated during construction activities adjacent to Site 3751-1 (1789V2-99).

The total estimated volume of soil requiring management as non-special waste adjacent to Site 3751-1 (1789V2-99) is approximately 478 CY within the IDOT ROW and approximately 30 CY outside of the IDOT ROW, for a total of 508 CY. Special Waste Plans and Reports and field monitoring/oversight will be required, and additional analytical testing will be necessary to characterize the material for landfill disposal as non-special waste. The total construction cost estimate for the management of soils is approximately \$42,626, as detailed in Table 4-4.

Potential IDOT Property Acquisition – Soil Remediation Cost

Based on a review of IDOT construction plans and specification provided by District One, acquisition of a ROW partial take and temporary easement is anticipated adjacent to Site 3751-1 (1789V2-99). Soil from this area would require management as non-special waste, as detailed in Table 4-4. Therefore, the total estimated remediation cost estimate for the management of soils outside the IDOT ROW is approximately \$555 as detailed in Table 4-4.

Comparison of Soil Concentrations with Construction Worker Reference Concentrations

Tables 4-2 and 4-3 contain a comparison of detected constituents to the most conservative of the TACO Tier 1 Construction Worker ingestion or inhalation values. No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.

Management of Excavated Soil

Based on the concentration of arsenic above the reference concentrations within the maximum excavation depth, the soil in the vicinity of boring 1789V2-99-01, as depicted with **orange** hatching, may be managed off site as non-special waste, providing that a "non-special waste certification" is submitted by the generator according to the conditions in 415 ILCS 5/22.48 and 415 ILCS 4/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within these properties during construction activities.

Soil in the vicinity of borings 1789V2-99-02, 1789V2-99-04, and 1789V2-98-04 (located on the property adjacent to the subject property), as depicted with **yellow** hatching on Figure 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).

Soil in the vicinity of boring 1789V2-99-03, as depicted with **green** hatching on Figure 4-1.2, exceeded a reference concentration, is greater than the most stringent MAC value, and achieved the MAC for MSA counties excluding Chicago

Page | 19

IDOT, District 1 PTB 178-008 Work Order 25A
IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL
PSI Report

and achieved the MAC for Chicago corporate limits. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County including Chicago (a(3)) using the attached LPC-663 form in Appendix D.

4.4.2.2 Groundwater

A groundwater evaluation was not conducted adjacent to non-REC sites.

4.5 <u>VACANT LAND (ISGS SITE NO. 3751-3 (1789V2-101))</u>

The investigative soil sample collected adjacent to the vacant land was collected from within the proposed maximum depth of excavation of 1.5 ft bgs.

4.5.1 Analytical Results

Soil Analytical Results

One (1) soil boring was advanced at this location to evaluate to soil conditions at Site 3751-3 (1789V2-101) (1789V2-101-01). The one (1) soil boring was advanced to a maximum total depth of 1.5 ft bgs based on the design plans provided in the PESA Response Form. The soil sample was analyzed for VOCs, SVOCs, total metals, TCLP and SPLP metals (8 RCRA plus Be, Co, Cu, Fe, Mn, Ni, and Zn), and soil pH. Analytical data summary tables presenting detected constituents analyzed and their corresponding results are presented in Tables 4-2 and 4-3. Constituents detected in the soil borings advanced adjacent to this property include organics and inorganics, as listed below:

- A total of fifteen (15) metals were detected (via total analysis method) in the soil borings adjacent to the subject property.
- A total of two (2) metals were detected (via TCLP method analysis) in the soil borings adjacent to the subject property.
- A total of eight (8) metals were detected (via SPLP method analysis) in the soil borings adjacent to the subject property.
- The pH values measured was 7.83 standard units (s.u.) in the soil borings adjacent to the subject property.

Groundwater Analytical Results

A groundwater evaluation was not conducted adjacent to non-REC sites.

4.5.2 Nature and Extent of COCs

H&H evaluated the soil analytical data to determine whether reference concentrations were exceeded adjacent to the vacant land (ISGS Site No. 3751-3 (1789V2-101)). Soil with constituents exceeding applicable environmental regulations was classified as being potentially impacted. Depending upon the contaminants of concern, management of potentially impacted soil on site, off site to a CCDD/USFO, or off site as a non-special waste is considered for soil that will be generated during construction activities. Costs for off-site CCDD/USFO management and non-special waste management and disposal have been included as appropriate. A discussion of the criteria used in this analysis is contained in the following subsections.

PSI Report Page | 20

4.5.2.1 Soil

An evaluation of the analytical results from the soil samples collected adjacent to the subject property indicates the presence of organic and inorganic constituents. As summarized on Tables 4-2 and 4-3, the following constituents were detected at concentrations exceeding their respective reference concentrations:

- Total iron was detected at a concentration exceeding its reference concentration in the one (1) soil boring.
- SPLP iron and lead were detected at concentrations exceeding their reference concentrations in the one (1) soil boring.

In order for a metal to be considered a COC, the total, TCLP, and SPLP results, or the TCLP and SPLP results (with the exception of arsenic, magnesium, and vanadium) must be found to exceed their reference concentrations in a given sample. The COC condition was not met for the metals detected adjacent to the subject property.

IDOT Construction Activities Within Impacted Soil Areas

Proposed IDOT construction activity adjacent to the vacant land (ISGS Site No. 3751-3 (1789V2-101)) includes roadway realignment and temporary pavement.

Soil in the vicinity of boring 1789V2-101-01 achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.

Based on the information provided by the IDOT PESA Response Form, a total of approximately 58 CY of soil will be excavated during construction activities adjacent to ISGS Site 3751-3 (1789V2-101).

No soil from this area will require management as non-special waste, as detailed in Table 4-4. Field monitoring and oversight is required for all soil excavation work within the project construction limits, therefore, the total construction cost estimate for the management of soils is approximately \$1,098, as detailed in Table 4-4.

Potential IDOT Property Acquisition – Soil Remediation Cost

Based on a review of IDOT construction plans and specifications provided by District One, acquisition of additional ROW or easements is not anticipated adjacent to ISGS Site 3751-3 (1789V2-101).

Comparison of Soil Concentrations with Construction Worker Reference Concentrations

Tables 4-2 and 4-3 contain a comparison of detected constituents to the most conservative of the TACO Tier 1 Construction Worker ingestion or inhalation values. No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.

Management of Excavated Soil

Soil in the vicinity of boring 1789V2-101-01 achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.

IDOT, District 1 PTB 178-008 Work Order 25A

PSI Report Page | 21

4.5.2.2 Groundwater

A groundwater evaluation was not conducted adjacent to non-REC sites.

4.6 KISHWAUKEE RIVER (ISGS SITE NO. 3751-4 (1789V2-102))

The investigative sediment sample collected adjacent to the Kishwaukee River was collected from within the proposed maximum depth of excavation of 2.5 ft bgs.

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

4.6.1 **Analytical Results**

Soil Analytical Results

One (1) soil boring was advanced at this location to evaluate to soil conditions at Site 3751-4 (1789V2-102) (1789V2-102-01). The one (1) soil boring was advanced to a maximum total depth of 2.5 ft bgs based on the design plans provided in the PESA Response Form. The soil sample was analyzed for VOCs, SVOCs, total metals, TCLP and SPLP metals (8 RCRA plus Be, Co, Cu, Fe, Mn, Ni, and Zn), and soil pH. Analytical data summary tables presenting detected constituents analyzed and their corresponding results are presented in Tables 4-2 and 4-3. Constituents detected in the soil borings advanced adjacent to this property include organics and inorganics, as listed below:

- A total of eleven (11) SVOCs were detected in the soil boring adjacent to the subject property.
- A total of fifteen (15) metals were detected (via total analysis method) in the soil boring adjacent to the subject property.
- A total of five (5) metals were detected (via TCLP method analysis) in the soil boring adjacent to the subject
- A total of three (3) metals were detected (via SPLP method analysis) in the soil boring adjacent to the subject
- The pH values measured was 7.57 standard units (s.u.) in the soil boring adjacent to the subject property.

Groundwater Analytical Results

ISGS PESA Report No. 1789V2 identified this property as a REC site. As this location was the Kishwaukee River, a sediment sample was collected and analyzed from within the proposed maximum depth of excavation to represent site conditions. Groundwater was not encountered at this property at the proposed maximum depth of excavation of 2.5 ft bgs adjacent to this site; therefore, a groundwater evaluation was not conducted.

4.6.2 Nature and Extent of COCs

H&H evaluated the soil analytical data to determine whether reference concentrations were exceeded adjacent to the Kishwaukee River (ISGS Site No. 3751-4 (1789V2-102)). Soil with constituents exceeding applicable environmental regulations was classified as being potentially impacted. Depending upon the contaminants of concern, management of potentially impacted soil on site, off site to a CCDD/USFO, or off site as a non-special waste is considered for soil that will be generated during construction activities. Costs for off-site CCDD/USFO management and non-special waste management and disposal have been included as appropriate. A discussion of the criteria used in this analysis is contained in the following subsections.

Page | 22

4.6.2.1 Soil

An evaluation of the analytical results from the soil samples collected adjacent to the subject property indicates the presence of organic and inorganic constituents. As summarized on Tables 4-2 and 4-3, the following constituents were detected at concentrations exceeding their respective reference concentrations:

- Benzo(a)pyrene was detected at a concentration exceeding its reference concentration in the sediment sample.
- Total iron was detected at a concentration exceeding its reference concentration in the sediment sample.
- TCLP manganese was detected at a concentration exceeding its reference concentration in the sediment sample.

In order for a metal to be considered a COC, the total, TCLP, and SPLP results, or the TCLP and SPLP results (with the exception of arsenic, magnesium, and vanadium) must be found to exceed their reference concentrations in a given sample. The COC condition was not met for the metals detected adjacent to the subject property.

IDOT Construction Activities Within Impacted Soil Areas

Proposed IDOT construction activity adjacent to the Kishwaukee River (ISGS Site No. 3751-4 (1789V2-102)) includes channel excavation.

Soil in the vicinity of boring 1789V2-102-01, as depicted with **green** hatching on Figure 4-1.2, exceeded a reference concentration, is greater than the most stringent MAC value, and achieved the MAC for MSA counties excluding Chicago and achieved the MAC for Chicago corporate limits. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County including Chicago (a(3)) using the attached LPC-663 form in Appendix D.

Based on the information provided by the IDOT PESA Response Form, a total of approximately 130 CY of soil will be excavated during construction activities adjacent to Site 3751-4 (1789V2-102).

No soil from this area will require management as non-special waste, as detailed in Table 4-4. Field monitoring and oversight is required for all soil excavation work with the project construction limits, therefore, the total construction cost estimate for the management of soils is approximately \$1,530, as detailed in Table 4-4.

Potential IDOT Property Acquisition – Soil Remediation Cost

Based on a review of IDOT construction plans and specifications provided by District One, acquisition of additional ROW or easements is not anticipated adjacent to ISGS Site 3751-4 (1789V2-102).

Comparison of Soil Concentrations with Construction Worker Reference Concentrations

Tables 4-2 and 4-3 contain a comparison of detected constituents to the most conservative of the TACO Tier 1 Construction Worker ingestion or inhalation values. No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.

Management of Excavated Soil

Soil in the vicinity of boring 1789V2-102-01, as depicted with **green** hatching on Figure 4-1.2, exceeded a reference concentration, is greater than the most stringent MAC value, and achieved the MAC for MSA counties excluding Chicago

IDOT, District 1 PTB 178-008 Work Order 25A **PSI Report**

Page | 23

December 3, 2019

and achieved the MAC for Chicago corporate limits. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County including Chicago (a(3)) using the attached LPC-663 form in Appendix D.

4.6.2.2 Groundwater

ISGS PESA Report No. 1789V2 identified this property as a REC site. As this location was the Kishwaukee River, a sediment sample was collected and analyzed from within the proposed maximum depth of excavation to represent site conditions. Groundwater was not encountered at this property at the proposed maximum depth of excavation of 2.5 ft bgs adjacent to this site; therefore, a groundwater evaluation was not conducted.

4.7 BRIDGE (ISGS SITE NO. 3751-5 (1789V2-103))

The investigative sediment sample collected adjacent to the Bridge was collected from within the proposed maximum depth of excavation of 3.5 ft bgs.

4.7.1 **Analytical Results**

Soil Analytical Results

One (1) soil boring was advanced at this location to evaluate to soil conditions at Site 3751-5 (1789V2-103) (1789V2-103-01). The one (1) soil boring was advanced to a maximum total depth of 3.5 ft bgs based on the design plans provided in the PESA Response Form. The soil sample was analyzed for VOCs, SVOCs, total metals, TCLP and SPLP metals (8 RCRA plus Be, Co, Cu, Fe, Mn, Ni, and Zn), and soil pH. Analytical data summary tables presenting detected constituents analyzed and their corresponding results are presented in Tables 4-2 and 4-3. Constituents detected in the soil borings advanced adjacent to this property include organics and inorganics, as listed below:

- A total of fifteen (15) metals were detected (via total analysis method) in the soil boring adjacent to the subject property.
- A total of five (5) metals were detected (via TCLP method analysis) in the soil boring adjacent to the subject
- A total of three (3) metals were detected (via SPLP method analysis) in the soil boring adjacent to the subject
- The pH values measured was 7.34 standard units (s.u.) in the soil boring adjacent to the subject property.

Groundwater Analytical Results

A groundwater evaluation was not conducted adjacent to non-REC sites.

4.7.2 Nature and Extent of COCs

H&H evaluated the soil analytical data to determine whether reference concentrations were exceeded adjacent to the Bridge (ISGS Site No. 3751-5 (1789V2-103)). Soil with constituents exceeding applicable environmental regulations was classified as being potentially impacted. Depending upon the contaminants of concern, management of potentially impacted soil on site, off site to a CCDD/USFO, or off site as a non-special waste is considered for soil that will be generated during construction activities. Costs for off-site CCDD/USFO management and non-special waste management and disposal have been included as appropriate. A discussion of the criteria used in this analysis is contained in the following subsections.

Page | 24

4.7.2.1 Soil

An evaluation of the analytical results from the soil samples collected adjacent to the subject property indicates the presence of inorganic constituents. As summarized on Tables 4-2 and 4-3, the following constituents were detected at concentrations exceeding their respective reference concentrations:

- Total iron was detected at a concentration exceeding its reference concentration in the sediment sample.
- TCLP manganese was detected at a concentration exceeding its reference concentration in the sediment sample.

In order for a metal to be considered a COC, the total, TCLP, and SPLP results, or the TCLP and SPLP results (with the exception of arsenic, magnesium, and vanadium) must be found to exceed their reference concentrations in a given sample. The COC condition was not met for the metals detected adjacent to the subject property.

IDOT Construction Activities Within Impacted Soil Areas

Proposed IDOT construction activity adjacent to the Bridge (ISGS Site No. 3751-5 (1789V2-103)) includes channel excavation.

Soil in the vicinity of boring 1789V2-103-01 achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.

Based on the information provided by the IDOT PESA Response Form, a total of approximately 407 CY of soil will be excavated during construction activities adjacent to ISGS Site 3751-5 (1789V2-103).

No soil from this area will require management as non-special waste, as detailed in Table 4-4. Field monitoring and oversight is required for all soil excavation work with the project construction limits, therefore, the total construction cost estimate for the management of soils is approximately \$3,192, as detailed in Table 4-4.

Potential IDOT Property Acquisition – Soil Remediation Cost

Based on a review of IDOT construction plans and specifications provided by District One, a ROW partial take is anticipated adjacent to ISGS Site 3751-5 (1789V2-103). No soil from this area will require management as non-special waste, as detailed in Table 4-4. Therefore, the total remediation cost estimate for the management of soils outside the IDOT ROW is approximately \$0, as detailed in Table 4-4.

Comparison of Soil Concentrations with Construction Worker Reference Concentrations

Tables 4-2 and 4-3 contain a comparison of detected constituents to the most conservative of the TACO Tier 1 Construction Worker ingestion or inhalation values. No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.

Management of Excavated Soil

Soil in the vicinity of boring 1789V2-103-01 achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.

IDOT, District 1 PTB 178-008 Work Order 25A

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

PSI Report Page | 25

4.7.2.2 Groundwater

A groundwater evaluation was not conducted adjacent to non-REC sites.

4.8 <u>AGRICULTURAL LAND (ISGS SITE NO. 3751-2 (1789V2-104))</u>

The investigative soil samples collected adjacent to the agricultural land were collected from within the proposed maximum depth of excavation of 10 ft bgs.

4.8.1 Analytical Results

Soil Analytical Results

A total of six (6) soil borings were advanced at this location to evaluate to soil conditions at Site 3751-2 (1789V2-104) (1789V2-104-01, 1789V2-104-02, 1789V2-104-03, 1789V2-104-04, 1789V2-104-05, and 1789V2-104-06). The six (6) soil borings were advanced to a maximum total depth of 10 ft bgs based on the design plans provided in the PESA Response Form. The soil samples were analyzed for VOCs, SVOCs, total metals, TCLP and SPLP metals (8 RCRA plus Be, Co, Cu, Fe, Mn, Ni, and Zn), and soil pH. Analytical data summary tables presenting detected constituents analyzed and their corresponding results are presented in Tables 4-2 and 4-3. Constituents detected in the soil borings advanced adjacent to this property include organics and inorganics, as listed below:

- A total of two (2) VOCs were detected in the soil borings adjacent to the subject property.
- A total of eight (8) SVOCs were detected in the soil borings adjacent to the subject property.
- A total of nineteen (19) metals were detected (via total analysis method) in the soil borings adjacent to the subject property.
- A total of eight (8) metals were detected (via TCLP method analysis) in the soil borings adjacent to the subject property.
- A total of thirteen (13) metals were detected (via SPLP method analysis) in the soil borings adjacent to the subject property.
- The pH values measured ranged from 7.12 to 9.06 standard units (s.u.) in the soil borings adjacent to the subject property.

Groundwater Analytical Results

A groundwater evaluation was not conducted adjacent to non-REC sites.

4.8.2 Nature and Extent of COCs

H&H evaluated the soil analytical data to determine whether reference concentrations were exceeded adjacent to the agricultural land (ISGS Site No. 3751-2 (1789V2-104)). Soil with constituents exceeding applicable environmental regulations was classified as being potentially impacted. Depending upon the contaminants of concern, management of potentially impacted soil on site, off site to a CCDD/USFO, or off site as a non-special waste is considered for soil that will be generated during construction activities. Costs for off-site CCDD/USFO management and non-special waste management and disposal have been included as appropriate. A discussion of the criteria used in this analysis is contained in the following subsections.

December 3, 2019 IDOT, District 1 PTB 178-008 Work Order 25A 77 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, II.

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL PSI Report

Page | 26

4.8.2.1 Soil

An evaluation of the analytical results from the soil samples collected adjacent to the agricultural land indicates the presence of organic and inorganic constituents. As summarized on Tables 4-2 and 4-3, the following constituents were detected at concentrations exceeding their respective reference concentrations:

- Total chromium was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- Total iron was detected at a concentration exceeding its reference concentration in five (5) soil borings.
- Total lead was detected at a concentration exceeding its reference concentration in two (2) soil borings.
- Total manganese was detected at a concentration exceeding its reference concentration in three (3) soil borings.
- Total selenium was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- TCLP manganese was detected at concentrations exceeding its reference concentration in each of the six (6) soil borings.
- SPLP iron and lead were detected at concentrations exceeding their reference concentrations in each of the six (6) soil borings.
- SPLP manganese was at concentrations exceeding its reference concentration in five (5) soil borings.
- Soil pH was detected at a level outside the required pH range of 6.25 to 9.0 in one (1) soil boring.

In order for a metal to be considered a COC, the total, TCLP, and SPLP results, or the TCLP and SPLP results (with the exception of arsenic, magnesium, and vanadium) must be found to exceed their reference concentrations in a given sample. The COC condition was met for TCLP and SPLP manganese adjacent to the subject property.

IDOT Construction Activities Within Impacted Soil Areas

Proposed IDOT construction activity adjacent to the agricultural land (ISGS Site No. 3751-2 (1789V2-104)) includes temporary pavement, roadway realignment, and a wildlife cross culvert.

Soil in the vicinity of borings 1789V2-104-01 and 1789V2-104-04, achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.

Soil in the vicinity of borings 1789V2-104-02, 1789V2-104-05, and 1789V2-104-06, as depicted with **blue** hatching on Figure 4-1.1 and 4-1.2, exceeded soil reference concentrations, is greater than the most stringent MAC value, and achieved the MAC for MSA counties. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County (a(2)) using the attached LPC-663 form in Appendix D.

Soil in the vicinity of boring 1789V2-104-03, as depicted with **purple** hatching on Figure 4-1.1, has a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil borings may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).

Based on the information provided by the IDOT PESA Response Form, a total of approximately 5,610 CY of soil will be excavated during construction activities adjacent to ISGS Site 3751-2 (1789V2-104).

No soil from this area will require management as non-special waste, as detailed in Table 4-4. Field monitoring and oversight is required for all soil excavation work with the project construction limits, therefore, the total construction cost estimate for the management of soils is approximately \$34,410, as detailed in Table 4-4.

Page | 27

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL
PSI Report

Potential IDOT Property Acquisition – Soil Remediation Cost

Based on a review of IDOT construction plans and specification provided by District One, acquisition of a temporary easement is anticipated adjacent to Site 3751-2 (1789V2-104). Soil from this area would not require management as non-special waste, as detailed in Table 4-4. Therefore, the total estimated remediation cost estimate for the management of soils outside the IDOT ROW is approximately \$0, as detailed in Table 4-4.

Comparison of Soil Concentrations with Construction Worker Reference Concentrations

Tables 4-2 and 4-3 contain a comparison of detected constituents to the most conservative of the TACO Tier 1 Construction Worker ingestion or inhalation values. No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.

Management of Excavated Soil

Soil in the vicinity of borings 1789V2-104-01 and 1789V2-104-04, achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.

Soil in the vicinity of borings 1789V2-104-02, 1789V2-104-05, and 1789V2-104-06, as depicted with **blue** hatching on Figure 4-1.1 and 4-1.2, exceeded soil reference concentrations, is greater than the most stringent MAC value, and achieved the MAC for MSA counties. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County (a(2)) using the attached LPC-663 form in Appendix D.

Soil in the vicinity of boring 1789V2-104-03, as depicted with **purple** hatching on Figure 4-1.1, has a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil borings may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).

4.8.2.2 Groundwater

A groundwater evaluation was not conducted adjacent to non-REC sites.

4.9 <u>OZINGA CONCRETE (ISGS SITE NO. 3751-6 (1789VS-105))</u>

The investigative soil samples collected adjacent to Ozinga Concrete were collected from within the proposed maximum depth of excavation of 13.5 ft bgs.

4.9.1 Analytical Results

Soil Analytical Results

A total of five (5) soil borings were advanced at this location to evaluate to soil conditions at Site 3751-6 (1789V2-105) (1789V2-105-01, 1789V2-105-02, 1789V2-105-03, 1789V2-105-04, and 1789V2-105-05). The five (5) soil borings were advanced to a maximum total depth of 13.5 ft bgs based on the design plans provided in the PESA Response Form. The soil samples were analyzed for VOCs, SVOCs, total metals, TCLP and SPLP metals (8 RCRA plus Be, Co, Cu, Fe, Mn, Ni, and Zn), and soil pH. Analytical data summary tables presenting detected constituents analyzed and their corresponding results are presented in Tables 4-2 and 4-3. Constituents detected in the soil borings advanced adjacent to this property include organics and inorganics, as listed below:

PSI Report Page | 28

- A total of one (1) SVOC was detected in the soil borings adjacent to the subject property.
- A total of seventeen (17) metals were detected (via total analysis method) in the soil borings adjacent to the subject property.
- A total of six (6) metals were detected (via TCLP method analysis) in the soil borings adjacent to the subject property.
- A total of ten (10) metals were detected (via SPLP method analysis) in the soil borings adjacent to the subject property.
- The pH values measured ranged from 7.70 to 9.52 standard units (s.u.) in the soil borings adjacent to the subject property.

Groundwater Analytical Results

ISGS PESA Report No. 1789V2 identified this property as a REC site. However, saturated conditions were not encountered at this property at the proposed maximum depth of excavation of 13.5 ft bgs adjacent to this site. Therefore, a groundwater evaluation was not conducted.

4.9.2 Nature and Extent of COCs

H&H evaluated the soil analytical data to determine whether reference concentrations were exceeded adjacent to Ozinga Concrete (ISGS Site No. 3751-6 (1789V2-105)). Soil with constituents exceeding applicable environmental regulations was classified as being potentially impacted. Depending upon the contaminants of concern, management of potentially impacted soil on site, off site to a CCDD/USFO, or off site as a non-special waste is considered for soil that will be generated during construction activities. Costs for off-site CCDD/USFO management and non-special waste management and disposal have been included as appropriate. A discussion of the criteria used in this analysis is contained in the following subsections.

4.9.2.1 Soil

An evaluation of the analytical results from the soil samples collected adjacent to the subject property indicates the presence of organic and inorganic constituents. As summarized on Tables 4-2 and 4-3, the following constituents were detected at concentrations exceeding their respective reference concentrations:

- Total arsenic was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- Total iron was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- Total selenium was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- TCLP and SPLP manganese was detected at concentrations exceeding its reference concentrations in each of the five (5) soil borings.
- SPLP iron and lead were detected at concentrations exceeding their reference concentrations in each of the five (5) soil borings.
- Soil pH was detected at a level outside the required pH range of 6.25 to 9.0 in four (4) soil borings.

In order for a metal to be considered a COC, the total, TCLP, and SPLP results, or the TCLP and SPLP results (with the exception of arsenic, magnesium, and vanadium) must be found to exceed their reference concentrations in a given sample. The COC condition was met for total arsenic; and for TCLP and SPLP manganese adjacent to the subject property.

PSI Report Page | 29

IDOT Construction Activities Within Impacted Soil Areas

Proposed IDOT construction activity adjacent to Ozinga Concrete (ISGS Site No. 3751-6 (1789V2-105)) roadway realignment, wildlife cross culvert installation, and channel excavation.

Soil in the vicinity of boring 1789V2-105-01, as depicted with **orange** hatching on Figure 4-1.1 is considered impacted, exceeding soil reference concentrations. Soil in the vicinity of this soil boring may be managed off site as non-special waste (a(5)).

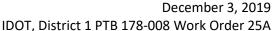
Soil in the vicinity of borings 1789V2-105-02, 1789V2-105-03, and 1789V2-105-05, as depicted with **yellow** hatching on Figure 4-1.1 and 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).

Soil in the vicinity of boring 1789V2-105-04, as depicted with **purple** hatching on Figure 4-1.1, has a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil boring may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).

Based on the information provided by the IDOT PESA Response Form, a total of approximately 20,780 CY of soil will be excavated during construction activities adjacent to ISGS Site 3751-6 (1789V2-105).

The total estimated volume of soil requiring management as non-special waste adjacent to Site 3751-6 (1789V2-105) is approximately 5,960 CY within the IDOT ROW and approximately 8,940 CY outside of the IDOT ROW, for a total of 14,900 CY. Special Waste Plans and Reports and field monitoring/oversight will be required, and additional analytical testing will be necessary to characterize the material for landfill disposal as non-special waste. The total construction cost estimate for the management of soils is approximately \$1,243,430, as detailed in Table 4-4.

Potential IDOT Property Acquisition – Soil Remediation Cost


Based on a review of IDOT construction plans and specification provided by District One, acquisition of a ROW partial take is anticipated adjacent to Site 3751-6 (1789V2-105). Soil from this area would require management as non-special waste, as detailed in Table 4-4. Therefore, the total estimated remediation cost estimate for the management of soils outside the IDOT ROW is approximately \$54,751 as detailed in Table 4-4.

Comparison of Soil Concentrations with Construction Worker Reference Concentrations

Tables 4-2 and 4-3 contain a comparison of detected constituents to the most conservative of the TACO Tier 1 Construction Worker ingestion or inhalation values. No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.

Management of Excavated Soil

Based on the concentration of arsenic above the reference concentrations within the maximum excavation depth, the soil in the vicinity of boring 1789V2-105-01, as depicted with **orange** hatching, may be managed off site as non-special waste, providing that a "non-special waste certification" is submitted by the generator according to the conditions in 415 ILCS

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

PSI Report Page | 30

5/22.48 and 415 ILCS 4/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within these properties during construction activities.

Soil in the vicinity of borings 1789V2-105-02, 1789V2-105-03, and 1789V2-105-05, as depicted with **yellow** hatching on Figure 4-1.1 and 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).

Soil in the vicinity of boring 1789V2-105-04, as depicted with **purple** hatching on Figure 4-1.1, has a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil boring may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).

4.9.2.2 Groundwater

ISGS PESA Report No. 1789V2 identified this property as a REC site. However, saturated conditions were not encountered at this property at the proposed maximum depth of excavation of 13.5 ft bgs adjacent to this site; therefore, a groundwater evaluation was not conducted.

4.10 RESIDENCE (ISGS SITE NO. 3751-7 (1789V2-106))

The investigative soil samples collected adjacent to the Residence were collected from within the proposed maximum depth of excavation of approximately 10 ft bgs.

4.10.1 Analytical Results

Soil Analytical Results

A total of seven (7) soil borings were advanced at this location to evaluate to soil conditions at Site 3751-7 (1789V2-106) (1789V2-106-01, 1789V2-106-02, 1789V2-106-03, 1789V2-106-04, 1789V2-106-05, 1789V2-106-06, and 1789V2-106-07). The seven (7) soil borings were advanced to a maximum total depth of 10 ft bgs based on the design plans provided in the PESA Response Form. The soil samples were analyzed for VOCs, SVOCs, total metals, TCLP and SPLP metals (8 RCRA plus Be, Co, Cu, Fe, Mn, Ni, and Zn), and soil pH. Analytical data summary tables presenting detected constituents analyzed and their corresponding results are presented in Tables 4-2 and 4-3. Constituents detected in the soil borings advanced adjacent to this property include organics and inorganics, as listed below:

- A total of two (2) VOCs were detected in the soil borings adjacent to the subject property.
- A total of ten (10) SVOCs were detected in the soil borings adjacent to the subject property.
- A total of seventeen (17) metals were detected (via total analysis method) in the soil borings adjacent to the subject property.
- A total of seven (7) metals were detected (via TCLP method analysis) in the soil borings adjacent to the subject property.
- A total of ten (10) metals were detected (via SPLP method analysis) in the soil borings adjacent to the subject property.
- The pH values measured ranged from 7.05 to 9.51 standard units (s.u.) in the soil borings adjacent to the subject property.

December 3, 2019
IDOT, District 1 PTB 178-008 Work Order 25A
IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL
PSI Report

Page | 31

Groundwater Analytical Results

ISGS PESA Report No. 1789V2 identified this property as a REC site. However, saturated conditions were not encountered at this property at the proposed maximum depth of excavation of approximately 10 ft bgs adjacent to this site. Therefore, a groundwater evaluation was not conducted.

4.10.2 Nature and Extent of COCs

H&H evaluated the soil analytical data to determine whether reference concentrations were exceeded adjacent to the residence (ISGS Site No. 3751-7 (1789V2-106)). Soil with constituents exceeding applicable environmental regulations was classified as being potentially impacted. Depending upon the contaminants of concern, management of potentially impacted soil on site, off site to a CCDD/USFO, or off site as a non-special waste is considered for soil that will be generated during construction activities. Costs for off-site CCDD/USFO management and non-special waste management and disposal have been included as appropriate. A discussion of the criteria used in this analysis is contained in the following subsections.

4.10.2.1 Soil

An evaluation of the analytical results from the soil samples collected adjacent to the subject property indicates the presence of organic and inorganic constituents. As summarized on Tables 4-2 and 4-3, the following constituents were detected at concentrations exceeding their respective reference concentrations:

- Total arsenic was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- Total chromium was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- Total iron was detected at a concentration exceeding its reference concentration in three (3) soil borings.
- Total lead was detected at a concentration exceeding its reference concentration in two (2) soil borings.
- Total manganese was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- Total mercury was detected at a concentration exceeding the remediation objective for construction workers in one (1) soil boring.
- Total selenium was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- TCLP lead was detected at a concentration exceeding its reference concentrations in three (3) soil borings.
- TCLP manganese was detected at a concentration exceeding its reference concentration in each of the seven (7) soil borings.
- TCLP nickel was detected at a concentration exceeding its reference concentration in one (1) soil boring.
- SPLP iron was detected at a concentration exceeding its reference concentration in five (5) soil borings.
- SPLP lead was detected at a concentration exceeding its reference concentration in six (6) soil borings.
- SPLP manganese was detected at a concentration exceeding its reference concentration in four (4) soil borings.

In order for a metal to be considered a COC, the total, TCLP, and SPLP results, or the TCLP and SPLP results (with the exception of arsenic, magnesium, and vanadium) must be found to exceed their reference concentrations in a given sample. The COC condition was met for total, TCLP, and SPLP lead and manganese adjacent to the subject property.

IDOT Construction Activities Within Impacted Soil Areas

December 3, 2019 IDOT, District 1 PTB 178-008 Work Order 25A

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL **PSI Report**

Page | 32

Proposed IDOT construction activity adjacent to the Residence (ISGS Site No. 3751-7 (1789V2-106)) includes temporary pavement and roadway realignment.

Soil in the vicinity of borings 1789V2-106-01, 1789V2-106-02, 1789V2-106-05, and 1789V2-106-07, as depicted with yellow hatching on Figure 4-1.1, exceeded soil reference concentrations. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).

Soil in the vicinity of borings 1789V2-106-03 and 1789V2-105-01 (on the property adjacent to the subject property), as depicted with orange hatching on Figure 4-1.1 is considered impacted, exceeding soil reference concentrations. Soil in the vicinity of these soil borings may be managed off site as non-special waste (a(5)).

Soil in the vicinity of borings 1789V2-106-04 and 1789V2-106-06, as depicted with purple hatching on Figure 4-1.1, have a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of these soil borings may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).

Based on the information provided by the IDOT PESA Response Form, a total of approximately 10,989 CY of soil will be excavated during construction activities adjacent to ISGS Site 3751-7 (1789V2-106).

The total estimated volume of soil requiring management as non-special waste adjacent to Site 3751-7 (1789V2-106) is approximately 5,634 CY within the IDOT ROW and approximately 2,274 CY outside of the IDOT ROW, for a total of 7,908 CY. Special Waste Plans and Reports and field monitoring/oversight will be required, and additional analytical testing will be necessary to characterize the material for landfill disposal as non-special waste. The total construction cost estimate for the management of soils is approximately \$660,284, as detailed in Table 4-4.

Potential IDOT Property Acquisition – Soil Remediation Cost

Based on a review of IDOT construction plans and specification provided by District One, acquisition of a ROW partial take is anticipated adjacent to Site 3751-7 (1789V2-106). Soil from this area would require management as non-special waste, as detailed in Table 4-4. Therefore, the total estimated remediation cost estimate for the management of soils outside the IDOT ROW is approximately \$22,075 as detailed in Table 4-4.

Comparison of Soil Concentrations with Construction Worker Reference Concentrations

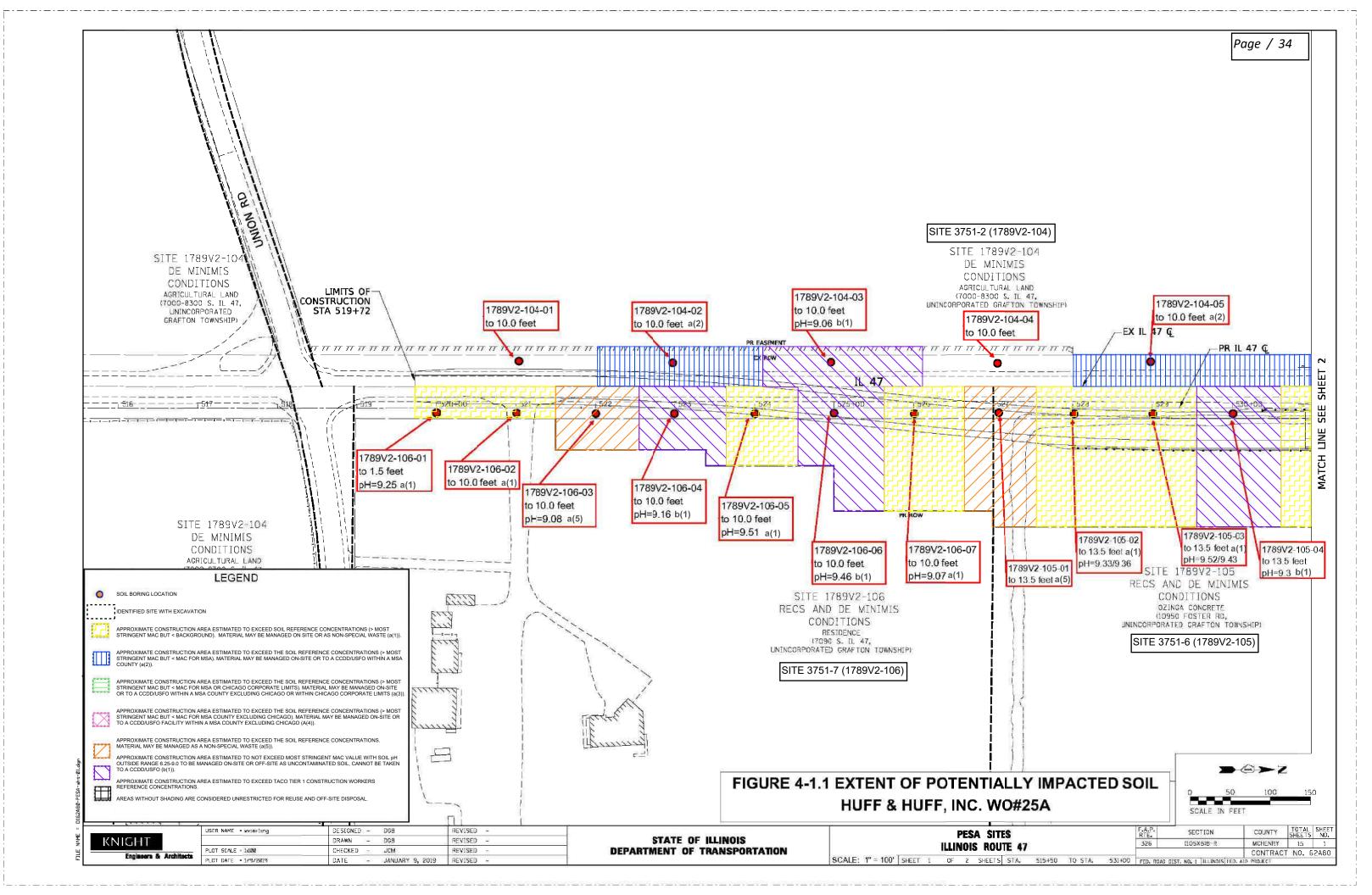
Tables 4-2 and 4-3 contain a comparison of detected constituents to the most conservative of the TACO Tier 1 Construction Worker ingestion or inhalation values. Total mercury was detected at a concentration slightly exceeding the construction worker objective in sample 1789V2-106-05; however, the construction worker caution for mercury is based on elemental mercury, and mercury detected in this location is likely attributed to inorganic mercury salt compounds (association with coal, specifically).

Management of Excavated Soil

Soil in the vicinity of borings 1789V2-106-01, 1789V2-106-02, 1789V2-106-05, and 1789V2-106-07, as depicted with yellow hatching on Figure 4-1.1, exceeded soil reference concentrations. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).

December 3, 2019 IDOT, District 1 PTB 178-008 Work Order 25A

 ${\tt IL~47~from~Union/Foster~Road~to~Hawthorne~Way,~Huntley-Woodstock,~McHenry~County,~IL~Model} \\$


PSI Report Page | 33

Soil in the vicinity of borings 1789V2-106-03 and 1789V2-105-01 (on the property adjacent to the subject property), as depicted with **orange** hatching on Figure 4-1.1 is considered impacted, exceeding soil reference concentrations. Soil in the vicinity of these soil borings may be managed off site as non-special waste (a(5)).

Soil in the vicinity of borings 1789V2-106-04 and 1789V2-106-06, as depicted with **purple** hatching on Figure 4-1.1, have a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of these soil borings may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).

4.10.2.2 <u>Groundwater</u>

ISGS PESA Report No. 1789V2 identified this property as a REC site. However, saturated conditions were not encountered at this property at the proposed maximum depth of excavation of approximately 10 ft bgs adjacent to this site; therefore, a groundwater evaluation was not conducted.

FIGURE 4-1.1 EXTENT OF POTENTIALLY IMPACTED SOIL -EXCEEDANCE TABLE 1 of 2

IDOT, District One

IL-47, from Union/Foster Road to Hawthorne Way Huntley-Woodstock, McHenry County, Illinois

BDE Sequence No.: 14677B

PTB: 178-008 / H-1, Work Order No.: 025A

				1789V2-104-	1789V2-104-	1789V2-104-	1789V2-104-	Dup-04	1789V2-104-	1789V2-104-	1789V2-104-	1789V2-104-	1789V2-104-	1789V2-104-	1789V2-105-	1789V2-105-	1789V2-105-	1789V2-105-	1789V2-105-	1789V2-105-	1789V2-105-	1789V2-105-	Dup-07
				01	01	02	02	(1789V2-104-	03	03	04	04	05	05	01	01	01	02	02	03	03	03	(1789V2-105-
Boring ID		Soil Remediation			-			02)			· · ·	•				-		, -					03)
Sample Depth, ft	Soil Reference	Objective for	Soil Remediation Objective	(0-5)	(5-10)	(0-5)	(5-10)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(10-13.5)	(0-5)	(10-13.5)	(0-5)	(5-10)	(10-13.5)	(10-13.5)
Sample Date	Concentrations a/	Construction Workers b/	for Residential Exposure c/	9/4/2019	9/4/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019
Excavation Area(s)		Construction workers						25	VE 1 2 (1700V/2 1	04)								2-	F1 C /1700V2 10	05)			
[ISGS Site No.(s)]								3/	'51-2 (1789V2-1	04)								37	51-6 (1789V2-10	usj			
Parameter																							
Laboratory soil pH (s.u.)	6.25 - 9.0			8.9	7.12	8.46	7.62	7.37	9.06	7.68	8.59	8.05	8.95	8.19	8.8	7.73	7.82	9.33	9.36	9.52	8.82	8.65	9.43
VOCs, mg/kg			!			!						Į.	NO EXCE	EDANCES		Į.	!				!		
SVOCs, mg/kg													NO EXCE	EDANCES									
Total Metals, mg/kg																							
Arsenic	11.3 / 13	61	13	5.7	7.4	4.6	3.3	2.6	7.1	8.2	6.6	7.6	5.7	2.4	5.5	17	1.8	4.9	3.1	7.2	1.4	4.1	3.4
Chromium	21	690	230	7.9	24	10	14	20	10	8.7	13	19	15	9.3	8.2	12	10	8.1	6.2	9.3	10	9.8	11
Iron	15,000 / 15,900			12000	24000	14000	15000	16000	15000	15000	18000	24000	16000	13000	11000	8400	10000	12000	8600	18000	8700	11000	11000
Lead	107	700	400	6.8	14	140	9.7	13	120	7.1	8.9	12	75	8.3	10	7.6	4.6	6.8	6.8	42	6.2	4.6	4.8
Manganese	630 / 636	4,100	1600	500	160	460	840	340	530	550	730	880	540	430	390	190	280	380	260	530	240	280	300
Mercury	0.89	0.1	10	< 0.020	0.03	< 0.020	0.025	0.031	< 0.022	< 0.028	0.022	0.025	< 0.019	< 0.019	< 0.019	< 0.028	< 0.019	< 0.019	< 0.019	< 0.018	< 0.020	< 0.021	< 0.020
Nickel	100	4,100	1600	9.5	20	11	18	20	12	12	13	18	18	11	8.5	17	9.4	9.2	7.6	13	11	11	12
Selenium	1.3	1,000	390	< 1.0	< 1.4	< 1.0	2.1	1.4	< 1.1	< 1.2	< 1.0	1.1	< 0.97	< 1.0	< 1.0	1.4	< 0.98	< 0.96	< 1.0	< 0.94	< 0.99	< 0.94	< 0.97
TCLP Metals, mg/L		Class I Groundwater d/																					
Arsenic		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Chromium		0.1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Iron		5		< 0.25	< 0.25	< 0.25	0.44	0.54	< 0.25	0.27	< 0.25	0.51	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Lead		0.0075		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0052	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Manganese		0.15		0.034	3.6	0.23	9.7	3.1	0.24	5.6	0.092	12	0.12	0.7	2.2	1.8	2	0.85	1.7	1.4	2.5	2.3	2
Mercury		0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel		0.1		< 0.010	0.02	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.082	0.016	0.015	0.021	0.01	< 0.010	< 0.010	0.052	0.013	< 0.010	0.016	0.032
Selenium		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
SPLP Metals, mg/L		Class I Groundwater d/													•								
Arsenic		0.05		0.0054	< 0.0040	0.018	< 0.0040	< 0.0040	0.0051	< 0.0040	0.013	< 0.0040	0.0073	0.022	0.012	0.0062	< 0.0040	0.01	< 0.0040	0.0091	< 0.0040	0.0049	0.015
Beryllium		0.004		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium		0.1		0.016	0.009	0.081	0.0057	0.01	0.015	< 0.0040	0.044	0.0048	0.035	0.067	0.026	0.004	< 0.0040	0.019	< 0.0040	0.022	0.025	0.012	0.031
Cobalt		1		< 0.0040	< 0.0040	0.016	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.0082	< 0.0040	0.0043	0.016	0.0084	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.007	0.0054	0.012
Iron		5		13	6.2	44	2.4	4.5	11	0.58	39	0.91	15	54	25	2.3	0.16	20	0.56	20	22	12	34
Lead		0.0075		0.0097	0.0029	0.41	< 0.0020	0.0057	0.051	< 0.0020	0.023	< 0.0020	0.078	0.16	0.079	< 0.0020	< 0.0020	0.0084	< 0.0020	0.0083	0.015	0.0061	0.024
Manganese		0.15		0.19	0.034	0.87	0.041	0.054	0.13	0.0093	0.44	0.036	0.17	0.54	0.39	0.015	0.063	0.19	0.0083	0.21	0.23	0.14	0.4
Mercury		0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel		0.1		0.019	0.0065	0.077	0.0092	0.011	0.014	0.0061	0.032	0.0063	0.02	0.06	0.022	< 0.0040	< 0.0040	0.013	< 0.0040	0.015	0.022	0.015	0.034
Selenium		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Refers to not applicable or	value not available																						

^{- -} Refers to not applicable or value not available

Organic Soil Reference Concentrations (XX.XX / XX.XX) Include the Most Stringent Values from the MAC Table / The Chicago Corporate Limit / and The MSA County Excluding Chicago Values From the MAC Table.

Bold indicates concentration detected

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure

^{c/} Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{}d/}$ Soil Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

FIGURE 4-1.1 EXTENT OF POTENTIALLY IMPACTED SOIL -EXCEEDANCE TABLE 2 of 2

IDOT, District One

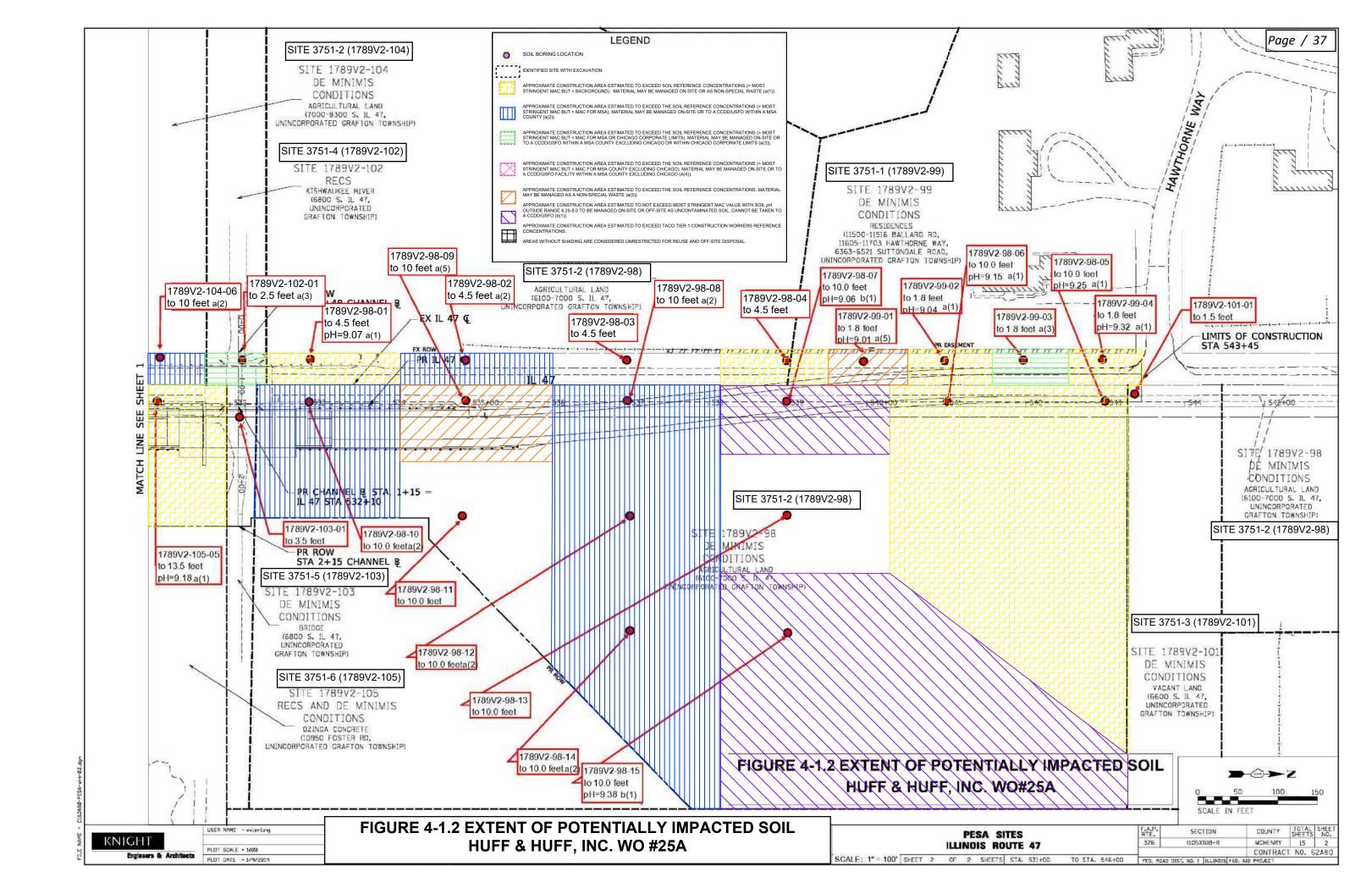
IL-47, from Union/Foster Road to Hawthorne Way Huntley-Woodstock, McHenry County, Illinois BDE Sequence No.: 14677B

PTB: 178-008 / H-1, Work Order No.: 025A

			I		I	I		1	ī	T	I	Dun OF	ı	I	I	ı	I	I	I	Dup-06	
				1789V2-105-	1789V2-105-	1789V2-105-	1789V2-106-	1789V2-106-	1789V2-106-	1789V2-106-	1789V2-106-	Dup-05 (1789V2-106-	1789V2-106-	1789V2-106-	1789V2-106-	1789V2-106-	1789V2-106-	1789V2-106-	1789V2-106-	(1789V2-106-	1789V2-106-
Boring ID				04	04	04	01	02	02	03	03	03)	04	04	05	05	06	06	07	07)	07
Sample Depth, ft	Soil Reference	Soil Remediation	Soil Remediation Objective	(0-5)	(5-10)	(10-13.5)	(0-1.5)	(0-5)	(5-10)	(0-5)	(5-10)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(0-5)	(5-10)
Sample Date	Concentrations a/	Objective for	for Residential Exposure c/	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019
Sample Date	Concentrations	Construction Workers b	lor Residential Exposure	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013
Excavation Area(s)				37	'51-6 (1789V2-10	05)							37	51-7 (1789V2-1	06)						
[ISGS Site No.(s)]																					
Parameter																					
Laboratory soil pH (s.u.)	6.25 - 9.0			9.3	8.92	7.75	9.25	8.85	7.05	9.08	7.54	7.62	9.16	8.1	9.51	8.92	9.46	8.38	9.07	7.8	7.66
VOCs, mg/kg												NO EXCE	EDANCES								
SVOCs, mg/kg												NO EXCE	EDANCES								
Total Metals, mg/kg																					
Arsenic	11.3 / 13	61	13	4.9	1.5	1.9	4.4	4.9	3.9	16	6.6	9.3	4.5	3.5	8.2	4.4	1.6	3.1	6.1	3.3	6.9
Chromium	21	690	230	7.9	10	10	9.8	11	18	13	14	14	8.9	9.3	10	14	9.8	8.5	16	22	11
Iron	15,000 / 15,900			10000	8300	11000	11000	12000	13000	20000	13000	13000	11000	8400	21000	12000	6900	9400	17000	16000	15000
Lead	107	700	400	7.5	7.3	4.9	7.9	230	11	130	13	17	7.6	4.9	31	8.4	2.4	4.2	48	9.2	8.4
Manganese	630 / 636	4,100	1600	290	210	290	330	310	200	370	290	120	360	110	480	380	280	260	640	340	760
Mercury	0.89	0.1	10	< 0.017	< 0.017	< 0.017	< 0.021	< 0.022	0.037	< 0.021	0.027	< 0.023	< 0.018	0.03	< 0.019	0.11	< 0.021	< 0.019	< 0.018	< 0.016	< 0.036
Nickel	100	4,100	1600	8.3	10	12	9.9	13	21	13	13	14	9.4	11	17	10	4.4	9.4	17	8.6	19
Selenium	1.3	1,000	390	< 1.0	< 0.96	< 1.0	< 0.93	< 0.94	1.7	< 0.94	< 1.1	< 1.2	< 1.0	< 1.4	< 0.96	< 0.99	< 0.90	< 1.0	< 0.96	< 0.92	< 1.7
TCLP Metals, mg/L		Class I Groundwater d/																			
Arsenic		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.015	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Chromium		0.1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Iron		5		0.27	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0.51	0.43	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Lead		0.0075		< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.054	< 0.0050	0.036	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0082	< 0.0050	< 0.0050
Manganese		0.15		0.046	2.8	2.4	4.3	3.7	1.4	5.5	9.7	3.9	0.61	0.73	0.92	0.044	2.4	3.2	6.8	1.3	1.3
Mercury		0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel		0.1		0.016	< 0.010	0.014	< 0.010	0.013	< 0.010	0.027	0.025	0.016	< 0.010	< 0.010	0.01	< 0.010	0.018	0.11	0.022	0.012	< 0.010
Selenium		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
SPLP Metals, mg/L		Class I Groundwater d/						-										-			
Arsenic		0.05		0.02	< 0.0040	< 0.0040	0.016	0.0061	< 0.0040	0.028	0.0093	0.013	< 0.0040	< 0.0040	0.0064	0.0086	< 0.0040	< 0.0040	0.012	0.022	< 0.0040
Beryllium		0.004		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium		0.1		0.051	0.018	< 0.0040	0.039	0.0061	< 0.0040	0.06	0.013	0.013	< 0.0040	0.0077	0.013	0.028	0.0042	< 0.0040	0.025	0.043	< 0.0040
Cobalt		1		0.014	0.005	< 0.0040	0.011	< 0.0040	< 0.0040	0.025	0.0043	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.0057	< 0.0040	< 0.0040	0.0077	0.014	< 0.0040
Iron		5		45	16	0.18	38	6	0.81	62	9.9	9	0.35	2.3	13	17	3.2	1.3	20	49	0.47
Lead		0.0075		0.26	0.014	< 0.0020	0.028	0.085	< 0.0020	0.27	0.0098	0.0099	< 0.0020	0.0022	0.021	0.017	0.01	< 0.0020	0.076	0.03	< 0.0020
Manganese		0.15		0.34	0.14	0.03	0.6	0.059	0.0045	0.96	0.075	0.066	0.032	0.022	0.17	0.18	0.049	0.025	0.27	1	0.01
Mercury		0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel		0.1		0.052	0.015	< 0.0040	0.033	0.0063	< 0.0040	0.069	0.0097	0.0093	< 0.0040	0.0079	0.0092	0.015	< 0.0040	< 0.0040	0.02	0.035	< 0.0040
Selenium		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Refers to not applicable or a							- · · · · ·														

^{--- -} Refers to not applicable or value not available

Organic Soil Reference Concentrations (XX.XX / XX.XX) Include the Most Stringent Values from the MAC Table / The Chicago Corporate Limit / and The MSA County Excluding Chicago Values From the MAC Table.


Bold indicates concentration detected

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

c/ Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure

 $^{^{}d/}$ Soil Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

FIGURE 4-1.2 EXTENT OF POTENTIALLY IMPACTED SOIL -EXCEEDANCE TABLE 1 of 2

IDOT, District One

IL-47, from Union/Foster Rd to Hawthorne Way Huntley-Woodstock, McHenry County, Illinois

BDE Sequence No.: 14677B PTB: 178-008 / H-1, Work Order No.: 025A

					Dup-02			Dup-01						Dup-08										
				1789V2-98-01	(1789V2-98-	1789V2-98-02	1789V2-98-03	(1789V2-98-	1789V2-98-04	1789V2-98-05	1789V2-98-05	1789V2-98-06	1789V2-98-06	(1789V2-98-	1789V2-98-07	1789V2-98-07	1789V2-98-08	1789V2-98-08	1789V2-98-09	1789V2-98-09	1789V2-98-10	1789V2-98-10	1789V2-98-11	1789V2-98-11
Boring ID		Soil Remediation			01)			03)						06)										
Sample Depth, ft	Soil Reference	Objective for	Soil Remediation Objective	(0-4.5)	(0-4.5)	(0-4.5)	(0-4.5)	(0-4.5)	(0-4.5)	(0-5)	(5-10)	(0-5)	(5-10)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)
Sample Date	Concentrations a/	Construction Workers b/	for Residential Exposure c/	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/4/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/5/2019	9/5/2019
Excavation Area(s)		Construction Workers											3	751-2 (1789V2-9	98)									
[ISGS Site No.(s)]																								
Parameter																								
Laboratory soil pH (s.u.)	6.25 - 9.0			8.88	9.07	9	8.2	8.44	8.36	9.25	7.51	9.15	8.36	8.1	9.06	8.42	7.64	8.19	8.58	8.24	8.46	8.46	7.67	8.19
VOCs, mg/kg														NO EXCEEDANCE	ES									
SVOCs, mg/kg																								
Benzo(a)pyrene	0.09 / 1.3 / 2.1	17	0.09	< 0.035	< 0.037	0.044	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041	< 0.039	< 0.039	< 0.039	< 0.040	< 0.036
Total Metals, mg/kg																								
Arsenic	11.3 / 13	61	13	4.8	3.2	4.7	5.5	9.5	6.1	4.3	7.7	4.6	4.2	3.6	4.4	2.7	13	4	4.3	15	4.2	< 1.0	2.9	1.9
Beryllium	22	410	160	< 0.47	< 0.48	< 0.48	< 0.52	0.64	< 0.53	< 0.46	0.69	< 0.45	0.67	0.6	< 0.45	0.54	1	< 0.53	< 0.54	0.59	< 0.54	< 0.51	0.71	< 0.46
Chromium	21	690	230	11	7.5	15	18	21	15	8	20	9.9	26	22	9	18	29	20	19	22	14	9.8	25	11
Cobalt	20	12,000	4700	5.6	4	4.9	5.6	14	8.6	3.5	5.6	4.7	8.6	10	4.2	5.9	19	12	7.8	14	6	4.9	10	4.8
Iron	15,000 / 15,900			13000	8600	22000	19000	26000	18000	9900	33000	12000	21000	18000	11000	14000	35000	17000	19000	28000	13000	7300	19000	10000
Lead	107	700	400	7.8	5.9	38	8.8	15	14	41	15	18	11	13	8.2	10	21	15	12	12	9.8	6.4	16	7
Manganese	630 / 636	4,100	1600	430	280	470	330	1100	810	350	540	430	380	650	460	200	1400	330	250	420	280	110	170	290
Nickel	100	4,100	1600	11	9.4	13	20	41	15	7.5	16	10	26	26	9.1	16	32	29	19	30	15	13	24	12
Selenium	1.3	1,000	390	< 0.92	< 0.96	< 0.96	< 1.0	< 1.0	< 1.1	< 0.92	1.6	< 0.89	< 1.0	< 0.99	< 0.91	< 1.0	< 1.1	< 1.1	< 1.1	< 1.1	1.3	< 1.0	< 1.1	< 0.93
TCLP Metals, mg/L		Class I Groundwater d/																						
Arsenic		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Beryllium		0.004		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chromium		0.1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cobalt		1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.033	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.011	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Iron		5		< 0.25	< 0.25	0.44	< 0.25	3.2	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0.32	0.33	< 0.25	< 0.25
Lead		0.0075		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.011	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Manganese		0.15		2.1	2	0.88	1.1	2.8	17	1	0.78	1.3	0.44	0.48	1	0.85	0.83	1.5	0.11	2.1	1.6	1.1	0.79	1.6
Nickel		0.1		< 0.010	< 0.010	0.01	0.011	0.037	0.017	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.01	< 0.010	< 0.010	0.011	< 0.010	0.011	< 0.010	0.012	< 0.010	< 0.010
Selenium		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
SPLP Metals, mg/L		Class I Groundwater d/																						
Arsenic		0.05		0.0089	0.01	0.0069	0.0054	0.0043	0.025	0.0047	0.004	0.0065	< 0.0040	< 0.0040	0.0046	0.0042	< 0.0040	< 0.0040	0.0065	0.0051	0.011	0.0058	< 0.0040	< 0.0040
Beryllium		0.004		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	0.003	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium		0.1		0.049	0.062	0.018	0.029	0.03	0.11	0.013	0.0072	0.016	0.017	0.016	0.012	0.027	0.017	0.0098	0.028	0.012	0.046	0.022	0.0096	< 0.0040
Cobalt		1		0.016	0.018	< 0.0040	0.0055	0.0043	0.05	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.0093	< 0.0040	0.0042	0.0061	< 0.0040	0.011	0.0057	< 0.0040	< 0.0040
Iron		5		40	43	14	21	15	96	10	5.6	15	12	10	10	17	13	6.3	19	10	30	13	7.4	0.87
Lead		0.0075		0.054	0.03	0.021	0.0086	0.009	0.1	0.061	0.0031	0.015	0.0038	0.003	0.0075	0.011	0.0043	0.0049	0.0087	0.0029	0.021	0.0089	0.0066	< 0.0020
Manganese		0.15		0.28	0.27	0.16	0.094	0.073	3.1	0.12	0.053	0.25	0.047	0.048	0.15	0.079	0.091	0.039	0.093	0.067	0.18	0.062	0.031	0.008
Nickel		0.1		0.049	0.059	0.014	0.027	0.024	0.11	0.0082	0.0052	0.011	0.012	0.013	0.0077	0.026	0.011	0.011	0.022	0.011	0.038	0.021	0.008	< 0.0040
Selenium		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.0045	< 0.0040	< 0.0040	< 0.0040

^{--- -} Refers to not applicable or value not available

Organic Soil Reference Concentrations (XX.XX / XX.XX / XX.XX) Include the Most Stringent Values from the MAC Table / The Chicago Corporate Limit / and The MSA County Excluding Chicago Values From the MAC Table.

Bold indicates concentration detected

 $^{^{\}mathrm{a}/}$ Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{}c/}$ Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{\}it d/}$ Soil Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

FIGURE 4-1.2 EXTENT OF POTENTIALLY IMPACTED SOIL -EXCEEDANCE TABLE 2 of 2 IDOT, District One

IL-47, from Union/Foster Rd to Hawthorne Way Huntley-Woodstock, McHenry County, Illinois BDE Sequence No.: 14677B

PTB: 178-008 / H-1, Work Order No.: 025A

									1			1			1					T	Dup-03			
				1789V2-98-12	1789V2-98-12	1789V2-98-13	1700\/2 00 12	1789V2-98-14	1700\/2 00 14	1789V2-98-15	1789V2-98-15	1789V2-99-01	1789V2-99-02	1789V2-99-03	1790\/2.00.04	1700\/2 101 01	1700\/2 102 01	1700\/2 102 01	1790\/2 104 06	1789V2-104-06		1700\/2 105 05	1789V2-105-05	1700\/2 105 05
Boring ID				1709 12-90-12	170342-30-12	170372-30-13	170372-30-13	170972-90-14	170372-30-14	176972-96-13	170972-90-13	1769 72-99-01	1709V2-99-02	176502-55-05	176972-99-04	178942-101-01	178942-102-01	178902-103-01	178992-104-00	1789 72-104-00	06)	178942-103-03	178902-103-03	1789 12-103-03
Sample Depth, ft	Soil Reference	Soil Remediation	Soil Remediation Objective	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-1.8)	(0-1.8)	(0-1.8)	(0-1.8)	(0-1.5)	(0-2.5)	(0-3.5)	(0-5)	(5-10)	(5-10)	(0-5)	(5-10)	(10-13.5)
Sample Date	Concentrations a/	Objective for	for Residential Exposure c/	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/5/2019	9/4/2019	9/4/2019	9/3/2019	9/3/2019	9/3/2019	9/4/2019	9/4/2019	9/4/2019
Sample Bate	Concentrations	Construction Workers	b/ Tor Residential Exposure	3/3/2013	3/3/2013	3/3/2013	3/3/2013	3/3/2013	3/3/2013	3/3/2013	3/3/2013	3/3/2013	3/3/2013	3/3/2013	3/3/2013			.,,	3/3/2013	3/3/2013	3/3/2013	3/4/2013	3/4/2013	3/4/2013
Excavation Area(s)							3751-2 (1	789V2-98)					3751-1 (1	789V2-99)		3751-3	3751-4	3751-5	3	751-2 (1789V2-1	04)	37	751-6 (1789V2-10)5)
[ISGS Site No.(s)]							•	,					,	,		(1789V2-101)	(1789V2-102)	(1789V2-103)		,	,			,
Parameter																								
Laboratory soil pH (s.u.)	6.25 - 9.0			7.95	8.15	8.14	8.16	8.04	7.73	7.61	9.38	9.01	9.04	8.41	9.32	7.83	7.57	7.34	7.65	8.66	8.24	9.18	8.24	7.7
VOCs, mg/kg			<u> </u>	NO EXCEEDANCE	ES			•				•	•	•				•	•	'	•			
SVOCs, mg/kg																								
Benzo(a)pyrene	0.09 / 1.3 / 2.1	17	0.09	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.064	< 0.035	0.095	< 0.038	< 0.036	0.26	< 0.092	< 0.040	< 0.037	< 0.040	< 0.037	< 0.036	< 0.036
Total Metals, mg/kg									•	•	•	•		•	•			•		•	•	•		
Arsenic	11.3 / 13	61	13	12	7.1	7.9	9.6	6.2	12	8.9	6	16	7	3.9	13	4.1	5.3	4.4	6.2	1.9	2.1	2.3	1.6	1.3
Beryllium	22	410	160	1.3	0.56	0.74	0.64	< 0.50	0.78	0.62	< 0.48	< 0.47	< 0.46	< 0.47	0.88	< 0.49	< 1.0	< 1.3	< 0.55	< 0.49	< 0.52	< 0.53	< 0.46	< 0.48
Chromium	21	690	230	38	19	24	23	18	27	20	13	13	11	8	23	11	12	11	9.9	10	17	13	10	8.1
Cobalt	20	12,000	4700	22	15	15	17	13	8.1	12	12	7.2	6.2	3.6	10	5.1	5.5	5.5	5.4	3.8	6.5	5.9	4.2	3.5
Iron	15,000 / 15,900			38000	19000	24000	25000	18000	30000	23000	15000	16000	17000	10000	30000	16000	19000	19000	31000	8300	14000	15000	9900	7500
Lead	107	700	400	36	13	15	16	14	16	16	13	64	10	25	13	9.1	17	10	11	6.9	8.8	10	6.1	4.4
Manganese	630 / 636	4,100	1600	1100	590	550	610	450	470	690	680	450	720	440	800	370	620	580	750	210	270	290	240	240
Nickel	100	4,100	1600	44	28	33	35	26	26	26	17	14	13	8.8	44	12	12	11	20	10	17	15	11	8.6
Selenium	1.3	1,000	390	1	< 1.0	< 0.98	< 0.98	< 1.0	< 1.1	< 1.1	< 0.96	< 0.92	< 0.93	< 0.94	2	< 0.99	< 2.0	< 2.5	< 1.1	< 0.96	< 1.0	< 1.0	< 0.92	< 0.95
TCLP Metals, mg/L		Class I Groundwater d	1/																					
Arsenic		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Beryllium		0.004		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chromium		0.1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cobalt		1		< 0.010	< 0.010	< 0.010	< 0.010	0.033	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.015	0.013	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Iron		5		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	1.2	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0.56	< 0.25	< 0.25	< 0.25
Lead		0.0075		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Manganese		0.15		2.1	0.49	0.2	0.79	3.1	0.06	0.72	1	1.4	1.4	0.72	0.75	0.016	9.7	7.6	3.3	2.9	1.5	2.2	2.4	2.6
Nickel		0.1		0.025	0.011	< 0.010	< 0.010	0.031	< 0.010	0.014	0.01	0.018	0.012	< 0.010	0.016	< 0.010	0.01	0.011	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.014
Selenium		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
SPLP Metals, mg/L		Class I Groundwater d	V																					
Arsenic		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.02	0.013	0.011	0.11	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.0057	0.0045	0.0058	< 0.0040	< 0.0040
Beryllium		0.004		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	0.013	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium		0.1		< 0.0040	0.0041	0.0049	0.0077	< 0.0040	0.0084	0.0049	0.0053	0.043	0.034	0.028	0.31	0.014	< 0.0040	< 0.0040	0.0071	0.019	0.025	0.025	0.018	< 0.0040
Cobalt		1	·	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.013	0.0069	0.0065	0.069	0.0053	< 0.0040	< 0.0040	< 0.0040	0.0063	0.0049	0.011	0.0051	< 0.0040
Iron		5		1.4	1.8	2.4	5.6	0.31	6.1	3.1	3.5	38	31	26	330	11	0.92	0.27	3.1	15	12	37	11	0.28
Lead		0.0075		< 0.0020	0.0035	0.0052	0.0029	< 0.0020	0.0032	< 0.0020	0.0026	0.063	0.013	0.064	0.15	0.014	< 0.0020	< 0.0020	0.0056	0.011	0.01	0.022	0.0089	< 0.0020
Manganese		0.15		0.006	0.0097	0.012	0.029	0.0042	0.062	0.019	0.054	0.7	0.52	0.42	2.6	0.15	0.015	0.0057	0.041	0.22	0.15	0.35	0.1	0.021
Nickel		0.1		< 0.0040	< 0.0040	< 0.0040	0.007	< 0.0040	0.0071	< 0.0040	0.0049	0.04	0.022	0.022	0.34	0.016	< 0.0040	< 0.0040	0.017	0.021	0.024	0.029	0.015	< 0.0040
Selenium		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.013	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040

^{--- -} Refers to not applicable or value not available

Organic Soil Reference Concentrations (XX.XX / XX.XX / XX.XX) Include the Most Stringent Values from the MAC Table / The Chicago Corporate Limit / and The MSA County Excluding Chicago Values From the MAC Table.

Bold indicates concentration detected

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

c/ Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route

 $^{^{\}it d/}$ Soil Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

TABLE 4-1 PID Soil Screening Results

Illinois Department of Transportation, District One Illinois Route 47 from Union/Foster Road to Hawthorne Way Huntley and Woodstock, McHenry County, Illinois

BDE Sequence No.: 14677B PTB: 178-008 / H&H-1, Work Order No.: 025A

	Boring Depth		PID Screening
Boring ID	(ft)	Sample Interval (ft)	Result (ppm)
1789V2-98-01	4.5	(0-4.5)	0.2
1789V2-98-02	4.5	(0-4.5)	0.2
1789V2-98-03	4.5	(0-4.5)	0.1
1789V2-98-04	4.5	(0-4.5)	0.0
1789V2-98-05	10	(0-5) (5-10)	0.0/0.0
1789V2-98-06	10	(0-5) (5-10)	0.0/0.0
1789V2-98-07	10	(0-5) (5-10)	0.0/0.0
1789V2-98-08	10	(0-5) (5-10)	0.0/0.0
1789V2-98-09	10	(0-5) (5-10)	0.0/0.0
1789V2-98-10	10	(0-5) (5-10)	0.0/0.0
1789V2-98-11	10	(0-5) (5-10)	0.4/0.0
1789V2-98-12	10	(0-5) (5-10)	0.0/0.0
1789V2-98-13	10	(0-5) (5-10)	0.0/0.0
1789V2-98-14	10	(0-5) (5-10)	0.0/0.0
1789V2-98-15	10	(0-5) (5-10)	0.9/0.2
1789V2-99-01	1.8	(0-1.8)	0.1
1789V2-99-02	1.8	(0-1.8)	0.2
1789V2-99-03	1.8	(0-1.8)	0.2
1789V2-99-04	1.8	(0-1.8)	0.0
1789V2-101-01	1.5	(0-1.5)	0.0
1789V2-102-01	2.5	(0-2.5)	NA
1789V2-103-01	3.5	(0-3.5)	NA
1789V2-104-01	10	(0-5) (5-10)	0.0/0.0
1789V2-104-02	10	(0-5) (5-10)	0.1/0.0
1789V2-104-03	10	(0-5) (5-10)	0.1/0.1
1789V2-104-04	10	(0-5) (5-10)	0.2/0.0
1789V2-104-05	10	(0-5) (5-10)	0.0/0.0
1789V2-104-06	10	(0-5) (5-10)	0.0/0.0
1789V2-105-01	13.5	(0-5) (5-10) (10-13.5)	0.0/0.0/0.0
1789V2-105-02	13.5	(0-5) (5-10) (10-13.5)	0.0/NA/0.0
1789V2-105-03	13.5	(0-5) (5-10) (10-13.5)	0.0/0.0/0.0
1789V2-105-04	13.5	(0-5) (5-10) (10-13.5)	0.0/0.0/0.1
1789V2-105-05	13.5	(0-5) (5-10) (10-13.5)	0.0/0.0/0.0
1789V2-106-01	1.5	(0-1.5)	0.0
1789V2-106-02	10	(0-5) (5-10)	0.4/0.0
1789V2-106-03	10	(0-5) (5-10)	0.0/0.0
1789V2-106-04	10	(0-5) (5-10)	0.0/0.0
1789V2-106-05	10	(0-5) (5-10)	0.0/0.0
1789V2-106-06	10	(0-5) (5-10)	0.0/0.0
1789V2-106-07	10	(0-5) (5-10)	0.0/0.0

Comparison of Detected Constituents to Applicable Reference Concentrations - Organics

IL-83 (Busse Road), Foster Ave to Bryn Mawr Ave

Bensenville, DuPage County, Illinois

BDE Sequence No.: 19424

PTB: 178-008 / H-1, Work Order No.: 027A

Boring ID	Soil Reference	Soil Remediation Objective for	Soil Remediation Objective for	1789V2-98-01	Dup-02 (1789V2- 98-01)	1789V2-98-02	1789V2-98-03	Dup-01 (1789V2- 98-03)	1789V2-98-04	1789V2-98-05	1789V2-98-05	1789V2-98-06	1789V2-98-06	Dup-08 (1789V2- 98-06)	1789V2-98-07	1789V2-98-07	1789V2-98-08	1789V2-98-08	1789V2-98-09
Sample Depth, ft	3/	Construction	Residential	(0-4.5)	(0-4.5)	(0-4.5)	(0-4.5)	(0-4.5)	(0-4.5)	(0-5)	(5-10)	(0-5)	(5-10)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)
Sample Date	Concentrations "	Workers b/	-/	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/4/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/4/2019
Excavation Area(s)		workers	Exposure ⁽⁷								3751-2 (17	780\/2-Q8\							
[ISGS Site No.(s)]											3731-2 (17	-83VZ-38J							
Parameter																			
VOCs, mg/kg																			
Acetone	25	100,000	70,000	< 0.080	< 0.063	< 0.090	< 0.070	< 0.070	< 0.066	< 0.059	< 0.093	< 0.073	< 0.064	< 0.070	< 0.062	< 0.066	< 0.078	< 0.085	< 0.074
Benzene	0.03	2.2	0.8	< 0.0053	< 0.0042	< 0.0060	< 0.0047	< 0.0047	< 0.0044	< 0.0040	< 0.0062	< 0.0049	< 0.0043	< 0.0047	< 0.0041	< 0.0044	< 0.0052	< 0.0057	< 0.0049
Toluene	12	42	650	< 0.0053	< 0.0042	< 0.0060	< 0.0047	< 0.0047	< 0.0044	0.0052	< 0.0062	< 0.0049	< 0.0043	< 0.0047	0.0061	< 0.0044	< 0.0052	< 0.0057	< 0.0049
SVOCs, mg/kg				-			-			-		-							
Benzo(a)anthracene	0.9 / 1.1 / 1.8	170	0.9	< 0.035	< 0.037	0.04	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041
Benzo(a)pyrene	0.09 / 1.3 / 2.1	17	0.09	< 0.035	< 0.037	0.044	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041
Benzo(b)fluoranthene	0.9 / 1.5 / 2.1	170	0.9	< 0.035	< 0.037	0.039	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041
Benzo(k)fluoranthene	9	1700	9	< 0.035	< 0.037	0.043	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041
Benzo(g,h,i)perylene				< 0.035	< 0.037	0.04	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041
Chrysene	88	17000	88	< 0.035	< 0.037	0.047	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041
Dibenz(a,h)anthracene	0.09 / 0.2 / 0.42	17	0.09	< 0.035	< 0.037	< 0.035	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041
Fluoranthene	3,100	82,000	3,100	< 0.035	< 0.037	0.062	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041
Indeno(1,2,3-cd)pyrene	0.9 / 0.9 / 1.6	170	0.9	< 0.035	< 0.037	< 0.035	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041
Phenanthrene				< 0.035	< 0.037	< 0.035	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041
Pyrene	2,300	61000	2300	< 0.035	< 0.037	0.051	< 0.039	< 0.039	< 0.040	< 0.035	< 0.047	< 0.035	< 0.037	< 0.039	< 0.035	< 0.038	< 0.040	< 0.038	< 0.041

^{--- -} Refers to not applicable or value not available

Organic Soil Reference Concentrations (XX.XX / XX.XX) Include the Most Stringent Values from the MAC Table / The Chicago Corporate Limit / and The MSA County Excluding Chicago Values From the MAC Table.

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

 $^{^{\}mathrm{b/}}$ Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{}c\prime}$ Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

Comparison of Detected Constituents to Applicable Reference Concentrations - Organics

IL-83 (Busse Road), Foster Ave to Bryn Mawr Ave

Bensenville, DuPage County, Illinois BDE Sequence No.: 19424

PTB: 178-008 / H-1, Work Order No.: 027A

Boring ID Sample Depth, ft Sample Date Excavation Area(s) [ISGS Site No.(s)]	Soil Reference Concentrations ^{a/}	Soil Remediation Objective for Construction Workers ^{b/}	Soil Remediation Objective for Residential Exposure ^{c/}	1789V2-98-09 (5-10) 9/4/2019	1789V2-98-10 (0-5) 9/4/2019	1789V2-98-10 (5-10) 9/4/2019	1789V2-98-11 (0-5) 9/5/2019	1789V2-98-11 (5-10) 9/5/2019	(0-5) 9/5/2019	1789V2-98-12 (5-10) 9/5/2019 751-2 (1789V2-9	(0-5) 9/5/2019	1789V2-98-13 (5-10) 9/5/2019	1789V2-98-14 (0-5) 9/5/2019	1789V2-98-14 (5-10) 9/5/2019	1789V2-98-15 (0-5) 9/5/2019	1789V2-98-15 (5-10) 9/5/2019	(0-1.8) 9/3/2019	1789V2-99-02 (0-1.8) 9/3/2019 751-1 (1789V2-9	(0-1.8) 9/3/2019
Parameter																			
VOCs, mg/kg																			
Acetone	25	100,000	70,000	< 0.074	< 0.095	< 0.076	< 0.079	< 0.059	< 0.071	< 0.13	< 0.077	< 0.061	< 0.074	< 0.082	< 0.070	0.26	< 0.074	< 0.065	< 0.085
Benzene	0.03	2.2	0.8	< 0.0049	< 0.0063	< 0.0051	< 0.0053	< 0.0039	< 0.0048	< 0.0089	< 0.0051	< 0.0041	< 0.0049	< 0.0055	< 0.0047	< 0.0048	< 0.0050	< 0.0043	< 0.0057
Toluene	12	42	650	< 0.0049	< 0.0063	< 0.0051	< 0.0053	< 0.0039	< 0.0048	< 0.0089	< 0.0051	< 0.0041	< 0.0049	< 0.0055	< 0.0047	< 0.0048	< 0.0050	< 0.0043	0.0076
SVOCs, mg/kg		-														-			
Benzo(a)anthracene	0.9 / 1.1 / 1.8	170	0.9	< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.056	< 0.035	0.08
Benzo(a)pyrene	0.09 / 1.3 / 2.1	17	0.09	< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.064	< 0.035	0.095
Benzo(b)fluoranthene	0.9 / 1.5 / 2.1	170	0.9	< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.076	< 0.035	0.12
Benzo(k)fluoranthene	9	1700	9	< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.053	< 0.035	0.06
Benzo(g,h,i)perylene				< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.066	< 0.035	0.095
Chrysene	88	17000	88	< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.065	< 0.035	0.1
Dibenz(a,h)anthracene	0.09 / 0.2 / 0.42	17	0.09	< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	< 0.034	< 0.035	< 0.035
Fluoranthene	3,100	82,000	3,100	< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.094	< 0.035	0.21
Indeno(1,2,3-cd)pyrene	0.9 / 0.9 / 1.6	170	0.9	< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.052	< 0.035	0.065
Phenanthrene				< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.034	< 0.035	0.13
Pyrene	2,300	61000	2300	< 0.039	< 0.039	< 0.039	< 0.040	< 0.036	< 0.038	< 0.038	< 0.037	< 0.037	< 0.038	< 0.039	< 0.038	< 0.037	0.079	< 0.035	0.17

^{--- -} Refers to not applicable or value not available

Organic Soil Reference Concentrations (XX.XX / XX.XX) Include the Most Stringent Values from the MAC Table / The Chicago Corporate Limit / and The MSA County Excluding Chicago Values From the MAC Table.

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

c/ Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

Comparison of Detected Constituents to Applicable Reference Concentrations - Organics

IL-83 (Busse Road), Foster Ave to Bryn Mawr Ave

Bensenville, DuPage County, Illinois BDE Sequence No.: 19424

PTB: 178-008 / H-1, Work Order No.: 027A

Boring ID Sample Depth, ft Sample Date Excavation Area(s)	Soil Reference Concentrations ^{a/}	Soil Remediation Objective for Construction Workers ^{b/}	Soil Remediation Objective for Residential Exposure ^{c/}	(0-1.8) 9/3/2019	(0-1.5) 9/5/2019	(0-2.5) 9/4/2019	1789V2-103-01 (0-3.5) 9/4/2019 -3751-5 (1789V2-	1789V2-104-01 (0-5) 9/4/2019	1789V2-104-01 (5-10) 9/4/2019	1789V2-104-02 (0-5) 9/3/2019	1789V2-104-02 (5-10) 9/3/2019	Dup-04 (1789V2- 104-02) (5-10) 9/3/2019	(0-5) 9/3/2019	1789V2-104-03 (5-10) 9/3/2019	1789V2-104-04 (0-5) 9/3/2019	1789V2-104-04 (5-10) 9/3/2019	1789V2-104-05 (0-5) 9/3/2019	1789V2-104-05 (5-10) 9/3/2019	1789V2-104-06 (0-5) 9/3/2019
[ISGS Site No.(s)]				99)	101)	102)	103)						3751-2 (17	8972-104)					
Parameter																			
VOCs, mg/kg																			
Acetone	25	100,000	70,000	0.078	< 0.070	< 0.32	< 0.26	< 0.067	0.28	< 0.081	0.15	0.2	< 0.056	0.13	< 0.069	< 0.062	< 0.077	< 0.094	< 0.082
Benzene	0.03	2.2	0.8	< 0.0048	< 0.0046	< 0.021	< 0.017	< 0.0045	< 0.010	< 0.0054	< 0.0082	< 0.0073	< 0.0037	< 0.0087	< 0.0046	< 0.0041	0.0058	< 0.0063	< 0.0054
Toluene	12	42	650	< 0.0048	< 0.0046	< 0.021	< 0.017	< 0.0045	< 0.010	< 0.0054	< 0.0082	< 0.0073	< 0.0037	< 0.0087	< 0.0046	< 0.0041	< 0.0052	< 0.0063	< 0.0054
SVOCs, mg/kg					-														
Benzo(a)anthracene	0.9 / 1.1 / 1.8	170	0.9	< 0.038	< 0.036	0.29	< 0.092	< 0.037	< 0.055	< 0.036	< 0.047	< 0.047	0.042	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040
Benzo(a)pyrene	0.09 / 1.3 / 2.1	17	0.09	< 0.038	< 0.036	0.26	< 0.092	< 0.037	< 0.055	< 0.036	< 0.047	< 0.047	0.044	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040
Benzo(b)fluoranthene	0.9 / 1.5 / 2.1	170	0.9	< 0.038	< 0.036	0.26	< 0.092	< 0.037	< 0.055	< 0.036	< 0.047	< 0.047	0.043	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040
Benzo(k)fluoranthene	9	1700	9	< 0.038	< 0.036	0.19	< 0.092	< 0.037	< 0.055	< 0.036	< 0.047	< 0.047	0.038	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040
Benzo(g,h,i)perylene				< 0.038	< 0.036	0.18	< 0.092	< 0.037	< 0.055	< 0.036	< 0.047	< 0.047	0.039	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040
Chrysene	88	17000	88	< 0.038	< 0.036	0.26	< 0.092	< 0.037	< 0.055	< 0.036	< 0.047	< 0.047	0.052	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040
Dibenz(a,h)anthracene	0.09 / 0.2 / 0.42	17	0.09	< 0.038	< 0.036	0.078	< 0.092	< 0.037	< 0.055	< 0.036	< 0.047	< 0.047	< 0.036	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040
Fluoranthene	3,100	82,000	3,100	< 0.038	< 0.036	0.61	< 0.092	< 0.037	< 0.055	0.04	< 0.047	< 0.047	0.057	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040
Indeno(1,2,3-cd)pyrene	0.9 / 0.9 / 1.6	170	0.9	< 0.038	< 0.036	0.17	< 0.092	< 0.037	< 0.055	< 0.036	< 0.047	< 0.047	< 0.036	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040
Phenanthrene				< 0.038	< 0.036	0.15	< 0.092	< 0.037	< 0.055	< 0.036	< 0.047	< 0.047	< 0.036	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040
Pyrene	2,300	61000	2300	< 0.038	< 0.036	0.5	< 0.092	< 0.037	< 0.055	0.037	< 0.047	< 0.047	0.062	< 0.048	< 0.038	< 0.038	< 0.035	< 0.038	< 0.040

^{--- -} Refers to not applicable or value not available

Organic Soil Reference Concentrations (XX.XX / XX.XX) Include the Most Stringent Values from the MAC Table / The Chicago Corporate Limit / and The MSA County Excluding Chicago Values From the MAC Table.

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{}c\prime}$ Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

Comparison of Detected Constituents to Applicable Reference Concentrations - Organics

IL-83 (Busse Road), Foster Ave to Bryn Mawr Ave

Bensenville, DuPage County, Illinois

BDE Sequence No.: 19424

PTB: 178-008 / H-1, Work Order No.: 027A

Boring ID Sample Depth, ft	Soil Reference	Soil Remediation Objective for Construction	Soil Remediation Objective for Residential	1789V2-104-06 (5-10)	Dup-03 (1789V2- 104-06) (5-10)	1789V2-105-01 (0-5)	1789V2-105-01 (5-10)	1789V2-105-01 (10-13.5)	1789V2-105-02 (0-5)	1789V2-105-02 (10-13.5)	1789V2-105-03 (0-5)	1789V2-105-03 (5-10)	1789V2-105-03 (10-13.5)	Dup-07 (1789V2- 105-03) (10-13.5)	1789V2-105-04 (0-5)	1789V2-105-04 (5-10)	1789V2-105-04 (10-13.5)	1789V2-105-05 (0-5)	1789V2-105-05 (5-10)
Sample Date	Concentrations ^a	Workers b/	· · ·	9/3/2019	9/3/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019
Excavation Area(s)		workers	Exposure ^{c/}	3751-2 (1	789V2-104)							3751-6 (17	789V2-105)						
[ISGS Site No.(s)]				3/31 2 (1								3/31 0 (1/	-03 103 103 1						
Parameter																			
VOCs, mg/kg																			<u> </u>
Acetone	25	100,000	70,000	< 0.063	< 0.067	< 0.070	< 0.12	< 0.095	< 0.079	< 0.052	< 0.090	< 0.062	< 0.060	< 0.062	< 0.072	< 0.055	< 0.040	< 0.067	< 0.063
Benzene	0.03	2.2	0.8	< 0.0042	< 0.0045	< 0.0047	< 0.0079	< 0.0063	< 0.0053	< 0.0035	< 0.0060	< 0.0041	< 0.0040	< 0.0041	< 0.0048	< 0.0037	< 0.0027	< 0.0045	< 0.0042
Toluene	12	42	650	< 0.0042	< 0.0045	< 0.0047	< 0.0079	< 0.0063	< 0.0053	< 0.0035	< 0.0060	< 0.0041	< 0.0040	< 0.0041	< 0.0048	< 0.0037	< 0.0027	< 0.0045	< 0.0042
SVOCs, mg/kg		•	•	•	•						•					•			•
Benzo(a)anthracene	0.9 / 1.1 / 1.8	170	0.9	< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	< 0.036	< 0.037	< 0.036	< 0.037	< 0.036
Benzo(a)pyrene	0.09 / 1.3 / 2.1	17	0.09	< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	< 0.036	< 0.037	< 0.036	< 0.037	< 0.036
Benzo(b)fluoranthene	0.9 / 1.5 / 2.1	170	0.9	< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	< 0.036	< 0.037	< 0.036	< 0.037	< 0.036
Benzo(k)fluoranthene	9	1700	9	< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	< 0.036	< 0.037	< 0.036	< 0.037	< 0.036
Benzo(g,h,i)perylene				< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	< 0.036	< 0.037	< 0.036	< 0.037	< 0.036
Chrysene	88	17000	88	< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	< 0.036	< 0.037	< 0.036	< 0.037	< 0.036
Dibenz(a,h)anthracene	0.09 / 0.2 / 0.42	17	0.09	< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	< 0.036	< 0.037	< 0.036	< 0.037	< 0.036
Fluoranthene	3,100	82,000	3,100	< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	0.036	< 0.037	< 0.036	< 0.037	< 0.036
Indeno(1,2,3-cd)pyrene	0.9 / 0.9 / 1.6	170	0.9	< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	< 0.036	< 0.037	< 0.036	< 0.037	< 0.036
Phenanthrene				< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	< 0.036	< 0.037	< 0.036	< 0.037	< 0.036
Pyrene	2,300	61000	2300	< 0.037	< 0.040	< 0.038	< 0.050	< 0.035	< 0.034	< 0.038	< 0.035	< 0.036	< 0.037	< 0.036	< 0.036	< 0.037	< 0.036	< 0.037	< 0.036

^{--- -} Refers to not applicable or value not available

Organic Soil Reference Concentrations (XX.XX / XX.XX) Include the Most Stringent Values from the MAC Table / The Chicago Corporate Limit / and The MSA County Excluding Chicago Values From the MAC Table.

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

^{c/} Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

Comparison of Detected Constituents to Applicable Reference Concentrations - Organics

IL-83 (Busse Road), Foster Ave to Bryn Mawr Ave

Bensenville, DuPage County, Illinois BDE Sequence No.: 19424

PTB: 178-008 / H-1, Work Order No.: 027A

Boring ID Sample Depth, ft Sample Date Excavation Area(s)	Soil Reference Concentrations ^{a/}	Soil Remediation Objective for Construction Workers ^{b/}	Soil Remediation Objective for Residential Exposure ^{c/}	1789V2-105-05 (10-13.5) 9/4/2019	1789V2-106-01 (0-1.5) 9/4/2019	1789V2-106-02 (0-5) 9/4/2019	1789V2-106-02 (5-10) 9/4/2019	1789V2-106-03 (0-5) 9/4/2019	1789V2-106-03 (5-10) 9/4/2019	Dup-05 (1789V2 106-03) (5-10) 9/4/2019	(0-5) 9/4/2019	1789V2-106-04 (5-10) 9/4/2019 789V2-106)	1789V2-106-05 (0-5) 9/4/2019	1789V2-106-05 (5-10) 9/4/2019	1789V2-106-06 (0-5) 9/4/2019	1789V2-106-06 (5-10) 9/4/2019	1789V2-106-07 (0-5) 9/4/2019	Dup-06 (1789V2 106-07) (0-5) 9/4/2019	2 1789V2-106-07 (5-10) 9/4/2019
[ISGS Site No.(s)]					I	1		I		1		· I		1		I	I	T	!
Parameter VOCs, mg/kg																			
Acetone	25	100,000	70,000	< 0.065	0.24	0.076	< 0.098	0.28	< 0.14	0.1	< 0.059	< 0.11	< 0.064	< 0.074	< 0.061	< 0.071	< 0.076	0.074	< 0.12
Benzene	0.03	2.2	0.8	< 0.0043	< 0.0056	< 0.0048	< 0.0066	< 0.0063	< 0.0091	< 0.0069	< 0.0039	< 0.0072	< 0.0043	< 0.0050	< 0.0041	< 0.0047	< 0.0051	< 0.0048	< 0.0079
Toluene	12	42	650	< 0.0043	< 0.0056	< 0.0048	< 0.0066	< 0.0063	0.011	< 0.0069	< 0.0039	< 0.0072	< 0.0043	< 0.0050	< 0.0041	< 0.0047	< 0.0051	0.0049	< 0.0079
SVOCs, mg/kg		•			•	•		•			•			•				•	
Benzo(a)anthracene	0.9 / 1.1 / 1.8	170	0.9	< 0.036	< 0.036	< 0.037	< 0.054	0.039	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	0.058	< 0.036	< 0.037	< 0.034	< 0.062
Benzo(a)pyrene	0.09 / 1.3 / 2.1	17	0.09	< 0.036	< 0.036	< 0.037	< 0.054	< 0.037	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	0.063	< 0.036	< 0.037	< 0.034	< 0.062
Benzo(b)fluoranthene	0.9 / 1.5 / 2.1	170	0.9	< 0.036	< 0.036	< 0.037	< 0.054	0.05	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	0.086	< 0.036	< 0.037	< 0.034	< 0.062
Benzo(k)fluoranthene	9	1700	9	< 0.036	< 0.036	< 0.037	< 0.054	< 0.037	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	0.051	< 0.036	< 0.037	< 0.034	< 0.062
Benzo(g,h,i)perylene				< 0.036	< 0.036	< 0.037	< 0.054	< 0.037	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	0.067	< 0.036	< 0.037	< 0.034	< 0.062
Chrysene	88	17000	88	< 0.036	< 0.036	0.04	< 0.054	0.047	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	0.076	< 0.036	< 0.037	< 0.034	< 0.062
Dibenz(a,h)anthracene	0.09 / 0.2 / 0.42	17	0.09	< 0.036	< 0.036	< 0.037	< 0.054	< 0.037	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	< 0.035	< 0.036	< 0.037	< 0.034	< 0.062
Fluoranthene	3,100	82,000	3,100	< 0.036	< 0.036	0.038	< 0.054	0.076	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	0.13	< 0.036	< 0.037	< 0.034	< 0.062
Indeno(1,2,3-cd)pyrene	0.9 / 0.9 / 1.6	170	0.9	< 0.036	< 0.036	< 0.037	< 0.054	< 0.037	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	0.048	< 0.036	< 0.037	< 0.034	< 0.062
Phenanthrene				< 0.036	< 0.036	< 0.037	< 0.054	0.052	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	0.055	< 0.036	< 0.037	< 0.034	< 0.062
Pyrene	2,300	61000	2300	< 0.036	< 0.036	0.045	< 0.054	0.075	< 0.041	< 0.042	< 0.036	< 0.049	< 0.035	< 0.037	0.1	< 0.036	< 0.037	< 0.034	< 0.062

^{--- -} Refers to not applicable or value not available

Organic Soil Reference Concentrations (XX.XX / XX.XX) Include the Most Stringent Values from the MAC Table / The Chicago Corporate Limit / and The MSA County Excluding Chicago Values From the MAC Table.

^{a/} Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

^{c/} Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

Comparison of Detected Constituents to Applicable Reference Concentrations - Inorganics

IL-83 (Busse Road), Foster to Bryn Mawr Bensenville, DuPage County, Illinois

BDE Sequence No.: 19424 PTB: 178-008 / H-1, Work Order No.: 027A

				4700)/2 00 04	Dup-02 (1789V2	4700\/2.00.02	4700) (2.00.02	Dup-01 (1789V2	2. 4700.12.00.04	4700/2 00 05	47001/2 00 05	47001/2 00 00	470012 00 00	Dup-08 (1789V2	4700)/2 00 07	4700)/2 00 07	47001/2 00 00	4700\/2.00.00	4700/2 00 00
Boring ID		Soil Remediation	Soil Remediation	1789V2-98-01	98-01)	1789V2-98-02	1789V2-98-03	98-03)	1789V2-98-04	1789V2-98-05	1789V2-98-05	1789V2-98-06	1789V2-98-06	98-06)	1789V2-98-07	1789V2-98-07	178972-98-08	1789V2-98-08	1789V2-98-09
Sample Depth, ft	Soil Reference	Objective for	Objective for	(0-4.5)	(0-4.5)	(0-4.5)	(0-4.5)	(0-4.5)	(0-4.5)	(0-5)	(5-10)	(0-5)	(5-10)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)
Sample Date	Concentrations 4/	Construction Workers b/	Residential	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/4/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/4/2019
Excavation Area(s)		workers	Exposure c/			-	-				3751-2 (17	'89V2-98)				-		-	
[ISGS Site No.(s)]											3,312(1,								1
Parameter	6.25 0.0			0.00	0.07			0.44	0.26	0.35	7.54	0.45	0.26	0.4	0.05	0.42	7.64	0.10	0.50
Laboratory soil pH (s.u.) Total Metals, mg/kg	6.25 - 9.0			8.88	9.07	9	8.2	8.44	8.36	9.25	7.51	9.15	8.36	8.1	9.06	8.42	7.64	8.19	8.58
Arsenic	11.3 / 13	61	13	4.8	3.2	4.7	5.5	9.5	6.1	4.3	7.7	4.6	4.2	3.6	4.4	2.7	13	4	4.3
Barium	1,500	14,000	5500	35	21	65	61	94	73	23	150	33	77	79	30	69	250	32	83
Beryllium	22	410	160	< 0.47	< 0.48	< 0.48	< 0.52	0.64	< 0.53	< 0.46	0.69	< 0.45	0.67	0.6	< 0.45	0.54	1	< 0.53	< 0.54
Cadmium	5.2	200	78	< 0.47	< 0.48	0.53	< 0.52	< 0.51	< 0.53	< 0.46	< 0.63	< 0.45	< 0.51	< 0.50	< 0.45	< 0.52	< 0.54	< 0.53	< 0.54
Calcium				64000	130000	89000	85000	73000	51000	140000	12000	90000	63000	77000	140000	38000	6000	73000	45000
Chromium	21	690	230	11	7.5	15	18	21	15	8	20	9.9	26	22	9	18	29	20	19
Cobalt	20	12,000	4700	5.6	4	4.9	5.6	14	8.6	3.5	5.6	4.7	8.6	10	4.2	5.9	19	12	7.8
Copper	2,900 15,000 / 15,900	8,200	2900	13 13000	9.9 8600	32 22000	18 19000	26 26000	17 18000	9900	27 33000	13 12000	29 21000	18 18000	10 11000	14 14000	23 35000	24 17000	17 19000
Iron Lead	107	700	400	7.8	5.9	38	8.8	15	14	41	15	12000	11	13	8.2	14000	21	17000	19000
Magnesium	325,000	730,000	325000	31000	55000	42000	45000	40000	27000	63000	4200	47000	40000	45000	47000	22000	6300	44000	24000
Manganese	630 / 636	4,100	1600	430	280	470	330	1100	810	350	540	430	380	650	460	200	1400	330	250
Mercury	0.89	0.1	10	< 0.018	< 0.019	< 0.019	< 0.020	< 0.023	0.031	0.026	0.04	< 0.018	0.025	< 0.021	< 0.017	< 0.018	0.079	< 0.021	< 0.021
Nickel	100	4,100	1600	11	9.4	13	20	41	15	7.5	16	10	26	26	9.1	16	32	29	19
Potassium				410	410	370	990	1100	700	480	1000	550	1500	1300	690	1100	1300	2000	1200
Selenium	1.3	1,000	390	< 0.92	< 0.96	< 0.96	< 1.0	< 1.0	< 1.1	< 0.92	1.6	< 0.89	< 1.0	< 0.99	< 0.91	< 1.0	< 1.1	< 1.1	< 1.1
Silver	4.4	1,000	390	< 0.92	< 0.96	< 0.96	< 1.0	< 1.0	< 1.1	< 0.92	< 1.3	< 0.89	< 1.0	< 0.99	< 0.91	< 1.0	< 1.1	< 1.1	< 1.1
Sodium Vanadium	550	1,400	550	880 19	590 13	960 15	1200 21	1500 28	1500 26	490 14	3000 29	940 19	730 33	870 30	780 17	1700 24	1200 38	520 22	3900 32
Zinc	5,100	61,000	23000	31	25	79	45	59	46	27	49	29	44	42	25	39	76	51	44
TCLP Metals, mg/L		Class I Groundwater d	/					1 33	1		.5					- 55	, ,,		
Arsenic		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Barium		2		0.43	0.42	0.59	0.63	0.43	0.65	0.2	0.26	0.26	0.42	0.42	0.24	0.31	0.16	0.28	0.44
Beryllium		0.004		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cadmium		0.005		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chromium		0.1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cobalt		0.65		< 0.010 < 0.10	0.033 < 0.10	< 0.010 < 0.10	0.011 < 0.10	< 0.010 < 0.10											
Copper		5		< 0.25	< 0.10	0.44	< 0.10	3.2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Lead		0.0075		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.011	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Manganese		0.15		2.1	2	0.88	1.1	2.8	17	1	0.78	1.3	0.44	0.48	1	0.85	0.83	1.5	0.11
Mercury		0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel		0.1		< 0.010	< 0.010	0.01	0.011	0.037	0.017	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.01	< 0.010	< 0.010	0.011	< 0.010
Selenium		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Silver		0.05 5		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Zinc SPLP Metals, mg/L		5 Class I Groundwater ^d	/	< 0.050	< 0.050	0.053	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Arsenic		0.05		0.0089	0.01	0.0069	0.0054	0.0043	0.025	0.0047	0.004	0.0065	< 0.0040	< 0.0040	0.0046	0.0042	< 0.0040	< 0.0040	0.0065
Barium		2		0.14	0.2	0.052	0.084	0.067	0.47	0.038	0.025	0.054	0.045	0.047	0.034	0.067	0.057	0.024	0.12
Beryllium		0.004		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	0.003	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cadmium		0.005		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium		0.1		0.049	0.062	0.018	0.029	0.03	0.11	0.013	0.0072	0.016	0.017	0.016	0.012	0.027	0.017	0.0098	0.028
Cobalt		1		0.016	0.018	< 0.0040	0.0055	0.0043	0.05	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.0093	< 0.0040	0.0042	0.0061
Copper		0.65		0.11	0.071	0.049	< 0.040	< 0.040	0.14	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	0.064	< 0.040	< 0.040	< 0.040
Iron		5		40 0.054	43	14	0.0086	15	96	10	5.6	15	12	10	10	17	13	6.3	19
Lead Manganese		0.0075 0.15		0.054	0.03 0.27	0.021 0.16	0.0086	0.009 0.073	0.1 3.1	0.061 0.12	0.0031 0.053	0.015 0.25	0.0038 0.047	0.003 0.048	0.0075 0.15	0.011 0.079	0.0043 0.091	0.0049 0.039	0.0087 0.093
Mercury		0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel		0.1		0.049	0.059	0.014	0.027	0.024	0.11	0.0082	0.0052	0.011	0.012	0.013	0.0077	0.026	0.011	0.011	0.022
Selenium		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Silver		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Zinc		5		0.2	0.14	0.086	0.06	0.097	0.39	0.046	< 0.020	0.046	0.028	0.033	0.029	0.075	0.037	0.022	0.052

^{--- -} Refers to not applicable or value not available

Inorganic Soil Reference Concentrations (xx.xx / xx.xx) Include the Most Stringent values from the

MAC Table / and the MSA County Value From the MAC Table as Applicable

ND - Refers to constituent not detected above the reporting limit

 $^{^{\}rm a/}$ Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

 $^{^{\}mathrm{b}/}$ Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{\}rm cf}$ Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

^{d/} Soil Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

Comparison of Detected Constituents to Applicable Reference Concentrations - Inorganics IL-83 (Busse Road), Foster to Bryn Mawr

Bensenville, DuPage County, Illinois BDE Sequence No.: 19424

PTB: 178-008 / H-1, Work Order No.: 027A

	Boring ID		Soil Remediation	Soil Remediation	1789V2-98-09	1789V2-98-10	1789V2-98-10	1789V2-98-11	1789V2-98-11	1789V2-98-12	1789V2-98-12	1789V2-98-13	1789V2-98-13	1789V2-98-14	1789V2-98-14	1789V2-98-15	1789V2-98-15	1789V2-99-01	1789V2-99-02	1789V2-99-03
	Sample Depth, ft	Soil Reference	Objective for	Objective for	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-1.8)	(0-1.8)	(0-1.8)
	Sample Date	Concentrations a/	Construction	Residential	9/4/2019	9/4/2019	9/4/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/5/2019	9/3/2019	9/3/2019	9/3/2019
Ex	cavation Area(s)		Workers b/	Exposure c/																
	[ISGS Site No.(s)]									3.	751-2 (1789V2-9	(8)						3	751-1 (1789V2-9	99)
Parameter												ı								
Laboratory soil pH (s		6.25 - 9.0			8.24	8.46	8.46	7.67	8.19	7.95	8.15	8.14	8.16	8.04	7.73	7.61	9.38	9.01	9.04	8.41
Total Metals, mg/kg	g	11.3 / 13	61	13	15	4.2	< 1.0	2.9	1.9	12	7.1	7.9	9.6	6.2	12	8.9	6	16	7	3.9
Arsenic Barium		1,500	14,000	5500	53	74	51	93	32	150	53	62	47	31	58	51	39	49	52	27
Beryllium		22	410	160	0.59	< 0.54	< 0.51	0.71	< 0.46	1.3	0.56	0.74	0.64	< 0.50	0.78	0.62	< 0.48	< 0.47	< 0.46	< 0.47
Cadmium		5.2	200	78	< 0.55	< 0.54	< 0.51	< 0.53	< 0.46	< 0.49	< 0.52	< 0.49	< 0.49	< 0.50	< 0.55	< 0.53	< 0.48	< 0.47	< 0.46	< 0.47
Calcium					62000	42000	31000	45000	100000	29000	75000	110000	98000	110000	7100	55000	96000	140000	42000	89000
Chromium		21	690	230	22	14	9.8	25	11	38	19	24	23	18	27	20	13	13	11	8
Cobalt		20	12,000	4700	14	6	4.9	10	4.8	22	15	15	17	13	8.1	12	12	7.2	6.2	3.6
Copper		2,900	8,200	2900	21	20	9.3	13	11	29	20	23	26	23	25	20	15	31	13	12
Iron		15,000 / 15,900	700	400	28000	13000	7300	19000	10000	38000	19000	24000	25000	18000	30000	23000	15000	16000	17000	10000
Lead Magnesium		107 325,000	700 730,000	400 325000	12 39000	9.8 22000	6.4 17000	16 28000	7 46000	36 18000	13 36000	15 46000	16 49000	14 56000	16 6400	16 33000	13 51000	75000	10 25000	25 41000
Manganese		630 / 636	4,100	1600	420	280	110	170	290	1100	590	550	610	450	470	690	680	450	720	440
Mercury		0.89	0.1	10	< 0.022	< 0.019	< 0.018	0.04	< 0.020	0.028	< 0.021	< 0.017	< 0.017	< 0.020	< 0.020	0.029	< 0.019	0.023	< 0.022	< 0.018
Nickel		100	4,100	1600	30	15	13	24	12	44	28	33	35	26	26	26	17	14	13	8.8
Potassium					2000	630	470	1400	1400	2900	1800	2700	2800	1900	1500	1500	1200	430	460	340
Selenium		1.3	1,000	390	< 1.1	1.3	< 1.0	< 1.1	< 0.93	1	< 1.0	< 0.98	< 0.98	< 1.0	< 1.1	< 1.1	< 0.96	< 0.92	< 0.93	< 0.94
Silver		4.4	1,000	390	< 1.1	< 1.1	< 1.0	< 1.1	< 0.93	< 0.98	< 1.0	< 0.98	< 0.98	< 1.0	< 1.1	< 1.1	< 0.96	< 0.92	< 0.93	< 0.94
Sodium					980	3600	1800	200	210	130	160	180	200	190	130	150	190	870	910	310
Vanadium Zinc		550	1,400 61,000	550 23000	26 51	22 40	17	35 50	16	47	23	28 49	26	19 48	42	30 45	20 36	18 83	20	14 37
TCLP Metals, mg/L		5,100	Class I Groundwater ^d	/ 23000	51	40	33	50	41	81	45	49	63	48	52	45	36	83	38	3/
Arsenic			0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Barium			2		0.53	0.64	0.8	0.53	0.24	0.39	0.4	0.4	0.28	0.32	0.19	0.4	0.27	0.31	0.29	0.25
Beryllium			0.004		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cadmium			0.005		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chromium			0.1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cobalt			1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.033	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Copper			0.65 5		< 0.10 < 0.25	< 0.10 0.32	< 0.10 0.33	< 0.10 < 0.25	< 0.10 < 0.25	< 0.10 < 0.25	< 0.10 < 0.25	< 0.10	< 0.10 < 0.25	< 0.10 < 0.25	< 0.10	< 0.10 < 0.25	< 0.10 < 0.25	< 0.10 < 0.25	< 0.10 < 0.25	< 0.10
Iron Lead			0.0075		< 0.0050	< 0.0050	< 0.0050	< 0.25	< 0.25	< 0.25	< 0.0050	< 0.25 < 0.0050	< 0.25	< 0.25	< 0.25 < 0.0050	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25 < 0.0050
Manganese			0.15		2.1	1.6	1.1	0.79	1.6	2.1	0.49	0.2	0.79	3.1	0.06	0.72	1	1.4	1.4	0.72
Mercury			0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel			0.1		0.011	< 0.010	0.012	< 0.010	< 0.010	0.025	0.011	< 0.010	< 0.010	0.031	< 0.010	0.014	0.01	0.018	0.012	< 0.010
Selenium			0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Silver			0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Zinc			5	/	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.065	< 0.050	0.066
SPLP Metals, mg/L					1															1
Arsenic			Class I Groundwater		0.0051	0.011	0.0000	z 0 0040	< 0.0040	40.0040	z 0 0040	< 0.0040	4 0 0040	Z O OO 40	- 0 0040	< 0.0040		0.00	0.012	0.011
			0.05		0.0051	0.011	0.0058	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.02	0.013	0.011
Barium			0.05 2		0.041	0.22	0.077	0.032	< 0.020	< 0.020	< 0.020	< 0.020	0.022	< 0.020	0.027	< 0.020	< 0.020	0.13	0.094	0.099
			0.05			0.22 < 0.0020														
Barium Beryllium			0.05 2 0.004		0.041 < 0.0020	0.22	0.077 < 0.0020	0.032 < 0.0020	< 0.020 < 0.0020	< 0.020 < 0.0020	< 0.020 < 0.0020	< 0.020 < 0.0020	0.022 < 0.0020	< 0.020 < 0.0020	0.027 < 0.0020	< 0.020 < 0.0020	< 0.020 < 0.0020	0.13 < 0.0020	0.094 < 0.0020	0.099 < 0.0020
Barium Beryllium Cadmium			0.05 2 0.004 0.005 0.1 1		0.041 < 0.0020 < 0.0020	0.22 < 0.0020 < 0.0020	0.077 < 0.0020 < 0.0020	0.032 < 0.0020 < 0.0020	< 0.020 < 0.0020 < 0.0020	< 0.020 < 0.0020 < 0.0020	< 0.020 < 0.0020 < 0.0020	< 0.020 < 0.0020 < 0.0020	0.022 < 0.0020 < 0.0020	< 0.020 < 0.0020 < 0.0020	0.027 < 0.0020 < 0.0020	< 0.020 < 0.0020 < 0.0020	< 0.020 < 0.0020 < 0.0020	0.13 < 0.0020 < 0.0020	0.094 < 0.0020 < 0.0020	0.099 < 0.0020 < 0.0020
Barium Beryllium Cadmium Chromium Cobalt Copper			0.05 2 0.004 0.005 0.1 1 0.65		0.041 < 0.0020 < 0.0020 0.012 < 0.0040 < 0.040	0.22 < 0.0020 < 0.0020 0.046 0.011 0.079	0.077 < 0.0020 < 0.0020 0.022 0.0057 0.048	0.032 < 0.0020 < 0.0020 0.0096 < 0.0040 < 0.040	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040	<0.020 <0.0020 <0.0020 0.0041 <0.0040 <0.040	< 0.020 < 0.0020 < 0.0020 0.0049 < 0.0040 < 0.040	0.022 < 0.0020 < 0.0020 0.0077 < 0.0040 < 0.040	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040	0.027 < 0.0020 < 0.0020 0.0084 < 0.0040 < 0.040	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.040	< 0.020 < 0.0020 < 0.0020 0.0053 < 0.0040 < 0.040	0.13 < 0.0020 < 0.0020 0.043 0.013 0.14	0.094 < 0.0020 < 0.0020 0.034 0.0069 < 0.040	0.099 < 0.0020 < 0.0020 0.028 0.0065 < 0.040
Barium Beryllium Cadmium Chromium Cobalt Copper			0.05 2 0.004 0.005 0.1 1 0.65 5		0.041 < 0.0020 < 0.0020 0.012 < 0.0040 < 0.040 10	0.22 < 0.0020 < 0.0020 0.046 0.011 0.079 30	0.077 < 0.0020 < 0.0020 0.022 0.0057 0.048 13	0.032 < 0.0020 < 0.0020 0.0096 < 0.0040 < 0.040 7.4	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.87	<0.020 <0.0020 <0.0020 <0.0040 <0.0040 <0.040 1.4	<0.020 <0.0020 <0.0020 0.0041 <0.0040 <0.040 1.8	< 0.020 < 0.0020 < 0.0020 0.0049 < 0.0040 < 0.040 2.4	0.022 < 0.0020 < 0.0020 0.0077 < 0.0040 < 0.040 5.6	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.31	0.027 < 0.0020 < 0.0020 0.0084 < 0.0040 < 0.040 6.1	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.040 3.1	<0.020 <0.0020 <0.0020 0.0053 <0.0040 <0.040 3.5	0.13 < 0.0020 < 0.0020 0.043 0.013 0.14 38	0.094 < 0.0020 < 0.0020 0.034 0.0069 < 0.040 31	0.099 < 0.0020 < 0.0020 0.028 0.0065 < 0.040 26
Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead			0.05 2 0.004 0.005 0.1 1 0.65 5		0.041 < 0.0020 < 0.0020 0.012 < 0.0040 < 0.040 10 0.0029	0.22 < 0.0020 < 0.0020 0.046 0.011 0.079 30 0.021	0.077 < 0.0020 < 0.0020 0.022 0.0057 0.048 13 0.0089	0.032 < 0.0020 < 0.0020 0.0096 < 0.0040 < 0.040 7.4 0.0066	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.87 < 0.0020	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 1.4 < 0.0020	<0.020 <0.0020 <0.0020 0.0041 <0.0040 <0.040 1.8 0.0035	< 0.020 < 0.0020 < 0.0020 0.0049 < 0.0040 < 0.040 2.4 0.0052	0.022 < 0.0020 < 0.0020 0.0077 < 0.0040 < 0.040 5.6 0.0029	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.31 < 0.0020	0.027 < 0.0020 < 0.0020 0.0084 < 0.0040 < 0.040 6.1 0.0032	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.040 3.1 <0.0020	<0.020 <0.0020 <0.0020 0.0053 <0.0040 <0.040 3.5 0.0026	0.13 < 0.0020 < 0.0020 0.043 0.013 0.14 38 0.063	0.094 < 0.0020 < 0.0020 0.034 0.0069 < 0.040 31 0.013	0.099 < 0.0020 < 0.0020 0.028 0.0065 < 0.040 26 0.064
Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese			0.05 2 0.004 0.005 0.1 1 0.65 5 0.0075		0.041 < 0.0020 < 0.0020 0.012 < 0.0040 < 0.040 10 0.0029 0.067	0.22 < 0.0020 < 0.0020 0.046 0.011 0.079 30 0.021 0.18	0.077 < 0.0020 < 0.0020 0.022 0.0057 0.048 13 0.0089 0.062	0.032 < 0.0020 < 0.0020 0.0096 < 0.0040 < 0.040 7.4 0.0066 0.031	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.87 < 0.0020 0.008	<0.020 <0.0020 <0.0020 <0.0040 <0.0040 <0.040 1.4 <0.0020 0.006	<0.020 <0.0020 <0.0020 0.0041 <0.0040 <0.040 1.8 0.0035 0.0097	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.040 2.4 0.0052	0.022 < 0.0020 < 0.0020 0.0077 < 0.0040 < 0.040 5.6 0.0029 0.029	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.31 < 0.0020 0.0042	0.027 < 0.0020 < 0.0020 0.0084 < 0.0040 < 0.040 6.1 0.0032 0.062	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.040 3.1 <0.0020 0.019	<0.020 <0.0020 <0.0020 0.0053 <0.0040 <0.040 3.5 0.0026	0.13 < 0.0020 < 0.0020 0.043 0.013 0.14 38 0.063 0.7	0.094 < 0.0020 < 0.0020 0.034 0.0069 < 0.040 31 0.013 0.52	0.099 < 0.0020 < 0.0020 0.028 0.0065 < 0.040 26 0.064 0.42
Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury			0.05 2 0.004 0.005 0.1 1 0.65 5 0.0075 0.15 0.002		0.041 < 0.0020 < 0.0020 0.012 < 0.0040 < 0.040 10 0.0029 0.067 < 0.00020	0.22 < 0.0020 < 0.0020 0.046 0.011 0.079 30 0.021 0.18 < 0.00020	0.077 < 0.0020 < 0.0020 0.022 0.0057 0.048 13 0.0089 0.062 < 0.00020	0.032 < 0.0020 < 0.0020 0.0096 < 0.0040 < 0.040 7.4 0.0066 0.031 < 0.00020	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.87 < 0.0020 0.008 < 0.00020	<0.020 <0.0020 <0.0020 <0.0040 <0.0040 <0.040 1.4 <0.0020 0.006 <0.00020	<0.020 <0.0020 <0.0020 <0.0041 <0.0040 <0.040 1.8 0.0035 0.0097 <0.00020	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.040 2.4 0.0052 0.012 <0.00020	0.022 < 0.0020 < 0.0020 0.0077 < 0.0040 < 0.040 5.6 0.0029 < 0.0029	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.31 < 0.0020 0.0042 < 0.00020	0.027 < 0.0020 < 0.0020 0.0084 < 0.0040 < 0.040 6.1 0.0032 0.062 < 0.00020	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.040 3.1 <0.0020 0.019 <0.00020	< 0.020 < 0.0020 < 0.0020 0.0053 < 0.0040 < 0.040 3.5 0.0026 0.054 < 0.00020	0.13 < 0.0020 < 0.0020 0.043 0.013 0.14 38 0.063 0.7 < 0.00020	0.094 < 0.0020 < 0.0020 0.034 0.0069 < 0.040 31 0.013 0.52 < 0.00020	0.099 < 0.0020 < 0.0020 0.028 0.0065 < 0.040 26 0.064 0.42 < 0.00020
Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Nickel			0.05 2 0.004 0.005 0.1 1 0.65 5 0.0075 0.15 0.002		0.041 < 0.0020 < 0.0020 0.012 < 0.0040 < 0.040 10 0.0029 0.067 < 0.00020 0.011	0.22 < 0.0020 < 0.0020 0.046 0.011 0.079 30 0.021 0.18 < 0.00020 0.038	0.077 < 0.0020 < 0.0020 0.022 0.0057 0.048 13 0.0089 0.062 < 0.00020 0.021	0.032 < 0.0020 < 0.0020 0.0096 < 0.0040 < 0.040 7.4 0.0066 0.031 < 0.00020 0.008	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 < 0.040 0.87 < 0.0020 0.008 < 0.00020 < 0.0040	<0.020 <0.0020 <0.0020 <0.0040 <0.0040 <0.0040 1.4 <0.0020 0.006 <0.00020 <0.0040	<0.020 <0.0020 <0.0020 <0.0041 <0.0040 <0.040 1.8 0.0035 0.0097 <0.00020 <0.0040	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.040 2.4 0.0052 0.012 <0.00020 <0.0040	0.022 < 0.0020 < 0.0020 0.0077 < 0.0040 < 0.040 5.6 0.0029 0.029 < 0.00020	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.31 < 0.0020 0.0042 < 0.00020 < 0.0040	0.027 < 0.0020 < 0.0020 0.0084 < 0.0040 < 0.040 6.1 0.0032 0.062 < 0.00020	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.0040 3.1 <0.0020 0.019 <0.00020 <0.0040	<0.020 <0.0020 <0.0020 0.0053 <0.0040 <0.040 3.5 0.0026 0.054 <0.00020	0.13 < 0.0020 < 0.0020 0.043 0.013 0.14 38 0.063 0.7 < 0.00020	0.094 < 0.0020 < 0.0020 0.034 0.0069 < 0.040 31 0.013 0.52 < 0.00020	0.099 < 0.0020 < 0.0020 0.028 0.0065 < 0.040 26 0.064 0.42 < 0.00020 0.022
Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury			0.05 2 0.004 0.005 0.1 1 0.65 5 0.0075 0.15 0.002		0.041 < 0.0020 < 0.0020 0.012 < 0.0040 < 0.040 10 0.0029 0.067 < 0.00020	0.22 < 0.0020 < 0.0020 0.046 0.011 0.079 30 0.021 0.18 < 0.00020	0.077 < 0.0020 < 0.0020 0.022 0.0057 0.048 13 0.0089 0.062 < 0.00020	0.032 < 0.0020 < 0.0020 0.0096 < 0.0040 < 0.040 7.4 0.0066 0.031 < 0.00020	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.87 < 0.0020 0.008 < 0.00020	<0.020 <0.0020 <0.0020 <0.0040 <0.0040 <0.040 1.4 <0.0020 0.006 <0.00020	<0.020 <0.0020 <0.0020 <0.0041 <0.0040 <0.040 1.8 0.0035 0.0097 <0.00020	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.040 2.4 0.0052 0.012 <0.00020	0.022 < 0.0020 < 0.0020 0.0077 < 0.0040 < 0.040 5.6 0.0029 < 0.0029	< 0.020 < 0.0020 < 0.0020 < 0.0040 < 0.0040 < 0.040 0.31 < 0.0020 0.0042 < 0.00020	0.027 < 0.0020 < 0.0020 0.0084 < 0.0040 < 0.040 6.1 0.0032 0.062 < 0.00020	<0.020 <0.0020 <0.0020 0.0049 <0.0040 <0.040 3.1 <0.0020 0.019 <0.00020	< 0.020 < 0.0020 < 0.0020 0.0053 < 0.0040 < 0.040 3.5 0.0026 0.054 < 0.00020	0.13 < 0.0020 < 0.0020 0.043 0.013 0.14 38 0.063 0.7 < 0.00020	0.094 < 0.0020 < 0.0020 0.034 0.0069 < 0.040 31 0.013 0.52 < 0.00020	0.099 < 0.0020 < 0.0020 0.028 0.0065 < 0.040 26 0.064 0.42 < 0.00020

^{--- -} Refers to not applicable or value not available

Inorganic Soil Reference Concentrations (xx.xx / xx.xx) Include the Most Stringent values from the

MAC Table / and the MSA County Value From the MAC Table as Applicable

ND - Refers to constituent not detected above the reporting limit

 $^{^{\}rm a/}$ Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

 $^{^{\}mathrm{b}\prime}$ Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{\}rm c\prime}$ Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

^{d/} Soil Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

$Comparison\ of\ Detected\ Constituents\ to\ Applicable\ Reference\ Concentrations\ -\ Inorganics$

IL-83 (Busse Road), Foster to Bryn Mawr Bensenville, DuPage County, Illinois BDE Sequence No.: 19424

PTB: 178-008 / H-1, Work Order No.: 027A

												Dup-04 (1789V2	<u>.</u>		.				l
Davis - ID		Soil Remediation	Soil Remediation	1789V2-99-04	1789V2-101-01	1789V2-102-01	1789V2-103-01 	1789V2-104-01	1789V2-104-01	1789V2-104-02	1789V2-104-02	104-02)	1789V2-104-03	3 1789V2-104-03	3 1789V2-104-04	1789V2-104-04	1789V2-104-05	1789V2-104-05	1789V2-104-06
Boring ID	Soil Reference	Objective for	Objective for	(0.1.0)	(0.1.5)	(0.2.5)	(0.2.5)	(0.5)	/F 10)	(0.5)	(F 10)	(F 10)	(0.5)	(5.10)	(0.5)	/F 10\	(0.5)	/F 10\	(0.5)
Sample Depth, ft Sample Date	Concentrations a/	Construction	Residential	(0-1.8) 9/3/2019	(0-1.5) 9/5/2019	(0-2.5) 9/4/2019	(0-3.5) 9/4/2019	(0-5) 9/4/2019	(5-10) 9/4/2019	(0-5) 9/3/2019	(5-10) 9/3/2019	(5-10) 9/3/2019	(0-5) 9/3/2019	(5-10) 9/3/2019	(0-5) 9/3/2019	(5-10) 9/3/2019	(0-5) 9/3/2019	(5-10) 9/3/2019	(0-5) 9/3/2019
Excavation Area(s)		Workers ^{b/}	Exposure c/	3751-1	3751-3	3751-4	3751-5	9/4/2019	9/4/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019
[ISGS Site No.(s)]				(1789V2-99)	(1789V2-101)	(1789V2-102)	(1789V2-103)						3751-2 (17	789V2-104)					
Parameter				(1703 12 33)	(170342 101)	(1703 V Z 102)	(170312 103)												
Laboratory soil pH (s.u.)	6.25 - 9.0			9.32	7.83	7.57	7.34	8.9	7.12	8.46	7.62	7.37	9.06	7.68	8.59	8.05	8.95	8.19	7.65
Total Metals, mg/kg	0.20			0.02	7.00		7.5					1	0.00						
Arsenic	11.3 / 13	61	13	13	4.1	5.3	4.4	5.7	7.4	4.6	3.3	2.6	7.1	8.2	6.6	7.6	5.7	2.4	6.2
Barium	1,500	14,000	5500	140	37	110	140	21	110	40	110	130	38	51	67	91	45	33	54
Beryllium	22	410	160	0.88	< 0.49	< 1.0	< 1.3	< 0.50	< 0.69	< 0.50	0.62	0.88	< 0.55	< 0.63	< 0.50	0.56	< 0.49	< 0.52	< 0.55
Cadmium	5.2	200	78	< 0.51	< 0.49	< 1.0	< 1.3	< 0.50	< 0.69	< 0.50	0.69	0.74	< 0.55	< 0.63	< 0.50	< 0.49	< 0.49	< 0.52	< 0.55
Calcium				20000	110000	53000	58000	150000	15000	85000	20000	9800	100000	56000	44000	21000	77000	97000	63000
Chromium	21	690	230	23	11	12	11	7.9	24	10	14	20	10	8.7	13	19	15	9.3	9.9
Cobalt	20	12,000	4700	10	5.1	5.5	5.5	3.9	9.1	4.6	5.7	5.8	5	6.7	6.8	8.9	6.1	4.4	5.4
Copper	2,900	8,200	2900	28	13	23	26	13	18	29	21	25	17	12	13	16	21	15	17
Iron	15,000 / 15,900			30000	16000	19000	19000	12000	24000	14000	15000	16000	15000	15000	18000	24000	16000	13000	31000
Lead	107	700	400	13	9.1	17	10	6.8	14	140	9.7	13	120	7.1	8.9	12	75	8.3	11
Magnesium	325,000	730,000	325000	14000	47000	22000	23000	62000	8800	42000	7700	4200	46000	25000	25000	11000	37000	44000	33000
Marganese	630 / 636	4,100 0.1	1600	800	370	620	580	500	160	460	840	340	530	550	730	880	540	430	750
Mercury Nickel	0.89 100	4,100	10 1600	0.021 44	< 0.019 12	< 0.043 12	< 0.052 11	< 0.020 9.5	0.03	< 0.020 11	0.025 18	0.031	< 0.022 12	< 0.028	0.022	0.025 18	< 0.019 18	< 0.019 11	0.026 20
Potassium		4,100		1200	670	770	730	480	1000	420	370	740	460	280	520	730	610	520	440
Selenium	1.3	1,000	390	2	< 0.99	< 2.0	< 2.5	< 1.0	< 1.4	< 1.0	2.1	1.4	< 1.1	< 1.2	< 1.0	1.1	< 0.97	< 1.0	< 1.1
Silver	4.4	1,000	390	< 1.0	< 0.99	< 2.0	< 2.5	< 1.0	< 1.4	< 1.0	< 1.2	< 1.3	< 1.1	< 1.2	< 1.0	< 0.98	< 0.97	< 1.0	< 1.1
Sodium				4400	1500	400	480	930	1800	1100	2500	2200	680	1400	2000	2500	1500	1100	3500
Vanadium	550	1,400	550	36	19	18	16	14	54	15	24	31	16	21	27	36	18	17	21
Zinc	5,100	61,000	23000	60	33	68	78	33	55	61	45	43	58	42	44	55	55	35	63
TCLP Metals, mg/L	(Class I Groundwater d	/					•	•	•		•	•	•	•	•	•		
Arsenic		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Barium		2		0.52	0.25	0.73	0.72	0.37	0.72	0.43	0.59	0.26	0.44	0.72	0.48	0.85	0.53	0.54	0.36
Beryllium		0.004		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cadmium		0.005		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chromium		0.1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cobalt		1		< 0.010	< 0.010	0.015	0.013	< 0.010	0.018	< 0.010	< 0.010	< 0.010	< 0.010	0.015	< 0.010	0.059	< 0.010	< 0.010	< 0.010
Copper		0.65		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Iron		5		1.2	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0.44	0.54	< 0.25	0.27	< 0.25	0.51	< 0.25	< 0.25	< 0.25
Lead		0.0075		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0052	< 0.0050
Manganese Mercury		0.15 0.002		0.75 < 0.00020	0.016 < 0.00020	9.7 < 0.00020	7.6 < 0.00020	0.034 < 0.00020	3.6 < 0.00020	0.23 < 0.00020	9.7 < 0.00020	3.1 < 0.00020	0.24 < 0.00020	5.6 < 0.00020	0.092 < 0.00020	< 0.00020	0.12 < 0.00020	0.7 < 0.00020	3.3 < 0.00020
Nickel		0.002		0.016	< 0.010	0.01	0.011	< 0.010	0.02	< 0.00020	< 0.010	< 0.010	< 0.00020	< 0.00020	< 0.010	0.082	0.016	0.015	< 0.010
Selenium		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Silver		0.05		0.023	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.021	< 0.010	< 0.010	< 0.010	< 0.010	0.018
Zinc		5		< 0.050	< 0.050	0.22	0.23	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.074	< 0.050	0.15	< 0.050	< 0.050	< 0.050
SPLP Metals, mg/L	(Class I Groundwater d	/					•	•	•		1			•	•	·		
Arsenic		0.05		0.11	< 0.0040	< 0.0040	< 0.0040	0.0054	< 0.0040	0.018	< 0.0040	< 0.0040	0.0051	< 0.0040	0.013	< 0.0040	0.0073	0.022	< 0.0040
Barium		2		1.7	0.063	0.021	0.044	0.068	0.04	0.18	< 0.020	0.027	0.038	< 0.020	0.16	< 0.020	0.058	0.17	0.02
Beryllium		0.004		0.013	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cadmium		0.005		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium		0.1		0.31	0.014	< 0.0040	< 0.0040	0.016	0.009	0.081	0.0057	0.01	0.015	< 0.0040	0.044	0.0048	0.035	0.067	0.0071
Cobalt		1		0.069	0.0053	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.016	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.0082	< 0.0040	0.0043	0.016	< 0.0040
Copper		0.65		0.34	< 0.040	< 0.040	< 0.040	0.046	< 0.040	0.11	< 0.040	0.048	< 0.040	< 0.040	0.049	< 0.040	< 0.040	0.088	0.049
Iron		5		330	11	0.92	0.27	13	6.2	44	2.4	4.5	11	0.58	39	0.91	15	54	3.1
Lead		0.0075		0.15	0.014	< 0.0020	< 0.0020	0.0097	0.0029	0.41	< 0.0020	0.0057	0.051	< 0.0020	0.023	< 0.0020	0.078	0.16	0.0056
Marganese		0.15		2.6	0.15	0.015	0.0057	0.19	0.034	0.87	0.041	0.054	0.13	0.0093	0.44	0.036	0.17	0.54	0.041
Mercury		0.002		0.00042 0.34	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel Selenium		0.1		0.34	0.016 < 0.0040	< 0.0040 < 0.0040	< 0.0040 < 0.0040	0.019 < 0.0040	0.0065 < 0.0040	0.077 < 0.0040	0.0092 < 0.0040	0.011 < 0.0040	0.014 < 0.0040	0.0061 < 0.0040	0.032 < 0.0040	0.0063 < 0.0040	0.02 < 0.0040	0.06 < 0.0040	0.017 < 0.0040
Silver		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Zinc		5		0.77	0.058	< 0.0040	< 0.0040	0.049	< 0.0040	0.35	< 0.0040	0.0040	0.059	< 0.0040	0.17	< 0.0040	0.095	0.0040	0.033
LITTO		J		0.77	0.030	₹0.020	₹ 0.020	0.043	\ 0.020	0.33	\ 0.020	0.03	0.033	\ 0.020	0.17	\ 0.020	0.033	0.2	0.033

^{--- -} Refers to not applicable or value not available

Inorganic Soil Reference Concentrations (xx.xx / xx.xx) Include the Most Stringent values from the MAC Table / and the MSA County Value From the MAC Table as Applicable

ND - Refers to constituent not detected above the reporting limit

a/ Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{\}rm cf}$ Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

d/ Soil Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

Comparison of Detected Constituents to Applicable Reference Concentrations - Inorganics IL-83 (Busse Road), Foster to Bryn Mawr

Bensenville, DuPage County, Illinois BDE Sequence No.: 19424

PTB: 178-008 / H-1, Work Order No.: 027A

	T	1	T							I							<u> </u>		
				4700)/2 404 06	Dup-03 (1789V2	1,700,42,405,04	4700)/2 405 04	47001/2 405 04	4700)/2 405 02	4700 /2 405 02	4700 /2 405 02	4700)/2 405 02	47001/2 405 02	Dup-07 (1789V2	170012 105 04	4700)/2 405 04	4700)/2 405 04	4700/2 405 05	4700)/2 405 05
Poring ID		Soil Remediation	Soil Remediation	1789V2-104-06	104-06)	1/89V2-105-01	1/89V2-105-01	1789V2-105-01	1789V2-105-02	1789V2-105-02	1789V2-105-03	1/89V2-105-03	1/89V2-105-03	105-03)	1/89V2-105-04	1789V2-105-04	1789V2-105-04	1/89V2-105-05	1789V2-105-05
Boring ID Sample Depth, ft	Soil Reference	Objective for	Objective for	(5-10)	(5-10)	(0-5)	(5-10)	(10-13.5)	(0-5)	(10-13.5)	(0-5)	(5-10)	(10-13.5)	(10-13.5)	(0-5)	(5-10)	(10-13.5)	(0-5)	(5-10)
Sample Depth, it	Concentrations ^{a/}	Construction	Residential	9/3/2019	9/3/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019
Excavation Area(s)	1	Workers ^{b/}	Exposure c/	3/3/2013	3/3/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013	3/4/2013
[ISGS Site No.(s)]	1			3751-2 (17	789V2-104)							3751-6 (17	'89V2-105)						
Parameter																			
Laboratory soil pH (s.u.)	6.25 - 9.0			8.66	8.24	8.8	7.73	7.82	9.33	9.36	9.52	8.82	8.65	9.43	9.3	8.92	7.75	9.18	8.24
Total Metals, mg/kg							1										1		
Arsenic	11.3 / 13	61	13	1.9	2.1	5.5	17	1.8	4.9	3.1	7.2	1.4	4.1	3.4	4.9	1.5	1.9	2.3	1.6
Barium	1,500	14,000	5500	44	60	24	66	25	36	8.5	36	33	20	21	19	25	26	46	40
Beryllium	22	410	160	< 0.49	< 0.52	< 0.52	< 0.64	< 0.49	< 0.48	< 0.50	< 0.48	< 0.49	< 0.47	< 0.48	< 0.50	< 0.49	< 0.50	< 0.53	< 0.46
Cadmium	5.2	200	78	< 0.49	< 0.52	< 0.52	< 0.64	< 0.49	< 0.48	< 0.50	< 0.48	< 0.49	< 0.47	< 0.48	< 0.50	< 0.49	< 0.50	< 0.53	< 0.46
Calcium				49000	38000	170000	35000	81000	59000	110000	62000	61000	86000	81000	94000	67000	86000	89000	60000
Chromium	21	690	230	10	17	8.2	12	10	8.1	6.2	9.3	10	9.8	11	7.9	10	10	13	10
Cobalt	20	12,000	4700	3.8	6.5	3.9	5.9	3.7	4.1	3	5.3	4.1	4.7	4.7	3.6	3.8	4.7	5.9	4.2
Copper	2,900	8,200	2900	10	12	11	15	10	14	13	14	9.2	10	12	11	6.6	11	16	11
Iron	15,000 / 15,900 107	700	400	8300 6.9	14000 8.8	11000	8400 7.6	10000	12000	8600 6.8	18000	8700	11000 4.6	11000 4.8	10000	8300	11000	15000	9900
Lead Magnesium	325,000	730,000	325000	23000	21000	10 53000	16000	4.6 39000	6.8 26000	55000	42 34000	6.2 35000	41000	38000	7.5 50000	7.3 38000	4.9 40000	10 45000	6.1 28000
Manganese	630 / 636	4,100	1600	210	270	390	190	280	380	260	530	240	280	300	290	210	290	290	240
Mercury	0.89	0.1	10	< 0.023	< 0.019	< 0.019	< 0.028	< 0.019	< 0.019	< 0.019	< 0.018	< 0.020	< 0.021	< 0.020	< 0.017	< 0.017	< 0.017	< 0.020	0.02
Nickel	100	4,100	1600	10	17	8.5	17	9.4	9.2	7.6	13	11	11	12	8.3	10	12	15	11
Potassium				400	850	550	680	860	450	780	480	570	950	1200	450	670	980	840	770
Selenium	1.3	1,000	390	< 0.96	< 1.0	< 1.0	1.4	< 0.98	< 0.96	< 1.0	< 0.94	< 0.99	< 0.94	< 0.97	< 1.0	< 0.96	< 1.0	< 1.0	< 0.92
Silver	4.4	1,000	390	< 0.96	< 1.0	< 1.0	< 1.3	< 0.98	< 0.96	< 1.0	< 0.94	< 0.99	< 0.94	< 0.97	< 1.0	< 0.96	< 1.0	< 1.0	< 0.92
Sodium				2800	3000	1200	2900	430	1500	660	850	1300	930	1100	750	790	600	2000	1300
Vanadium	550	1,400	550	16	36	15	20	13	18	11	22	17	15	17	14	15	18	20	15
Zinc	5,100	61,000	23000	23	34	26	39	22	29	36	44	25	27	27	25	28	26	39	24
TCLP Metals, mg/L	(Class I Groundwater ^d	/																
Arsenic		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Barium		2		0.36	0.26	0.19	0.47	0.51	0.26	0.23	0.21	0.33	0.27	0.2	0.45	0.43	0.42	0.42	0.44
Beryllium		0.004		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cadmium		0.005		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chromium		0.1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cobalt		0.65		< 0.010 < 0.10	< 0.010 < 0.10	0.011 < 0.10	0.01 < 0.10	< 0.010 < 0.10	< 0.010 < 0.10	0.02 < 0.10	< 0.010	< 0.010 < 0.10	< 0.010 < 0.10	< 0.010	< 0.010 < 0.10	< 0.010 < 0.10	< 0.010	< 0.010 < 0.10	< 0.010
Copper Iron		5		< 0.10	0.56	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10 < 0.25	< 0.10	< 0.10	< 0.10 < 0.25	0.27	< 0.10	< 0.10 < 0.25	< 0.10	< 0.10 < 0.25
Lead		0.0075		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.25	< 0.0050	< 0.0050	< 0.0050
Manganese		0.15		2.9	1.5	2.2	1.8	2	0.85	1.7	1.4	2.5	2.3	2	0.046	2.8	2.4	2.2	2.4
Mercury		0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel		0.1		< 0.010	< 0.010	0.021	0.01	< 0.010	< 0.010	0.052	0.013	< 0.010	0.016	0.032	0.016	< 0.010	0.014	< 0.010	< 0.010
Selenium		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Silver		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Zinc		5		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.27	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
SPLP Metals, mg/L	(Class I Groundwater ^{d,}	′																
Arsenic		0.05	·	0.0057	0.0045	0.012	0.0062	< 0.0040	0.01	< 0.0040	0.0091	< 0.0040	0.0049	0.015	0.02	< 0.0040	< 0.0040	0.0058	< 0.0040
Barium		2		0.06	0.063	0.12	< 0.020	0.042	0.078	< 0.020	0.07	0.1	0.058	0.084	0.15	0.058	0.024	0.099	0.055
Beryllium		0.004		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cadmium		0.005		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium		0.1		0.019	0.025	0.026	0.004	< 0.0040	0.019	< 0.0040	0.022	0.025	0.012	0.031	0.051	0.018	< 0.0040	0.025	0.018
Cobalt		1		0.0063	0.0049	0.0084	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.007	0.0054	0.012	0.014	0.005	< 0.0040	0.011	0.0051
Copper		0.65		< 0.040	0.045	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	0.068	0.088	< 0.040	< 0.040	0.047	< 0.040
Iron		5		15	12	25	2.3	0.16	20	0.56	20	22	12	34	45	16	0.18	37	11
Lead Manganese		0.0075 0.15		0.011 0.22	0.01 0.15	0.079	< 0.0020 0.015	< 0.0020 0.063	0.0084 0.19	< 0.0020 0.0083	0.0083 0.21	0.015 0.23	0.0061 0.14	0.024	0.26	0.014 0.14	< 0.0020 0.03	0.022 0.35	0.0089 0.1
Mercury		0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel		0.002		0.0020	0.00020	0.022	< 0.00020	< 0.00020	0.013	< 0.00020	0.015	0.002	0.015	0.034	0.052	0.005	< 0.00020	0.0020	0.015
Selenium		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.013	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.029	< 0.0040
Silver		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Zinc		5		0.08	0.045	0.081	< 0.020	< 0.020	0.057	< 0.020	0.053	0.058	0.041	0.1	0.16	0.054	< 0.020	0.11	0.035
	I	<u> </u>		U.00	0.073	0.001	1 0.020	1 .0.020	0.007	1 0.020	0.000	0.000	0.071	V.1	U.10	0.007	1 0.020	0.11	0.000

^{--- -} Refers to not applicable or value not available

ND - Refers to constituent not detected above the reporting limit

 $^{^{}a/}$ Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

Inorganic Soil Reference Concentrations (xx.xx / xx.xx) Include the Most Stringent values from the MAC Table / and the MSA County Value From the MAC Table as Applicable

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{\}prime\prime}$ Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{}d/}\mbox{Soil}$ Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

Table 4.3.5 Comparison of Detected Constituents to Applicable Reference Concentrations - Inorganics IL-83 (Busse Road), Foster to Bryn Mawr Bensenville, DuPage County, Illinois

BDE Sequence No.: 19424 PTB: 178-008 / H-1, Work Order No.: 027A

			1					T						<u> </u>	1			T	
Boring ID		Soil Remediation	Soil Remediation	1789V2-105-05	5 1789V2-106-01	1789V2-106-02	1789V2-106-02	1789V2-106-03	1789V2-106-03	Dup-05 (1789V2- 106-03)	1789V2-106-04	1789V2-106-04	1789V2-106-05	1789V2-106-05	1789V2-106-06	1789V2-106-06	1789V2-106-07	Dup-06 (1789V 106-07)	/2- 1789V2-106-07
Sample Depth, ft	Soil Reference	Objective for Construction	Objective for Residential	(10-13.5)	(0-1.5)	(0-5)	(5-10)	(0-5)	(5-10)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(5-10)	(0-5)	(0-5)	(5-10)
Sample Date	Concentrations a/	Workers b/	Exposure c/	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019
Excavation Area(s)		Workers	Exposure								3751-7 (17	89V2-106)							
[ISGS Site No.(s)]											3/31 / (1/								
Parameter															1				
Laboratory soil pH (s.u.)	6.25 - 9.0			7.7	9.25	8.85	7.05	9.08	7.54	7.62	9.16	8.1	9.51	8.92	9.46	8.38	9.07	7.8	7.66
Total Metals, mg/kg	11.2 / 12		42	4.2		10		16			45	2.5			1 46	24			
Arsenic	11.3 / 13	61	13 5500	1.3	4.4 38	4.9 47	3.9 87	16	6.6	9.3 92	4.5 24	3.5 85	8.2 35	4.4 35	1.6	3.1 13	6.1 89	3.3 26	6.9 180
Barium	1,500 22	14,000 410	160	< 0.48	< 0.47	< 0.48	< 0.75	31 < 0.48	81 < 0.56	< 0.59	< 0.50	< 0.68	< 0.48	< 0.50	16 < 0.45	< 0.49	< 0.49	< 0.46	< 0.85
Beryllium Cadmium	5.2	200	78	< 0.48	< 0.47	< 0.48	< 0.75	< 0.48	< 0.56	< 0.59	< 0.50	< 0.68	< 0.48	< 0.50	< 0.45	< 0.49	< 0.49	< 0.46	< 0.85
Calcium	J.Z 			74000	37000	77000	28000	82000	4100	6600	89000	9100	100000	94000	290000	84000	49000	130000	180000
Chromium	21	690	230	8.1	9.8	11	18	13	14	14	8.9	9.3	10	14	9.8	8.5	16	22	11
Cobalt	20	12,000	4700	3.5	5	4.9	6.8	5.1	7.2	6.6	4.2	3.3	6.3	4.5	0.95	3.8	8.7	3.3	7.6
Copper	2,900	8,200	2900	7.7	13	16	20	20	11	13	12	14	17	14	8.4	8.7	15	15	15
Iron	15,000 / 15,900			7500	11000	12000	13000	20000	13000	13000	11000	8400	21000	12000	6900	9400	17000	16000	15000
Lead	107	700	400	4.4	7.9	230	11	130	13	17	7.6	4.9	31	8.4	2.4	4.2	48	9.2	8.4
Magnesium	325,000	730,000	325000	36000	18000	39000	14000	43000	2100	2900	48000	1700	55000	52000	170000	42000	25000	59000	15000
Manganese	630 / 636	4,100	1600	240	330	310	200	370	290	120	360	110	480	380	280	260	640	340	760
Mercury	0.89	0.1	10	< 0.017	< 0.021	< 0.022	0.037	< 0.021	0.027	< 0.023	< 0.018	0.03	< 0.019	0.11	< 0.021	< 0.019	< 0.018	< 0.016	< 0.036
Nickel	100	4,100	1600	8.6	9.9	13	21	13	13	14	9.4	11	17	10	4.4	9.4	17	8.6	19
Potassium				830	490	550	960	550	640	740	480	400	590	520	410	600	920	400	920
Selenium	1.3	1,000	390	< 0.95	< 0.93	< 0.94	1.7	< 0.94	< 1.1	< 1.2	< 1.0	< 1.4	< 0.96	< 0.99	< 0.90	< 1.0	< 0.96	< 0.92	< 1.7
Silver	4.4	1,000	390	< 0.95	< 0.93	< 0.94	< 1.5	< 0.94	< 1.1	< 1.2	< 1.0	< 1.4	< 0.96	< 0.99	< 0.90	< 1.0	< 0.96	< 0.92	< 1.7
Sodium				370	1800	1700	1500	930	1500	2200	1100	6600	940	1300	280	320	2600	650	3800
Vanadium	550	1,400	550	12	22	20	29	19	31	31	17	14	21	19	5.3	18	30	15	17
Zinc	5,100	61,000	23000	18	25	53	67	53	45	52	27	25	33	33	21	27	47	52	41
TCLP Metals, mg/L Arsenic		Class I Groundwater 0, 0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.015	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Barium		2		0.33	0.23	0.57	0.65	0.45	0.52	0.52	0.25	0.85	0.23	0.39	0.26	0.25	0.91	0.010	0.71
Beryllium		0.004		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cadmium		0.005		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chromium		0.1		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cobalt		1		< 0.010	0.016	0.011	< 0.010	0.027	0.048	0.033	< 0.010	< 0.010	< 0.010	< 0.010	0.011	0.034	0.028	< 0.010	< 0.010
Copper		0.65		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Iron		5		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0.51	0.43	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Lead		0.0075		< 0.0050	< 0.0050	0.054	< 0.0050	0.036	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0082	< 0.0050	< 0.0050
Manganese		0.15		2.6	4.3	3.7	1.4	5.5	9.7	3.9	0.61	0.73	0.92	0.044	2.4	3.2	6.8	1.3	1.3
Mercury		0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel		0.1		0.014	< 0.010	0.013	< 0.010	0.027	0.025	0.016	< 0.010	< 0.010	0.01	< 0.010	0.018	0.11	0.022	0.012	< 0.010
Selenium		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Silver		0.05		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Zinc		5	/	< 0.050	< 0.050	0.1	< 0.050	< 0.050	0.15	0.14	< 0.050	< 0.050	< 0.050	< 0.050	0.099	0.2	< 0.050	< 0.050	< 0.050
SPLP Metals, mg/L		Class I Groundwater 0	•	< 0.0040	0.016	0.0004	< 0.0040	0.039	0.0003	0.012	< 0.0040	< 0.0040	0.0004	0.0000	< 0.0040	< 0.0040	0.013	0.022	T < 0.0040
Arsenic		0.05		< 0.0040 < 0.020	0.016	0.0061 < 0.020	< 0.0040 < 0.020	0.028 0.19	0.0093	0.013 0.039	< 0.0040 < 0.020	< 0.0040	0.0064	0.0086	< 0.0040	< 0.0040 < 0.020	0.012	0.022 0.16	< 0.0040 < 0.020
Barium		0.004		< 0.020	0.11 < 0.0020	< 0.020	< 0.020	< 0.0020	< 0.0020	< 0.0020		< 0.020	< 0.0020	0.086	< 0.020 < 0.0020	< 0.020	 		+
Beryllium Cadmium		0.005		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020 < 0.0020	< 0.0020 < 0.0020	< 0.0020	< 0.0020 < 0.0020	< 0.0020	< 0.0020	< 0.0020 < 0.0020	< 0.0020 < 0.0020	< 0.0020 < 0.0020
Chromium		0.003		< 0.0020	0.039	0.0020	< 0.0020	0.06	0.013	0.013	< 0.0020	0.0020	0.0020	0.028	0.0020	< 0.0020	0.025	0.0020	< 0.0020
Cobalt		1		< 0.0040	0.011	< 0.0040	< 0.0040	0.025	0.0043	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.0057	< 0.0042	< 0.0040	0.0077	0.014	< 0.0040
Copper		0.65		< 0.040	< 0.040	< 0.040	< 0.040	0.023	< 0.040	0.051	< 0.040	0.041	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	0.049	< 0.040
Iron		5		0.28	38	6	0.81	62	9.9	9	0.35	2.3	13	17	3.2	1.3	20	49	0.47
Lead		0.0075		< 0.0020	0.028	0.085	< 0.0020	0.27	0.0098	0.0099	< 0.0020	0.0022	0.021	0.017	0.01	< 0.0020	0.076	0.03	< 0.0020
Manganese		0.15		0.021	0.6	0.059	0.0045	0.96	0.075	0.066	0.032	0.022	0.17	0.18	0.049	0.025	0.27	1	0.01
Mercury		0.002		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Nickel		0.1		< 0.0040	0.033	0.0063	< 0.0040	0.069	0.0097	0.0093	< 0.0040	0.0079	0.0092	0.015	< 0.0040	< 0.0040	0.02	0.035	< 0.0040
Selenium		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Silver		0.05		< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
Zinc		5		< 0.020	0.09	0.032	< 0.020	0.22	0.035	0.056	< 0.020	< 0.020	0.051	0.076	0.042	0.025	0.077	0.14	< 0.020

^{--- -} Refers to not applicable or value not available

Inorganic Soil Reference Concentrations (xx.xx / xx.xx) Include the Most Stringent values from the MAC Table / and the MSA County Value From the MAC Table as Applicable

ND - Refers to constituent not detected above the reporting limit

 $^{^{}a/}$ Soil reference concentrations from MAC table. Background values for MSA counties are included as applicable.

^{b/} Soil Remediation Objective for Construction Workers, most stringent of the Ingestion or Inhalation exposure route.

^{c/} Soil Remediation Objective for Residential expsoure, most stringent of the Ingestion or Inhalation exposure route.

 $^{^{}d/}\mbox{Soil}$ Remediation Objective for the Groundwater Component of the Groundwater Ingestion Route, Class I Groundwater

Table 4-4

Estimated Construction Management Costs Illinois Department of Transportation, District One Illinois Route 47 from Union/Foster Road to Hawthorne Way Huntley and Woodstock, McHenry County, Illinois

BDE Sequence No.: 14677B PTB: 178-008 / H&H-1, Work Order No.: 025A

Estimated Construction Management Costs	Est. Vol. of Excavation (CY)	Estimated Non- Special Waste Volume In Existing IDOT ROW (Construction) (CY)*	Estimated Non- Special Waste Volume Outside of Existing IDOT ROW (Construction) (CY)*	Estimated Non- Special Waste Disposal Volume In Areas of Land Acquisition (Remediation) (CY)*	Disposal, Plans & Reports, and Disposal Analysis Costs for Construction	Disposal, Plans & Reports, and Disposal Analysis Costs for Remediation	Unit	Unit Cost (\$)	Total Construction Mgmt Cost (\$)	Total Land Acquisition Cost (\$)
3751-2 (1789V2-98)	31,155									
Non-Special Waste Disposal 1,4		1704.0	506.0	914	165,750	68,537	CY	75	\$ 353,930.00	\$ 68,536.95
Special Waste Plans & Reports ²					187,680	0				
Soil Disposal Analysis ³					500	0	Lump Sum			
3751-1 (1789V2-99)	546									
Non-Special Waste Disposal 1,4		478.0	30.0	7	38,100	555	CY	75	\$ 42,626.00	\$ 555.00
Special Waste Plans & Reports ²			2272	-	4,026	0			7 12/02000	7 222.22
Soil Disposal Analysis ³					500	0	Lump Sum			
3751-3 (1789V2-101)	58					_	<u> </u>		A	
Non-Special Waste Disposal 1,4		0.0	0.0	0.0	0	0	CY	75	\$ 1,098.00	\$ -
Special Waste Plans & Reports ²					1,098	0				
Soil Disposal Analysis ³					0	0	Lump Sum			
3751-4 (1789V2-102)	130									
Non-Special Waste Disposal ^{1, 4}		0.0	0.0	0.0	0	0	CY	75	\$ 1,530.00	\$ -
Special Waste Plans & Reports ²					1,530	0				
Soil Disposal Analysis ³					0	0	Lump Sum			
3751-5 (1789V2-103)	407									
Non-Special Waste Disposal 1,4		0.0	0.0	0.0	0	0	CY	75	\$ 3,192.00	\$ -
Special Waste Plans & Reports ²		0.0	0.0	0.0	3,192	0	C1	, ,	3,132.00	7
Soil Disposal Analysis ³					0	0	Lump Sum			
,							'			
3751-2 (1789V2-104)	5,610									
Non-Special Waste Disposal ^{1, 4}		0.0	0.0	0.0	0	0	CY	75	\$ 34,410.00	\$ -
Special Waste Plans & Reports ²					34,410	0				
Soil Disposal Analysis ³					0	0	Lump Sum			
3751-6 (1789V2-105)	20,780									
Non-Special Waste Disposal 1,4		5960.0	8940.0	730	1,117,500	54,751	CY	75	\$ 1,243,430.00	\$ 54,750.75
Special Waste Plans & Reports ²					125,430	0				
Soil Disposal Analysis ³					500	0	Lump Sum			
3751-7 (1789V2-106)	10,989	56010	227.2	20.	502.122	22.2==	61		A	A 22.2== :=
Non-Special Waste Disposal 1,4		5634.0	2274.0	294	593,100	22,075	CY	75	\$ 660,284.00	\$ 22,075.13
Special Waste Plans & Reports ²					66,684	0	1			
Soil Disposal Analysis ³					500	0	Lump Sum			
Total Estimated Volume of Excavation	69,675									
Total Non-Special Waste Disposal Volumes 1, 4		13,776	11,750	1,946			cu yd	75	\$ 1,914,450.00	\$ 145,917.83
Special Waste Plans & Reports ²									\$ 424,050.00	
Soil Disposal Analysis ³		1					Lump sum		\$ 2,000.00	\$ -
Total Estimated Cost for Non-Special Waste Di	sposal								\$ 2,340,500.00	\$ 145,917.83
Total Estimated Cost / variable to the married A	00)								62 240 500	Ć14F 000
Total Estimated Cost (rounded to the nearest 1	υUJ								\$2,340,500	\$145,900

Assumptions:

The total non-special waste disposal volumes in areas of construction were estimated for areas of planned construction with the ROW and for areas of planned construction within areas of land acquisition based on PSI soil boring results/locations; the design details, locations (stationing), and accompanying quantity calculations (when provided) in the design plans; and the design details, locations (stationing), and accompanying quantity calculations (when provided) in the PESA Response Form.

The non-special waste disposal/remediation volumes in areas of land acquisition were calculated based on the area to be acquired for permanent/temporary easements or ROW acquisition where no construction was planned.

TCLP Metals - EPA Methods 1311 for extraction, 6010B, and 7470A.

TCLP (organics) - EPA Methods 1311 for extraction; 8260B VOCs; 8270C SVOCs; 8081A pesticides; 8151A herbicides

PCBs - EPA Method 8082

Reactive sulfide and cyanide - EPA Method 7.3.4.2/9034 and 7.3.3.2/9014, respectively.

pH - EPA Method 9040B/9045C Flashpoint - EPA Method1010 Paint Filter - EPA Method 9095A

⁴This volume of waste should be managed to a Non-Special Waste Landfill.

^{*} Refers to the approximate volume of soil planned for landfill disposal as non-special waste. The volume of soil planned for CCDD/CSFO disposal is not presented in this table.

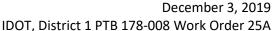
¹ Excavation, transportation, and disposal cost are based on 50 mile distance to permitted facility. Truck capacity is 13 cubic yards.

² Special waste plans assume the following documents and costs are required: - 1) Site health and safety plan at \$1,300; 2) site contamination operation plan at \$1,300; 3) Erosion control plan at \$1,300; 4) one final report at \$2,100 for a report total of \$6,000. For cost estimating purposes, this cost is divided equally across all Sites with soil excavation planned (\$6000/8 sites = \$750 per Site). Labor, expenses, and equipment for air monitoring /field oversight is estimated at \$1,200 per day and is calculated separately for each site using an excavation and loading rate assumption of 200 CY per day as follows, \$1,200 per day x (31,155 CY (estimated volume of excavation) /200 (CY per day)) = \$186,930.

³ Soil sampling and analysis is property specific and is based on the identified contaminants of concern. It is assumed that one representative sample will be collected for disposal parameters. The estimated analytical costs (\$500 per sample) include the laboratory analytical fee for the parameters listed below. For cost estimating purposes, this cost is included for each Site with non-special waste disposal. The laboratory analytical methods for soil disposal analysis are as follows:

IDO1, District 1 PTB 178-008 Work Order 25A

PSI Report Page | 52


5.0 CONCLUSIONS AND RECOMMENDATIONS

This section contains conclusions and recommendations based on the findings of the PSI of eight (8) properties that were identified where excess soil will be generated as a result of the proposed modifications to IL-47 from Union/Foster Road to Hawthorne Way. The proposed improvements include roadway realignment, channel excavation, a compensatory storage area, and wildlife crossing culverts. Additional discussion regarding the prevention of accelerated contaminant migration is also presented.

5.1 <u>AGRICULTURAL LAND (ISGS SITE NO. 3751-2 (1789V2-98)</u>

5.1.1 Conclusions

- A total of fifteen (15) soil borings were advanced at this location. The fifteen (15) soil borings were advanced using a GeoProbe[©] to a maximum total depth of approximately 10 ft bgs based on the design plans provided in the PESA Response Form.
- Soil in the vicinity of borings 1789V2-98-01, 1789V2-98-04, 1789V2-98-05, and 1789V2-98-06, as depicted with **yellow** hatching on Figure 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).
- Soil in the vicinity of borings 1789V2-98-02, 1789V2-98-08, 1789V2-98-10, 1789V2-98-12, and 1789V2-98-14, as depicted with **blue** hatching on Figure 4-1.2, exceeded soil reference concentrations, is greater than the most stringent MAC value, and achieved the MAC for MSA counties. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County (a(2)) using the attached LPC-663 form in Appendix D.
- Soil in the vicinity of borings 1789V2-98-03, 1789V2-98-11, and 1789V2-98-13, achieves the MACs, is considered
 unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached
 LPC-663 form in Appendix D.
- Soil in the vicinity of borings 1789V2-98-07 and 1789V2-98-15 as depicted with purple hatching on Figure 4-1.2, has a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil borings may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).
- Soil in the vicinity of boring 1789V2-98-09 as depicted with **orange** hatching on Figure 4-1.2 is considered impacted, exceeding soil reference concentrations. Soil in the vicinity of this soil boring may be managed off site as non-special waste (a(5)).
- No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.
- Based on the information provided by the IDOT PESA Response Form, a total of approximately 31,155 CY of soil will be excavated during construction activities from Site 3751-2 (1789V2-98).
- The total estimated volume of soil requiring management as non-special waste adjacent to Site 3751-2 (1789V2-98) is approximately 1,704 CY within the IDOT ROW and approximately 506 CY outside of the IDOT ROW, for a total of 2,210 CY. Special Waste Plans and Reports and field monitoring/oversight will be required, and additional

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

PSI Report Page | 53

analytical testing will be necessary to characterize the material for landfill disposal as non-special waste. The total construction cost estimate for the management of soils is approximately \$353,930, as detailed in Table 4-4.

5.1.2 Recommendations

- Soil in the vicinity of borings 1789V2-98-01, 1789V2-98-04, 1789V2-98-05, and 1789V2-98-06, as depicted with **yellow** hatching on Figure 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).
- Soil in the vicinity of borings 1789V2-98-02, 1789V2-98-08, 1789V2-98-10, 1789V2-98-12, and 1789V2-98-14, as depicted with **blue** hatching on Figure 4-1.2, exceeded soil reference concentrations, is greater than the most stringent MAC value, and achieved the MAC for MSA counties. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County (a(2)) using the attached LPC-663 form in Appendix D.
- Soil in the vicinity of borings 1789V2-98-03, 1789V2-98-11, and 1789V2-98-13, achieves the MACs, is considered
 unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached
 LPC-663 form in Appendix D.
- Soil in the vicinity of borings 1789V2-98-07 and 1789V2-98-15 as depicted with purple hatching on Figure 4-1.2, has a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil borings may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).
- Soil in the vicinity of boring 1789V2-98-09 as depicted with **orange** hatching on Figure 4-1.2 is considered impacted, exceeding soil reference concentrations. Soil in the vicinity of this soil boring may be managed off site as non-special waste (a(5)).
- No further investigation activities are recommended for this property for the purpose of this construction project. However, in the event additional construction activities are planned for this property outside the existing construction limits, additional investigation may be warranted.

5.2 RESIDENCES (ISGS SITE NO. 3751-1 (1789V2-99))

5.2.1 Conclusions

- A total of four (4) soil borings were advanced using a GeoProbe[©] at this location to evaluate to soil conditions at Site 3751-1 (1789V2-99) (1789V2-99-01, 1789V2-99-02, 1789V2-99-03, and 1789V2-99-04). The four (4) soil borings were advanced to a maximum total depth of 2 ft bgs based on the design plans provided in the PESA Response Form.
- Soil in the vicinity of boring 1789V2-99-01, as depicted with **orange** hatching on Figure 4-1.2 is considered impacted, exceeding soil reference concentrations. Soil in the vicinity of this soil boring may be managed off site as non-special waste (a(5)).
- Soil in the vicinity of borings 1789V2-99-02, 1789V2-99-04, and 1789V2-98-04 (located on the property adjacent to the subject property), as depicted with **yellow** hatching on Figure 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL
PSI Report

Page | 54

- Soil in the vicinity of boring 1789V2-99-03, as depicted with **green** hatching on Figure 4-1.2, exceeded a reference concentration, is greater than the most stringent MAC value, and achieved the MAC for MSA counties excluding Chicago and achieved the MAC for Chicago corporate limits. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County including Chicago (a(3)) using the attached LPC-663 form in Appendix D.
- No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.
- Based on the information provided by the IDOT PESA Response Form, a total of approximately 546 CY of soil will be excavated during construction activities adjacent to Site 3751-1 (1789V2-99).
- The total estimated volume of soil requiring management as non-special waste adjacent to Site 3751-1 (1789V2-99) is approximately 478 CY within the IDOT ROW and approximately 30 CY outside of the IDOT ROW, for a total of 508 CY. Special Waste Plans and Reports and field monitoring/oversight will be required, and additional analytical testing will be necessary to characterize the material for landfill disposal as non-special waste. The total construction cost estimate for the management of soils is approximately \$42,626, as detailed in Table 4-4.

5.2.2 <u>Recommendations</u>

- Based on the concentration of arsenic above the reference concentrations within the maximum excavation depth, the soil in the vicinity of boring 1789V2-99-01, as depicted with orange hatching, may be managed off site as non-special waste, providing that a "non-special waste certification" is submitted by the generator according to the conditions in 415 ILCS 5/22.48 and 415 ILCS 4/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within these properties during construction activities
- Soil in the vicinity of borings 1789V2-99-02, 1789V2-99-04, and 1789V2-98-04 (located on the property adjacent to the subject property), as depicted with **yellow** hatching on Figure 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).
- Soil in the vicinity of boring 1789V2-99-03, as depicted with green hatching on Figure 4-1.2, exceeded a reference concentration, is greater than the most stringent MAC value, and achieved the MAC for MSA counties excluding Chicago and achieved the MAC for Chicago corporate limits. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County including Chicago (a(3)) using the attached LPC-663 form in Appendix D.
- No further investigation activities are recommended for this property for the purpose of this construction project.
 However, in the event additional construction activities are planned for this property outside the existing construction limits, additional investigation may be warranted.

5.3 VACANT LAND (ISGS SITE NO. 3751-3 (1789V2-101))

5.3.1 <u>Conclusions</u>

One (1) soil boring was advanced at this location to evaluate to soil conditions at Site 3751-3 (1789V2-101) (1789V2-101-01). The one (1) soil boring was advanced to a maximum total depth of 1.5 ft bgs based on the design plans provided in the PESA Response Form.

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL
PSI Report

- Page | 55
- Soil in the vicinity of boring 1789V2-101-01 achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.
- No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.
- Based on the information provided by the IDOT PESA Response Form, a total of approximately 58 CY of soil will be excavated during construction activities adjacent to ISGS Site 1789V2-101.
- No soil from this area will require management as non-special waste, as detailed in Table 4-4. Field monitoring and oversight is required for all soil excavation work within the project construction limits, therefore, the total construction cost estimate for the management of soils is approximately \$1,098, as detailed in Table 4-4.

5.3.2 Recommendations

- Soil in the vicinity of boring 1789V2-101-01 achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.
- No further investigation activities are recommended for this property for the purpose of this construction project.
 However, in the event additional construction activities are planned for this property outside the existing construction limits, additional investigation may be warranted.

5.4 KISHWAUKEE RIVER (ISGS SITE NO. 3751-4 (1789V2-102))

5.4.1 Conclusions

- One (1) soil boring was advanced at this location with a hand auger to evaluate to soil conditions at Site 3751-4 (1789V2-102) (1789V2-102-01). The one (1) soil boring was advanced to a maximum total depth of 2.5 ft bgs based on the design plans provided in the PESA Response Form.
- Soil in the vicinity of boring 1789V2-102-01, as depicted with green hatching on Figure 4-1.2, exceeded a reference concentration, is greater than the most stringent MAC value, and achieved the MAC for MSA counties excluding Chicago and achieved the MAC for Chicago corporate limits. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County including Chicago (a(3)) using the attached LPC-663 form in Appendix D.
- No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.
- Based on the information provided by the IDOT PESA Response Form, a total of approximately 130 CY of soil will be excavated during construction activities adjacent to Site 3751-4 (1789V2-102).
- No soil from this area will require management as non-special waste, as detailed in Table 4-4. Field monitoring
 and oversight is required for all soil excavation work with the project construction limits, therefore, the total
 construction cost estimate for the management of soils is approximately \$1,530, as detailed in Table 4-4.

5.4.2 Recommendations

Soil in the vicinity of boring 1789V2-102-01, as depicted with green hatching on Figure 4-1.2, exceeded a reference
concentration, is greater than the most stringent MAC value, and achieved the MAC for MSA counties excluding
Chicago and achieved the MAC for Chicago corporate limits. This material may be managed on site or off site to a

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

PSI Report Page | 56

CCDD/USFO facility within an MSA County including Chicago (a(3)) using the attached LPC-663 form in Appendix

• No further investigation activities are recommended for this property for the purpose of this construction project. However, in the event additional construction activities are planned for this property outside the existing construction limits, additional investigation may be warranted.

5.5 <u>BRIDGE (ISGS SITE NO. 3751-5 (1789V2-103))</u>

5.5.1 Conclusions

- One (1) soil boring was advanced at this location using a hand auger to evaluate to soil conditions at Site 3751-5 (1789V2-103) (1789V2-103-01). The one (1) soil boring was advanced to a maximum total depth of 3.5 ft bgs based on the design plans provided in the PESA Response Form.
- Soil in the vicinity of boring 1789V2-103-01 achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.
- No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.
- Based on the information provided by the IDOT PESA Response Form, a total of approximately 407 CY of soil will be excavated during construction activities adjacent to ISGS Site 3751-5 (1789V2-103).
- No soil from this area will require management as non-special waste, as detailed in Table 4-4. Field monitoring and oversight is required for all soil excavation work with the project construction limits, therefore, the total construction cost estimate for the management of soils is approximately \$3,192, as detailed in Table 4-4.

5.5.2 Recommendations

- Soil in the vicinity of boring 1789V2-103-01 achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.
- No further investigation activities are recommended for this property for the purpose of this construction project.
 However, in the event additional construction activities are planned for this property outside the existing construction limits, additional investigation may be warranted.

5.6 AGRICULTURAL LAND (ISGS SITE NO. 3751-2 (1789V2-104))

5.6.1 Conclusions

- A total of six (6) soil borings were advanced at this location using a GeoProbe[®] to evaluate to soil conditions at Site 3751-2 (1789V2-104) (1789V2-104-01, 1789V2-104-02, 1789V2-104-03, 1789V2-104-04, 1789V2-104-05, and 1789V2-104-06). The six (6) soil borings were advanced to a maximum total depth of 10 ft bgs based on the design plans provided in the PESA Response Form.
- Soil in the vicinity of borings 1789V2-104-01 and 1789V2-104-04, achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL PSI Report

Page | 57

- Soil in the vicinity of borings 1789V2-104-02, 1789V2-104-05, and 1789V2-104-06, as depicted with **blue** hatching on Figure 4-1.1 and 4-1.2, exceeded soil reference concentrations, is greater than the most stringent MAC value, and achieved the MAC for MSA counties. This material may be managed on site or off site to a CCDD/USFO facility within an MSA County (a(2)) using the attached LPC-663 form in Appendix D.
- Soil in the vicinity of boring 1789V2-104-03, as depicted with purple hatching on Figure 4-1.1, has a soil pH outside
 the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil borings may be managed on-site
 as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken
 to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).
- No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.
- Based on the information provided by the IDOT PESA Response Form, a total of approximately 5,610 CY of soil will be excavated during construction activities adjacent to ISGS Site 3751-2 (1789V2-104).
- No soil from this area will require management as non-special waste, as detailed in Table 4-4. Field monitoring and oversight is required for all soil excavation work with the project construction limits, therefore, the total construction cost estimate for the management of soils is approximately \$34,410, as detailed in Table 4-4.

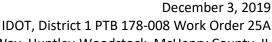
5.6.2 <u>Recommendations</u>

- Soil in the vicinity of borings 1789V2-104-01 and 1789V2-104-04, achieves the MACs, is considered unrestricted, and may be managed on site or off site, including disposal at a CCDD/USFO facility using the attached LPC-663 form in Appendix D.
- Soil in the vicinity of borings 1789V2-104-02, 1789V2-104-05, and 1789V2-104-06, as depicted with blue hatching
 on Figure 4-1.1 and 4-1.2, exceeded soil reference concentrations, is greater than the most stringent MAC value,
 and achieved the MAC for MSA counties. This material may be managed on site or off site to a CCDD/USFO facility
 within an MSA County (a(2)) using the attached LPC-663 form in Appendix D.
- Soil in the vicinity of boring 1789V2-104-03, as depicted with **purple** hatching on Figure 4-1.1, has a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil borings may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1))
- No further investigation activities are recommended for this property for the purpose of this construction project.
 However, in the event additional construction activities are planned for this property outside the existing construction limits, additional investigation may be warranted.

5.7 OZINGA CONCRETE (ISGS SITE NO. 3751-6 (1789V2-105))

5.7.1 Conclusions

• A total of five (5) soil borings were advanced at this location using a GeoProbe[©] to evaluate to soil conditions at Site 3751-6 (1789V2-105) (1789V2-105-01, 1789V2-105-02, 1789V2-105-03, 1789V2-105-04, and 1789V2-105-05). The five (5) soil borings were advanced to a maximum total depth of 13.5 ft bgs based on the design plans provided in the PESA Response Form.


IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL PSI Report

Page | 58

- Soil in the vicinity of boring 1789V2-105-01, as depicted with **orange** hatching on Figure 4-1.1 is considered impacted, exceeding soil reference concentrations. Soil in the vicinity of this soil boring may be managed off site as non-special waste (a(5)).
- Soil in the vicinity of borings 1789V2-105-02, 1789V2-105-03, and 1789V2-105-05, as depicted with **yellow** hatching on Figure 4-1.1 and 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).
- Soil in the vicinity of boring 1789V2-105-04, as depicted with **purple** hatching on Figure 4-1.1, has a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil boring may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).
- No constituents were detected at the subject property at levels exceeding the TACO Tier 1 remediation objectives for the Construction Worker exposure route.
- Based on the information provided by the IDOT PESA Response Form, a total of approximately 20,780 CY of soil will be excavated during construction activities adjacent to ISGS Site 3751-6 (1789V2-105).
- The total estimated volume of soil requiring management as non-special waste adjacent to Site 3751-6 (1789V2-105) is approximately 5,960 CY within the IDOT ROW and approximately 8,940 CY outside of the IDOT ROW, for a total of 14,900 CY. Special Waste Plans and Reports and field monitoring/oversight will be required, and additional analytical testing will be necessary to characterize the material for landfill disposal as non-special waste. The total construction cost estimate for the management of soils is approximately \$1,243,430, as detailed in Table 4-4.

5.7.2 Recommendations

- Based on the concentration of arsenic above the reference concentrations within the maximum excavation depth, the soil in the vicinity of boring 1789V2-105-01, as depicted with orange hatching, may be managed off site as non-special waste, providing that a "non-special waste certification" is submitted by the generator according to the conditions in 415 ILCS 5/22.48 and 415 ILCS 4/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within these properties during construction activities.
- Soil in the vicinity of borings 1789V2-105-02, 1789V2-105-03, and 1789V2-105-05, as depicted with **yellow** hatching on Figure 4-1.1 and 4-1.2, exceeded a reference concentration. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).
- Soil in the vicinity of boring 1789V2-105-04, as depicted with **purple** hatching on Figure 4-1.1, has a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of this soil boring may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).
- No further investigation activities are recommended for this property for the purpose of this construction project.
 However, in the event additional construction activities are planned for this property outside the existing construction limits, additional investigation may be warranted.

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL PSI Report

Page | 59

5.8 <u>RESIDENCE (ISGS SITE NO. 3751-7 (1789V2-106))</u>

5.8.1 Conclusions

- A total of seven (7) soil borings were advanced at this location using a GeoProbe[©] to evaluate to soil conditions at Site 3751-7 (1789V2-106) (1789V2-106-01, 1789V2-106-02, 1789V2-106-03, 1789V2-106-04, 1789V2-106-05, 1789V2-106-06, and 1789V2-106-07). The seven (7) soil borings were advanced to a maximum total depth of 10 ft bgs based on the design plans provided in the PESA Response Form.
- Soil in the vicinity of borings 1789V2-106-01, 1789V2-106-02, 1789V2-106-05, and 1789V2-106-07, as depicted with **yellow** hatching on Figure 4-1.1, exceeded soil reference concentrations. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).
- Soil in the vicinity of borings 1789V2-106-03 and 1789V2-105-01 (on the property adjacent to the subject property), as depicted with **orange** hatching on Figure 4-1.1 is considered impacted, exceeding soil reference concentrations. Soil in the vicinity of these soil borings may be managed off site as non-special waste (a(5)).
- Soil in the vicinity of borings 1789V2-106-04 and 1789V2-106-06, as depicted with purple hatching on Figure 41.1, have a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of these soil
 borings may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This
 excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range
 (b(1)).
- Tables 4-2 and 4-3 contain a comparison of detected constituents to the most conservative of the TACO Tier 1
 Construction Worker ingestion or inhalation values. Total mercury was detected at a concentration slightly
 exceeding the construction worker objective in sample 1789V2-106-05; however, the construction worker caution
 for mercury is based on elemental mercury, and mercury detected in this location is likely attributed to inorganic
 mercury salt compounds (association with coal, specifically).
- Based on the information provided by the IDOT PESA Response Form, a total of approximately 10,989 CY of soil
 will be excavated during construction activities adjacent to ISGS Site 3751-7 (1789V2-106).
- The total estimated volume of soil requiring management as non-special waste adjacent to Site 3751-7 (1789V2-106) is approximately 5,634 CY within the IDOT ROW and approximately 2,274 CY outside of the IDOT ROW, for a total of 7,908 CY. Special Waste Plans and Reports and field monitoring/oversight will be required, and additional analytical testing will be necessary to characterize the material for landfill disposal as non-special waste. The total construction cost estimate for the management of soils is approximately \$660,284, as detailed in Table 4-4.

5.8.2 Recommendations

- Soil in the vicinity of borings 1789V2-106-01, 1789V2-106-02, 1789V2-106-05, and 1789V2-106-07, as depicted with **yellow** hatching on Figure 4-1.1, exceeded soil reference concentrations. Soil in the vicinity of these soil borings may be managed on site as fill material or managed off site as non-special waste (a(1)).
- Based on the concentration of arsenic above the reference concentrations within the maximum excavation depth, the soil in the vicinity of borings 1789V2-106-03 and 1789V2-105-01 (on the property adjacent to the subject property), as depicted with orange hatching, may be managed off site as non-special waste, providing that a "non-special waste certification" is submitted by the generator according to the conditions in 415 ILCS 5/22.48 and 415 ILCS 4/3.475. The property history and available analytical data indicate a "non-special waste certification" can be applied to soil anticipated to be excavated adjacent to and within these properties during construction activities.

December 3, 2019

IDOT, District 1 PTB 178-008 Work Order 25A

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

PSI Report

Page | 60

- Soil in the vicinity of borings 1789V2-106-04 and 1789V2-106-06, as depicted with **purple** hatching on Figure 4-1.1, have a soil pH outside the allowable range for CCDD disposal (6.25 to 9.0). Soil in the vicinity of these soil borings may be managed on-site as fill material or managed and disposed off-site as "uncontaminated soil". This excavated soil cannot be taken to a CCDD/USFO facility due to soil pH readings outside of the allowable range (b(1)).
- No further investigation activities are recommended for this property for the purpose of this construction project.
 However, in the event additional construction activities are planned for this property outside the existing construction limits, additional investigation may be warranted.

Table 5-1

Summary of Non-Special Waste Volume Calculations Illinois Department of Transportation, District One Illinois Route 47 from Union/Foster Road to Hawthorne Way Huntley and Woodstock, McHenry County, Illinois

BDE Sequence No.: 14677B

PTB: 178-008 / H&H-1, Work Order No.: 025A

		Non-Special Waste Volume, (CY) 1							
	Est. Vol. of								
	Excavation	In Existing IDOT ROW	ROW	Areas of Land Acquisition					
Site No.	(CY)	(Construction)	(Construction)	(Remediation estimate)					
3751-2 (1789V2-98)	31,155	1,704	506	914					
3751-1 (1789V2-99)	546	478	30	7					
3751-3 (1789V2-101)	58	0	0	0					
3751-4 (1789V2-102)	130	0	0	0					
3751-5 (1789V2-103)	407	0	0	0					
3751-2 (1789V2-104)	5,610	0	0	0					
3751-6 (1789V2-105)	20,780	5,960	8,940	730					
3751-7 (1789V2-106)	10,989	5,634	2,274	294					
Total:	69,675	13,776	11,750	1,946					
Total Non-Special Waste Volume:		25,	1,946						

¹ Refers to the approximate volume of soil planned for landfill disposal as non-special waste. The volume of soil planned for CCDD/CSFO disposal is not presented in this table.

The total non-special waste disposal volumes in areas of construction were estimated for areas of planned construction with the ROW and for areas of planned construction within areas of land acquisition based on PSI soil boring results/locations; the design details, locations (stationing), and accompanying quantity calculations (when provided) in the design plans; and the design details, locations (stationing), and accompanying quantity calculations (when provided) in the PESA Response Form.

The non-special waste disposal/remediation volumes in areas of land acquisition were calculated based on the area to be acquired for permanent/temporary easements or ROW acquisition where no construction was planned.

PSI Report Page | 62

6.0 PREVENTION OF ACCELERATED CONTAMINANT MIGRATION

Potentially impacted soils may exist outside the limits of the project ROW near the Project Area. Therefore, potential methods to prevent the accelerated migration of contaminants were evaluated. Specific actions that may be implemented include source reduction/elimination, limited restrictive barriers, and storm water runoff controls. These actions are evaluated in the following subsections.

6.1 SOURCE REDUCTION/ELIMINATION

Reduction and/or elimination of the source of apparent contamination will ultimately reduce and/or prevent the further migration of contamination. The source of organics and/or inorganics adjacent to the properties could be associated with fill materials; however, this is unknown. Thus, the specific source cannot be determined definitively based on available information; therefore, source reduction/elimination is not recommended.

6.2 <u>LIMITED RESTRICTIVE BARRIERS</u>

Backfill materials installed surrounding pipe and/or utility lines can provide a pathway for accelerated contaminant migration. Placement of limited restrictive barriers between contaminated material and backfill would minimize or prevent such accelerated migration. Based on the proposed construction activities and analytical results, the placement of a limited restrictive barrier (i.e., an engineered barrier), is not recommended at the subject properties.

6.3 STORM WATER RUNOFF CONTROLS

There is a potential for storm water to become contaminated through contact with soil in excavations or through contact with soil that has been excavated at the properties. To minimize the potential for storm water to come into contact with potentially impacted soil, all potentially impacted soil should be managed as rapidly as possible.

The USEPA has developed and implemented specific regulations regarding the control of storm water runoff associated with construction activities (40 CFR 122). Recommended measures that could be used include, but are not limited to, the placement of protective tarps or barriers over inactive excavations and/or associated excavated soil to reduce the volume of storm water that comes into contact with contaminants. Storm water that enters and collects in any excavations can be pumped into secured containers and subsequently disposed. Alternatively, if the schedule of IDOT construction activities is feasible, or if the sequence of activities can be modified allowing the accumulated storm water in an excavation area to recede into the ground, this time will minimize or eliminate the need to manage and dispose of the water off site as a special (non-Resource Conservation & Recovery Act [RCRA]) waste.

December 3, 2019 IDOT, District 1 PTB 178-008 Work Order 25A

IL 47 from Union/Foster Road to Hawthorne Way, Huntley-Woodstock, McHenry County, IL

PSI Report Page | 63

7.0 ENDORSEMENTS

The scope and depth of this study are consistent with those proposed in the Final Work Plan, dated April 12, 2019, and accepted by the Illinois Department of Transportation, District One on April 16, 2019. The field observations and results reported herein are considered sufficient in detail and scope to form an informed and professional opinion as to the obvious potential environmental hazards along the Project Area. This assessment is complete and is believed to be accurate. Huff & Huff, Inc. cannot guarantee or warrant that the information provided is fully representative of all conditions across the entire Project Area.

Author:	Jill M. Connolly, Project Manager	Date	December 3, 2019
Consultant Reviewer:	Shane Cuplin, P.G., Consultant Reviewer State of Illinois License # 196.001279	Date _	December 3, 2019
Principal:	Jeremy J. Reynolds, P.G., Associate Principal State of Illinois License # 196.001170	Date	December 3, 2019

APPENDIX A

ISGS PESA Excerpts

IDOT Work Order 25A Request

IDOT Sequence #: 14677B ISGS: 1789V2
IDOT Job #: P91-101-07 IDOT District #: 1

PRELIMINARY ENVIRONMENTAL SITE ASSESSMENT

FINAL REPORT

DATE: August 17, 2016

IDOT DESIGN DATE: December 31, 2013

SURVEY TARGET DATE: October 6, 2016

DATE REQUEST RECEIVED: April 6, 2016

LOCATION: FAP 326 (IL 47), Reed Road to US 14, Huntley, Woodstock,

and unincorporated Dorr and Grafton Townships, McHenry County; Huntley and Woodstock quadrangles (USGS 7.5-minute topographic maps), T43N, R7E, Sections 4, 9, 16, 21, and 28; T44N, R7E, Sections 16, 17, 20, 21, 28, 29, 32, and

33.

EXECUTIVE SUMMARY

This report presents the results of an environmental site assessment for the improvements to IL 47 from south of Reed Road in Huntley to north of US 14 in Woodstock, McHenry County. This report was prepared on behalf of the Illinois Department of Transportation (IDOT) by the Illinois State Geological Survey (ISGS).

The following sites were examined for this project. The tables below list sites along the project for which recognized environmental conditions (RECs)* were identified for each address or address range (Table 1); sites along the project for which only de minimis conditions were identified (Table 2); sites along the project for which no RECs or de minimis conditions were identified (Table 3); and sites adjoining but not on the project that were identified on environmental databases (Table 4). Further investigation of sites with RECs may be desired.

Table 1. The following sites along the project were determined to contain RECs:

Property name IDOT parcel #	ISGS site #	REC(s), including de minimis conditions	Regulatory database(s)	Land use
Commercial building NA	1789V2-3	Former USTs with a documented release; potential UST(s); former monitoring wells; former AST; evidence of former chemical use; transformer; potential ACM and lead paint	RCRA, BOL, UST, LUST, IEMA	Commercial
Benoy Motors NA	1789V2-4	Former UST with a documented release; potential UST(s); AST; evidence of chemical use; VOCs; presence on SRP; transformer; potential ACM and lead paint	RCRA, BOL, UST, LUST, IEMA, SRP	Commercial
IDOT maintenance facility #117 NA	1789V2-7	USTs; former USTs with documented releases; potential UST(s); monitoring wells; former monitoring wells; evidence of chemical use; former dumping; road salt; transformers; potential ACM and lead paint	RCRA, BOL, UST, LUST, IEMA	Transportation

ROW NA	1789V2-8	Former monitoring well; transformer	None	Transportation
Commercial building NA	1789V2-9	Potential former chemical use; presence on BOL; potential UST(s); SVOCs; VOCs; metals; transformers; potential ACM and lead paint	BOL	Commercial
Commercial building NA	1789V2-10	Potential UST(s); potential former chemical use; presence on BOL; former AST; former drums; former chemical container; transformer; potential ACM and lead paint	BOL	Commercial
Commercial building NA	1789V2-11	AST; potential UST(s); potential chemical use; transformer; potential ACM and lead paint	None	Commercial
Commercial building NA	1789V2-13	Former UST; potential UST(s); potential former chemical use; transformers; potential ACM and lead paint	UST	Commercial
Mobil gasoline station NA	1789V2-14	USTs; evidence of chemical use; spill; transformers; potential ACM and lead paint	BOL, UST, IEMA	Commercial
Woodstock Power Equipment NA	1789V2-15	Drums; potential UST(s); evidence of chemical use; potential ACM and lead paint	BOL	Commercial
Woodstock Powersports NA	1789V2-16	Potential UST(s); potential chemical use; transformer; potential ACM and lead paint	None	Commercial
Auto Zone NA	1789V2-18	Evidence of chemical use; potential ACM and lead paint	BOL	Commercial

Reichert Chevrolet NA	1789V2-21	Former USTs; potential UST(s); evidence of chemical use; transformer; potential ACM and lead paint	RCRA, BOL, UST	Commercial
Arrow Aluminum Castings NA	1789V2-22	Evidence of chemical use; former dumping; metals; potential ACM and lead paint	BOL	Industrial
Commercial building NA	1789V2-23	ASTs; former UST; potential UST(s); drums; solid waste; evidence of former chemical use; potential chemical use; transformer; potential ACM and lead paint	RCRA, BOL, UST	Industrial
Commercial building NA	1789V2-24	Potential former chemical use; metals; potential ACM and lead paint	None	Industrial
T&K Tools & Manufacturing NA	1789V2-25	Potential chemical use; metals; potential ACM and lead paint	None	Industrial
Commercial building NA	1789V2-26	Potential UST(s); evidence of chemical use; transformers; potential ACM and lead paint	RCRA, BOL	Commercial
Tim's Excavating NA	1789V2-27	ASTs; former ASTs; drums; potential UST(s); evidence of chemical use; chemical container; spill; metals; potential ACM and lead paint	BOL	Commercial
Advantage Transmissions NA	1789V2-30	Potential UST(s); evidence of former chemical use; potential chemical use; transformer; potential ACM and lead paint	BOL	Commercial

Vacant land NA	1789V2-31	Fill; likely past pesticide and/or herbicide use	None	Vacant
Kishwaukee River NA	1789V2-34	Non-attainment of water quality; metals	None	River
AdvanTech Plastics NA	1789V2-35	Evidence of chemical use; metals; transformers; potential ACM and lead paint	RCRA, BOL	Industrial
American Packaging Machinery NA	1789V2-36	Potential chemical use; transformer; potential ACM and lead paint	None	Industrial
Vacant land NA	1789V2-48	Former dumping	BOL	Vacant
Residence NA	1789V2-53	Former dumping; transformer; potential past pesticide and/or herbicide presence; potential ACM and lead paint	BOL	Residential
Campobello Landscaping NA	1789V2-70	AST; natural gas pipeline, transformer; potential ACM and lead paint	None	Commercial/ residential
Residence NA	1789V2-72	Former dumping; potential ACM and lead paint	BOL	Residential
The Gardens of Woodstock NA	1789V2-77	ASTs; natural gas pipeline; potential ACM and lead paint; potential pesticide and/or herbicide presence	None	Commercial
Farmstead NA	1789V2-89	AST; SVOCs; metals; transformer; potential pesticide and/or herbicide presence; potential ACM and lead paint	None	Farmstead

Crystal Woods Golf Course NA	1789V2-90	Former USTs; ASTs; evidence of chemical use; transformer; potential ACM and lead paint	BOL	Recreational
Craig Woods Golf Course NA	1789V2-93	Former AST; SVOCs; metals; transformer; potential ACM and lead paint	None	Recreational
Commercial buildings NA	1789V2-96	Former AST; former dumping; transformer; potential past pesticide and/or herbicide presence; potential ACM and lead paint	BOL	Commercial
Kishwaukee River NA	1789V2-102	Non-attainment of water quality	None	River
Ozinga Concrete NA	1789V2-105	Former dumping; AST; fill; evidence of chemical use; potential ACM and lead paint	BOL	Commercial
Residence NA	1789V2-106	Former dumping; potential ACM and lead paint	BOL	Residential
Beverly Materials NA	1789V2-108	AST; potential ACM and lead paint	BOL	Industrial
Commercial building NA	1789V2-129	Potential former chemical use; natural gas pipeline; transformer; potential ACM and lead paint	None	Commercial

Table 2. The following sites along the project were determined to contain de minimis conditions only:

Property name IDOT parcel #	ISGS site #	De minimis condition(s)	Land use
Commercial building NA	1789V2-1	Transformers; potential ACM and lead paint	Commercial

		1	T
Brown & Company CPAs NA	1789V2-2	Potential ACM and lead paint	Commercial
Fifth Third Bank NA	1789V2-5	Transformer; potential ACM and lead paint	Commercial
Quality Inn NA	1789V2-6	Transformer; potential ACM and lead paint	Commercial
Super 8 Motel NA	1789V2-12	Transformers; potential ACM and lead paint	Commercial
Vacant land NA	1789V2-17	Likely past pesticide and/or herbicide use	Vacant
Pizza Hut NA	1789V2-19	Transformer; potential ACM and lead paint	Commercial
Red Dot Self-Storage NA	1789V2-20	Potential ACM and lead paint	Commercial
Porkies Pig Roast NA	1789V2-28	Transformer; potential ACM and lead paint	Commercial
Vacant land NA	1789V2-29	Likely past pesticide and/or herbicide use	Vacant
Vacant land NA	1789V2-32	Likely past pesticide and/or herbicide use	Vacant
Residential building NA	1789V2-33	Potential ACM	Residential
Residence NA	1789V2-37	Potential ACM and lead paint	Residential
Residences NA	1789V2-38	Transformer; potential ACM and lead paint	Residential
Agricultural land NA	1789V2-39	Transformer; likely pesticide and/or herbicide use	Agricultural
Vacant land NA	1789V2-40	Likely past pesticide and/or herbicide use	Vacant
Vacant land NA	1789V2-41	Likely past pesticide and/or herbicide use	Vacant
Agricultural building NA	1789V2-42	Potential pesticide and/or herbicide presence; potential ACM and lead paint	Agricultural

Residence NA	1789V2-43	Potential ACM and lead paint	Residential
Agricultural land NA	1789V2-44	Likely pesticide and/or herbicide use	Agricultural
Vacant land NA	1789V2-45	Likely past pesticide and/or herbicide use	Vacant
Commercial buildings NA	1789V2-46	Transformers; potential ACM and lead paint; potential former pesticide and/or herbicide presence	Commercial
Residence NA	1789V2-47	Transformer; potential ACM and lead paint	Residential
Residence NA	1789V2-49	Transformer; potential ACM and lead paint	Residential
Vacant land NA	1789V2-50	Likely past pesticide and/or herbicide use	Vacant
Vacant land NA	1789V2-51	Likely past pesticide and/or herbicide use	Vacant
Agricultural buildings NA	1789V2-52	Transformer; potential ACM and lead paint; potential pesticide and/or herbicide presence	Agricultural
Vacant land NA	1789V2-54	Likely past pesticide and/or herbicide use	Vacant
Whispering Winds Kennel NA	1789V2-55	Potential ACM and lead paint	Commercial/ residential
Running Acres NA	1789V2-56	Transformer; potential ACM and lead paint	Residential
Residence NA	1789V2-57	Potential ACM and lead paint	Residential
Eddie's Landscaping & Supplies NA	1789V2-58	Transformer; potential ACM and lead paint	Commercial
Residence NA	1789V2-59	Potential ACM and lead paint	Residential
Agricultural land NA	1789V2-60	Transformer; likely pesticide and/or herbicide use	Agricultural

Vacant land NA	1789V2-61	Potential past pesticide and/or herbicide presence	Vacant
Vacant land NA	1789V2-63	Natural gas pipeline; transformers; likely past pesticide and/or herbicide use	Vacant
New Life Christian Center NA	1789V2-64	Natural gas pipeline; transformer; potential ACM and lead paint	Church
Farmstead NA	1789V2-65	Transformer; potential pesticide and/or herbicide presence; potential ACM and lead paint	Farmstead
Kolze Garden Center NA	1789V2-66	Potential ACM and lead paint; potential pesticide and/or herbicide presence	Commercial
Agricultural land NA	1789V2-67	Natural gas pipeline; likely pesticide and/or herbicide use	Agricultural
ComEd TSS 141 NA	1789V2-68	Transformers; potential ACM and lead paint	Utility
Vacant land NA	1789V2-69	Natural gas pipelines	Vacant
Residence NA	1789V2-71	Potential ACM and lead paint	Residential
Residences NA	1789V2-73	Potential ACM and lead paint	Residential
Residences NA	1789V2-74	Transformer; potential ACM and lead paint	Residential
Vacant land NA	1789V2-75	Likely past pesticide and/or herbicide use	Vacant
Agricultural land NA	1789V2-76	Likely pesticide and/or herbicide use	Agricultural
Farmstead NA	1789V2-79	Transformer; potential pesticide and/or herbicide presence; potential ACM and lead paint	Farmstead
Residences NA	1789V2-80	Transformers; potential ACM and lead paint	Residential
Residence NA	1789V2-81	Potential ACM and lead paint	Residential

Vacant land NA	1789V2-82	Likely past pesticide and/or herbicide use	Vacant
Agricultural land NA	1789V2-83	Natural gas pipeline; transformer; likely pesticide and/or herbicide use	Agricultural
Residence NA	1789V2-84	Transformer; potential ACM	Residential
Residence NA	1789V2-85	Transformer; potential ACM and lead paint	Residential
Farmstead NA	1789V2-86	Potential pesticide and/or herbicide presence; potential ACM	Farmstead
Residence NA	1789V2-87	Potential ACM and lead paint	Residential
Agricultural land NA	1789V2-88	Transformer; likely pesticide and/or herbicide use	Agricultural
Residences NA	1789V2-91	Transformer; potential ACM and lead paint	Residential
Vacant land NA	1789V2-92	Likely past pesticide and/or herbicide use	Vacant
Residence NA	1789V2-94	Potential ACM and lead paint	Residential
Vacant land NA	1789V2-95	Likely past pesticide and/or herbicide use	Vacant
Beyond Stable Farms NA	1789V2-97	Transformer; likely past pesticide and/or herbicide use; potential ACM and lead paint	Commercial/ residential
Agricultural land NA	1789V2-98	Likely pesticide and/or herbicide use	Agricultural
Residences NA	1789V2-99	Transformers; potential ACM and lead paint	Residential
Farmstead NA	1789V2-100	Transformer; potential pesticide and/or herbicide presence; potential ACM and lead paint	Farmstead
Vacant land NA	1789V2-101	Likely past pesticide and/or herbicide use	Vacant
Bridge NA	1789V2-103	Potential ACM	Transportation

Agricultural land NA	1789V2-104	Likely pesticide and/or herbicide use	Agricultural
Farmstead NA	1789V2-107	Transformers; potential pesticide and/or herbicide presence; potential ACM and lead paint	Farmstead
Vacant land NA	1789V2-109	Likely past pesticide and/or herbicide use	Vacant
Agricultural land NA	1789V2-110	Transformers; likely pesticide and/or herbicide use	Agricultural
Agricultural building NA	1789V2-111	Transformer; potential pesticide and/or herbicide presence; potential ACM and lead paint	Agricultural
Residence NA	1789V2-112	Transformer; potential past pesticide and/or herbicide presence; potential ACM and lead paint	Residential
Farmstead NA	1789V2-113	Transformer; potential pesticide and/or herbicide presence; potential ACM and lead paint	Farmstead
Vacant land NA	1789V2-114	Potential past pesticide and/or herbicide presence	Vacant
Agricultural land NA	1789V2-115	Transformers; potential pesticide and/or herbicide presence	Agricultural
The Horse Palace NA	1789V2-116	Potential ACM and lead paint	Commercial/ residential
Vacant land NA	1789V2-117	Potential past pesticide and/or herbicide presence	Vacant
Ryland Homes construction office NA	1789V2-118	Transformer; potential past pesticide/herbicide presence; potential ACM and lead paint	Commercial
Commonwealth Edison substation NA	1789V2-119	Transformers; potential ACM and lead paint	Utility
Vacant land NA	1789V2-120	Potential past pesticide/herbicide presence	Vacant
Vacant land NA	1789V2-122	Transformer; likely past pesticide and/or herbicide use	Vacant

Vacant land NA	1789V2-123	Likely past pesticide and/or herbicide use	Vacant
Agricultural land NA	1789V2-124	Transformers; likely pesticide and/or herbicide use	Agricultural
Residence NA	1789V2-125	Transformer; potential ACM and lead paint	Residential
Vacant land NA	1789V2-126	Natural gas pipeline; likely past pesticide and/or herbicide use	Vacant
Pond NA	1789V2-127	Natural gas pipeline	Pond
Residence NA	1789V2-128	Potential ACM and lead paint	Residential
Agricultural land NA	1789V2-130	Transformer; likely pesticide and/or herbicide use	Agricultural
Commercial building NA	1789V2-131	Transformer; potential ACM and lead paint	Commercial
Vacant land NA	1789V2-132	Transformer; likely past pesticide and/or herbicide use	Vacant
Walgreens NA	1789V2-133	Transformers; potential ACM and lead paint	Commercial
American Community Bank & Trust NA	1789V2-134	Transformer; potential ACM and lead paint	Commercial
Residences NA	1789V2-135	Potential ACM and lead paint	Residential
Vacant land NA	1789V2-136	Likely past pesticide and/or herbicide use	Vacant
Vacant land NA	1789V2-137	Transformer; likely past pesticide and/or herbicide use	Vacant

Table 3. The following sites along the project were determined not to contain RECs or de minimis conditions:

Property name IDOT parcel #	ISGS site #	Land use
Vacant land NA	1789V2-62	Vacant

Vacant land NA	1789V2-78	Vacant
Unnamed tributary to the South Branch of the Kishwaukee River NA	1789V2-121	Stream

Table 4. The following additional sites, adjoining but not on the project, were identified on environmental databases:

Property name	ISGS site #	Regulatory database(s)	Land use
Composites One	1789V2-A	RCRA, BOL, UST, IEMA	Commercial
Servepro	1789V2-B	RCRA, BOL	Commercial
TTI	1789V2-C	RCRA, BOL	Commercial
Powers Paint Shop	1789V2-D	RCRA, BOL	Commercial
Commercial building	1789V2-E	UST	Commercial
Pinecrest Golf Course	1789V2-F	UST, BOL	Commercial

* For all sites:

Where REC(s) are indicated as present, a condition was noted that may be indicative of releases or potential releases of hazardous substances on, at, in, or to the site, as discussed in the text. Potential hazards were not verified by ISGS testing. Radon, biological hazards (such as mold, medical waste, or septic waste), and non-agricultural pesticides and/or herbicides may also be of concern. No further investigation concerning the presence or use of these factors was conducted for this PESA.

Where RECs are not indicated as present, radon, biological hazards (such as mold, medical waste, or septic waste), and non-agricultural pesticides and/or herbicides may still be of concern. No further investigation concerning the presence or use of these factors was conducted for this PESA.

For the purposes of this report, the following are considered to be de minimis conditions:

- Normal use of lead-based paint on exteriors and interiors of buildings and structures.
- Use of asbestos-containing materials in building construction.
- Transformers in normal use, unless the transformers were observed to be leaking, appear
 on an environmental regulatory list, or were otherwise determined to pose a hazard not
 related to normal use.
- Agricultural use of pesticides and herbicides. In addition, most land in Illinois was under agricultural use prior to its conversion to residential, industrial, or commercial development. Pesticides, both regulated and otherwise, may have been used throughout the project area

at any time. Unless specifically discussed elsewhere in this report, no information regarding past pesticide use that would be subject to enforcement action was located for this project, and such use is considered a de minimis condition.

The following data gaps exist for all PESAs:

- For residences, only areas visible from public roads are inspected.
- Interiors of buildings are not inspected.
- Interiors of agricultural areas are not inspected during growing seasons.

Radon and biological hazards are not considered in this PESA unless specifically noted.

NA = No parcel number was supplied by IDOT for this site.

Although potential natural hazards and undermining, if present, are described in this report, they are not considered as RECs or de minimis conditions for the purposes of this report, and are therefore not listed in the tables above.

_	
- 1	٠.

Ken Eng

Attn: Fawad Aqueel

From:

Anthony Quigley

By: Issam Rayyan

Subject:

Preliminary Site Investigation Request

Date:

January 25, 2019

IL 47 (Eastwood Drive)
From Union Rd /Foster R

From Union Rd./Foster Rd. to Hawthorne Way

McHenry County P-91-101-07

Sequence # 14677B

ISGS # 1789V2

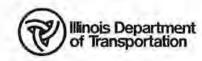
Contract/Section # 62A80

Letting Date: 8CY2019

In addition to the Special Waste Assessment Screen/Survey Request Form, please find enclosed:

X	Location Map
X	Plan View Drawing
	Aerial Photography
	Ground Level Photography
v	Othor

Please, advise us of any potential contamination present at or near the highlighted sites on the attached exhibits. Thank you for your input on this project. If you have any questions, please contact Irma Romiti-Johnson at (847)705-4122 or irma.romiti-johnson@Illinois.gov.


PESA Response/Work Order

Attention: Central Office BD&E

Environment Section Special Waste Unit

Room 330

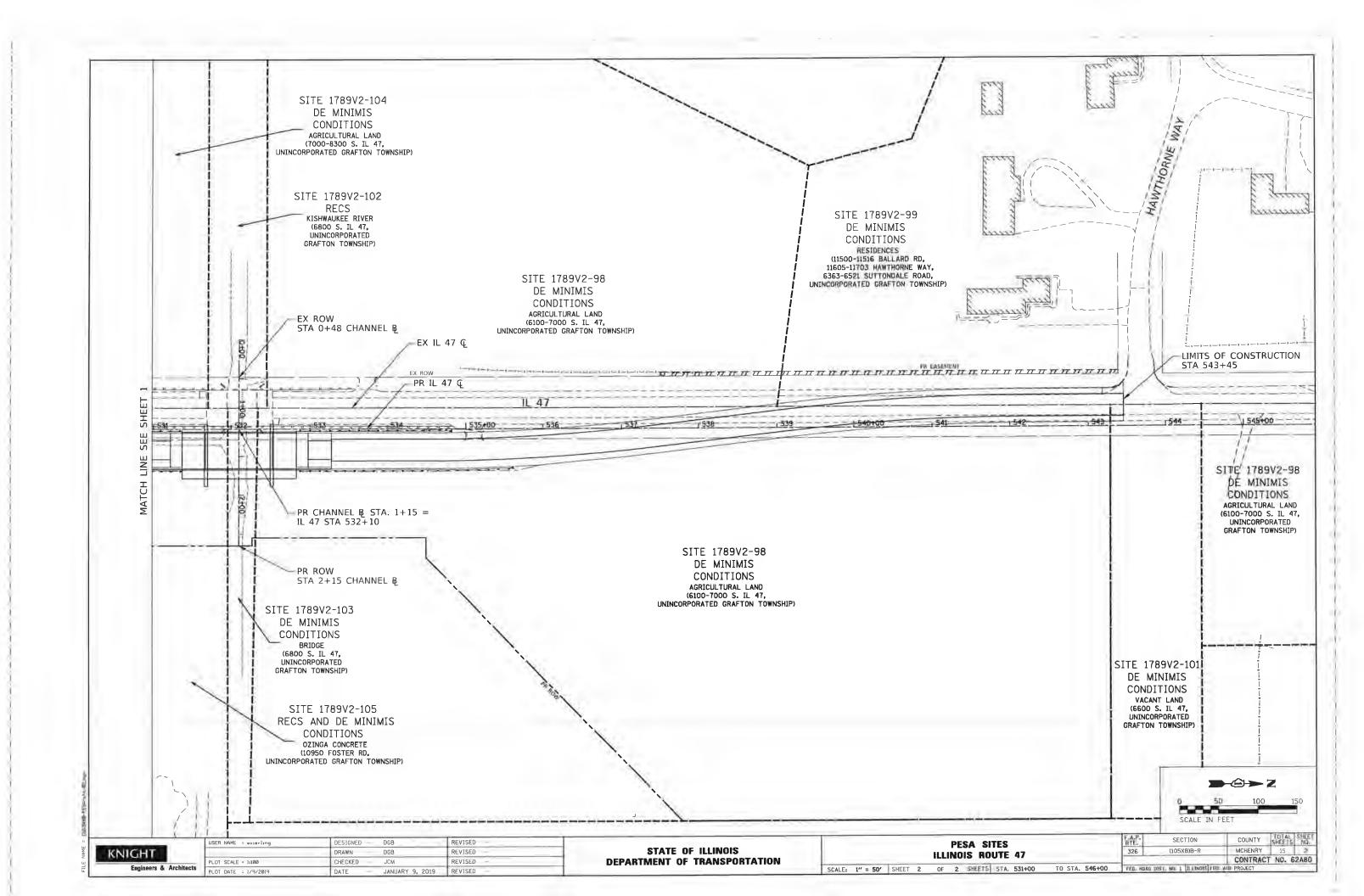
District: 1	Requesting Agency: D	ОН			Project	t No:
Contract #:		Jol	b No.:	P- 9	1-101-07	
Counties: McHenry				- 1		
Route: FAP 326		Marked:	IL 47			
Street: 5 Eastwood I	Drive			Section:		
Municipality(ies): H	untley, Woodstock			Length:	12.875 km	8 mile
FromTo (At): Reed R	td to US 14			3	Just 1	-
Quadrangle: Huntley	Woodstock	Township	-Range-S	ection:	T43N, R7E, T4	4M. R7E
Anticipated Design A	oproval: 12/31/2013	Anticipated I	4-75		8CY2019	
Taken by Avoid	ict will not need ROW from d Site vation will not exceed recor	nmended de	·	operty		
Taken by Avoid District: Exca Furth Other Comments: This P	d Site	mmended de	epths		52A80 are on IL	47 from Union
Taken by ☐ Avoid District: ☐ Exca ✓ Furth ✓ Other Comments: This P Rd/For	vation will not exceed recor ter Investigation 01/25/2 r - Use Comments Section ESA response is for PESA #	mmended de	epths limits of			47 from Union
Taken by ☐ Avoid District: ☐ Exca ✓ Furth ✓ Other Comments: This P Rd/For	vation will not exceed recor ter Investigation 01/25/2 r - Use Comments Section ESA response is for PESA # ster Rd to Hawthorne Way.	nmended de 2019 1789V2. The	epths limits of	Contract 6		47 from Union
Taken by Avoid District: Exca Furth Other Comments: This P Rd/Fos Contact Person:	vation will not exceed recor ver Investigation 01/25/2 r - Use Comments Section ESA response is for PESA # ster Rd to Hawthorne Way.	mmended de 2019 1789V2. The Telephone:	limits of	Contract 6		47 from Union
Taken by Avoid District: Exca Furth Other Comments: This P Rd/For Contact Person: Work Order Project Description:	vation will not exceed recor er Investigation 01/25/2 r - Use Comments Section ESA response is for PESA # ster Rd to Hawthorne Way.	mmended de 2019 1789V2. The Telephone:	limits of	Contract 6		
Taken by Avoid District: Exca Furth Other Comments: This P Rd/For Contact Person: Work Order Project Description:	vation will not exceed recor ver Investigation 01/25/2 r - Use Comments Section ESA response is for PESA # ster Rd to Hawthorne Way. rma Romiti-Johnson Submittal Date: Additional areas identified	1789V2. The Telephone: 01/25/20 for detention	limits of (847) 7	Contract 6	ext.	
Taken by Avoid District: Exca Furth Other Comments: This P Rd/For Contact Person: Work Order Project Description: Survey Type: Reason Why Site(s)	vation will not exceed recor ver Investigation 01/25/2 r - Use Comments Section ESA response is for PESA # ster Rd to Hawthorne Way. rma Romiti-Johnson Submittal Date: Additional areas identified Potential Waste Site(s) Roadway realignment, cha	1789V2. The Telephone: 01/25/20 for detention	limits of (847) 7	Contract 6	ext.	

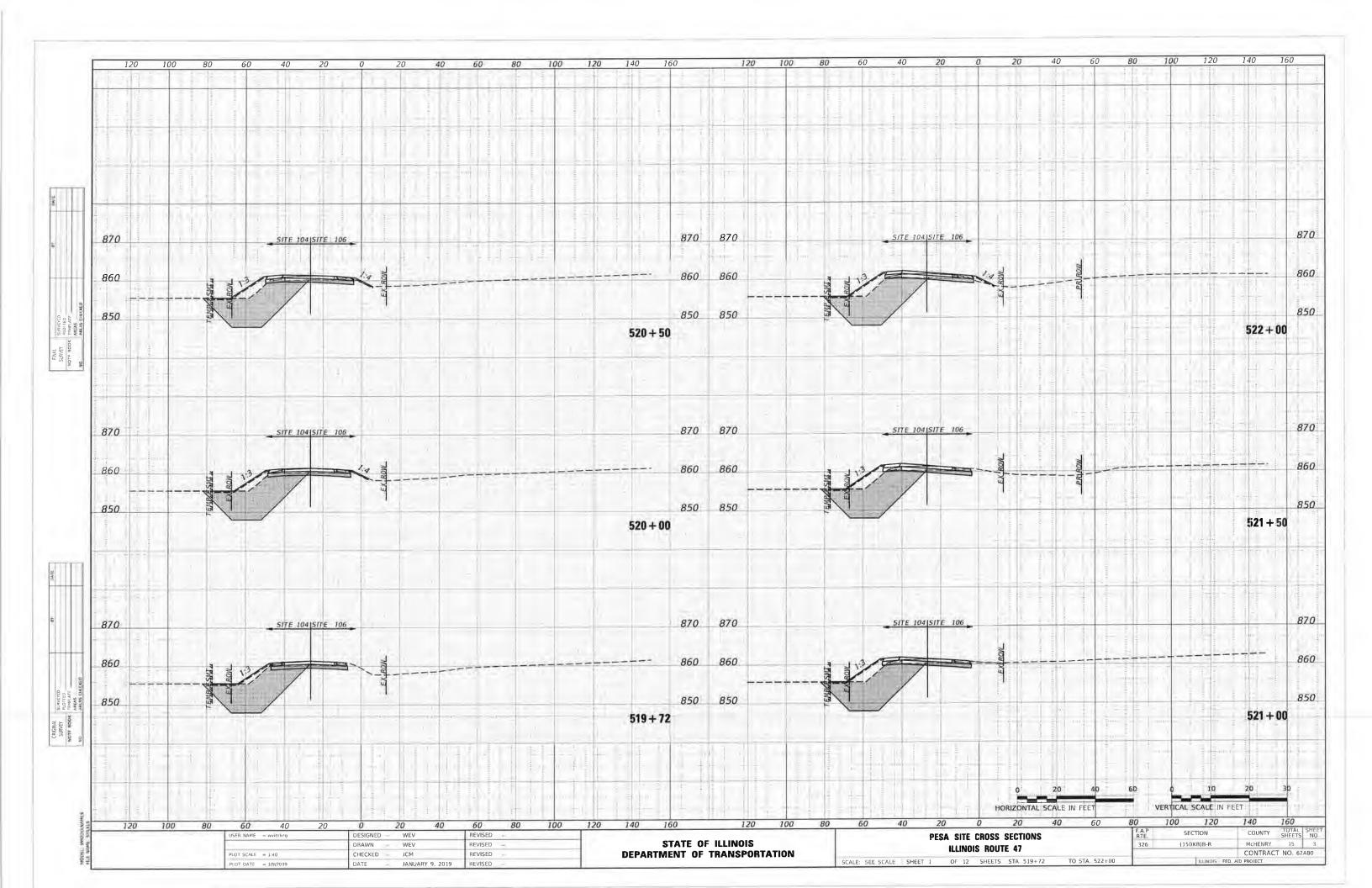
PESA Response / PSI Work Order

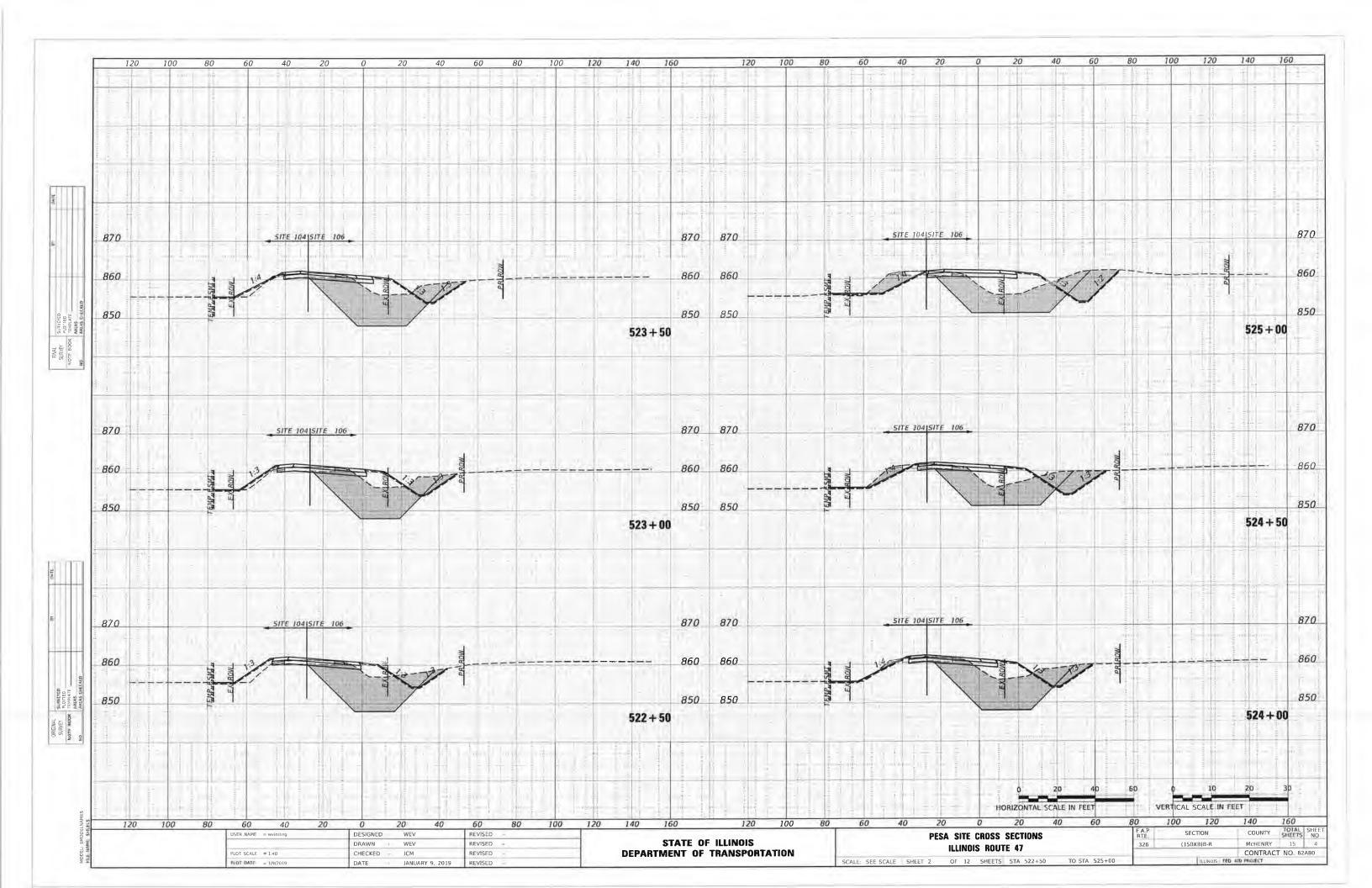
District	County		Municipality	Route	Marked Street Project Location To/From			Work Description						
1	McHenry	ry	Lakewood	FAP 326	IL RTE 47		Union Road/Foster Road	Union Road/Foster Road to Hawthorne Way		7 and removal of IL	47 Bridge over			
Requestin	g Agency	IDOT Job N	Number	Contract Number	Section Number		BDE Sequence Number	ISGS PESA Number	Anticipated Letting	Date PS&E Date	Submittal to BDE Date			
DOH		D-91-023	3-14	62A80	(105XB)B-R		14677B	1789V2	06/14/19	03/15/19	01/09/19			

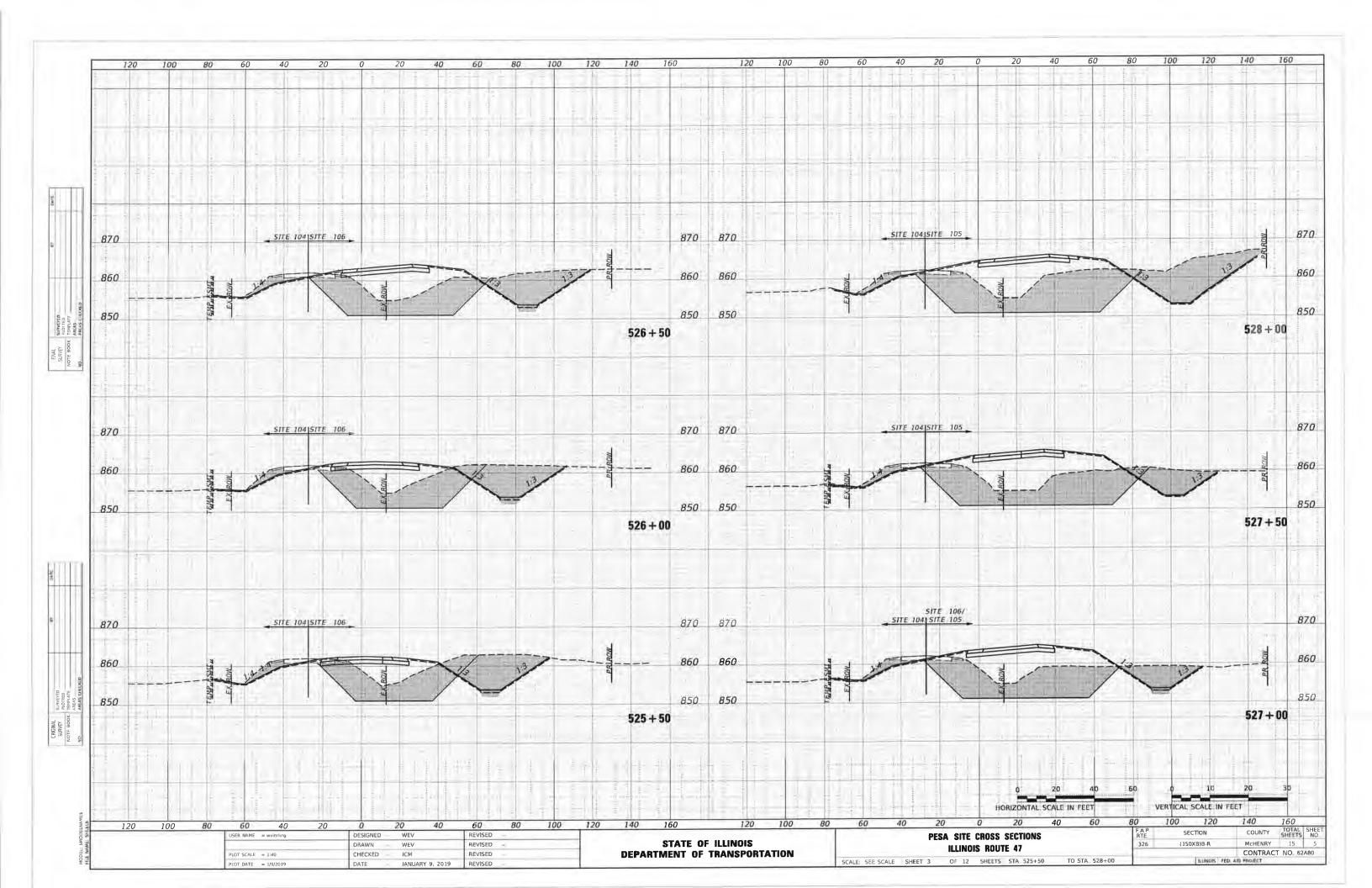
Form Preparer - Title, Organization, Phone
Others Involved (Names, Title, Organization, Phone)
Additional Information

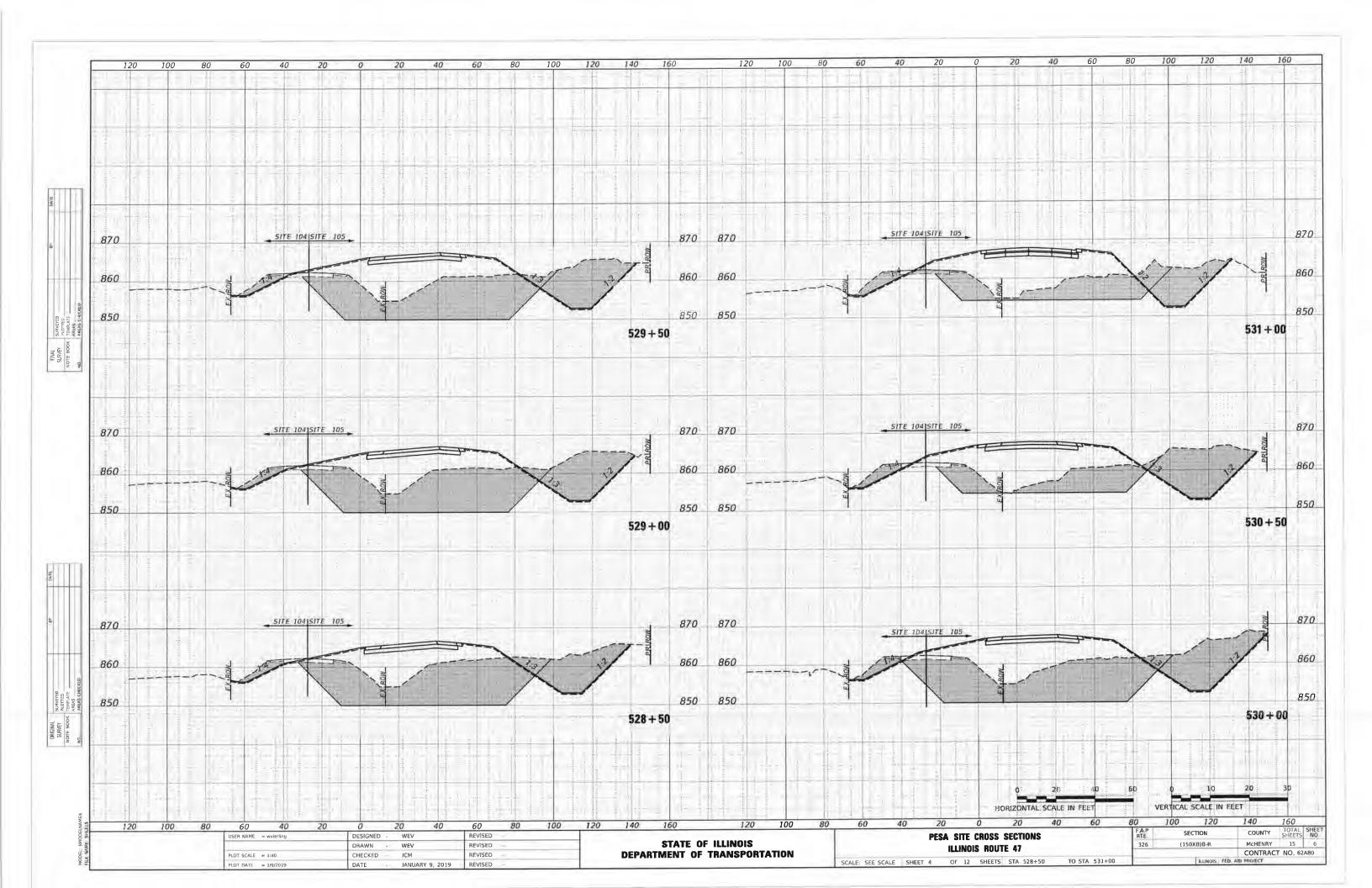
John Murillo, Project Manager, Knight E/A Inc., (312) 577-3379

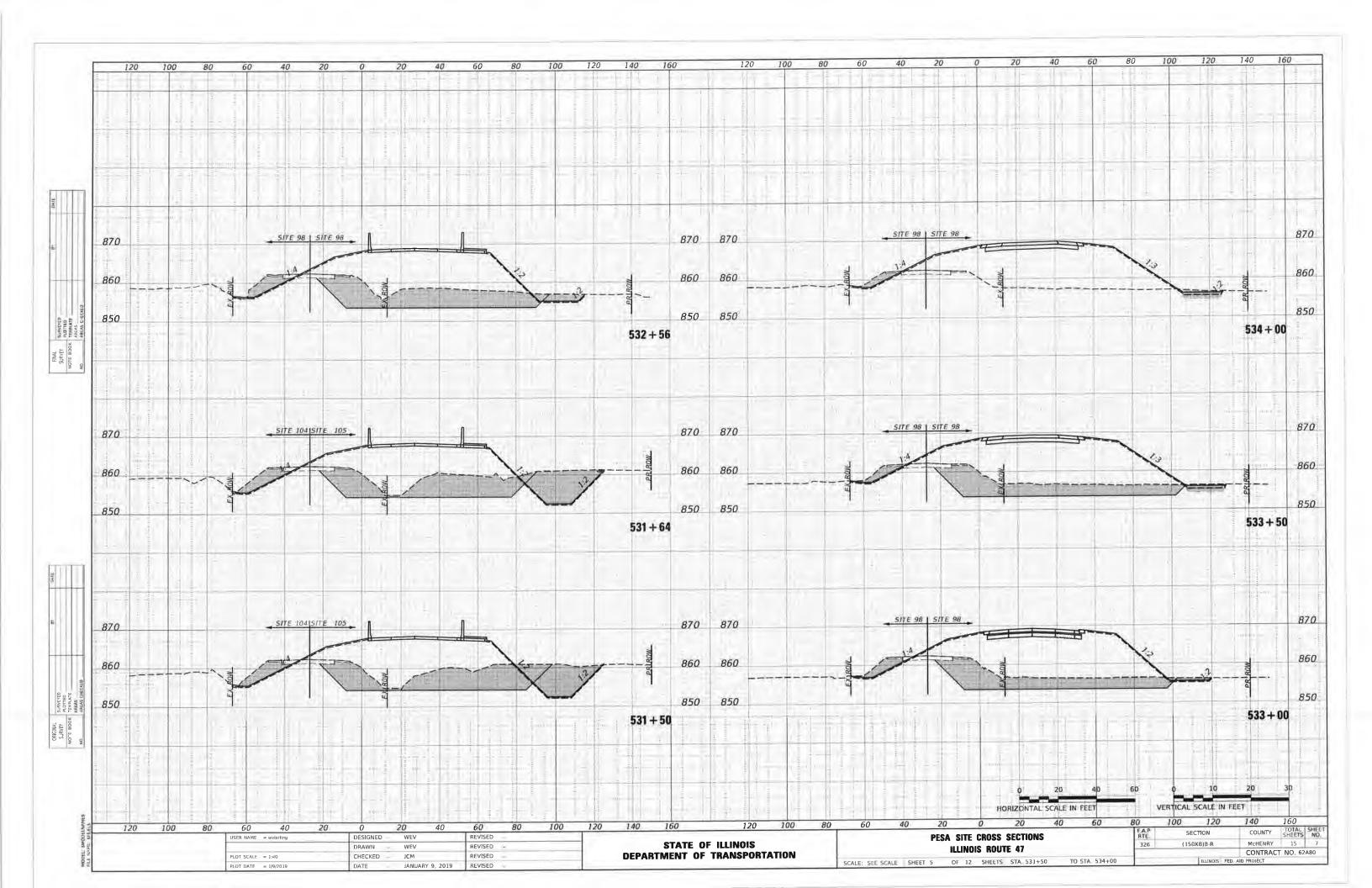

Property Identification			ONLY FOR RMP OJECTS		RECs	Regula	ntory Issues	RC	W Acquis	ition or Ease	ement	Prop	osed Construction		Estimated	
arcel Name, as identified in the PESA, (include reet address when available)	Site ID PESA#	BDE Classification	BDE Notes	(Yes/ No)	If Yes, describe RECs	Possible UST(s)	Regulatory Program	ROW Partial Take	ROW Full Take	Temporary Easement	Permanent Easement	Construction Activity on or adjoining (list all)	Stationing (From / To) (include off-sets)	Max Depth of Excavation (feet)	Volume of Soil Excavation (CY)	Notes
												ROADWAY REALIGNMENT (WEST SIDE)	532+46 / 539+00, LT	4.50	851 0	
												+ ROADWAY REALIGNMENT (EAST SIDE)	532+34 / 543+28, RT	9.60	8,272.0	
Agricultural land, 6100 - 7000 blocks of S. IL 47, unincorporated Grafton Township	1789V2-98			No		No		Yes	No	Yes	No	+ COMPENSATORY - STORAGE AREA	532+34 / 543+28, RT	10.90	21,855.0	
												+ CHANNEL - EXCAVATION	532+34 / 532+55, RT	4.80	135.0	
												+ TEMPORARY - PAVEMENT	544+45 / 547+03, RT	1 50	42.0	
Residences, 11500-11516 Ballard Road, 11605-11703 Hawthorne Way, and 6363-6521												+ ROADWAY - REALIGNMENT	539+00 / 543+45, LT	1.80	338.0	
Suttondale Road, unincorporated Grafton Township	1789V2-99			No		No		Yes	No	Yes	No	+ TEMPORARY - PAVEMENT	543+45 / 550+12, LT	1 50	208.0	
Vacant land, 6600 block of S IL 47												+ ROADWAY - REALIGNMENT	543+28 / 543+45, RT	1.40	4.0	
unincorporated Grafton Township	1789V2-101			No		No		No	No	No	No	+ TEMPORARY - PAVEMENT	543+45 / 544+45, RT	1.50	54.0	
Kishwaukee River. 6800 block of S. IL 47 unincorporated Grafton Township	1789V2-102			Yes	Non-attainment of water quality	No		No	No	No	No	CHANNEL EXCAVATION	531+71 / 532+46, LT	2.50	130.0	
Bridge, 6800 block of S. IL 47, unincorporated Grafton Township	1789V2-103			No		No		Yes	No	No	No	* CHANNEL EXCAVATION	531+96 / 532+34, RT	3.50	407.0	
											1-0	+ TEMPORARY PAVEMENT	511+75 / 519+72, LT	1.50	661.0	
Agricultural land, 7000-8300 blocks of S. IL 47,										, and the second		+ TEMPORARY - PAVEMENT	513+81 / 518+24, RT	1 50	118.0	
unincorporated Grafton Township	1789V2-104			No		No		No	No	Yes	No	* ROADWAY - REALIGNMENT	519+72 / 531+65, LT	10.20	4,628.0	
		8										WILDLIFE CROSS - CULVERT	531+21 / 531+37, LT	10.60	203.0	

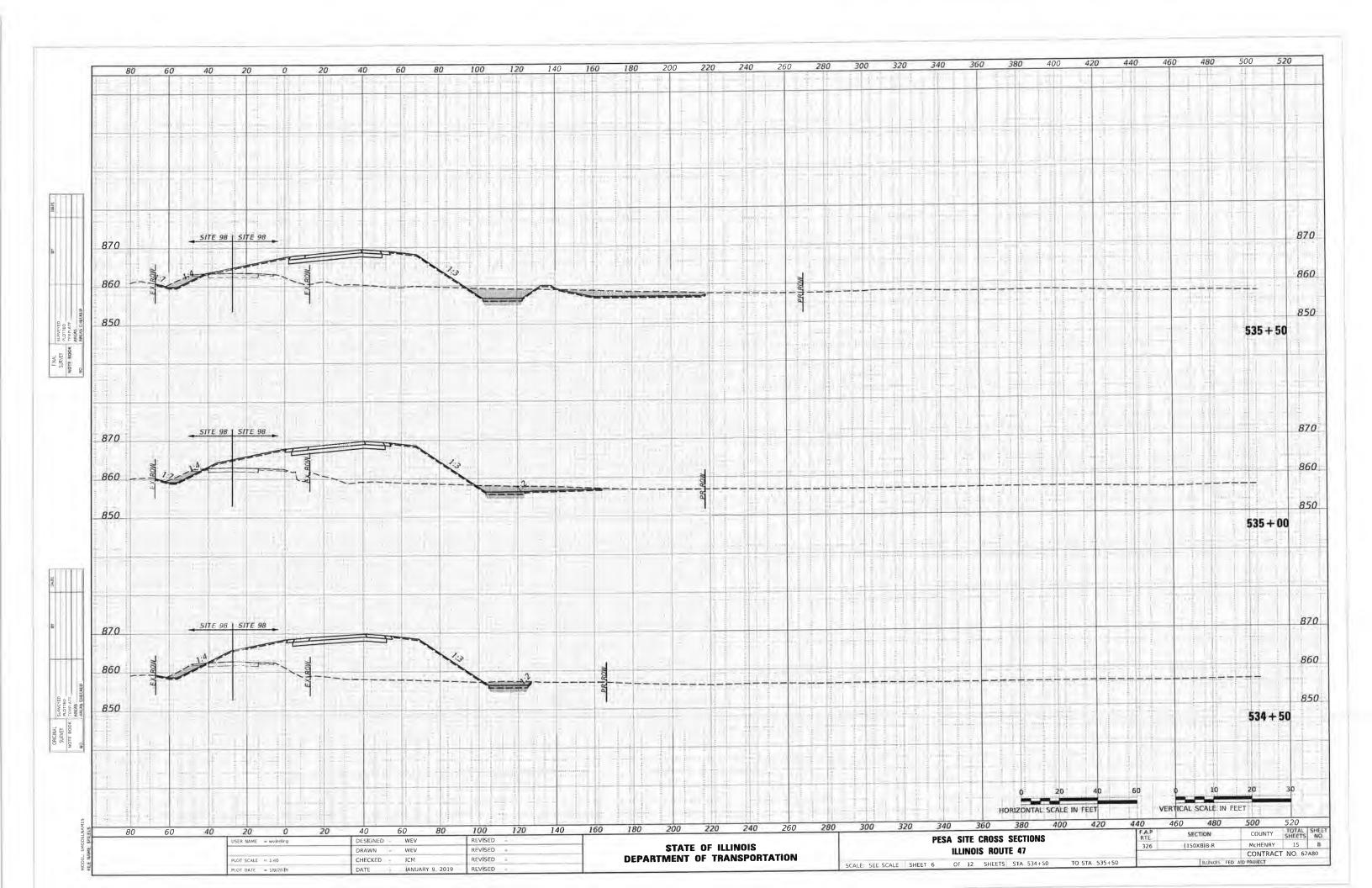

Parcel Name, as identified in the PESA, (include treet address when available)	Site ID PESA#	BDE Classification	BDE Notes	(Yes/ No)	If Yes, describe RECs	Possible UST(s)	Regulatory Program	ROW Partial Take	ROW Full Take		Permanent Easement	Construction Activity on or adjoining (list all)	Stationing (From / To) (include off-sets)	Max Depth of Excavation (feet)	Volume of Soil Excavation (CY)	Notes
									1.11			+ ROADWAY - REALIGNMENT	527+00 / 531+65, RT	13.30	19,939.0	
Ozinga Concrete, 10950 Foster Road, unincorporated Grafton Township	1789V2-105			Yes	Former dumping; AST; fill; evidence of chemical use; potential ACM and lead	No		Yes	No	No	No	+ WILDLIFE CROSS CULVERT	531+21 / 531+37, RT	10.60	443.0	
					paint		144					+ CHANNEL EXCAVATION	531+65 / 531+96, RT	8.00	398.0	
Decidence 7000 C II 47 unique reservated					Former dumping: notantial							+ TEMPORARY - PAVEMENT	518+95 / 519+72, RT	1.50	56.0	
Residence, 7090 S. IL 47, unincorporated Grafton Township	1789V2-106			Yes	Former dumping; potential ACM and lead paint	No		Yes	No	No	No	+ ROADWAY REALIGNMENT	519+72 / 527+00, RT	10.80	10,933.0	
Add Row		Protect			1								otal Estimated Yards		69,675,0	
Highway Authority Agreements PESA Site Number		responding HAA														
Add Row]												
dditional Information that could be used to be the project expected to be a net Design Contact Name		e soil managem Exporter of so		Volume 35,2	70.0											
Matthew Rothenberg			Notes			_										
Email											- 1					
Matthew.Rothenberg@Illinois.gov																

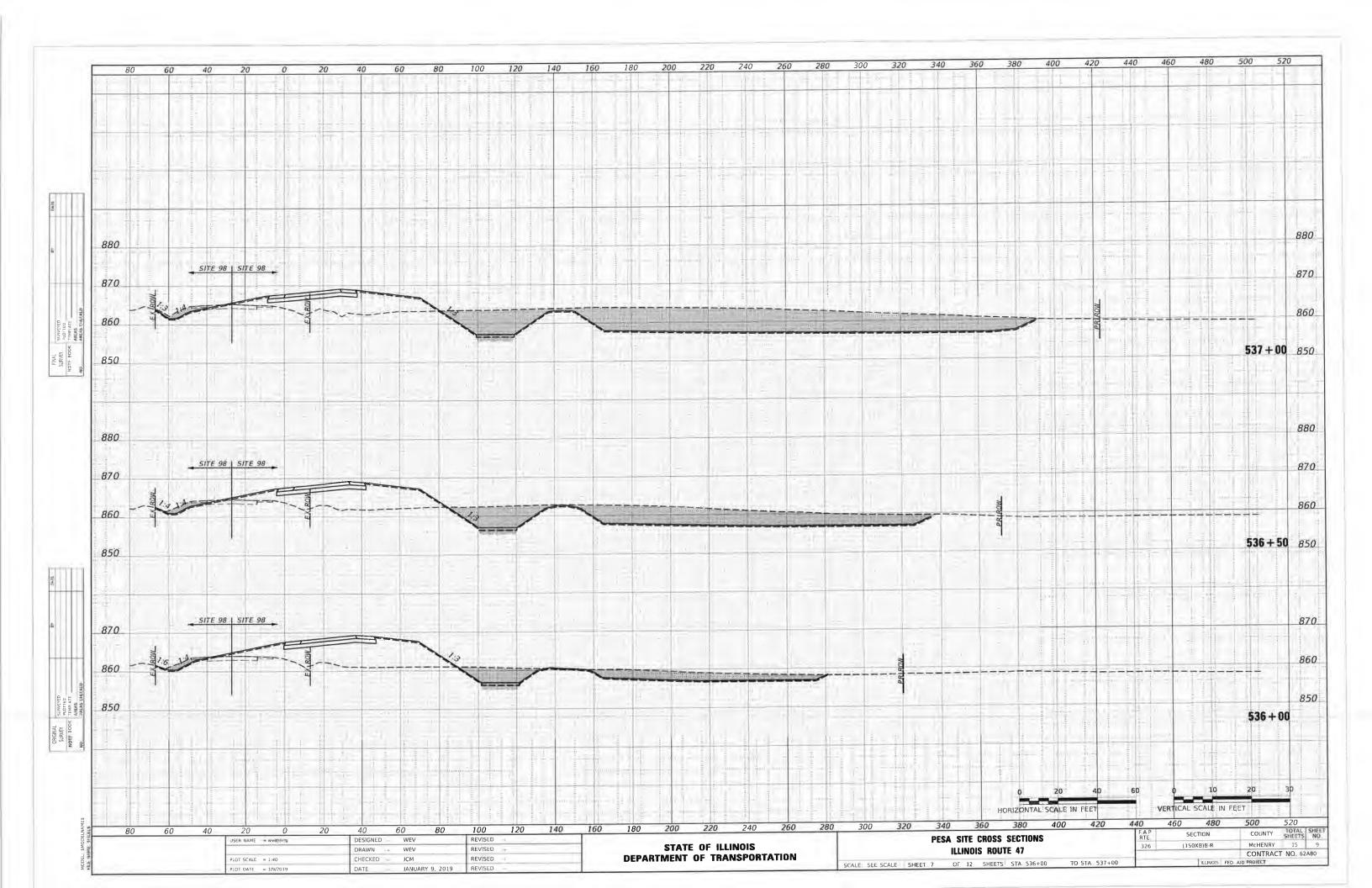

Phone

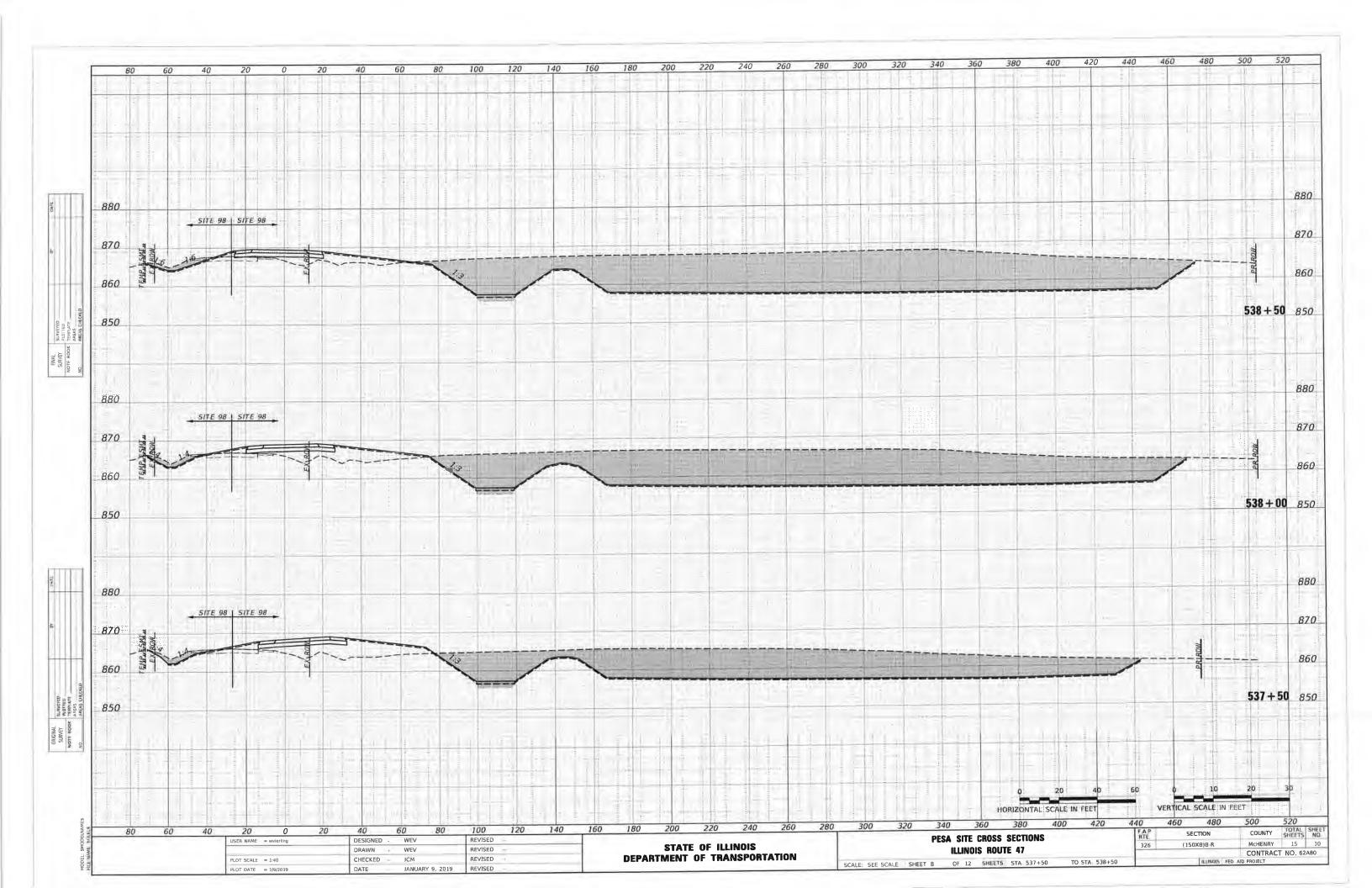

(847) 705-4230

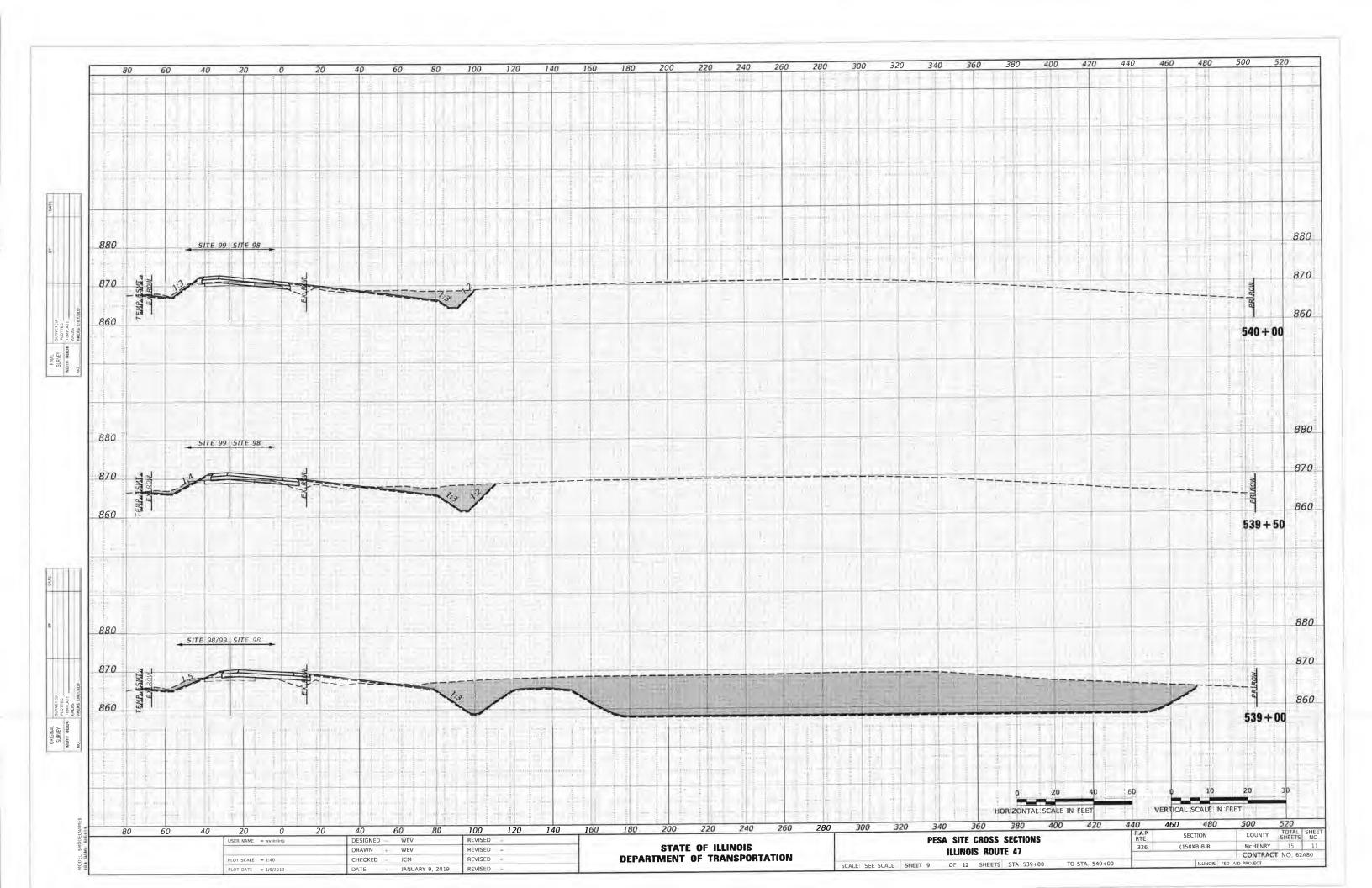


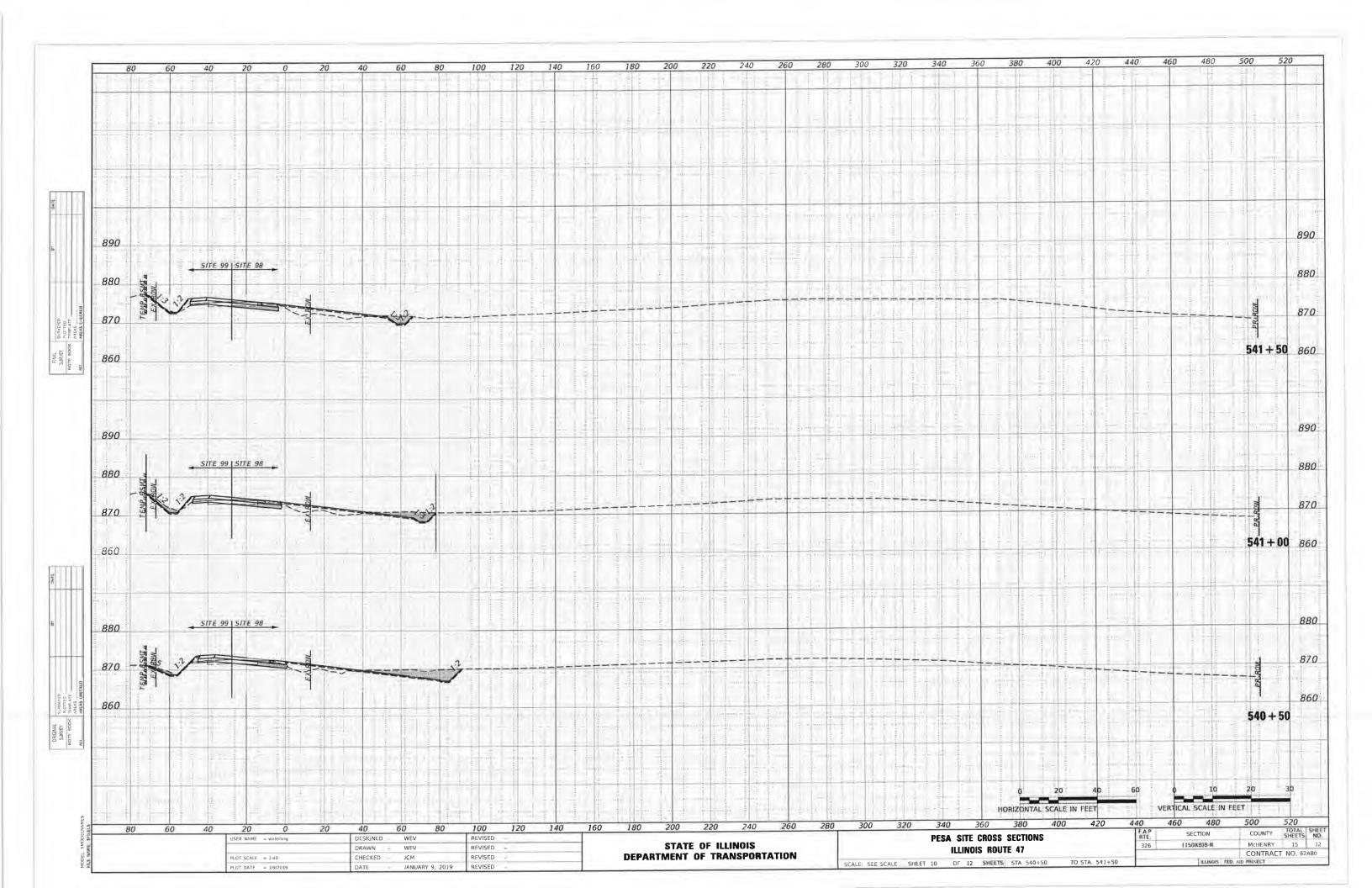


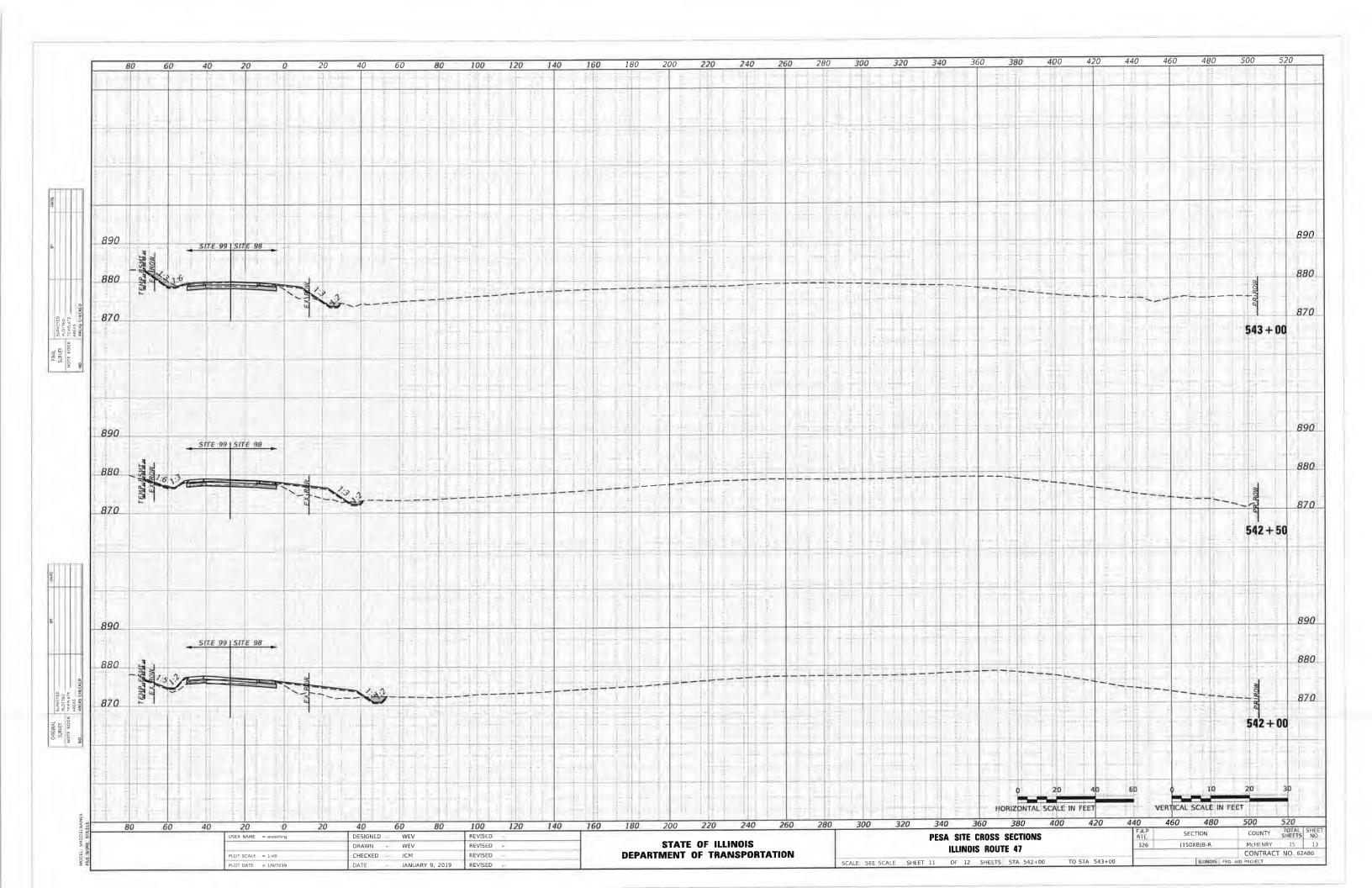


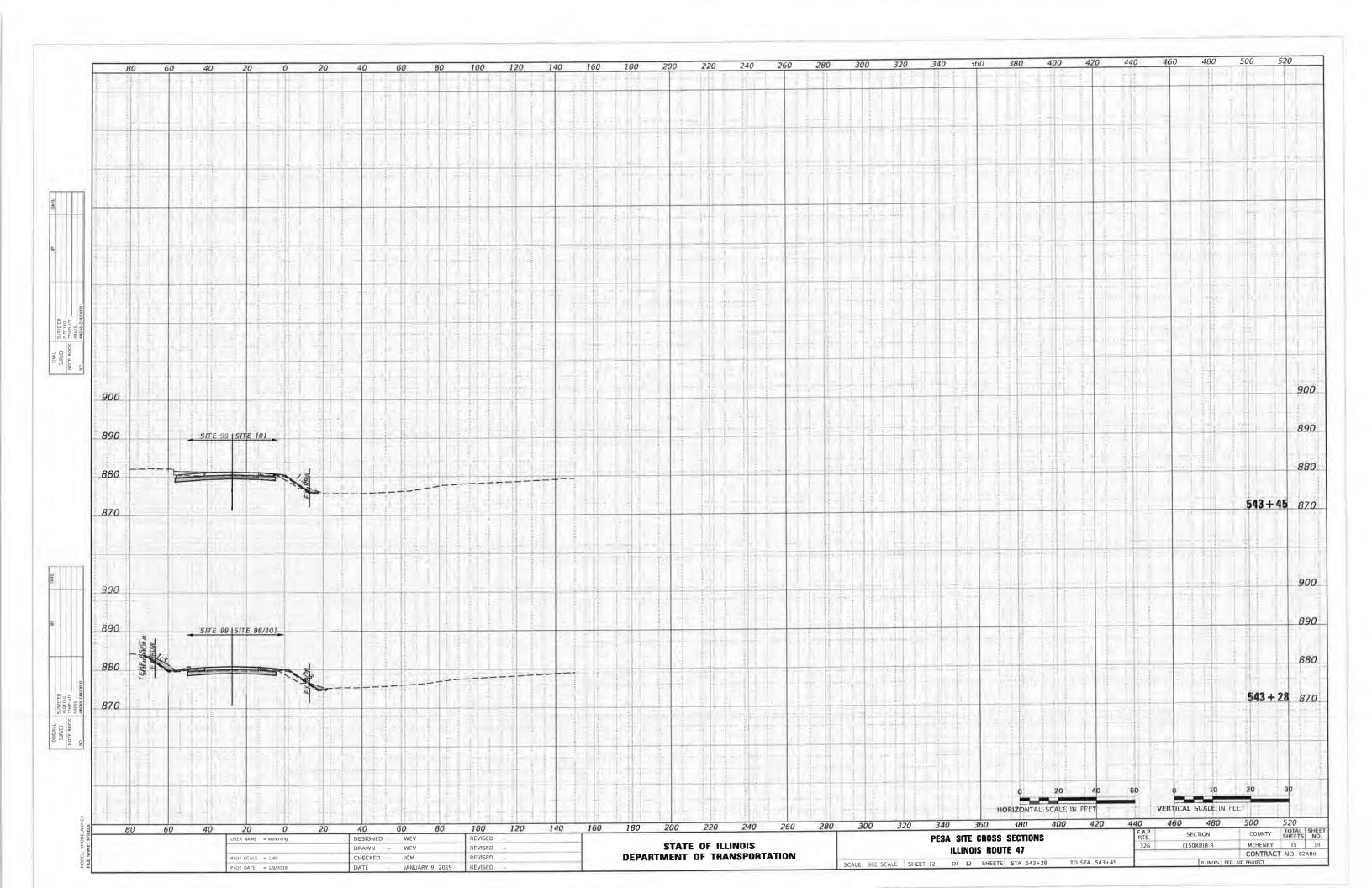


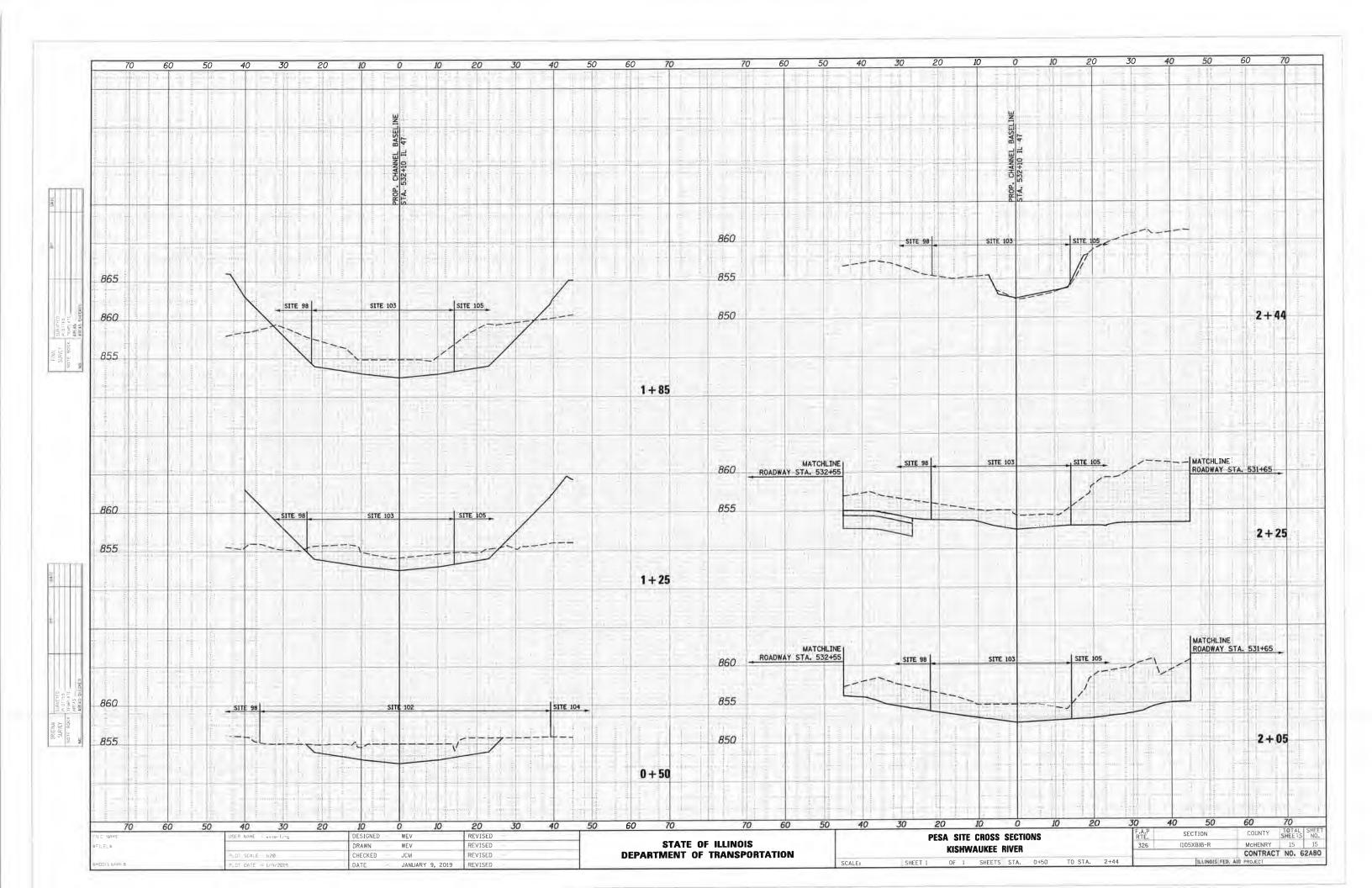












	-	TT 0	**						IL 47	PESA				A80
	KN	JIC	н				PROJECT D	ESCRIPTION	N				JOB/FILE N	10
		T C				1001		PESA	Excavat	ion Cal	culation			1 of 1
		1					SUBJECT	-	P				PAGE TOT	AL
		Eng	ineers	& Archi	tects		WI	ΕV	1/9/	2019	J(CM	1/9/	2019
							CALC'D BY		CALC DAT	E	CHECKED		CHECKED	DATE
		Te	empora	ary Pav	ement	Excav	ation f	or PE	SA Re	spon	se			
-							Avg Depth	Avg				Total Exc		
	0.0	4		From Sta	To Sta	Length (ft)	(ft)	Width (ft)				(CY)		
	Site	98	RT	544+45	547+00	255	1.50	2.99				42		
	Site	99	LT	543+45	550+12	667	1.50	5.62				208		
_	Site	101	RT	543+45	544+45	100	1.50	9.73				54		
-	Site Site	104	LT	511+75	519+72	797	1.50					661		
_	Site	104 106	RT RT	513+81 518+95	518+24 519+72	443 77	1.50 1.50	4.80 13.01				118		-
	Oile	100	KI	310+93	519+12	- "	1.50	13.01				56		-
							-	-						
					-									
		-												
										12.71				
	-													
-						-								-
											-			
					-							_		
								1						
													-	
					-									
		-												
	-	-												
		- 11		1000										

TZA	TIG	Y T TETT					IL 47	PESA		70		2A80
KN	VI (-	THE			PROJEC	T DESCRIPTION	NC		1		JOB/FILE	NO
orden orden orden	1	* * * *				PSEA	Excavat	ion Cal	culation	1		1 0
					SUBJEC	T. L.					PAGE TO	TAL
	En	gineers 8	& Archi	itects	1	NEV	1/8/2	2019		ICM	1/9	/2019
			-		CALC'D		CALC DATE		CHECKE		CHECKE	
									-			
	1									1		1
												1
										1		
										1		
										-	1	1
		1								+	+	-
	100				\rightarrow	+			-			-
											-	
7				Wildlife (Cross Cu	ılvert					-	
		1 1									+	
Invert of	uneuitah	le material –	954 00' (f	rom Unsuitable	Material out	onlan)				-		
	104			+28 from elev			-d -	240.0	05			
_				+28 from elev.				346.0		-		-
	105				854,00° to ex	disting grou	na =	755.8	SF			
	station	531+24	-2.67	531+21		-				-		-
	Station	-		531+37	_	-					1	
Ler	ngth			15.84		Site 104 v		203	CY			
		-				Site 105 v	/olume =	443	CY			
_								-				
-												
				4			1			1		
	-											
												1
	1											
							7					
				1/4/1								
			1					- 1				
14												
											1	
											1	
										1		
				100							1	

\$	SUMMARY TABLE: EARTHW FAP 326 Illinois Ro		4
	Union Road/Foster Road to I		
ISGS SITE NUMBER 1789V2-	EXCAVATION LOCATION	VOLUME OF EXCAV [CU YD]	TOTAL EXCAV [CU YD]
98	IL 47 (West Side) IL 47 (East Side) Channel Excavation Compensatory Storage Basin	851 8272 135 21855	31113
99	IL 47 (West Side)	338	338
101	IL 47 (East Side)	4	4
102	Channel Excavation	130	130
103	Channel Excavation	407	407
104	IL 47 (West Side) Channel Excavation	4628 0	4628

IL 47 (East Side) Channel Excavation

IL 47 (East Side)

398 10933

	TIONS IL RTE 47	WEST			
ROADWAY F	REALIGNMENT				
	STATION	EXCAVATION END-AREA (SQ FT)	EXCAVATION VOLUME (CU FT)	EXCAVATION VOLUME (CU YD)	TOTAL SITE VOLUME (CU YD)
104	519+72	325	9021	334	
	520+00	324	16225	601	
	520+50	325	16300	604	
	521+00	327	16450	609	
	521+50	331	16625	616	
	522+00	334	8500	315	
	522+50	6	350	13	
	523+00	8	425	16	
	523+50	9	675	25	
	524+00	18	1400	52	
	524+50	38	2650	98	
	525+00	68	3025	112	
	525+50	53	2425	90	
	526+00	44	2375	88	
	526+50	51	1275	47	
	527+00	0	1225	45	
	527+50	49	2575	95	
	528+00	54	2675	99	
	528+50	53	2600	96	
	529+00	51	2525	94	
	529+50	50	3775	140	
	530+00	101	4050	150	
	530+50	61	3150	117	
	531+00	65	3500	130	
	531+50	75	1140	42	
	531+65	77	0	0	4628

	STATION	EXCAVATION END-AREA (SQ FT)	EXCAVATION VOLUME (CU FT)	EXCAVATION VOLUME (CU YD)	TOTAL SITE VOLUME (CU YD)
	532+55	65	2700	100	(00 10)
	533+00	55	2425	90	
	533+50	42	1950	72	-
	534+00	36	1575	58	
	534+50	27	1325	49	
	535+00	26	1375	51	
98	535+50	29	1350	50	
90	536+00	25	1400	52	
	536+50	31	1600	59	
	537+00	33	1775	66	
	537+50	38	1850	69	
	538+00	36	1900	70	
	538+50	40	1750	65	
	539+00	30	0	0	85
	539+00	30	1375	51	
	539+50	25	1100	41	
	540+00	19	775	29	
	540+50	12	775	29	
99	541+00	19	700	26	
33	541+50	9	350	13	
	542+00	5	675	25	
	542+50	22	1625	60	
	543+00	43	1733	64	
	543+45	34			338

ISGS SITE NUMBER 1789V2-	STATION	EXCAVATION END-AREA (SQ FT)	EXCAVATION VOLUME (CU FT)	EXCAVATION VOLUME (CU YD)	TOTAL SITE VOLUME (CU YD)	
	519+72	22	612	23		
	520+00	22	1150	43		
	520+50	24	1200	44		
	521+00	24	1250	46		
	521+50	26	1175	44		
	522+00	21	11950	443		
	522+50	457	22700	841		
400	523+00	451	24125	894		
106	523+50	514	25900	959		
İ	524+00	522	24750	917		
1	524+50	468	25075	929		
	525+00	535	32475	1203		
Ī	525+50	764	38950	1443		
	526+00	794	41150	1524		
1	526+50	852	42650	1580		
	527+00	854			1093	
	527+00	854	44400	1644		
	527+50	922	55150	2043		
	528+00	1284	67125	2486		
	528+50	1401	71125	2634		
1	529+00	1444	71550	2650		
105	529+50	1418	73900	2737		
	530+00	1538	62175	2303		
	530+50	949	43575	1614		
	531+00	794	38300	1419		
	531+50	738	11033	409		
	531+65	733		100	19939	
	0000	, 30			10000	

DADWAY RE	ALIGNMENT				
SGS SITE NUMBER 1789V2-	STATION	EXCAVATION END-AREA (SQ FT)	EXCAVATION VOLUME (CU FT)	EXCAVATION VOLUME (CU YD)	TOTAL SITE VOLUME (CU YD)
	532+55	584	23265	862	
	533+00	450	23700	878	
	533+50	498	13525	501	
	534+00	43	2475	92	
	534+50	56	3150	117	
1	535+00	70	4450	165	
	535+50	108	6825	253	
1	536+00	165	10400	385	
	536+50	251	13675	506	
	537+00	296	16625	616	
	537+50	369	20550	761	
98	538+00	453	23650	876	
	538+50	493	20025	742	
	539+00	308	12525	464	
	539+50	193	8400	311	
	540+00	143	6375	236	
	540+50	112	4625	171	
1	541+00	73	3050	113	
	541+50	49	2125	79	
	542+00	36	1575	58	
	542+50	27	1450	54	
	543+00	31	866	32	
	543+28	30			8272
101	543+28	30	510	19	
101	543+45	30			4

PESA XSECTI		The Company of the Co			
ISGS SITE NUMBER 1789V2-	STATION	EXCAVATION END-AREA (SQ FT)	EXCAVATION VOLUME (CU FT)	EXCAVATION VOLUME (CU YD)	TOTAL SITE VOLUME
	535+00 535+50	53	4125 9525	153 353	(CU YD)
98	536+00 536+50	269 723	24800 50525	919 1871	
	537+00 537+50	1298 1979	81925 116600	3034 4319	
	538+00 538+50	2685 3129	145350 157225	5383 5823	
	539+00	3160	0	0	2185

A AULUTIC	NO KIOIWA	JKEE RIVER BASE	LINE		
SITE	STATION	EXCAVATION END-AREA (SQ FT)	EXCAVATION VOLUME (CU FT)	EXCAVATION VOLUME (CU YD)	TOTAL SITE VOLUME (CU YD)
98	0+50	0.0	6	0	
	1+25	0.2	528	20	
	1+85	17.4	736	27	
	2+05	56.2	1496	55	
	2+25	93.4	887	33	
	2+44	0.0			135
102	0+50	92.7	3523	130	
	0+88	92.7			130
104	0+50	0.0	0	0	
	0+88	0.0			0
103	0+88	63.3	2434	90	
	1+25	68.3	4797	178	
	1+85	91.6	1677	62	
	2+05	76.1	1418	53	
	2+25	65.7	636	24	
	2+44	1.2			407
105	0+88	12.6	465	17	
	1+25	12.6	2548	94	
	1+85	72.4	2305	85	
	2+05	158.1	3570	132	
	2+25	198.9	1890	70	
	2+44	0.0			398

May 28, 2019

James Curtis
Chief, Geologic & Special Waste Unit
Environment Section, Bureau of Design and Environment
Illinois Department of Transportation
2300 Dirksen Parkway, Rm. 330
Springfield, IL 62764

Dear Mr. Curtis,

Information in this letter pertains to the following project:

Project name: FAP 326 (IL 47) over the Kishwaukee River

County: McHenry
Sequence #: 22136A
Job No.: D91-023-14

ISGS Project: 3751

Survey Target Date: July 26, 2019
Design Date: December 8, 2017

This Site Inspection Letter Report (SILR) is submitted in response to your request, received by the ISGS on April 26, 2019 to conduct such an assessment for improvements to IL 47 over the Kishwaukee River, unincorporated Grafton Township, McHenry County (Attachment 1). This letter contains the findings of the site inspection and records search as noted, and will constitute the Final Report for this project. A site inspection has been conducted, and regulatory databases have been checked as noted, but no historical research, interviews, or regulatory file reviews were conducted. Acquisition of additional ROW or easements, in-stream work, and excavation or subsurface utility relocation are expected. No railroad ROW involvement is anticipated for this project. Stationing information was provided by IDOT in feet for IL 47 only, and is presented as such in this report. All stationing information is approximate, and refers to the approximate midpoint of each site along the ROW. All measurements are approximate and taken from the centerlines of the roads.

Project Sites

Project sites will be described from north to south along IL 47 below. Attachment 1 contains a project location map. Attachment 2 contains a map of all sites discussed in this report. Fieldwork for this project was conducted on May 20, 2019.

This project intersects previous ISGS PESAs and PSIs as follows:

ISGS PESA#	Date submitted to IDOT	Intersects
1789	February 3, 2009	Along IL 47
1789A	June 6, 2011	Along IL 47
1789V	October 28, 2013	Along IL 47
1789V2	August 17, 2016	Along IL 47

Site 3751-1 (1789A-8, 1789V-91, 1789V2-99). Residences, 11605 Hawthorne Way, and 6414-6518 Suttondale Road, unincorporated Grafton Township (northwest and southwest corners of IL 47 and Hawthorne Way; approximate station 550+00 LT; Attachment 2). This site is occupied by five residences. A pole-mounted transformer was observed in the Suttondale Road ROW, west of the residence at 6414 Suttondale Road. This site did not appear on any of the regulatory lists checked for this project.

Site 3751-2 (1789A-7, 1789A-10, 1789A-12, 1789V-90 [partial], 1789V2-98 [partial], 1789V2-104 [partial]). Agricultural land, 7000-8300 blocks of IL 47, unincorporated Grafton Township (northwest, northeast, and southwest quadrants of IL 47 and the Kishwaukee River; approximate stations 514+00 LT, 525+00 LT, 535+00 LT, 539+00 RT, and 549+00 RT; Attachment 2). This site is occupied by agricultural land. This site did not appear on any of the regulatory lists checked for this project.

Site 3751-3 (1789A-9, 1789V-93, 1789V2-101). Vacant land, 6600 block of IL 47, unincorporated Grafton Township (east of the IL 47 and Hawthorne Way intersection; approximate station 544+00 RT; Attachment 2). This site is occupied by vacant grass and tree-covered land. A dirt road extended onto the site from IL 47. Because of a chain extending across the dirt road and no trespassing signs, a complete site inspection was not performed. This site did not appear on any of the regulatory lists checked for this project.

Site 3751-4 (1789A-6, 1789V-94, 1789V2-102). Kishwaukee River, 6800 block of IL 47, unincorporated Grafton Township (east and west sides of IL 47 between Hawthorne Way and Union/Foster Roads; approximate station 532+00 LT and RT; Attachment 2). This site is occupied by a river.

This site appears in IEPA's Water Quality Report.

Site 3751-5 (1789V2-103). Bridge, 6800 block of IL 47, unincorporated Grafton Township (IL 47 over the Kishwaukee River; approximate station 532+00 LT and RT; Attachment 2). This site is occupied by a painted bridge (S.N. 056-0025) carrying IL 47 over the Kishwaukee River. This site did not appear on any of the regulatory lists checked for this project.

Site 3751-6 (1789-I, 1789A-5, 1789V-95, 1789V2-105). Brady Trucking, 10960 Foster Road, unincorporated Grafton Township (northeast quadrant of IL 47 and Foster Road; approximate station 530+00 RT; Attachment 2). This site is occupied by a trucking company. Site features included two sheds and an office building located on the east end of the site. Employee-only signs and a gated entrance prevented access to the remainder of the site and those

site areas were inspected from the IL 47 and Foster Road ROW only.

Under the name "Zimmerman" and the address "Rte 47" in Huntley, this site appears on the BOL list (IEPA #1110350003).

Under the name "IEPA OER" and the address "1096 Foster Rd", this site appears on the BOL list (IEPA #1110353001).

Under the name "Ozinga" and the address "10960 Foster Rd Yd 14" in Huntley, this site appears on the BOL list (IEPA #1114350020).

Under the name "Unk. Costics" and the address "1096 Foster Rd", this site appears on the IEMA non-LUST list (IEMA #910641).

Site 3751-7 (1789A-4, 1789V-96, 1789V2-106). Residence and pond, 7090 IL 47, unincorporated Grafton Township (northeast corner of IL 47 and Foster Road; approximate station 522+00 RT; Attachment 2). This site is occupied by a residence, several small storage buildings, and a large pond.

Site 3751-8 (1789V-98 [partial], 1789V2-108). Beverly Materials, 11217 Foster Road, unincorporated Grafton Township (southeast corner of IL 47 and Foster Road; approximate station 514+00 RT; Attachment 2). This site is occupied by a gravel and sand pit. Site features included a small scale house at the entrance to the pit and the office building which was on a trailer. A diesel AST was located near the center of this site, approximately 460 m (1,500 ft) east of IL 47 and approximately 220 m (725 ft) south of Foster Road. Several piles of stone, sand, and dirt associated with normal gravel pit operations were located around the site. Employee-only signs and a gated entrance prevented access to the remainder of the site and those site areas were inspected from the IL 47 and Foster Road ROW only.

Under the name "Foster Road Quarry" and the address "11217 Foster Rd", this site appears on the BOL list (IEPA #1114350031).

This letter serves as the final Site Inspection Letter Report for ISGS #3751.

Date: 05/28/19

Sincerely,

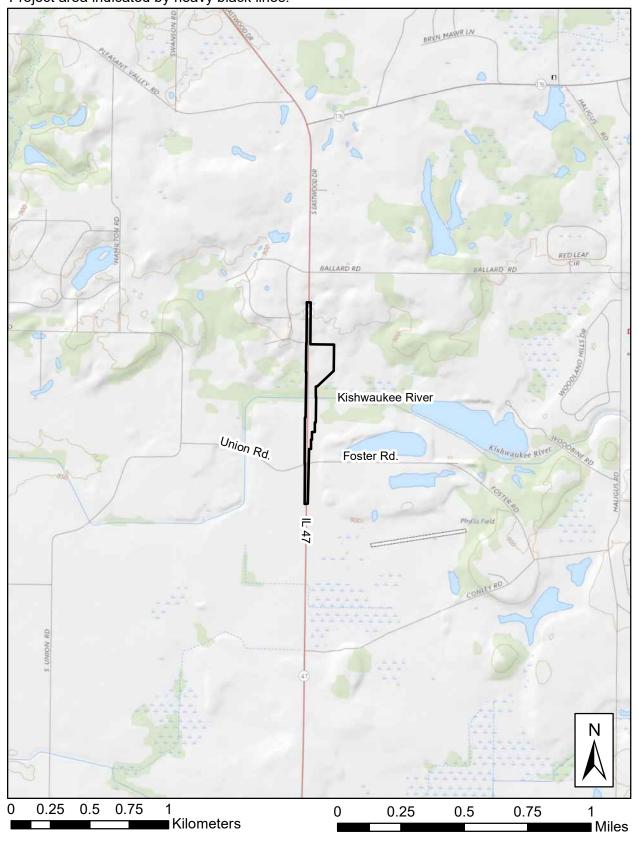
Craig Decker

Environmental Site Assessments Section

Approved:

Anne Ellison, P.G., State of Illinois

License #196-000546


Am L Ell

List of Attachments

- 1. Project location map, ISGS #3751.
- 2. Site location map.

Attachment 1. Project location map, ISGS #3751. Project area indicated by heavy black lines.

Attachment 2. Site location map, Sites 3751-1 through 3751-8. All site boundaries are approximate and should not be used as actual parcel boundaries.

APPENDIX B BORING LOGS

BORING NUMBER 1789V2-101-01 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL COMPLETED 9/5/19 GROUND ELEVATION 880 +/- 2 DATE STARTED 9/5/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/5/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06_BORING LOGS.GPU S-1 2 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; trace Silty and Clay; light brown, moist (0-1.5): End of boring at 1.5' BGS. Boring immediately backfilled with remaining soil REMARKS

1. Sample collected

BORING NUMBER 1789V2-104-01 Huff & Huff, Inc. PAGE 1 OF 1 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI PROJECT LOCATION Huntley/Woodstock, McHenry County, IL **PROJECT NUMBER** 81.0220509.48 GROUND ELEVATION 855 +/- 2 DATE STARTED 9/4/19 COMPLETED 9/4/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME **DEPTH CASING** STAB **GROUND WATER** DRILLING METHOD Direct Push 9/4/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) GRAPHIC LOG RECOVERY REMARKS (feet) MATERIAL DESCRIPTION 0.0 Surface: TOPSOIL; black, moist 1 S-1 0.0 3 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; brown, moist (0-5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06. BORING LOGS.GPJ : Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; black, moist : No Recovery 5.0 3 S-2 S-2: SAND (SW), well-graded; fine to coarse; with Clay, trace Gravel; brown, moist (5-10): Silty CLAY (CL-ML), low plasticity; black, moist : No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected

BORING NUMBER 1789V2-104-02 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI PROJECT LOCATION Huntley/Woodstock, McHenry County, IL **PROJECT NUMBER** 81.0220509.48 DATE STARTED 9/3/19 COMPLETED 9/3/19 GROUND ELEVATION 855 +/- 2 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME **DEPTH CASING** STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) GRAPHIC LOG REMARKS RECOVERY (feet) MATERIAL DESCRIPTION 0.0 1 S-1 0.1 3 S-1: TOPSOIL & Vegetation; black, moist (0-5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ : Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : Silty CLAY (CL-ML), low plasticity; black, moist 5 2 S-2 0.0 S-2: Silty CLAY (CL-ML), low plasticity; with Gravel, fine to coarse; brown, moist (5-10): Sandy CLAY (CLS), fine to coarse; gray, moist 7.5 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample and DUP-04 collected

BORING NUMBER 1789V2-104-03 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI PROJECT LOCATION Huntley/Woodstock, McHenry County, IL **PROJECT NUMBER** 81.0220509.48 GROUND ELEVATION 855 +/- 2 DATE STARTED 9/3/19 COMPLETED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME **DEPTH CASING** STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) GRAPHIC LOG RECOVERY REMARKS (feet) MATERIAL DESCRIPTION 0.0 1 S-1 0.1 3 S-1: TOPSOIL & Vegetation; black, moist (0-5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ : Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : Silty CLAY (CL-ML), low plasticity; black, moist 2 3 S-2 0.1 S-2: Silty CLAY (CL-ML), low plasticity; with Gravel, fine to coarse; brown, moist (5-10): Sandy CLAY (CLS), fine to coarse; gray, moist 7.5 : No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-104-04 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 856 +/- 2 DATE STARTED 9/3/19 COMPLETED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH **CASING** STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) GRAPHIC LOG RECOVERY REMARKS (feet) MATERIAL DESCRIPTION 0.0 1 S-1 0.2 5 S-1: TOPSOIL & Vegetation; black, moist (0-5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06. BORING LOGS.GPJ : Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : Silty CLAY (CL-ML), low plasticity; black, moist 2 2 S-2 0.0 S-2: Silty CLAY (CL-ML), low plasticity; with Gravel, fine to coarse; brown, moist (5-10): Sandy CLAY (CLS), fine to coarse; gray, moist : No Recovery 7.5 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-104-05 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 857 +/- 2 DATE STARTED 9/3/19 COMPLETED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) GRAPHIC LOG RECOVERY REMARKS (feet) MATERIAL DESCRIPTION 0.0 1 S-1 0.0 3 S-1: TOPSOIL & Vegetation; black, moist (0-5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ : Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : No Recovery 5.0 2 4 S-2 0.0 S-2: Silty CLAY (CL-ML), low plasticity; black, moist (5-10): Sandy CLAY (CLS), fine to coarse; brown, moist 7.5 : No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-104-06 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI PROJECT LOCATION Huntley/Woodstock, McHenry County, IL **PROJECT NUMBER** 81.0220509.48 GROUND ELEVATION 897 +/- 2 DATE STARTED 9/3/19 COMPLETED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH **CASING** STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) GRAPHIC LOG REMARKS RECOVERY (feet) MATERIAL DESCRIPTION 0.0 1 S-1 0.0 5 S-1: TOPSOIL & Vegetation; black, moist (0-5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ : Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : Silty CLAY (CL-ML), low plasticity; black, moist 2 S-2 0.0 4 S-2: Silty CLAY (CL-ML), low plasticity; black, moist (5-10): Sandy CLAY (CLS), fine to coarse; brown, moist 7.5 : No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample and DUP-03 collected

BORING NUMBER 1789V2-105-01 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL DATE STARTED 9/4/19 COMPLETED 9/4/19 GROUND ELEVATION 859 +/- 2 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. CASING DATE **DEPTH** STAB **GROUND WATER** DRILLING METHOD Direct Push 9/4/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) GRAPHIC LOG REMARKS RECOVERY DEPTH (ft) MATERIAL DESCRIPTION Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; brown, moist 1 0.0 3 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; brown to black, moist (0-5)ENVIRONMENTAL BH COLUMN VV. REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06 BORING LOGS.GP. : No Recovery 5.0 2 0.0 4 S-2 S-2: Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; black, moist (5-10): Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; brown to gray, moist : No Recovery S-3 0.0 4 S-3: Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; gray, moist (10-13.5): End of boring at 13.5' BGS. Boring immediately backfilled with remaining soil 1. Sample collected Sample collected Sample collected Sample collected M A R K S

Huff 8	Huff & Huff, Inc. 915 Harger Road, Suite 330 Oak Brook, IL 60523	В	ORING	G NUM	IBER	1789\		105- E 1 (
PROJECT NU	iois Department of Transportation, District One JMBER 81.0220509.48	PROJECT LOCATIO	PROJECT NAME _IL-47 Union to Hawthorne, Huntley, PSI PROJECT LOCATION _Huntley/Woodstock, McHenry County, IL GROUND ELEVATION _895 +/- 2 HOLE SIZE _2 inches							
	TED <u>9/4/19</u> COMPLETED <u>9/4/19</u>	GROUND ELEVATION	ON <u>895 +</u>	-/- 2	HOLE :	SIZE 2 inc	hes			
	ONTRACTOR GSG Consultants, Inc.		DATE	TIME	DEPTH	- CASING	ST	AB		
	ETHOD Direct Push	GROUND WATER LEVELS (ft, bgs):								
LOGGED BY										
OEPTH (ft) (ft) GRAPHIC LOG	7822DT Track Geoprobe MATERIAL DES	SCRIPTION			REMARKS	SAMPLE TYPE NUMBER (Depth Interval)	PID RESULTS (PPM)	RECOVERY (feet)	POCKET PEN	
0.0	Surface: GRAVEL (GW), well-graded, fine to coarse; and Sa	ind; brown, moist							P	
2.5	S-1: SAND (SW), well-graded, fine to coarse; and Gravel; wi	th Clay; brown to black, moist			1	S-1 (0-5)	0.0	3		
5.0	: No Recovery S-2: No Recovery					S-2 (5-10)		0		
7.5										
10.0	S-3: Silty CLAY (CL-ML), low plasticity; trace Sand and Grav	vel, fine to coarse; gray, moist			2	S-3 (10-13.5)	0.0	3		
	: No Recovery									
P	: End of boring at 13.5' BGS. Boring immediately backfilled v	with remaining soil			I		1			
R E 1. Samp 2. Samp A R K S	le collected le collected									

BORING NUMBER 1789V2-105-03 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL DATE STARTED 9/4/19 COMPLETED 9/4/19 **GROUND ELEVATION** 884 +/- 2 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DEPTH DATE CASING STAB **GROUND WATER** DRILLING METHOD Direct Push LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; brown, moist 1 0.0 4 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; brown to black, moist (0-5)ENVIRONMENTAL BH COLUMN VV. REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06 BORING LOGS.GP. : No Recovery 2 0.0 4 S-2 S-2: Sandy CLAY (CLS), low plasticity; trace Sand, fine to coarse; brown, moist (5-10): No Recovery S-3 0.0 3 S-3: Silty CLAY (CL-ML), low plasticity; trace Sand, fine to coarse; gray, moist (10-13.5): No Recovery : End of boring at 13.5' BGS. Boring immediately backfilled with remaining soil 1. Sample collected Sample collected Sample and DUP-07 collected Sample collected M A R K S

BORING NUMBER 1789V2-105-04 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 882 +/- 2 DATE STARTED 9/4/19 COMPLETED 9/4/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DEPTH DATE CASING STAB **GROUND WATER** DRILLING METHOD Direct Push LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; brown, moist 1 3 0.0 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; brown to black, moist (0-5)ENVIRONMENTAL BH COLUMN VV. REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06 BORING LOGS.GP. : No Recovery 5.0 2 0.0 4 S-2 S-2: Sandy CLAY (CLS), low plasticity; trace Sand, fine to coarse; brown, moist (5-10): No Recovery S-3 0.1 3 S-3: Silty CLAY (CL-ML), low plasticity; trace Sand, fine to coarse; gray, moist (10-13.5): No Recovery : End of boring at 13.5' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected Sample collected Sample collected Sample collected

BORING NUMBER 1789V2-105-05 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 891 +/- 2 DATE STARTED 9/4/19 COMPLETED 9/4/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DEPTH DATE CASING STAB **GROUND WATER** DRILLING METHOD Direct Push LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; brown, moist 1 0.0 4 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; brown to black, moist (0-5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHR\STINE.CANO\DESKTOP\81.0220042.06 BORING LOGS.GP. : No Recovery 2 0.0 1 S-2 S-2: Sandy CLAY (CLS), low plasticity; trace Sand, fine to coarse; brown, moist (5-10): No Recovery 7.5 10.0 S-3 0.0 3 S-3: Silty CLAY (CL-ML), low plasticity; trace Sand, fine to coarse; gray, moist (10-13.5): No Recovery : End of boring at 13.5' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected Sample collected Sample collected Sample collected

BORING NUMBER 1789V2-106-01 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 858 +/- 2 DATE STARTED 9/4/19 COMPLETED 9/4/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/4/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG 7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION Surface: TOPSOIL; black, moist ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06. BORING LOGS.GPJ S-1 2 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; brown, black @ 1ft, moist (0-1.5): End of boring at 1.5' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected

BORING NUMBER 1789V2-106-02 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 860 +/- 2 DATE STARTED 9/4/19 COMPLETED 9/4/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/4/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS MATERIAL DESCRIPTION 0.0 Surface: ASPHALT and Gravel, fine to coarse; black, moist 0.4 4 ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay fill; brown to black, moist (0-5): No Recovery 2 S-2 0.0 4 S-2: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay fill; brown to black, moist (5-10): Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; dark brown, moist : No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-106-03 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 857 +/- 2 DATE STARTED 9/4/19 COMPLETED 9/4/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/4/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; brown, moist 0.0 4 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; black to brown, moist ENVIRONMENTAL BH COLUMN VV. REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06 BORING LOGS.GP. (0-5): No Recovery 2 S-2 0.0 4 S-2: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; black to brown, moist (5-10): Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; dark brown, moist : No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample and DUP-05 collected

BORING NUMBER 1789V2-106-04 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 859 +/- 2 DATE STARTED 9/4/19 COMPLETED 9/4/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/4/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; brown, moist 0.0 4 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; black to brown, moist ENVIRONMENTAL BH COLUMN VV. REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06 BORING LOGS.GP. (0-5): No Recovery 2 S-2 0.0 4 S-2: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; dark brown, moist (5-10): Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; dark brown, moist : No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-106-05 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 863 +/- 2 DATE STARTED 9/4/19 COMPLETED 9/4/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/4/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; brown, moist 0.0 4 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; black to brown, moist ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHR\STINE.CANO\DESKTOP\81.0220042.06 BORING LOGS.GP. (0-5): No Recovery 2 2 S-2 0.0 S-2: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; dark brown, moist (5-10): Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; dark brown, moist : No Recovery 7.5 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-106-06 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL DATE STARTED 9/4/19 COMPLETED 9/4/19 GROUND ELEVATION 861 +/- 2 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/4/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; brown, moist 0.0 4 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; black to brown, moist ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHR\STINE.CANO\DESKTOP\81.0220042.06 BORING LOGS.GP. (0-5): No Recovery 2 2 S-2 0.0 S-2: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; dark brown, moist (5-10): Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; dark brown, moist : No Recovery 7.5 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-106-07 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 862 +/- 2 DATE STARTED 9/4/19 COMPLETED 9/4/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/4/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; brown, moist 1 0.0 4 ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Clay; brown to black, moist (0-5): No Recovery 5.0 2 2 S-2 0.0 S-2: Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; black to brown, moist (5-10): No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample and DUP-06 collected 2. Sample collected

BORING NUMBER 1789V2-98-01 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 886 +/- 2 DATE STARTED 9/3/19 COMPLETED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME **DEPTH** CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG 7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION S-1 0.2 5 S-1: TOPSOIL & Vegetation; black, moist (0-4.5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06. BORING LOGS.GPJ : Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : No Recovery : End of boring at 5' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample and DUP-02 collected

BORING NUMBER 1789V2-98-02 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 862 +/- 2 DATE STARTED 9/3/19 COMPLETED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG 7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION S-1 0.2 3 S-1: TOPSOIL & Vegetation; black, moist (0-4.5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06. BORING LOGS.GPJ : Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : No Recovery : End of boring at 5' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected

BORING NUMBER 1789V2-98-03 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 864 +/- 2 DATE STARTED 9/3/19 COMPLETED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG 7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION S-1 0.1 4 S-1: TOPSOIL & Vegetation; black, moist (0-4.5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06. BORING LOGS.GPJ : Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : No Recovery : End of boring at 5' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample and DUP-01 collected

BORING NUMBER 1789V2-98-04 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 865 +/- 2 DATE STARTED 9/3/19 COMPLETED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG 7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION S-1 0.0 3 S-1: TOPSOIL & Vegetation; black, moist (0-4.5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06. BORING LOGS.GPJ : Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : No Recovery : End of boring at 5' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample and collected

BORING NUMBER 1789V2-98-05 Huff & Huff, Inc. 915 Harger Road, Suite 330 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 879 +/- 2 DATE STARTED 9/5/19 COMPLETED 9/5/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME **DEPTH CASING** STAB **GROUND WATER** DRILLING METHOD Direct Push 9/5/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) GRAPHIC LOG REMARKS RECOVERY DEPTH (ft) MATERIAL DESCRIPTION 0.0 : TOPSOIL; and Gravel; trace Clay and Sand; tan to brown, moist 1 0.0 3 S-1: TOPSOIL; and Gravel; trace Clay and Sand; tan to brown, moist ENVIRONMENTAL BH COLUMN VV. REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06 BORING LOGS.GP. (0-5): SAND (SW), fine to coarse; and Gravel; some silty Clay; brown, moist : No Recovery 5.0 2 S-2 0.0 4 S-2: SAND (SW), fine to coarse; and Gravel; some silty Clay; brown, moist (5-10): Silty CLAY (CL-ML), low plasticity; trace Topsoil; black to brown, moist 7.5 : SAND (SW), well-graded, fine to coarse; and Gravel; trace Clay; tan, moist : No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil

REMARKS

1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-98-06 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 873 +/- 2 DATE STARTED 9/5/19 COMPLETED 9/5/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/5/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION 0.0 : TOPSOIL; trace silty Sand; brown, moist 0.0 2 1 ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06. BORING LOGS.GPJ S-1: TOPSOIL; trace silty Sand; brown, moist (0-5): No Recovery 2.5 5.0 2 2 S-2 0.0 S-2: SAND (SW), fine to coarse; trace silty Clay and Gravel; tan, moist (5-10): No Recovery 7.5 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample and DUP-08 collected

BORING NUMBER 1789V2-98-07 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI PROJECT LOCATION Huntley/Woodstock, McHenry County, IL **PROJECT NUMBER** 81.0220509.48 GROUND ELEVATION 868 +/- 2 DATE STARTED 9/5/19 COMPLETED 9/5/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/5/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION 0.0 : TOPSOIL; and silty Sand; with Gravel; brown, moist 1 0.0 2 ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ S-1: TOPSOIL; and silty Sand; with Gravel; brown, moist (0-5): No Recovery 2.5 5.0 2 5 S-2 0.0 S-2: Silty CLAY (CL-ML), low plasticity; black to tan, moist (5-10): Silty CLAY (CL-ML), low plasticity; tan to gray, moist 7.5 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-98-08 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI PROJECT LOCATION Huntley/Woodstock, McHenry County, IL **PROJECT NUMBER** 81.0220509.48 GROUND ELEVATION 865 +/- 2 DATE STARTED 9/5/19 COMPLETED 9/5/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/5/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION 0.0 : TOPSOIL; and Sand; with Gravel; brown, moist 3 1 0.0 ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ S-1: Silty CLAY (CL-ML), low plasticity; and Topsoil; black, moist (0-5): Silty CLAY (CL-ML), low plasticity; and Topsoil; brown, moist : No Recovery 5.0 5 2 S-2 0.0 S-2: Silty CLAY (CL-ML), low plasticity; trace Gravel, fine to coarse; light brown and gray, moist (5-10): No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-98-09 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 863 +/- 2 DATE STARTED 9/4/19 COMPLETED 9/4/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/4/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; brown, moist 1 0.0 4 ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ S-1: SAND (SW), well-graded, fine to coarse; and Gravel; little Silt; brown, moist (0-5): No Recovery 5.0 2 4 S-2 0.0 S-2: Silty CLAY (CL-ML), low plasticity; trace Sand and Gravel, fine to coarse; dark brown to gray, moist (5-10): No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

SAIL STATE	Huff Incor	Huff & Huff, Inc. 915 Harger Road, Suite 330 & Huff Oak Brook, IL 60523 (630)-984-9100	E	BORIN	IG NU	MBE	ΞR	1789		.98- E 1 C	
CLI	CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PS										
PRO	JECT N	IUMBER 81.0220509.48	PROJECT LOCATION Huntley/Woodstock, McHenry County, IL								
DAT	DATE STARTED 9/4/19 COMPLETED 9/4/19 GROUND ELEVATION 862 +/- 2 HOLE SIZE 2 inches										
DRI	LLING C	CONTRACTOR GSG Consultants, Inc.									
DRI	LLING N	METHOD Direct Push	GROUND WATER	9/4/2019	DD	DR'		CASING	JIAB]
LOC	GED B	Y AHK CHECKED BY JJR	LEVELS (ft, bgs):								
DRI	LL RIG	7822DT Track Geoprobe									
O DEPTH	GRAPHIC LOG	MATERIAL DESCRIF	PTION				REMARKS	SAMPLE TYPE NUMBER (Depth Interval)	PID RESULTS (PPM)	RECOVERY (feet)	POCKET PEN. (tsf)
ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C:\USERS/CHRISTINE.CANO\DESKTOP\81.0220042.06_BORING LOGS.GPJ S A 3 Y B M B 3 O 10 O 20 O 20 O 30 O		Surface: GRAVEL (GW), well-graded, fine to coarse; and Sand; by S-1: SAND (SW), well-graded, fine to coarse; and Gravel; with Classian in the coarse; and Gravel; with Classian in the coarse; and Gravel; with Classian in the coarse; S-2: Sandy CLAY (CLS), low plasticity; trace Sand, fine to coarse;	ay; brown to black, moist				2	S-1 (0-5) S-2 (5-10)	0.0	4	
M T M TEMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C	1. Sam	: No Recovery : End of boring at 13.5' BGS. Boring immediately backfilled with re	emaining soil								
M A R K S	z. Saili	pie collected									

BORING NUMBER 1789V2-98-11 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 862 +/- 2 DATE STARTED 9/5/19 COMPLETED 9/5/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/5/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS MATERIAL DESCRIPTION 0.0 : TOPSOIL; and Clay; dark brown, moist ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ 5 0.4 S-1: SAND (SW), well-graded, fine to coarse; and Gravel; little Silt; brown, moist (0-5): Silty CLAY (CL-ML), low plasticity; dark brown, moist 2 S-2 0.0 3 S-2: Sandy CLAY (CLS), fine to coarse; some Silt; light gray to light tan, moist (5-10): SAND (SW) well-graded; trace Silt and Clay, fine to coarse; light tan, moist 7.5 : No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-98-12 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 869 +/- 2 DATE STARTED 9/5/19 COMPLETED 9/5/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/5/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS MATERIAL DESCRIPTION 0.0 : TOPSOIL; and Clay; brown, moist 1 0.0 5 S-1 S-1: Silty CLAY (CL-ML), low plasticity; trace Gravel, fine to coarse; brown, moist (0-5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ 2 5 S-2 0.0 S-2: Silty CLAY (CL-ML), low plasticity; trace Gravel, fine to coarse; brown, moist (5-10): SAND (SW), well-graded, fine to coarse; and Silt; brown, moist 7.5 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-98-13 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI PROJECT LOCATION Huntley/Woodstock, McHenry County, IL **PROJECT NUMBER** 81.0220509.48 DATE STARTED 9/5/19 COMPLETED 9/5/19 GROUND ELEVATION 868 +/- 2 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME **DEPTH CASING** STAB **GROUND WATER** DRILLING METHOD Direct Push 9/5/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION 0.0 : TOPSOIL; and Clay; brown, moist 1 0.0 5 S-1 S-1: Silty CLAY (CL-ML), low plasticity; trace Gravel, fine to coarse; brown, moist (0-5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ 2 5 S-2 0.0 S-2: Silty CLAY (CL-ML), low plasticity; brown, moist (5-10): SAND (SW), well-graded, fine to coarse; trace Gravel and Silt; light brown, moist : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-98-14 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI PROJECT LOCATION Huntley/Woodstock, McHenry County, IL **PROJECT NUMBER** 81.0220509.48 DATE STARTED 9/5/19 COMPLETED 9/5/19 GROUND ELEVATION 868 +/- 2 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH **CASING** STAB **GROUND WATER** DRILLING METHOD Direct Push 9/5/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION 0.0 : TOPSOIL; and Clay; dark brown, moist 0.0 3 1 S-1 S-1: Silty CLAY (CL-ML), low plasticity; trace Gravel, fine to coarse; brown, moist (0-5)ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ : SAND (SW), fine to coarse; with Silt; some Gravel; tan, moist : No Recovery 5.0 2 S-2 0.0 3 S-2: SAND (SW), fine to coarse; with Silt; some Gravel; tan, moist (5-10): Silty CLAY (CL-ML), low plasticity; gray, moist 7.5 : No Recovery 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil

REMARKS

1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-98-15 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 CLIENT Illinois Department of Transportation, District One PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL GROUND ELEVATION 869 +/- 2 DATE STARTED 9/5/19 COMPLETED 9/5/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DATE TIME DEPTH CASING STAB **GROUND WATER** DRILLING METHOD Direct Push 9/5/2019 DD DRY LEVELS (ft, bgs): LOGGED BY AHK **CHECKED BY** JJR DRILL RIG _7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION 0.0 : TOPSOIL; and Clay; light brown, moist ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB.GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81.0220042.06. BORING LOGS.GPJ 1.0 5 S-1: Silty CLAY (CL-ML), low plasticity; light brown to tan, moist (0-5): SAND (SW), fine to coarse; trace Silt; tan, moist 2 2 S-2 0.2 S-2: Silty CLAY (CL-ML), low plasticity; brown, moist (5-10): SAND (SW), fine to medium; trace Silt; tan, moist : No Recovery 7.5 10.0 : End of boring at 10' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected 2. Sample collected

BORING NUMBER 1789V2-99-01 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI CLIENT Illinois Department of Transportation, District One **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL COMPLETED 9/3/19 GROUND ELEVATION 867 +/- 2 DATE STARTED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DEPTH CASING DATE TIME STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG 7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ 2 1 S-1 0.1 S-1: TOPSOIL & Vegetation; black, moist (0-1): Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : End of boring at 2' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected

BORING NUMBER 1789V2-99-02 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI CLIENT Illinois Department of Transportation, District One **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL COMPLETED 9/3/19 GROUND ELEVATION 872 +/- 2 DATE STARTED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DEPTH CASING DATE TIME STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG 7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ 0.2 2 1 S-1 S-1: TOPSOIL & Vegetation; black, moist (0-1): Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : End of boring at 2' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected

BORING NUMBER 1789V2-99-03 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI CLIENT Illinois Department of Transportation, District One **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL COMPLETED 9/3/19 GROUND ELEVATION 874 +/- 2 DATE STARTED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DEPTH CASING DATE TIME STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG 7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ 0.2 2 1 S-1 S-1: TOPSOIL & Vegetation; black, moist (0-1): Silty CLAY (CL-ML), low plasticity; with Rocks and Gravel, fine to coarse; brown, moist : End of boring at 2' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected

BORING NUMBER 1789V2-99-04 Huff & Huff, Inc. 915 Harger Road, Suite 330 PAGE 1 OF 1 Huff & Huff Oak Brook, IL 60523 (630)-984-9100 PROJECT NAME IL-47 Union to Hawthorne, Huntley, PSI CLIENT Illinois Department of Transportation, District One **PROJECT NUMBER** 81.0220509.48 PROJECT LOCATION Huntley/Woodstock, McHenry County, IL COMPLETED 9/3/19 GROUND ELEVATION 879 +/- 2 DATE STARTED 9/3/19 HOLE SIZE 2 inches DRILLING CONTRACTOR GSG Consultants, Inc. DEPTH CASING DATE TIME STAB **GROUND WATER** DRILLING METHOD Direct Push 9/3/2019 DD DRY LEVELS (ft, bgs): LOGGED BY JMC **CHECKED BY** JJR DRILL RIG 7822DT Track Geoprobe SAMPLE TYPE NUMBER PID RESULTS (PPM) POCKET PEN. (tsf) (Depth Interval) RECOVERY (feet) GRAPHIC LOG REMARKS DEPTH (ft) MATERIAL DESCRIPTION ENVIRONMENTAL BH COLUMN W/ REMARKS - GINT STD US LAB GDT - 9/18/19 09:16 - C.\USERS\CHRISTINE.CANO\DESKTOP\81 0220042.06 BORING LOGS.GPJ 0.0 2 1 S-1 S-1: TOPSOIL & Vegetation; black, moist (0-1): Silty CLAY (CL-ML), low plasticity; trace Gravel, fine to coarse; brown, moist : End of boring at 2' BGS. Boring immediately backfilled with remaining soil REMARKS 1. Sample collected