STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

SHEET NO. SHEET NO. 4 ROUTE NO. SECTION TOTAL F.A.P. 110 4 SHEETS MADISON 10 10 Route 314 BR-I FEO. ROAD DIST. NO. 7 ILLINOIS FED. AID PROJE

CONTRACT NO: 76865

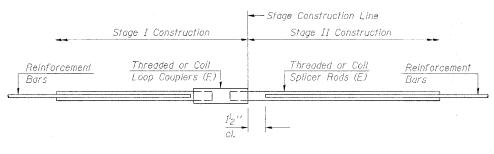
NOTES

Bar splicer assemblies shall be of an approved type and shall develop in tension at least 125 percent of the yield strength of the lapped reinforcement bars.

Splicer rods shall be of minimum 60 ksi yield strength, threaded or coiled full length. All reinforcement bars shall be lapped and tied to the splicer rods or dowel bars.

Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars.

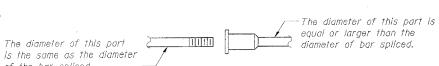
Other systems of similar design may be submitted to the Engineer for approval. Approval shall be based on certified test results from an approved testing laboratory that the proposed bar splicer assembly satisfies the following requirements:


Minimum *Pull-out Strength = 1.25 x fs_{allow} x A_t

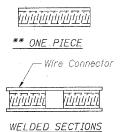
Where fy = Yield strength of lapped reinforcement bars in ksi.

 $fs_{\it allow}$ = Allowable tensile stress in lapped reinforcement bars in ksi (Service Load) A_t = Tensile stress area of lapped reinforcement bars. * = 28 day concrete

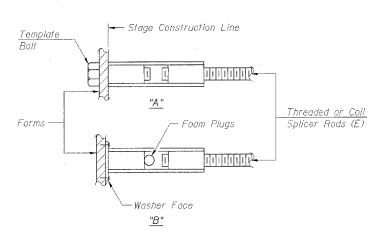
	BAR SPLIC	ER ASSEMBLI	ES				
Bar Size to be Spliced		Strength Requirements					
	Splicer Rod or Dowel Bar Length		Min. Puli-Out Strength kips - tension				
#4	1'-8''	14.7	5.9				
#5	2'-0''	23.0	9.2				
#6	2'-7''	33.1	13.3				
#7	3′-5′′	45.1	18.0				
#8	4'-6''	58.9	23.6				
#9	5′-9″	75.0	30.0				
· #10	7'-3''	95.0	38.0				
#11	9'-0''	117.4	46.8				


Bar splicer assemblies shall be according to Section 508 of the Standard Specifications, except as noted. The furnishing and installation of bar splicer assemblies will be measured and paid for at the contract unit price each for "BAR SPLICERS."

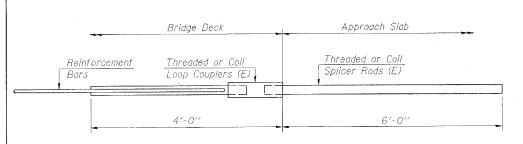
STANDARD


12	
16	Expansion Jts.
And the state of t	

BAR SPLICER ASSEMBLY DETAILS ILLINOIS ROUTE 4 FAP ROUTE 314 SECTION 110 BR-I MADISON COUNTY SN 060-0109


ROLLED THREAD DOWEL BAR

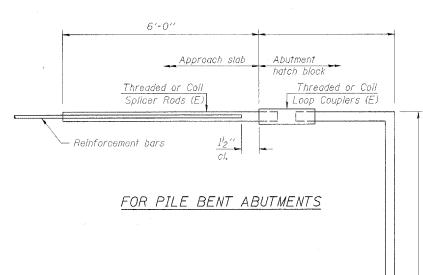
of the bar spliced.


BAR SPLICER ASSEMBLY ALTERNATIVES

** Heavy Hex Nuts conforming to ASTM A 563, Grade C, D or DH may be used.

INSTALLATION AND SETTING METHODS

"A": Set bar splicer assembly by means of a template bolt. "B": Set bar splicer assembly by nailing to wood forms or cementing to steel forms. (E): Indicates epoxy coating.



FOR INTEGRAL OR SEMI-INTEGRAL ABUTMENTS

Bar Splicer for #5 bar							
Min.	Capacity	= 23.0	kips	-	tensk	on	
Min.	Pull-out	Strength	= 9	.2	kips		tension

DESIGNED	KPH
CHECKED	DLS
DRAWN	KPH
CHECKED	DLS

	Bar	S	plice	r fo	r #5	5 bar		
Min.	Capacity	=	23.0) kip	S -	tensi	on	
Min.	Pull-out	St	rengt	h =	9.2	kips	-	tension
No.	Required	=						