November 4, 2005

SUBJECT: FAI Route 94

Section 2003-028I Cook County Contract No. 62580

Item No. 78, 11/18/2005 Letting

Addendum A

NOTICE TO PROSPECTIVE BIDDERS:

Attached is an addendum to the plans or proposal. This addendum involves revised and/or added material.

1. Revised pages 29 – 41 of the Special Provisions.

Prime contractors must utilize the enclosed material when preparing their bid and must include any Schedule of Prices changes in their bidding proposal.

Bidders using computer-generated bids are cautioned to reflect any and all Schedule of Prices changes, if involved, into their computer programs.

Very truly yours,

Michael L. Hine Engineer of Design and Environment

By: Ted B. Walschleger, P. E.

Tete Jalushyou D.E.

Engineer of Project Management

cc: Diane O'Keefe, Region 1, District 1; Roger Driskell; R. E. Anderson; Estimates; Design & Environment File

TK/sar

<u>Basis of Payment</u>. The expansion joint systems, measured as specified, will be paid for at the contract unit price per foot for STRIP SEAL EXPANSION JOINT ASSEMBLY. These prices will be payment in full for all labor, materials, equipment, and manufacturer's technical support required for surface preparation and joint installation.

BRIDGE DECK MICROSILICA CONCRETE OVERLAY

(e) Concrete Curing Materials (Note 9)

Effective: May 15, 1995 Revised: October 31, 2005

<u>Description</u>. This work shall consist of the preparation of the existing concrete bridge deck and the construction of a microsilica concrete overlay to the specified thickness. The minimum thickness of the overlay shall be 60 mm (2 1/4 in.).

Materials. Materials shall meet the requirements of the following Articles of Section 1000:

<u>Item</u>	Article/Section
(a) Microsilica	1014
(b) Portland Cement (Notes 1-6)	1020
(c) Grout (Note 7)	
(d) Rapid Set Materials (Note 8)	

Note 1: Cement shall be Type I portland cement. Fine aggregate shall be natural sand and the coarse aggregate shall be crushed stone or crushed gravel. The gradation of the coarse aggregate shall be CA 11, CA 13, CA 14 or CA 16.

Note 2: Mix Design Criteria.

Article 1020.04 shall not apply. The microsilica concrete mix design shall meet the following requirements:

Cement Factor 335 kg/cu m (565 lb/cu yd)

Microsilica Solids 20 kg/cu m (33 lb/cu yd)

Water/Cement Ratio 0.37 to 0.41

(including water in the slurry)

Mortar Factor 0.88 to 0.92

Slump 75 to 150 mm (3 to 6 in.)

Air Content 5.0 to 8.0 percent

Compressive Strength (14 days) 27,500 kPa (4000 psi) minimum

Flexural Strength (14 days) 4,650 kPa (675 psi) minimum

Note 3: Admixtures.

Article 1020.05(b) shall apply except as follows:

High-range water reducing admixtures (superplasticizers) shall be added as determined by the Engineer.

Note 4: Fly Ash.

Article 1020.05(c) shall apply except as follows:

Only Class C fly ash may be used to partially replace portland cement. The amount of cement replaced and replacement ratio shall be the same as for bridge decks.

Note 5: Ground Granulated Blast-Furnace Slag.

Ground granulated blast-furnace slag shall not be used.

Note 6: Mixing.

The mixing requirements shall be according to Article 1020.11(d), except as follows:

(a) Water-based microsilica slurry:

(1) Truck Mixer:

- Combine simultaneously air entraining admixture, water-reducing admixture and/or retarding admixture, microsilica slurry and 80 percent of the water with cement, fly ash (if used) and aggregates.
- Add remaining water.
- Mix 30-40 revolutions at 12-15 RPM.
- Add high range water-reducing admixture.
- Mix 60-70 revolutions at 12-15 RPM.

(2) Stationary Mixer:

- The microsilica slurry shall be diluted into the water stream or weigh box prior to adding into mixer. Combine simultaneously air entraining admixture, water-reducing admixture and/or retarding admixture, microsilica slurry and 80 percent of the water with cement, fly ash (if used) and aggregates.
- Add remaining water.
- After mixing cycle is completed deposit into truck mixer.
- Add high range water-reducing admixture.
- Mix 60-70 revolutions at 12-15 RPM.

(b) Densified microsilica (bulk):

(1) Truck Mixer:

 Same as (a)1 above except the densified microsilica shall be added with the cement.

(2) Stationary Mixer:

 Same as (a)2 above except the densified microsilica shall be added with the cement.

(c) Densified microsilica (bag):

Bagged microsilica shall be kept dry. No bag or material containing moisture shall be introduced into the concrete mixer.

(1) Truck Mixer:

- Combine air entraining admixture, water-reducing admixture and/or retarding admixture and 80 percent of the water.
- Add cement, fly ash (if used), and aggregates.
- Add remaining water.
- Mix 30-40 revolutions at 12-15 RPM.
- Add microsilica.
- Mix 70-80 revolutions at 12-15 RPM.
- Add high range water-reducing admixture.
- Mix 60-70 revolutions at 12-15 RPM.

(2) Stationary Mixer:

- Combine air entraining admixture, water-reducing admixture and/or retarding admixture and 80% of the water.
- Add cement, fly ash (if used), and aggregates.
- Add remaining water.
- After mixing cycle is completed deposit into truck mixer.
- Add microsilica to truck.
- Mix 70-80 revolutions at 12-15 RPM.
- Add high range water-reducing admixture.
- Mix 60-70 revolutions at 12-15 RPM.

Note 7: Grout. The grout for bonding new concrete to old concrete shall be proportioned by mass (weight) and mixed at the job site, or it may be ready-mixed if agitated while at the job site. The bonding grout shall consist of one part portland cement and two parts sand, mixed with sufficient water to form a slurry. The bonding grout shall have a consistency allowing it to be scrubbed onto the prepared surface with a stiff brush or broom leaving a thin, uniform coating that will not run or puddle in low spots. Grout that can not be easily and evenly applied or has lost its consistency may be rejected by the Engineer. Grout that is more than two hours old shall not be used.

At the option of the Contractor the grout may be applied by mechanical applicators. If this option is chosen, the sand shall be eliminated from the grout mix.

- Note 8: Rapid set materials shall be obtained from the Department's approved list of Packaged, Dry, Rapid Hardening Cementitious Materials for Concrete Repairs.
- Note 9: Cotton mats shall consist of a cotton fill material, minimum 400 g/sq m (11.8 oz/sq yd), covered with unsized cloth or burlap, minimum 200 g/sq m (5.9 oz/sq yd), and be tufted or stitched to maintain stability. Cotton mats shall be free from tears and in good condition.

<u>Equipment:</u> The equipment used shall be subject to the approval of the Engineer and shall meet the following requirements:

- (a) Surface Preparation Equipment. Surface preparation equipment shall be according to the applicable portions of Section 1100 and the following:
 - (1) Sawing Equipment. Sawing equipment shall be a concrete saw capable of sawing concrete to the specified depth.
 - (2) Mechanical Blast Cleaning Equipment. Mechanical blast cleaning may be performed by high-pressure waterblasting or shotblasting. Mechanical blast cleaning equipment shall be capable of removing weak concrete at the surface, including the microfractured concrete surface layer remaining as a result of mechanical scarification, and shall have oil traps.
 - Mechanical high-pressure waterblasting equipment shall be mounted on a wheeled carriage and shall include multiple nozzles mounted on a rotating assembly. The distance between the nozzles and the deck surface shall be kept constant and the wheels shall maintain contact with the deck surface during operation.
 - (3) Hand-Held Blast Cleaning Equipment. Blast cleaning using hand-held equipment may be performed by high-pressure waterblasting or abrasive blasting. Hand-held blast cleaning equipment shall have oil traps.
 - Hand-held high-pressure waterblasting equipment that is used in areas inaccessible to mechanical blast cleaning equipment shall have a minimum pressure of 48 MPa (7,000 psi).
 - (4) Mechanical Scarifying Equipment. Scarifying equipment shall be a power-operated, mechanical scarifier capable of uniformly scarifying or removing the old concrete surface and new patches to the depths required in a satisfactory manner. Other types of removal devices may be used if their operation is suitable and they can be demonstrated to the satisfaction of the Engineer.

- (5) Hydro-Scarification Equipment. The hydro-scarification equipment shall consist of filtering and pumping units operating with a computerized, self-propelled robotic machine with gauges and settings that can be easily verified. The equipment shall use potable water according to Section 1002. Operation of the equipment shall be performed and supervised by qualified personnel certified by the equipment manufacturer. Evidence of certification shall be presented to the Engineer. The equipment shall be capable of removing concrete to the specified depth and be capable of removing rust and old concrete particles from exposed reinforcement bars. The hydro-scarification equipment shall be calibrated before being used and shall operate at a uniform pressure sufficient to remove the specified depth of concrete in a timely manner.
- (6) Vacuum Cleanup Equipment. The equipment shall be equipped with fugitive dust control devices capable of removing wet debris and water all in the same pass. Vacuum equipment shall also be capable of washing the deck with pressurized water prior to the vacuum operation to dislodge all debris and slurry from the deck surface.
- (7) Power-Driven Hand Tools. Power-driven hand tools will be permitted including jackhammers lighter than the nominal 20 kg. (45 lb) class. Jackhammers or chipping hammers shall not be operated at an angle in excess of 45 degrees measured from the surface of the slab.
- (b) Pull-off Test Equipment. Equipment used to perform pull-off testing shall be either approved by the Engineer, or obtained from one of the following approved sources:

James Equipment 007 Bond Tester 800-426-6500 Germann Instruments, Inc. BOND-TEST Pull-off System 847-329-9999

SDS Company DYNA Pull-off Tester 805-238-3229

Pull-off test equipment shall include all miscellaneous equipment and materials to perform the test and clean the equipment, as indicated in the Illinois Test Procedures 304 and 305 "Pull-off Test (Surface or Overlay Method)". Prior to the start of testing, the Contractor shall submit to the Engineer a technical data sheet and material safety data sheet for the epoxy used to perform the testing. For solvents used to clean the equipment, a material safety data sheet shall be submitted.

- (c) Concrete Equipment. Equipment for proportioning and mixing the concrete shall be according to Article1020.03.
- (d) Finishing Equipment. Finishing equipment shall be according to Article 503.03.

- (e) Mechanical Fogging Equipment. Mechanical fogging equipment shall consist of a mechanically operated, pressurized system using a triple headed nozzle or an equivalent nozzle. The fogging nozzle shall be capable of producing a fine fog mist that will increase the relative humidity of the air just above the fresh concrete surface without accumulating any water on the concrete. The fogging equipment shall be mounted on either the finishing equipment or a separate foot bridge. Controls shall be designed to vary the volume of water flow, be easily accessible and immediately shut off the water when in the off position.
- (f) Hand-Held Fogging Equipment. Hand-held fogging equipment shall use a triple headed nozzle or an equivalent nozzle. The fogging nozzle shall be capable of producing a fine fog mist that will increase the relative humidity of the air just above the fresh concrete surface without accumulating any water on the concrete.

<u>Construction Requirements:</u> Sidewalks, curbs, drains, reinforcement and/or existing transverse and longitudinal joints which are to remain in place shall be protected from damage during scarification and cleaning operations. All damage caused by the Contractor shall be corrected, at the Contractor's expense, to the satisfaction of the Engineer.

The Contractor shall control the runoff water generated by the various construction activities in such a manner as to minimize, to the maximum extent practicable, the discharge of construction debris into adjacent waters, and shall properly dispose of the solids generated according to Article 202.03. Runoff water will not be allowed to constitute a hazard on adjacent or underlying roadways, waterways, drainage areas or railroads nor be allowed to erode existing slopes.

(a) Deck Preparation:

(1) Bridge Deck Scarification. The scarification work shall consist of removing the designated concrete deck surface using mechanical or hydro-scarifying equipment as specified. The areas designated shall be scarified uniformly to the depth as specified on the plans. In areas of the deck not accessible to the scarifying equipment, power-driven hand tools will be permitted. Power driven hand tools shall be used for removal around areas to remain in place.

A trial section on the existing deck surface will be designated by the Engineer to demonstrate that the equipment, personnel and methods of operation are capable of producing results satisfactory to the Engineer. The trial section will consist of approximately 3 sq m (30 sq ft).

Once the settings for the equipment are established, they shall not be changed without the permission of the Engineer. The removal shall be verified, as necessary, at least every 5 m (16 ft) along the cutting path. If sound concrete is being removed below the desired depth, the equipment shall be reset or recalibrated.

If the use of hydro-scarification equipment is specified, the Contractor may use mechanical scarification equipment to remove an initial depth of concrete provided that the last 6 mm (1/4 in.) of removal is accomplished with hydro-scarification equipment. If the Contractor's use of mechanical scarifying equipment results in exposing, snagging, or dislodging the top mat of reinforcing steel, the scarifying shall be stopped immediately and the remaining removal shall be accomplished using the hydro-scarification equipment. All damage to the existing reinforcement resulting from the Contractor's operation shall be repaired or replaced at the Contractor's expense as directed by the Engineer. Replacement shall include the removal of any additional concrete required to position or splice the new reinforcing steel. Undercutting of exposed reinforcement bars shall only be as required to replace or repair damaged or corroded reinforcement. Repairs to existing reinforcement shall be according to the Special Provision for "Deck Slab Repair".

After hydro-scarification the deck shall be vacuum cleaned in a timely manner before the water and debris are allowed to dry and re-solidify to the deck. The uses of alternative cleaning and debris removal methods to minimize driving heavy vacuum equipment over exposed deck reinforcement may be used subject to the approval of the Engineer.

(2) Deck Patching. After bridge deck scarification, all designated patching, except as note below, shall be completed according to the Special Provision for "Deck Slab Repair". All full depth patching shall be completed prior to final surface preparation. When mechanical scarification is specified, partial depth patches may be fill with overlay material at the time of overlay placement.

All patches placed prior to overlay placement shall be struck off and then roughened with a suitable stiff bristled broom or wire brush to provide a rough texture designed to promote bonding of the overlay. Hand finishing of the patch surface shall be kept to a minimum to prevent overworking of the surface.

After scarification, the deck shall be thoroughly cleaned of broken concrete and other debris. The Engineer will sound the scarified deck and all remaining unsound areas will be marked for additional removal and/or repairs as applicable. If the bottom mat of reinforcement is exposed, that area shall be defined as a full depth repair.

In areas where hydro-scarification is specified, no separate payment for partial depth patching will be made regardless of whether it was detailed in the plans or not. Just prior to performing hydro-scarification, the deck shall be sounded, with unsound areas marked on the deck to assist the hydro-scarification process in performing the partial depth removal simultaneously with the hydro-scarification operation. If in the opinion of the Engineer additional removal is required after the hydro-scarification process, which could not have been anticipated or accounted for by normal modifications to the scarification process, such removal shall be paid for according to Article 109.04. Any removal required or made below the specified depth for scarification of the bridge deck, which does not result in full depth patching, shall be filled with the overlay material at the time of the overlay placement.

(3) Final Surface Preparation. Final surface preparation shall consist of the operation of mechanical blast cleaning equipment to remove any weak concrete at the surface, including the microfractured concrete surface layer remaining as a result of mechanical scarification. Any areas determined by the Engineer to be inaccessible to mechanical equipment shall be thoroughly blast cleaned with hand-held equipment. When hydro-scarification equipment is used for concrete removal, the deck surface need not be blast cleaned with mechanical equipment unless the spoils from the scarification operation are allowed to dry and re-solidify on the deck surface.

Final surface preparation shall also include the cleaning of all dust, debris, and concrete fines from the deck surface including vertical faces of curbs, previously placed adjacent overlays, barrier walls up to a height of 25 mm (1 in.) above the overlay, depressions, and beneath reinforcement bars. Hand-held high-pressure waterblasting equipment shall be used for this operation.

If mechanical scarification is used to produce the final deck surface texture, surface pull-off testing will be required. After the final surface preparation has been completed and before placement of the overlay, the prepared deck surface will be tested by the Engineer according to the Illinois Test Procedure 304 "Pull-off Test (Surface Method)". The Contractor shall provide the test equipment.

a. Start-up Testing. Prior to the first overlay placement, the Engineer will evaluate the blast cleaning method. The start-up area shall be a minimum of 56 sq m (600 sq ft). After the area has been prepared, six random test locations will be determined by the Engineer, and tested according to the Illinois Test Procedure 304 "Pull-off Test (Surface Method)".

The average of the six tests shall be a minimum of 1,207 kPa (175 psi) and each individual test shall have a minimum strength of 1,103 kPa (160 psi). If the criteria are not met, the Contractor shall adjust the blast cleaning method. Start-up testing will be repeated until satisfactory results are attained.

Once an acceptable surface preparation method is established, it shall be continued for the balance of the work. The Contractor may, with the permission of the Engineer, change the surface preparation method, in which case, additional start-up testing will be required.

b. Lot Testing. After start-up testing has been completed, the following testing frequency will be used. For each structure, each stage will be divided into lots of not more than 420 sq m (4500 sq ft). Three random test locations will be determined by the Engineer for each lot, and tested according to the Illinois Test procedure 304 "Pull-off Test (Surface Method)".

The average of the three tests shall be a minimum of 1,207 kPa (175 psi) and each individual test shall have a minimum strength of 1,103 kPa (160 psi). In the case of a failing individual test or a failing average of three tests, the Engineer will determine the area that requires additional surface preparation by the Contractor. Additional test locations will be determined by the Engineer.

In addition to start-up and lot testing, the Department may require surface pull-off testing of areas inaccessible to mechanical blast cleaning equipment and blast cleaned with hand-held equipment. The Engineer shall determine each test location, and each individual test shall have a minimum strength of 1,207 kPa (175 psi).

Exposed reinforcement bars shall be free of dirt, detrimental scale, paint, oil, and other foreign substances which may reduce bond with the concrete. A tight non-scaling coating of rust is not considered objectionable. Loose, scaling rust shall be removed by rubbing with burlap, wire brushing, blast cleaning or other methods approved by the Engineer. All loose reinforcement bars, as determined by the Engineer, shall be retied at the Contractor's expense.

All dust, concrete fines, debris, including water, resulting from the surface preparation shall be confined and shall be immediately and thoroughly removed from all areas of accumulation. If concrete placement does not follow immediately after the final surface preparation, the area shall be carefully protected with well-anchored white polyethylene sheeting.

(b) Pre-placement Procedure. Prior to placing the overlay, the Engineer will inspect the deck surface. All contaminated areas shall be blast cleaned again at the Contractor's expense.

Before placing the overlay, the finishing machine shall be operated over the full length of bridge segment to be overlaid to check support rails for deflection and confirm the minimum overlay thickness. All necessary adjustments shall be made and another check performed, unless otherwise directed by the Engineer.

(c) Placement Procedure:

- (1) Bonding Methods. The Contractor shall prepare the deck prior to overlay placement by one of the following methods unless restricted as specified on the plans:
 - a. Grout Method. The deck shall be cleaned to the satisfaction of the Engineer and shall be thoroughly wetted and maintained in a dampened condition for at least 12 hours before placement of the grout is started. Any excess water shall be removed by compressed air or by vacuuming prior to grout placement. Water shall not be applied to the deck surface within one hour before or at any time during placement of the grout. Immediately before placing the overlay mixture, the exposed area shall be thoroughly covered with a thin layer of grout. The grout shall be thoroughly scrubbed into the surface. All vertical as well as horizontal surfaces shall receive a thorough, even coating. The rate of grout placement shall be limited so the brushed grout does not dry out before it is covered with the concrete.

Grout that is allowed to become dry and chalky shall be blast cleaned and replaced at the Contractor's expense. No concrete shall be placed over dry grout.

- b. Direct Bond Method. The deck shall be cleaned to the satisfaction of the Engineer and shall be thoroughly wetted and maintained in a dampened condition for at least 12 hours before placement of the overlay. Any excess water shall be removed by compressed air or by vacuuming prior to beginning overlay placement. Water shall not be applied to the deck surface within one hour before or at any time during placement of the overlay.
 - (2) Overlay Placement. For the overlay pour, fogging equipment shall be in operation unless the evaporation rate is less than 0.5 kg/sq m/hr. (0.1 lb./sq ft/hr.) and the Engineer gives permission to turn off the equipment. The evaporation rate shall be determined according to the figure in the Portland Cement Association's publication, "Design and Control of Concrete Mixtures" (refer to the section on plastic shrinkage cracking).

The fogging equipment shall be adjusted to adequately cover the entire width of the pour.

Hand-held fogging equipment shall be allowed only when a vibratory screed is used. The fog mist shall not be used to apply water to a specific location to aid finishing.

Placement of the concrete shall be a continuous operation throughout the pour. The overlay shall be placed as close to its final position as possible and then mechanically consolidated and screeded to final grade. All finishing and texturing shall be according to Article 503.17 except that the use of vibrating screeds will be allowed for pour widths of 3.6 m (12 feet) or less without length restrictions.

Internal vibration shall be performed along edges, adjacent to bulkheads, and where the overlay thickness exceeds 75 mm (3 in.). Internal vibration along the longitudinal edges of a pour shall be performed with a minimum of 2 hand-held vibrators, one on each edge of the pour. Hand finishing shall be performed along the edges of the pour and shall be done from sidewalks, curbs or work bridges.

A construction dam or bulkhead shall be installed in case of a delay of 30 minutes or more in the concrete placement operation. If there is a delay of more than ten minutes during overlay placement, wet burlap shall be used to protect the concrete until operations resume.

Concrete placement operations shall be coordinated to limit the distance between the point of concrete placement and concrete covered with cotton mats for curing. The distance shall not exceed 10.5 m (35 ft). For overlay pour widths greater than 15 m (50 ft), the distance shall not exceed 7.5 m (25 ft).

All construction joints shall be formed. When required by the Engineer the previously placed overlay shall be sawed full-depth to a straight and vertical edge before fresh concrete is placed. The Engineer will determine the extent of the removal. When longitudinal joints are not shown on the plans, the locations shall be subject to approval by the Engineer and shall not be located in the wheel paths.

The Contractor shall stencil the date of construction (month and year) and the appropriate letters MS, or MSFA when fly ash is used in the mix design, into the overlay before it takes its final set. The stencil shall be located in a conspicuous location, as determined by the Engineer, for each stage of construction. This location shall be outside of the grooving where possible and within 1 m (3 ft) of an abutment joint. The characters shall be 75 mm to 100 mm (3 to 4 in.) in height, 5 mm (1/4 in.) in depth and face the centerline of the roadway.

(3) Limitations of Operations:

- a. Weather limitations. Concrete shall not be placed unless the deck temperature is above 10°C (50°F) and the air temperature is predicted to be above 10°C (50°F) for at least 12 hours after placement. The concrete shall be maintained at a minimum of 10°C (50°F) during the curing period according to Article 1020.13. The temperature of the concrete mixture as placed shall not be less than 10°C (50°F) nor more than 32°C (90°F). If night placement is required, illumination and placement procedures will be subject to approval of the Engineer. No additional compensation will be allowed if night work is required.
- b. Other Limitations. Concrete delivery trucks shall be limited to a maximum load of 4.6 cu m (6 cu yd).

Truck mixers, concrete pumps, or other heavy equipment will not be permitted on any portion of the deck where the top reinforcing mat has been exposed. Conveyors, buggy ramps and pump piping shall be installed in a way that will not displace undercut reinforcement bars. Air compressors may be operated on the deck only if located directly over a pier and supported off undercut reinforcement bars. Compressors will not be allowed to travel over undercut reinforcement bars.

Concrete removal may proceed during final cleaning and concrete placement on adjacent portions of the deck, provided the removal does not interfere in any way with the cleaning or placement operations.

If water or contaminants from the hydro-scarification flow into the area of final cleaning or concrete placement, hydro-scarification shall be suspended until the concrete has been placed and has cured a minimum of 24 hours. No concrete shall be removed within 1.8 m (6 ft) of a newly-placed overlay until the concrete has obtained a minimum compressive strength of 20,700 kPa (3000 psi) or flexural strength of 4,150 kPa (600 psi).

- (4) Curing Procedure. The surface shall be continuously wet cured for at least 7 days according to Article 1020.13(a)(5) Wetted Cotton Mat Method.
- (4) Opening to Traffic. No traffic or construction equipment will be permitted on the overlay until after the specified cure period and the concrete has obtained a minimum compressive strength of 27,500 kPa (4000 psi) or flexural strength of 4,650 kPa (675 psi) unless permitted by the Engineer.

(6) Overlay Testing. The Engineer reserves the right to conduct pull-off tests on the overlay to determine if any areas are not bonded to the underlying concrete, and at a time determined by the Engineer. The overlay will be tested according to the Illinois Test Procedure 305 "Pull-off Test (Overlay Method)", and the Contractor shall provide the test equipment. Each individual test shall have a minimum strength of 1,034 kPa (150 psi). Unacceptable test results will require removal and replacement of the overlay at the Contractor's expense, and the locations will be determined by the Engineer. When removing portions of an overlay, the saw cut shall be a minimum depth of 25 mm (1 in.).

If the overlay is to remain in place, all core holes due to testing shall be filled with a rapid set mortar or concrete. Only enough water to permit placement and consolidation by rodding shall be used, and the material shall be struck-off flush with the adjacent material.

For a rapid set mortar mixture, one part packaged rapid set cement shall be combined with two parts fine aggregate, by volume; or a packaged rapid set mortar shall be used. For a rapid set concrete mixture, a packaged rapid set mortar shall be combined with coarse aggregate according to the manufacturer's instructions; or a packaged rapid set concrete shall be used. Mixing of a rapid set mortar or concrete shall be according to the manufacturer's instructions.

<u>Method of Measurement</u>. The areas of mechanical and/or hydro scarification on the bridge deck will be measured for payment in square meters (square yards). No additional payment will be made for multiple passes of the equipment required to achieve the specified scarification depth.

The concrete overlay will be measured for payment in square meters (square yards).

When Bridge Deck Hydro-Scarification is specified, the additional concrete placed with the overlay, required to fill all depressions below the specified thickness will be measured for payment in cubic meters (cubic yards). The volume will be determined by subtracting the theoretical volume of the overlay from the ticketed volume of overlay delivered minus the volume estimated by the Engineer left in the last truck at the end of the overlay placement. The theoretical cubic meter (cubic yard) quantity for the overlay will be determined by multiplying the plan surface area of the overlay times the specified thickness of the overlay.

<u>Basis of Payment</u>. Concrete scarification of the bridge deck using mechanical scarification equipment will be paid for at the contract unit price per square meter (square yard) for CONCRETE BRIDGE DECK SCARIFICATION of the depth specified. Concrete scarification of the bridge deck using hydro-scarification equipment will be paid for at the contract unit price per square meter (square yard) for BRIDGE DECK HYDRO-SCARIFICATION of the depth specified.

Microsilica concrete overlay will be paid for at the contract unit price per square meter (square yard) for BRIDGE DECK MICROSILICA CONCRETE OVERLAY, of the thickness specified. When hydro-scarification equipment is used, the additional volume of overlay required to fill all depressions below the specified thickness will be paid for at the Contractor's actual material cost for the microsilica concrete per cubic meter (cubic yard) plus 15 percent.

When mechanical scarification equipment is used, additional partial depth patches poured monolithically with the overlay will be paid for at the contract unit price bid per square meter (square yard) for DECK SLAB REPAIR (PARTIAL).

When the Engineer conducts pull-off tests on the overlay and they are acceptable, Contractor expenses incurred due to testing and for filling core holes will be paid according to Article 109.04. Unacceptable pull-off tests will be at the Contractor's expense.

When specified, the Contractor has the option of choosing the type of overlay. The options will be limited to those specified in the plans and will be paid for at the contract unit price per square meter (square yard) for BRIDGE DECK CONCRETE OVERLAY OPTION, of the thickness specified.

Overlay material placed off the deck in abutment backwalls, and/or other locations will not be measured for payment but will be included in the pay item involved.

Revised 11/4/05

USE OF MULTIPLE PLANTS IN THE SAME CONSTRUCTION ITEM

The Contractor has the option to simultaneously use central-mixed, or shrink-mixed concrete from more than one plant, in the same construction item. However, the following criteria shall be met:

- a) For each plant the cement, fly ash, ground granulated blast-furnace slag, microsilica, and high-reactivity metakaolin shall be the same materials and from the same source. This requirement may not be changed by Articles 1001.04, 1010.03, 1014.02, 1015.02, and 1016.02.
- b) For each plant the fine aggregate shall be the same type and gradation.
- c) For each plant the coarse aggregate shall be the same material and from the same source. This requirement may not be changed by Article 1004.02 (e).
- d) For each plant the admixtures shall be the same material and from the same source.
- e) For each plant the mix design material proportions and water/cement ratio shall be the same. The required cement factor for central-mixed concrete shall be increased to match truck-mixed or shrink-mixed concrete, if the latter two types of mixed concrete are used.
- f) The maximum slump difference between deliveries of concrete shall be 19mm (0.75 in.) when tested at the jobsite. If the difference is exceeded, but test results are within specification limits, the concrete may be used. The Contractor shall take immediate corrective action and test subsequent deliveries of concrete until the tolerance has been met, for each day, the first three truck loads of delivered concrete from each plant shall be tested for slump. Thereafter, when a specified test frequency for slump is to be performed, it shall be conducted for each plant at the same time.
- g) The maximum air content difference between deliveries of concrete shall be 0.9 percent when tested at the jobsite. If the difference is exceeded, but test results are within specification limits, the concrete may be used. The contractor shall take immediate corrective action and test subsequent deliveries of concrete, until the tolerance has been