

requirements of AASHTO M270 Grade 50. Two I_{B} in. adjusting shims shall be provided for each bearing in addition to all other plates or shims and placed as shown on bearing details.

Girder 6 628.41 627.39

627.53

626.62

626.49

*For fabrication use only.

DESIGNED - Justin T. Belue	EXAMINED	Jayne F. John	DATE - OCTOBER 16, 2014		BEARING DETAILS	F.A.P. RTE.	SECTION	COUNTY	TOTA SHEE	L SHEET
CHECKED - David H. Richter DRAWN - h.t. duong	PASSED -	ACTING ENGINEER OF BRIDGE DESIGN		STATE OF ILLINUIS DEPARTMENT OF TRANSPORTATION	STUCTURE NO. 015–0076	749	(122BR)B-1	COLES	60	36
CHECKED - JIB/DHR		ACTING ENGINEER OF BRIDGES AND STRUCTURES	REVISED	DEFAITMENT OF THANSFORTATION	SHEET NO. 19 OF 31 SHEETS	ILLINOIS FED. AID PROJECT			LT NU.	NU. 74350

625.30

625,17

626.06

625.93

	Is, Ss:	Non-composite moment of inertia and section modulus of the
,		steel section used for computing f_s (Total-Strength I, and
-		Service II) due to non-composite dead loads (in. ⁴ and in. ³).
-	$I_c(n)$, $S_c(n)$:	Composite moment of inertia and section modulus of the steel
-		and deck based upon the modular ratio, "n", used for computing
-		f_s (Total-Strength I, and Service II) in uncracked sections due
-		to short-term composite live loads (in.4 and in.3).
-	Ic(3n), Sc(3n):	Composite moment of inertia and section modulus of the steel
_		and deck based upon 3 times the modular ratio, "3n", used for
_		computing f_s (Total-Strength I, and Service II) in uncracked
_		sections, due to long-term composite (superimposed) dead loads
_		(in.4 and in.3).
_	Ic(cr), Sc(cr):	Composite moment of inertia and section modulus of the steel
_		and longitudinal deck reinforcement, used for computing f_{s}
_		(Total-Strength I and Service II) in cracked sections, due to
		both short-term composite live loads and long-term composite
		(superimposed) dead loads (in.4 and in.3).
	DC1:	Un-factored non-composite dead load (kips/ft.).
	M DC1 :	Un-factored moment due to non-composite dead load (kip-ft.).
	DC2:	Un-factored long-term composite (superimposed excluding future
		wearing surface) dead load (kips/ft.).
	MDC2:	Un-factored moment due to long-term composite (superimposed
		excluding future wearing surface) dead load (kip-ft.).
	DW:	Un-factored long-term composite (superimposed future wearing
		surface only) dead load (kips/ft.).
	M _{DW} :	Un-factored moment due to long-term composite (superimposed
		future wearing surface only) dead load (kip-ft.).
	M4_ + IM:	Un-factored live load moment plus dynamic load allowance (impact)
		(<i>k</i> / <i>p</i> - <i>††</i> ,).
_	Mu (Strength I):	Factored design moment (kip-ft.).
		1.25 (MDC1 + MDC2) + 1.5 MDW + 1.75 M4 + IM
	$\varphi_f M_n$:	Compact composite positive moment capacity computed according
		TO Article 6.10.7.1 or non-siender negative moment capacity
	£ 001	according to Article A6.1.1 or A6.1.2 (kip-ti).
	Is DCI:	Un-laciorea siress al eage of liange for controlling sieel
		llange aue lo verilcal non-composite aeda lodas as calculated
	f DC2.	MDC1/ Snc Up-factored stress at edge of flange for controlling steel
	15 002:	flange due to vertical composite dead loads as calculated
		helow (ksi)
		$M_{DC2} / S_{o}(3n)$ or $M_{DC2} / S_{o}(cr)$ as applicable
	f. DW.	In-factored stress at edge of flange for controlling steel
	10 011	flange due to vertical composite future wearing surface
		loads as calculated below (ksi)
		Mow $/ S_c(3n)$ or Mow $/ S_c(cr)$ as applicable.
	fs (4+IM);	Un-factored stress at edae of flange for controlling steel
		flange due to vertical composite live load plus impact loads as
		calculated below (ksi).
		М₄+ _{IM} / S _c (n) or Mϟ + _{IM} / S _c (cr) as applicable.
	fs (Service II):	Sum of stresses as computed below (ksi).
		fsDC1 + fsDC2 + fsDW + 1.3 fs(4 + IM)
	$0.95R_hF_{yf}$:	Composite stress capacity for Service II loading according
		to Article 6.10.4.2 (ksi).
fs	(Total)(Strength I):	Sum of stresses as computed below on non-compact
		section (ksi).
	4 F	$1.25 (f_{sDC1} + f_{sDC2}) + 1.5 f_{sDW} + 1.75 f_{s}(4 + IM)$
	$\psi f \sqcap n$:	Non-Compaci composite positive or negative stress capacity for
	1/	Strength I louding according to Article 6.10.7 or 6.10.0 (KSI). Maximum factored chear range in coan computed according
	V † :	to Article 6 10 10
		10 Anneie 0.10.10.
_		
Τ.		

0.6 Sp. 2

66491

124272

93597

1847

2312

2111

0.931

691

0.15

124

0.288

238

1802

4529

11565

4.49

0.70

1.35

9.35

18.71

47.50

24.89

28.72

5....

34''

14''