STRUCTURE GEOTECHNICAL REPORT

BRIDGE REPLACEMENT TILTON ROAD OVER I-74

Section (92-11HB-4)BR
Vermilion County, Illinois
Job No. P-95-013-98/D-95-013-98
Contract No. 90922
PTB 188-023
Existing Structure No. 092-0087
Proposed Structure No. 092-0204

Prepared For:

Thouvenot, Wade & Moerchen, Inc. 4940 Old Collinsville Road Swansea, IL 62226 T: 618-624-4488

Prepared By:

Civil Design, Inc.
Tyler Ziegler, P.E., S.E.
104 North Second Street, Suite A
Effingham, IL 62401
tziegler@civildesigninc.com T: 217-340-0349

1-7-2020 Exp. 11-30-2021

Table of Contents

1.0	Project	Description and Scope	1
	1.1	Introduction	1
	1.2	Existing Structure Information	1
	1.3	Proposed Structure Information	1
2.0	Field Ex	xploration	1
	2.1	Subsurface Exploration and Testing	
	2.2	Subsurface Conditions	2
3.0	Geotech	nnical Evaluations and Recommendations	2
	3.1	Settlement	2
	3.2	Slope Stability	3
	3.3	Seismic Considerations	3
	3.4	Scour	4
	3.5	Mining Activity	4
	3.6	Lateral Pile/Pier Response	4
	3.7	Liquefaction	5
4.0	Founda	tion Recommendations	5
	4.1	MSE Walls	
	4.2	Abutments	5
		4.2.1 General Feasibility	6
		4.2.2 Spread Footing	
		4.2.3 H-Piles	
		4.2.4 Drilled Shafts	
	4.3	Piers	
5.0	Constru	ction Considerations	11
	5.1	Construction Activities	
	5.2	Temporary Soil Retention System/Sheet Piling	
	5.3	Foundation Construction	
	5.4	Excavation	
6.0	Limitati	ions	12
An	pendices		
- - P		ocation Map	
	,	ype, Size, and Location Plan (TS&L) and Plan and Profile (P+P)	
		ubsurface Data Profile Plot	
	,	oil Boring and Rock Core Logs	
		Flobal Stability Analysis	
	,	eismic Site Class Determination	
	,	Priven Pile Analysis	
	,	Prilled Shaft Analysis	

1.0 Project Description and Scope

1.1 Introduction

The geotechnical investigation summarized herein was performed for the proposed bridge at Tilton Road over I-74 in Vermilion County, Illinois. See Appendix A for Location Map. The purpose of this report is to provide geotechnical design and construction recommendations to aid in the structure planning, final design plans and specification preparation.

1.2 Existing Structure Information

Built in 1962, the existing structure is a six span, 33WF152 steel stringer bridge with a 7" concrete deck supported on concrete stub abutments and 3 column concrete piers. The bridge is on a curved alignment with kinked stringers. The abutments are founded on 2 rows of concrete piles with the front row having a 1:6 batter (H:V). All piers are multi-column with crashwalls, supported on spread footings. The existing bridge back to back abutments is 357'-7 3/8" and is constructed on a 40.95° skew. The out-to-out bridge width is 39'-0". The six span structure spans over I-74 eastbound and westbound interstate lanes as well as 2 collector lanes, 1 on each side of the interstate lanes.

The existing bridge has a sufficiency rating of 46.3 with a deck rating of 4, poor condition with advanced deterioration, superstructure rating of 3, serious condition with significant section loss, and a substructure rating of 4, poor condition with advanced deterioration. The open joints over Piers 2 and 4 have severe corrosion.

1.3 Proposed Structure Information

The proposed structure is a four span bridge with six W33 rolled steel beams supporting a concrete deck on a 41.18° skew. Anticipated span lengths are approximately 55'/75'/75'/55'. MSE walls are being considered in front of each abutment. Beams are spaced at 7'-5" centers with 3'-3½" overhangs. The roadway cross section consists of a 5'-0" min. shoulder, 2 – 12'-0" radial lanes, 5'-2½" min. varies shoulder, and a 5'-0" sidewalk. Out to out of bridge is 43'-8". The proposed bridge is raised approximately 1.9' from existing grade at both abutments to meet the 16'-9" minimum clearance over I-74.

Tilton Road will be closed during construction of the proposed structure. Traffic is to be detoured. For further proposed structure information, see Appendix B for Type, Size, and Location Plan (TS&L).

2.0 Field Exploration

2.1 Subsurface Exploration and Testing

The subsurface investigation consisted of three borings (B-1 through B-3) drilled by the Illinois Department of Transportation in April and May of 2003. B-1 and B-3 were taken near the north and south abutment locations respectively. B-2 was taken in the I-74 median. Soil boring exploration was performed using a hollow stem auger and rock core logging was performed using rotary core with water flush. See Appendix C for Subsurface Data Profile Plot and Appendix D for Soil Boring and Rock Core Logs.

Table 2.1 - Boring Log Summary

Boring Location	Station	Offset	Ground Surface Elevation
B-1 (N. Abut.)	50+29	7.8 ft. RT	636.60
B-2 (Median)	52+15	25.0 ft. RT	615.10
B-3 (S. Abut.)	53+95	6.0 ft. LT	636.10

In addition to the borings discussed above, an additional 6 borings were drilled near the north abutment in November 2018 to assist in determining the presence of voids and fractures. See Section 3.5 - Mining Activity.

2.2 Subsurface Conditions

Groundwater conditions recorded in the borings were first encountered in Boring B-3 at Elev. 621.1. Groundwater elevations were not recorded at Boring B-1 and Boring B-2. Temperature, seasonal variations, and recent rainfall conditions may influence the levels of groundwater table. Without extended periods of observation, the measurement of groundwater conditions herein may not give a true indication of typical groundwater levels. Volume of water depends on the permeability of the soils.

The borings generally encountered sand and silty loam layers from depths 0 to 20 feet having SPT (N) values ranging from 4 to 16 blows per foot, Q_u values of 0.8 to 4.1tsf, and moisture contents ranging between 9% and 22%. At approximate depth of 20 to 24 feet, a sand layer was encountered with N values with approximately 35 blows per foot and moisture contents ranging between 7% and 11%. Below the soil at a depth of around 24 feet, the borings encounter a grey massive shale layer with Q_u values of 2 to 18 tsf, R% values from 0% to 100%, RQD% values from 0% to 82%, and moisture contents ranging between 9% and 17%. Boring B-1 indicates voids via lost circulation and minor resistance in drilling from depths 52.5 to 80 ft (End of Boring). Boring B-2 does not show a presence of voids during drilling. Boring B-3 shows the grey shale having coal seams and mixed layers ranging from depths 57 to 75 ft (End of Boring).

3.0 Geotechnical Evaluations and Recommendations

3.1 Settlement

Based on the provided preliminary plan and profile, the anticipated difference between the existing and proposed elevations at the abutments is 1.9 feet. MSE wall with select backfill over shale is anticipated at the abutments; while, spread footings on shale are anticipated at the piers. The proposed 4 span structure mimics the 4 center spans of the existing structure, in which the existing piers are founded on spread footings. Shale settlement is expected to be minimal due to similarly subjected prior bearing pressures. Select backfill settlement is expected to the minimal due to the lift and compacting requirements. Thus, settlement analyses were not performed.

3.2 Slope Stability

Slope stability analyses of the end slopes for the new bridge abutments were performed. Based on the proposed plans, the end slopes will be cut and an MSE wall will be constructed at each abutment. Analyses were performed at both the north and south abutments using the engineering soil properties from the subsurface exploration data. For preliminary MSE wall geometry, see Section 4.1 below. The slope stability analyses were performed using the software program StablPro. The Bishop's method analysis was used to search for the critical circular failure surface to calculate the factor of safety for the slope.

A live load surcharge of 250 psf was considered at both abutments. Examining the potential for a spread footing at the south abutment, a uniform 4,000 psf was applied over the 6 ft length nearest the MSE wall. From the soil borings, the current embankment is silty/sandy loam with Qu values ranging from 0.8 tsf to 4.1 tsf. By inspection, the long term drained soil conditions control over the short term cohesive undrained conditions for the embankment. The shallow gray massive shale was conservatively grouped into 2 layers with the top layer being treated as a weak shale layer with Qu = 2 tsf and a stronger layer below with Qu ranging from 9 tsf for the south abutment and 12 tsf for the north abutment, indicative of the soil borings.

See Table 3.1 below for slope stability factors of safety at each abutment. Each abutment location achieved the minimum factor of safety of 1.5 for static conditions. Based on the Seismic Performance Zone determined below (SPZ 1), seismic slope stability analyses were not performed. See Appendix E for individual output of the analyses presented in the table.

Location	Required Minimum Factor of Safety	Estimated Factor of Safety
South Abutment	1.5	2.8
North Abutment	1.5	3.2

Table 3.1 - Summary of Slope Stability Factors of Safety

3.3 Seismic Considerations

LRFD Seismic Soil Site Class Definition was determined based on the methodology described in IDOT AGMU 9.1 and the IDOT BBS 149 form for Seismic Site Class Determination. See Appendix F for determination.

Further seismic parameters were determined using the figures and tables provided in AASHTO LRFD Bridge Design Specifications, Article 3.10 for Earthquake Effects, EQ. These parameters are based on a 1000 Year Return Period with a Probability of Exceedance of 7% in 75 years. See table below for a summary of seismic parameters.

Table 3.2 - Summary of Seismic Parameters

Parameter	Value
Seismic Soil Site Class	С
Spectral Acceleration Coefficient at period of 0.2 sec., Ss	0.143g
Spectral Acceleration Coefficient at period of 1.0 sec., S1	0.055g
Site Factor, Short Period, Fa	1.2
Site Factor, Long Period, Fv	1.7
Design Spectral Acceleration at 0.2 sec. (SDS)	0.172g
Design Spectral Acceleration at 1.0 sec. (SD1)	0.094g
Seismic Performance Zone	SPZ 1

The Spectral Acceleration Coefficient at T=1.0 sec. (SD1) and Seismic Performance Zone were confirmed using Bridge Manual Planning Section 2.3.10.3.

3.4 Scour

Scour is not applicable because this is a grade separation structure.

3.5 Mining Activity

Indicative of loss of circulation in the rock core log at Boring B-1, mining activity is present at the north abutment. An additional investigation was performed to address concerns related to mine subsidence risk. Refer to the Mine Subsidence Study performed by Kaskaskia Engineer Group, LLC (April 2019) for further details. After review of the Mine Subsidence Study, IDOT District 5 and the Bridge Office Foundations Unit recommend shortening the bridge length by utilizing MSE walls, moving the north abutment away from the mine impacted zone and avoiding costly cased shaft foundations extending below the coal layer. Standard deep foundations are assumed practical for design, not free of foundation settlement risk but determined to be the best risk adverse vs cost option.

3.6 Lateral Pile/Pier Response

The table below provides soil parameters to structural engineer for lateral or displacement analysis of the foundations. The values were estimated based on the descriptions given in the soil boring logs. No specific analyses were performed on the soil to determine the estimated parameters.

The designer shall be cognizant of the selected abutment foundation type and the interaction with the surrounding select backfill and shale. In addition, consideration shall be given to current and future lateral resistance of the degrading shale at the north abutment.

Table 3.3 – Recommended Soil Parameters for Lateral Pile Load Analysis

		Short	Term	Long	Term	K	
Soil Description	γ (pcf)	c' (psf)	θ (deg.)	c' (psf)	θ (deg.)	(pci)	€50
Select Backfill	120	0	30	0	30	50	N/A
Gray Massive Shale	130	2000	0	50	35	100	0.005

3.7 Liquefaction

According to IDOT AGMU Memo 10.1, liquefaction is not applicable in Seismic Performance Zone 1.

4.0 Foundation Recommendations

4.1 MSE Walls

In an effort to minimize bridge length, MSE walls are proposed in front of each abutment. Wall height from top of exposed panel line to theoretical top of leveling pad line is approximately 18 feet at the south abutment and 21 feet at the north abutment. Limits of the reinforced soil mass shall extend a minimum of 0.7 times the height of the wall.

The top of MSE wall leveling pad/bottom of soil reinforcement is located 3'-6" below finished grade at the face of the MSE wall per IDOT Bridge Manual Fig. 3.11.1-2. The ground line at the proposed south MSE wall is approximately at Elev. 615.9. Coincidently, gray massive shale is encountered at Elev. 615.6 in Boring 3 at the south abutment. The ground line at the proposed north MSE wall is approximately at Elev. 614.0 and gray massive shale is encountered at Elev. 612.1 in Boring 1 at the north abutment. Because shale is considered a frost susceptible rock, excavation down to the specified frost depth of 3'-6" is recommended. See Appendix B for finished grade line at front face of wall.

Assuming a shale undrained shear strength of 2.0 ksf, the factored bearing resistance for the MSE wall leveling pad is 4.8 ksf.

4.2 Abutments

Preliminary superstructure loads for the proposed structure configuration discussed above were provided by Thouvenot, Wade & Moerchen, Inc. Including the approach slab and abutment self-weight, each abutment will experience an estimated Total Factored Load of 1,100 kips at the bottom of abutment.

4.2.1 General Feasibility

Spread footings and deep foundations including H-piling and drilled shafts are considered at the abutments. See Sections 4.2.2 through 4.2.4 further abutment discussion. The existing abutments are founded on concrete piles embedded into shale.

Spread footings are generally less expensive and simplifies construction in comparison to deep foundations. Although deep foundation skilled laborers and equipment will be required at the north abutment regardless. Consideration shall be given to the final bearing fixity configuration and adjacent substructure stiffness in relation to transferring lateral forces across the structure.

Integral abutments are preferred to eliminate joints in the bridge deck. IDOT ABD Memo 19.8 for Integral Bridge Policies and Details allows the use of integral abutment structures with MSE walls when determined to be the most feasible option.

4.2.2 Spread Footing

Assuming the spread footing rests on the MSE wall select fill with an effective friction angle of 30 degrees, the factored bearing resistance is 3.4 ksf. Evaluating the factored loads and factored bearing resistance, a 58 foot long by 6 foot wide spread footing abutment is determined feasible.

Using a service uniform vertical pressure of 1.0 ksf, the unit factored sliding resistance is 0.46 ksf. Passive pressure is neglected but may be considered when the applied loading acts towards the approach. In regard to sliding resistance, the selection of bearing type is critical when considering the use of spread footing abutments.

The designer shall indicate a maximum horizontal service sliding force as well as a vertical surcharge load in the Contract plans to assist the MSE wall supplier during design. Centerline of abutment bearing shall be 3'-6" min from the face of panel. See Bridge Manual Figure 3.11.1.4-3 for further spread footing abutment details.

4.2.3 H-Piles

Deep foundation piles are another suitable foundation option based on the assumed loads at the abutments. Due to the presence of shallow shale at the subject site and H-piles being most effective in point bearing applications, H-piles are recommended over metal shell piles.

Tables 4.1 and 4.2 below summarize the nominal required bearing (RN), factored resistance available (RF), estimated pile length and estimated pile tip elevation. RN indicates the resistance of the pile during driving, which assists the Contractor from causing damage to the pile. RF represents the net long term axial geotechnical resistance available to support the factored structure loads. The estimated pile lengths shown in the table include a 2 foot pile embedment into the abutment. Analyses have been performed using the IDOT Static Method of Estimating Pile Length. See Appendix G

Table 4.1 - H-Pile Capacity at the South Abutment

Pile Size	Nominal Required Bearing, RN (kips)	Factored Resistance Available, RF (kips)	Estimated Pile Length (ft.)	Estimated Pile Tip Elevation (ft.)
	104	57	21	610.75
HP12x53	248	137	23	608.75
	382	210	25	606.75
	114	63	21	610.75
11042 04	262	144	23	608.75
HP12x84	399	219	25	606.75
	501	276	27	604.75
	127	70	21	610.75
HP14x73	301	165	23	608.75
	475	261	25	606.75
	141	77	21	610.75
11044 447	318	175	23	608.75
HP14x117	495	272	25	606.75
	621	342	27	604.75

Table 4.2 - H-Pile Capacity at the North Abutment

Pile Size	Nominal Required Bearing, R _N (kips)	Factored Resistance Available, RF (kips)	Estimated Pile Length (ft.)	Estimated Pile Tip Elevation (ft.)
	86	47	23	609.5
HP12x53	230	127	25	607.5
	370	203	27	605.5

	95	52	23	609.5
HD42 04	243	134	25	607.5
HP12x84	386	212	27	605.5
	488	269	29	603.5
	105	58	23	609.5
HP14x73	279	154	25	607.5
	453	249	27	605.5
	118	65	23	609.5
HP14x117	296	163	25	607.5
F1F14X11/	473	260	27	605.5
	606	333	29	603.5

Note the South Abutment HP12x53 and HP14x73 piles reach maximum pile driveable length at 25 feet and 26 feet, respectively, being limited by the maximum structural nominal required bearing of the pile. Similarly, the North Abutment HP12x53 and HP14x73 piles reach maximum pile driveable length at 26 feet and 27 feet, respectively. The factored resistance available values shown in the table are intended to provide the designer with a range of feasible options for the anticipated vertical loading. Piles will need to be evaluated for lateral resistance in final design.

Piles shall be driven at the top of MSE wall leveling pad/bottom of soil reinforcement. Preliminary ground surface elevation against pile during driving is assumed at Elev. 612.0 at the south abutment and Elev. 610.5 at the north abutment. The top of the MSE wall elevation shall be the bottom of the abutment cap elevation. The top of coping elevation shall be 6" above the bottom of abutment cap elevation.

Per IDOT ABD Memo 19.8, a corrugated metal pipe or HDPE pipe pile sleeve shall be placed around each pile for the full height of the MSE select backfill. The void between the pile and pile sleeve shall be filled with bentonite. Minimum space between the pile and pile sleeve shall be 3" or as required by design to accommodate the total pile movement. Settlement of the MSE wall soil reinforcement, while minimal, could potentially cause additional vertical forces on the piles. Using pile sleeves at both abutments limits the effects of downdrag on the piles.

One test pile is recommended at each abutment location. Pile shoes are not required. H-piles shall be spaced no closer than three pile diameters, center to center. Wingwalls parallel with the abutment cap shall be used to control the remainder of the soil slope. The distance between face of the MSE wall to the face of the abutment cap shall be 3'-0" minimum. See ABD Memo 19.8, Figure 23 for further details of MSE Walls at Integral Abutments.

4.2.4 Drilled Shafts

Drilled shafts are also a feasible option for the abutments. Tables 4.3 and 4.4 below summarize the nominal shaft resistance available for side and tip resistance, factored shaft resistance available, and estimated tip elevation for various shaft diameters and socket depths into the shallow underlying shale. Analyses have been performed using the IDOT Axial Capacity of Drilled Shafts in Soft Shale spreadsheet presenting geotechnical axial resistance and estimated settlement. See Appendix H.

Table 4.3 – Drilled Shaft Capacity at the South Abutment

Shaft Diameter	Socket Depth (ft.)	Nominal Shaft Resistance Available (kips) SIDE	Nominal Shaft Resistance Available (kips) TIP	Factored Shaft Resistance Available (kips)	Tip Elevation (ft.)
	5	105	47	76	607.0
24-inch	10	144	72	108	602.0
Z4-inch	15	203	218	211	597.0
	20	378	220	299	592.0
	5	131	72	102	607.0
20: 1	10	180	112	146	602.0
30-inch	15	253	340	296	597.0
	20	472	342	407	592.0
	5	158	111	134	607.0
36-inch	10	216	213	215	602.0
	15	304	487	395	597.0
	5	210	211	211	607.0
48-inch	10	288	490	389	602.0
	15	405	856	631	597.0

Table 4.4 – Drilled Shaft Capacity at the North Abutment

Shaft Diameter	Socket Depth (ft.)	Nominal Shaft Resistance Available (kips) SIDE	Nominal Shaft Resistance Available (kips) TIP	Factored Shaft Resistance Available (kips)	Tip Elevation (ft.)
	5	19	23	21	605.5
24-inch	10	39	24	31	600.5
24-111C11	15	101	291	196	595.5
	20	343	342	342	590.5
	5	24	36	30	605.5
30-inch	10	49	119	84	600.5
3U-inch	15	127	468	297	595.5
	20	429	532	480	590.5
	5	29	51	40	605.5
36-inch	10	58	249	153	600.5
	15	152	685	418	595.5
	5	39	89	64	605.5
48-inch	10	78	607	342	600.5
	15	203	1237	720	595.5

The factored shaft resistance available values shown in the table are intended to provide the designer with a range of feasible shaft diameter to rock socket depths for the anticipated vertical loading. Note as the diameter of the shaft increases, the potential settlement also increases. In additional to vertical loading, shafts will need to be evaluated for lateral resistance in final design.

Similar to the driven pile, drilled shaft construction is anticipated to start with the ground line at the top of MSE wall leveling pad/bottom of soil reinforcement (Elev. 612.0 at the south abutment, Elev. 610.5 at the north abutment), constructed prior to MSE wall installation. Shale bedrock is present at this starting ground line for both abutments. Side resistance is neglected above this elevation.

A minimum shaft spacing of three times the shaft diameter center-to center is recommended for group efficiency effects and construction considerations. Clear horizontal distance between the back of the panels and the front edge of the shaft shall be 18 inches minimum.

Removable forms and permanent casing are both viable drilled shaft forming options at the south abutment. Using permanent smooth steel pipe casing will minimize downdrag effects from MSE wall soil reinforcement settlement at both abutments.

4.3 Piers

Preliminary superstructure loads for the proposed structure configuration discussed above were provided by Thouvenot, Wade & Moerchen, Inc. Including the self-weight of a multi-column pier, Piers 1 and 3 will experience an estimated Total Factored Load of 2,100 kips. While, Pier 2 has an estimated Total Factored Load of 2,200 kips.

Due to competent shale near the ground line at the pier foundations, spread footings are the most appropriate foundation type. In addition, the existing piers are founded on spread footings.

With bottom of footing elevation at 610.0 assuming a shale undrained shear strength of 2.0 ksf, the factored bearing resistance is 4.8 ksf and the factored sliding resistance is 1.7 ksf. Evaluating the factored loads and factored bearing resistance, a preliminary spread footing size of 46 foot long by 10 foot wide is determined feasible. Pier footings shall be constructed at or below the existing bottom of footing elevations with no ground improvement/treatment anticipated.

5.0 <u>Construction Considerations</u>

5.1 Construction Activities

All construction activities shall be performed in accordance with the current IDOT Standard Specifications for Road and Bridge Construction and any pertinent Special Provisions or Policies.

5.2 Temporary Soil Retention System / Sheet Piling

A temporary soil retention system or sheet piling may be required to construct the pier footings and MSE wall. At the median, the distance from ground surface to the bottom of proposed pier spread footing is approximately 5 feet. The designer shall verify the excavation depth at each substructure location and evaluate the proposed I-74 traffic staging to determine if temporary shoring is required.

5.3 Foundation Construction

Conventional pile driving and/or drilled shaft equipment and methodologies shall be assumed.

5.4 Excavation

Excavation shall be performed in accordance with IDOT Standard Specifications Section 202. Substructure construction shall occur after removal of the existing structure is complete.

The existing contract plans indicate a 36" culvert pipe near each proposed abutment location. The designer shall coordinate potential conflicts in final design.

A Joint Utility Locating Information for Excavators (J.U.L.I.E.) locate shall be performed prior to commencing construction activities to determine underground utilities within the project limits. In addition, IDOT shall be contacted to locate private utilities.

At foundation and structural fill locations, the exposed subgrade shall be proofrolled to aid in locating any unstable and unsuitable materials. Unstable and unsuitable materials shall be removed and replaced with compacted structural fill.

6.0 Limitations

The analysis and discussion provided herein are for the exclusive use of IDOT and Thouvenot, Wade & Moerchen, Inc. They are based upon the subsurface data obtained at boring locations within the bridge area and are specific to the project described, our understanding of the project as described herein, and geotechnical engineering practice consistent with the standard of care.

The Structure Geotechnical Report (SGR) herein was developed during the planning phase of the project. Due to drilled shaft deep foundations determined feasible in the SGR, a Geotechnical Design Memorandum will be required per IDOT AGMU 12.0.

Appendix A

Location Map

Appendix B

Type, Size, and Location Plan (TS&L) and Plan and Profile (P+P)

Appendix C

Subsurface Data Profile Plot

Note: Boring Stationing and Offsets shown in reference to Tilton Road profile.

LEGEND

EL = Elevation (FT)

D = Depth Below Existing Ground Surface (FT)

N = SPT N-VALUE (AASHTO T206)

Qu = Unconfined Compressive Strength in tons per sq. ft. (tsf) Failure Mode (B=bulge, S=shear, P=penetrometer)

W% = Moisture Content Percentage

R% = Recovery Percentage

RQD% = Rock Quality Designation Percentage

▼ = Groundwater Level First Encountered

 ∇ = Groundwater After 24 to 72 hours

Soil profile is for illustrative purposes only. Actual conditions will vary.

SUBSURFACE DATA PROFILE

I-74 UNDER TILTON ROAD

ROUTE FAI 74 (I-74)

SECTION (92-11HB-4)BR

VERMILION COUNTY

SN 092-0087 (EXIST.)

FILE NAME =	USER NAME = tzlegler	DESIGNED - WMK	REVISED -			F.A.I.	SECTION	COUNTY TOTAL SHEETS	SHEET
P:\EffIngham\3287 - Tilton Road Bridge D5\SGR\Subsurface	Data Profile\Subsurface Data Profile.dgn	DRAWN - WMK	REVISED -	STATE OF ILLINOIS		74	(92-11HB-4)BR	VERMILION 1	1
	PLOT SCALE = 2.0000 ' / In.	CHECKED - TJZ	REVISED -	DEPARTMENT OF TRANSPORTATION			(
Default	PLOT DATE = 12/18/2019	DATE - 10/29/18	REVISED -		SHEET 1 OF 1 SHEETS		ILLINOIS FED. A	ID PROJECT	

Appendix D

Soil Boring and Rock Core Logs

10/18/2007 11:47:58 AM S:\SOILS\BORING LOGS\VERMILION CNTY\0920087.GPJ

SOIL BORING LOG

Page $\underline{1}$ of $\underline{4}$

Date 4/29/03

ROUTE	FAI-74	_ DE	_ DESCRIPTION				Tilton Road over I-74			LOGGED BY CNA			
SECTION	(91-11HB-4)BR		I	LOCA	TION _	SE, SI	SE, SEC. 18, TWP. 19N, RNG. 11W, 2 nd						
COUNTY	Vermilion DR	ILLIN	G ME	THOE		Hol	low Stem Auger HAM	MER TYPE		Auto	matic		
Station	092-0087 52+12.89 (Tilton Rd	l.)	D E P T	B L O W	U C S	M O I S	Surface Water ElevStream Bed Elev.	ft	D E P T	B L O W	U C S	M O I S	
Station	1 North Abut. 50+29 7.8 ft Rt.	_	H	1	Qu	T	Groundwater Elev.: First Encounter	ft	H	S	Qu	T	
Offset Ground Surf	7.8 ft Rt. ace Elev. 636.6	ft	(ft)	(/6")	(tsf)	(%)	Upon Completion After Hrs	ft	(ft)	(/6")	(tsf)	(%)	
Pavement			_				Brown Moderately Sorted Fine Sand (continued)	е	_				
Drawn /Dlask N	lawa d Oik . Olav	635.1					, ,		_	9			
Loam (Embani	lottled Silty Clay (ment)						Brown Poorly Sorted Coarse	614.6 Sand		17 17		7	
				<u> </u>									
			_	2	2.1	22				7 12		15	
				1	B B	22	Gray Massive Shale (Bedrock	612.1 ()	- <u>-25</u>	40		13	
			_						_				
Brown Mottled	Silty Clay Loam	630.1							_	7 13		11	
(Embankment)			_						_	16			
				2	0.8	15				13 17		10	
			-10	2	В		Borehole continued with rock	606.6	-30	24			
			_				coring.		_				
			_	3	1.6	13			_				
				8	В								
			_	2					_				
				6	3.1	13			_				
Brown Sandy (Clay Loam Till	621.6	-15	10	В				35				
				3									
				3	2.6	9							
		618.6	_	4	S								
Brown Modera Sand	tely Sorted Fine		_	9									
				16		11			_				

An assumed centerline elevation of 100.00 and station of 10+00 is used when this information is not available.

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N Value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page $\underline{2}$ of $\underline{4}$

Date 4/29/03

ROUTE	FAI-74	DESCRIPTION	Tilton Road over I-	-74	_ LO	GGED	BY	CNA
SECTION	(91-11HB-4)BR	LOCATION _	SE, SEC . 18, TWP . 19N, R GPS:	RNG. 11W, 2 nd I	PM,	Γ		
COUNTY	Vermilion COR		Core With Water Flush		R E	R	CORE	S T
Station	092-0087 52+12.89 (Tilton Rd.)	CORING BARREL T Core Diameter Top of Rock Elev.		E O	C O V E	Q D	T I M E	R E N G
Station	1 North Abut. 50+29 7.80ft Rt.	Begin Core Elev.		T E	R Y			T H
	face Elev. 636.6	_ _ ft		(ft) (#)	(%)	(%)	(min/ft)	(tsf)
Gray Massive	Shale		6	606.60				
				-35 1	0	0	8	
				_				
(10% Moisture	e)			₋₄₀ 2	38	35	6	12
(9% Moisture)				591.60 -45 3	64	54	2	14
Begin Wash E	3ore							
				-50				

Co	lor	pictures	of the	cores

Page $\underline{3}$ of $\underline{4}$

Date 4/29/03

ROUTE	FAI-74	DESCRIPTION	Tilton Road over I-74		_ LOC	GED	BY(<u>CNA</u>
SECTION	(91-11HB-4)BR	LOCATION SI	E, SEC. 18, TWP. 19N, RNG. PS:	11W, 2 nd PI	М,			
COUNTY	Vermilion COR	RING METHOD Rotary C			R E	R	CORE	S T
Station	092-0087 52+12.89 (Tilton Rd.)	Core Diameter	PE & SIZEBWD4	D C E O R	C O V E	Q D	T I M E	R E N G
Station	1 North Abut. 50+29 7.80ft Rt.	Top of Rock Elev. Begin Core Elev.		T E	R Y			T H
	face Elev. 636.6	_ _ ft		(ft) (#)	(%)	(%)	(min/ft)	(tsf)
Gray Massive	Shale (continued)							
Void - Lost Cii	rculation		584.1	0				
				-55				
				$\overline{}$				
				-60				
				\exists				
				-65				
				 -70				

Color pictures of the cores

No

Cores will be stored for examination until _Job Completion

Page $\underline{4}$ of $\underline{4}$

Date 4/29/03

ROUTE	FAI-74	DESCRIPTION	Tilton Road ov	er I-74	LOG	GED BY	CNA
SECTION	(91-11HB-4)BR	LOCATION S	SE, SEC. 18, TWP. 191 SPS:	N, RNG. 11W, 2 nd F	PM,		
COUNTY	Vermilion COR	RING METHOD Rotary		h	R E	R CORE	S T
Station	092-0087 52+12.89 (Tilton Rd.)	Core Diameter	/PE & SIZEBW	D C E O P R	C O V E	. T Q I . M D E	R E N G
Station	1 North Abut. 50+29 7.80ft Rt.	Top of Rock Elev. Begin Core Elev.	612.10 ft ft ft	T E	R Y		T H
	face Elev. <u>636.6</u>	_ ft		(ft) (#)	(%)	(%) (min/ft)	(tsf)
Void - Lost Ci	rculation (continued)			_			
				563.60			
Void - Minor F	Resistance in Drilling			_			
				<u>-75</u> 			
				_			
End of Boring				556.60 -80			
End of Bonnig				_			
				-90			

Color pictures of the cores

No

Cores will be stored for examination until _Job Completion

10/18/2007 11:47:59 AM S:\SOILS\BORING LOGS\VERMILION CNTY\0920087.GPJ

SOIL BORING LOG

Page $\underline{1}$ of $\underline{3}$

Date 4/30/03

ROUTE	FAI-74	_ DE	DESCRIPTION			Tilton Road over I-74			LOGGED BY CNA		
SECTION	(91-11HB-4)BR		_ L	OCA	TION _	SE, SE	EC. 18, TWP. 19N, RNG	6. 11W, 2 nd PM	1		
COUNTY	Vermilion DR	RILLING	Э МЕ	THOD		Hol	low Stem Auger	HAMMER T	YPE	Automatic	
BORING NO Station	092-0087 52+12.89 (Tilton Ro 2 Median 52+15 25.0 ft Rt.	<u>I.)</u>	D E P T H	B L O W S	U C S Qu	M O I S T	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _		ft ft ft		
Ground Surfa	ce Elev. 615.1	ft	(ft)	(/6")	(tsf)	(%)	After Hrs		ft		
Gray/Brown Mo Loam	ttled Silty Clay	615.1		1							
Gray Massive S	hale	611.1		2		14					
Borehole contin	ued with rock	605.1									
Coming											

An assumed centerline elevation of 100.00 and station of 10+00 is used when this information is not available.

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N Value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page $\underline{2}$ of $\underline{3}$

Date 4/30/03

ROUTE	FAI-74	DESCRIPTION	Tilton Road over	· I-74	LO	GGED	BY(CNA
SECTION	(91-11HB-4)BR	LOCATION S	E, SEC. 18, TWP. 19N, PS:	RNG. 11W, 2 nd	PM,			
COUNTY	Vermilion COR	RING METHOD Rotary (R E	R	CORE	S T
Station	092-0087 52+12.89 (Tilton Rd.)	Core Diameter	PE & SIZEBWD	D C E O P R	V	. Q . D	T I M E	R E N G
Station	2 Median 52+15	Top of Rock Elev. Begin Core Elev.	610.60 ft 600.60 ft	T E				T H
Offset	25.00ft Rt.	_				(0/)	/!/ f 4\	
	ace Elev. 615.1	_ ft		(ft) (#) (%)	(%)	(min/ft)	(tsf)
Gray Massive	Shale			605.10				
						•		
				15 1	0	0	6	
(9% Moisture)				20 2	46	37	5	9
(9% Moisture)				-25 3	36	10	16	12
(9% Moisture)					36	10	16	12
(10% Moisture))			-30 4	100	82	6	18

Color pictures of the cores

No

Cores will be stored for examination until _Job Completion

Page $\underline{3}$ of $\underline{3}$

Date 4/30/03

ROUTE	FAI-74	DESCRIPTION	Tilton Road	over I-74		_ LO	GGED	BY(CNA
SECTION	(91-11HB-4)BR	LOCATION SE	i, SEC. 18, TWP. PS:	19N, RNG. 11W,	2 nd PN	И,			
COUNTY	Vermilion COR	ING METHOD Rotary C		lush		R E	R	CORE	S T
STRUCT. NO. Station	52+12.89 (Tilton Rd.)	Core Diameter	1.6 in		C O R	п С О > E	Q D	T I M E	R E N G
Station	2 Median 52+15	Top of Rock Elev Begin Core Elev	600.60 ft	·	E	R Y		_	T H
Offset	25.00ft Rt. ace Elev. 615.1	- <u>~</u>		(ft)	(#)	(%)	(%)	(min/ft)	(tsf)
	Shale (continued)	_ π		(10)	(11)	(70)	(70)	(11111111111111111111111111111111111111	(131)
(12% Moisture)			35	5 5	40	40	4	8
				- - - - - - -				_	
End of Boring	Sampler - Core Destro	yed During Removal		575.10 -40	6	0	0	5	
				-4(-				

Color pictures of the cores

No

Cores will be stored for examination until _Job Completion

10/18/2007 11:48:00 AM S:\SOILS\BORING LOGS\VERMILION CNTY\0920087.GPJ

SOIL BORING LOG

Page $\underline{1}$ of $\underline{4}$

Date 5/9/03

ROUTE	FAI-74	DE	SCR	PTIO	N		Tilton Road over I-74	4 Lo	OGG	ED BY	<u></u>	NA
SECTION	(91-11HB-4)	BR	_ L	OCA1	TION _	SE, SE	EC. 18, TWP. 19N, RNG	6. 11W, 2 nd PM				
COUNTY	Vermilion	DRILLING	ME	THOD		Hol	low Stem Auger	HAMMER TYPE		Auto	matic	
Station BORING NO Station Offset	992-0087 52+12.89 (Tilton 3 South Abut 53+95 6.0 ft Lt. ace Elev. 636.	Rd.)	D E P T H (ft)	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)	Surface Water Elev Stream Bed Elev Groundwater Elev.: First Encounter _ Upon Completion _ After Hrs.	ft ft <u>▼</u> Wash Bore ft		B L O W S	U C S Qu (tsf)	M O I S T (%)
	oam						Gray Massive Shale	615.6				
							Gray Massive Shale			6		
										9 14	5.2 S	17
			_	2						6		
				3 4	2.1 B	21		611.1	-25	11 16	5.4 B	16
				2 3 4	1.4 B	13	Borehole continued wi coring.	th rock				
				1								
			<u>-10</u>	3 5	2.9 B	13						
		623.6		2 3 5	4.1 B	13						
Gray / Brown S	Sandy Loam	020.0		1								
			▼ -15	2	1.4 B	11			-35			
Dirty Coarse S	andy Gravel	620.6		4								
Gray / Brown S Till	Sandy Clay Loam	619.1		7 12 17								
				25	8.7	9						

An assumed centerline elevation of 100.00 and station of 10+00 is used when this information is not available.

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N Value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

Page $\underline{2}$ of $\underline{4}$

Date 5/9/03

ROUTE	FAI-74	DESCRIPTION	Tilton Road over	· I-74	LO	GGED	BY	CNA
SECTION	(91-11HB-4)BR	LOCATION _	SE, SEC. 18, TWP. 19N, GPS:	RNG. 11W, 2 ⁿ	d PM ,	1	T T	
COUNTY	Vermilion COR	ING METHOD Rotary			R E	R	CORE	S T
Station	092-0087 52+12.89 (Tilton Rd.) 3 South Abut.	CORING BARREL T Core Diameter Top of Rock Elev.	YPE & SIZEBWD 1.6 in 615.60ft	E	C O V R E	Q D	T I M E	R E N G
Station	53+95 6.00ft Lt.	Begin Core Elev.		H H	E R Y			T H
	ace Elev. 636.1	_ _ ft		(ft) ((#) (%)	(%)	(min/ft)	(tsf)
Gray Massive	Shale			611.10				
(17% Moisture	e)			-30	1 16	16	1.5	2
(11% Moisture	e)			-35	2 70	59	1.5	3
(11% Moisture				<u>596.10</u> <u>-40</u>	3 80	64	1.5	9
Begin Wash E	sore							

Color pictures of the cores _

No

Cores will be stored for examination until _Job Completion

ROCK CORE LOG

Page $\underline{3}$ of $\underline{4}$

Date 5/9/03

ROUTE	FAI-74	DESCRIPTION	Tilton Road over I-74		_ LO	GGED	BY	CNA
SECTION	(91-11HB-4)BR	LOCATION S	E, SEC. 18, TWP. 19N, RNG. PS:	11W, 2 nd P	Μ,			
COUNTY	Vermilion COR	RING METHOD Rotary (R E	R	CORE	S T
Station	092-0087 52+12.89 (Tilton Rd.)	Core Diameter	PE & SIZE BWD4	D C E O P R	0 V E	Q D	T I M E	R E N G
Station	3 South Abut. 53+95 6.00ft Lt.	Top of Rock Elev. Begin Core Elev.	615.60 ft 606.60 ft	T E	R Y		_	T H
	ace Elev. 636.1	_ _ ft		(ft) (#)	(%)	(%)	(min/ft)	(tsf)
Gray Massive	Shale (continued)							
Drilled Stiffer								
				50				
Gray Shale wi	th Coal Seams		579.10)				
l cray criaic iii								
Ones Objets			576.10) -60				
Gray Shale								
			574.10)				
Black Coal								
				-65				

Color pictures of the cores

No

Cores will be stored for examination until _Job Completion

ROCK CORE LOG

Page $\underline{4}$ of $\underline{4}$

Date 5/9/03

ROUTEFAI-74	DESCRIPTION	Tilton Road over I-74		_ LO	GGED	BY	CNA
SECTION (91-11HB-4)BR	LOCATION _	SE, SEC. 18, TWP. 19N, RNG. GPS:	11W, 2 nd P	Μ,			
COUNTY Vermilion COR				R E	R	CORE	S T
STRUCT. NO. 092-0087 Station 52+12.89 (Tilton Rd.)	CORING BARREL T Core Diameter Top of Rock Elev.		D C E O P R	C O V E	Q D	T I M E	R E N G
BORING NO. 3 South Abut. Station 53+95 Offset 6.00ft Lt.	Begin Core Elev.		T E	R Y	-		T H
Ground Surface Elev. 636.1	_ _ ft		(ft) (#)	(%)	(%)	(min/ft)	(tsf)
Black Coal (continued)							
Gray Shale & Coal Mixed		569.10	0				
			<u>-70</u>				
End of Boring		561.1	0 -75				
Life of Borning							
			_				
			80				
			-85				

Color pictures of the cores _

No

Cores will be stored for examination until _Job Completion

Appendix E

Global Stability Analysis

Appendix F

Seismic Site Class Determination

PROJECT TITLE===== Tilton Rd over I-74

Substructure 1		
Base of Substruct. Elev. (or ground surf for bents	631.51	ft.
Pile or Shaft Dia.	12	inches
Boring Number	B-1	
Top of Boring Elev.	636.6	ft.
Approximate Fixity Elev.	625.51	ft.
Individual Site Class Definition:		

N (bar):	54	(Blows/ft.)	Soil	Site C	lass C	
N _{ch} (bar):	79	(Blows/ft.)	Soil	Site C	lass C <contr< td=""><td>ols</td></contr<>	ols
s _u (bar):	4.63	(ksf)	Soil	Site C	lass C	
Seismic	Bot. Of	I			Layer	
Soil Column	Sample	Sample			Description	
Depth	Elevation	Thick.	N	Qu	Boundary	
(ft)		(ft.)		(tsf)		
	635.1	1.50	5	2.10		
	632.6		5	2.10		
	630.1	2.50	5	2.10	В	
	626.6	3.50	4	0.80		
1.4	624.1	2.50	11	1.60		
3.9	621.6	2.50	16	3.10	В	
6.9	618.6	3.00	7	2.60	В	
8.9	616.6	2.00	35			
10.9	614.6	2.00	35		В	
13.4	612.1	2.50	34		В	
15.4	610.1	2.00	24			
17.4	608.1	2.00	29			
18.9	606.6	1.50	41		В	
102.0	523.5	83.10	100	5.00	R	

Substructure 2		
Base of Substruct. Elev. (or ground surf for bents	610 ft.	
Pile or Shaft Dia.	inch	nes
Boring Number	B-2	
Top of Boring Elev.	615.1 ft.	
Approximate Fixity Elev.	610 ft.	

N (bar):	69 (Blows/ft.)	Soil Site Class C <controls< td=""></controls<>
N _{ch} (bar):	69 (Blows/ft.)	Soil Site Class C
s, (bar):	(ksf)	NA, H < 0.1*H (Soil)

Individual Site Class Definition:

Seismic Soil Column Depth	Bot. Of Sample Elevation	Sample Thick.	N	Qu	Layer Description Boundary
(ft)		(ft.)		(tsf)	
	613.1	2.00	10		
	611.1	2.00	10		В
1.9	608.1	3.00	10		
4.9	605.1	3.00	10		В
100.0	510.0	95.10	100	5.00	R

Substructure 3		
Base of Substruct. Elev. (or ground surf for bents	629.72	ft.
Pile or Shaft Dia.	12	inches
Boring Number	B-3	
Top of Boring Elev.	636.1	ft.

Approximate Fixity Elev.	623.72 ft.
Individual Site Class Definition:	

N (bar):	51 (Blows/ft.)	Soil Site Class C
N _{ch} (bar):	93 (Blows/ft.)	Soil Site Class C
s _u (bar):	2.08 (ksf)	Soil Site Class C <controls< td=""></controls<>

N _{ch} (bar):	93	93 (Blows/ft.) Soil Site Class C				
s _u (bar):	2.08	(ksf)	Soil	Site C	lass C <co< th=""><th>ontrols</th></co<>	ontrols
Seismic	Bot. Of	I			Layer	
Soil Column		Sample			Description	
Depth	Elevation	Thick.	N	Qu	Boundary	
(ft)		(ft.)		(tsf)		
	633.6	2.50	7			
	631.1	2.50	7	2.10		
	628.6	2.50	7	1.40		
	626.1	2.50	8	2.90		
0.1	623.6	2.50	8	4.10	В	
3.1	620.6	3.00	4	1.40	В	
4.6	619.1	1.50	19		В	
8.1	615.6	3.50	45	5.00	В	
10.6	613.1	2.50	23	5.00		
12.6	611.1	2.00	27	5.00	В	
99.7	524.0	87.10	100	2.00	R	

Base of Subst		or ground si	urf for	bents)
Pile or Shaft D					
Boring Numbe					
Top of Boring	Elev.				
Approximate F	ixity Elev.				
ndividual Sit	e Class Det	finition:			
N (bar):		(Blows/ft.)	NA		
N _{ob} (bar):		(Blows/ft.)	NA		
s _u (bar):		(ksf)	NA		
Seismic	Bot. Of	.` II			Layer
Soil Column		Sample			Description
			м	٥	
	Elevation		N	Qu	Boundary
(ft)		(ft.)		(tsf)	
ı					
	l l				
	l l				
	i i				
	l l				
	l l				
	i i				
	1 1				
	1 1				
	1 1				
	i i				
	l l				
ļ	i i				
			_	_	
	ļ i	1			
			_		

Global Site Class Definition: Substructures 1 through 3

N (bar):	58 (Blows/ft.)	Soil Site Class C
N _{ch} (bar):	80 (Blows/ft.)	Soil Site Class C <controls< td=""></controls<>
s, (bar):	3.87 (ksf)	Soil Site Class C

Appendix G

Driven Pile Analysis

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
418 KIPS	382 KIPS	210 KIPS	25 FT.

PILE TYPE AND SIZE ======= Steel HP 12 X 53

BOT. NOMINAL PLUGGED NOMINAL UNPLUG'D FACTORED FACT		1
OF UNCONF. S.P.T. GRANULAR NOMINAL FEEGELS NOMINAL GEOTECH. GEOT	H. FACTORED	ESTIMATED
LAYER LAYER COMPR. N OR ROCK LAYER SIDE END BRG. TOTAL SIDE END BRG. TOTAL REQ'D LOSS FROM LOSS	AD RESISTANCE	PILE
ELEV. THICK. STRENGTH VALUE DESCRIPTION RESIST. RESIST		LENGTH (FT.)
(11.75) (12.57	17	20
610.75 1.00 Shale 49.4 122.5 184.3 72.3 13.4 103.7 104 0	57	21
609.75 1.00 Shale 49.4 122.5 233.7 72.3 13.4 176.0 176 0	97	22
608.75 1.00 Shale 49.4 122.5 283.1 72.3 13.4 248.2 248 0	137	23
607.75 1.00 Shale 49.4 122.5 332.5 72.3 13.4 320.5 320 0	176	24
606.75 1.00 Shale 49.4 122.5 381.9 72.3 13.4 392.7 382 0	210	25
605.75 1.00 Shale 49.4 122.5 431.3 72.3 13.4 465.0 431 0	237	26
604.75 1.00 Shale 49.4 122.5 480.7 72.3 13.4 537.2 481 0	264	27
603.75 1.00 Shale 49.4 122.5 530.2 72.3 13.4 609.5 530 0	292	28
602.75 1.00 Shale 122.5 13.4		

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
664 KIPS	552 KIPS	304 KIPS	*** Below Boring

SUBSTRUCTURE====================================	South Abut	tment
REFERENCE BORING ==============	3	
LRFD or ASD or SEISMIC ============	LRFD	
PILE CUTOFF ELEV. ====================================	631.72	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	612.00	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =========	612.00	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) ========	612.00	ft

PILE TYPE AND SIZE ======== Steel HP 12 X 84

												·			
BOT. OF		UNCONF.	S.P.T.	GRANULAR	NOM	INAL PLUG	GGED	NON	IINAL UNPLU	JG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV. (FT.)	THICK. (FT.)	STRENGTH (TSF.)	VALUE (BLOWS)	DESCRIPTION	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	BEARING (KIPS)	SCOUR or DD (KIPS)	FROM DD (KIPS)	AVAILABLE (KIPS)	LENGTH (FT.)
611.75	0.25	(131.)	(BLOVS)	Shale	12.8	(KIF3)	143.6	18.5	(KIF3)	39.8	40	0	0	22	20
610.75	1.00			Shale	51.1	130.9	194.7	74.0	21.3	113.8	114	0	0	63	21
609.75	1.00			Shale	51.1	130.9	245.8	74.0	21.3	187.8	188	0	Ö	103	22
608.75	1.00			Shale	51.1	130.9	296.9	74.0	21.3	261.8	262	0	0	144	23
607.75	1.00			Shale	51.1	130.9	347.9	74.0	21.3	335.8	336	0	0	185	24
606.75	1.00			Shale	51.1	130.9	399.0	74.0	21.3	409.9	399	0	0	219	25
605.75	1.00			Shale	51.1	130.9	450.1	74.0	21.3	483.9	450	0	0	248	26
604.75	1.00			Shale	51.1	130.9	501.2	74.0	21.3	557.9	501	0	0	276	27
603.75	1.00			Shale	51.1	130.9	552.2	74.0	21.3	631.9	552	0	0	304	28
602.75	1.00			Shale		130.9			21.3						

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
578 KIPS	538 KIPS	296 KIPS	26 FT.

SUBSTRUCTURE====================================	South Abut	tment
REFERENCE BORING ==============	3	
LRFD or ASD or SEISMIC ===========	LRFD	
PILE CUTOFF ELEV. ====================================	631.72	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	612.00	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =========	612.00	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======	612.00	ft

PILE TYPE AND SIZE ======= Steel HP 14 X 73

BOT. OF		UNCONF.	S.P.T.	GRANULAR	NOI	IINAL PLUG	GED	NOI	MINAL UNPLU	JG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV. (FT.)	THICK. (FT.)	STRENGTH (TSF.)	VALUE (BLOWS)	DESCRIPTION	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	BEARING (KIPS)	SCOUR or DD (KIPS)	FROM DD (KIPS)	AVAILABLE (KIPS)	LENGTH (FT.)
611.75	0.25		, ,	Shale	14.6	,	186.4	21.7	,	40.2	40	0	0	22	20
610.75	1.00			Shale	58.5	171.8	245.0	86.9	18.5	127.1	127	0	0	70	21
609.75	1.00			Shale	58.5	171.8	303.5	86.9	18.5	214.0	214	0	0	118	22
608.75	1.00			Shale	58.5	171.8	362.1	86.9	18.5	300.9	301	0	0	165	23
607.75	1.00			Shale	58.5	171.8	420.6	86.9	18.5	387.8	388	0	0	213	24
606.75	1.00			Shale	58.5	171.8	479.2	86.9	18.5	474.7	475	0	0	261	25
605.75	1.00			Shale	58.5	171.8	537.7	86.9	18.5	561.6	538	0	0	296	26
604.75	1.00			Shale	58.5	171.8	596.2	86.9 86.9	18.5	648.5	596 655	0	0 0	328 360	27 28
603.75 602.75	1.00			Shale	58.5	171.8 171.8	654.8	86.9	18.5 18.5	735.3	655	0	U	360	28
002.73	1.00			Shale		17 1.0			10.5						
					l										
					l										
					l										
					ĺ				l	l					

Maximum Factored

Resistance Available in Boring

375 KIPS

Maximum Pile
Driveable Length in Boring

*** Below Boring

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal

Req.d Bearing of Boring

681 KIPS

PILE TYPE AND SIZE ======== Steel HP 14 X 117

BOT. OF		UNCONF.	S.P.T.	GRANULAR		NOMINAL		NOI	MINAL UNPLU	JG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
	LAYER	COMPR.	N	OR ROCK LAYER		END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV. (FT.)	THICK. (FT.)	STRENGTH (TSF.)	VALUE (BLOWS)	DESCRIPTION	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	BEARING (KIPS)	SCOUR or DD (KIPS)	FROM DD (KIPS)	AVAILABLE (KIPS)	LENGTH (FT.)
611.75	0.25			Shale	15.1		198.1	22.2		51.9	52	0	0	29	20
610.75	1.00			Shale	60.4	183.0	258.6	88.7	29.8	140.6	141	0	0	77	21
609.75 608.75	1.00 1.00			Shale Shale	60.4 60.4	183.0 183.0	319.0 379.4	88.7 88.7	29.8 29.8	229.2 317.9	229 318	0	0 0	126 175	22 23
607.75	1.00			Shale	60.4	183.0	439.8	88.7	29.8	406.5	407	0	0	224	24
606.75	1.00			Shale	60.4	183.0	500.2	88.7	29.8	495.2	495	0	0	272	25
605.75	1.00			Shale	60.4	183.0	560.6	88.7	29.8	583.8	561	0	0	308	26
604.75	1.00			Shale	60.4	183.0	621.1	88.7	29.8	672.5	621	0	0	342	27
603.75	1.00			Shale	60.4	183.0	681.5	88.7	29.8	761.2	681	0	0	375	28
602.75	1.00			Shale		183.0			29.8						
										l					

Maximum Nominal

Req'd Bearing of Pile

929 KIPS

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
418 KIPS	370 KIPS	203 KIPS	27 FT.

SUBSTRUCTURE====================================	North Abut	ment
REFERENCE BORING ====================================	1	
LRFD or ASD or SEISMIC =============	LRFD	
PILE CUTOFF ELEV. ====================================	632.51	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	610.50	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =========	610.50	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) ========	610.50	ft

PILE TYPE AND SIZE ======== Steel HP 12 X 53

BOT. OF		UNCONF.	S.P.T.	GRANULAR	NOI	IINAL PLUG	GED	NOI	IINAL UNPLU	JG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV.	THICK.	STRENGTH	VALUE	DESCRIPTION	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	RESIST.	BEARING	SCOUR or DD	FROM DD	AVAILABLE	LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)	<u>.</u>	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
609.50	1.00			Shale	49.4	400.5	171.9	72.3 72.3	40.4	85.7	86 158	0	0	47 87	23 24
608.50 607.50	1.00 1.00			Shale Shale	49.4 49.4	122.5 122.5	221.3 270.7	72.3 72.3	13.4 13.4	157.9 230.2	230	0	0	127	24 25
606.50	1.00			Shale	49.4	122.5	320.1	72.3	13.4	302.4	302	0	0	166	26
605.50	1.00			Shale	49.4	122.5	369.6	72.3	13.4	374.7	370	0	0	203	27
604.50	1.00			Shale	49.4	122.5	419.0	72.3	13.4	446.9	419	0	0	230	28
603.50	1.00			Shale	49.4	122.5	468.4	72.3	13.4	519.2	468	0	0	258	29
602.50	1.00			Shale	49.4	122.5	517.8	72.3	13.4	591.4	518	0	0	285	30
601.50	1.00			Shale	49.4	122.5	567.2	72.3	13.4	663.7	567	0	ē	312	31
600.50	1.00			Shale		122.5			13.4						
					l										
					l										
					l										
					l										
					l										
					l	1			i	ı	l	ı			

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
664 KIPS	591 KIPS	325 KIPS	*** Below Boring

SUBSTRUCTURE====================================	North Abut	ment
REFERENCE BORING ====================================	1	
LRFD or ASD or SEISMIC ============	LRFD	
PILE CUTOFF ELEV. ====================================	632.51	ft
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	610.50	ft
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =========	610.50	ft
TOP ELEV. OF LIQUEF. (so layers above apply DD) =======	610.50	ft

PILE TYPE AND SIZE ======== Steel HP 12 X 84

BOT. OF		UNCONF.	S.P.T.	GRANULAR	NOI	IINAL PLUG	GED	NOI	MINAL UNPLU	JG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER ELEV.	LAYER THICK.	COMPR. STRENGTH	N VALUE	OR ROCK LAYER DESCRIPTION	SIDE RESIST.	END BRG. RESIST.	TOTAL RESIST.	SIDE RESIST.	END BRG. RESIST.	TOTAL RESIST.	REQ'D BEARING	LOSS FROM SCOUR or DD	LOSS LOAD FROM DD	RESISTANCE AVAILABLE	PILE LENGTH
(FT.)	(FT.)	(TSF.)	(BLOWS)	220011111111	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
609.50	1.00			Shale	51.1		182.0	74.0		95.3	95	0	0	52	23
608.50	1.00			Shale	51.1	130.9	233.0	74.0	21.3	169.3	169	0	0	93	24
607.50	1.00			Shale	51.1	130.9	284.1	74.0	21.3	243.3	243	0	0	134	25
606.50	1.00			Shale	51.1	130.9	335.2	74.0	21.3	317.3	317	0	0	175	26
605.50	1.00			Shale	51.1	130.9	386.2	74.0	21.3	391.4	386	0	0	212	27
604.50	1.00			Shale	51.1	130.9	437.3	74.0	21.3	465.4	437	0	0	241	28
603.50	1.00			Shale	51.1	130.9	488.4	74.0	21.3	539.4	488	0	0	269	29
602.50	1.00			Shale	51.1	130.9	539.5	74.0 74.0	21.3	613.4	539 591	0	0	297 325	30 31
601.50 600.50	1.00 1.00			Shale Shale	51.1	130.9 130.9	590.5	74.0	21.3 21.3	687.4	591	0	U	323	31

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

REFERENCE BORING ===================	1	MAX. REQUIRED	BEARING & RESIS	STANCE for Selected Pile,	Soil Profile, & Losses
LRFD or ASD or SEISMIC =================	LRFD	Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
PILE CUTOFF ELEV. ====================================	632.51 ft	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in Boring
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	610.50 ft	578 KIPS	523 KIPS	288 KIPS	28 FT.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None				
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ==========	610.50 ft				
TOP ELEV. OF LIQUEF. (so layers above apply DD) ========	610.50 ft				

PILE TYPE AND SIZE ======= Steel HP 14 X 73

BOT. OF		UNCONF.	S.P.T.	GRANULAR	NON	IINAL PLUG	GED	NOI	IINAL UNPLU	JG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER ELEV.	LAYER THICK.	COMPR. STRENGTH	N VALUE	OR ROCK LAYER DESCRIPTION	SIDE RESIST.	END BRG. RESIST.	TOTAL RESIST.	SIDE RESIST.	END BRG. RESIST.	TOTAL RESIST.	REQ'D BEARING	LOSS FROM SCOUR or DD	LOSS LOAD FROM DD	RESISTANCE AVAILABLE	PILE LENGTH
(FT.)	(FT.)		(BLOWS)	DESCRIPTION	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(FT.)
609.50	1.00			Shale	58.5		230.3	86.9		105.4	105	0	0	58	23
608.50	1.00			Shale	58.5	171.8	288.9	86.9	18.5	192.3	192	0	0	106	24
607.50	1.00			Shale	58.5	171.8	347.4	86.9	18.5	279.2	279	0	0	154	25
606.50	1.00			Shale	58.5	171.8	406.0	86.9	18.5	366.1	366	0	0	201	26
605.50	1.00			Shale	58.5	171.8	464.5	86.9	18.5	453.0	453	0	0	249	27
604.50	1.00			Shale	58.5	171.8	523.1	86.9	18.5	539.8	523	0	0	288	28
603.50	1.00			Shale	58.5	171.8	581.6	86.9	18.5	626.7	582	0	0	320	29
602.50 601.50	1.00			Shale	58.5 58.5	171.8 171.8	640.2	86.9 86.9	18.5 18.5	713.6 800.5	640 699	0 0	0 0	352 384	30 31
600.50	1.00 1.00			Shale Shale	58.5	171.8	698.7	86.9	18.5	800.5	999	Ð	U	364	31
000.00	1.00			Chaic		17 1.0			10.0						

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

MAX. REQUIRED BEARING & RESISTANCE for Selected Pile, Soil Profile, & Losses

REFERENCE BORING ===================	1	MAX. REQUIRED	BEARING & RESIS	STANCE for Selected Pile,	Soil Profile, & Losses
LRFD or ASD or SEISMIC =================	LRFD	Maximum Nominal	Maximum Nominal	Maximum Factored	Maximum Pile
PILE CUTOFF ELEV. ====================================	632.51 ft	Req'd Bearing of Pile	Req.d Bearing of Boring	Resistance Available in Boring	Driveable Length in <u>Boring</u>
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING =	610.50 ft	929 KIPS	727 KIPS	400 KIPS	*** Below Boring
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None				
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD ==========	610.50 ft				

1100 kips TOTAL FACTORED SUBSTRUCTURE LOAD ========= TOTAL LENGTH OF SUBSTRUCTURE (along skew)======= 55.00 ft NUMBER OF ROWS OF PILES PER SUBSTRUCTURE ======

TOP ELEV. OF LIQUEF. (so layers above apply DD) ======= 610.50 ft

SUBSTRUCTURE========North Abutment

Approx. Factored Loading Applied per pile at 8 ft. Cts ========= 160.00 KIPS Approx. Factored Loading Applied per pile at 3 ft. Cts ======== 60.00 KIPS

PILE TYPE AND SIZE ======= Steel HP 14 X 117

Pile Perimeter======== 4.850 FT. Unplugged Pile Perimeter======== 7.117 FT. Pile End Bearing Area========== 1.469 SQFT. Unplugged Pile End Bearing Area====== 0.239 SQFT.

			•			•									
BOT. OF		UNCONF.	S.P.T.	GRANULAR		NOMINAL		NON	MINAL UNPLU	IG'D	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER	LAYER	COMPR.	N	OR ROCK LAYER	SIDE	END BRG.	TOTAL	SIDE	END BRG.	TOTAL	REQ'D	LOSS FROM	LOSS LOAD	RESISTANCE	PILE
ELEV. (FT.)	THICK. (FT.)	STRENGTH (TSF.)	VALUE (BLOWS)	DESCRIPTION	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	BEARING (KIPS)	SCOUR or DD (KIPS)	FROM DD (KIPS)	AVAILABLE (KIPS)	LENGTH (FT.)
609.50	1.00	(101.)	(220110)	Shale	60.4	(14.11-0)	243.5	88.7	(1.1.1.0)	118.4	118	0	0	65	23
608.50	1.00			Shale	60.4	183.0	303.9	88.7	29.8	207.1	207	0	0	114	24
607.50	1.00			Shale	60.4	183.0	364.3	88.7	29.8	295.7	296	0	0	163	25
606.50	1.00			Shale	60.4	183.0	424.7	88.7	29.8	384.4	384	0	0	211	26
605.50	1.00			Shale	60.4	183.0	485.1	88.7	29.8	473.0	473	0	0	260	27
604.50	1.00			Shale	60.4	183.0	545.5	88.7	29.8	561.7	546	0	0	300	28
603.50	1.00			Shale	60.4	183.0	606.0	88.7	29.8	650.3	606	0	0	333	29
602.50 601.50	1.00			Shale	60.4 60.4	183.0	666.4 726.8	88.7 88.7	29.8 29.8	739.0 827.6	666 727	0	0	367 400	30 31
600.50	1.00 1.00			Shale Shale	60.4	183.0 183.0	720.8	88.7	29.8 29.8	827.0	121	U	U	400	31
000.50	1.00			Silale		103.0			29.0						
						1			l l]	l l		l l	I

Printed 1/6/2020 BBS 147 (Rev. 10/18/2011) Page 1 of 1

Appendix H

Drilled Shaft Analysis

DRILLED SHAFT AXIAL CAPACITY IN SHALE < 100 KSF

DRILLED SHAFT DIA.'S FOR DESIGN TABLE

IN. 24 IN. 30

IN. 36

IN.

48 IN.

IN.

SUBSTRUCTURE & REFERENCE BORING ==== S. Abutment - Boring #3

ESTIMATED TOP OF SHALE ELEVATION ===== 612.00 FT DRILLED SHAFT DIAMETER IN SHALE ====== 48 IN. FACTORED AXIAL LOAD ========= 1100 KIPS

STRUCTURE ========= SN 092-0204

SOCKET	TIP	LAYER	UNCONFINED COMPRESSIVE	AVG. q _u W/IN 2 -	NOMINAL SIDE	CUMULATIVE SIDE		H CORR. CTORS	NOMINAL TIP	NOMINAL SHAFT	FACTORED SHAFT		ANGE OF SERVI		
DEPTH	ELEV.	тніск.	STRENGTH (q ")	SHAFT DIA.	RESIST.	RESIST.	k	d _c	RESIST.	RESIST.	RESIST.	LOAD	SETTLEMENT	LOAD	SETTLEMENT
(FT)	(FT)	(FT)	(KSF)	(KSF)	(KIPS)	(KIPS)			(KIPS)	(KIPS)	(KIPS)	(KIPS)	(IN.)	(KIPS)	(IN.)
5.00	607.00		10.8	4.8	210	210	0.896		211	422	211	100	0.10	170	0.18
10.00	602.00		4.0	10.5	78		1.190		490	778	389	190	0.12	325	0.21
15.00 20.00	597.00 592.00		6.0 18.0	18.0	117 351	405 756	1.310	1.26	856	1262	631	300	0.12	550	0.24
25.00	587.00		18.0		351	1106									
I				ĺ											

Drilled Shaft Design Table for S. Abutment - Boring #3 *Estimated Top of Shale Elevation:* 612.00

Estimated	Top of Sha	le Elevation: 6	12.00			-			(Page 1 of 1)
				NOMINAL	FACTORED	RA	NGE OF SERVI	CE LOAD	ING AND
SOCKET	TIP	TOTAL SIDE		SHAFT	SHAFT	C	ORRESPONDIN		EMENT
DEPTH	ELEV.	RESIST.	RESIST.	RESIST.	RESIST.	LOAD	SETTLEMENT		SETTLEMENT
(FT)	(FT)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(IN.)	(KIPS)	(IN.)
		er Drilled Sha							
5	607	105	47	152	76	30	0.04	70	0.09
10	602	144	72	216	108	50	0.05	90	0.09
15	597	203	218	421	211	100	0.06	170	0.10
20	592	378 er Drilled Sha	220	597	299	140	0.06	240	0.10
5	607	131	72	203	102	50	0.06	90	0.11
10	602	180	112	203 292	146	70	0.06	120	0.11
15	597	253	340	593	296	140	0.06	240	0.11
20	597 592	472	342	814	407	200	0.07	350	0.13
		er Drilled Sha		014	407	200	0.07	330	0.13
5	607	158	111	269	134	60	0.07	110	0.13
10	602	216	213	429	215	100	0.08	180	0.13
15	597	304	487	790	395	190	0.09	325	0.16
		er Drilled Sha		700	000	100	0.00	020	0.10
5	607	210	211	422	211	100	0.10	170	0.18
10	602	288	490	778	389	190	0.12	325	0.21
15	597	405	856	1262	631	300	0.12	550	0.24
]
	•		•						

Printed 5/12/2019 BBS 142 (11/01/16)

DRILLED SHAFT AXIAL CAPACITY IN SHALE < 100 KSF

DRILLED SHAFT DIA.'S FOR DESIGN TABLE

IN. 24

IN.

IN.

IN. 30 36

48 IN.

IN.

ESTIMATED TOP OF SHALE ELEVATION ===== DRILLED SHAFT DIAMETER IN SHALE ======

610.50 FT 48 IN.

FACTORED AXIAL LOAD =========

STRUCTURE ========= SN 092-0204

SUBSTRUCTURE & REFERENCE BORING ==== N. Abutment - Boring #1

1100 KIPS

SOCKET	TIP	LAYER	UNCONFINED COMPRESSIVE	AVG. q _u W/IN 2 -	NOMINAL SIDE	CUMULATIVE SIDE		H CORR.	NOMINAL TIP	NOMINAL SHAFT	FACTORED SHAFT		ANGE OF SERVIC		
DEPTH			STRENGTH (q u)		RESIST.	RESIST.	k	d _c	RESIST.	RESIST.	RESIST.	LOAD	SETTLEMENT	LOAD	SETTLEMENT
(FT)	(FT)	(FT)	(KSF)	(KSF)	(KIPS)	(KIPS)			(KIPS)	(KIPS)	(KIPS)	(KIPS)	(IN.)	(KIPS)	(IN.)
5.00	605.50		2.0	2.0	39		0.896	1.18	89	128	64	30	0.12	60	0.25
10.00	600.50		2.0	13.0	39		1.190	1.24	607	685	342	170	0.15	275	0.26
14.00	596.50		2.0	25.5	31		1.292	1.26	1210	1319	659	325	0.16	550	0.30
15.00	595.50		24.0	26.0	93		1.310	1.26	1237	1440	720	350	0.15	600	0.28
19.00	591.50		24.0		374	577									
20.00	590.50		28.0		109	686									
24.00 26.50	586.50 584.00		28.0 28.0		436 273	1122 1395									

Drilled Shaft Design Table for N. Abutment - Boring #1

Estimated Top of Shale Elevation: 610.50 (Page 1 of 1)

Estimated	TOP OF SHA	le Elevation: 6		NOMINA	EACTORES	D.4	NOE OF SERVE	CELOAD	(Page 1 of 1)
SOCKET	TIP				FACTORED		NGE OF SERVI CORRESPONDIN		
SOCKET		TOTAL SIDE	TIP	SHAFT	SHAFT				
DEPTH	ELEV.	RESIST.	RESIST.	RESIST.	RESIST.	LOAD	SETTLEMENT		SETTLEMENT
(FT)	(FT)	(KIPS) er Drilled Sha	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(IN.)	(KIPS)	(IN.)
5	605.5	19	23	43	21	10	0.05	20	0.11
10	600.5	39	23 24	63	31	10	0.03	30	0.11
14	596.5	55	24 291	345	173	80	0.03	140	0.10
15	595.5	101	291	393	173	90	0.07	160	0.14
19	593.5	288	341	630	315		0.07	275	0.12
20	590.5	343	342	684	342	150 170	0.07	275 275	0.12
		er Drilled Sha		004	342	170	0.07	215	0.11
5	605.5	24	36	60	30	10	0.05	30	0.15
10	600.5	49	119	168	84	40	0.08	70	0.14
14	596.5	68	452	520	260	130	0.10	210	0.17
15	595.5	127	468	594	297	140	0.09	240	0.16
19	591.5	360	531	891	446	220	0.08	375	0.15
20	590.5	429	532	960	480	240	0.08	400	0.14
		er Drilled Sha		300	400	240	0.00	400	0.14
5	605.5	29	51	80	40	20	0.09	40	0.19
10	600.5	58	249	307	153	70	0.09	130	0.19
14	596.5	82	665	747	374	180	0.11	300	0.21
15	595.5	152	685	837	418	200	0.11	350	0.20
19	591.5	432	762	1194	597	275	0.09	500	0.18
20	590.5	514	763	1277	638	300	0.09	550	0.18
		er Drilled Sha							
5	605.5	39	89	128	64	30	0.12	60	0.25
10	600.5	78	607	685	342	170	0.15	275	0.26
14	596.5	109	1210	1319	659	325	0.16	550	0.30
15	595.5	203	1237	1440	720	350	0.15	600	0.28
]

Printed 1/8/2020 BBS 142 (11/01/16)