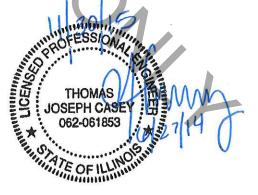


SCI ENGINEERING, INC.

650 Pierce Boulevard O'Fallon, Illínois 62269 618-624-6969 Fax 618-624-7099 www.sciengineering.com


Final Structure Geotechnical Report

BRIDGE REPLACEMENT FAP 626 (IL 97) OVER HAW CREEK TRIBUTARY KNOX COUNTY, ILLINOIS PTB 151-34, WO 3 ROUTE: FAP 626 (IL97) SECTION: 42-(B,B-1)BR-1 STRUCTURE NO. 048-0014 (EXISTING), 048-0098 (PROPOSED)

> Thomas J. Casey, P.E. <u>TCasey@SCIEngineering.com</u> (618) 624-6969 March 25, 2014 Revised June 27, 2014

Prepared for: OATES ASSOCIATES, INC. 100 LANTER COURT, SUITE 1 COLLINSVILLE, ILLINOIS 62234 (618) 345-2200

SCI No. 2009-3119.52

SCI ENGINEERING, INC.

CONSULTANTS IN DEVELOPMENT, DESIGN AND CONSTRUCTION GEOTECHNICAL ENVIRONMENTAL NATURAL RESOURCES CULTURAL RESOURCES CONSTRUCTION SERVICES

Mr. Bruce Schopp, P.E., S.E. Oates Associates, Inc. 100 Lanter Court, Suite 1 Collinsville, Illinois 62234

RE: Final Structure Geotechnical Report Bridge Replacement FAP 626 (IL 97) over Haw Creek Tributary Knox County, Illinois PTB 151-34, WO 3 Route: FAP 626 (IL 97) Section: 42-(B,B-1)BR-1 Structure No: 048-0014 (Existing), 048-0098 (Proposed) SCI No.: 2009-3119.52

Dear Mr. Schopp:

Enclosed is our Preliminary Structure Geotechnical Report (SGR) dated March 2014, revised June 2014. This report should be read in its entirety, and our recommendations considered in the design and construction of the proposed bridge replacement. Please call if you have any questions.

Respectfully,

SCI ENGINEERING, INC.

Hobson H. Fizette, P.E. Staff Engineer

Thomas J. Casey, P.E

Senior Engineer

HHF/TJC/tlw

Enclosure

μh. \\scieng\shared\OFallon\emtapps\PROJECT FILES\\2009 PROJECTS\2009-3119 PTB 151, Item 34\TS\52\IL 97 over Haw Creek Tributary\Report - Revised 2\2009-3119.52 IL97 Over Haw Creek Tributary SGR.doc

TABLE OF CONTENTS

1.0	PRO	JECT DESCRIPTION	1
2.0	SUBS	SURFACE EXPLORATION	1
	2.1	Area Geology	1
	2.2	Exploration Procedures	1
	2.3	Subsurface Conditions	2
	2.4	Groundwater Conditions	4
3.0	GEO	TECHNICAL EVALUATIONS	4
210	3.1	Seismic Considerations	
		3.1.1 Design Earthquake	
		3.1.2 Site Class Determination	
		3.1.3 Liquefaction Potential Analysis	
	3.2	Abutment Settlement	
		3.2.1 Embankment Approaches	6
	3.3	Bridge Approach Slabs	
	3.4	Slope Stability	
	3.5	Scour	
	3.6	Mining Activity	8
	3.7	Bridge Foundations	8
		3.7.1 Driven Steel Piles	9
	3.8	Wingwalls	10
	3.9	Lateral Pile Response	10
4.0	CON	STRUCTION CONSIDERATIONS	11
5.0	LIM	ITATIONS	11
		TABLES	

FIGURES		
Table 3.5 - Recommended Lateral Earth Pressures - Level Surface		
Table 3.4 – Preliminary Structure Loads		
Table 3.3 – Summary of Design Scour Elevation		
Table 3.2 – Summary of Slope Stability Factors of Safety		
Table 3.1 – Seismic Design Parameters		
Table 2.4 – Summary of Approximate Groundwater Levels		
Table 2.3 – Summary of Shale Elevations	4	
Table 2.2 – Summary of MSPT Results		
Table 2.1 - Summary of Borings Drilled For Structure SN 048-0098		

FIGURES

Figure 1 – Vicinity and Topographic Map Figure 2 – Site Plan Figure 3 – Subsurface Profile

APPENDICES

Appendix A – Boring Logs and Laboratory Test Results

Appendix B – Liquefaction Analysis Output – Not Performed Per AGMU 10.1

Appendix C – Slope Stability Analysis Output

Appendix D – Soil Modulus Parameters (k) for LPILE Analysis

Appendix E – TS&L

Appendix F – Pile Capacity Sheets

NORMATION ONLY

Final Structure Geotechnical Report

BRIDGE REPLACEMENT FAP 626 (IL 97) OVER HAW CREEK TRIBUTARY KNOX COUNTY, ILLINOIS PTB 151-34, WO 3 ROUTE: FAP 626 (IL97) SECTION: 42-(B,B-1)BR-1 STRUCTURE NO. 048-0014 (EXISTING), 048-0098 (PROPOSED)

1.0 PROJECT DESCRIPTION

The geotechnical study summarized in this report was performed for the proposed replacement bridge to carry Illinois 97 over the Haw Creek Tributary near Gilson in rural Knox County, Illinois. The existing structure is a 2-lane, single-span structure (SN 048-0014) with an approximate length of 33 feet (back to back abutment) and an approximate width of 33 feet (out to out deck). The proposed replacement bridge (SN 048-0098) will consist of a 2-lane, single-span, bridge, lengthened to approximately 78.7 feet (back to back abutment) and widened to approximately 35.2 feet wide (out to out deck). Based on the *preliminary Type, Size, and Location (TS&L) plan* provided by Oates Associates, Inc. (Oates), the roadway profile of the new bridge will be raised slightly (less than 1 foot) from the current profile. The existing concrete abutments will be removed and the end-slopes will be cut back to a 2 horizontal to 1 vertical (2H:1V) slope. Based on the provided plans, it appears that staged construction will be required for construction of the new structure. The location of the site is shown on the *Vicinity and Topographic Map*, Figure 1.

2.0 SUBSURFACE EXPLORATION

2.1 Area Geology

Within the project area, the geology is made of unlithified materials consisting of loamy and silty soils that formed in loess (windblown silt deposits) over Illinoisan glacial till deposits (*Soil Survey of Knox County Illinois*, Natural Resources Conservation Service, 2005). These deposits generally overlie Pennsylvanian shale, and coal over Mississippian limestone.

2.2 Exploration Procedures

Two standard penetration test (SPT) borings, designated B-1 and B-2 were drilled near the proposed abutment locations, as shown on the *Site Plan*, Figure 2. Previously, two borings designated as 1 and 2 were drilled in 1979 near the existing abutments, and are included in Appendix A for information purposes. Detailed information regarding the nature and thickness of the soils and rock encountered, and the results of the field sampling and laboratory testing are shown in the appended Boring Logs.

The 2014 boring locations were selected by Oates and IDOT and staked by SCI personnel by measuring from existing site features. The 2014 boring locations were later surveyed by Coombe-Bloxdorf, P.C. and the stations, offsets, and elevations were provided to SCI. The field exploration was performed in general accordance with procedures outlined in the 1999 *IDOT Geotechnical Manual*.

Personnel from SCI were with the drill rig to supervise drilling, log the borings, and perform field unconfined compressive strength tests of the 2014 borings. A Mobile B-57 truck-mounted drill rig equipped with continuous flight augers was used to advance the borings. SPTs were performed with a split-spoon sampler at 2½-foot intervals to 30 feet, and at 5-foot intervals thereafter to the termination depth of the borings. The unconfined compressive strength of the cohesive soils was determined with a Rimac test apparatus. A pocket penetrometer was used to measure the compressive strength if the soils were not conducive to Rimac testing. The SCI borings were drilled to refusal per IDOT specifications to depths of approximately 39 to 40 feet below the existing ground surface. While auger refusal did not occur in any of the borings, split spoon sampler refusal did occur within the shale layer in both borings, as detailed further in Table 2.1, and on the appended boring logs. Split-spoon sampler refusal is a designation applied to any material that results in SPT N-values in excess of 100 blows per foot (bpf).

 Table 2.1 - Summary of Borings Drilled For Structure SN 048-0098

Boring	Туре	Ground Surface Elevation (ft)	Refusal Depth (ft)	Refusal Elevation (ft)	Station	Off	set
B-1	North Abutment	668.1	39.3	628.8	396+59	12.0	RT
В-2	South Abutment	666.6	40.0	626.6	397+66	12.0	LT

2.3 Subsurface Conditions

Detailed information regarding the nature and thickness of the soils and rock encountered, and the results of the field sampling and laboratory testing are shown on the Boring Logs in Appendix A. A *Site Plan* showing the boring locations with respect to the proposed structure is shown on Figure 2. The generalized soil profiles are included on the subsurface profile, Figure 3.

Below the surficial 4 inches of asphalt encountered, fill material, extending to depths of approximately 8 to 13 feet (El. 658.6 to 655.1) was observed in both borings. The fill consisted of silty clay loam (A-6 in accordance with the AASHTO soil classification system, based on our visual classification unless lab tests were noted on the logs), silty loam (A-6), and clay (A-7), and was most likely associated with the construction of the existing abutments.

Beneath the fill soils, natural cohesive soils, consisting of interbedded layers of silty clay (A-6), clay (A-7), and silty clay loam (A-6) were encountered to depths of approximately 19.0 to 20.5 feet (El. 647.6). In general, the natural cohesive soils were soft to medium stiff in consistency with N-values (the sum of the second and third blow count numbers in each sampling interval from the SPT) of 4 to 9 bpf with an average of 6 bpf, and unconfined compressive strengths obtained from Rimac ranged from 0.2 to 2.7 tons per square foot (tsf) with an average of 1.1 tsf. Moisture contents of these soils ranged from 21 to 34 percent and averaged 27 percent.

Beneath the upper cohesive soils, interbedded layers of clayey shale, shale, and coal were encountered in both borings until boring termination depths of 39.3 to 40.0 feet (El. 628.8 to 626.6). SPT N-values varied within the shale, clayey shale, and coal layers and ranged from 37 to 100 bpf. Due to the weakness of the shales in the area, modified standard penetration tests (MSPT) were performed within the shale, clayey shale, and coal layers in general accordance with the Illinois Center for Transportation report ICT-R27-99 that was performed for IDOT. MSPT values of 12 to 46 bpf, and equivalent unconfined compressive strengths of 0.5 to 1.9 tsf were measured within the shale, clayey shale, and coal layers, in boring B-2 as detailed in table 2.2 below.

Boring	Material	Sample Depth (ft)	Sample Elevation (ft)	Calculated MSPT N-Value (bpf)	Calculated Equivalent Unconfined Compressive Strength (tsf)
B-2	Coal	26.0-27.5	640.6 to 639.1	46	1.8
B-2	Clayey Shale	28.5-30.0	638.1 to 636.6	12	0.5
B-2	Coal	31.0-32.5	635.6 to 634.1	50	1.9
В-2	Clayey Shale	33.5-35.0	633.1 to 631.6	17	0.7
B-2	Clayey Shale	38.5-40.0	628.1 to 626.6	12	0.5

Table 2.2 – Summary of MSPT Results

Table 2.3 presents a summary of the depth and elevation that shale was first encountered in each of the SCI borings. We defined intact shale bedrock as the point of the first split-spoon sampler refusal.

Boring	Depth to Shale (ft)	Top of Shale Elevation (ft)
B-1	21.0	647.1
B-2	24.0	642.6

Table 3.3 – Summary of Shale Elevations

4 Groundwater Conditions

Groundwater levels observed at the time of drilling are summarized in Table 2.4. It should be noted that the groundwater level is subject to seasonal and climatic variations, the water level in Haw Creek Tributary, and other factors; and may be present at different depths in the future. In addition, without extended periods of observation, measurement of the true groundwater levels may not be possible.

Table 2.4 – Summary of Approximate Groundwater Levels

Boring No.	Groundwater Elevation During Drilling (ft)
B-1	640.1
В-2	646.6

3.0 GEOTECHNICAL EVALUATIONS

In order to provide design recommendations for founding the structures, we performed the following evaluations based on all available data collected and reviewed at the time of this report. This information includes subsurface explorations performed by SCI, preliminary TS&L plans, and communications with Oates personnel familiar with the project. The preliminary TS&L is attached to the SGR in Appendix E.

3.1 Seismic Considerations

3.1.1 Design Earthquake

Ground shaking at the foundation of structures and liquefaction of the soil under the foundation are the principle seismic hazards to be considered in design of earthquake-resistant structures. Soil liquefaction is possible within loose sand and low plastic silt deposits below the groundwater table. Liquefaction occurs when a rapid development in water pressure, caused by the ground motion, pushes sand particles apart, resulting in a loss of strength and later densification as the water pressure dissipates. This loss of strength can cause bearing capacity failure while the densification can cause excessive settlement. Potential earthquake damage can be mitigated by structural and/or geotechnical measures or procedures common to earthquake resistant design.

For the purposes of seismic design the bridge has been classified as Regular and Essential. According to the Illinois Department of Transportation Bridge Manual 2012 edition, the structure should be designed to a design earthquake with a 7 percent Probability of Exceedance (PE) over a 75-year exposure period (i.e. a 1,000-year design earthquake). The 1,000-year design earthquake has a Moment Magnitude (Mw) of 7.7 and a Peak Ground Acceleration (PGA) of 0.07g, as determined from data provided by the United States Geological Survey (USGS) National Seismic Hazard Mapping Project and procedures outlined in the All Geotechnical Manual Users (AGMU) 10.1, Liquefaction Analysis Procedure, dated February 25, 2010.

3.1.2 Site Class Determination

The seismic site soil classification for the bridge site was determined from the design earthquake data, the subsurface data, and the procedures described in AGMU Memo 09.1, Seismic Site Class Definition, of the IDOT Bridge Manual Design Guides. The Site Class was evaluated using methods defined as B and C, which include evaluating the SPT N-values and undrained shear strength, Su. The following results were calculated:

- Method B using N: 71 bpf (Site Class C)
- Method C using N_{ch}: 99 bpf (Site Class C)
- Method C using S_u : 1,340 psf (Site Class D)

Based on the guidelines in the AGMU, we recommend that Site Class C be used for the project. Based on Table 3.15.2-1, the Seismic Performance Zone is 1. Seismic design parameters for the site are summarized in Table 3.1. OKL

Seismic Design Parameters			
Site Class	С		
Fa	1.20		
F _v	1.70		
Design Spectral Acceleration at 0.2 sec. (S _{DS})	0.12g		
Design Spectral Acceleration at 1.0 sec.(S _{D1})	0.07g		
Seismic Performance Zone	Zone 1		

3.1.3 Liquefaction Potential Analysis

Based on the techniques outlined in AGMU 10.1, a liquefaction potential analysis is not required for the site. For the effects of the seismic loading on embankment stability, refer to the following section 3.4 *Slope Stability*. As no liquefaction potential was calculated for the site, the effects of liquefaction on axial pile capacity are neglected.

3.2 Abutment Settlement

Based on the provided TS&L, and discussions with Oates, elevation changes on the order of 0.5 to 1.0 feet are anticipated at the abutments. Due to the minor grade changes, a rigorous settlement analysis was not performed for the abutment soils. Therefore, the effects of down drag on axial pile capacity are neglected.

3.2.1 Embankment Approaches

Based on the provided plans, the embankment approach side slopes will also be widened. Existing slopes steeper than 5H:1V should be benched to provide a level surface prior to placing any new fill material. Benching will provide level surfaces for compaction and reduce the development of inclined planes of potential weakness between the existing soil and the fill material. We recommend the benches be spaced such that the maximum height of cut at the up-slope end of the bench is 5 feet. Should soft or loose soils be encountered during construction, SCI should be retained to review our analyses and recommendations.

3.3 Bridge Approach Slabs

The bridge approach slabs should be designed to bear on existing embankment fill or newly placed low plastic structural fill. In evaluating the bearing resistance of the slabs, we recommend using a modulus of subgrade reaction of 150 pounds per square inch per inch of deflection (pci).

3.4 Slope Stability

SCI conducted slope stability analyses of the end slopes for the new bridge abutments. Based on the proposed plans, the side and end-slopes will be cut to inclinations of approximately 2H:1V. The slope stability analyses for the slopes were conducted using limit equilibrium slope stability methods and the commercially available software program Slope/W (part of the GeoStudio 2012 software package developed by Geo-Slope International). A Morgenstern-Price analysis was used to search for a critical circular failure surface to calculate the factor of safety for the slope. For the analysis, the engineering soil

properties from the subsurface exploration data and the given slope geometries were used. The project was evaluated using traditional Allowable Stress Design analyses using Factors of Safety (FS) values presented in the Bridge Manual.

The slopes were evaluated using short-term and long-term conditions. A traffic load of 250 pounds per square foot (psf) was used during the analyses. For the static, long-term slope stability analyses, effective stress values were used in a simplified soil profile developed for the bridge embankments and the failure surfaces were limited to the end slopes below the proposed structure. For the short-term analyses, total stress values were used. In each case, the embankments achieved the minimum factors of safety for the static conditions, as detailed in Table 3.2.

	End of Cons	truction	Long Term		
Location	Required Minimum Factor of Safety	Estimated Factor of Safety	Required Minimum Factor of Safety	Estimated Factor of Safety	
North Abutment End Slope STA 396+64.17	1.7	2.5	1.7	1.7	
South Abutment End Slope STA 397+44.83	1.7	2.9	1.7	1.7	

Table 3.2 – Summary of Slope Stability Factors of Safety

Based on the Seismic Performance Zone 1, and given the design nature of the structure, seismic slope stability analyses were not performed.

3.5 Scour

Abutment foundations are an area of primary concern for damage from scour. Per IDOT Bridge Manual Section 2.3.6.3.2, open abutments protected with class A4, stone dumped riprap, should set the design scour elevation at the bottom of the abutment. Based on the Bridge Manual, and the provided TS&L, the design scour elevations for the 100-year and 500-year events for the abutments are shown in Table 3.3 below.

	Event	North Abutment	South Abutment
Design Scour Elevation (ft)	Q100	660.4	658.9
	Q500	660.4	658.9

Table 3.3 – Summary of Design Scour Elevation

3.6 **Mining Activity**

Based on the Illinois Coal Resource Shapefile GIS data provided by the Illinois State Geological Survey, dated July 2012, the site is not undermined. In addition, the subject site is approximately 2 miles away from the nearest mapped mine. The listed disclaimer in the Directory states, "Locations of some features on the mine maps may be offset by 500 or more feet due to errors in the original source maps, the compilation process, digitizing, or a combination of these factors." Based on the distance to the nearest mapped underground mine, a study of the effects of mining activity on the project is not considered necessary.

3.7 **Bridge Foundations**

The foundation supporting the proposed bridge must provide sufficient support to resist dead and live loads, including seismic loads. Preliminary structure loads are provided in Table 3.4 below. Several potential foundation options were considered for supporting the new bridge structure that included driven steel H-Piles, metal shell piles, drilled shafts, and shallow foundations. Metal shell piles are not recommended because the estimated tip elevations are very close to bedrock, which can cause unacceptable risks for pile damage. Shallow foundations are not recommended due to the relatively soft consistency of the shallow subsurface conditions encountered, unless the bottoms of the footings are founded in rock; which would likely result in costly foundation treatment due to the excessive foundation depth. Drilled shaft foundations were determined to be too costly, given the size of the proposed structure, and would also not be compatible with the proposed integral abutments. If the abutments change from an integral abutment to semi-integral abutments, drilled shafts would be a feasible foundation option. SCI should be contacted for additional recommendations if drilled shafts will be considered.

For the driven steel H-pile foundation option, we recommend a minimum of two test piles be installed to verify the length of the piles. One test pile should be installed at each abutment to help determine the pile KL length. Recommendations for all the potential foundation options are provided below.

Location	Service I Reaction (kips)	Strength I Reaction (kips)	
South Abutment	850	1,200	
North Abutment	850	1,200	

3.7.1 Driven Steel Piles

The structural capacity of driven piles depends on the allowable stress and cross sectional areas of steel. The pile recommendations in this report assume that Steel H-piles will conform to AASHTO M270 Grade 50 (ASTM 709 Gr 50) or equivalent with a minimum yield stress of 50 kips per square inch (ksi).

Based on the most current IDOT Bridge Manual, a geotechnical resistance factor (φ_G) of 0.55 was used for the design of the driven pile foundations. As liquefaction and settlement are not concerns at the site, geotechnical losses due to liquefaction and down-drag were not considered necessary in the static or seismic pile design. Geotechnical losses associated with scour were not considered since piers are not being proposed, and it is anticipated that scour will be reduced to above the proposed soil surface by using class A4 riprap at the abutments. During the seismic event the Bridge Manual allows the use of a Geotechnical Resistance Factor (φ_G) of 1.0.

All estimates of capacity were calculated using the "Modified IDOT Static Method" spreadsheet associated with the IDOT Bridge Manual, and assume construction verification will follow the "WSDOT" formula outlined in Section 512 of the most current IDOT Standard Specifications for Road and Bridge construction. The top elevations of the piles obtained from the TS&L were 662.4 and 660.9, while the ground surface elevation during driving was assumed to be 660.4 and 658.9 for the north and south abutments, respectively. The tip elevations were calculated from the Modified IDOT Static Method spreadsheets based on the available factored resistance.

We recommend a minimum driven pile center to center spacing of three pile diameters, as recommended by the IDOT Bridge Manual. The maximum spacing shall be limited to 3.5 times the effective footing thickness plus 1 foot, but not to exceed 8 feet. Once the final spacing is determined, the piles should be evaluated for group effects.

A summary of the design capacities, or factored resistance available (R_F), seismic factored resistance (R_{Fseis}), and nominal required bearing (R_N) is presented in Appendix F for each H-pile size. The pile lengths, as shown in Appendix F, were estimated from the embedment depth estimates from the IDOT design spreadsheet and the top elevations estimated from the preliminary TS&L plan. Based on the criteria established in the All Bridge Designers Memorandum (ABD) 12.3, the following H-Pile sizes are suitable for the proposed integral abutments: HP8x36, HP10x42, HP10x57, HP12x53, HP12x63, HP12x74, HP12x84, HP14x73, HP14x89, HP14x102, and HP14x117.

Estimated maximum refusal elevations, based on the IDOT pile capacity analyses, for H-piles are included in Appendix F. It should be noted that H-piles driven into shale may run shorter than the IDOT spreadsheet predicts. The estimated pile lengths should be adjusted based on the test pile results.

3.8 Wingwalls

The wingwalls should be designed to withstand lateral earth pressures caused by the weight of the backfill, including slopes behind the walls. We recommend the equivalent fluid unit weights tabulated below for lateral earth pressures, in pounds per cubic foot, be used in the design of the wingwalls. The indicated values assume that positive drainage is provided to prevent the development of hydrostatic pressure. Values for granular material should only be used if the granular backfill extends upwards and outwards the full height of the wall at a slope of 45 degrees or flatter from its base. In this case, the granular backfill should be capped with approximately 2 feet of cohesive soil to reduce the potential for surface water infiltration into the granular backfill. With clean granular backfill, filter fabric, such as Mirafi 140N or equivalent, should be placed along the interface between the soil and the granular backfill to reduce the potential for infiltration of the soil into the granular material.

	Equivalent Fluid Unit Weights									
Backfill Type	At-Rest Earth Pressures (pcf) (pcf)									
Cohesive Soil	70 50									
Granular Material (1-inch minus)	60 40									
Free-Draining Granular Material (1-inch clean)	50 30									

Table 3.5 – Recommended Lateral Earth Pressures – Level Surface

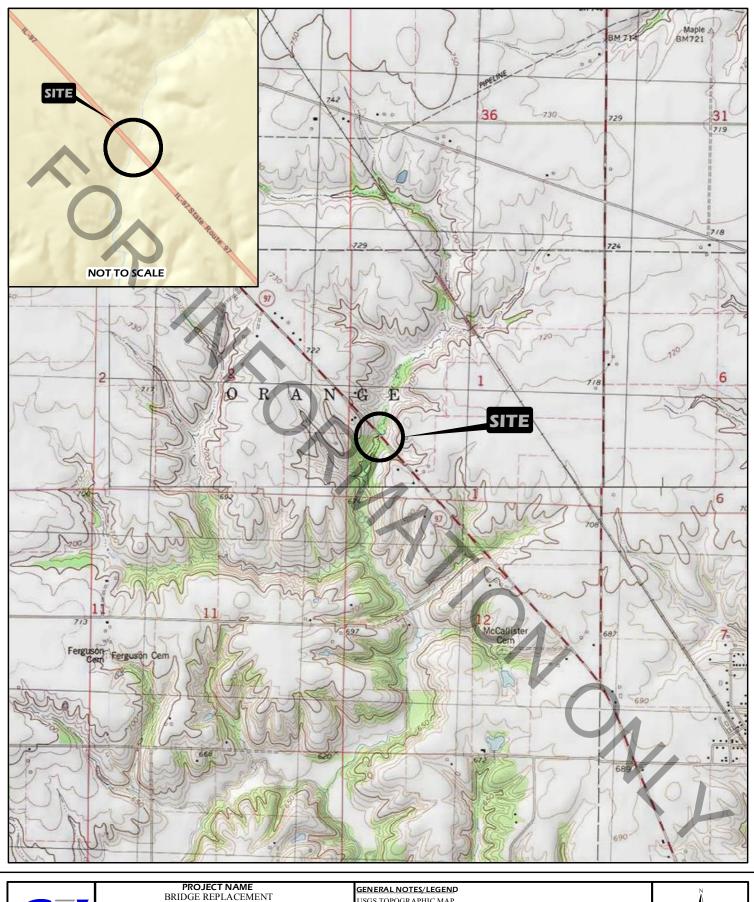
The above values are applicable when the surface of the backfill behind the wall is horizontal. In areas where an upward sloped or loaded backfill case occurs, additional pressures will need to be added. If the final design includes upward sloped backfills, SCI should be retained to review our recommendations.

3.9 Lateral Pile Response

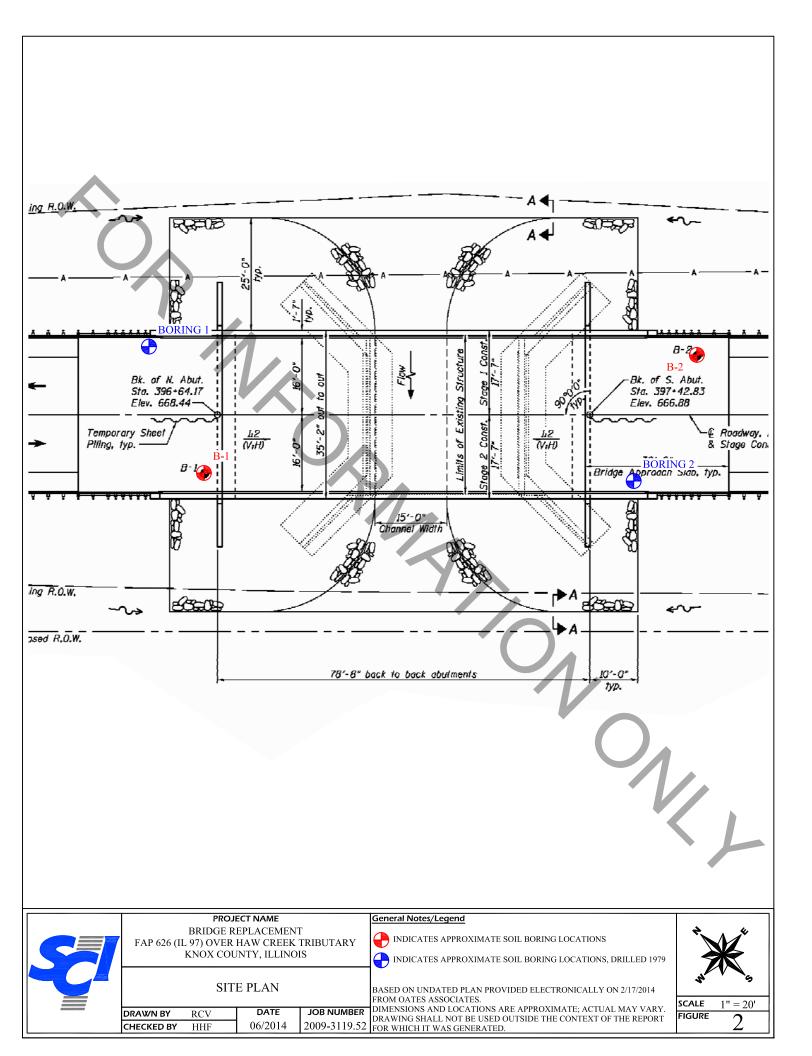
A representation of the shaft response under lateral loading exceeding 3 kips per pile is required for design of the bridge superstructure per Section 3.10.1.10 of the 2012 Bridge Manual. The lateral response can be developed by modeling the soil/shaft interaction with the computer program LPILE. Discrete elements are used in LPILE to represent the shaft and non-linear soil using springs. The non-linear soil springs are commonly referred to as P-Y curves.

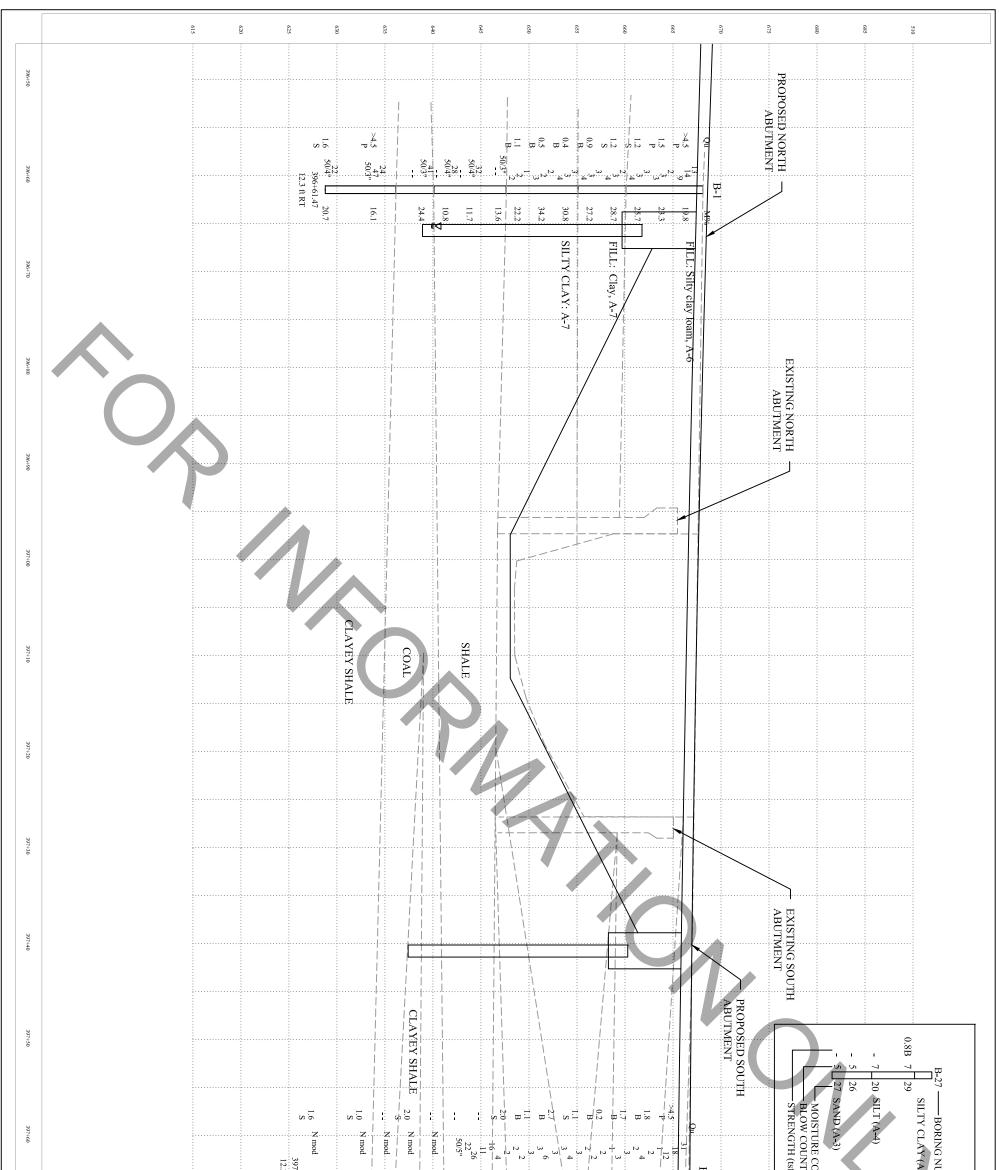
March 2014, Revised June 2014

Based on the encountered subsurface conditions, tables for borings B-1 and B-2 summarizing approximate soil modulus parameters (k) for the LPILE analyses are included in Appendix D (Reference: LPILE User's Manual, Ensoft, Inc., July 2004). Soils located above the 500-year design scour elevation (Q500) should not be considered during analysis. When pile/shaft design details and load information are refined in the development of the structure plans, LPILE analyses, if warranted, can be performed.

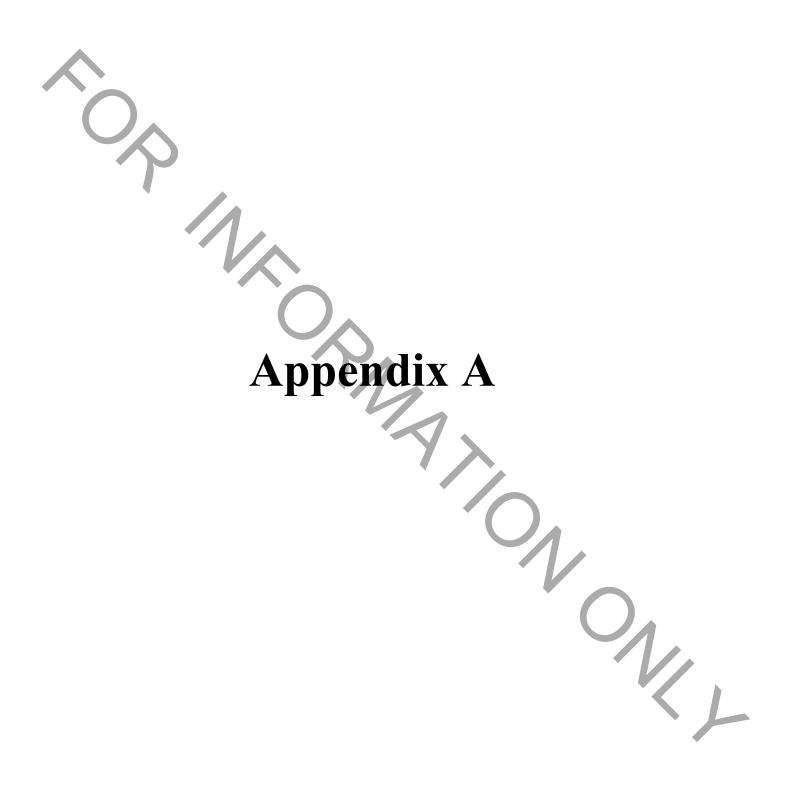

4.0 CONSTRUCTION CONSIDERATIONS

The construction activities should be performed in accordance with the current *IDOT Standard Specifications for Road and Bridge Construction* and any pertinent Special Provisions or policies.

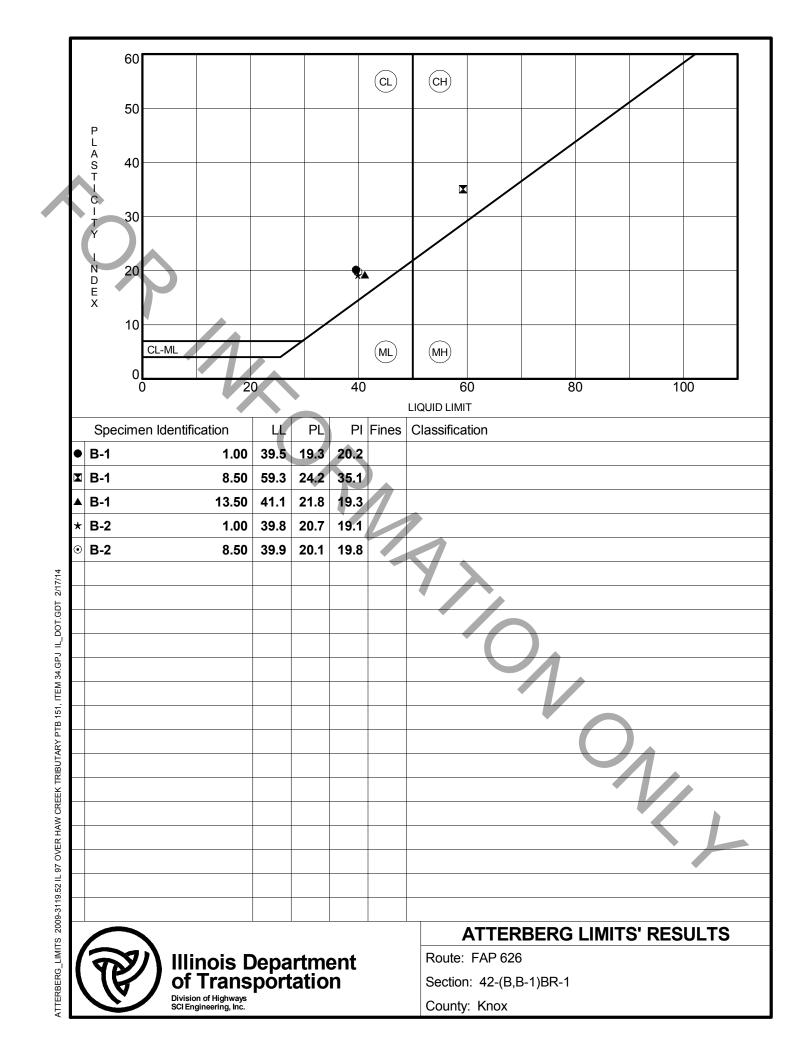

Based on the plans provided, staged construction will be required for the construction of the new structure. It appears that either temporary sheeting, including cantilever temporary sheet piling, or a soil retention system, will be feasible on the both the north and south abutments. Based on the provided plans and discussions with Oates personnel familiar with the project, temporary sheeting will only be required immediately behind the proposed new abutments, and will be embedded into the existing roadway embankment. A maximum retained height of 8.0 feet, to facilitate pile installation and abutment construction, was used in our analyses. For temporary sheeting, a minimum embedment depth of 10 feet with a minimum section modulus of 5.1 cubic inches per foot should be used for planning purposes. However, if the soils retention system will be extended from the back of the existing abutment to the back of the new abutments, temporary cantilever sheet piling may not be feasible, and a different type of soil retention system may be required.

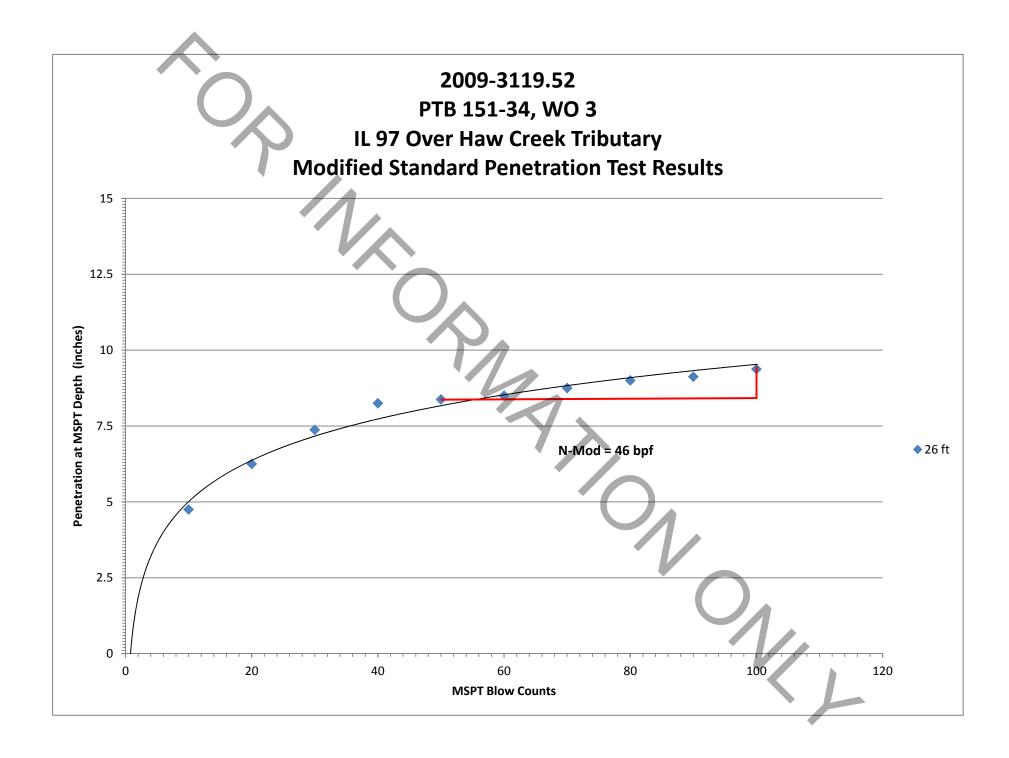

5.0 LIMITATIONS

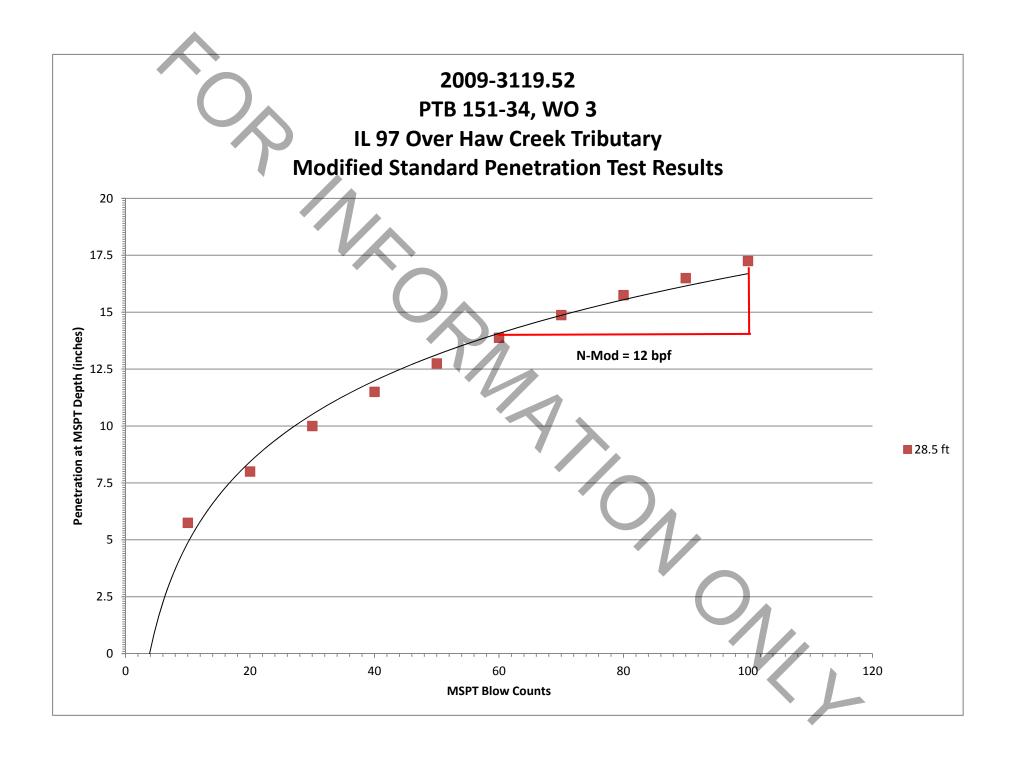
The recommendations provided herein are for the exclusive use of Oates Associates, Inc and IDOT. They are specific only to the project described, and are based on subsurface information obtained at two boring locations within the bridge area, our understanding of the project as described herein, and geotechnical engineering practice consistent with the standard of care. No other warranty is expressed or implied. SCI should be contacted if conditions encountered during construction are not consistent with those described.

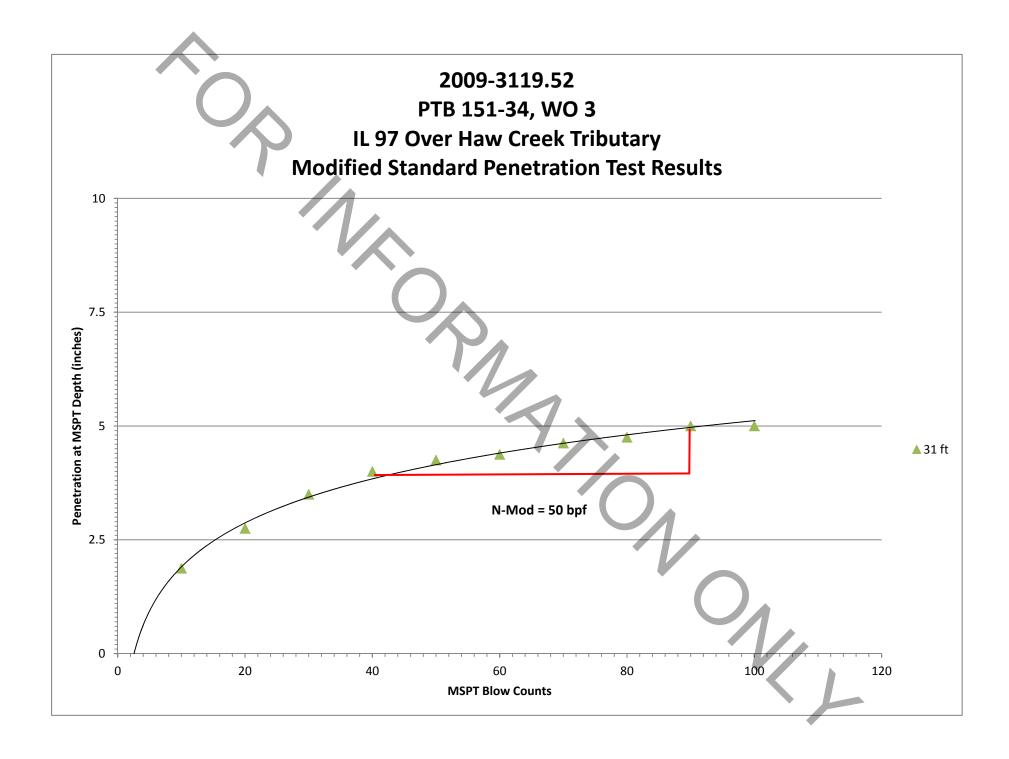


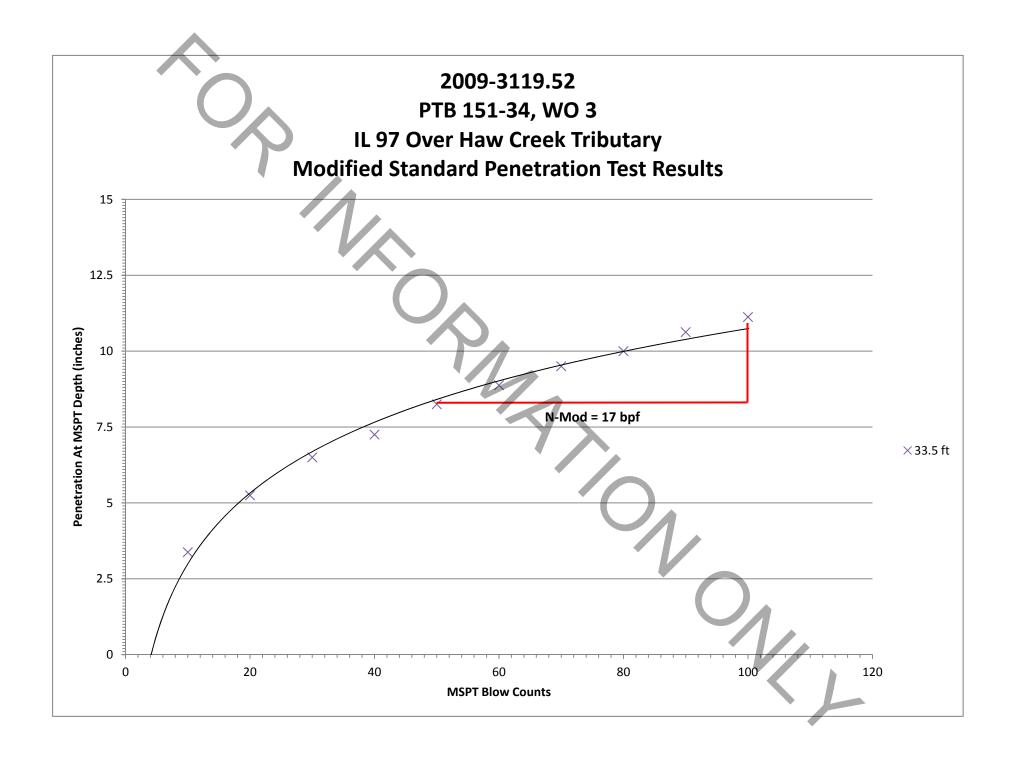
VICINITY AND TOPOGRAPHIC MAP DRAWN BY RCV DATE JOB NUMBER CHECKED BY HHF 06/2014 2009-3119.52 VICINITY AND TOPOGRAPHIC MAP	SI	FAP 626 (IL	BRIDGE REPLA 97) OVER HAW KNOX COUNTY	CREEK TH		USGS TOPOGRAPHIC MAP APPLETON, ILLINOIS QUADRANGLE MAQUON, ILLINOIS QUADRANGLE DATED 1982	W E	
DRAWN BY RCV DATE JOB NUMBER			VICINI	TY AND TO	POGRAPH	HIC MAP	10' CONTOURS	s
FIGURE 1				DOM	DATE			SCALE $1'' = 2000'$
			DRAWN BY	RCV	DATE	JOB NUMBER		FIGURE 4
	L		CHECKED BY	HHF	06/2014	2009-3119.52		

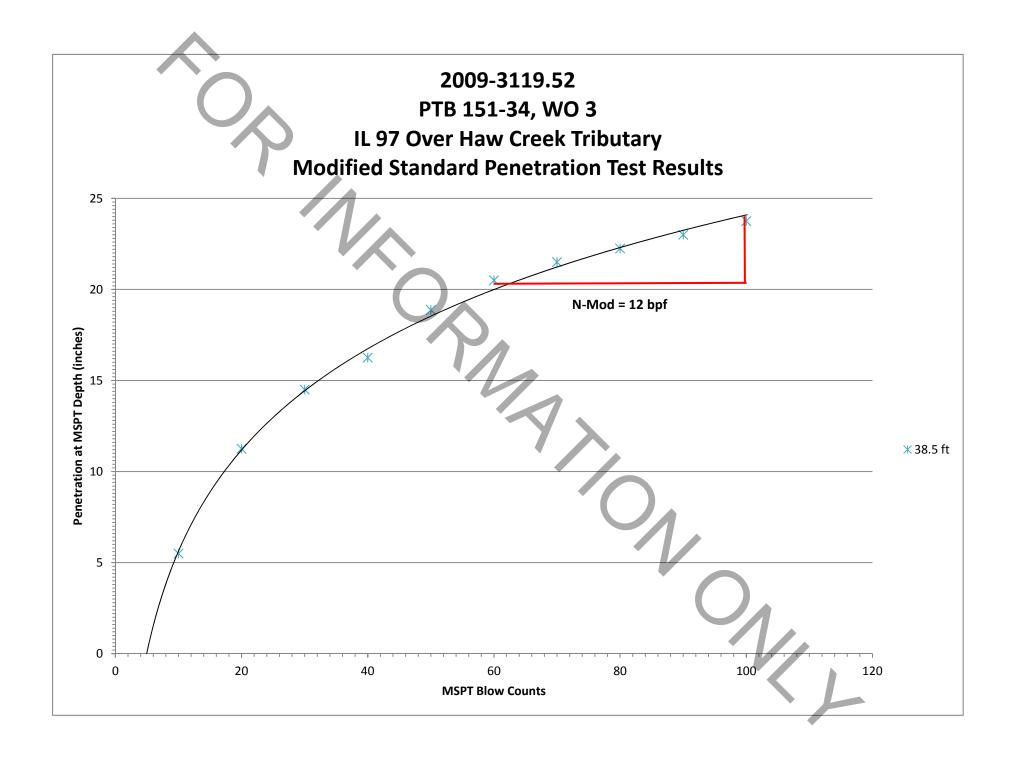

397+30 397+80			2.3 ft LT	97+64 17	15.6				$- \frac{1}{209} - \frac{1}{2} - $	25.9 21.4 CLAY: A-7	SILTY CLAY LOAM:		loan	B-2 - 4" ASPHALT		CONTENT (%) IT Isf)	GROUNDWATER ELEVEL AT THE TIME OF DRILLING	LEGEND NUMBER A-7) — SOIL DESCRIPTION
											A-6		۲					
		620 615	625	630	}	635	640		645	650	655	660	665		675	080	685	510
-IGURE 3	SCALE '' = 10' V '' = 10' H JOB NUMBER 2009-3119.52 DATE 06/2014 DRAWN BY RCV CHECKED BY HHF	FAP 6	BR 526 (IL 97 KN	PROJE RIDGE R) OVER OX COU BSURF	EPLAC HAW C JNTY, I	EMEN REEK LLINC	TRIBU DIS	JTARY	VAR BETV		SUBSURF	ACE CONI HED HOR		AY AND LIKE E INTERPRETE				

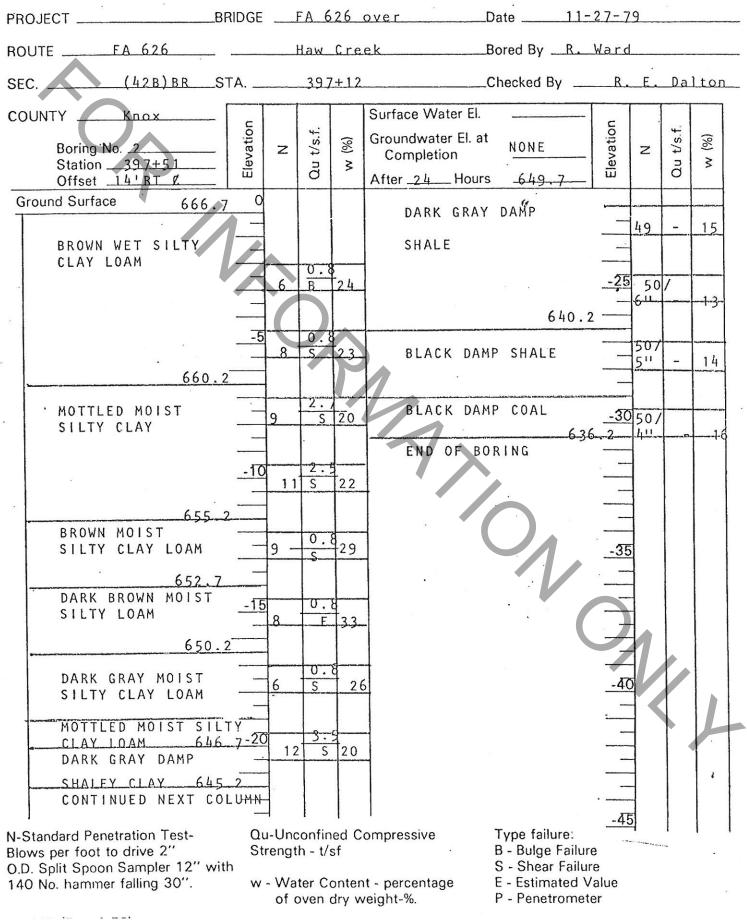



Illinois Depart	me ion	nt		SC	DIL BORIN	G LO	G		Page	<u>1</u>	of <u>1</u>
Division of Highways SCI Engineering inc		•					-		Date	1/3	0/14
ROUTE FAP 626 DE	SCR	IPTION	۱		97 over Haw Creek Tr ructure Boring, North A		L(oggi	ED BY	<u>SCI (</u>	MGS)
SECTION 42-(B,B-1)BR-1	I			SW 1/	4 of the SW 1/4, SEC. [·] de , Longitude	1, TWP. 10N	, RNG. 2	2E, 4 ^t	^h PM ,		
COUNTY Knox DRILLIN	G ME	THOD		Lautu	CFA	_ HAMMER	TYPE		Auto	matic	
STRUCT. NO. 048-0014 (EX) 048-0098 (PR) Station 397+12	D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	N/A N/A	_ ft _ ft	D E P	B L O	U C S	M O I
BORING NO. B-1 Station 396+61.47 Offset 12.3 ft RT	T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	640.1	_ ft ft	T H	W S	Qu	S T
Ground Surface Elev. 668.1 ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs.	N/A	ft	(ft)	(/6'')	(tsf)	(%)
FILL: Brown, silty clay loam, with shale, trace gravel, A-6					SHALE: Dark gray, tr	ace fine	<u>647.6</u>				
	-	13 14	>4.5	20	sand				50/3"	<u> </u>	14
	7	9	P	20							
	-5	2 3 3	1.5 P	23				-25	32 50/4"		12
Becomes greenish gray		3	1.2	26					28 50/4",		11
<u>660.</u>		4	S/15		COAL: Black		<u>640.1</u>				
FILL: Dark gray and gray, clay, with iron stains, A-7		2	1.0		COAL. Black				41		24
	-10	3 4	1.2 S/20	29	(-30	50/3"		
		3									
		3 4	0.9 B	27	CLAYEY SHALE: Gr	ay	<u>636.1</u>				
SILTY CLAY: Dark gray and greenish gray, A-7	!					(
greenish gray, A-7	-15	3 3 4	0.4 B	31				-35	24 47 50/3"	>4.5 P	16
	_	-									
Becomes dark gray, trace iron stains		2 2 3	0.5 B	34							
Trace roots	-20	1 2 2	1.1 B	22	Boring terminated at 3	39.3 ft.	628.8		22 50/4"	1.6 S/10	21


(W)	llinoi	is Dep anspo	oartn rtati	ne	nt		SC	DIL BORIN	GIO	G		Page	<u> 1 </u>	of <u>1</u>
	vision of Hig Cl Engineerir	hways	ιαι					_		U		Date	1/2	9/14
ROUTE	FAP 6	626	DE	SCRI	PTION	۱	Sti	97 over Haw Creek T Tucture Boring, South A	butment	L	oggi	ED BY	<u>SCI (</u>	MGS)
	42-(E	3,B-1)BR-1	1	_ L			NW 1/	4 of the SW 1/4, SEC.	1, TWP. 10N	, RNG. 2	2E, 4	th PM ,		
	Knox		RILLING	S ME	THOD		Latitu	CFA	_ HAMMER	TYPE		Auto	matic	
STRUCT. NO	048-0	0014 (EX) 098 (PR) 07+12		D E P	B L O	U C S	M O I	Surface Water Elev. Stream Bed Elev.	N/A N/A	ft ft	D E P	B L O	U C S	M O I
BORING NO Station Offset	397 12.	B-2 +64.17 3 ft LT		T H	W S	Qu	S T	Groundwater Elev.: First Encounter Upon Completion	646.6	_ ft⊻ _ ft	T H	W S	Qu	S T
Ground Surfac	e Elev	666.6	ft	(ft)	(/6")	(tsf)	(%)	After <u>N/A</u> Hrs.	N/A	ft	(ft)	(/6")	(tsf)	(%)
FILL: Brown an	d gray, s	ilty loam,	0003		31			SHALE: Dark gray		<u>646.1</u>		16		
			\times		18 12	>4.5 P	22					10 11 26		14
FILL: Brown, sil shale, trace grav	ty clay lo vel, A-7	am, with	<u> 663.6</u>	C	1							22		12
				-5	2	1.8 B	22			641.1	-25	50/5"		12
					2			COAL: Black		0 <u>+1.1</u>				
Becomes dark g	Iray				3 3	1.7 B	27					N mod		23
CLAY: Greenis	n gray, A	-6	6 <u>58.6</u>					CLAYEY SHALE: Gr	 ay	6 <u>38.6</u>				
				-10	1 2 2	0.2 B	31	1			-30	N mod	2.0 S/10	20
SILTY CLAY LC	AM: Da	irk gray,	<u>656.1</u>					COAL: Black		<u>636.1</u>				
A-6					2 3 4	1.1 S/20	28	•	V			N mod		41
CLAY: Dark gra nodules and sta	ny, trace	iron	<u>653.6</u>		2			CLAYEY SHALE: Gr	ay	<u>633.6</u>				
				-15	3 3 6	2.7 B	26				-35	N mod	1.0 S/10	16
					3									
					3	1.1 B	21							
			647.6		2									
CLAYEY SHALL trace iron nodule	E: Dark es and st	gray, tains		20	2 4	2.0 S/20	21	Boring terminated at		626.6	-40	N mod	1.6 S/10	20


Boring terminated at 40.0 ft.

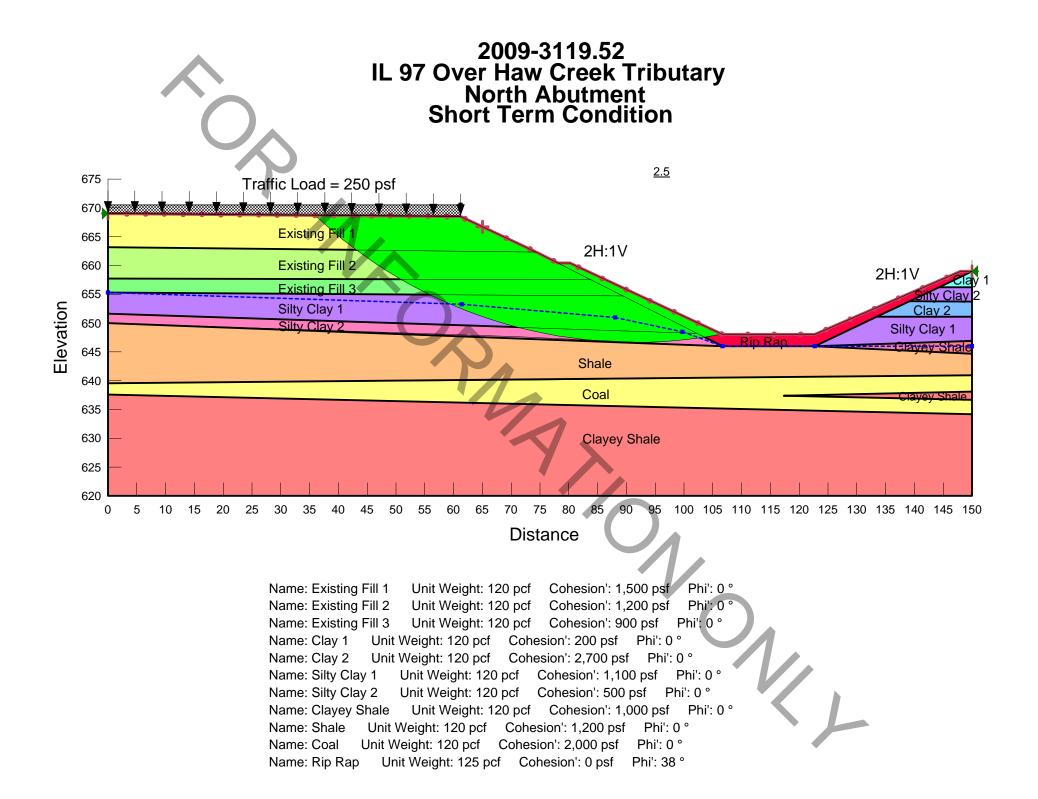


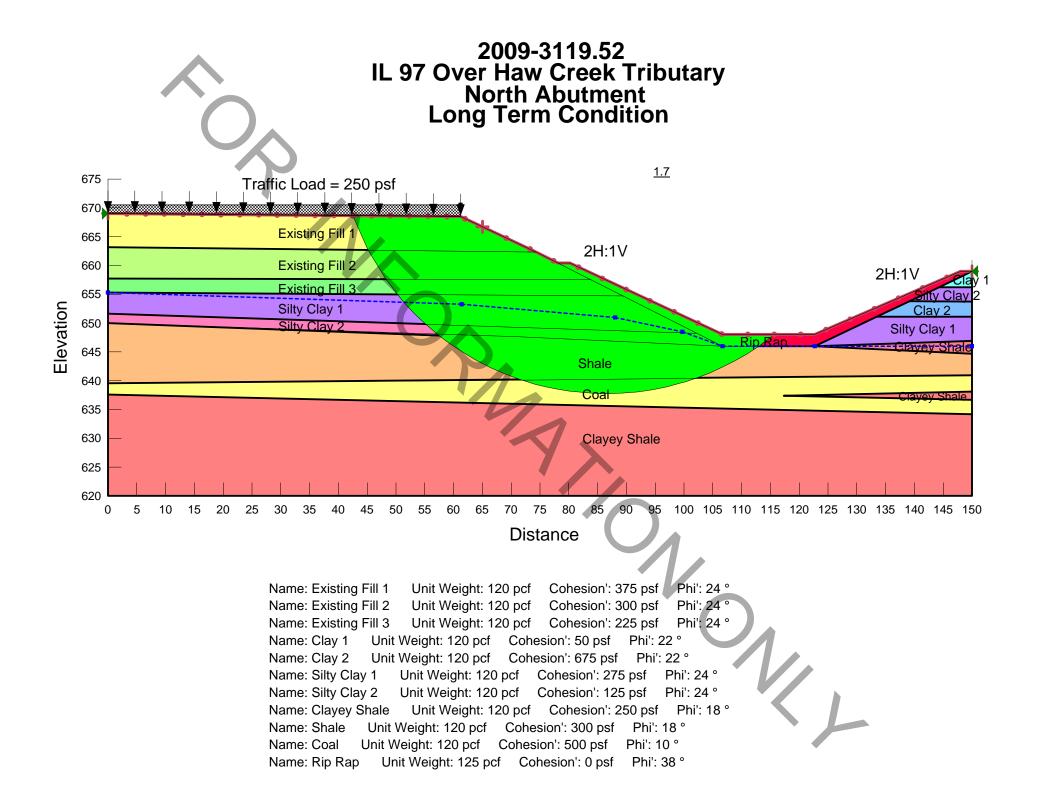

Bridge Foundation Boring Log

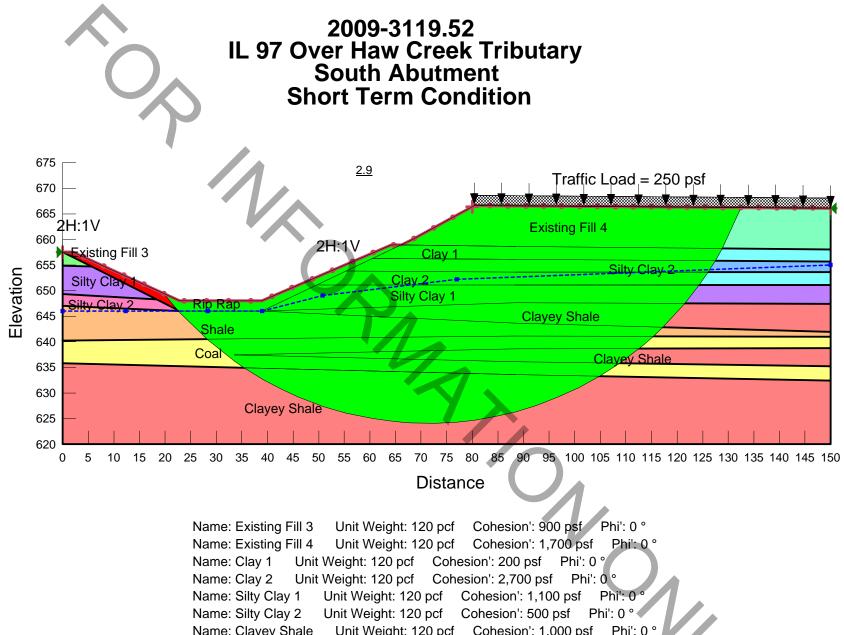
PROJECT	BRIDGE	FA 626	over	Date11-		h. 1 of	2Sh.
ROUTE FA 626	Haw C	reek		Bored By	R. Ward		
SEC. (42B) BR	STA	397+12		Checked By _	R.E.D	alton	
COUNTY Knox Boring No. 1 Station 396+5 Offset 14 LT		Qu t/s.f. w (%)	Surface Water El. Groundwater El. at Completion After <u>24</u> Hours	642.9	Elevation	Qu t/s.f.	w (%)
Ground Surface DARK BROWN WET			DARK GRAY SHALE	₽А₩Р	50 3!!		12
SILTY CLAY LOA	663.9				-25 50		_1.0_
BROWN MOIST SILTY CLAY LOA	M <u>-59</u>	1.0 22		638.			
	7	1.0 <u>5</u> 22	BLACK DAMF TO COAL END OF BOF	63	7.4 50		21
66	<u>-10</u> <u>8</u> 56.4	0.9 S 25					
MOTTLED MOIST SILTY CLAY LOA	M <u>5</u>	0.9 E 34		1,	-35		
GRAY MOIST SILTY LOAM	<u>-15</u> 8 651.4	1.0 - <u>S</u> -27		(Œ		
DARK BROWN MOI SILTY LOAM	ST5_	0.8 536			-40		
	646.4	<u>0.8</u> 5 <u>E</u> -		ï	·		
CONTINUED NEXT	COLUMN						
N-Standard Penetration Test Blows per foot to drive 2" O.D. Split Spoon Sampler 12 140 No. hammer falling 30"	Strengt " with w - Wa	h - t/sf	ompressive t - percentage eight-%.	Type failure: B - Bulge Failu S - Shear Failu E - Estimated P - Penetrome	ure Value	1 1	1

Bridge Foundation Boring Log

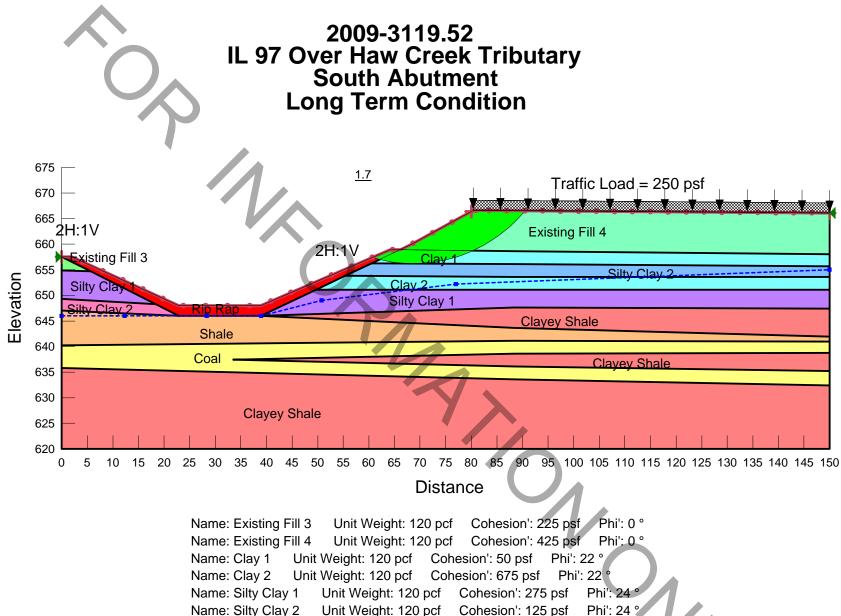
Sh. 2 of 2 Sh.

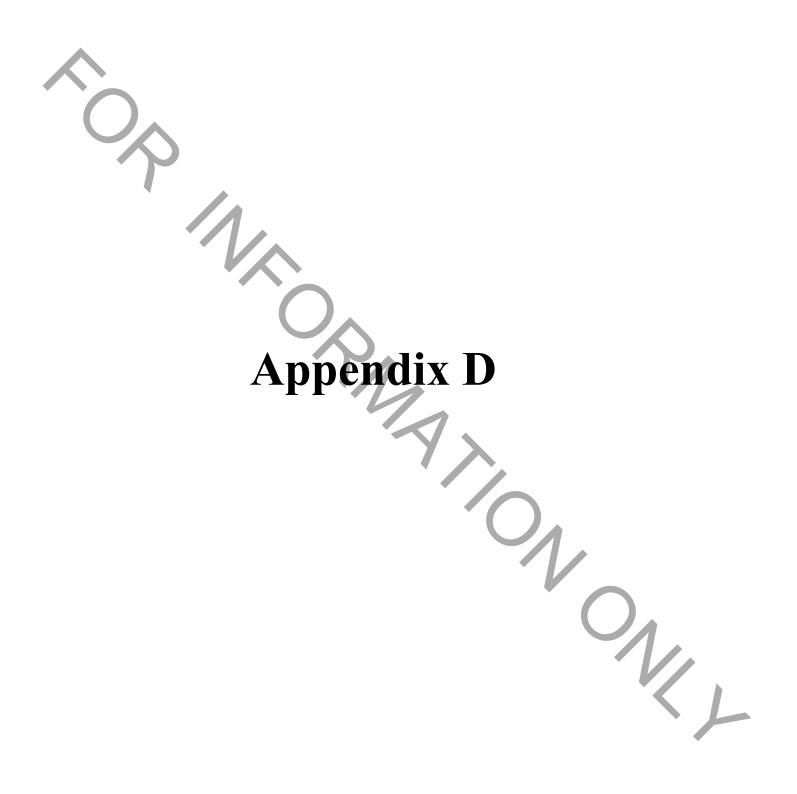



Appendix B


1

Not Performed Per AGMU 10.1


Appendix C



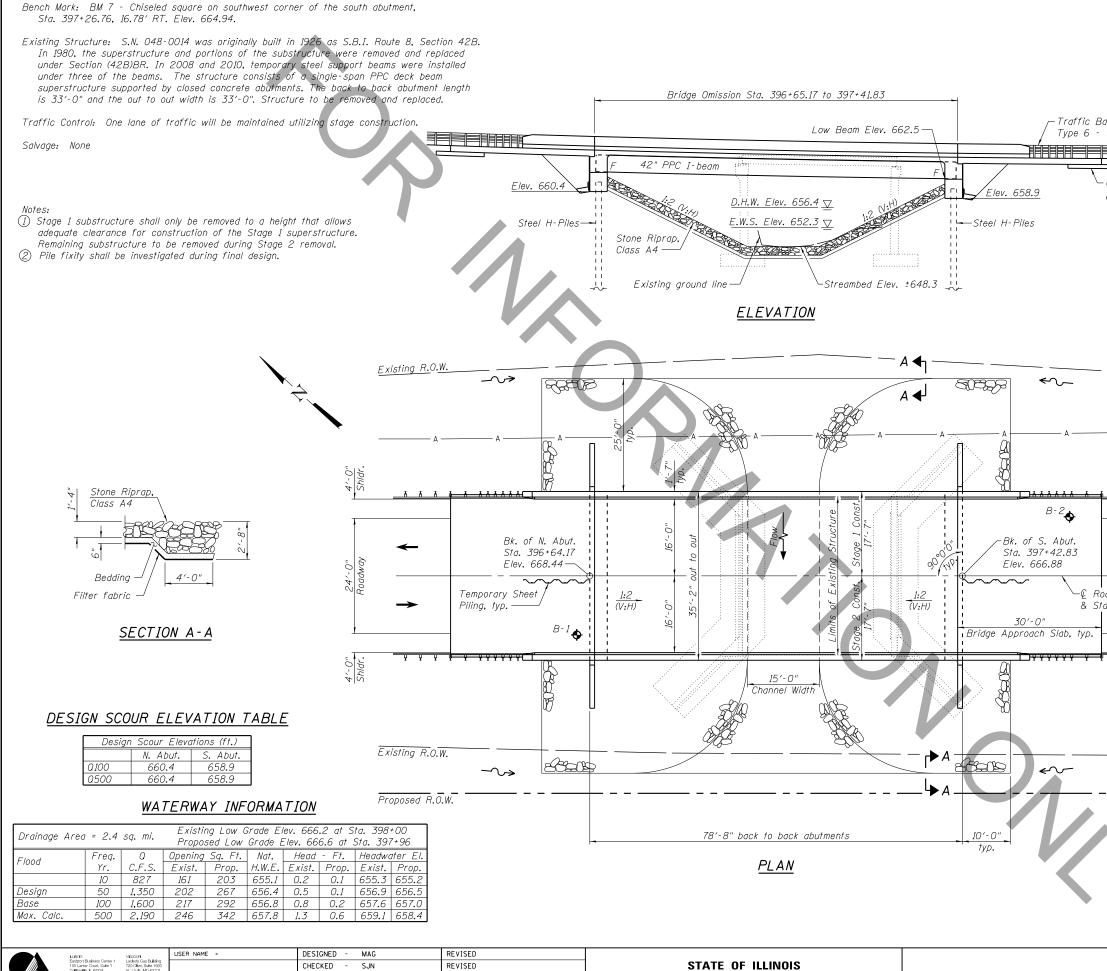
Name: Silty Clay 1 Unit Weight: 120 pcf Cohesion': 1,100 psf Phi': 0 ° Name: Silty Clay 2 Unit Weight: 120 pcf Cohesion': 500 psf Phi': 0 ° Name: Clayey Shale Unit Weight: 120 pcf Cohesion': 1,000 psf Phi': 0 ° Name: Shale Unit Weight: 120 pcf Cohesion': 1,200 psf Phi': 0 ° Name: Coal Unit Weight: 120 pcf Cohesion': 2,000 psf Phi': 0 ° Name: Rip Rap Unit Weight: 125 pcf Cohesion': 0 psf Phi': 38 °

Name: Silty Clay 1 Unit Weight: 120 pcf Cohesion': 275 psf Phi': 24 ° Name: Silty Clay 2 Unit Weight: 120 pcf Cohesion': 125 psf Phi': 24 ° Name: Clayey Shale Unit Weight: 120 pcf Cohesion': 250 psf Phi': 18 ° Name: Shale Unit Weight: 120 pcf Cohesion': 300 psf Phi': 18 ° Name: Coal Unit Weight: 120 pcf Cohesion': 500 psf Phi': 10 ° Name: Rip Rap Unit Weight: 125 pcf Cohesion': 0 psf Phi': 38 °

APPENDIX D

PROJECT: IL 97 Over Haw Creek Tributary Knox County, Illinois LOCATION: **CLIENT:** Oates Associates, Inc. STRUCTURE: 048-0014 (EXISTING), 048-0098 (PROPOSED) 2009-3119.52 SCI NO.:

Depth (ft)	Elevation (ft)	Abbreviated Soil Description	Effective Unit Weight (pcf)	Cohesion (psf)	Phi (degrees)	Soil Modulus Parameter (pci)	E ₅₀
0.0 to 2.8	660.4 to 657.6	Fill - Clay	120	1,200		200	0.007
2.8 to 5.3	657.6 to 655.1	Fill – Clay	120	900		90	0.008
5.3 to 10.3	655.1 to 650.1	Silty Clay	115	450		25	0.01
10.3 to 12.8	650.1 to 647.6	Silty Clay	115	1,100		150	0.007
12.8 to 20.3	647.6 to 640.1	Shale	58	1,500		300	0.007
20.3 to 24.3	640.1 to 636.1	Coal	32	900 ¹		90	0.008
24.3 to 29.3	636.1 to 631.1	Clayey Shale	58	700 ¹		60	0.009
29.3 +	Below 631.1	Clayey Shale	58	500 ¹		30	0.009


Table D.1 – Soil Modulus Parameters (k) for North Abutment (B-1)

¹Estimated from MSPT results in B-2

Table D.2 – Soil Modulus Parameters (k) for South Abutment (B-2)

Depth (ft)	Elevation (ft)	Abbreviated Soil Description	Effective Unit Weight (pcf)	Cohesion (psf)	Phi (degrees)	Soil Modulus Parameter (pci)	E_{50}
0.0 to 2.8	658.9 to 656.1	Clay	120	200		5	0.02
2.8 to 5.3	656.1 to 653.6	Silty Clay Loam	117	1,100		150	0.007
5.3 to 7.8	653.6 to 651.1	Clay	120	2,700	- ^	700	0.006
7.8 to 11.3	651.1 to 647.6	Clay	120	1,100		150	0.007
11.3 to 12.8	647.6 to 646.1	Clayey Shale	58	2,000		500	0.006
12.8 to 17.8	646.1 to 641.1	Shale	58	1,500		300	0.007
17.8 to 20.3	641.1 to 638.6	Coal	32	900 ¹		90	0.008
20.3 to 22.8	638.6 to 636.1	Clayey Shale	58	500 ¹		30	0.009
22.8 to 25.3	636.1 to 633.6	Coal	32	900 ¹		90	0.008
25.3 to 29.3	633.6 to 629.6	Clayey Shale	58	700 ¹		60	0.009
29.3 +	Below 629.6	Clayey Shale	58	500 ¹		30	0.009

100 Lanter Coun, and Collinsville, IL 62234 tel: 618.345.2200

PLOT SCALE =

PLOT DATE =

Barrier Terminal, - Std. 631031, typ. - Concrete pad, typ.	$\frac{V.C. = 440'}{V.C. = 440'}$ $\frac{V.C. = 440'}{(1.312)^{1.31}}$
	DESIGN SPECIFICATIONS 2012 AASHTO LRFD Bridge
	Design Specifications, 6th Edition with 2013 Interims
	DESIGN STRESSES <u>FIELD UNITS</u> f'c = 3,500 psi fy = 60,000 psi (Reinforcement) <u>PRECAST PRESTRESSED UNITS</u> f'c = 6,000 psi f'ci = 5,000 psi fpu = 270,000 psi (¹ / ₂ " \$\u03c6\$ low-relax strands) fpbt = 201,960 psi (¹ / ₂ " \$\u03c6\$ low-relax strands)
	HIGHWAY CLASSIFICATION
Α	F.A.P. 626 - IL Rte. 97 Functional Class: Minor Arterial (Rural) ADT: 2,000 (2011); 2,440 (2031) ADTT: 252 (2011); 307 (2031) DHV: 244 Design Speed: 55 m.p.h.
<u> </u>	Posted Speed: 55 m.p.h. Two-Way Traffic Directional Distribution: 50:50
	<u>LOADING HL-93</u> Allow 50#/sq. ft. for future wearing surface.
Roadway, P.G.L., Stage Const. Line	<u>SEISMIC DATA</u> Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0 sec. (SDI) = 0.07g Design Spectral Acceleration at 0.2 sec. (SDS) = 0.12g Soil Site Class = C
<u> </u>	Range 2E - 4th P.M. anijonity personal for the second sec
L	<u>GENERAL PLAN & ELEVATION</u> <u>IL RTE. 97 OVER HAW CREEK TRIBUTARY</u> <u>F.A.P. RTE. 626 - SEC. 42-(B,B-1)BR-1</u> <u>KNOX COUNTY</u> <u>STATION 397+03.50</u> <u>STRUCTURE NO. 048-0098</u>
	F.A.P. SECTION COUNTY TOTAL SHEET NO.
	626 42-(B,B-1)BR-1 KNOX CONTRACT NO. 68754
2 SHEETS	ILLINOIS FED. AID PROJECT

APPENDIX F

PROJECT:IL 97 Over Haw Creek TributaryLOCATION:Knox County, IllinoisCLIENT:Oates Associates, Inc.STRUCTURE:048-0014 (EXISTING), 048-0098 (PROPOSED)SCI NO.:2009-3119.52

_		_
	Pile Type and Size	Estimated Refusal Elevation (ft)
	HP 8 X 36	641.1
\land	HP 10 X 42	642.1
Y	HP 10 X 57	639.1
	HP 12 X 53	642.1
	HP 12 X 63	640.6
	HP 12 X 74	638.6
	HP 12 X 84	637.6
	HP 14 X 73	641.1
	HP 14 X 89	639.1
	HP 14 X 102	637.6
	HP 14 X 117	635.6

 Table F.1 – Estimated Maximum Driving Elevations for North Abutment (B-1)

Table F.2 – Estimated Maximum Driving Elevations for South Abutment (B-2)

Pile Type and Size	Estimated Refusal Elevation (ft)	
HP 8 X 36	637.6	
HP 10 X 42	638.1	
HP 10 X 57	635.6	
HP 12 X 53	638.1	
HP 12 X 63	636.6	
HP 12 X 74	635.1	
HP 12 X 84	633.6	
HP 14 X 73	637.1	
HP 14 X 89	635.1	
HP 14 X 102	633.6	
HP 14 X 117	631.6	
<u></u>		K/

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

REFER LRFD o	ENCE B r ASD o	ORING === r SEISMIC =			B-1 LRFD			Maximur	m Nominal	Maximu	G & RESI m Nominal ring of <u>Boring</u>	STANCE for S Maximum Resistance Ava	Factored	Maxim	e , & Losses um Pile ngth in <u>Boring</u>
GROUN GEOTE BOTTO	ND SURI CHNICA M ELEV	FACE ELEV AL LOSS TY . OF SCOU	'. AGAINS 'PE (Non R, LIQUE	ST PILE DURING DR e, Scour, Liquef., DD F., or DD ======= above apply DD) ===	660.40 None	ft ft			KIPS		KIPS		KIPS	20	-
TOTAL	LENGT R OF R Approx.	H OF SUBS OWS OF PI Factored L	TRUCTU LES PER oading A	RE LOAD ====== RE (along skew)=== & SUBSTRUCTURE = pplied per pile at 8 ft. pplied per pile at 3 ft.	Cts =====	ft	KIPS KIPS								
PILE T	Plugged		eter====	Steel H		FT.	Unplugged Unplugged								
807		r						1				54070050	54070050		
BOT. OF LAYER	LAYER	UNCONF. COMPR.	S.P.T. N	GRANULAR OR ROCK LAYER	NON SIDE	IINAL PLUC	GED TOTAL	NON SIDE	MINAL UNPLU	JG'D TOTAL	NOMINAL REQ'D	FACTORED GEOTECH. LOSS FROM	FACTORED GEOTECH. LOSS LOAD	FACTORED RESISTANCE	ESTIMATED PILE
ELEV. (FT.)	THICK. (FT.)	STRENGTH (TSF.)	VALUE (BLOWS)	DESCRIPTION	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	RESIST. (KIPS)	BEARING (KIPS)	SCOUR or DD (KIPS)	FROM DD (KIPS)	AVAILABLE (KIPS)	LENGTH (FT.)
657.60 655.10	2.80 2.50	1.20 0.90	7 7		9.1 6.5	12.4	21.5 21.1	13.3 9.5	1.4	14.7 23.4	15 21	0	0	8 12	5 7
652.60	2.50	0.40	7		3.1 3.9	5.5	25.6	4.6	0.6	28.1	26	0	0	14 19	10
650.10 647.60	2.50 2.50	0.50 1.10	5 4		7.6	6.9 15.2	37.7 152.7	5.7 11.1	0.8 1.7	34.7 57.5	35 58	0	0	32	12 15
647.10 646.60	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	177.4 202.1	36.1 36.1	13.4 13.4	93.7 129.8	94 130	0	0 0	52 71	15.3 15.8
646.10	0.50			Shale	24.7	122.5	226.8	36.1	13.4	165.9	166	0	0	91	16.3
645.60 645.10	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	251.5 276.2	36.1 36.1	13.4 13.4	202.0 238.2	202 238	0	0	111 131	16.8 17.3
644.60	0.50			Shale	24.7	122.5	300.9	36.1	13.4	274.3	274	0	0	151	17.8
644.10 643.60	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	325.6 350.3	36.1 36.1	13.4 13.4	310.4 346.5	310 347	0 0	0 0	171 191	18.3 18.8
643.10 642.60	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	375.0 399.7	36.1 36.1	13,4 13,4	382.7 418.8	375 400	0	0	206 220	19.3 19.8
642.10	0.50			Shale	24.7	122.5	424.4	36.1	13.4	454.9	424	θ	θ	233	20.3
641.60 641.10	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	449.2 473.9	36.1 36.1	13.4 13.4	491.0 527.2	44 9 474	0 0	0 Ф	247 261	20.8 21.3
640.60	0.50			Shale	24.7	122.5	498.6	36.1	13.4	563.3	499	θ	θ	274	21.8
640.10 639.60	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	523.3 548.0	36.1 36.1	13.4 13.4	599.4 635.5	523 548	0 Ө	Ө Ө	288 301	22.3 22.8
639.10	0.50			Shale	24.7	122.5	572.7	36.1	13.4	671.7	573	θ	θ	315	23.3
638.60 637.60	0.50 1.00			Shale Shale	24.7 49.4	122.5 122.5	597.4 646.8	36.1 72.3	13.4 13.4	707.8 780.0	597 647	0 0	0 Ф	329 356	23.8 24.8
636.60	1.00			Shale	49.4	122.5	696.2	72.3	13.4	852.3	696	0	θ	383	25.8
635.60 634.60	1.00 1.00			Shale Shale	49.4 49.4	122.5 122.5	745.6 795.0	72.3 72.3	13.4 13.4	924.5 996.8	746 795	θ	Ө Ө	410 437	26.8 27.8
633.60 632.60	1.00 1.00			Shale Shale	49.4 49.4	122.5 122.5	844.5 893.9	72.3 72.3	13.4 13.4	1069.1 1141.3	844 894	0	0 Ф	464 4 92	28.8 29.8
631.60	1.00			Shale	49.4	122.5	943.3	72.3	13.4	1213.6	943	Ð	Ð	519	30.8
630.60 629.60	1.00 1.00			Shale Shale	49.4 49.4	122.5 122.5	992.7 1042.1	72.3 72.3	13.4 13.4	1285.8 1358.1	993 1042	0 0	0	5 46 573	31.8 32.8
628.60	1.00			Shale	49.4	122.5	1091.5	72.3	13.4	1430.3	1092	0	θ	600	33.8
627.60 626.60	1.00 1.00			Shale Shale	49.4 49.4	122.5 122.5	1140.9 1190.4	72.3 72.3	13.4 13.4	1502.6 1574.8	1141 1190	0 0	Ð	628 655	34.8 35.8
625.60	1.00			Shale	49.4 49.4	122.5	1239.8 1289.2	72.3 72.3	13.4 13.4	1647.1 1719.3	1240 1280	0 0	•	682 700	36.8 37.8
624.60 623.60	1.00 1.00			Shale Shale	43.4	122.5 122.5	1209.2	12.3	13.4	1118.3	1289	4			01.0

Pile Design Table for North Abutment utilizing Boring #B-1

	congin rai					g #⊔-1					
	Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Steel I	IP 8 X 36			Steel	HP 12 X 53			Steel	HP 14 X 73		
	10	5	5		15	8	5		18	10	5
	13	7	7		21	12	7		26	14	7
	16	9	10		26	14	10		32	18	10
	22	12	12		35	19	12		42	23	12
	39	21	15		58	32	15		72	39	15
	286	157	21		418	230	20		578	318	21
Stool	HP 10 X 42		21	Stool	HP 12 X 63		20	Stool	HP 14 X 89		21
Sieeri	12	7	F	Sleer			F	Sleer			F
			5		15	8	5		18	10	5
	17	9	7		21	12	7		27	15	7
	20	11	10		26	14	10		32	18	10
	29	16	12		35	20	12		43	24	12
	48	26	15		61	33	15		76	42	15
o	335	184	20	0 ()	497	273	22	04	705	388	23
Steel	HP 10 X 57			Steel	HP 12 X 74		_	Steel	HP 14 X 10		_
	13	7	5		15	9	5		19	10	5
	17	9	7		22	12	7		27	15	7
	21	11	10		26	14	10		33	18	10
	30	16	12		36	20	12		43	24	12
	52	28	15		64	35	15		80	44	15
	454	250	23	01	589	324	24	0	810	445	25
				Steel	HP 12 X 84		_	Steel	HP 14 X 11		_
					16	9	5		19	11	5
					22	12	7		27	15	7
					27	15	10		33	18	10
					36	20	12		44	24	12
					66	37	15		84	46	15
					664	365	25		929	511	27
								•			
						•					
							· ·				

Pile Design Table for North Abutment utilizing Boring #B-1

	coigii rui					9 # 0 1	-				
	Nominal	Seismic	Estimated		Nominal	Seismic	Estimated		Nominal	Seismic	Estimated
	Required	Resistance	Pile		Required	Resistance	Pile		Required	Resistance	Pile
	Bearing	Available	Length		Bearing	Available	Length		Bearing	Available	Length
	(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
Steel I	HP 8 X 36			Steel	HP 12 X 53			Steel	HP 14 X 73		
	10	10	5		15	15	5		18	18	5
	13	13	7		21	21	7		26	26	7
	16	16	10		26	26	10		32	32	10
	22	22	12		35	35	12		42	42	12
	39	39	15		58	58	15		72	72	12
	286	286	21		418	418	20		578	578	21
Stool H	HP 10 X 42		21	Stool	HP 12 X 63		20	Stool	HP 14 X 89		21
Sleerr	12	12	F	Sleer	15		F	Sleer	18		F
			5			15	5			18	5
	17	17	7		21	21	7		27	27	7
	20	20	10		26	26	10		32	32	10
	29	29	12		35	35	12		43	43	12
	48	48	15		61	61	15		76	76	15
Ctarl I	335	335	20	Ct	497	497	22	64	705	705	23
Steel	HP 10 X 57			Steel	HP 12 X 74		_	Steel	HP 14 X 10		-
	13	13	5		15	15	5		19	19	5
	17	17	7		22	22	7		27	27	7
	21	21	10		26	26	10		33	33	10
	30	30	12		36	36	12		43	43	12
	52	52	15		64	64	15		80	80	15
	454	454	23	01	589	589	24	0	810	810 -	25
				Steel	HP 12 X 84		_	Steel	HP 14 X 11		_
					16	16	5		19	19	5
					22	22	7		27	27	7
					27	27	10		33	33	10
					36	36	12		44	44	12
					66	66	15		84	84	15
					664	664	25		929	929	27
						•					
-				• •				-			
										Ť 🖌	

IDOT STATIC METHOD OF ESTIMATING PILE LENGTH

I.D.O.T. BBS FOUNDATIONS AND GEOTECHNICAL UNIT

Modified 10/18/2011

						Itment		MAX. R	EQUIRED	BEARIN	G & RESI	STANCE for S	Selected Pile	, Soil Profile	e, & Losses
LRFD 0 PILE CI GROUN GEOTE	r ASD o JTOFF I ID SURI CHNICA	r SEISMIC = ELEV. ==== FACE ELEV AL LOSS TY	/. AGAIN	ST PILE DURING DR e, Scour, Liquef., DD	LRFD 660.90 658.90 None	ft ft		Req'd Be	m Nominal aring of <u>Pile</u> KIPS	Req.d Bea	m Nominal tring of <u>Boring</u> KIPS	Maximum Resistance Ava 230		Driveable Le	um Pile ngth in <u>Boring</u> FT.
			,	EF., or DD ======= above apply DD) ===											
				RE LOAD ======= JRE (along skew)===											
	R OF R	OWS OF P	ILES PEF	R SUBSTRUCTURE = pplied per pile at 8 ft.		Ŧ	KIPS								
	••			pplied per pile at 3 ft.			KIPS								
PILE TY	Plugged		eter====	Steel F		FT.	Unplugged Unplugged					FT. SQFT.			
BOT. OF		UNCONF.	S.P.T.	GRANULAR		INAL PLUC			MINAL UNPLU	-	NOMINAL	FACTORED GEOTECH.	FACTORED GEOTECH.	FACTORED	ESTIMATED
LAYER ELEV. (FT.)	LAYER THICK. (FT.)	COMPR. STRENGTH (TSF.)	N VALUE (BLOWS)	OR ROCK LAYER DESCRIPTION	SIDE RESIST. (KIPS)	END BRG. RESIST. (KIPS)	TOTAL RESIST. (KIPS)	SIDE RESIST. (KIPS)	END BRG. RESIST. (KIPS)	TOTAL RESIST. (KIPS)	REQ'D BEARING (KIPS)	LOSS FROM SCOUR or DD (KIPS)	LOSS LOAD FROM DD (KIPS)	RESISTANCE AVAILABLE (KIPS)	PILE LENGTH (FT.)
656.10 653.60	2.80 2.50	0.20 1.10	4 7		1.8 7.6	15.2	17.0 46.6	2.7 11.1	1.7	4.3 17.9	4 18	0	0	2 10	5 7
651.10 647.60	2.50 3.50	2.70 1.10	9 5		14.1 10.6	37.2 15.2	38.7 61.7	20.6 15.6	4.1 1.7	36.0 52.9	36 53	0	0 0	20 29	10 13
646.10	1.50	2.00	6		6.9	27.6	109.1	10.1	3.0	67.5	67	0	0	37	15
643.60 643.10	2.50 0.50		37	Hard Till Shale	4.1 24.7	68.0 122.5	167.7 192.4	6.0 36.1	7.4 13.4	79.5 115.6	79 116	0	0 0	44 64	17 17.8
642.60	0.50			Shale	24.7	122.5	217.1	36.1	13.4	151.7	152	0	0	83	18.3
642.10 641.60	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	241.8 266.5	36.1 36.1	13.4 13.4	187.8 224.0	188 224	0	0 0	103 123	18.8 19.3
641.10	0.50			Shale	24.7	122.5	291.2	36.1	13.4	260.1	260	0	0	143	19.8
640.60 640.10	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	315.9 340.6	36.1 36.1	13.4 13.4	296.2 332.4	296 332	0	0 0	163 183	20.3 20.8
639.60	0.50			Shale	24.7	122.5	365.3	36.1	13.4	368.5	365	0	0	201	21.3
639.10 638.60	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	390.0 414.7	36.1 36.1	13.4 13.4	404.6 440.7	390 415	0 0	0 0	215 228	21.8 22.3
638.10	0.50			Shale	24.7	122.5	439.5	36.1	13.4	476.9	4 39	θ	Ð	242	22.8
637.60 637.10	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	464.2 488.9	36.1 36.1	13.4 13.4	513.0 549.1	464 489	0 0	. 0 -0	255 269	23.3 23.8
636.60	0.50			Shale	24.7	122.5	513.6	36.1	13.4	585.2	514	θ	Ð	282	24.3
636.10 635.60	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	538.3 563.0	36.1 36.1	13.4 13.4	621.4 657.5	538 563	θ	О Ф	296 310	24.8 25.3
635.10	0.50			Shale	24.7	122.5	587.7	36.1	13.4	693.6 720.7	588 612	0 0	Ð	323	25.8
634.60 634.10	0.50 0.50			Shale Shale	24.7 24.7	122.5 122.5	612.4 637.1	36.1 36.1	13.4 13.4	729.7 765.9	612 637	0	Ф Ф	337 350	26.3 26.8
633.60	0.50 1.00			Shale	24.7 49.4	122.5 122.5	661.8 711.2	36.1 72.3	13.4 13.4	802.0 874.2	662 711	θ	Ө Ө	364 391	27.3 28.3
632.60 631.60	1.00			Shale Shale	49.4	122.5	760.6	72.3	13.4	946.5	761	0	θ	418	20.3
630.60 629.60	1.00 1.00			Shale Shale	49.4 49.4	122.5 122.5	810.1 859.5	72.3 72.3	13.4 13.4	1018.7 1091.0	810 859	θ	Ө Ф	446 473	30.3 31.3
628.60	1.00			Shale	49.4	122.5	908.9	72.3	13.4	1163.2	909	0	0	500	32.3
627.60 626.60	1.00 1.00			Shale Shale	49.4 49.4	122.5 122.5	958.3 1007.7	72.3 72.3	13.4 13.4	1235.5 1307.7	958 1008	θ θ	0	527 554	33.3 34.3
625.60	1.00			Shale	49.4	122.5	1057.1	72.3	13.4	1380.0	1057	Ð	Ð	581	35.3
624.60 623.60	1.00 1.00			Shale Shale	49.4 49.4	122.5 122.5	1106.5 1155.9	72.3 72.3	13.4 13.4	1452.2 1524.5	1107 1156	$\frac{\theta}{\theta}$	4	609 636	36.3 37.3
622.60	1.00			Shale	49.4	122.5	1205.4	72.3	13.4	1596.8	1205	θ	9	663	38.3
621.60	1.00			Shale	l	122.5	l		13.4	I		I			I I
													•		

Pile Design Table for South Abutment utilizing Boring #B-2

Nominal Required Bearing (Kips) Factored Pile (Kips) Estimated Required (Kips) Nominal (Kips) Factored Resistance (Kips) Estimated Required (Kips) Nominal (Kips) Factored Required (Kips) Estimated Pile (Kips) Steel HP 8 X 36 5 3 2 5 3 5 5 3 5 3 2 5 4 2 6 5 3 5 3 2 5 18 10 7 22 12 7 23 13 10 53 29 13 64 35 13 58 29 15 7 34 17 38 24 15 58 19 10 7 37 20 10 44 24 10 4 2 5 3 6 3 5 5 6 5 5 6 3 5 5 3 6 7 37 20 10 <td< th=""><th>File D</th><th></th><th>Sie ior Sou</th><th></th><th>int utin</th><th></th><th></th><th></th><th>ł</th><th></th><th></th><th></th></td<>	File D		Sie ior Sou		int utin				ł			
Bearing (Kips) Available (Kips) Length (Kips) (Kips) (Kips)		Nominal	Factored	Estimated		Nominal	Factored	Estimated		Nominal	Factored	Estimated
(Kips) (Kips)<		-				-				-		
Steel HP 8 X 36 Steel HP 12 X 53 Steel HP 14 X 73 3 2 5 12 7 7 23 13 10 36 20 13 45 25 15 58 29 17 286 157 23 30 17 23 286 157 23 30 17 10 44 2 5 15 8 7 30 17 10 44 24 13 56 31 15 66 36 17 30 17 10 44 24 5 56 16 9 73 10 54 30 13 56 17 38 15 83 46 17 410 54 26 3 5 26 16				-		_		-		-		-
3 2 5 4 2 5 5 3 5 12 7 7 7 18 10 7 22 12 7 36 20 13 10 53 29 13 64 35 13 45 25 15 67 37 15 82 45 15 286 157 23 418 20 23 578 318 24 5 3 5 3 5 6 3 5 6 3 5 4 2 5 3 5 3 5 6 3 7 30 17 10 37 20 10 44 24 10 44 24 13 50 3 5 6 3 5 56 31 15 70 38 15 85 47 15 56 36 17 83 46 17 103 56 17 <th></th> <td>(Kips)</td> <td>(Kips)</td> <td>(Ft.)</td> <td></td> <td>(Kips)</td> <td>(Kips)</td> <td>(Ft.)</td> <td></td> <td>(Kips)</td> <td>(Kips)</td> <td>(Ft.)</td>		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)		(Kips)	(Kips)	(Ft.)
12 7 7 18 10 7 22 12 7 23 13 10 36 20 10 44 24 10 36 20 13 53 29 13 64 35 13 53 29 17 79 44 17 98 54 17 286 157 29 7 79 44 17 98 54 17 286 157 29 7 79 44 17 98 54 17 286 157 29 10 7 24 13 7 31 7 20 10 44 24 13 54 30 13 66 36 17 16 3 66 17 16 17 103 56 17 103 16 17 103 56 17 103 56 17 103 56 17 103 55 17 10 45 25 10 17	Steel H	HP 8 X 36			Stee	HP 12 X 53	3		Steel	HP 14 X 73	3	
23 13 10 36 20 10 44 24 10 36 20 13 53 29 13 64 35 15 45 29 17 79 44 17 98 54 17 286 157 23 5teel HP 12 X 63 5 5 3 5 6 3 5 4 2 5 5 3 5 6 3 5 6 3 5 5 6 3 5 6 3 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 10		3	2	5		4	2	5		5	3	5
23 13 10 36 20 10 44 24 10 36 20 13 53 29 13 64 35 15 45 29 17 79 44 17 98 54 17 286 157 23 Steel HP 12 X 63 5 3 5 6 3 5 4 2 5 5 3 5 6 3 5 4 2 5 5 3 5 6 3 5 30 17 10 37 20 10 44 24 10 44 24 13 54 30 13 66 36 17 30 17 10 37 20 10 44 24 10 44 24 13 5 16 17 70 38 16 17 103 56 17 335 184 25 13 55 3 5 <		12	7	7		18	10	7		22	12	7
36 20 13 53 29 13 64 35 13 45 25 15 67 37 15 98 45 15 286 157 23 Steel HP 10 X 42 17 79 44 17 4 2 5 5 3 5 66 3 5 15 8 7 10 37 20 10 44 24 13 54 30 13 66 36 13 66 36 13 66 36 13 66 36 13 66 36 13 66 36 17 83 46 17 103 56 17 83 46 17 103 56 17 83 46 17 103 56 17 103 56 17 103 56 17 103 56 17 103 56 17 103		23	13	10		36		10				10
45 25 15 67 37 15 82 45 15 58 29 17 79 44 17 98 54 17 286 157 23 Steel HP 10 X 42 5 5 3 5 6 3 5 4 2 5 5 3 5 6 3 5 15 8 7 19 10 7 24 13 7 30 17 10 37 20 10 444 24 10 56 31 15 70 38 15 85 47 15 66 36 17 83 46 17 103 56 16 7 705 388 26 Steel HP 10 X 57 20 11 7 25 14 7 45 25 13 55 30 13 67 3												
5/3 29 17 79 44 17 98 54 17 286 157 23 418 230 23 578 318 24 4 2 5 5 3 5 6 3 5 30 17 10 37 20 10 444 24 10 44 24 13 54 30 13 66 36 17 30 17 10 37 20 10 444 24 10 44 24 13 54 30 13 66 36 17 335 184 23 5 5 3 5 6 4 5 335 184 23 5 5 3 5 6 4 5 16 9 7 20 11 7 45 25 10 45 <th></th> <td></td>												
286 157 23 418 230 23 578 318 24 4 2 5 5 3 5 6 3 5 30 17 10 37 20 10 444 24 10 44 24 13 54 30 13 66 36 17 30 17 10 37 20 10 444 24 10 44 24 13 54 30 13 66 36 17 335 184 23 497 273 24 103 56 17 335 184 23 56 3 5 6 4 5 16 9 7 20 11 7 45 25 10 45 25 13 55 30 13 67 37 13 59 32												
Steel HP 10 X 42 Steel HP 12 X 63 Steel HP 14 X 89 4 2 5 5 3 5 6 3 5 15 8 7 19 10 7 24 13 7 30 17 10 37 20 10 444 24 10 44 24 13 54 30 13 66 36 13 56 31 15 83 46 17 103 56 17 335 184 23 497 273 24 705 385 26 5teel HP 10 X 57 5 3 5 6 4 5 16 9 7 20 11 7 45 25 13 59 32 15 72 39 15 6 4 5 70 39 17 86 47 17 166 58												
4 2 5 3 5 6 3 5 15 8 7 19 10 7 24 13 7 30 17 10 37 20 10 44 24 10 44 24 13 57 30 13 66 36 13 56 31 15 70 38 15 85 47 15 66 36 17 497 273 24 103 56 17 335 184 28 5 3 5 5 6 4 5 16 9 7 30 11 7 45 25 10 45 25 13 72 39 15 87 48 15 70 39 17 58 32 26 3 5 21 11 7 45 26	Steel I				Steel				Steel			
15 8 7 19 10 7 24 13 7 30 17 10 37 20 10 44 24 10 44 24 13 54 30 13 66 36 13 56 31 15 83 46 17 103 56 17 335 184 23 497 273 24 705 388 26 Steel HP 10 X 57	010011			5	0.00			5	0.000			5
30 17 10 37 20 10 44 24 10 44 24 13 54 30 13 66 36 13 56 31 15 83 46 17 103 56 16 335 184 23 497 273 24 705 388 26 5teel HP 10 X 57 7 497 273 24 5 5 3 5 6 4 5 16 9 7 37 21 10 45 25 10 45 25 13 55 30 13 67 37 13 59 32 15 86 47 17 106 58 17 454 250 25 138 21 10 7 4 5 21 11 7 7 4 5 10 68 37												
44 24 13 54 30 13 66 36 13 56 31 15 70 38 15 85 47 15 66 36 17 83 46 17 103 56 17 335 184 20 5 3 5 66 47 705 388 26 Steel HP 10 X 57 X 5 3 5 6 4 5 16 9 7 20 11 7 25 14 7 31 17 10 35 30 13 67 37 13 59 32 15 72 39 15 87 48 15 70 39 17 569 32 26 810 445 27 549 32 26 10 66 31 13 68 37 13 <												
56 31 15 70 38 15 85 47 15 66 36 47 83 46 17 103 56 17 335 184 23 497 273 24 705 388 26 Steel HP 10 X 57 5 3 5 6 4 5 16 9 7 20 11 7 25 14 7 31 17 10 37 21 10 45 25 13 55 30 13 67 37 13 59 32 15 72 39 15 87 48 15 70 39 17 569 324 26 16 47 17 454 250 25 589 32 26 14 7 38 21 11 7 26 14 7												
66 36 17 83 46 17 103 56 17 335 184 23 497 273 24 705 388 26 Steel HP 10 X 57 7 5 3 5 6 4 5 16 9 7 20 11 7 25 14 7 31 17 10 37 21 10 45 25 10 45 25 13 55 30 13 67 37 13 59 32 15 72 39 15 87 48 15 70 39 17 86 47 17 106 58 17 454 250 25 15 5 5 7 4 5 10 56 31 13 7 45 16 47 454 250 25 10 </td <th></th> <td></td>												
335 184 23 497 273 24 705 388 26 4 2 5 5 3 5 6 4 5 16 9 7 20 11 7 25 14 7 31 17 10 37 21 10 45 25 10 45 25 13 55 30 13 67 37 13 59 32 15 72 39 15 87 48 15 70 39 17 86 47 17 106 58 17 454 250 25 5 3 5 7 4 5 21 11 7 38 21 10 68 37 13 46 25 10 56 31 13 68 37 13 73 40 15 </td <th></th> <td></td>												
Steel HP 10 X 57 Steel HP 12 X 74 Steel HP 14 X 102 4 2 5 5 3 5 6 4 5 16 9 7 20 11 7 25 14 7 31 17 10 37 21 10 45 25 13 55 30 13 67 37 13 59 32 15 72 39 15 87 48 15 70 39 17 569 324 26 810 445 27 544 250 25 5 3 5 7 4 5 106 58 17 106 58 17 106 58 17 454 250 25 3 5 7 4 5 26 14 7 521 11 7 38 21 10 68 37 13<												
4 2 5 5 3 5 6 4 5 16 9 7 20 11 7 25 14 7 31 17 10 37 21 10 45 25 13 59 32 15 55 30 13 67 37 13 59 32 15 86 47 17 106 58 17 454 250 25 5 3 5 7 4 5 26 14 7 106 58 17 106 58 17 454 250 25 5 3 5 7 4 5 21 11 7 26 14 7 36 37 13 73 40 15 90 50 15 89 49 17 111 61 17 89 49 17 111 61 17 929 511 29 92 <th>Steel I</th> <td></td> <td></td> <td>- 20</td> <td>Steel</td> <td></td> <td></td> <td>24</td> <td>Steel</td> <td></td> <td></td> <td>20</td>	Steel I			- 20	Steel			24	Steel			20
16 9 7 20 11 7 25 14 7 31 17 10 37 21 10 45 25 10 45 25 13 55 30 13 67 37 13 59 32 15 72 39 15 87 48 15 70 39 17 86 47 17 106 58 17 454 250 25 589 324 26 810 445 27 Steel HP 12 X 84 7 11 7 26 14 7 38 21 10 68 37 13 664 365 27 929 511 29 90 50 15 89 49 17 111 61 17 664 365 27 929 511 29 29 511 29	Oleen			5	olee			5	OLCOI			5
31 17 10 37 21 10 45 25 10 45 25 13 55 30 13 67 37 13 59 32 15 72 39 15 87 48 15 70 39 17 36 47 17 106 58 17 454 250 25 5 3 5 7 45 27 Steel HP 12 X 84 5 52 3 5 7 4 5 21 11 7 26 14 7 38 21 10 68 37 13 664 365 27 929 511 29 90 50 15 89 49 17 111 61 17 664 365 27 929 511 29 11 29												
45 25 13 55 30 13 67 37 13 59 32 15 72 39 15 87 48 15 70 39 17 86 47 17 106 58 17 454 250 25 5 3 5 810 445 27 Steel HP 12 X 84 5 3 5 7 4 5 21 11 7 26 14 7 38 21 10 68 37 13 663 31 13 68 37 13 90 50 15 89 49 17 111 61 17 664 365 27 929 511 29 11 29												
59 32 15 72 39 15 87 48 15 70 39 17 86 47 17 106 58 17 454 250 25 589 324 26 810 445 27 Steel HP 12 X 84 5 3 5 7 4 5 21 11 7 26 14 7 38 21 10 46 25 10 56 31 13 68 37 13 664 365 27 929 511 29												
70 39 17 454 250 25 Steel HP 12 X 84 5 5 3 5 21 11 7 38 21 10 56 31 13 66 31 13 68 37 13 90 50 15 89 49 17 111 664 365 27 929 511 29												
454 250 25 589 324 26 810 445 27 5 3 5 7 4 5 21 11 7 26 14 7 38 21 10 466 25 10 56 31 13 68 37 13 689 49 17 111 61 17 664 365 27 929 511 29												
Steel HP 12 X 84 Steel HP 14 X 117 5 3 5 7 4 5 21 11 7 26 14 7 38 21 10 46 25 10 56 31 13 68 37 13 73 40 15 90 50 15 89 49 17 111 61 17 664 365 27 929 511 29												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		101	200	20	Steel			20	Steel			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.00			5	0.001			5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								/				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
73 40 15 90 50 15 89 49 17 111 61 17 664 365 27 929 511 29												
89 49 17 111 61 17 664 365 27 929 511 29												
664 365 27 929 511 29												
											-	-
										1		
	•				• •				•			

Pile Design Table for South Abutment utilizing Boring #B-2

Nominal Required (Kps) Seismic (Kps) Estimated (Kps) Nominal (Kps) Seismic (Kps) Estimated (Kps) Nominal (Kps) Seismic (Kps) Estimated (Kps) Steel HP 8 X 36 3 5 12 12 7 7 16 18 7 12 12 7 7 16 18 7 22 22 7 7 36 36 10 44 44 10 16 18 16 7 16 18 16 7 16 18 12 22 7 7 36 36 10 44 44 10 16 16 16 18 17 97 17 48 48 13 67 67 15 98 98 17 578 24 24 7 578 24 24 7 578 24 24 7 16 13 16 6 5 15 16 13 16 6 5	File L		ble for Sou		int utili			-				
Bearing (Kips) Available (Kips) Length (Kips) Available (Kips) Length (Kips) Bearing (Kips) Available (Kips) Length (Kips) Available (Kips) Length (Kips) Bearing (Kips) Available (Kips) Length (Kips) Steel HP 8 X 36 3 3 5 5 5 5 5 12 12 7 36 36 13 4 4 5 5 5 5 36 36 13 53 53 13 64 64 13 45 45 15 67 67 15 82 82 15 53 53 17 79 79 17 88 98 17 286 286 15 7 19 19 7 24 24 7 30 30 10 37 37 10 44 44 10 44 44 13 54 54 13 66		Nominal	Seismic	Estimated		Nominal	Seismic	Estimated		Nominal	Seismic	Estimated
(Kips) (Kips) (FL) (Kips) (FL) 3 3 5 1 7 1 8 1 5 5 5 5 5 5 5 8 9 8 17 286 286 23 3 17 79 79 77 98 98 98 17 30 30 10 37 37 10 44 44 10 13 13 103 17 133 13 17 70 76 24 24 24 <th></th> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>						-				-		
Steel HP 8 X 36 Steel HP 12 X 53 Steel HP 12 X 53 Steel HP 14 X 73 3 3 5 1 1 7 5		-	Available	Length		-	Available	Length		Bearing	Available	Length
3 3 5 4 4 5 5 5 5 12 12 7 18 18 7 22 22 7 23 23 10 36 36 10 36 44 44 10 36 36 13 53 53 13 64 64 43 45 45 15 67 67 15 82 82 15 53 53 17 79 79 17 98 98 17 286 286 23 Steel HP 12 X 63 5 5 6 6 5 15 15 7 19 19 7 24 24 7 30 30 10 37 37 10 444 44 13 66 66 13 56 56 15 7 19 19 7 24 24 7 303 335 335 335 235 20 7		(Kips)	(Kips)	(Ft.)				(Ft.)		(Kips)	(Kips)	(Ft.)
12 12 7 18 18 7 22 22 7 23 23 10 36 36 13 36 36 10 44 44 10 36 36 13 53 53 13 64 64 64 13 45 45 15 67 67 15 82 82 15 58 53 17 79 79 17 98 98 17 286 286 23 Steel HP 12 X 63 55 5 6 6 5 30 30 10 37 37 10 44 44 10 44 44 13 54 54 13 66 6 13 56 56 15 70 70 15 85 85 15 56 6 6 7 33 31 10 37 37 10 44 44 10 55 55 55 55	Steel	HP 8 X 36			Steel	HP 12 X 53	3		Steel	HP 14 X 73	3	
23 23 10 36 36 10 44 44 10 36 36 13 53 53 13 64 64 13 45 45 15 67 67 15 82 82 82 15 286 286 23 17 79 79 17 98 98 17 286 286 23 10 418 418 23 578 578 24 24 30 30 10 37 37 10 44 44 10 44 44 13 54 54 13 66 66 13 56 56 15 70 70 15 85 85 15 335 335 28 28 497 497 24 705 705 26 56 56 15 6 5 5 5 10 103 103 17 335 335 28 55		3	3	5		4	4	5		5	5	5
23 23 10 36 36 10 44 44 10 36 36 13 53 53 13 64 64 64 13 45 45 15 67 67 15 82 82 82 15 286 286 23 418 418 23 578 575 578 575 575 103 103 103 103 103 103 103 103 103		12	12			18	18	7		22	22	7
36 36 13 53 53 13 64 64 13 45 45 15 15 67 67 15 82 82 15 53 53 17 79 79 17 98 98 98 17 286 286 23 Steel HP 12 X 63 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 15 15 7 19 19 7 24 24 7 30 30 10 37 37 10 44 44 10 45 5 5 15 66 6 13 85 85 15 15 15 16 16 17 83 83 17 103 103 17 335 335 28 28 20 20 7 25 25				10		36	36	10				10
45 45 15 67 67 15 82 82 15 58 53 17 79 79 17 98 98 17 286 286 23 418 418 23 578 578 578 24 4 4 5 5 5 5 6 6 5 30 30 10 37 37 10 444 44 10 44 44 13 54 54 13 66 66 13 56 56 15 70 70 15 85 85 15 56 56 15 70 70 15 85 85 15 56 56 15 83 83 17 103 103 17 335 335 22 497 497 24 705 705 26 56 56 15 5 5 5 13 66 6 5 <												
53 53 17 79 79 17 98 98 17 286 286 23 418 418 23 578 54 578 578 24 4 4 5 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 6 7 30 30 10 37 37 10 444 44 10 44 44 13 54 54 13 66 66 13 56 56 15 70 70 15 85 85 15 335 335 23 25 55 5 5 6 6 5 16 16 7 30 37 37 10 45 45 10 45 45 13												
286 286 23 418 418 23 578 578 24 4 4 5 5 5 5 6 6 5 15 15 7 19 19 7 24 24 7 30 30 10 37 37 10 44 44 13 56 56 15 70 70 15 85 85 15 66 66 17 83 83 17 103 103 17 355 335 28 497 497 24 705 705 26 Steel HP 10 X 57 Keel HP 12 X 74 Keel HP 14 X 102 705 705 25 25 7 31 31 10 55 55 13 67 67 13 59 59 15 76 5 5 106 67 7 13												
Steel HP 10 X 42 Steel HP 12 X 63 Steel HP 14 X 89 4 4 5 5 5 6 6 5 15 15 7 19 19 7 24 24 7 30 30 10 37 37 10 44 44 10 44 44 13 54 54 13 66 66 13 56 56 15 70 70 15 85 85 15 66 66 17 833 83 17 103 103 17 335 335 23 24 5 5 5 7 75 705 26 Steel HP 10 X 57 4 4 5 5 5 5 13 67 67 13 16 16 7 37 37 10 45 45 10 45 454 13												
4 4 5 5 5 5 6 6 5 15 15 7 19 19 7 24 24 7 30 30 10 37 37 10 44 44 10 44 44 13 54 54 13 66 66 13 56 56 15 70 70 15 85 85 15 66 66 17 83 83 17 103 103 17 335 335 23 497 497 24 705 705 5 56 16 7 20 20 7 25 25 7 31 31 10 37 37 10 45 45 10 454 454 25 5 5 13 67 67 13 59 59 5	Steel			20	Steel				Steel			
15 15 7 19 19 7 24 24 7 30 30 10 37 37 10 44 44 10 44 44 13 54 54 13 66 66 13 56 56 15 70 70 15 85 85 15 66 66 17 83 83 17 103 103 17 335 335 23 497 497 24 705 705 26 Steel HP 10 X 57 K Steel HP 12 X 74 5 5 5 10 103 103 17 31 31 10 37 37 10 45 45 10 454 455 13 55 55 13 67 67 13 59 59 15 76 72 72 15 87 87 15 70 70 17 589 589 589 26 810 <th></th> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>5</td>				5				5				5
30 30 10 37 37 10 44 44 10 44 44 13 54 54 13 66 66 13 56 56 15 70 70 15 85 85 15 66 66 17 83 83 17 103 103 17 335 335 23 497 497 24 705 705 26 Steel HP 10 X 57 5 5 5 5 6 6 5 7 31 31 10 37 37 10 45 45 10 45 45 13 55 55 13 67 67 13 59 59 15 76 5 5 106 106 17 454 454 25 589 58 26 7 7 5 70 <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
44 44 13 54 54 13 66 66 13 56 56 15 70 70 15 85 85 15 66 66 17 83 83 17 103 103 17 335 335 28 497 497 24 705 705 26 5eel HP 10 X 57 5 5 5 5 6 6 5 6 6 5 6 6 5 7 705 705 26 5 5 7 6 6 5 7 75 75 25 25 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 26 7 86 86 17 86 86 17 86 86 17 86 86 17 86 86 17 86 86 17 86 86 17 86 86 17												
56 56 15 70 70 15 85 85 15 66 66 17 83 83 17 103 103 17 335 335 23 497 497 24 705 705 26 Steel HP 10 X 57 Steel HP 12 X 74 X7 10 45 6 6 5 16 16 7 20 20 7 25 25 7 31 31 10 37 37 10 45 45 10 45 45 13 55 55 13 67 67 13 59 59 15 72 72 15 87 87 15 70 70 17 5 5 5 180 810 810 810 810 810 810 810 810 810 810 810 810 810 810												
66 66 17 83 83 17 103 103 17 335 335 23 497 497 24 705 705 26 4 4 5 5 5 5 5 6 6 5 16 16 7 20 20 7 45 45 13 59 59 15 72 72 15 87 87 15 70 70 17 86 86 17 106 106 17 454 454 25 5 5 5 13 67 67 13 59 59 15 72 72 15 87 810 810 27 54 70 70 17 7 5 26 810 27 54 26 5 5 7 7 7 5 26												
335 335 23 497 497 24 705 705 26 4 4 5 5 5 5 6 6 5 16 16 7 20 20 7 25 25 7 31 31 10 37 37 10 45 45 10 45 45 13 55 55 13 67 67 13 59 59 15 72 72 15 87 87 15 70 70 17 86 86 17 106 106 17 454 454 25 5 5 5 7 7 5 21 21 21 7 7 26 26 7 38 38 30 68 68 13 68 68 13 46 46 10 56 </td <th></th> <td></td>												
Steel HP 10 X 57 Steel HP 12 X 74 Steel HP 14 X 102 4 4 5 5 5 6 6 5 16 16 7 20 20 7 25 25 7 31 31 10 37 37 10 45 45 10 45 45 13 55 55 13 67 67 13 59 59 15 72 72 15 87 87 15 70 70 17 86 86 17 106 106 17 454 454 25 5 5 5 7 810 810 27 Steel HP 12 X 84 25 5 5 7 7 5 26 26 7 46 46 10 56 5 5 7 46 46 10 65 56 13 7 7 5 26 7 36 31 90 90 90 15												
4 4 5 5 5 5 6 6 5 16 16 7 20 20 7 25 25 7 31 31 10 37 37 10 45 45 13 59 59 15 5 55 13 67 67 13 70 70 17 86 86 17 106 106 17 454 454 25 5 5 5 5 7 810 810 27 54 454 25 5 5 5 5 5 7 7 5 70 70 17 86 86 17 106 106 17 454 454 25 5 5 5 7 7 5 21 21 21 7 7 26 26 7 38 38 10 68 68 13 68 68 13	Steel				Steel				Steel			20
16 16 7 20 20 7 25 25 7 31 31 10 37 37 10 45 45 10 45 45 13 55 55 13 67 67 13 59 59 15 72 72 15 87 87 15 70 70 17 86 86 17 106 106 17 454 454 25 589 589 26 810 810 27 Steel HP 12 X 84 7 7 5 5 7 7 5 21 21 21 7 26 26 7 38 38 10 46 46 10 56 56 13 68 68 13 68 68 13 68 68 13 90 90 15 89 89 17 111 111 17				5				5				5
31 31 10 37 37 10 45 45 10 45 45 13 55 55 13 67 67 13 59 59 15 72 72 15 87 87 15 70 70 17 86 86 17 106 106 17 454 454 25 589 589 26 810 810 27 Steel HP 12 X 84 5 5 5 7 7 5 26 26 26 26 26 7 810 810 27 26 26 7 38 38 10 46 46 10 68 68 13 68 68 13 68 68 13 68 68 13 68 68 13 68 68 13 68 68 13 68 68 13 68 68 13 68 68 13 68 68 13 68 68 13												
45 45 13 59 59 15 70 70 17 454 454 25 589 589 26 Steel HP 12 X 84 810 810 56 5 5 13 67 67 13 86 86 17 106 106 17 810 810 27 Steel HP 12 X 84 5 5 5 5 5 7 7 5 21 21 7 38 38 10 46 46 46 46 10 56 56 13 68 68 13 68 89 89 17 111 111 17												
59 59 15 72 72 15 87 87 15 70 70 17 86 86 17 106 106 17 454 454 25 589 589 26 810 810 27 Steel HP 12 X 84 7 5 5 7 7 5 21 21 21 7 26 26 7 38 38 10 46 46 10 56 56 13 68 68 13 68 68 13 90 90 15 89 89 17 111 111 17												
70 70 17 454 454 25 589 589 26 5 5 5 71 7 5 5 5 5 71 7 5 71 7 5 71 7 7 73 73 10 68 68 13 68 68 13 73 73 15 90 90 15 89 89 17												
454 454 25 589 589 26 810 810 27 Steel HP 12 X 84 5 5 5 7 7 5 21 21 7 26 26 7 7 38 38 10 46 46 10 56 56 13 68 68 13 68 68 13 90 90 15 89 89 17 111 111 17												
Steel HP 12 X 84 Steel HP 14 X 117 5 5 5 21 21 7 38 38 10 56 56 13 68 68 13 73 73 15 89 89 17												
5 5 7 7 5 21 21 7 26 26 7 38 38 10 46 46 10 56 56 13 68 68 13 73 73 15 90 90 15 89 89 17 111 111 17					Steel				Steel			
21 21 7 26 26 7 38 38 10 46 46 10 56 56 13 68 68 13 73 73 15 90 90 15 89 89 17 111 111 17								5				5
38 38 10 46 46 10 56 56 13 68 68 13 73 73 15 90 90 15 89 89 17 111 111 17												
56 56 13 68 68 13 73 73 15 90 90 15 89 89 17 111 111 17							38	10				10
73 73 15 90 90 15 89 89 17 111 111 17												
89 89 17 111 111 17	1								r			
						664	664			929	929	29
										1		
									Ť			
	1											
												•

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one — not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- · completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are *Not* Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.*

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geotechnical* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures*. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else*.

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ov EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be commiting negligent or intentional (fraudulent) misrepresentation.