



TYPE I ELASTOMERIC EXP. BEARING

BEARING ASSEMBLY

See Section A-A for ${}^{3}_{4}$ " ϕ Studs in Top Plate

*2" x 11" x 1'-7¹₂" Fill Plate at N. Abut. only (5 req'd) and shim P if required.

SIDE RETAINER Equivalent rolled angle with stiffeners

will be allowed in lieu of welded plates.

Notes:

Anchor bolts shall be ASTM F1554 all-thread (or an Engineer-approved alternate material) of the grade(s) and diameter(s) specified. The corresponding specified grade of AASHTO M314 anchor bolts may be used in lieu of ASTM F1554. Anchor bolts at fixed bearings may be either cast in place or installed in holes drilled after the supported member is in place.

Drilled and set anchor bolts shall be installed according to Article 521.06 of the Standard Specifications.

Anchor bolts for side retainers may be cast in place or installed in holes drilled before or after members are in place.

Side retainers and other steel members required for the elastomeric bearing assembly shall be included in the cost of Elastomeric Bearing Assembly, Type I. Two $\frac{1}{8}$ in. adjusting shims shall be provided for each bearing in addition to all other plates or shims and placed as shown on bearing details.

The anchor bolt sizes and grades shown constitute a calculated seismic structural fuse. Substitution of higher diameter and/or grade anchor bolts will not be allowed.

Shim plates shall not be placed under elastomeric bearing assembly.

		BEAM MOMENT TABLE		
		0.4 Sp. 1 or 0.6 Sp. 3	Piers	0.5 Sp. 2
Is	(in ⁴)	2850	2850	2850
Ic(n)	(in ⁴)	8326	-	8326
Ic(3n)	(in ⁴)	6157	-	6157
Ss	(in 3)	213	213	213
Sc(n)	(in 3)	328	-	328
Sc(3n)	(in ³)	296	-	296
DC1	(k/′)	0.7	0.7	0.7
M DC1	(′k)	76	84	25
DC2	(k/′)	0.18	0,18	0.18
M DC2	(′k)	21	21	12
DW	(k/′)	0.25	0.25	0.25
Mow	(′k)	29	30	16
M4 + IM	(′k)	378	<i>1</i> 65	314
Mu (Strength I)	(′k)	826	464	620
φ _f M _n , φ _f M _{nc}	(′k)	1675	872	1675
fs DC1	(ksi)	4.3	4.7	1.4
fs DC2	(ksi)	0.8	1.2	0.5
fs DW	(ksi)	1.1	1.7	0.6
fs 1.3(4+IM)	(ksi)	18.0	12.1	14.9
fs (Service II)	(ksi)	24.2	19.7	17.4
Vf	(k)	17	-	13

BEAM REACTION TABLE					
		Abut.	Pier		
RDCI	(k)	10.5	29.0		
R _{DC2}	(k)	2.7	6.9		
Row	(k)	3.8	9.5		
R4 + IM	(k)	58.0	91.7		
R Total	(k)	75.0	137.1		

= 7421 N0	Coombe-Bloxdorf Pa	USER NAME = _CFC_	DESIGNED - GB/MCB	REVISED -		BEARING DETAILS	F.A.	SECTION	COUNTY TOTAL SHEET
AME 3024- JECT	-CIVIL ENGINEERS-		CHECKED - MCB	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 093-0024	1B	(12A)B-1	WABASH 52 36
LE N 0930 PRO	-STRUCTURAL ENGINEERS- -LAND SURVEYORS-	PLOT SCALE = 0:2.000000 ': / IN. PLOT DATE = 7/23/2013	DRAWN - TFG	REVISED - REVISED -	DEPARTMENT OF TRANSPORTATION				CONTRACT NO. 74217
E :81	Design Firm License No. 184-002703	100 DATE - //20/2013	CHECKED - MCB	NE #13E0 -		SHEET NO. 14 OF 24 SHEETS		ILLINOIS FED.	ALD PROJECT

/-014 08053

T C	
1s, 5s:	Non-composite moment of inertia and section modulus of the steel section used for computing f (Total-Strength I, and
	Service II) due to non-composite dead loads (in. and in.).
$L(\mathbf{n}) = S_{\mathbf{n}}(\mathbf{n})$	Composite moment of inertia and section modulus of the steel
10(10, 50(1);	and deck based upon the modular ratio, "n", used for computing
	f_s (Total-Strength I, and Service II) due to short-term composite
	live loads (in. ⁴ and in. ³).
Ic(3n), Sc(3n);	Composite moment of inertia and section modulus of the steel
	and deck based upon 3 times the modular ratio, "3n", used for
	computing f_s (Total-Strength I, and Service II) due to long-term
	composite (superimposed) dead loads (in.4 and in.3).
DC1:	Un-factored non-composite dead load (kips/ft.).
MDC1:	Un-factored moment due to non-composite dead load (kip-ft.).
DC2:	Un-factored long-term composite (superimposed excluding
	future wearing surface) dead load (kips/ft.).
MDC2:	Un-factored moment due to long-term composite (superimposed
0.11	excluding future wearing surface) dead load (kip-ft.).
DW:	Un-factored long-term composite (superimposed future wearing
11-	surface only) dead load (kips/ft.). Un-factored moment due to long-term composite (superimposed
MDW:	future wearing surface only) dead load (kip-ft.).
Mh , tue	Un-factored live load moment plus dynamic load allowance
Wr£ * 1M+	(impact) (kip-ft.).
Mu (Strenath I):	Factored design moment (kip-ft.).
	1.25 (M _{DC1} + M _{DC2}) + 1.5 M _{DW} + 1.75 M ₄ + IM
$\phi_f M_{D}$:	Compact composite positive moment capacity computed
	according to Article 6.10.7.1 (kip-ft.).
$\phi_{f} M_{nc}$:	Compact non-composite negative moment capacity computed
	according to Article A6.1.1 (kip-ft.).
fs (Service II):	Sum of stresses as computed from the moments below (ksi).
	MDCI + MDC2 + MDW + 1.3 M4 + IM
V_f :	Maximum factored shear range in composite portion of span
Hi and Di	computed according to Article 6.10.10.
M4 UND K4:	Include the effects of centrifugal force and superelevation
	similarly at all locations.

BILL OF MATERIAL

Item	Unit	Total
Anchor Bolts, ⁵ 8"	Each	20
Anchor Bolts, 1"	Each	20
Elastomeric Bearing Assembly, Type 1	Each	10