STRUCTURE GEOTECHNICAL REPORT WESTBOUND INTERSTATE 290 RAMP BRIDGE TO SOUTHBOUND INTERSTATE 90/94 PROPOSED SN 016-1715, EXISTING SN 016-2450 SECTION 2014-013R&B-R IDOT D-91-227-13, PTB 163/ITEM 001 CIRCLE INTERCHANGE RECONSTRUCTION COOK COUNTY, ILLINOIS

for

AECOM 303 East Wacker Drive Chicago, IL 60601 (312) 938-0300

submitted by Wang Engineering, Inc. 1145 North Main Street Lombard, IL 60148 (630) 953-9928

> Original: June 19, 2017 Revised: December 5, 2017

1. Title and Subtitle Structure Geotechnical Reputo to Southbound Interstate 90, Reconstruction	2. Report Date Original: June 19, 2017 Revised: December 5, 2017 3. Report Type ⊠ SGR □ RGR							
		\Box Draft \bigotimes Final \bigotimes Revised						
4. Route / Section / County FAI 290/90/94 / 2014-013R	5. IDOT Project Number(s) Job D-91-227-13							
6. PTB / Item No. 163/001	7. Existing Structure Number(s) SN 016-2450	8. Proposed Structure Number(s) SN 016-1715						
9. Prepared by Wang Engineering, Inc. 1145 N Main Street Lombard, IL 60148	Contributor(s) Author: Mohammed Kothawala, P.E., D.GE PIC: Corina T. Farez, P.G., P.E. QA/QC: Corina T. Farez, P.G., P.E.	Contact Phone Number (630) 953-9928 x 1036 mkothawala@wangeng.com						
10. Prepared for AECOM 303 E Wacker Drive Chicago, IL 60601	Design / Structural Engineer Amish Bhatt, P.E., S.E. AECOM	Contact Phone Number (312) 373-7700						
303 E Wacker Drive Chicago, IL 60601 AECOM 11. Abstract The existing West-South (WS) Ramp Bridge connecting Westbound Interstate 290 to Southbound Interstate 90/94 will be replaced by a new, seventeen-span structure The bridge will carry the ramp over both directions of I-90/94, both directions of I-290, and Harrison Street. The north end of the structure will connect to the existing Congress Viaduct (SN 016-0461) by way of a shared pier. The bridge will terminate north of Taylor Street at a proposed abutment. The total back-to-back bridge length will measure 1,919.4 feet and the out-to-out width will be variable. Existing embankment materials encountered along the proposed alignment are made up of stiff to hard, silty clay loam and silty loam fill. Beneath the fill, the borings encountered 30 to 40 feet of very soft to medium stiff clay overlying stiff to hard silty clay. Deeper foundation soils include dense to very dense silty loam and hard silty clay loam resting on top of strong, fair to good quality dolostone. which was encountered at 90 to 100 feet below existing grade. The site classifies in the Seismic Class D and is in the Seismic Performance Zone 1. New fill retaining walls will support the south approach embankment behind the abutment. The approach pavement settlement and global stability will depend on the type, height, and geometry of these new retaining walls and will be discussed in separate retaining wall SGRs. The proposed abutment and piers could be supported on drilled shafts founded in the very dense silty loam, on top of bedrock or socketed into the bedrock. For shafts founded in silty loam, we estimate factored resistances of 230 to 930 kips for 3- to 6-foot diameter bases. For rock sockets, we estimate factored resistance of 1700 to 3100 kips. The shafts will require temporary casing to prote								
A number of temporary e the new bridge abutmen <i>Design Guide 3.13.1</i> or s	A number of temporary excavations will likely be required to remove existing facilities and construct the new bridge abutment. The design of temporary sheeting should be in accordance with IDOT <i>Design Guide 3.13.1</i> or should include the pay item <i>Temporary Soil Retention System</i> .							
12. Path to archived file								
S:\Netprojects\11000401\Reports\SGRs\Bridges\1	715 WSRamp\Revised Final SGR\RPT_Wang_MAK_11000401Bridg	ge1715SGR_V4_201711205.doc						

Technical Report Documentation Page

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

TABLE OF CONTENTS

1.0	INTRODUCTION	
1.1	.1 PROPOSED STRUCTURE	
1.2	.2 Existing Structure	
2.0	SITE CONDITIONS AND GEOLOGICAL SETTING	2
2.1	.1 Physiography	
2.2	.2 Surficial Cover	
2.3	.3 Bedrock	
3.0	METHODS OF INVESTIGATION	
3.1	.1 SUBSURFACE INVESTIGATION	
3.2	.2 VANE SHEAR TESTS	5
3.3	.3 LABORATORY TESTING	5
3.4	.4 PIEZOMETER INSTALLATION	5
4.0	RESULTS OF FIELD AND LABORATORY INVESTIGATIONS	6
4.1	.1 Soil Conditions	6
4.2	.2 GROUNDWATER CONDITIONS	
4.3	.3 SEISMIC DESIGN CONSIDERATIONS	
5.0	FOUNDATION ANALYSIS AND RECOMMENDATIONS	
5.1	.1 APPROACH EMBANKMENTS AND SLABS	
	5.1.1 Settlement	
	5.1.2 Global Stability	
5.2	.2 Structure Foundations	
	5.2.1 Drilled Shafts	
	5.2.2 Lateral Loading	
5.3	.3 STAGE CONSTRUCTION DESIGN RECOMMENDATIONS	
6.0	CONSTRUCTION CONSIDERATIONS	
6.1	.1 SITE PREPARATION	
6.2	.2 EXCAVATION	
6.3	.3 FILLING AND BACKFILLING	

6.4 EARTHWORK OPERATIONS	
6.5 DRILLED SHAFTS	
7.0 QUALIFICATIONS	
REFERENCES	
EXHIBITS	
1. Site Location Map	
2. Site and Regional Geology	
3. Boring Location Plan	
4. Soil Profile	
APPENDIX A	
Boring Logs	
APPENDIX B	

Laboratory Test Results

APPENDIX C

Bedrock Core Exhibit

APPENDIX D

TSL Plan

LIST OF TABLES

Table 1: Seismic Design Parameters	9
Table 2: Estimated Resistances and Base Elevations for Shafts in Very Dense Silty Loam	
Table 3: Top of Estimated Bedrock Elevation	14
Table 4: Estimated Resistances and Base Elevations for Shafts on Top of Bedrock	16
Table 5: Estimated Resistances and Base Elevations for Rock Socket Shafts	16
Table 6: Recommended Soil Parameters for Lateral Load Analysis Pier 1	17
Table 7: Recommended Soil Parameters for Lateral Load Analysis Pier 2	
Table 8: Recommended Soil Parameters for Lateral Load Analysis Pier 3	19
Table 9: Recommended Soil Parameters for Lateral Load Analysis Pier 4	
Table 10: Recommended Soil Parameters for Lateral Load Analysis Pier 5 and Pier 6	
Table 11: Recommended Soil Parameters for Lateral Load Analysis Pier 7	
Table 12: Recommended Soil Parameters for Lateral Load Analysis Pier 8	23
Table 13: Recommended Soil Parameters for Lateral Load Analysis Pier 9	24
Table 14: Recommended Soil Parameters for Lateral Load Analysis Pier 10	25
Table 15: Recommended Soil Parameters for Lateral Load Analysis Pier 11	
Table 16: Recommended Soil Parameters for Lateral Load Analysis Pier 12	
Table 17: Recommended Soil Parameters for Lateral Load Analysis Pier 13	
Table 18: Recommended Soil Parameters for Lateral Load Analysis Pier 14	
Table 19: Recommended Soil Parameters for Lateral Load Analysis Pier 15	
Table 20: Recommended Soil Parameters for Lateral Load Analysis Pier 16	
Table 21: Recommended Soil Parameters for Lateral Load Analysis South Abutment	
Table 22: Recommended Rock Parameters for Lateral Load Analysis	

1145 North Main Street Lombard, Illinois 60148 Phone (630) 953-9928 www.wangeng.com

STRUCTURE GEOTECHNICAL REPORT WESTBOUND INTERSTATE 290 RAMP BRIDGE TO SOUTHBOUND INTERSTATE 90/94 PROPOSED SN 016-1715, EXISTING SN 016-2450 FAI 90/94/290, SECTION 2014-013R&B-R IDOT D-91-227-13, PTB 163/ITEM 001 CIRCLE INTERCHANGE RECONSTRUCTION COOK COUNTY, ILLINOIS FOR AECOM

1.0 INTRODUCTION

This report presents the results of our subsurface investigation, laboratory testing, and geotechnical evaluations for the design and construction of the new West-South (WS) Ramp Bridge connecting Westbound Interstate 290 (I-290) with Southbound Interstate 90/94 (I-90/94) within the Circle Interchange in Chicago, Cook County, Illinois. A *Site Location Map* is presented as Exhibit 1.

1.1 Proposed Structure

Wang Engineering, Inc. (Wang) understands AECOM envisions a new, seventeen-span structure replacing the existing WS Ramp Bridge. The structure begins at the northeast end with a shared pier (Pier C2) with the Westbound Congress Viaduct (SN 016-0461), proceeds northwest over both directions of I-90/94, turns south to cross over both directions of I-290 and Harrison Street, and ultimately terminates at the south end with an abutment and mechanically-stabilized earth (MSE) walls on the sides. The bridge shares Pier 11 with the end of the proposed Taylor Street Bypass Bridge (SN 016-1718). The bridge will have a total length of $1,925'-1^{3}_{16}$ " from CL Pier C2 to back of South Abutment and divided into five units. The individual units are further divided into seventeen spans with lengths ranging from 70.1 to 150.0 feet. The out-to-out bridge width will vary from 29.2 to 61.2 feet to accommodate one 16-foot wide lane, one 6-foot wide shoulder, one 4-foot wide shoulder, and two barriers.

The abutment at the south end of the structure will be constructed atop a new approach embankment supported on both sides by MSE walls (SNs 016-1803 and 016-1804). We estimate the walls will have

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

a maximum height of about 15 to 20 feet measured from the existing ground surface to the top of the proposed abutment. Temporary steel sheeting and/or *Temporary Soil Retention Systems* may be required.

The purpose of our investigation was to characterize the site soil and groundwater conditions, perform geotechnical analyses, and provide recommendations for the design and construction of the foundations.

1.2 Existing Structure

The proposed structure is a realignment of existing SN 016-2450. The existing structure built in 1950 is a twenty-span structure with an overall length of approximately 1329'-6". The new ramp will be positioned in the same general location as the existing. The primary adjustments include shifting the shared Congress Viaduct pier to the east by approximately 90 feet and straightening the curve along the southern 650 feet of ramp. The site is currently a system of numerous ramps, embankments, and expressways that are scheduled for complete renovation.

2.0 SITE CONDITIONS AND GEOLOGICAL SETTING

The site is located within the City of Chicago. On the USGS *Chicago Loop 7.5 Minute Series* map, the bridge is located in the NW¹/₄ of Section 16, Tier 39 N, Range 14 E of the 3rd Principal Meridian.

The following review of published geologic data, with emphasis on factors that might influence the design and construction of the proposed engineering works, is meant to place the project area within a geological framework and confirm the dependability and consistency of the present subsurface investigation results. For the study of the regional geologic framework, Wang considered northeastern Illinois in general and Cook County in particular. Exhibit 2 illustrates the *Site and Regional Geology*.

2.1 Physiography

The site is situated within the northern section of the Chicago/Calumet lacustrine plain (Chrzatowsky and Thompson 1992). The flat, lakeward-sloping surface is a wave-scoured groundmoraine covered by thin and discontinuous offshore lacustrine silt and clay (Willman 1971).

At the proposed bridge location, a number of existing ramps cross the alignment, converging and diverging with I-90/94. The elevation along the existing ramps varies between 588 to 592 feet, whereas I-90/94 was constructed within a minor cut to an elevation of about 578 feet.

2.2 Surficial Cover

Within the project area, a more than 75-foot thick, Wisconsinan-age glacial drift covers the bedrock (Leetaru et al. 2004). The glacial cover is made up of clay and silt of the Equality Formation of the Mason Group and diamictons of the Wadsworth and Lemont Formations of the Wedron Group (Hansel and Johnson 1996). The Equality Formation is made up of bedded silt and clay, locally laminated, with lenses and/or thin beds of sand and gravel. The Wadsworth Formation consists of relatively homogenous, massive, gray till with clay to silty clay matrix, with dolostone and shale clasts and occasional lenses of sorted and stratified silt. The Wadsworth Formation is underlined by the pebbly silty clay loam to silty loam diamicton of the Yorkville Member of the Lemont Formation, known informally as the Chicago "hardpan."

The Equality Formation is characterized by low strength, medium to high plasticity, and medium to high moisture content. The underlying Wadsworth Formation is characterized by low plasticity, medium to low moisture content, medium to very stiff consistency, poor permeability, and low compressibility. The Yorkville Member is characterized by low plasticity, high blow counts, and low moisture content (Bauer et al. 1991; Peck and Reed 1954).

2.3 Bedrock

In the project area, the glacigenic deposits rest unconformably over a 350-foot thick Silurian-age dolostone. The top of bedrock may be encountered at elevations lower than 500 feet or 75 to 100 feet below ground surface (bgs). The Silurian dolostone dips gently eastward at a pace of 15 feet per mile. Only inactive faults are known in the area, and the seismic risk is minimal (Leetaru et al. 2004; Willman 1971). There are no records of mining activity in the area, but deep tunnel excavations are known to exist throughout the Circle Interchange area.

Our subsurface investigation results fit into the local geologic context. The borings drilled in the project area revealed the native sediments consist of clay to silty clay diamicton of the Wadsworth Formation resting on top of more competent silty clay loam diamicton (hardpan) of the Lemont Formation, which in turn is underlain by bedrock. Sound dolostone bedrock was sampled or inferred at depths deeper than 85.0 feet bgs or 479 to 492 feet elevation, within or close to the range

predicted by published geological data.

3.0 METHODS OF INVESTIGATION

The following sections outline the subsurface and laboratory investigations performed by Wang.

3.1 Subsurface Investigation

The subsurface investigation in the Circle Interchange, performed by Wang in March through October 2013, includes ten structure borings adjacent to the WS Ramp alignment. The borings are designated as 1703-B-05, 2055-B-04, 1714-B-01, 1714-B-02, 2081-B-03, 2081-B-04, 18-RWB-02, 18-RWB-03, 13-RWB-01, and 1087-B-01. The borings were drilled from elevations of 573.9 to 594.6 feet to depths of 50 to 117 feet bgs; the borings with RWB designations are retaining wall borings and are generally shallower. Northings and eastings were surveyed by Wang with a mapping-grade GPS unit, whereas elevations, stations, and offsets were provided by AECOM. The boring locations are presented in the *Boring Logs* (Appendix A) and in the *Boring Location Plan* (Exhibit 3).

After the first report submittal in December 2013, Wang drilled additional structure borings along the ramp. The additional borings are designated as 0461-B-01, 1087-B-02, 1087-B-02alt, 1706-B-02, 1714-B-01, 1714-B-02, 1715-B-01 through 1715-B-05, 1715-PMT-01, 22-RWB-03, 2055-B-04, 2081-B-03 through 2081-B-05, 10-RWB-01, 10-RWB-02, 13-RWB-01, 13-RWB-03, and 15-RWB-01.

A truck-mounted drilling rig, equipped with hollow stem augers and mud rotary equipment, was used to advance and maintain an open borehole. Soil sampling was performed according to AASHTO T 206, "*Penetration Test and Split Barrel Sampling of Soils.*" The soil was sampled at 2.5-foot intervals to 30 feet bgs and at 5-foot intervals thereafter. Samples collected from each interval were placed in sealed jars for further examination and testing. NWD4-size bedrock cores were collected from Boreholes 1087-B-02alt, 1706-B-02, 1714-B-02, 1715-B-05, 1715-PMT-01, 2055-B-04, 2081-B-03, 2081-B-05, 10-RWB-01, 10-RWB-02, and 13-RWB-03 in 10-foot runs.

Field boring logs, prepared and maintained by a Wang engineer, include lithological descriptions, visual-manual soil classifications (IDH Textural Classification), results of Rimac and/or pocket penetrometer unconfined compressive strength tests, and results of Standard Penetration Tests (SPT) recorded as blows per 6 inches of penetration. The bedrock cores were described and measured for recovery and Rock Quality Designation (RQD).

Groundwater observations were made during and at the end of drilling operations. The boreholes were grouted immediately upon completion.

3.2 Vane Shear Tests

Wang performed vane shear tests nearby the structure in Borings VST-01 and VST-06 to determine insitu shear strength of very soft to soft silty clay. After drilling to the desired depth, casing was installed and vane shear test was performed using M-1000 Vane Borer Test Kit. Tests were performed in undisturbed and remolded conditions. In general, the vane shear values for soft clays were significantly higher than the corresponding values from unconfined compressive strength tests using the RIMAC apparatus. These vane shear test results were used in our analysis.

3.3 Laboratory Testing

Soil samples were tested in the laboratory for moisture content (AASHTO T-265). Atterberg limits (AASHTO T 89/T 90) and particle size (AASHTO T 88) analyses were performed to classify selected samples. Unconfined compressive strength test (T22) was performed on selected bedrock cores. Field visual descriptions of the soil samples were verified in the laboratory and the tested samples were classified in accordance with the IDH Textural Classification chart. Laboratory test results are shown in the *Boring Logs* (Appendix A) and in the *Laboratory Test Results* (Appendix B).

3.4 Piezometer Installation

Groundwater encountered during borings is noted on boring logs. However to better understand individual aquifer responses to precipitation events and record long-term water table, monitoring wells (piezometers) 10-PZ-01 and 1703-PZ-01 were installed in the area. Piezometers were installed in accordance with ASTM D 5092, "*Standard Practice for Design and Installation of Ground Water Monitoring Wells in Aquifers.*" Piezometer installation involved drilling to the water bearing deposit of interest and installing a screened PVC casing within this discrete zone. A washed-sand filter pack was placed in the annular space around the screen and capped by a bentonite plug that isolates the layer. A solid riser PVC pipe was extended to the ground surface and the remainder of the boring was backfilled. The screen was placed within granular layer deposit above the bedrock.

To ensure that the installation allows for the free flow of groundwater, the piezometers were developed by pumping to remove sediment incorporated in the screen and filter pack during installation. Pumping continued until the piezometer produced the continuous flow of clear water.

Groundwater levels were recorded autonomously at defined intervals by digital pressure loggers suspended within the water column. Barometric affects are compensated by a second in-air pressure logger installed in the riser pipe. Data is retrieved from the loggers periodically, downloaded to a computer for analysis and presentation.

4.0 RESULTS OF FIELD AND LABORATORY INVESTIGATIONS

Detailed descriptions of the soil conditions encountered during the subsurface investigation are presented in the attached *Boring Logs* (Appendix A) and in the *Soil Profile* (Exhibit 4). Please note that strata contact lines represent approximate boundaries between soil types. The actual transition between soil types in the field may be gradual in horizontal and vertical directions.

4.1 Soil Conditions

The WS Ramp investigation sampled the existing SB I-90/94 shoulder, and the existing shoulders of both EB and WB I-290. The pavement sections include either 2 to 5 inches of asphalt over 7 to 15 inches of concrete or 14 to 16 inches of asphalt. The borings drilled off the roadways encountered 3 to 15 inches of black, loamy topsoil.

The alignment of the WS Ramp extends over a long section of the Circle Interchange site, and a significant degree of variability is evident in the boring logs, particularly when it comes to the fill materials used for the construction of embankments. In descending order, the general lithological succession encountered beneath pavement or topsoil includes 1) man-made ground (fill); 2) medium stiff to hard silty clay; 3) very soft to medium stiff clay to silty clay; 4) stiff to hard silty clay and silty clay loam; 5) medium stiff to very stiff clay; 6) dense to very dense silt loam and hard silty clay loam; and 7) strong, fair to good quality dolostone.

(1) Man-made ground (fill)

The existing embankments are made up of about 5 to 10 feet of stiff to hard, brown and black silty clay loam to silty loam fill. Very loose to medium dense sand was also encountered near the Harrison Street Bridge and along Taylor Street Exit Ramp. The fill has unconfined compressive strength (Q_u) values of 1.0 to greater than 4.5 tsf and moisture content values of 7 to 25%. The range and average of soil parameters depend on the embankment location. Thus, the embankments surrounding I-290 and Halsted Street generally consist of denser, clayey material, whereas the embankments around Harrison

Street and the existing East-South Ramp are made up of looser and more granular soils with N-values of 2 to 13 blows/foot, occasionally getting to 31 blows/foot.

(2) Medium stiff to hard silty clay loam

Underneath the fill, pavement or topsoil, borings encountered 2.5- to 10.0-foot of medium stiff to very stiff, brown and gray to gray silty clay to silty clay loam with Qu values of 0.7 to 4.5 tsf and averaging 2.0 tsf and MC values of 14 to 28% and averaging 20%.

(3) Very soft to medium stiff clay to silty clay

At elevations of about 563 to 583 feet, the borings advanced through about 30 to 45 feet of very soft to medium stiff, gray clay to silty clay. The unit have Q_u values of 0.03 to 0.8 tsf with an average of about 0.4 tsf and moisture content values of 15 to 36 averaging 25%. Laboratory index testing on samples of this material shows liquid limit (L_L) values of 30 to 37% and plastic limit (P_L) values of 15 to 18%.

(4) Stiff to hard silty clay

The very soft to medium stiff clay to silty clay is underlain by approximately 15 to 20 feet of stiff to hard, gray silty clay. The Q_u values range between 1.2 and 7.8 tsf averaging 3.7 tsf and moisture content values range from 13 to 24% averaging 18%. The L_L values measure between 22 and 37%; P_L values, 13 and 18%.

(5) Medium stiff to very stiff clay

At about 520 to 525 feet elevation, the borings encountered a thin, 5 to 7-foot thick layer of clay with noticeably higher moisture content and lower Q_u values. This material was encountered discontinuously along the alignment, but it is an important component of the subsurface profile due to its greater estimated deformability than the harder material directly above it. This soil has Q_u values of 0.7 to 3.4 tsf and moisture content values of 23 to 38%; index testing shows a L_L value of 35% and a P_L value of 17%. We recommend deep foundations extend below this layer.

Below this unit, discontinuously, thick lenses of about 5 to 20 feet of loose to very dense silt and sand are present. This lenses are water bearing.

(6) Dense to very dense silty loam and hard silty clay loam

At an elevation of about 511 to 536 feet, the borings advanced through dense to very dense, gray silty loam and hard, gray silty clay loam that extend to the top of weathered bedrock or very dense gravelly

sand. The silty loam has SPT N-values of 15 blows/foot to greater than 50 blows/6 inches and moisture contents of 9 to 24%, whereas the material classified as hard silty clay loam has Qu values of 5.7 to greater than 10.0 tsf and moisture content values of 10 to 23%.

In borings that reach the top of the bedrock, this unit includes or is underlain by very dense, gray gravelly sandy loam. The gravelly sandy loam recorded spoon refusals. Since the gravelly sand and silty loam were encountered wet, advancing uncased drilled shaft foundations through this water-bearing soil may present excavation challenges.

(7) Strong, fair to good quality dolostone

The top of sound bedrock are at elevations ranging from 479 to 492 feet. A 10-foot long bedrock cores were performed in borings near the structure. The coring revealed strong dolostone of very poor to good rock quality having RQD values of 8 to 86%. Strength testing on cores from borings in the Circle Interchange area measured uniaxial compressive strength values averaging about 9,500 psi.

4.2 Groundwater Conditions

Groundwater was encountered during drilling throughout the Circle Interchange within the gravelly sand and silty materials below an elevation of about 500 feet. In a number of borings, perched groundwater was also encountered in the fill materials immediately above the medium soft silty clay. At boring completion, the groundwater could not be measured because of mud rotary drilling was used below depths of 10 to 12.5 feet bgs. Two piezometers designated as 10-PZ-01 and 1703-PZ-01 were installed near the structure. The screen was placed within gravelly sand layer deposit just above the bedrock. The readings show an average water table at elevation 553 feet under hydrostatic pressure. The design and construction of the drilled shafts should consider groundwater table encountering under hydrostatic pressure within this granular deposit.

The groundwater levels monitored in the piezometer 10-PZ-01 show elevations ranging from 549.22 to 554.50 feet with an average water table elevation of 552.72 feet. The first and last readings were taken on December 16, 2014 and March 30, 2017 respectively.

The groundwater levels monitored in the piezometer 1703-PZ-01 show elevations ranging from 540.97 to 55.28 feet with an average water table elevation of 553.37 feet. The first and last readings were taken on November 22, 2014 and March 30, 2017 respectively.

4.3 Seismic Design Considerations

The seismic site class has been determined in accordance with the IDOT *All Geotechnical Manual Users (AGMU) 9.1* method of analysis. The soils within the top 100 feet have a weighted average S_u greater than 1.00 ksf (AASHTO 2014; Method C controlling), and the results classify the site in the Seismic Site Class D in accordance with the IDOT method. The analysis has been performed for shaft foundations with minimum diameters of 36 inches. Smaller diameter shafts or driven piles may have more conservative seismic design parameters. The project location belongs to the Seismic Performance Zone 1. The seismic spectral acceleration parameters recommended for design in accordance with AASHTO (2014) are summarized in Table 1. The factor of safety (FOS) against liquefaction for the bridge site is greater than the AASHTO-required value of 1.

Table 1: Seismic Design Parameters							
Spectral	Spectral						
Acceleration	Acceleration	Site Class	Design Spectrum				
Period	Coefficient ¹⁾	Factors	for Site Class D ²⁾				
(sec)	(% g)		(% g)				
0.0	PGA = 4.2	$F_{pga} = 1.6$	$A_s = 6.6$				
0.2	$S_{S} = 9.0$	$F_a = 1.6$	$S_{DS} = 14.4$				
1.0	$S_1 = 3.6$	$F_v = 2.4$	$S_{D1} = 8.5$				

1) Base spectral acceleration coefficients from AASHTO (2014)

2) Site Class D values to be presented on plans ($A_s = PGA^*F_{pga}$; $S_{DS} = S_S^*F_a$; $S_{D1} = S_1^*F_v$)

5.0 FOUNDATION ANALYSIS AND RECOMMENDATIONS

Geotechnical evaluations and recommendations for the approach embankment, approach slab, and structure foundations are included in the following sections. A new abutment at the south end of the bridge is shown on the latest TSL plan provided to Wang. Structure foundation base elevations are estimated from the information provided in the TSP plan. At this point in the SGR preparation, we recommend supporting the abutment and piers on drilled shafts.

5.1 Approach Embankments and Slabs

Wang will address settlement and global stability for the south approach embankment and approach

slabs in the individual retaining wall SGR. We anticipate the walls and backfill will undergo longterm consolidation settlements, and the walls will require ground improvement to meet the IDOTrequired FOS for global stability.

5.1.1 Settlement

The ramp grading behind the abutment will include a 15 to 20-foot tall fill section. We anticipate the fill will induce long-term consolidation settlements of 6 to 10 inches without ground improvement and/or using light weight fill. The foundation soils will require improvement prior to fill placement; alternatively, the retaining walls will require deep foundations. These evaluations are included in a SGR for SN 016-1803.

5.1.2 Global Stability

The retaining walls proposed along the approach embankments will require ground improvement. The global slope stability for the walls is discussed in SGR for SN 016-1803.

5.2 Structure Foundations

Wang recommends supporting the abutments and piers on drilled shafts. The shafts could be supported within the very dense silty loam (**Layer 5**), on top of bedrock or socketed into the bedrock. Due to noise and vibration concerns, we do not recommend the use of driven piles.

Location	Total Service DL	Total Service LL	Total Service Load (DL + LL)	Total Factored DL	Total Factored LL	Total Factored Load (DL + LL)
Pier 1	843.60	556.65	1400.25	1082.994	974.14	2057.13
Pier 2	995.22	631.64	1626.86	1282.714	1105.37	2388.08
Pier 3	1296.46	661.07	1957.53	1672.222	1156.87	2829.09
Pier 4	807.97	635.81	1443.78	1033.223	1112.67	2145.89
Pier 5	1015.77	575.30	1591.07	1306.814	1006.78	2313.59
Pier 6	971.68	580.59	1552.27	1251.439	1016.03	2267.47
Pier 7	952.83	577.08	1529.91	1226.973	1009.89	2236.86
Pier 8	677.64	627.50	1305.14	870.4494	1098.13	1968.57

Preliminary loads for the substructures provided by AECOM are shown below.

Pier 9	790.35	520.16	1310.51	1018.086	910.28	1928.37
Pier 10	690.22	481.18	1171.40	888.7856	842.07	1730.85
Pier 11	1229.03	1096.03	2325.06	1547.699	1918.05	3465.75
Pier 12	1771.42	1041.30	2812.72	2288.744	1822.28	4111.02
Pier 13	1675.17	1041.30	2716.47	2168.438	1822.28	3990.71
Pier 14	1124.15	1032.72	2156.87	1447.845	1807.26	3255.10
Pier 15	1683.65	1041.30	2724.95	2179.041	1822.28	4001.32
Pier 16	1548.14	1041.00	2589.14	2009.541	1821.75	3831.29
S Abut	583.70	515.88	1099.58	750.9139	902.79	1653.70

5.2.1 Drilled Shafts

The foundations for the abutments and piers could be supported on drilled shafts. The borings encountered 15 feet or more of very dense silty loam at elevations below 515 feet. We estimate the shafts could be established within this material (**Layer 5**). Alternatively, the shafts could be supported on top of bedrock or socketed into the bedrock encountered at elevations ranging from 479 to 492 feet.

Shafts bearing on intermediate geomaterials with N-values greater than 50 blows per 6-inches of penetration should be designed for an end bearing resistance factor (ϕ_{stat}) of 0.55 (AASHTO 2014). We estimate the shafts in the very dense silty loam will have a nominal unit base resistance of 60 ksf and a factored unit base resistance of 33 ksf. The R_F, R_N, and estimated base elevations are summarized below in Table 2 for 3-, 4-, and 6-foot diameter base. We estimate the settlement of the shafts will be less than 1.0 inch if designed using the above recommended resistances.

The settlement mentioned in report Section 5.1.1 is calculated at the south abutment for the approach embankment without any ground improvement and considering regular embankment fill. There will be MSE walls identified as Wall 14 (SN 016-1803) on both sides at the south abutment. SGR for this wall recommends ground improvement using aggregate columns and using light weight cellular concrete fill (LCCF) for the MSE wall reinforced zone and in between the parallel MSE walls. Settlement with these recommendations is not expected to be more than one inch near the south abutment. The relative settlement is expected to be not more than 0.4 inches for the shafts established in hardpan. Therefore, there will be very negligible down drag loads on the drilled shafts. We do not see any need to include downdrag loads in Table 2.

Table 2: Estimated Resistances and Base Elevations for Shafts in Very Dense Silty Loam								
Structure	Shaft Cap Base	Nominal Unit Base	Factored Base	Base	Nominal Shaft	Factored Resistance	Total Shaft	Estimated Shaft Base
Unit	Elevations	Resistance	Resistance	Diameter	Resistance, R _N	Available, R _F	Length	Elevation
	(feet)	(ksf)	(ksf)	(feet)	(kips)	(kips)	(feet)	(feet)
				3	424	233	75	508
Piers 1 (1715-B-01)	583	60	33	4	754	415	75	508
				6	1696	933	75	508
				3	424	233	72	508
Piers 2 (22-RWB-03)	580	60	33	4	754	415	72	508
				6	1696	933	72	508
				3	424	233	66	508
Piers 3 (1715-B-02)	574	60	33	4	754	415	66	508
				6	1696	933	66	508
				3	424	233	64	507
Piers 4 (1706-B-02)	571	60	33	4	754	415	64	507
				6	1696	933	64	507
				3	424	233	63	507
Piers 5 (1715-B-03)	570	60	33	4	754	415	63	507
				6	1696	933	63	507
				3	424	233	71	507
Piers 6 (1715-B-03)	578	60	33	4	754	415	71	507
				6	1696	933	71	507
				3	424	233	85	501
Piers 7 (1715-B-04)	586	60	33	4	754	415	85	501
				6	1696	933	85	501
Piers 8	500	60	32	3	424	233	86	504
(1714-B-01)	590	60	55	4	754	415	86	504

Structure Unit	Shaft Cap Base Elevations	Nominal Unit Base Resistance	Factored Base Resistance	Base Diameter	Nominal Shaft Resistance, Bu	Factored Resistance Available,	Total Shaft Length	Estimated Shaft Base Elevation
	(feet)	(ksf)	(ksf)	(feet)	(kips)	(kips)	(feet)	(feet)
				6	1696	933	86	504
				3	424	233	70	506
Pier 9 (1714-B-02)	576	60	33	4	754	415	70	506
				6	1696	933	70	506
				3	424	233	65	513
Pier 10 (2081-B-03)	578	60	33	4	754	415	65	513
				6	1696	933	65	509
				3	318	175	68	511
Piers 11 (2081-B-04)	579	60	33	4	565	311	68	511
				6	1272	700	68	511
				3	424	233	71	503
Piers 12 (1715-B-05)	574	60	33	4	754	415	71	503
				6	1696	933	71	503
				3	424	233	68	503
Pier 13 (13-RWB-02)	571	60	33	4	754	415	68	503
				6	1696	933	68	503
				3	424	233	80	504
Piers 14 (1087-B-02)	584	60	33	4	754	415	80	504
				6	1696	933	80	504
				3	424	233	80	504
Piers 15 (10-RWB-01)	584	60	33	4	754	415	80	504
. ,				6	1696	933	80	504
Piers 16	590	60	22	3	424	233	74	508
(10-KWB- 02)	382	00	33	4	754	415	74	508

Structure Unit	Shaft Cap Base Elevations	Nominal Unit Base Resistance	Factored Base Resistance	Base Diameter	Nominal Shaft Resistance, R _N	Factored Resistance Available, R _F	Total Shaft Length	Estimated Shaft Base Elevation
	(feet)	(ksf)	(ksf)	(feet)	(kips)	(kips)	(feet)	(feet)
				6	1696	933	74	508
South				3	424	233	79	502
Abutment	581	60	33	4	754	415	79	502
(10-RWB-03)				6	1696	933	79	502

If the estimated bearing resistances for drilled shafts established within the silty loam do not meet the loading criteria, the shafts will require to be supported on top of rock or socketing into the rock. As per IDOT, the top of rock elevation is where it is first encountered. A summary of estimated top of rock and top of solid rock elevations for each substructure from nearby soil borings are presented in Table 3. We estimated top of rock for some piers from the nearby borings. The exact top of rock will need to be determined during construction.

Structure	Nearby Soil	Estimated Top of Rock	Estimated Top of Solid Rock
	Boring	Elevation (feet)	Elevation (feet)
Pier 1	0461-B-01	485.4	484.7
Pier 2	22-RWB-03	487.6	484.6
Pier 3	1715-B-02	488.0	486.0
Pier 4	1706-B-02	481.5	481.5
Pier 5	1715-B-03		
	2055-B-04	483.2	480.7
Pier 6	1715-B-03	483.2	480.7
Pier 7	1715-B-04	480.9	479.4
Pier 8	1714-B-01	484.5	482.2
Pier 9	1714-B-02	486.5	484.5
Pier 10	2081-В-03	489.4	489.4
Pier 11	2081-В-05	490.5	490.5
Pier 12	1715-B-05	491.1	489.9

Structure	Nearby Soil	Estimated Top of Rock	Estimated Top of Solid Rock
	Boring	Elevation (feet)	Elevation (feet)
Pier 13	13-RWB-03	489.2	489.2
Pier 14	1087-B-02alt	488.8	488.8
Pier 15	10-RWB-01	492.1	492.1
Pier 16	10-RWB-02	493.0	491.5
S. Abutment	10-RWB-02	493.0	491.5

The bedrock cores show very poor to good rock quality conditions. We estimate the rock sockets will have diameters of 3.0, 3.5, or 4.0 feet. Above the bedrock, the shafts should have diameters 6 inches larger than the sockets. We recommend designing the rock sockets based on the methods outlined in the 2014 AASHTO LRFD *Bridge Design Specifications*, which indicate the sockets should be designed for a geotechnical unit base resistance factor (ϕ_{stat}) 0.50 (AASHTO 2014). GSI values were determined considering the rock mass structure and surface conditions of discontinuities of rock cores taken from soil borings GSI values ranged from 35 to 60.

Downdrag Loads

We evaluated possibility of downdrag loads for drilled shafts on top of rock or socketed into rock at the south abutment. The ramp and the proposed MSE retaining walls will be supported on improved ground by aggregate columns and using light weight cellular concrete fill (LCCF) for the MSE wall reinforced zone and in between the parallel MSE walls. As per IDOT special provision, aggregate columns will be designed for a settlement not to exceed one inch after construction of embankment and walls.

According to 2012 IDOT Bridge Manual, downdrag occurs when soil against drilled shaft moves downward more than 0.4 inch after constructing drilled shaft. For LRFD design, we considered the load factor of 1.25 for downdrag on drilled shafts. We calculated downdrag loads and net factored unit tip resistance considering downdrag load. Based on this criterion, the net factored base resistances and estimated base elevations for 3.0-, 3.5-, and 4.0- foot diameter sockets are summarized below in Table 5. Table 4 provides net factored base resistances values for the drilled shafts established on top of the solid rock.

As per 2012 IDOT Bridge Manual drilled shafts extending into rock, in most cases, should be designed

utilizing only end bearing or side resistance in rock, whichever is larger. For shafts socketed into the bedrock less than 10-foot long, we estimate the end bearing will give more capacity than the side resistance. Therefore, we recommend considering only the end bearing resistance.

Table 4: Estimated Resistances and Base Elevations for Shafts on Top of Solid Rock							
						Net	
	Top of		Nominal	Net Factored	Nominal	Factored	Estimated
Structure	Bedrock	Shaft	Unit Base	Base	Socket	Resistance	Total Shaft
Unit	Elevation	Diameter	Resistance	Resistance	Resistance,	Available,	Length
					R_N	$R_{\rm F}$	
	(feet)	(feet)	(ksf)	(ksf)	(kips)	(kips)	(feet)
Piers 1 thru		3.0	400	185	2828	1308	82 to 108
16 and South Abutment	See Table 3	3.5	400	187	3848	1800	82 to 108
		4.0	400	189	5026	2375	82 to 108

				Net		Net		
	Top of		Nominal	Factored	Nominal	Factored	Total	Estimated
	Solid		Unit				Rock	Total
Structure	Bedrock	Socket	Socket	Socket	Socket	Resistance	Socket	Shaft
				Resistanc	Resistance			
Unit	Elevation	Diameter	Resistance	e	,	Available,	Depth*	Length
					R _N	R_F		
	(feet)	(feet)	(ksf)	(ksf)	(kips)	(kips)	(feet)	(feet)
Piers 1 thru 16 and South Abutment		3.0	600	283	4240	2000	3.0	85 to 111
	See Table 3	3.5	600	286	5772	2751	3.0	85 to 111
		4.0	600	288	7540	3619	3.0	85 to 111

* Below top of solid rock elevation

We recommend providing permanent casing to top of rock at Piers 10 and 11 to protect existing CTA retaining walls.

5.2.2 Lateral Loading

Lateral loads on drilled shafts should be analyzed for maximum moments and lateral deflections. Recommended lateral soil modulus and strain parameters required for analysis via the p-y curve method are included in Tables 6 through 21, and rock parameters are included in Table 22. The incremental parameters for the soft silty clay (**Layer 2**) were obtained from vane shear testing conducted in Borings VST-01 and VST-06. The boring logs containing vane shear testing are included in Appendix A for reference.

Table 6: Recommended Soil Parameters for Lateral Load Analysis Pier 1 (Reference Borings 1715-B-01 & VST-06)

				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c _u	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
Stiff to V Stiff SI CL LOAM EL 588.4* to 583.0 feet	120	1900	0	500	0.7
Soft to M Stiff CL to SI CL EL 583.0 to 565.0 feet	115	900	0	100	1.0
Soft to M Stiff CL to SI CL EL 565.0 to 550 feet	115	650	0	100	1.0
Soft to M Stiff CL to SI CL EL 550 to 541.0 feet	115	800	0	100	1.0
V Siff SI CL LOAM EL 541.0 to 536.0	120	3200	0	1000	0.5
Hard SI CL LOAM to SI LOAM EL 536.0 to 511.0	125	6500	0	2000	0.4
V Dense SI LOAM EL 511.0 to 491.0	125	0	36	65	
V Dense GR SA EL 491.0 to 485.4**	125	0	38	65	

*Top of the Boring, **Boring termination depth

	`	0		/	
				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, γ	Strength, c_u	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
V Stiff SI CL LOAM EL 587.6* to 582.0 feet	120	2300	0	500	0.7
Soft to M Stiff CL to SI CL EL 582.0 to 565.0 feet	115	900	0	100	1.0
Soft to M Stiff CL to SI CL EL 565.0 to 550 feet	115	650	0	100	1.0
Soft to M Stiff CL to SI CL EL 550 to 541.0 feet	115	800	0	100	1.0
V Siff to Hard SI CL LOAM EL 541.0 to 526.0	120	3000	0	1000	0.5
V Dense SAND EL 526.0 to 523.0	125	0	36	65	
Hard SI CL LOAM EL 523.0 to 510.0	125	4400	0	2000	0.4
V Dense SI LOAM EL 510.0 to 491.0	125	0	36	65	
V Dense SA GR EL 491.0 to 484.6**	125	0	38	65	

Table 7: Recommended Soil Parameters for Lateral Load Analysis Pier 2 (Reference Borings 22-RWB-03 & VST-06)

*Top of the Boring, **Boring termination depth

		0		/	
				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, γ	Strength, c_u	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
Loose CRUSHED STONE EL 579* to 576.0 feet	115	0	30	10	
Soft to M Stiff CL to SI CL EL 576.0 to 565.0 feet	115	900	0	100	1.0
Soft to M Stiff CL to SI CL EL 565.0 to 550 feet	115	650	0	100	1.0
Soft to M Stiff CL to SI CL EL 550 to 541.0 feet	115	800	0	100	1.0
V Siff SI CL LOAM EL 541.0 to 527.0	120	2500	0	1000	0.5
Dense SI EL 527.0 to 522.0	125	0	33	45	
Hard SI CL LOAM EL 522.0 to 507.0	125	5000	0	2000	0.4
V Dense SI LOAM EL 507.0 to 488.0	125	0	36	65	
V Dense SA GR EL 488.0 to 486.0**	125	0	38	65	

Table 8: Recommended Soil Parameters for Lateral Load Analysis Pier 3 (Reference Borings 1715-B-02 & VST-06)

*Top of the Boring, **Boring termination depth

	(8		/	
				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c_u	Angle, ϕ	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
M Dense CRUSHED STONE	115	0	20	25	
EL 574.0* to 570.0 feet	115	0	52	25	
V Stiff SI CL LOAM			0		
570.0 to 568.0 feet	120	3280	0	1000	0.5
Soft to M Stiff CL to SI CL					
EL 568.0 to 565.0 feet	115	900	0	100	1.0
Soft to M Stiff CL to SI CI					
EL 565.0 to 550 feet	115	650	0	100	1.0
Soft to M Stiff CL to SI CL	115	800	0	100	1.0
EE 550 to 541.0 feet					
Stiff SI CL	120	1230	0	500	0.7
EL 541.0 to 536.0					
V Siff SI CL LOAM	120	2000	0	1000	0.5
EL 536.0 to 524.0	120	2900	0	1000	0.5
M Dense SI					
EL 524.0 to 516.0	115	0	29	20	
Hard SICLIOAM					
EL 516.0 to 501.0	125	6000	0	2000	0.4
V Dense GR SA LOAM	125	0	35	60	
EL 501.0 to 492.0					
V Dense SA GR	125	0	34	60	
EL 492.0 to 481.5**	120	Ū.	51	00	

Table 9: Recommended Soil Parameters for Lateral Load Analysis Pier 4 (Reference Borings 1706-B-02 & VST-06)

	(Iterered Doringe			01 00)	
Soil Type Elevation	Estimated Unit Weight, γ (pcf)	Undrained Shear Strength, c _u (psf)	Estimated Friction Angle, φ (°)	Estimated Lateral Soil Modulus Parameter, k (pci)	Estimated Soil Strain Parameter, ε_{50} (%)
M Dense SA GR EL 574.7* to 572.0 feet	115	0	30	25	
Soft to M Stiff CL to SI CL EL 572.0 to 565.0 feet	115	900	0	100	1.0
Soft to M stiff CL to SI CL EL 565.0 to 550 feet	115	650	0	100	1.0
Soft to M Stiff CL to SI CL EL 550 to 541.0 feet	115	800	0	100	1.0
Stiff SI CL EL 541.0 to 538.0	120	1000	0	500	0.7
V Siff to Hard SI CL LOAM EL 538.0 to 523.0	120	3900	0	1000	0.5
M Stiff CL EL 523.0 to 518.0	115	750	0	100	1.0
Hard SI CL LOAM EL 518.0 to 513.0	125	4500	0	2000	0.4
V Dense SI LOAM EL 513.0 to 498.0	125	0	35	60	
Hard SI CL LOAM EL 498.0 to 490.7	125	7300	0	2000	0.4
V Dense SI LOAM EL 490.7 to 480.7**	125	0	35	60	

Table 10: Recommended Soil Parameters for Lateral Load Analysis Pier 5 and Pier 6 (Reference Borings 1715-B-03, 2055-B-04 & VST-06)

*Top of the Boring, **Boring Termination Depth

	(8		/	
				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c_u	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
Stiff to V Stiff SI CL LOAM EL 589.4* to 581.0 feet	115	0	32	25	
Soft to M Stiff CL to SI CL EL 581.0 to 565.0 feet	115	900	0	100	1.0
Soft to M Stiff CL to SI CL EL 565.0 to 550 feet	115	650	0	100	1.0
Soft to M Stiff CL to SI CL EL 550 to 541.0 feet	115	800	0	100	1.0
Stiff SI CL EL 541.0 to 537.0	120	1100	0	500	0.7
V Siff to Hard SI CL LOAM EL 537.0 to 522.0	120	3400	0	1000	0.5
M Dense SI EL 522.0 to 517.0	115	0	29	20	
Hard SI CL LOAM EL 517.0 to 507.0	125	9000	0	2000	0.4
Dense to V Dense SI EL 507.0 to 498.0	125	0	35	60	
Hard SI CL LOAM EL 498.0 to 492.0	125	5400	0	2000	0.4
V Dense SA GR EL 492.0 to 487.0	125	0	34	60	
V Dense SA GR EL 487.0 to 479.4**	125	0	36	65	

Table 11: Recommended Soil Parameters for Lateral Load Analysis Pier 7 (Reference Borings 1715-B-04 & VST-06)

*Top of the Boring, **Boring Termination Depth

	-	0			
				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c _u	Angle, ϕ	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
V Stiff to Hard SI CL LOAM EL 593.2* to 582.0 feet	125	4500	0	2000	0.4
Stiff SI CL EL 582.0 to 572.0 feet	120	1000	0	500	0.7
Soft to M Stiff CL to SI CL EL 572.0 to 565.0 feet	115	900	0	100	1.0
Soft to M Stiff CL to SI CL EL 565.0 to 550 feet	115	650	0	100	1.0
Soft to M Stiff CL to SI CL EL 550 to 541.0 feet	115	800	0	100	1.0
V Stiff SI CL EL 541.0 to 536.0	120	2950	0	1000	0.5
V Siff to Hard SI CL LOAM EL 536.0 to 506.0	125	6000	0	2000	0.4
V Dense SI to SI LOAM EL 506.0 to 486.0	125	0	35	65	
V Dense GR LOAM EL 486.0 to 482.2**	125	0	36	65	

Table 12: Recommended Soil Parameters for Lateral Load Analysis Pier 8 (Reference Borings 1714-B-01 & VST-06)

*Top of the Boring, **Boring Termination Depth

				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c _u	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
V Stiff SI CL LOAM EL 582.5* to 577.0 feet	120	3100	0	2000	0.4
Stiff SI CL LOAM EL 577.0 to 572.0 feet	120	1300	0	500	0.7
Soft to M Stiff CL to SI CL EL 572.0 to 565.0 feet	115	900	0	100	1.0
Soft to M Stiff CL to SI CL EL 565.0 to 550 feet	115	650	0	100	1.0
Soft to M Stiff CL to SI CL EL 550 to 541.0 feet	115	800	0	100	1.0
Stiff SI CL EL 541.0 to 535.0	115	1000	0	500	0.7
V Siff SI CL LOAM EL 535.0 to 520.0	120	3000	0	1000	0.5
M Dense SI EL 520.0 to 515.0	115	0	28	15	
Hard SI CL LOAM EL 515.0 to 508.0	125	10000	0	2000	0.4
V Dense GR LOAM EL 508.0 to 484.5**	125	0	36	65	

Table 13: Recommended Soil Parameters for Lateral Load Analysis Pier 9 (Reference Borings 1714-B-02 & VST-06)

				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c _u	Angle, ϕ	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
Loose to M Dense CRUSHED					
STONE	115	0	30	15	
EL 581.4* to 576.0 feet					
Stiff SI CL					
EL 576.0 to 571.0 feet	120	1500	0	500	0.7
Soft to M Stiff CL to SI CL					
EL 571.0 to 565.0 feet	115	900	0	100	1.0
Soft to M Stiff CL to SLCI					
EL 565 0 to 550 fact	115	650	0	100	1.0
EL 303.0 to 330 leet					
Soft to M Stiff CL to SI CL	115	800	0	100	1.0
EL 550 to 544.0 feet	115	000	0	100	1.0
Stiff SI CL	117	1200	0	500	0.7
EL 544.0 to 539.0	115	1200	0	500	0.7
V Siff to Hard SI CL LOAM					
EL 539.0 to 524.0	120	4500	0	2000	0.4
M Dense SI	115	0	28	15	
EL 524.0 to 519.0					
Hard SI CL LOAM	125	8000	0	2000	0.4
EL 519.0 to 504.0	125	8000	0	2000	0.4
V Dense SI to GR SANDY LOAM					
EL 504.0 to 489.4**	125	0	36	65	

Table 14: Recommended Soil Parameters for Lateral Load Analysis Pier 10 (Reference Borings 2081-B-03 & VST-06)

				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c _u	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
V Stiff SI CL EL 578.7* to 575.0 feet	120	3800	0	1000	0.5
Loose to M Dense GR SA to CRUSHED STONE EL 575.0 to 563.0 feet	120	0	30	20	
Soft to M Stiff CL to SI CL EL 563.0 to 556.0 feet	115	600	0	100	1.0
Soft to M Stiff CL to SI CL EL 556.0 to 544 feet	115	840	0	100	1.0
Soft to M Stiff CL to SI CL EL 544.0 to 541.0 feet	115	800	0	100	1.0
Stiff SI CL EL 541.0 to 531.0	115	1450	0	500	0.7
V Siff SI CL LOAM EL 531.0 to 522.0	120	3500	0	1000	0.5
M Stiff SI LOAM EL 522.0 to 517.0	115	0	980	100	1.0
Hard SI CL LOAM EL 517.0 to 493.7**	125	7500	0	2000	0.4

Table 15: Recommended Soil Parameters for Lateral Load Analysis Pier 11 (Reference Borings 2081-B-04 & 1729-VST-01)

				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c _u	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
V Stiff SI CL	100	2000		500	0.7
EL 577.8* to 575.0 feet	120	2000	0	500	0.7
Soft to M Stiff CL to SI CL	115	020	0	100	1.0
EL 575.0 to 571.0 feet	115	920	0	100	1.0
Soft to M Stiff CL to SI CL				4.0.0	
EL 571.0 to 556.0 feet	115	600	0	100	1.0
Soft to M Stiff CL to SI CL			_		
EL 556.0 to 544.0 feet	115	840	0	100	1.0
Stiff to V Stiff SI CL					
EL 544.0 to 535.0 feet	120	1900	0	500	0.7
V Stiff to Hard SI CL					
EL 535.0 to 521.0	120	3800	0	1000	0.5
M Dense CL					
EL 521.0 to 516.0	115	660	0	100	1.0
Loose SI					
EL 516.0 to 511.0	110	0	27	10	
Hard SI CL LOAM					
EL 511.0 to 506.0	125	6000	0	2000	0.4
V Dense SI LOAM					
EL 506.0 to 489.9**	125	0	35	65	

Table 16: Recommended Soil Parameters for Lateral Load Analysis Pier 12 (Reference Borings 1715-B-05 & 1729-VST-01)

				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c _u	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
V Stiff SI CL EL 575.6* to 573.0 feet	120	2000	0	500	0.7
Soft to M Stiff CL to SI CL EL 573.0 to 571.0 feet	115	920	0	100	1.0
Soft to M Stiff CL to SI CL EL 571.0 to 556.0 feet	115	600	0	100	1.0
Soft to M Stiff CL to SI CL EL 556.0 to 544.0 feet	115	840	0	100	1.0
Stiff SI CL EL 544.0 to 538.0 feet	120	1500	0	500	0.7
V Stiff SI CL EL 538.0 to 519.0	120	3000	0	1000	0.5
Hard SI CL LOAM to SI LOAM EL 519.0 to 499.7	115	6670	0	2000	0.4
V Dense GR SA LOAM EL 499.7 to 488.8**	125	0	36	65	

Table 17: Recommended Soil Parameters for Lateral Load Analysis Pier 13 (Reference Borings 18-RWB-02, 13-RWB-01, 1087-B-02 & 1729-VST-01)

	Estimated	Undrained	Estimated	Estimated	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c_{μ}	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
Loose SI LOAM to SAND EL 593.6* to 585.0 feet	110	0	28	10	
Stiff to V Stiff CL to SI CL EL 585.0 to 580.0 feet	120	2300	0	1000	0.5
Soft to M Stiff CL to SI CL EL 580.0 to 571.0 feet	115	920	0	100	1.0
Soft to M Stiff CL to SI CL EL 571.0 to 556.0 feet	115	600	0	100	1.0
Soft to M Stiff CL to SI CL EL 556.0 to 544.0 feet	115	840	0	100	1.0
Stiff SI CL EL 544.0 to 541.0 feet	120	1500	0	500	0.7
Hard SI CL to SI LOAM EL 541.0 to 525.0	125	6900	0	2000	0.4
V Stiff SI CL LOAM EL 525.0 to 520.0	120	2000	0	500	0.7
M Dense SA LOAM EL 520.0 to 515.0	115	0	29	20	
Hard SI LOAM EL 515.0 to 500.0	125	6500	0	2000	0.4
V Dense GR SA LOAM EL 500.0 to 488.8**	125	0	36	65	

Table 18: Recommended Soil Parameters for Lateral Load Analysis Pier 14 (Reference Borings 1087-B-02, 13-RWB-01, & 1729-VST-01)

				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c _u	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
Loose SI LOAM to SAND EL 593.6* to 584.0 feet	110	0	28	10	
Stiff to V Stiff CL to SI CL EL 584.0 to 578.0 feet	120	1800	0	500	0.7
Soft to M Stiff CL to SI CL EL 578.0 to 571.0 feet	115	920	0	100	1.0
Soft to M Stiff CL to SI CL EL 571.0 to 556.0 feet	115	600	0	100	1.0
Soft to M Stiff CL to SI CL EL 556.0 to 544.0 feet	115	840	0	100	1.0
Stiff SI CL EL 544.0 to 541.0 feet	120	1500	0	500	0.7
Hard SI CL to SI CL LOAM EL 541.0 to 521.0	125	5400	0	2000	0.4
Loose SI LOAM EL 521.0 to 516.0	110	0	28	10	
Hard SI CL LOAM EL 516.0 to 506.0	125	5400	0	2000	0.4
V Dense SI LOAM to GR SA EL 506.0 to 492.1**	125	0	36	65	

Table 19: Recommended Soil Parameters for Lateral Load Analysis Pier 15 (Reference Borings 10-RWB-01 & 1729-VST-01)

				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c _u	Angle, φ	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
Loose SI LOAM to SAND EL 593.5* to 583.0 feet	110	0	28	10	
Stiff to V Stiff CL to SI CL EL 583.0 to 576.0 feet	120	1800	0	500	0.7
Soft to M Stiff CL to SI CL EL 576.0 to 571.0 feet	115	920	0	100	1.0
Soft to M Stiff CL to SI CL EL 571.0 to 555.0 feet	115	600	0	100	1.0
Soft to M Stiff CL to SI CL EL 555.0 to 545.0 feet	115	740	0	100	1.0
Stiff SI CL EL 545.0 to 540.0 feet	120	1400	0	500	0.7
Hard SI CL to SI CL LOAM EL 540.0 to 526.0	125	5000	0	2000	0.4
Dense SI LOAM EL 526.0 to 516.0	125	0	32	50	
Hard SI CL LOAM EL 516.0 to 506.0	125	9000	0	2000	0.4
V Dense SI EL 506.0 to 502.0	125	0	34	65	
Hard SI CL LOAM EL 502.0 to 496.0	125	9000	0	2000	0.4
V Dense GR SI LOAM EL 496.0 to 491.5**	125	0	36	65	

Table 20: Recommended Soil Parameters for Lateral Load Analysis Pier 16 (Reference Borings 10-RWB-02, 1729-VST-01, & 1729-VST-02)

				Estimated	
	Estimated	Undrained	Estimated	Lateral Soil	Estimated Soil
Soil Type	Unit	Shear	Friction	Modulus	Strain
Elevation	Weight, y	Strength, c _u	Angle, ø	Parameter, k	Parameter, ε_{50}
	(pcf)	(psf)	(°)	(pci)	(%)
M Dense SI LOAM to LOAM EL 593.5* to 585.0 feet	110	0	28	10	
V Stiff SI CL EL 585.0 to 580.0 feet	120	1800	0	500	0.7
Soft to M Stiff CL to SI CL EL 580.0 to 571.0 feet	115	920	0	100	1.0
Soft to M Stiff CL to SI CL EL 571.0 to 555.0 feet	115	600	0	100	1.0
Soft to M Stiff CL to SI CL EL 556.0 to 545.0 feet	115	740	0	100	1.0
Stiff SI CL EL 545.0 to 540.0 feet	120	1400	0	500	0.7
Hard SI CL to SI CL LOAM EL 540.0 to 532.0	125	6000	0	2000	0.4
Dense SAND EL 532.0 to 516.0	125	0	34	50	
Hard SI CL LOAM EL 516.0 to 496.0	125	7500	0	2000	0.4
V Dense GR SI LOAM EL 496.0 to 491.5**	125	0	36	65	

Table 21: Recommended Soil Parameters for Lateral Load Analysis South Abutment (Reference Borings 15-RWB-02, 10-RWB-02, 1729-VST-01, & 1729-VST-02)

*Top of the Boring, **Top of Bedrock

1 doit 22.	Recommende	u Rock I aran	Icters for Later	ai Load Analysis	
			Uniaxial		Lateral Rock
	Total Unit	Young's	Comp.	Rock Quality	Modulus
Rock Type	Weight, y	Modulus	Strength	Designation	Parameter
	(pcf)	(ksi)	(ksi)	(%)	
Fair to Good Quality DOLOSTONE	135	2,500	9.5	65	0.0005

Table 22: Recommended Rock Parameters for Lateral Load Analysis

5.3 Stage Construction Design Recommendations

Construction of the abutment will require embankment fill sections along the existing SB I-90/94 roadway. Ramp will be constructed in one stage however, coordination will be required with the existing ramp to remain open during construction. We estimate temporary shoring of excavations will be required. As per civil cross section near the south abutment, no more than 5 feet of excavation will be required for the MSE walls and the south abutment base will be at a higher elevation supported on drilled shafts. The temporary excavation support can be designed using IDOT Design Guide 3.13.1(IDOT 2012a) and *Temporary Soil Retentions System* will not be required. However, temporary Soil Retention System will be required at the piers.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Site Preparation

All vegetation, surface topsoil, existing pavement, and debris should be cleared and stripped where foundations and structural fills will be placed.

6.2 Excavation

Foundation excavations should be performed in accordance with local, state, and federal regulations. The potential effect of ground movements upon nearby utilities should be considered during construction.

6.3 Filling and Backfilling

Fill material required to attain the final design elevations should be structural fill material and should be pre-approved prior to placement. Compacted cohesive or granular soil conforming to IDOT Section 204 would be acceptable as structural fill (IDOT 2012b). The fill material should be free of organic

matter and debris. Structural fill should be placed in lifts and compacted according to IDOT Section 205, *Embankment* (IDOT 2012b). The onsite fill materials could be considered as new fill material assuming it has an organic content lower than 10%.

Backfill materials must be pre-approved by the Resident Engineer. To backfill the abutment and piers we recommend porous granular material conforming to the requirements specified in the IDOT Special Provision, *Granular Backfill for Structures* (IDOT 2012b). Backfill material should be placed and compacted in accordance with the Special Provision.

6.4 Earthwork Operations

The required earthwork can be accomplished with conventional construction equipment. Moisture and traffic will cause deterioration of exposed subgrade soils. Precautions should be taken by the Contractor to prevent water erosion of the exposed subgrade. A compacted subgrade will minimize water runoff erosion.

Earth moving operations should be scheduled to not coincide with excessive cold or wet weather (early spring, late fall, or winter). Any soil allowed to freeze or soften due to the standing water should be removed. Wet weather can cause problems with subgrade compaction.

It is recommended that an experienced geotechnical engineer be retained to inspect the exposed subgrade, monitor earthwork operations, and provide material inspection services during the construction phase of this project.

6.5 Drilled Shafts

The drilled shafts should be constructed in accordance with the IDOT Special Provision *Drilled Shafts* (GBSP No. 86). Drilled shaft installation procedure should be reviewed and approved by IDOT.

The groundwater is expected to be located within the granular fill soils layers above the hard silty clay. As a minimum, temporary casing will be required in the upper surficial granular fill soils extending into clay to prevent groundwater from entering the shafts and prevent loss of ground around the shafts. The temporary casing should be socketed a few feet into the clay soil to effectively seal the groundwater infiltration into the drilled shafts.

Our analysis indicates that the shear strength of the soft clay at some locations may not be sufficient to

resist squeeze into the drilled shafts. IDOT requires providing temporary casing through soft clay in order to properly construct the drilled shafts. We recommend providing temporary casing to two feet below soft clay. The following note should be shown on the plan.

"Based on the squeeze potential of the soft clay soils, the use of temporary casing will be required to two feet below soft clay in order to properly construct the drilled shafts. Casing may be pulled or left in place, as determined by the Contractor at no cost to the Department."

Groundwater is also expected from granular soil layers within very stiff to hard clay deposit and above the bedrock. Drilled shafts extending through these granular soils to top of bedrock or socketed into the bedrock will require permanent casing to top of bedrock. IDOT requires that in the event that permanent casing is not designed for the construction of shafts on top of bedrock or socketed into bedrock, slurry method should be used and the structural integrity should be verified by Crosshole Sonic Logging (CSL). The IDOT special provision "*Crosshole Sonic Logging*", dated March 9, 2010 or latest edition should be included in the project specifications for inspection and testing of the shafts on top of rock and socketed into rock. Wang recommends providing the CSL testing for at least one shaft per substructure along the WS Ramp Bridge.

We recommend providing permanent casing to top of rock at Piers 10 and 11 to protect existing CTA retaining walls. Special care should be taken to prevent loss of ground during shaft installation adjacent to the existing buried utilities. It is recommended to advance the casing ahead of the excavation operation.

7.0 QUALIFICATIONS

The analysis and recommendations submitted in this report are based upon the data obtained from the borings drilled at the locations shown on the boring logs and in Exhibit 3. This report does not reflect any variations that may occur between the borings or elsewhere on the site, variations whose nature and extent may not become evident until the course of construction. In the event that any changes in the design and/or location of the bridge are planned, we should be timely informed so that our recommendations can be adjusted accordingly.

It has been a pleasure to assist AECOM and the Illinois Department of Transportation on this project. Please call if there are any questions, or if we can be of further service.

Respectfully Submitted,

WANG ENGINEERING, INC.

1110/00thgata

Mohammed A. Kothawala, P.E., D.GE Senior Geotechnical Engineer 12-5-17

hicense ехрігея: 11-30-19

The long boy

Corina T. Farez, P.E., P.G. QA/QC Reviewer

REFERENCES

- AASHTO (2014) LRFD Bridge Design Specifications: Washington, D.C., American Association of State Highway and Transportation Officials.
- BAUER, R.A., CURRY, B.B., GRAESE, A.M., VAIDEN, R.C., SU, W.J., and HASEK, M.J. (1991) Geotechnical Properties of Selected Pleistocene, Silurian, and Ordovician Deposits of Northeastern Illinois: Environmental Geology 139, Illinois State Geological Survey, 69 p.
- BROWN, D.A., TURNER, J.P., and CASTELLI, R.J. (2010) Drilled Shafts: Construction Procedures and LRFD Design Methods: Geotechnical Engineering Circular No. 10: Washington, D.C., Federal Highway Administration, 970 p.
- CHRZATOWSKY, M.J., and THOMPSON, T.A. (1992) Late Wisconsinan and Holocene coastal evolution of the southern shore of Lake Michigan, *in* Fletcher, C.H., III, and Wehmiller, J.F., eds., Quaternary Coasts of the United States: Marine and Lacustrine Systems: SEPM Special Publication No.48: Tulsa, Oklahoma, Society for Sedimentary Geology, p. 397-413.
- HANSEL, A.K., and JOHNSON, W.H. (1996) Wedron and Mason Groups: Lithostratigraphic Reclassification of the Wisconsin Episode, Lake Michigan Lobe Area: ISGS Bulletin 104: Champaign, Illinois State Geological Survey, 116 p.
- IDOT (2012a) Bridge Manual, Illinois Department of Transportation.
- IDOT (2016) Standard Specifications for Road and Bridge Construction, Illinois Department of Transportation, 1098 p.
- LEETARU, H.E., SARGENT, M.L., and KOLATA, D.R. (2004) Geologic Atlas of Cook County for Planning Purposes, Open File Series 2004-12, Illinois State Geological Survey, p. 30.
- PECK, R.B., and REED, W.C. (1954) Engineering Properties of Chicago Subsoils: University of Illinois Engineering Experiment Station Bulletin No. 423: Urbana, University of Illinois, 62
- WILLMAN, H.B. (1971) Summary of the Geology of the Chicago Area, ISGS Circular C460: Urbana, Illinois State Geological Survey, p. 77.

EXHIBITS

Geotechnical · Construction · Environmental Quality Engineering Services Since 1982

Bench Mark: Square cut at center of door entrance to 707 W. Harrison St; South side of Harrison St. ±90' west of west line of Des Plaines. Elevation 597.47. A t cut in the SE anchor bolt at the 11th street light N. of Roosevelt on the W. side of Halsted. Elev. = 594.06

Existing Structure: S.N. 016-2450 was built in 1960 and carries WB I-290 traffic to SB I-90/94 over Ramp EN, Ramp NW, I-90/94, Ramp SE, I-290, CTA tracks & Ramp EN again. The existing twenty-span structure has an overall length of approx. 1329'-6". The existing superstructure consists of simple span wide-flange beams with 7 1/2" thick concrete deck with 1 1/2" overlay. The existing substructure consists of reinforced concrete abutment and multi-column piers. Existing substructure units are supported on caissons. Existing structure to be removed and replaced. Traffic to be detoured during construction.

* Min.	Vert	ical Clearance	2014 AASHT 7th Edition	[™] O LRFD Bridge with 2015 and	e Desi 2016 I	gn Specifica Interim Revis	tions sions
ESI	GN	STRESSES	S	LOADING	HI - 9	93	
ŀ	FIEL	D UNITS	- Allow 50#	/sq. ft. for fu	ture w	<u>earing</u> surfa	ce.
= 3,5	500 J	osi Superstrue	tural				
= 4,0 = 60,0	, 000 , 000	psi (Supersiruc psi (Reinforcen	iure) ient)	SEISMI	C DA	ATA	
= 50,0	000	psi (M270 Grad	le 50) Seis	smic Performan	ce Zoi	ne (SPZ) = .	1
			Design Spect	ral Acceleration ral Acceleration	n ar 1.0 n at 0.	U sec. (S _{D1}) 2 sec. (S _{DS} .	= 0.085g) = 0.144g
_				Soil Site	Class	= D	
ſ	BOF		PLAN:CIRCLE I	NTERCHANGE F	RECON		
ŀ					DRAWN	BY: H. Bista	
ŀ	SUAL	E. GRAFHICAL		511 5-1	CHECKE	ED BY: A. Kurnia	
			' Wan		1145	N. Main Street	
			Engine	eering	Lomi www.	wangeng.com	
ŀ							
L	FC	DR AECOM			110	0-04-01	
				DC.	. 11 0		
		TABLE	<u>1</u>	. <u>05</u> -			
		Estimated T/Ground Elev	Estimated				-
Pier	1	588.14	485.4	Stat	ion	Offset	
Pier	2	585.34	487.6	1210	+60	RT	=
Pier	3	578.91	488.0	. 1210	+65	RT-SAG]
Pier	5	574.88	483.2	1211+	- 39	RT	-
Pier	6	582.79	483.2	1213	+ 18 + 93		-
Pier	7	590.43	480.9	1215	+ 95		-
Pier	8	594.59	484.5	1215	+ 96	17	-
Pier	9	581.77	486.5	1219	+ 10	LT	-
Pier	10	583.24	489.4	1220)+49	LT-SAG	
Pier .	11	583.36	490.5	. 1220)+54	LT	
Pier . Pier	12	576.01	491.1	1221	+86	LT	
Pier	13 14	589.26	488.8	1221	+91		4
Pier	15	588.81	492.1	1223	5+03	RI DT	-
Pier	16	587.16	493.0	1223)+37 (+53	RT RT	-
S. At	but	585.83	493.0	1224	1+52	RT	-
OTE	с.	-		1226	5+79	RT	-
UIE.	<u>):</u>			1228	3+29	RT	
All st	truct	ural steel shall	be metalized	1229	1+45	RT	
(therr	nal s	spraying).		1229	9+50	RT	
. Span	lenç	gths are measu	red along 🛿 &	Rai	nae 14.	F. 3rd P.M.	
P.G.L	. Ra	imp WS.				Ontaria	51.
. All su	ubstr	ructures are or	riented 90° to			Onio Si.	1
₿ Ra	mp	WS unless note	d otherwise.	>			
All sl	haft	shall be rock .	socketed Depth	39,	ybay	ranch River	
and c	dia.	of rock socket	to be determine	ed e Eiseni	hower X	S S S Congres	s
durin	g fir	nal design .			ssway	\$ Š \ Parkwa	<i>r</i>
			r		1/ 10		1
			<u></u>	Structure	Dan A		1
			_	LOCA	TIO	N SKETC	``H
es Plai	ines	FAU Rte. 1429	ł				
57.	_	(Harrison St.)	GENEE	RAI PIAN	8 F	ΙΕνΔΤΙΟ)N - 1
ipal Ai	rter.	Urban Collector					200
N/A		10,800	- <u>RAN</u>	NP WS UVE	<u>к I</u> -	90/94/2	<u>290</u>
220		.336	1 /	F.A.I. RTE	. 90	/94/290	1
		740					

DESIGN SPECIFICATIONS

es Plaines	FAU Rte. 1429
St.	(Harrison St.)
ipal Arter.	Urban Collector
5,490	16,800
N/A	17,000
220	336
N/A	340
N/A	1,700
) m.p.h.	25 m.p.h.
) m.p.h.	25 m.p.h.
	Two-Way
	50:50

* Min Horizontal Clearance

<u>GENERAL PLAN & ELEVATION - 1</u>
<u>RAMP WS OVER I-90/94/290</u>
<u>F.A.I. RTE. 90/94/290</u>
<u>SECTION 2014-013R&B-R</u>
<u>COOK COUNTY</u>
<u>STATION 1216+37.21</u>
<u>STRUCTURE NO. 016-1715</u>
F.A.I. COUNTY TOTAL SHEET

	F.A.I. RTE.	SE	CTION		COUNTY	TOTAL SHEETS	SHEET NO.
016 1716	90/94/290	2014-0	013R&B-R		COOK		
010-1/15					CONTRACT	NO. 6	0X93
7 SHEETS			ILLINOIS FED.	. AI	D PROJECT		

Concrete	Crushed stone	IDH Sand, Sandy Loam	IDH Silty Clay
DH Clay	IDH Silt, Silty Loam	Gravelly sand, sandy gravel	Weathered be
Pavement	Dolomite or Dolomitic Limestone	Topsoil	IDH Clay Loar

APPENDIX A

 $s:\label{eq:linear} s:\label{eq:linear} s:\l$

BORING LOG 0461-B-01

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM

Client Project **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

Datum: NAVD 88 Elevation: 587.18 ft North: 1898107.11 ft East: 1172063.72 ft Station: 1210+23.99 Offset: 19.2353 RT

BORING LOG 1087-B-01

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 594.63 ft North: 1897505.91 ft East: 1171279.56 ft Station: 1226+22.18 Offset: 70.1849 RT

BORING LOG 1087-B-01

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM

Datum: NAVD 88 Elevation: 594.63 ft North: 1897505.91 ft East: 1171279.56 ft Station: 1226+22.18 Offset: 70.1849 RT

Client Project **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

Project

Location

BORING LOG 1087-B-02

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 577.83 ft North: 1897618.19 ft East: 1171373.71 ft Station: 1225+43.65 Offset: 53.5267 LT

Project

BORING LOG 1087-B-02

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM **Circle Interchange Reconstruction**

Datum: NAVD 88 Elevation: 577.83 ft North: 1897618.19 ft East: 1171373.71 ft Station: 1225+43.65 Offset: 53.5267 LT

F	Fax: 630 953-9938 Location Section 17, T39N, R14E of 3rd PM Offset: 53.5267 LT															
Profile Profile Elevation Elevation (fi) (fi) Depth Depth										SOIL AND RO DESCRIPTIO	CK ^{dept}	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
		HARD DRILLIN	G 85	23	50/3	NR										
	488.8 Stror gray, joint sligh Run t Roc Strer Drill o Spac Conc	ng, good rock quality, light fresh, slightly fractured, breaks with little to no infil ily vuggy DOLOSTONE #1: 89 to 99 feet RECOVERY=100' RQD=84' K MASS RATING: ngth of rock material = 12 core quality RQD = 17 ting of joints = 20 dition of joints =20		24	C O R E											
	Groundwater condition =10 95 7 7 7 7 7 7 7 7 7 7 7 7 7															
\$			100													
10. 10.		GENER	AL NO	TES)					WATER LEVEL DATA						
Be	gin Drilling	03-06-2013	Comple	te Dri	lling	0)3-14	-201	3	While Drilling \bigtriangledown 3.50 ft						
Dri	illing Contra	Actor Wang Testing	Service	S	Drill Rig) B-5	57 TN	1R ['	100%] orin	Time After Drilling ► MUA IN THE DOLE						
Dri Zi Dri			D. Kolp	acki	Ch	ecked	by (•. IVI	arin							
	Drilling Method 2.25" SSA to 20', mud rotary thereafter, boring backfilled upon completion								Depth to Water V NA The stratification lines represent the approximate boundary between soil types: the actual transition may be gradual							

Project

BORING LOG 1087-B-02 Alt

WEI Job No.: 1100-04-01

Page 1 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

Datum: NAVD 88 Elevation: 577.78 ft North: 1897624.78 ft East: 1171370.00 ft Station: 1225+36.25 Offset: 51.9824 LT

Profile	SOIL AND ROCK	Depth (ft) Sample Type <i>recovery</i> Sample No.	SPT Values (blw/6 in)	(tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND RC DESCRIPTIC	DCK for the second seco	Sample Type	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	
		-							-					
									-					
									-					
		- - 5_												
	DRILLED WITHOUT SAMPLING								-					
									-					
									-					
		 10												
									-					
		-							-					
									-					
		_ 15							35_					
		-							-					
6/16/17									-					
IGENG.GDT									-					
U WAI		20						40						
01.GP	GENER	AL NOTES			•			WATER LEVEL DATA						
10004 B	Begin Drilling 03-14-2013	Complete Drilli	ing	0: B ==	3-14 7 TM	-201 סיוס	3	While Drilling		Rota	ary wa	sh robol		
	Driller R&J Logger	N. Boddy	Chec	cked b	y C	UX []). M	arin	Time After Drilling	mg <u>∓</u> mu NA			CIIUI	.	
	Drilling Method 2.25" SSA to 10',	mud rotary th	nereat	fter,	bori	ng		Depth to Water V NA						
MAN	backfilled upon completion		The stratification lines represent the approximate boundary between soil types: the actual transition may be gradual											

BORING LOG 1087-B-02 Alt

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 577.78 ft North: 1897624.78 ft East: 1171370.00 ft Station: 1225+36.25 Offset: 51.9824 LT

Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	Sample No. SPT Values	(blw/6 in) Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND RO DESCRIPTIO	CK theo N	Sample Type recovery Sample No	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	
	-	-DRILLED WITHOUT SAMPLING													
			-							-					
			-							-					
			-							-					
			-							-					
			_ 45							65_					
			-												
			-							-					
			-							-					
			-							-					
			_							-					
			50							70_					
			-							-					
			-							-					
			-							-					
			-												
			55												
	-	-DRILLED WITHOUT SAMPLING	_												
			-							-					
21			-							-					
DT 6/16										-					
SENG.G			_							-					
NAN C			60						80_						
101.GP		GENEF	RAL NOTI	S					WATER LEVEL DATA						
1000 ⁴	Begin Dr	illing 03-14-2013	Complete	Drilling	Dia D	03-14 57 TM	-201	13	While Drilling		Rota	iry wa	sh robol	•	
	Drilling C Driller	R&J Logger	N. Bodd	_ Drill V	Checked	bv (<u>ик [</u> С. М	larin	At Completion of Drilli Time After Drilling	ng <u>v</u> mi NA	u in t		enol	e.	
	Drilling N	Aethod 2.25" SSA to 10'.	mud rotar	, v the	reafter	bor i	ina		Depth to Water V NA						
VANC	backfilled upon completion								Depth to Water Y NA The stratification lines represent the approximate boundary between soil types: the actual transition may be gradual						

Project

Location

BORING LOG 1087-B-02 Alt

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 577.78 ft North: 1897624.78 ft East: 1171370.00 ft Station: 1225+36.25 Offset: 51.9824 LT

Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type recovery	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND DESCRI) ROCK PTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	494.3 488.8 S1 gr jo sli Ri	HARD DRILLING- rrong, good rock quality, light ay, fresh, slightly fractured, int breaks with little to no infill, ghtly vuggy DOLOSTONE un#1: 89 to 99 feet RECOVERY=100%- RQD=84%- pring terminated at 99.00 ft		23	C O R E	NR											
> [45		CENEDA													· A		
0401.		GENEKA			lina	ſ	3.14	-201	3	WAIEK LEVEL DAIA							
	illing Co	ntractor Wang Testing S	ervices	ווי <i>ם .</i>]	Drill Ric	B-5	57 TN	IR [100%1	At Completion of Drilling The borehole							
Dr	iller	R&J Logger I	N. Bodd	ly .	Che	ecked	by (С. М	arin	Time After Dril	ling	NA					
Dr	illing Me	ethod 2.25" SSA to 10', m	ud rota	ry t	herea	after.	bori	ng		Depth to Water V NA							
MAN	backfilled upon completion									Deptri to Water <u>*</u> NA The stratification lines represent the approximate boundary between soil types: the actual transition may be gradual							

BORING LOG 10-RWB-01

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.61 ft North: 1897453.61 ft East: 1171289.67 ft Station: 1226+75.08 Offset: 76.3653 RT

BORING LOG 10-RWB-02

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.54 ft North: 1897333.82 ft East: 1171374.94 ft Station: 1228+15.06 Offset: 31.338 RT

BORING LOG 10-RWB-02

WEI Job No.: 1100-04-01

Page 3 of 3

Datum: NAVD 88

Elevation: 593.54 ft

North: 1897333.82 ft

East: 1171374.94 ft

between soil types; the actual transition may be gradual

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Profile

AECOM Client Project **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM

Station: 1228+15.06 Offset: 31.338 RT Location SPT Values (blw/6 in) SPT Values (blw/6 in) Moisture Content (%) Sample Typ Sample No Sample No Elevation (ft) Elevation (ft) Moistur Content (Profile SOIL AND ROCK Depth (ft) SOIL AND ROCK Depth (ft) Qu (tsf) Qu (tsf) Sample DESCRIPTION DESCRIPTION 493.0 --DIFFICULT DRILLING----WEATHERED BEDROCK--491.5 Strong, light gray, very poor rock С mass quality, bedded fresh 0 DOLOSTONE, up to 8-inch R beds, up to 4-inch spaced joints, Е horizontal and vertical joints with 12 NP 18 23 none to more than 0.2-inch 19 1 greenish gray infilling, hard joint 105 26 85 wall, with stylolitic surfaces, and moderately vuggy porosity. --Run 1 - RECOVERY=97%--506.8 ---RQD=8%--Very dense, gray SILT --Moist--С 0 R F 40 --Run 2 - RECOVERY=87%--NP 19 24 36 2 40 90 501.8 Hard, gray SILTY CLAY LOAM, Boring terminated at 68.50 ft trace gravel 20 25 9.18 14 28 B 50/5 95 115 496.5 Very dense, gray GRAVELLY SILTY LOAM --Dry--26 NP 10 60/4 120 100 **GENERAL NOTES** WATER LEVEL DATA 02-26-2014 03-03-2014 8.00 ft **Begin Drilling** Complete Drilling While Drilling ∇ Wang Testing Services Drill Rig B-57 TMR [100%] Ţ mud at 7 ft **Drilling Contractor** At Completion of Drilling Driller P&P Logger F. Bozga Checked by **C. Marin** Time After Drilling 144 hours **⊻** 16.00 ft **Drilling Method** 2.25" HSA to 15', mud rotary thereafter, boring Depth to Water The stratification lines represent the approximate boundary backfilled upon completion

BORING LOG 13-RWB-01

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM

Datum: NAVD 88 Elevation: 593.57 ft North: 1897602.80 ft East: 1171259.06 ft Station: 1225+23.63 Offset: 60.4088 RT

Client Project **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Client Project **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

Datum: NAVD 88 Elevation: 593.57 ft North: 1897602.80 ft East: 1171259.06 ft Station: 1225+23.63 Offset: 60.4088 RT

Profile		Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Samole Tvne	sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL ANI DESCR	D ROCK	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
			%Silt=61 %Clay=24 A-6 (1	.8 2 1) -														
				85	23	20 33 30	7.30 S	10										
				90	24	-50/5-	7.05 S	12										
		<u>499.7</u> Вс	oring terminated at 93.90 ft	- - - - - - - - - - - - - - - - - - -	25	-5 <u>0/</u> 5-	NR											
PJ WANGENG.GDI 6/16/17				- - - - 100														
401.G	GENERAL NOTES											WATER			AT	Ά	- 1-	
11000	Be(Dril	gın Drilli Ilina Co	ng U6-28-2013 ntractor Wang Testing	13 93%1	While Drilling Image: Rectary wash At Completion of Drilling Image: Rectary wash							 e						
ן מוגר ו מואכ	Dril	ller	P&N Logger	A. Tom	aras	Ch	ecked	by (C. M	larin	Time After Drilling NA							.
I GEN	Drilling Method 2.25" HSA to 15', mud rotary thereafter, boring										Depth to Water V NA							
WAL	backfilled upon completion											The stratification lines represent the approximate boundary between soil types: the actual transition may be gradual.						

WEI Job No.: 1100-04-01

Page 1 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.23 ft North: 1897624.69 ft East: 1171234.97 ft Station: 7308+20.74 Offset: 20.9635 RT

Profile	Example Exampl	Sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf) Moisture Content /%)	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	Drilled without sampling - - - -						S _{u undis} = 1113.7 S _{u remold} = 777 Sensitivity = 1	psf psf .43 - -		Ϋ́ς~		
	- - - - 5_ - - -						In-Situ Vane Shear, 24.5 f S _{u undis} = 880.6 S _{u remold} = 647.5 Sensitivity = 1	eet ₂₅] 3	VS		
	- - - - - - 10_ - - - - - -						In-Situ Vane Shear, 29.5 f S _{u undis} = 802.9 S _{u remold} = 440.3 Sensitivity = 1	eet ₃₀	<u>)</u> 4	VS-		
	In-Situ Vane Shear, 15.0 feet S _{u undis} = 1036.0 psf S _{u remold} = 543.9 psf Sensitivity = 1.90	1	VS				In-Situ Vane Shear, 34.5 f S _{u undis} = 802.9 S _{u remold} = 466.2 Sensitivity = 1	eet ₃₅] 5	VS_		
Be	In-Situ Vane Shear, 19.5 feet ₂₀ GENERAL N gin Drilling 07-02-2013 Com	DTES	ing .	07-0 CME 55	3-20 ²		In-Situ Vane Shear, 39.5 f WATER While Drilling	eet ₄₀	DAT DAT	A (was	sh	
Dri Dri Dri	ling Contractor vvang Lesting Servic ller R&J Logger D. Ko ling Method 2.25" HSA to 13', mud r	ipacki otary tl	At Completion of Drilling Time After Drilling Depth to Water The stratification lines represe		mate bo	pundary		·				

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.23 ft North: 1897624.69 ft East: 1171234.97 ft Station: 7308+20.74 Offset: 20.9635 RT

						U		(0								
Profile	Elevation (ft)	SOIL AND ROCK	Sample Typ	Sample No	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Typ	Sample No	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%
		$-S_{u \text{ undis}} = 647.5 \text{ psf}$	-		VS						-					
		Sensitivity = 1.47									-					
		-									-					
		-									-					
		-	-								-					
		-									-					
		In-Situ Vane Shear, 44.5 feet45		7	VS						65					
		S _{u undis} = 1292.5 psf S _{u remold} = 620.4 psf			- <u>V</u> -						-					
		Sensitivity = 2.08									-					
		-									-					
		-									-					
		-									-					
		-									-					
		In-Situ Vane Shear 49 5 feet	m 1	Q												
		$-S_{u \text{ undis}} = 1344.2 \text{ psf}-$		0	VS						70					
		S _{u remold} = 620.4 psf Sensitivity = 2.16									-					
		-									-					
		-									-					
		-									-					
		-									-					
		-									_					
		In-Situ Vane Shear, 54.5 feet ₅₅		9	VS						75_					
		$-S_{u \text{ remold}} = NA \text{ psf}$									-					
		Sensitivity = NA									-					
		-									-					
		-									-					
		-									-					
5		-									-					
		- 09									- 80					
-							<u></u>	· A								
B	eain D	rilling 07-02-2013 Con	While Drilling	V LEVE V		tar	r v was	sh								
	rilling	Contractor Wang Testing Servi	ices		Drill Rig		E-55	TMF	R [85%]	At Completion of Drilling	Σ mι	ıd in	th	e bor	ehol	e
С	riller	R&J Logger D. Ko	olpad	:ki	. Ch	ecked	by 🕻	C. M	arin	Time After Drilling	NA					
C	rilling l	Method 2.25" HSA to 13', mud	Depth to Water	NA	rovier	ato k	oundor	,								
	ba	ckfilled upon completion			Buckfilled upon completion											

Page 2 of 3

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.23 ft North: 1897624.69 ft East: 1171234.97 ft Station: 7308+20.74 Offset: 20.9635 RT

Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND DESCRIF	ROCK	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
1.GPJ WANGENG.GDI 0/10/1		GENE		TTC	ES					489.2 Stro Qua DO bec hor nor gre wal mo Qu Qu 479.2 Bor	ong, light gray, ality, bedded fre LOSTONE, up ds, 7-inch joint s izontal and vert ne to less than (enish gray infilli I, with stylolitic s derately vuggy Run 1 RECC = 13,410 psi = 10,600 psi	fair rock mass sh to 18-inch spacing, tical joints with 0.2-inch ing, hard joint surfaces, and porosity. 0VERY=100% RQD=66%			1 AT	CORE		
Re Re	GENERAL NOTES Begin Drilling 07-02-2013 Complete Drilling 07-03-2013											⊒ /1⊒ 1/ // . ∑		Ro	tar	v was	sh	
	Drilling Contractor Wang Testing Services Drill Rig CME-55 TMR [85%]											Willie Drilling → Rotal y wash						
ן ח_ן ח_ו	iller	R&J Logger	D. Kol	pac	ki	Ch	ecked	bv (C. M	arin	Time After Drill	ina	NA	- - - 1			5.101	•
	illina Met	thod 2 25" HSA to 13	' mud r/	otar	v t	here	after	hori	ina	*****	Depth to Water	·	NA					
	back	filled upon completion	n	Jual	y.t			,			The stratification	lines represent t	he app	proxim	ate b	oundary	/	
<1	backfilled upon completion											es: the actual trar	sition	mav b	e ara	dual.		

between soil types; the actual transition may be gradual

backfilled upon completion

Project

BORING LOG 14-RWB-01

WEI Job No.: 1100-04-01

Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction Datum: NAVD 88 Elevation: 580.85 ft North: 1897238.90 ft East: 1171475.76 ft Station: 1229+27.47 Offset: 39.6372 LT

WANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

WEI Job No.: 1100-04-01 AECOM

Datum: NAVD 88 Elevation: 593.54 ft North: 1897200.61 ft East: 1171415.26 ft Station: 1229+54.23 Offset: 33.2105 RT

WANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

Page 2 of 3

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.54 ft North: 1897200.61 ft East: 1171415.26 ft Station: 1229+54.23 Offset: 33.2105 RT

DESCRIPTION	Sample Type recovery Sample No.	SPT Values (blw/6 in) Ou	(tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND DESCRIF	ROCK PTION	Depth (ft)	Sample Type	Sample No. SPT Values	(blw/6 in) Qu (tsf)	Moisture Content (%)
L _L (%)=26, P _L (%)=16 %Gravel=0.1 %Sand=11.7 %Silt=62.6 %Clay=25.6 A-4 (7) 503.5 90 Boring terminated at 90.00 ft		22 32 50 25 33 48	0.02 S 0.25 S	13									
	4		WATER				ach						
Begin Drilling U2-25-2014 Con	4	While Drilling Z Rotary wash											
Driller N&I Lorger A H	annel	nii Kig Checi	ked by		<u>у</u> [3	arin	At Completion of Drilling Y mud in the borehole						
	upper rotary ti	noroaf	tor I	hori			Depth to Water V NA						
backfilled upon completion	Depth to Water V. NA												
	I he stratification lines represent the approximate boundary between soil types; the actual transition may be gradual												

VANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

Project

BORING LOG 1703-B-05

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction

Datum: NAVD 88 Elevation: 586.64 ft North: 1898050.50 ft East: 1171954.33 ft Station: 5213+04.97 Offset: 31.8899 RT

Page 2 of 3

BORING LOG 1703-B-05

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 586.64 ft North: 1898050.50 ft East: 1171954.33 ft Station: 5213+04.97 Offset: 31.8899 RT

WANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

between soil types; the actual transition may be gradual

Project

BORING LOG 1705-B-11

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

Datum: NAVD 88 Elevation: 580.50 ft North: 1898132.10 ft East: 1171174.95 ft Station: 1834+90.93 Offset: 2.3250 LT

VANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

BORING LOG 1705-B-11

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 580.50 ft North: 1898132.10 ft East: 1171174.95 ft Station: 1834+90.93 Offset: 2.3250 LT

between soil types; the actual transition may be gradual

BORING LOG 1706-B-02

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 573.51 ft North: 1898279.12 ft East: 1171636.73 ft Station: 1214+88.11 Offset: 8.0782 LT

VANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

Project

BORING LOG 1714-B-01

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction

Datum: NAVD 88 Elevation: 593.22 ft North: 1898191.77 ft East: 1171304.89 ft Station: 1218+92.09 Offset: 41.4568 LT

BORING LOG 1714-B-01

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 593.22 ft North: 1898191.77 ft East: 1171304.89 ft Station: 1218+92.09 Offset: 41.4568 LT

WANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

between soil types; the actual transition may be gradual

backfilled upon completion

between soil types; the actual transition may be gradual

VANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

Project

BORING LOG 1715-B-01

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM **Circle Interchange Reconstruction** Datum: NAVD 88 Elevation: 588.39 ft North: 1898143.12 ft East: 1171931.11 ft Station: 1211+64.12 Offset: 7.8377 RT

between soil types; the actual transition may be gradual

BORING LOG 1715-B-01

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 588.39 ft North: 1898143.12 ft East: 1171931.11 ft Station: 1211+64.12 Offset: 7.8377 RT

Project

BORING LOG 1715-B-02

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

Datum: NAVD 88 Elevation: 578.98 ft North: 1898224.57 ft East: 1171745.64 ft Station: 1213+66.68 Offset: 5.771 LT

Project

BORING LOG 1715-B-02

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction

Datum: NAVD 88 Elevation: 578.98 ft North: 1898224.57 ft East: 1171745.64 ft Station: 1213+66.68 Offset: 5.771 LT

F	Telephone: 630 953-9928 Fax: 630 953-9938 Location Section 17, T39N, R14E of 3rd PM Offset: 5.771 LT															
Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND RO DESCRIPTIO	DCK for the dependence of the	Sample Type	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	
NGENG.GDI 6/16/17	488.0 486.0 BC	HARD DRILLI Possible Cobi HARD DRILLI Possible Cobi VERY HARD, STE DRILLI WEATHERED BEDRC ROLLER BIT REFUS pring terminated at 93.00 ft	NG 	23	50/3	, NP	10									
		OENE								10/0						
7.1040 Re	ain Drilli	GENE na 02-23-2014	Complete	ES Dril	lina	()3-23	-201	4	While Drilling		L DA	.00 ft			
	illing Co	ntractor Wang Testin	100%1	At Completion of Dri	lling ⊻ m i	ud in t	the boi	ehol	e							
	iller	P&P Logger	D. Kolpa	cki	Ch	ecked	by (С. М	arin	Time After Drilling 24 hours						
Dr	illing Me	thod 3.25" HSA to 10	', mud rota	ry t	herea	after	, bor	ing		Depth to Water ¥ 72.00 ft						
WAN	bacl	filled upon completio	The stratification lines represent the approximate boundary between soil types; the actual transition may be gradual													

WANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

BORING LOG 1715-B-03

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 574.74 ft North: 1898289.14 ft East: 1171492.75 ft Station: 1216+42.65 Offset: 33.3447 LT

Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	Sample No. SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROC DESCRIPTION	Depth X	Sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	490.7 Ve SI	DESCRIPTION ery dense, gray SILTY LOAN LT, trace gravelWL _L (%)=NP, P _L (%)=N%Gravel=0%Sand=1%Silt=92%Clay=6%Clay=6A-4WEATHERED BEDROOROLLER BIT REFUS	M to - - - - - - - - - - - - -		NP	22			DESCRIPTION		Sam re Sam	(b)		Mo
J WANGENG.GUI 0/16/1/			 100											
19.		GENER	WATE	R LEVE	LDA	ΓA								
Be	egin Drilli	ng 03-19-2014	4	While Drilling	Ţ.	2.	50 ft							
Dr	illing Co	ntractor Wang Testing	g Services	Drill R	g B-	57 TN	/IR [′	00%]	At Completion of Drilling	<u> </u>	62	00 ft		
Dr	iller	P&P Logger	D. Kolpac	ki Cl	necked	by .	C. M	arin	Time After Drilling	NA				
Dr	illing Me	thod 3.25" HSA to 10'	, mud rotar	y there	after	, bor	ing.		Depth to Water V NA					
MAI	bacl	kfilled upon completion	i ne stratification lines rep	uesent the app	i oximate may be gr	nonungau	у							

BORING LOG 1715-B-04

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 589.41 ft North: 1898275.77 ft East: 1171292.09 ft Station: 1218+40.95 Offset: 27.5424 RT

BORING LOG 1715-B-05

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Profile

AECOM

Datum: NAVD 88 Elevation: 577.87 ft North: 1897826.42 ft East: 1171228.58 ft Station: 1223+01.29 Offset: 21.767 RT

04-17-2014 **Rotary wash Begin Drilling** 04-14-2014 Complete Drilling While Drilling ∇ Wang Testing Services Drill Rig D-25 ATV [93%] mud in the borehole **Drilling Contractor** At Completion of Drilling Driller N&J Logger A. Happel Checked by **C. Marin** Time After Drilling NA **Drilling Method** 2.25" HSA to 10', mud rotary thereafter, boring Depth to Water V NA The stratification lines represent the approximate boundary backfilled upon completion between soil types; the actual transition may be gradual

WANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

Project

BORING LOG 1715-B-05

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

Datum: NAVD 88 Elevation: 577.87 ft North: 1897826.42 ft East: 1171228.58 ft Station: 1223+01.29 Offset: 21.767 RT

Profile	Elevation Elevation	Sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ff)	Sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	491.1DIFFICULT DRILLING Possible Cobbles 85 WEATHERED BEDROCK WEATHERED BEDROCK WEATHERED BEDROCK beds up to 10 inch, 6 inch joint spacing, joints with more than 0.2 inch or no infilling, vuggy, and ⁹⁰ with stylolitic surfaces. Run 1 -RECOVERY= 91% RQD= 66% - -RQD= 66% - RQD= 66% - RQD= 66% - RQD= 66% 		с о к Е							Sar	C C C C C C C C C C C C C C C C C C C		
	100							1					
01.61	GENERAL N	OTES						WATER	R LEVE	L DA	TA		
Be	gin Drilling 04-14-2014 Com	plete Dri	lling	_0)4-17	-201	4	While Drilling	<u> </u>	Rota	ry wa	sh	
F Dr	illing Contractor Wang Testing Servi	ces .	Drill Rig) D -	25 A	TV [93%]	At Completion of Drilling	¥ mu	ud in t	he boi	ehol	e
≦ Dr	iller N&J Logger A. Ha	appel	Ch	ecked	by .	с. M	arin	Time After Drilling	NA				
∄ Dr	illing Method 2.25" HSA to 10', mud r	otary	therea	after	, bori	ing.		Depth to Water	NA sent the app	roximate	boundar	v	
AN N	backfilled upon completion							between soil types: the actua	al transition	may be o	radual	у	

BORING LOG 1715-PMT-01

WEI Job No.: 1100-04-01

Page 1 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 586.37 ft North: 1898101.38 ft East: 1171922.25 ft Station: 1211+54.18 Offset: 33.616 LT

	Profile	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND DESCRIF	ROCK PTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
		Drilled without sampling	_										-					
			-										-					
			-										-					
													-	1				
			-										-					
			-										-					
			_										_					
			5										25					
			-										-					
			-										-					
													-]				
			-										-					
			-										-					
													-	1				
			-										-					
			10										30					
			_										-					
			_										-					
			-										-					
			_										-					
			-										-					
			_										-					
			- 15										- 35					
			_]				
			_										_					
			-										-					
17			_										-	1				
6/16/			_										-					
GDT			-										-					
IGENC			_										-					
WAN			20										40					
01.GPJ		GENER		ΟΤ	ES				۹ <u>ــــــــــــــــــــــــــــــــــــ</u>	·		WATER	LEVE	LD	AT	Ά	· · · · · ·	
100040	Be	gin Drilling 04-24-2014	Com	plete	Dril	ling	_ ()4-24	-201	4	While Drilling		<u>Į</u>	Ro	tary	y was	sh	
NC 11	Dri	Iling Contractor Wang Testing	servio ر م ا	ces	ຼ 	Drill Rig		25 A		93%] arin	At Completion	of Drilling		ıd ir	h th	e bor	ehol	e
ENGI	Dri	lling Method 2 25" HSA to 10'	mud r	ota	rv f	here:	after	bor	o. IVI ina	ai ii i	Depth to Water	nng • ⊻	NA					
NANG	2.1	backfilled upon completion	,				~** * *!.	,			The stratification	n lines represe	ent the app	roxima may b	ate b	oundar	у	

BORING LOG 1715-PMT-01

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Client Project **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

Datum: NAVD 88 Elevation: 586.37 ft North: 1898101.38 ft East: 1171922.25 ft Station: 1211+54.18 Offset: 33.616 LT

between soil types; the actual transition may be gradual

between soil types; the actual transition may be gradual

WANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

backfilled upon completion

Page 3 of 3

BORING LOG 1715-VS-01

WEI Job No.: 1100-04-01

Page 1 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 586.35 ft North: 1898112.83 ft East: 1171916.87 ft Station: 1211+63.56 Offset: 25.6204 LT

Profile	DESCRIPTION th digged General Solid AND ROCK the the the term of te	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ff)	Depth (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	Content (%)				
	Drilled without sampling	-							S _{u undis} = 958.3 psf S _{u remold} = 595.7 psf Sensitivity = 1.61					
	5							-	In-Situ Vane Shear, 25.0 feet S _{u undis} = 595.7 psf S _{u remold} = 414.4 psf Sensitivity = 1.44					
	In-Situ Vane Shear, 10.0 feet ₁₀ S _{u undis} = 1036.0 psf S _{u remold} = 543.9 psf Sensitivity = 1.90		1	<u>Vs</u>				-	In-Situ Vane Shear, 30.0 feet- $_{30}$ S _{u undis} = 828.8 psf- S _{u remold} = 466.2 psf- Sensitivity = 1.78					
	In-Situ Vane Shear, 15.0 feet15 S _{u undis} = 880.6 psf S _{u remold} = 466.2 psf Sensitivity = 1.89		2	<u>Vs</u>				-	In-Situ Vane Shear, 35.0 feet- $_{35}$ S _{u undis} = 1139.6 psf S _{u remold} = 673.4 psf Sensitivity = 1.69					
Be	In-Situ Vane Shear, 20.0 feet20 In-Situ Vane Shear, 40.0 feet40 GENERAL NOTES In-Situ Vane Shear, 40.0 feet40 Begin Drilling 03-27-2014 Complete Drilling 03-27-2014 Complete Drilling 03-27-2014 Drilling Contractor Wang Testing Services Drill Rig D-25 ATV [93%] At Completion of Drilling ▼													
Dri Dri	illing Method 3.25" HSA, boring bac	kfille	a ed u	Ch I pon	ecked COM	^{by} (o. M on	arin	Time After Drilling NA Depth to Water Image: NA The stratification lines represent the approximate boundary between exit the stratification provide the stratification of the stratignee the strat					

BORING LOG 1715-VS-01

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 586.35 ft North: 1898112.83 ft East: 1171916.87 ft Station: 1211+63.56 Offset: 25.6204 LT

_																	
	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
╞		545.9	S _{u undis} = 1139.6	psf	7	1/2							0,				
			$-S_{u remold} = 725.2$	psf		Vo											
		Boi	ring terminated at 40.50 ft	-													
				-													
				_													
				_													
				-													
				45													
				_													
				-													
				_													
				_													
				-													
				-													
				50													
				-													
				-													
				-													
				-													
				_													
				55													
				-													
				-													
16/17				-													
DT 6/																	
NG.G				4													
ANGE				e0 -													
∧ Ld⊖			CENE														
)0401.	Bee	gin Drillin	g 03-27-2014		ete Dri	lling	0)3-27	-201	4	While Drilling			tarv	¬∙ vwas	sh	
1100	Dri	illing Con	tractor Wang Testir	ng Service	S	Drill Riq) D -	25 A	TV [93%]	At Completion of Drilling	∑ mu	ıd in	the	bor	ehole	e
NGINC	Dri	iller	N&J Logger	F. Boz	ga	Ch	ecked	by .	С. М	arin	Time After Drilling	NA					
NGE	Dri	illing Meth	nod 3.25" HSA, bori	ng backfil	led	upon	com	pletio	on		Depth to Water	NA sent the app	roxima	ate ho	undary	,	
₹											between soil types: the actu	al transition	may he	arad	lual		

WEI Job No.: 1100-04-01

Page 1 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 598.29 ft North: 1897455.09 ft East: 1171356.40 ft Station: 7310+33.97 Offset: 1.45 RT

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 598.29 ft North: 1897455.09 ft East: 1171356.40 ft Station: 7310+33.97 Offset: 1.45 RT

Profile	SOIL AND ROCK	(ft) Sample Type recovery	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND DESCRII	ROCK PTION	Depth (ft)	Sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	S _{u undis} = 635.62 psf S _{u remold} = 355.52 psf Sensitivity = 1.78		VS											
	In-Situ Vane Shear, 45.0 feet <i>,</i> S _{u undis} = 840.32 psf S _{u remold} = 430.93 psf Sensitivity = 1.95		5 <u>vs</u>	-										
			4 5 5 2 5 3 3	0.57 B 0.41 B	27 29									
ANGENG.GDT 6/16/17	In-Situ Vane Shear, 54.5 feet S undis = 1508.26 psf S uremold = 1249.71 psf Sensitivity = 1.21 Very stiff, gray SILTY CLAY, trace gravel 540.8 Boring terminated at 57.50 ft		6 <u>VS</u> 6 10 16	2.46 B	22									
B	Begin Drilling 07-25-2016		Drilling	0)7-26	-201	6	While Drillina			Rota	y was	sh	
	Drilling Contractor Wang Testing Se	rvices	Drill Ri	g D-	25 A	TV [93%]	At Completion	of Drilling	Ţ	Mud	at 20	ft	
	Driller N&N Logger F	. Bozga	Ch	ecked	by M	l. Se	yhun	Time After Drill	ing	NA				
	Drilling Method 2.25" IDA HSA to 10	, mud ro	otary tl	nerea	fter,	bor	ing	Depth to Water The stratification	· <u> </u>	NA ent the app	roximate I	ooundar	/	
\$	backfilled upon completion							between soil typ	es: the actual	transition	may be or	adual	,	

WEI Job No.: 1100-04-01

Page 1 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 592.70 ft North: 1897206.55 ft East: 1171441.79 ft Station: 7312+95.08 Offset: 32.79 LT

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 592.70 ft North: 1897206.55 ft East: 1171441.79 ft Station: 7312+95.08 Offset: 32.79 LT Page 2 of 2

l	5		Type	lues in)		Ire (%)	e	no			Type No.	lues in)		Ire (%)
Profil	Elevati (ft)	DESCRIPTION	Sample ⁻	Sample SPT Va (blw/6	Qu (tsf)	Moistu Content	Profil	Elevati (ft)	DESCRIPTION	Deptt (ff)	Sample recove Sample	SPT Va (blw/6	Qu (tsf)	Moistu Content
		S _{u undis} = 743.36 psf S _{u remold} = 452.48 psf Sensitivity = 1.64	-	<u>V</u> s										
		In-Situ Vane Shear, 45.0 feet ₄₅ Failed test		5 <u>VS</u>	_									
		In-Situ Vane Shear, 47.5 feet S _{u undis} = 1422.08 psf S _{u remold} = 775.68 psf Sensitivity = 1.83		6 <u>VS</u>	-									
		In-Situ Vane Shear, 49.5 feet ₅₀ S _{u undis} = 1422.07 psf S _{u remold} = 775.68 psf Sensitivity = 1.83		7 <u>VS</u>	-									
	540.4 540.2	⁴ ² Hard, gray SILTY CLAY, trace \gravel Boring terminated at 52.50 ft		3	0.50 P	23								
		55 <u>-</u>												
VGENG.GDT 6/16/17														
PJ WAI		60												
1401.G				S		רר דו	204	16					sh	
	beyin L Drillina	Contractor Wang Testing Serv	inpiete t	Drill Ri	a D -	25 A	-20 TV [93%1	At Completion of Drilling	¥.	Mud	at 22.	511 5 ft	
	Driller	N&N Logger F. I	Bozga	Cł	necked	by N	I. Se	yhun	Time After Drilling	NA				
	Drilling	Method 2.25" IDA HSA to 10', I	mud re	otary t	herea	ing	Depth to Water	NA		bounder				
WAI	ba	ackfilled upon completion				I ne stratification lines repres between soil types; the actual	ent the app	roximate mav be d	boundar radual.	У				

BORING LOG 18-RWB-02

WEI Job No.: 1100-04-01

Page 2 of 2

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928

AECOM Project **Circle Interchange Reconstruction** Section 17 T39N R14F of 3rd PM Location

Datum: NAVD 88 Elevation: 575.58 ft North: 1897703.15 ft East: 1171280.67 ft Station: 1224+34.52 Offset: 9.451 RT

Fax: 630) 953-9938		0000		.().()	, ,			011000. 0				
Profile Elevation	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type recovery Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCH DESCRIPTION	Depth (ff)	Sample Type	Sample No. SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	L _L (%)=35, P _L (%)=1 %Gravel=2 %Sand=9 %Silt=51 %Clay=36 A-6 (1		4 8 10	2.95 B	19								
 525.6 E	Boring terminated at 50.00 ft	- - - 50 16	6 17 14	3.20 B	17								
J WANGENG.GDI 6/16/17													
<u>ون</u> د.	GENER							WATE	R LEVE		ATA		
Begin Dri	lling 10-14-2013	Complete Dr	- illing	1	0-14	-201	3	While Drilling	, <u> </u>	Rot	ary wa	sh	
Drilling Co	ontractor Wang Testing	Services	Drill Rig	D-	50 TI	MR []	78%]	At Completion of Drilling	🗶 mi	ud in	the bo	rehol	e
Driller	R&N Logger	D. Kolpacki	Ch	ecked	by (C. Ma	arin	Time After Drilling	NA				
Drilling M	lethod 3.25" HSA, boring	g backfilled	upon	com	pletic	on		Depth to Water	NA	· · · · ·			
								I he stratification lines repre- between soil types: the actu	esent the app al transition	roxima may be	te boundar gradual.	у	

BORING LOG 18-RWB-03

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

Client AECOM Project Circle Interchange Reconstruction Location Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 573.93 ft North: 1897759.34 ft East: 1171203.61 ft Station: 1604+97.68 Offset: 33.9208 RT

Profile	DESCRIPTION ^{the deg}	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND DESCRIP	ROCK TION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
	%Silt=49.1 %Clay=18.1 A-4 (3)															
	- - - 45		15	5 8 12	3.03 B	22										
	-															
	- - 523.9 50		16	5 8 10	1.97 B	23										
	Boring terminated at 50.00 ft															
	- - - 60															
									L							
- Re	GENERAL N ain Drilling 10-14-2013 Con		ב י Drill	ina	1	0-14	-201	13	While Drilling		. cve Z		AL 3.5	⊷ 0 ft		
Dr	Iling Contractor Wang Testing Servi	ces	C	rill Rig	D-	50 TI	MR	78%]	At Completion o	f Drilling	. Y		40.0	00 ft		
Dr	ller R&N Logger D.Ko	olpad	:ki	Che	ecked	by (C. M	larin	Time After Drilli	ng	NA					
Dr	lling Method 3.25" HSA, boring back	cfille	d u	pon	com	oletio	on .		Depth to Water The stratification	Iines represent	NA the app	roxima	ate bo	oundary	/	

WANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

Page 2 of 2

WANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

VANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

Project

Location

BORING LOG 2055-B-04

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 575.69 ft North: 1898363.22 ft East: 1171499.16 ft Station: 8150+09.25 Offset: 43.5063 RT

SPT Values (blw/6 in) SPT Values (blw/6 in) Sample Typ Sample No Sample No Moisture Content (% Moisture Content (% Elevation (ft) Elevatior (ft) Profile Profile SOIL AND ROCK Depth (ft) SOIL AND ROCK Depth (ff) Qu (tsf) Qu (tsf) Sample DESCRIPTION DESCRIPTION with stylolitic surfaces, and moderately vuggy porosity. --Run 1 - RECOVERY = 95% RQD = 53% 1 34 NP 22 23 42 45 105 85 С --Run 1 - RECOVERY = 98% 0 --RQD = 53% R F 22 NP 19 24 40 45 90 110 483.7 2 --HARD DRILLING--Boulders, Sandy Gravel 25 NR 0 50/2" 95 115 --AUGER REFUSAL--458.7 478 7 Strong, light gray, fair rock mass Boring terminated at 117.00 ft С 6/16/17 quality, bedded fresh 0 DOLOSTONE, up to 18-inch R WANGENGINC 11000401.GPJ WANGENG.GDT beds, 1- to 18-inch spaced joints, Е horizontal and oblique joints with less than 0.2- to 3-inch greenish gray silty infilling, hard joint wall, 100 120 WATER LEVEL DATA **GENERAL NOTES** 05-20-2013 **Rotary wash Begin Drilling** 05-19-2013 Complete Drilling While Drilling ∇ Wang Testing Services Drill Rig CME-55 TMR [85%] mud in the borehole **Drilling Contractor** At Completion of Drilling Driller P&N Logger F. Bozga Checked by **C. Marin** Time After Drilling NA **Drilling Method** 2.25" HSA to 10', mud rotary thereafter, boring Depth to Water V NA The stratification lines represent the approximate boundary backfilled upon completion between soil types; the actual transition may be gradual

BORING LOG 2081-B-03

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM

Datum: NAVD 88 Elevation: 581.38 ft North: 1898040.36 ft East: 1171151.03 ft Station: 1220+89.44 Offset: 51.7421 RT

Client Project **Circle Interchange Reconstruction** Section 17, T39N, R14E of 3rd PM Location

BORING LOG 2081-B-03

WEI Job No.: 1100-04-01

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 581.38 ft North: 1898040.36 ft East: 1171151.03 ft Station: 1220+89.44 Offset: 51.7421 RT

SPT Values (blw/6 in) SPT Values (blw/6 in) Sample Typ Sample No Moisture Content (% % Sample No Moisture Content (% Elevation (ft) Elevation (ft) Profile Profile SOIL AND ROCK Depth (ft) SOIL AND ROCK Depth (ff) Qu (tsf) Qu (tsf) Sample DESCRIPTION DESCRIPTION Groundwater condition =10 *。* 0 Ô 499.6 479.4 Very dense, gray SILT Boring terminated at 102.00 ft --MOIST--39 NP 20 23 49 50 105 85 194 F Very dense, gray GRAVELLY SANDY LOAM NP 24 11 50/6 90 110 Strong, very poor rock quality С 92'-94', light gray, highly 0 fractured, slightly vuggy R DOLOSTONE Е Run 1 = 92' to 102' --RECOVERY=100%95 115 --RQD=72% -Strong, good rock quality 94'-102', light gray, fresh, slightly fractured, joint breaks with little to no infill, slightly vuggy DOLOSTONE 6/16/1 ROCK MASS RATING: WANGENGINC 11000401.GPJ WANGENG.GDT Strength of rock material = 12 Drill core quality RQD = 13 Spacing of joints = 10 Condition of joints =12 100 120 **GENERAL NOTES** WATER LEVEL DATA 03-29-2013 **Rotary wash Begin Drilling** 03-28-2013 Complete Drilling While Drilling ∇ Wang Testing Services Drill Rig B-57 TMR [100%] mud in the borehole **Drilling Contractor** At Completion of Drilling P&N D. Wind Checked by **C. Marin** Time After Drilling NA Driller Logger **Drilling Method** 3.25" HSA to 8.5', mud rotary thereafter, boring Depth to Water V NA The stratification lines represent the approximate boundary backfilled upon completion between soil types; the actual transition may be gradual

Project

BORING LOG 2081-B-04

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction

Datum: NAVD 88 Elevation: 578.68 ft North: 1897947.00 ft East: 1171154.08 ft Station: 1221+68.39 Offset: 57.4771 RT

Project

Location

BORING LOG 2081-B-04

WEI Job No.: 1100-04-01

Section 17, T39N, R14E of 3rd PM

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

AECOM Circle Interchange Reconstruction

Datum: NAVD 88 Elevation: 578.68 ft North: 1897947.00 ft East: 1171154.08 ft Station: 1221+68.39 Offset: 57.4771 RT

Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft) Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND RO DESCRIPTIO	CK fight	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
WANGENG.GDT 6/16/17	493.7 Bo	pring terminated at 85.00 ft		23	23 49 47	3.94 S	20									
GPJ	1	GENER		ES	,	I		ļ	WA	FER LEVE	LD	ATA	4	I		
6401 B6	egin Drilli	ing 04-01-2013	Complet	e Dri	lling)4-01	-201	3	While Drilling			DF	RY		
	illing Co	ntractor Wang Testing	Services	S	Drill Ric) D -	50 TI	78%]	At Completion of Drill	ing 🗴 m	ud in	the	bor	ehol	Ð	
Dr	iller	R&N Logger	D. Kolpa	icki	Ch	ecked	by (arin	Time After Drilling	NA						
	illing Me	thod 2.25" SSA to 10'. I	mud rota	arv t	herea	after.	bor		Depth to Water	⊻ NA						
VANC	bac	kfilled upon completion						The stratification lines	represent the appresent the appresent the appresent transition	roxima	ate bo	undary	/			

BORING LOG 22-RWB-03

WEI Job No.: 1100-04-01

Page 2 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 587.62 ft North: 1898185.65 ft East: 1171879.86 ft Station: 1212+29.37 Offset: 21.9731 RT

BORING LOG 22-RWB-03

WEI Job No.: 1100-04-01

Page 3 of 3

wangeng@wangeng.com 1145 N Main Street Lombard, IL 60148 Telephone: 630 953-9928 Fax: 630 953-9938

 Client
 AECOM

 Project
 Circle Interchange Reconstruction

 Location
 Section 17, T39N, R14E of 3rd PM

Datum: NAVD 88 Elevation: 587.62 ft North: 1898185.65 ft East: 1171879.86 ft Station: 1212+29.37 Offset: 21.9731 RT

Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ft)	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
			-								VERY HARD, STE. DRILLI WEATHERED BEDRO	\DY \G СК ⁻	-				
			-							<u>484.6</u> Во	ROLLER BIT REFUS ring terminated at 103.00 f	AL	-				
			 85	\times	23	-50/5-	NP	14				105_					
			-									-	-				
			-									-	-				
			- - 90_	X	24	50/2	NP	11				110_					
			-									-	-				
			-									-	-				
			- - 95_	\times	25	50/4	3.69 S	16				- 115_	-				
	491.4 Ve	ry dense, gray SANDY										-					
	GF	AVELW	/et									-	-				
	487.6		- 100		26	50/2	NP					120	-				
; ;	1	CENE	2ΔΙ Ν		=0						W/ATED		ח ו:		Δ		
Be	egin Drillir	OENER ng 03-07-2014			Dril	ling	0)3-10	-201	14	While Drilling	⊾∟♥⊑ ⊻		62.0	^)0 ft		
	rilling Con	tractor Wang Testing	j Servi	ces		Drill Rig	, D-	25 A		93%]	At Completion of Drilling	⊻ m	ud ir	n th	e bor	ehole	e
D	riller	N&J Logger	A. H	appe	əl	Ch	ecked	by	С. М	larin	Time After Drilling	NA					
D	rilling Met	hod 2.25" HSA to 15'	mud ı	rotai	ry t	herea	after	, bor	ing.		Depth to Water	NA at the ar	novin	ata	ounder	,	
	back	filled upon completion									between soil types; the actual	ransition	may b	ate de e gra	oundary	/	

VANGENGINC 11000401.GPJ WANGENG.GDT 6/16/17

W 11 Lo F	angeng@ 145 N M ombard, elephone ax: 630 S	Wangeng.com ain Street IL 60148 e: 630 953-9928 953-9938	Client Project Location		BC Circl Sect	DRI WEI le Inte	NG Job Prcha	LC No.: AEC ange 39N,	DG V 1100- OM Reco R14E	/ST-06 04-01 nstruction of 3rd PM	Datum: N Elevation: North: 189 East: 117 Station: 12 Offset: 35	AVD 8 585.6 98109 1902.1 211+7 .3599	8 9 ft .29 ft 18 ft 4.65 LT		Page 2	2 of 2
Profile	Elevation (ft)	SOIL AND ROCK DESCRIPTION	Depth (ff)	Sample Type	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)	Profile	Elevation (ft)	SOIL AND ROC DESCRIPTION	Depth D	Sample Type	Sample No.	SPT Values (blw/6 in)	Qu (tsf)	Moisture Content (%)
		-In-Situ Vane Shear, 40.5 S _{u undis} = 906.4 S _{u remold} = 524.2 Sensitivity = -In-Situ Vane Shear, 43.0 S _{u undis} = 677.1 S _{u remold} = 393.1 Sensitivity = pring terminated at 43.50 f	feet [psf													
			- - - 60													
-		GENE								WATE		ח	∟_ ΔT /	<u> </u>		
Be	gin Drilliı	ng 12-09-2015	Com	plete D	Drilling		12-14	-201	15	While Drilling	<u> </u>	Ro	tary	was	sh	
Dri	illing Cor	ntractor Wang Testi	ng Servic	ces	Drill Rig	g CMI	E-55		R [85%]	At Completion of Drilling	I ⊻ mi	ud ir	the	bor	ehol	e
	iller	thod 225" HSA to 1	F. B(oter	Ch	aftor	by A	n Kl ing	irnia	Depth to Water	ΝΑ <u>ν</u> ΝΔ					
	back	cfilled upon completio	, mua re n	oral	<u>, uiere</u>	anter	,	iiiy		The stratification lines rep	resent the app	roxima	ate bo	undary	,	

APPENDIX B

 $s:\label{eq:s:label} s:\label{eq:s:label} s:\labe$

<u>v</u> d C C 1000401 НО SIZE GRAIN

2 ġ E E E E 1000401 НО SIZE GRAIN

2 <u>v</u> d C C 1000401 НО SIZE GRAIN

<u>v</u> d C C 1000401 НО SIZE GRAIN

<u>v</u> d C C 1000401 НО SIZE GRAIN

ġ E E E E 1000401 НО SIZE GRAIN

Number: 1100-04-01

WANGENG.GDT 6/19/17 GPJ HO ų

Fax: 630 953-9938

AA <u>v</u> d C 11000401 ЧС _IMITS ATTERBERG

ATTERBERG_LIMITS IDH 11000401.GPJ_US_LAB.GDT

APPENDIX C

 $s:\label{eq:linear} s:\label{eq:linear} s:\l$

Boring 1705-B-11: Run #1,94' to 104', RECOVERY= 100% , RQD (top 5 ft)=70%, RQD (10ft)=82%

BEDROCK CORE: CIRCLE INTERCHANGE RECONSTRUCTION CHICAGO, IL						
SCALE : GRAPHIC	1705-B-11	DRAWN BY: B. Wilson CHECKED BY: C. Marin				
	Wang Engineering	1145 N. Main Street Lombard, IL 60148 www.wangeng.com				
FOR AECO	M	1100-04-01				

0 <u>3 6 9 12</u> inch

Borin 1706-B-02: Run 1, 92' to 97', RECOVERY = 100% , RQD = 83% Run 2, 97' to 102', RECOVERY = 97% , RQD = 92%

BEDROCK CORE: CIRCLE INTERCHANGE RECONSTRUCTION CHICAGO. IL						
SCALE : GRAPHIC	1706-B-02	DRAWN BY: M. de los Reyes CHECKED BY: C. Marin				
Wang Engineering 1145 N. Main Stree Lombard, IL 60148 www.wangeng.com						
FOR AECO	М	1100-04-01				

Boring 1087-B-02: Run #1,89' to 99', RECOVERY = 100%, RQD = 84%

Boring 2081-B-05: Run #1,86' to 91', RECOVERY=100%, RQD=77% Run #2 ,91' to 96', RECOVERY=100%, RQD=84%

Boring 13-RWB-03: Run #1, 104' to 114', RECOVERY = 100%, RQD = 66%

APPENDIX D

 $s:\label{eq:linear} s:\label{eq:linear} s:\l$

Bench Mark: Square cut at center of door entrance to 707 W. Harrison St; South side of Harrison St. ±90' west of west line of Des Plaines. Elevation 597.47. A t cut in the SE anchor bolt at the 11th street light N. of Roosevelt on the W. side of Halsted. Elev. = 594.06

Existing Structure: S.N. 016-2450 was built in 1960 and carries WB I-290 traffic to SB I-90/94 over Ramp EN, Ramp NW, I-90/94, Ramp SE, I-290, CTA tracks & Ramp EN again. The existing twenty-span structure has an overall length of approx. 1329'-6". The existing superstructure consists of simple span wide-flange beams with 7 1/2" thick concrete deck with 1 1/2" overlay. The existing substructure consists of reinforced concrete abutment and multi-column piers. Existing substructure units are supported on caissons. Existing structure to be removed and replaced. Traffic to be detoured during construction.

DESIGN SPECIFICATIONS

2014 AASHTO LRFD Bridge Design Specifications 7th Edition with 2015 and 2016 Interim Revisions

LOADING HL-93

Allow 50#/sq. ft. for future wearing surface.

DESIGN STRESSES

FIELD UNITS

- f'c = 3,500 psi
- f'c = 4,000 psi (Superstructure)
- fy = 60,000 psi (Reinforcement)
- fy = 50,000 psi (M270 Grade 50)

* Min. Horizontal Clearance ** Min. Vertical Clearance

SEISMIC DATA

Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0 sec. (S_{D1}) = 0.085g Design Spectral Acceleration at 0.2 sec. $(S_{DS}) = 0.144g$ Soil Site Class = D

	<u>TABLE I</u>							
	Estimated	Estimated						
	T/Ground Elev.	T/Rock Elev,						
Pier 1	588.14	485.4						
Pier 2	585.34	487.6						
Pier 3	578.91	488.0						
Pier 4	575.45	481.5						
Pier 5	574.88	483.2						
Pier 6	582.79	483.2						
Pier 7	590.43	480.9						
Pier 8	594.59	484.5						
Pier 9	581.77	486.5						
Pier 10	583.24	489.4						
Pier 11	583.36	490.5						
Pier 12	579.24	491.1						
Pier 13	576.01	489.2						
Pier 14	589.26	488.8						
Pier 15	588.81	492.1						
Pier 16	587.16	493.0						
S. Abut	585.83	493.0						

TADICI

NOTES:

- 1. All structural steel shall be metalized (thermal spraying).
- 2. Span lengths are measured along ₽ & P.G.L. Ramp WS.
- 3. All substructures are oriented 90° to ₿ Ramp WS unless noted otherwise.
- 4. All shaft shall be rock socketed. Depth and dia. of rock socket to be determine during final design.

		17L, JI	U T .IVI.	
			Ontario St.	
			01/0 51.	
				1
39/		edy essauti		ł
ed ġ	Fisenbower	Kenn Expo	Congress	N
Å.	Expressway		Parkway	
Proposed	17-	lyan isswal	-16	
Structure		Dan K Expre		
1	OCAT	ION SI	KETCH	
=				

Papao 14E 3rd P.W

es Plaines	FAU Rte. 1429
St.	(Harrison St.)
cipal Arter.	Urban Collector
5,490	16,800
N/A	17,000
220	336
N/A	340
N/A	1,700
0 m.p.h.	25 m.p.h.
0 m.p.h.	25 m.p.h.
	Two-Way
	50 : 50

GE	NERA	L PLAN &	ELEVATI	ON -	1
	RAMP	WS OVER	I-90/94/	290	
	<i>F.</i> ,	A. <i>I. RTE</i> . 9	90/94/290	2	
	<u>SEC</u>	TION 2014	-013R&B-	<u>R</u>	
		<u>СООК СС</u>	DUNTY		
	5	TATION 12	<u>216+37.21</u>		
	STF	RUCTURE N	10. 016-17.	<u>15</u>	
	F.A.I.	SECTION	COUNTY	TOTAL	SHEET

	RTE.	SEC	CTION		COUNTY	SHEETS	NO.
016–1715	90/94/290	2014-0	2014-013R&B-R		СООК		
					CONTRACT	NO. 6	0X93
SHEETS			ILL INOIS	FED. A	D PROJECT		

DS-11 SCUPPER LOCATION

Station	Offset
1210+60	RT
1210+65	RT-SAG
1211+39	RT
1213+18	LT
1213+93	LT
1215+10	LT
1215+96	LT
1219+10	LT
1220+49	LT-SAG
1220+54	LT
1221+86	LT
1221+91	LT
1223+03	RT
1223+37	RT
1223+53	RT
1224+52	RT
1226+79	RT
1228+29	RT
1229+45	RT
1229+50	RT

PLOT DATE = 11/29/2017

CHECKED

06/16/2017

REVISED

SHEET NO. 4 OF

CROSS SLOPE NOTES:

I. (Direction of slope referenced from left edge of pavement) Slope transition (-5.20% to 2.00%) Sta. 1211+37.05 to Sta. 1213+23.05; Constant slope (2.00%) Sta. 1213+23.05 to Sta. 1214+62.51; Slope transition (2.00% to 5.00%) Sta. 1214+62.51 to Sta. 1215+31.51.

2. (Direction of slope referenced from left edge of pavement) Slope transition (2.00% to 5.00%) Sta. 1214+62.51 to Sta. 1215+31.51; Full S.E. (5.00%) Sta. 1215+31.51 to Sta. 1221+54.11; Slope transition (5.00% to -2.00%) Sta. 1221+54.11 to Sta. 1223+14.11.

3. (Direction of slope referenced from left edge of pavement) Slope transition (5.00% to -2.00%) Sta. 1221+54.11 to Sta. 1223+14.11; Constant slope (-2.00%) Sta. 1223+14.11 to Sta. 1225+62.75.

4. (Direction of slope referenced from right edge of pavement. All stations listed below are along the baseline of SB Bypass Ramp) Full S.E. (-5.00%) Sta. 6409+19.15 to Sta. 6409+32.86. Slope transition (-5.00% 2.00%) Sta. 6409+32.86 to Sta. 6410+92.86. Constant slope (2.00%) Sta. 6410+92.86 to Sta. 6413+19.29.

<u>RAMP WS OVER I-90/94/290</u>
<u>F.A.I. RTE. 90/94/290</u>
SECTION 2014-013R&B-R
<u>COOK COUNTY</u>
<u>STATION 1216+37.21</u>
<u>STRUCTURE NO. 016-1715</u>

	F.A.I. RTE.	SE	CTION		COUNTY	TOTAL SHEETS	SHEET NO.
010 1715	90/94/290	2014-0	2014-013R&B-R		COOK		
010-1/15					CONTRACT	NO. 6	0X93
7 SHEETS			ILLINOIS FE	D. AI	D PROJECT		

1715-CIRCLE100-SHT-ACM-ST-TSL-006

USER NAME = vasudevana	DESIGNED - JXH	REVISED		
	CHECKED - ATB	REVISED	STATE OF ILLINOIS	
PLOT SCALE = N.T.S.	DRAWN - GF	REVISED	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO.
 PLOT DATE = 11/29/2017	CHECKED - 06/16/2017	REVISED		SHEET NO. 7 OF 7

- and casing to be determined during final design.

	<u>OFFSET SKETCH</u>					
	RAMP WS OVER I-90/94/290					
	F.A	.I. RTE. 90/	/94/290	2		
	<u>SEC</u>	TION 2014-0	13R&B-	<u>R</u>		
	COOK COUNTY					
	STATION 1216+37.21					
	<u>STR</u>	PUCTURE NO.	016 - 171	! <u>5</u>		
	F.A.I. RTE.	SECTION	COUNTY	TOTAL	SHEET	
016 1715	90/94/290	2014-013R&B-R	СООК			
			CONTRACT	NO.	60X93	
I SHEE IS		ILLINOIS FED. A	D PROJECT			