

TYPE I ELASTOMERIC EXP. BRG.

BEARING ASSEMBLY

Shim plates shall not be placed under Bearing Assembly.

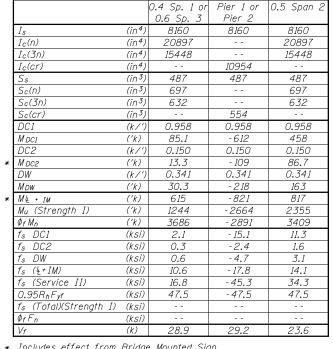
€ 1½" \$ Hole

SIDE RETAINER

will be allowed in lieu of welded plates.

Equivalent rolled angle with stiffeners

Notes:


Anchor bolts shall be ASTM F1554 all-thread (or an Engineer-approved alternate material) of the grade(s) and diameter(s) specified. The corresponding specified grade of AASHTO M314 anchor bolts may be used in lieu of ASTM F1554.

Anchor bolts at fixed bearings may be either cast in place or installed in holes drilled after the supported member is in place.

Anchor bolts for side retainers may be cast in place or installed in holes drilled before or after members are in place. Drilled and set anchor bolts shall be installed according

to Article 521.06 of the Standard Specifications. Side retainers and other steel members required for the elastomeric bearing assembly shall be included in the

cost of Elastomeric Bearing Assembly, Type I. The structural steel plates of the Bearing Assembly shall conform to the requirements of AASHTO M 270 Grade 50. Two $\frac{1}{8}$ in. adjusting shims shall be provided for each

INTERIOR GIRDER MOMENT TABLE

* Includes effect from Bridge Mounted Sign

INTERIOR	GIR	DER REACTI	ON TABLE
		Abuts.	Piers
R _{DC1}	(k)	14.2	82.3
R _{DC2}	(k)	2.2	14.0
Row	(k)	5 . 1	29.3
R4 + IM	(k)	79.4	121.7
R Total	(k)	100.9	247,3

 I_s , S_s : Non-composite moment of inertia and section modulus of the steel section used for computing fs (Total-Strength I, and Service II) due to non-composite dead loads (in.4 and in.3).

 $I_c(n)$, $S_c(n)$: Composite moment of inertia and section modulus of the steel and deck based upon the modular ratio, "n", used for computing f_s (Total-Strength I, and Service II) in uncracked sections, due to short-term composite live loads (in.4 and in.3).

 $I_c(3n)$, $S_c(3n)$: Composite moment of inertia and section modulus of the steel and deck based upon 3 times the modular ratio, "3n", used for computing $f_s(Total-Strength\ I$, and Service II) in uncracked sections, due to

long-term composite (superimposed) dead loads (in.4 and in.3). $I_c(cr)$, $S_c(cr)$: Composite moment of inertia and section modulus of the steel and longitudinal deck reinforcement, used for computing f_s (Total-Strength and Service II) in cracked sections, due to both short-term composite live loads and long-term composite dead loads (in.4 and in.3).

DC1: Un-factored non-composite dead load (kips/ft.).

MDC1: Un-factored moment due to non-composite dead load (kip-ft.). DC2: Un-factored long-term composite (superimposed excluding future wearing surface) dead load (kips/ft.).

MDC2: Un-factored moment due to long-term composite (superimposed excluding future wearing surface) dead load (kip-ft.).

DW: Un-factored long-term composite (superimposed future wearing surface only) dead load (kips/ft.).

M_{DW}: Un-factored moment due to long-term composite (superimposed future wearing surface only) dead load (kip-ft.).

M4 + IM: Un-factored live load moment plus dynamic load allowance (impact) $((kip - ft_*),$

Mu (Strength I): Factored design moment (kip-ft.).

1.25 (MDC1 + MDC2) + 1.5 MDW + 1.75 M& + IM

 $\phi_f M_n$: Compact composite positive moment capacity computed according to Article 6.10.7.1 or non-slender negative moment capacity according to Article A6.1.1 or A6.1.2 (kip-ft.).

fs DC1: Un-factored stress at edge of flange for controlling steel flange due to vertical non-composite dead loads as calculated below (ksi). MDC1 / Snc

fs DC2: Un-factored stress at edge of flange for controlling steel flange due to vertical composite dead loads as calculated below (ksi).

MDC2 / Sc(3n) or MDC2 / Sc(cr) as applicable.

fs DW: Un-factored stress at edge of flange for controlling steel flange due to vertical composite future wearing surface loads as calculated below (ksi).

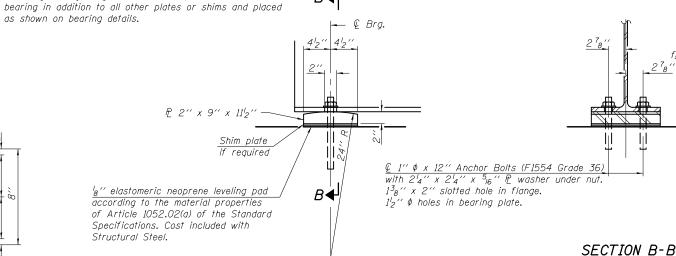
MDW / Sc(3n) or MDW / Sc(cr) as applicable.

fs (4+IM); Un-factored stress at edge of flange for controlling steel flange due to vertical composite live plus impact loads as calculated below (ksi).

M4 + IM / Sc(n) or M4 + IM / Sc(cr) as applicable.

 f_s (Service II): Sum of stresses as computed below (ksi).

fsDC1 + fsDC2 + fsDW + 1.3 fs(4 + IM)


 $0.95R_hF_yf$: Composite stress capacity for Service II loading according to Article 6.10.4.2 (ksi).

 $f_{\mathcal{S}}$ (Total)(Strength I): Sum of stresses as computed below on non-compact section (ksi).

1.25 (fsDC1 + fsDC2) + 1.5 fsDW + 1.75 fs 4 + IM

 $\phi_f F_n$: Non-Compact composite positive or negative stress capacity for Strength I loading according to Article 6.10.7.2 or 6.10.8 (ksi).

 V_f : Maximum factored shear range in span computed according to Article 6.10.10.

ELEVATION AT ABUTMENT

FIXED BEARING

BILL OF MATERIAL

Item	Unit	Total	
Elastomeric Bearing Assembly, Type I	Each	14	
Anchor Bolts, 1"	Each	28	
Anchor Bolts, 1'4''	Each	28	

\$FILES\$ 🖊 MAURER-STUTZ

	USER NAME = piersonbr	DESIGNED - BAS	REVISED -
		CHECKED - JAE	REVISED -
2	PLOT SCALE =	DRAWN - SGM	REVISED -
	PLOT DATE = 7/30/2013 \$TIME\$	CHECKED - BAS	REVISED -

BEARING DETAILS STRUCTURE NO. 057-0253	F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
	74	(57-20HB)BR	MCLEAN	440	225
3111001011L 140. 037-0233			CONTRACT	Γ NO. 7	0570
SHEET NO. 18 OF 28 SHEETS		TILL INDIS FED. ATD PROJECT			