Designer Note: Insert into all contracts with proposed storm sewers.

LRFD STORM SEWER BURIAL TABLES (BDE)

Effective: November 1, 2013
Revise Article 550.02 of the Standard Specifications to read as follows:
"Item Article Section
(a) Clay Sewer Pipe
(b) Extra Strength Clay Pipe 1040.02
(c) Concrete Sewer, Storm Drain, and Culvert Pipe
1040.02
(d) Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe 1042
(e) Reinforced Concrete Elliptical Culvert, Storm Drain,and Sewer Pipe (Note 1)
1)..
(f) Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe (Note 1) 1042
(g) Polyvinyl Chloride (PVC) Pipe 1040.03
(h) Corrugated Polyvinyl Chloride (PVC) Pipe with a Smooth Interior
1040.03
(i) Corrugated Polypropylene (CPP) Pipe with Smooth Interior 1040.07
(j) Rubber Gaskets and Preformed Flexible Joint Sealants for Concrete Pipe \qquad 1056
(k) Mastic Joint Sealer for Pipe 1055
(I) External Sealing Band 1057
(m) Fine Aggregate (Note 2) 1003.04
(n) Coarse Aggregate (Note 3) 1004.05
(o) Reinforcement Bars and Welded Wire Fabric 1006.10
(p) Handling Hole Plugs
1042.16
(q) Polyethylene (PE) Pipe with a Smooth Interior
1040.04
(r) Corrugated Polyethylene (PE) Pipe with a Smooth Interior
1040.04

Note 1. The class of elliptical and arch pipe used for various storm sewer sizes and heights of fill shall conform to the requirements for circular pipe.

Note 2. The fine aggregate shall be moist.
Note 3. The coarse aggregate shall be wet."

Revise the table for permitted materials in Article 550.03 of the Standard Specifications as follows:

"Class	Materials
A	Rigid Pipes: Clay Sewer Pipe Extra Strength Clay Pipe Concrete Sewer, Storm Drain, and Culvert Pipe Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer Pipe Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe
B	Rigid Pipes: Clay Sewer Pipe Extra Strength Clay Pipe Concrete Sewer, Storm Drain, and Culvert Pipe Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer Pipe Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe Flexible Pipes: Polyvinyl Chloride (PVC) Pipe Corrugated Polyvinyl Chloride Pipe (PVC) with a Smooth Interior Polyethylene (PE) Pipe with a Smooth Interior Corrugated Polyethylene (PE) Pipe with a Smooth Interior Corrugated Polypropylene (CPP) Pipe with a Smooth Interior"

Replace the storm sewers tables in Article 550.03 of the Standard Specifications with the following:

STORM SEWERS KIND OF MATERIAL PERMITTED AND STRENGTH REQUIRED FOR A GIVEN PIPE DIAMETERS AND FILL HEIGHTS OVER THE TOP OF THE PIPE																
Nominal Diameter in.	Type 1								Type 2							
	Fill Height: 3 ' and less With 1' minimum cover								Fill Height: Greater than 3' not exceeding 10'							
	RCCP	CSP	ESCP	PVC	CPVC	PE	CPE	CPP	RCCP	CSP	ESCP	PVC	CPVC	PE	CPE	CPP
10	NA	3	X	X	X	X	X	NA	NA	1	${ }^{*}$ X	X	X	X	X	NA
12	IV	NA	X	X	X	X	X	X	II	1	*X	X	X	X	X	X
15	IV	NA	NA	X	X	NA	X	X	II	1	*X	X	X	NA	X	X
18	IV	NA	NA	X	X	X	X	X	II	2	X	X	X	X	X	X
21	III	NA	NA	X	X	NA	NA	NA	II	2	X	X	X	NA	NA	NA
24	III	NA	NA	X	X	X	X	X	II	2	X	X	X	X	X	X
27	III	NA	II	3	X	NA	NA	NA	NA	NA						
30	IV	NA	NA	X	X	X	X	X	II	3	X	X	X	X	X	X
33	III	NA	II	NA	X	NA	NA	NA	NA	NA						
36	III	NA	NA	X	X	X	X	X	II	NA	X	X	X	X	NA	X
42	II	NA	X	X	NA	X	X	NA	II	NA	X	X	NA	X	NA	NA
48	II	NA	X	X	NA	X	X	X	II	NA	X	X	NA	X	NA	NA
54	II	NA	II	NA												
60	II	NA	NA	NA	NA	NA	NA	X	II	NA	NA	NA	NA	NA	NA	X
66	II	NA	II	NA												
72	II	NA	II	NA												
78	11	NA	II	NA												
84	II	NA	II	NA												
90	II	NA	III	NA												
96	II	NA	III	NA												
102	11	NA	III	NA												
108	11	NA	III	NA												

RCCP Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe
CSP Concrete Sewer, Storm drain, and Culvert Pipe
PVC Polyvinyl Chloride Pipe
CPVC Corrugated Polyvinyl Chloride Pipe
ESCP Extra Strength Clay Pipe
PE Polyethylene Pipe with a Smooth Interior
CPE Corrugated Polyethylene Pipe with a Smooth Interior
CPP Corrugated Polypropylene pipe with a Smooth Interior
$\mathrm{X} \quad$ This material may be used for the given pipe diameter and fill height.
NA This material is Not Acceptable for the given pipe diameter and fill height.
May also use Standard Strength Clay Pipe

STORM SEWERS (Metric) KIND OF MATERIAL PERMITTED AND STRENGTH REQUIRED FOR A GIVEN PIPE DIAMETERS AND FILL HEIGHTS OVER THE TOP OF THE PIPE																
Nominal Diameter in.	Type 1								Type 2							
	Fill Height: 1 m ' and less With 300 mm minimum cover								Fill Height: Greater than 1 m not exceeding 3 m							
	RCCP	CSP	ESCP	PVC	CPVC	PE	CPE	CPP	RCCP	CSP	ESCP	PVC	CPVC	PE	CPE	CPP
250	NA	3	X	X	X	X	X	NA	NA	1	* X	X	X	X	X	NA
300	IV	NA	X	X	X	X	X	X	II	1	*X	X	X	X	X	X
375	IV	NA	NA	X	X	NA	X	X	II	1	*X	X	X	NA	X	X
450	IV	NA	NA	X	X	X	X	X	II	2	X	X	X	X	X	X
525	III	NA	NA	X	X	NA	NA	NA	II	2	X	X	X	NA	NA	NA
600	III	NA	NA	X	X	X	X	X	II	2	X	X	X	X	X	X
675	III	NA	II	3	X	NA	NA	NA	NA	NA						
750	IV	NA	NA	X	X	X	X	X	II	3	X	X	X	X	X	X
825	III	NA	II	NA	X	NA	NA	NA	NA	NA						
900	III	NA	NA	X	X	X	X	X	II	NA	X	X	X	X	NA	X
1050	II	NA	X	X	NA	X	X	NA	II	NA	X	X	NA	X	NA	NA
1200	II	NA	X	X	NA	X	X	X	II	NA	X	X	NA	X	NA	NA
1350	II	NA	II	NA												
1500	II	NA	NA	NA	NA	NA	NA	X	II	NA	NA	NA	NA	NA	NA	X
1650	II	NA	II	NA												
1800	II	NA	II	NA												
1950	II	NA	II	NA												
2100	II	NA	II	NA												
2250	II	NA	III	NA												
2400	II	NA	III	NA												
2550	II	NA	III	NA												
2700	II	NA	III	NA												

RCCP Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe
CSP Concrete Sewer, Storm drain, and Culvert Pipe
PVC Polyvinyl Chloride Pipe
CPVC Corrugated Polyvinyl Chloride Pipe
ESCP Extra Strength Clay Pipe
PE Polyethylene Pipe with a Smooth Interior
CPE Corrugated Polyethylene Pipe with a Smooth Interior
CPP Corrugated Polypropylene pipe with a Smooth Interio
$X \quad$ This material may be used for the given pipe diameter and fill height.
NA This material is Not Acceptable for the given pipe diameter and fill height.
May also use Standard Strength Clay Pipe

 a 25.4 micro-meter crack.

STORM SEWERS KIND OF MATERIAL PERMITTED AND STRENGTH REQUIRED FOR A GIVEN PIPE DIAMETERS AND FILL HEIGHTS OVER THE TOP OF THE PIPE								
Nominal Diameter in.	Type 5			Type 6			Type 7	
	Fill Height: Greater than 20' not exceeding 25'			Fill Height: Greater than 25' not exceeding 30'			Fill Height: Greater than 30' not exceeding 35'	
	RCCP	PVC	CPVC	RCCP	PVC	CPVC	RCCP	CPVC
$\begin{aligned} & 10 \\ & 12 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { IV } \\ & \text { IV } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \\ & \hline \end{aligned}$
$\begin{aligned} & 18 \\ & 21 \\ & 24 \end{aligned}$	$\begin{aligned} & \hline \text { IV } \\ & \text { IV } \\ & \text { IV } \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \end{aligned}$
$\begin{aligned} & 27 \\ & 30 \\ & 33 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IV } \\ & \text { IV } \\ & \text { IV } \end{aligned}$	$\begin{gathered} \text { NA } \\ \text { X } \\ \text { NA } \end{gathered}$	$\begin{gathered} \text { NA } \\ \text { X } \\ \text { NA } \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { NA } \\ \text { X } \\ \text { NA } \end{gathered}$	$\begin{gathered} \text { NA } \\ \text { X } \\ \text { NA } \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline \text { NA } \\ \text { X } \\ \text { NA } \end{gathered}$
$\begin{aligned} & 36 \\ & 42 \\ & 48 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { IV } \\ & \text { IV } \\ & \text { IV } \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { X } \\ \text { NA } \\ \text { NA } \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \\ & \hline \end{aligned}$	$\begin{gathered} \text { X } \\ \text { NA } \\ \text { NA } \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { X } \\ \text { NA } \\ \text { NA } \end{gathered}$
$\begin{aligned} & 54 \\ & 60 \\ & 66 \end{aligned}$	$\begin{aligned} & \text { IV } \\ & \text { IV } \\ & \text { IV } \end{aligned}$	NA NA NA	NA NA NA	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	NA NA NA	NA NA NA	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	NA NA NA
$\begin{aligned} & 72 \\ & 78 \\ & 84 \end{aligned}$	$\begin{gathered} \text { V } \\ 2020 \\ 2020 \end{gathered}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ 2370 \\ 2380 \end{gathered}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{gathered} \mathrm{V} \\ 2730 \\ 2740 \end{gathered}$	NA NA NA
$\begin{gathered} 90 \\ 96 \\ 102 \\ 108 \end{gathered}$	$\begin{aligned} & 2030 \\ & 2040 \\ & 2050 \\ & 2060 \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & 2390 \\ & 2400 \\ & 2410 \\ & 2410 \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & 2750 \\ & 2750 \\ & 2760 \\ & 2770 \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$

$\begin{array}{ll}\text { RCCP } & \text { Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe } \\ \text { PVC } & \text { Polyvinyl Chloride Pipe }\end{array}$
CPVC Corrugated Polyvinyl Chloride Pipe
ESCP Extra Strength Clay Pipe
$\mathrm{X} \quad$ This material may be used for the given pipe diameter and fill height.
NA This material is Not Acceptable for the given pipe diameter and fill height.
Note RCCP with a number instead of a Roman numeral shall be furnished according to AASHTO M170 Section 6 . This number represents the D-load to produce a 0.01 in crack.

STORM SEWERS (metric) KIND OF MATERIAL PERMITTED AND STRENGTH REQUIRED FOR A GIVEN PIPE DIAMETERS AND FILL HEIGHTS OVER THE TOP OF THE PIPE								
Nominal Diameter in.	Type 5			Type 6			Type 7	
	Fill Height: Greater than 20' not exceeding 25^{\prime}			Fill Height: Greater than 25' not exceeding 30^{\prime}			Fill Height: Greater than 30' not exceeding 3^{\prime}	
	RCCP	PVC	CPVC	RCCP	PVC	CPVC	RCCP	CPVC
250	NA	X	X	NA	X	X	NA	X
300	IV	X	X	V	X	X	V	X
375	IV	X	X	V	X	X	V	X
450	IV	X	X	V	X	X	V	X
525	IV	X	X	V	X	X	V	X
600	IV	X	X	V	X	X	V	X
675	IV	NA	NA	V	NA	NA	V	NA
750	IV	X	X	V	X	X	V	X
825	IV	NA	NA	V	NA	NA	V	NA
900	IV	X	X	V	X	X	V	X
1050	IV	X	NA	V	X	NA	V	NA
1200	IV	X	NA	V	X	NA	V	NA
1350	IV	NA	NA	V	NA	NA	V	NA
1500	IV	NA	NA	V	NA	NA	V	NA
1650	IV	NA	NA	V	NA	NA	V	NA
1800	V	NA	NA	V	NA	NA	V	NA
1950	100	NA	NA	110	NA	NA	130	NA
2100	100	NA	NA	110	NA	NA	130	NA
2250	100	NA	NA	110	NA	NA	130	NA
2400	100	NA	NA	120	NA	NA	130	NA
2550	100	NA	NA	120	NA	NA	130	NA
2700	100	NA	NA	120	NA	NA	130	NA

RCCP \quad Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe
PVC Polyvinyl Chloride Pipe
CPVC Corrugated Polyvinyl Chloride Pipe
ESCP Extra Strength Clay Pipe
$X \quad$ This material may be used for the given pipe diameter and fill height.
NA This material is Not Acceptable for the given pipe diameter and fill height.
Note RCCP with a number instead of a Roman numeral shall be furnished according to AASHTO M170 Section 6 . This number represents the metric D-load to produce a 25.4 micro-meter crack.

Revise the sixth paragraph of Article 550.06 of the Standard Specifications to read:
"PVC, PE and CPP pipes shall be joined according to the manufacturer's specifications."
Revise the first and second paragraphs of Article 550.08 of the Standard Specifications to read:
"550.08 Deflection Testing for Storm Sewers. All PVC, PE, and CPP storm sewers shall be tested for deflection not less than 30 days after the pipe is installed and the backfill compacted. The testing shall be performed in the presence of the Engineer.

For PVC, PE, and CPP storm sewers with diameters 24 in . (600 mm) or smaller, a mandrel drag shall be used for deflection testing. For PVC, PE, and CPP storm sewers with diameters over 24 in. (600 mm), deflection measurements other than by a mandrel shall be used."

Revise the fifth paragraph of Article 550.08 to read as follows.
"The outside diameter of the mandrel shall be 95 percent of the base inside diameter. For all PVC pipe the base inside diameter shall be defined using ASTM D 3034 methodology. For all PE and CPP pipe, the base inside diameter shall be defined as the average inside diameter based on the minimum and maximum tolerances specified in the corresponding ASTM or AASHTO material specifications."

Revise the first paragraph of Article 1040.03 of the Standard Specifications to read:
"1040.03 Polyvinyl Chloride (PVC) Pipe. Acceptance testing of PVC pipe and fittings shall be accomplished during the same construction season in which they are installed. The section properties shall be according to the manufacturer pre-submitted geometric properties on file with the Department. The manufacturer shall submit written certification that the material meets those properties. The pipe shall meet the following additional requirements."

Delete Articles 1040.03(e) and (f) of the Standard Specifications.
Revise Articles 1040.04(c) and (d) of the Standard Specifications to read:
"(c) PE Profile Wall Pipe for Insertion Lining. The pipe shall be according to ASTM F 894. When used for insertion lining of pipe culverts, the pipe liner shall have a minimum pipe stiffness of $46 \mathrm{psi}(317 \mathrm{kPa})$ at five percent deflection for nominal inside diameters of $42 \mathrm{in} .(1050 \mathrm{~mm})$ or less. For nominal inside diameters of greater than 42 in. (1050 mm), the pipe liner shall have a minimum pipe stiffness of $32.5 \mathrm{psi}(225 \mathrm{kPa})$ at five percent deflection. All sizes shall have wall construction that presents essentially smooth internal and external surfaces.
(d) PE Pipe with a Smooth Interior. The pipe shall be according to ASTM F 714 (DR 32.5) with a minimum cell classification of PE 335434 as defined in ASTM D 3350. The section properties shall be according to the manufacturer pre-submitted geometric properties on file with the Department. The manufacturer shall submit written certification that the material meets those properties and the resin used to manufacture the pipe meets or exceeds the minimum cell classification requirements."

Add the following to Section 1040 of the Standard Specifications:
"1040.08 Polypropylene (PP) Pipe. Storage and handling shall be according to the manufacturer's recommendations, except in no case shall the pipe be exposed to direct sunlight for more than six months. Acceptance testing of the pipe shall be accomplished during the same construction season in which it is installed. The section properties shall be according to the manufacturer pre-submitted geometric properties on file with the Department. The
manufacturer shall submit written certification that the material meets those properties. The pipe shall meet the following additional requirements.
(a) Corrugated PP Pipe with a Smooth Interior. The pipe shall be according to AAHSTO M 330 (nominal size - 12 to 60 in . (300 to 1500 mm)). The pipe shall be Type S or D.
(b) Perforated Corrugated PP Pipe with A Smooth Interior. The pipe shall be according to AASHTO M 330 (nominal size -12 to 60 in. (300 to 1500 mm)). The pipe shall be Type SP. In addition, the top centerline of the pipe shall be marked so that it is readily visible from the top of the trench before backfilling, and the upper ends of the slot perforations shall be a minimum of ten degrees below the horizontal."

