

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification

by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the location	on of the source of the un	contaminated soil)					
Project Name:	FAP 21 (US 20)		Office Phone N	lumber, if avail	able:		
Physical Site Locati 25W 505 West Lak	on (address, including nu e Street	mber and street):					
City: Roselle	9	State: IL	Zip Code: <u>60172</u>				
County: DuPage	e	Township: Bloom	ningdale				
Lat/Long of approxi	mate center of site in dec	imal degrees (DD.o	ddddd) to five decimal	places (e.g., 4	0.67890, -	-90.12345):	
Latitude: <u>41.97339</u>	Longitude: - {	38.12281	_				
(Decimal Identify how the lat/	Degrees) (long data were determine	-Decimal Degrees)				
	Interpolation () Photo		Survey () Other				
IEPA Site Number(s	s), if assigned: BOL: _		BOW:	BOA:			
Approximate Start I	Date (mm/dd/yyyy): <u>N/A</u>		_ Approximate End D	ate (mm/dd/yy	yy): <u>N/A</u>	۱	
Estimated Volume	of debris (cu. Yd.): <u>15</u>		_				
		0					
II. Owner/Opera Site Owner	ator Information for	Source Site	Site Operator				
Name:	Illinois Department of	Transportation	Name:	Illinois Den	artment of	f Transporta	ation
Street Address:	•	st Center Court	Street Address:			est Center C	
PO Box:	201 We		PO Box:		201110		
City:	Schaumburg	State: IL	City:	Sch	– naumburg	State:	IL
	<u>`</u>		Zip Code:	60196-1096	Phone:	847-705-4	
Zip Code:	60196-1096 Phone:	847-705-4122	Contact:	00130-1030		Romiti-Johr	
Contact:		Romiti-Johnson		line D -			
Email, if available:	Irma Romiti-Johns	on@Illinois.gov	Email, if available:_	Irma Ro	miti-Jonns	son@illinois	.gov

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Uncontaminated Soil Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

LOCATION 3068V-10-B01 WAS SAMPLED ADJACENT TO SITES 3068V-9 AND 3068V-10. SEE TABLE 3c AND FIGURE 2 OF THE FINAL PRELIMINARY SITE INVESTIGATION REPORT.

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201 (g), 1100.205(a), 1100.610]:

EUROFINS/TEST AMERICA ANALYTICAL REPORT - TEST AMERICA JOB ID NUMBER: 500-207564-1.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I, <u>Savo Radulovic, L.P.G</u> (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Andrews Engineering	, Inc.		
Street Address:	420 Eisenhower Lane	North		
City:	Lombard	State: IL	Zip Code: <u>60148</u>	
Phone:	630-953-3332			
Savo Radulovic				
Printed Name:				
Licensed Professional Licensed Professional			Apr 18, 2022 Date:	
			SAVO RADULOVIC 196-001303 AE or L.P.G. Sept:	

Uncontaminated Soil Certification

ILLINO19

The following table summarizes the results of laboratory analysis of site soil samples. In reading the table,

- Only parameters reported at concentrations above the most stringent MAC are listed.
- Samples with the notation "No Contaminants of Concern Noted" were below the most stringent MAC.

The laboratory report for site soils follows this summary table.

Volatile Organic Compounds (mg/kg)	
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane	
1.1.2-Trichloroethane	
1,1-Dichloroethane	
1,1-Dichloroethene	
1,2-Dichloroethane	
1,2-Dichloropropane	
1,3-Dichloropropene	
2-Butanone (MEK)	
2-Hexanone (MBK)	
4-Methyl-2-pentanone (MIBK)	
Acetone	
Benzene	
Bromodichloromethane	
Bromoform	
Bromomethane	
Carbon disulfide	
Carbon Tetrachloride	
Chlorobenzene	
Chloroethane	
Chloroform	
Chloromethane	
cis-1,2-Dichloroethene	
cis-1,3-Dichloropropene	
Dibromochloromethane	
Ethylbenzene	
Methylene chloride	
Methyl-tert-butyl-ether (MTBE)	
Styrene	
Tetrachloroethene	
Toluene	
trans-1,2-Dichloroethene	
trans-1,3-Dichloropropene Trichloroethene	
Vinyl acetate	
Vinyl chloride	
Xylenes, total	
Semivolatile Organic Compounds (mg/kg)	
1,2,4-Trichlorobenzene	
1,2-Dichlorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
2,4,5-Trichlorophenol	
2,4,6-Trichlorophenol	
2,4-Dichlorophenol	
2,4-Dimethylphenol	
2,4-Dinitrophenol	
-,	

ANALYTICAL PARAMETERS

Semivolatile Organic Compounds (mg/k	g)
2,6-Dinitrotoluene	
2-Chloronaphthalene	
2-Chlorophenol	
2-Methylnaphthalene	
2-Methylphenol	
2-Nitroaniline	
2-Nitrophenol	
3,3´-Dichlorobenzidine	
3-Nitroaniline	
4,6-Dinitro-2-methylphenol	
4-Bromophenyl phenyl ether	
4-Chloro-3-methylphenol	
4-Chloroaniline	
4-Chlorophenyl phenyl ether	
4-Methylphenol	
4-Nitroaniline	
4-Nitrophenol	
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Bis(2-chloroethoxy)methane	
Bis(2-chloroethyl)ether	
Bis(2-chloroisopropyl)ether	
Bis(2-ethylhexyl)phthalate	
Butyl benzyl phthalate	
Carbazole	
Chrysene	
Dibenzo(a,h)anthracene	
Dibenzofuran	
Diethyl phthalate	
Dimethyl phthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno(1,2,3-cd)pyrene	
Isophorone	
Naphthalene	
Nitrobenzene	

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS
Semivolatile Organic Compounds (mg/kg)
N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
Pentachlorophenol
Phenanthrene
Phenol
Pyrene
Inorganic Compounds, Total (mg/kg)
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Copper
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Cyanide
TCLP/SPLP Inorganics (mg/L)
Antimony
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Cyanide

ANALYTICAL PARAMETERS

ISGS Site 3068V-10

Sample ID Sample Depth (ft)	3068V-10 0-3		Maximum Allowable Concentration						
Sample Date	10/27/2	021			³ Within a		⁵ Within a		
PID	0				Populated		Metropolitan		
Sample pH	8.4		¹ Most	² Outside a	non-Metropolitan	⁴ Within Chicago	Statistical		
Matrix	Soil		Stringent	Populated Area	Statistical Area	Corporate Limits	Area		
Semivolatile Organic Compounds (mg/kg)									
Benzo(a)pyrene	0.18	1,2	0.09	0.09	0.98	1.3	2.1		

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-207564-1 Client Project/Site: IDOT - AE7-040

For:

Andrews Engineering Inc. 3300 Ginger Creek Drive Springfield, Illinois 62711

Attn: Ms. Colleen Grey

Rillk

Authorized for release by: 11/17/2021 11:38:04 AM

Richard Wright, Senior Project Manager (708)746-0045 Richard.Wright@Eurofinset.com

LINKS Review your project results through Total Access

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client Sample ID: 3068V-10-B01 Date Collected: 10/27/21 09:10 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207564-1

Matrix: Solid Percent Solids: 84.7

nalyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Trichloroethane	<0.0020		0.0020	0.00068	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00065	mg/Kg	☆	10/28/21 18:00	11/03/21 17:07	1
I,1,2-Trichloroethane	<0.0020		0.0020	0.00087	mg/Kg	☆	10/28/21 18:00	11/03/21 17:07	1
I,1-Dichloroethane	<0.0020		0.0020	0.00069	mg/Kg	₽	10/28/21 18:00	11/03/21 17:07	1
1,1-Dichloroethene	<0.0020		0.0020	0.00070	mg/Kg	₽	10/28/21 18:00	11/03/21 17:07	1
1,2-Dichloroethane	<0.0051		0.0051	0.0016	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
1,2-Dichloropropane	<0.0020		0.0020	0.00052	mg/Kg	₽	10/28/21 18:00	11/03/21 17:07	1
1,3-Dichloropropene, Total	<0.0020		0.0020	0.00071	mg/Kg	₽	10/28/21 18:00	11/03/21 17:07	1
2-Butanone (MEK)	<0.0051		0.0051	0.0022	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
2-Hexanone	<0.0051		0.0051	0.0016	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
4-Methyl-2-pentanone (MIBK)	<0.0051		0.0051	0.0015	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
Acetone	<0.020		0.020	0.0088	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
Benzene	<0.0020		0.0020	0.00052	mg/Kg	₽	10/28/21 18:00	11/03/21 17:07	1
Bromodichloromethane	<0.0020		0.0020	0.00041	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
Bromoform	<0.0020		0.0020	0.00059	mg/Kg	₽	10/28/21 18:00	11/03/21 17:07	1
Bromomethane	<0.0051	*+	0.0051	0.0019		¢	10/28/21 18:00	11/03/21 17:07	1
Carbon disulfide	<0.0051		0.0051	0.0011	mg/Kg	₽	10/28/21 18:00	11/03/21 17:07	1
Carbon tetrachloride	<0.0020		0.0020	0.00059	mg/Kg	₽	10/28/21 18:00	11/03/21 17:07	1
Chlorobenzene	<0.0020		0.0020	0.00075	0 0	¢	10/28/21 18:00	11/03/21 17:07	1
Chloroethane	<0.0051	*+	0.0051	0.0015	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
Chloroform	<0.0020		0.0020	0.00070		¢	10/28/21 18:00	11/03/21 17:07	1
Chloromethane	<0.0051		0.0051	0.0020		¢.	10/28/21 18:00	11/03/21 17:07	1
cis-1,2-Dichloroethene	<0.0020		0.0020	0.00057		¢	10/28/21 18:00	11/03/21 17:07	1
cis-1,3-Dichloropropene	<0.0020		0.0020	0.00061	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
Dibromochloromethane	<0.0020		0.0020	0.00066		¢	10/28/21 18:00	11/03/21 17:07	1
Ethylbenzene	<0.0020		0.0020	0.00097		¢	10/28/21 18:00	11/03/21 17:07	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00059		¢	10/28/21 18:00	11/03/21 17:07	1
Methylene Chloride	<0.0051		0.0051	0.0020		¢	10/28/21 18:00	11/03/21 17:07	1
Styrene	<0.0020		0.0020	0.00061		¢	10/28/21 18:00	11/03/21 17:07	1
Tetrachloroethene	<0.0020		0.0020	0.00069	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
Foluene	<0.0020		0.0020	0.00051	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
rans-1,2-Dichloroethene	<0.0020		0.0020	0.00090	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
rans-1,3-Dichloropropene	<0.0020		0.0020	0.00071	mg/Kg	¢	10/28/21 18:00	11/03/21 17:07	1
Trichloroethene	<0.0020		0.0020	0.00068		¢	10/28/21 18:00	11/03/21 17:07	1
/inyl chloride	<0.0020		0.0020	0.00090		¢	10/28/21 18:00	11/03/21 17:07	1
Kylenes, Total	<0.0040		0.0040	0.00065		¢	10/28/21 18:00	11/03/21 17:07	1
Surrogate		Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		70 - 134				10/28/21 18:00	11/03/21 17:07	1
I-Bromofluorobenzene (Surr)	94		75 - 131				10/28/21 18:00	11/03/21 17:07	1
Dibromofluoromethane	99		75 - 126				10/28/21 18:00	11/03/21 17:07	1
oluene-d8 (Surr)	97		75 - 124				10/28/21 18:00	11/03/21 17:07	1
Method: 8270D - Semivolat	-								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.19		0.19		mg/Kg		11/01/21 20:00	11/10/21 17:10	1
I,2-Dichlorobenzene	<0.19		0.19		mg/Kg	¢		11/10/21 17:10	1
1,3-Dichlorobenzene	<0.19		0.19		mg/Kg			11/10/21 17:10	1
1,4-Dichlorobenzene	<0.19		0.19		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	¢	11/01/21 20.00	11/10/21 17:10	1

Client Sample ID: 3068V-10-B01 Date Collected: 10/27/21 09:10 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207564-1

Matrix: Solid Percent Solids: 84.7

Method: 8270D - Semivolat				•					
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac	5
2,4,5-Trichlorophenol	<0.37	0.37		mg/Kg	₽	11/01/21 20:00		1	
2,4,6-Trichlorophenol	<0.37	0.37		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	6
2,4-Dichlorophenol	<0.37	0.37		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
2,4-Dimethylphenol	<0.37	0.37	0.14	mg/Kg	☆	11/01/21 20:00	11/10/21 17:10	1	7
2,4-Dinitrophenol	<0.76	0.76	0.66	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
2,4-Dinitrotoluene	<0.19	0.19		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	8
2,6-Dinitrotoluene	<0.19	0.19		mg/Kg	☆	11/01/21 20:00	11/10/21 17:10	1	
2-Chloronaphthalene	<0.19	0.19	0.042	mg/Kg	₽	11/01/21 20:00	11/10/21 17:10	1	Q
2-Chlorophenol	<0.19	0.19	0.064	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
2-Methylnaphthalene	<0.076	0.076	0.0069	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
2-Methylphenol	<0.19	0.19	0.060	mg/Kg	☆	11/01/21 20:00	11/10/21 17:10	1	IU
2-Nitroaniline	<0.19	0.19	0.051	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	4.4
2-Nitrophenol	<0.37	0.37	0.089	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	11
3 & 4 Methylphenol	<0.19	0.19	0.063	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
3,3'-Dichlorobenzidine	<0.19	0.19	0.053	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	12
3-Nitroaniline	<0.37	0.37	0.12	mg/Kg	☆	11/01/21 20:00	11/10/21 17:10	1	
4,6-Dinitro-2-methylphenol	<0.76	0.76	0.30	mg/Kg		11/01/21 20:00	11/10/21 17:10	1	13
4-Bromophenyl phenyl ether	<0.19	0.19	0.050	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
4-Chloro-3-methylphenol	<0.37	0.37	0.13	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	14
4-Chloroaniline	<0.76	0.76	0.18	mg/Kg		11/01/21 20:00	11/10/21 17:10	1	
4-Chlorophenyl phenyl ether	<0.19	0.19	0.044	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	15
4-Nitroaniline	<0.37	0.37	0.16	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
4-Nitrophenol	<0.76	0.76	0.36	mg/Kg		11/01/21 20:00	11/10/21 17:10	1	
Acenaphthene	0.0076 J	0.037	0.0068		¢	11/01/21 20:00	11/10/21 17:10	1	
Acenaphthylene	<0.037	0.037	0.0050		¢	11/01/21 20:00	11/10/21 17:10	1	
Anthracene	0.023 J	0.037	0.0063	mg/Kg		11/01/21 20:00	11/10/21 17:10	1	
Benzo[a]anthracene	0.14	0.037	0.0051	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
Benzo[a]pyrene	0.18 *3	0.037	0.0073	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
Benzo[b]fluoranthene	0.32 *3	0.037	0.0081	7 7		11/01/21 20:00	11/10/21 17:10	1	
Benzo[g,h,i]perylene	0.10 *3	0.037		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
Benzo[k]fluoranthene	0.13 *3	0.037		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
Bis(2-chloroethoxy)methane	<0.19	0.19		mg/Kg		11/01/21 20:00	11/10/21 17:10	1	
Bis(2-chloroethyl)ether	<0.19	0.19	0.056	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
Bis(2-ethylhexyl) phthalate	<0.19	0.19		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
Butyl benzyl phthalate	<0.19	0.19		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
Carbazole	<0.19	0.19		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
Chrysene	0.16	0.037		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1	
Dibenz(a,h)anthracene	0.019 J*3	0.037	0.0073			11/01/21 20:00		1	
Dibenzofuran	<0.19	0.19		mg/Kg	¢		11/10/21 17:10	1	
Diethyl phthalate	<0.19	0.19		mg/Kg	¢		11/10/21 17:10	1	
Dimethyl phthalate	<0.19	0.19		mg/Kg		11/01/21 20:00		1	
Di-n-butyl phthalate	<0.19	0.19		mg/Kg	¢		11/10/21 17:10	1	
Di-n-octyl phthalate	<0.19	0.19		mg/Kg	¢		11/10/21 17:10	1	
Fluoranthene	0.26	0.037	0.0070		 ф	11/01/21 20:00		1	
Fluorene	0.0069 J	0.037	0.0053		¢		11/10/21 17:10	1	
Hexachlorobenzene	<0.076	0.076	0.0087		¢		11/10/21 17:10	1	
Hexachlorobutadiene	<0.19	0.19		mg/Kg			11/10/21 17:10		
Hexachlorocyclopentadiene	<0.76	0.76		mg/Kg	¢	11/01/21 20:00		1	
Hexachloroethane	<0.19	0.19		mg/Kg	¢		11/10/21 17:10	1	
	-0.10	0.13	0.007	inging	74	11/01/21 20.00	11102111.10	I	

Client Sample Results

Chromium

Iron

Client Sample ID: 3068V-10-B01 Date Collected: 10/27/21 09:10 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207564-1

Matrix: Solid Percent Solids: 84.7

5

7

Method: 8270D - Semivolatile Analyte	-	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	0.099	*3	0.037	0.0098	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1
Isophorone	<0.19		0.19	0.042	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1
Naphthalene	<0.037		0.037	0.0058	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1
Nitrobenzene	<0.037		0.037	0.0094	mg/Kg	₿	11/01/21 20:00	11/10/21 17:10	1
N-Nitrosodi-n-propylamine	<0.076		0.076	0.046	mg/Kg	☆	11/01/21 20:00	11/10/21 17:10	1
N-Nitrosodiphenylamine	<0.19		0.19		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1
Pentachlorophenol	<0.76		0.76		mg/Kg		11/01/21 20:00	11/10/21 17:10	1
Phenanthrene	0.12		0.037	0.0053	mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1
Phenol	<0.19		0.19		mg/Kg	¢	11/01/21 20:00	11/10/21 17:10	1
Pyrene	0.37		0.037	0.0075	0 0	¢	11/01/21 20:00	11/10/21 17:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	52		31 - 143				11/01/21 20:00	11/10/21 17:10	1
2-Fluorobiphenyl	66		43 - 145				11/01/21 20:00	11/10/21 17:10	1
2-Fluorophenol	86		31 - 166				11/01/21 20:00	11/10/21 17:10	1
Nitrobenzene-d5 (Surr)	55		37 - 147				11/01/21 20:00	11/10/21 17:10	
Phenol-d5	71		30 - 153				11/01/21 20:00	11/10/21 17:10	1
Terphenyl-d14 (Surr)	109		42 - 157					11/10/21 17:10	1
Method: 6010B - Metals (ICP)		Qualifier	RL	MDL	Unit	D	Bronarad	Apolyzod	Dil Fac
Analyte			KL		mg/Kg		Prepared 11/08/21 11:07	Analyzed 11/09/21 17:22	1
Antimony	0.65	J				¢ 			-
Arsenic	9.1		0.57		mg/Kg	¢	11/08/21 11:07	11/09/21 17:22	1
Barium	60		0.57		mg/Kg	¢	11/08/21 11:07	11/09/21 17:22	1
Beryllium	0.77	_	0.23		mg/Kg	¢		11/09/21 17:22	1
Boron	6.6		2.8		mg/Kg	¢	11/08/21 11:07	11/09/21 17:22	1
Cadmium	0.19	В	0.11		mg/Kg	₩	11/08/21 11:07	11/09/21 17:22	1
Calcium	47000		57		mg/Kg	¢		11/10/21 13:48	5
Chromium	15		0.57		mg/Kg	¢	11/08/21 11:07	11/09/21 17:22	1
Cobalt	12		0.28	0.074		¢	11/08/21 11:07	11/09/21 17:22	1
Copper	28		0.57		mg/Kg	¢	11/08/21 11:07	11/09/21 17:22	1
Iron	19000		11		mg/Kg	¢	11/08/21 11:07	11/09/21 17:22	1
Lead	36		0.28		mg/Kg	\$	11/08/21 11:07	11/09/21 17:22	1
Magnesium	23000		5.7		mg/Kg	¢	11/08/21 11:07	11/09/21 17:22	1
Manganese	520	В	0.57	0.082	mg/Kg	¢	11/08/21 11:07	11/09/21 17:22	1
Nickel	28		0.57	0.17	mg/Kg	☆	11/08/21 11:07	11/09/21 17:22	1
Potassium	1500		28	10	mg/Kg	☆	11/08/21 11:07	11/09/21 17:22	1
Selenium	0.57		0.57		mg/Kg	¢	11/08/21 11:07	11/09/21 17:22	1
Silver	0.25	J	0.28	0.073	mg/Kg	☆	11/08/21 11:07	11/09/21 17:22	1
			57	8.4	mg/Kg	₿	11/08/21 11:07	11/09/21 17:22	1
Sodium	470		0.57	0.28	mg/Kg	¢	11/08/21 11:07	11/09/21 17:22	1
	470 0.32	J	0.57						
Thallium		J	0.57		mg/Kg	☆	11/08/21 11:07	11/09/21 17:22	1
Thallium Vanadium	0.32	J		0.067		¢			1 1
Thallium Vanadium Zinc	0.32 21 89	J	0.28	0.067	mg/Kg			11/09/21 17:22	
Thallium Vanadium Zinc Method: 6010B - Metals (ICP)	0.32 21 89) - TCLP	J Qualifier	0.28	0.067	mg/Kg mg/Kg			11/09/21 17:22	
Sodium Thallium Vanadium Zinc Method: 6010B - Metals (ICP) Analyte Arsenic	0.32 21 89) - TCLP		0.28 1.1	0.067 0.50	mg/Kg mg/Kg Unit	¢	11/08/21 11:07	11/09/21 17:22 11/09/21 17:22	1

0.40	0.20 mg/L	11/03/21 07:52	11/03/21 19:13	1

11/03/21 07:52 11/03/21 19:13

Eurofins TestAmerica, Chicago

0.025

0.010 mg/L

<0.025

< 0.40

1

Client Sample Results

Client Sample ID: 3068V-10-B01 Date Collected: 10/27/21 09:10 Date Received: 10/28/21 10:50

Job	ID:	500-207564-

Lab Sample ID: 500-207564-1

Matrix: Solid Percent Solids: 84.7

5

7

Method: 6010B - Metals (ICP) - TCLP (Co Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead <0.0075		0.0075	0.0075	mg/L		11/03/21 07:52	11/03/21 19:13	1
Manganese 0.49		0.025	0.010	mg/L		11/03/21 07:52	11/03/21 19:13	1
Nickel <0.025		0.025	0.010	mg/L		11/03/21 07:52	11/03/21 19:13	1
- Method: 6010B - Metals (ICP) - SPLP Eas	t							
	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic 0.070		0.050	0.010	mg/L		11/03/21 07:55	11/04/21 14:25	1
Barium 0.50		0.50	0.050	mg/L		11/03/21 07:55	11/04/21 14:25	1
Beryllium 0.0068		0.0040	0.0040	mg/L		11/03/21 07:55	11/04/21 14:25	1
Boron 0.13		0.10	0.050	mg/L		11/03/21 07:55	11/04/21 14:25	1
Cadmium <0.0050		0.0050	0.0020	mg/L		11/03/21 07:55	11/04/21 14:25	1
Calcium 27		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 14:25	1
Chromium 0.13		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:25	1
Cobalt 0.044		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:25	1
Iron 160		0.40	0.20	mg/L		11/03/21 07:55	11/04/21 14:25	1
Lead 0.14		0.0075	0.0075	mg/L		11/03/21 07:55	11/04/21 14:25	1
Manganese 0.97		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:25	1
Nickel 0.16		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:25	1
Potassium 22		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 14:25	1
Selenium <0.050		0.050	0.020	mg/L		11/03/21 07:55	11/04/21 14:25	1
Silver <0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:25	1
Zinc 0.59		0.50	0.020	mg/L		11/03/21 07:55	11/04/21 14:25	1
Method: 6020A - Metals (ICP/MS) - TCLP								
	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium <0.0020		0.0020	0.0020	mg/L		11/03/21 07:52	11/16/21 15:29	1
- Method: 6020A - Metals (ICP/MS) - SPLP	Fast							
	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony <0.0060	·	0.0060	0.0060	mg/L		11/03/21 07:55	11/15/21 20:30	1
Thallium 0.0050		0.0020	0.0020	0		11/03/21 07:55	11/15/21 20:30	1
Method: 7470A - Mercury (CVAA) - SPLP	Fact							
	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury <0.00020		0.00020	0.00020	mg/L		11/03/21 10:25	11/04/21 11:04	1
Method: 7471B - Mercury (CVAA)								
	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Mercury 0.027		0.019	0.0063		 \$	-	11/08/21 07:22	1
General Chemistry								
	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total <0.26		0.26		mg/Kg		11/09/21 14:23	11/09/21 16:48	1
., ,		0.20	00					

Qualifiore

Qualifiers		3
GC/MS VOA		
Qualifier *+	Qualifier Description	4
" +	LCS and/or LCSD is outside acceptance limits, high biased.	
GC/MS Semi	i VOA	5
Qualifier	Qualifier Description	
*3	ISTD response or retention time outside acceptable limits.	6
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	8
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	

Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin)

LOD

MPN Most Probable Number

MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent

POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive

Quality Control QC RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count Client: Andrews Engineering Inc. Project/Site: IDOT - AE7-040

5

13

Laboratory: Eurofins TestAmerica, Chicago Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program **Identification Number Expiration Date** Illinois NELAP IL00035 04-29-22 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Analyte Matrix 6020A 3010A Solid Antimony 6020A 3010A Solid Thallium 7470A 7470A Solid Mercury 8260B 5035 Solid 1,3-Dichloropropene, Total Moisture Solid Percent Moisture Solid Percent Solids Moisture

CHAIN OF CUSTODY RECORD

Client Conta	oct	Laborato	ŷ						Proje	ct Nar	ne	A27	_ 0	40 P	١	500	0-20756	4 COC	COC No	1	
Andrews Eng		Lab Test	America -	Chicago)]											of	
3300 Ginger		Address	2417 Bon	d Street					Proje	ct No	P	73/0	201	184	+ - 0	06/	040	A	Lab Job No		4
Springfield, Il	_ 62711		University	· · · · · · · · · · · · · · · · · · ·	6048	34			1									•	500	KIL	
217-787-2334		Phone	708-534-5				_		TAT	X ¹⁵	BD	\Box^{10}	BD	51	BD	2 B	D	Other	201	564	5
Contact Col	Deen Grey Dandrews-eng com	Contact	Dick Wrig						<u> </u>										Sample Te	mp	
	-	email <u>ri</u> c	chard wrig	ht@testa	amer	caind	c com]	Sam	oler:		Kh		ei -					/	,4	6
Special Instru											A	VALYS	SES						Matrix Key	<i>r</i> :	
See Table 2 fo	or complete parameter lists and mi	nimum repor	ting limits									<u>s</u>				Ę			w w	ater	
	A metal (mg/kg) result exceeds the 3), run TCLP for that specific RC		y Character	istics								Metals				rizatio			S S SL S		8
** If SPLP resu	ult exceeds Class I Standard, run	TCLP for tha	t specific pa	irameter			MTBE		S		letals	SPLP/** TCLP	ide			Characterization			L Le DW D	eachate rinking Water	9
*** If total cyar	nide exceeds MAC, run ASTM D3			nde	VOCS	SVOCs	00	As	Pesticides	Bs	Total Metals	LP/**	Cyanide		Solids	ste Ch			OL 0 0 0		
Lab ID	Sample ID	Sample Date	Sample Time	Matrix	2	SV	BETX	PNAs	Pee	PCBs	* T	SPI	***	Hd	%	Waste			Со	nments	
	3068V-10-BOI	10/27	0910	S	ĸ	X					Х	X	Х	Х	Χ						
l																					
																					14
······	110 ²																				
									\wedge												
Relinquished I	by Antri			Date/Tim				Rece	ived by	las	SZ	re	5						Date/Time	-219:454	1
Relinquished	2 ⁴⁶ 0-		-	Date/Tim		19	:45		ived by		les	/							Date/Time	0945	
Relinquished.	by PiNed			Date/Tim	e /	05	σ	Rece	TOR	K	B	M	2¢	/				10/2	Pate/Time	1050	
Andr	rows Engineering Inc			LE FE E			ade 3	O bf	310	4									<u> </u>	11/17/2021	

Page 30 of 31

L NDOTAE7 PTB 184-006/Subcontractors/COC Templates/AE7 COC Template (TAL) //17/2021

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification

by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

the source of the un-	contaminated soil)					
FAP 21 (US 20)		Office Phone N	umber, if availa	able:		
•	,	ad				
	State: IL	Zip Code: <u>60172</u>				
	Township: Bloomi	ngdale				
center of site in deci	mal degrees (DD.d	dddd) to five decimal	places (e.g., 4	0.67890, •	-90.12345):	
Longitude: - 8	8.12235					
, ,	0,					
polation 🔿 Photo	Interpolation ()	Survey 🔿 Other				
ssigned: BOL: _		BOW:	BOA:			
mm/dd/yyyy): <u>N/A</u>		Approximate End Da	ate (mm/dd/yy)	yy): <u>N/A</u>	L	
oris (cu. Yd.): <u>57</u>						
Information for	Source Site					
		·				
•	·		Illinois Dep			
201 Wes	st Center Court			201 We	st Center C	ourt
		PO Box:		_		
Schaumburg	State: IL	City:	Sch	aumburg	State:	IL
96-1096 Phone:	847-705-4122	Zip Code:	60196-1096	Phone:	847-705-4	122
Irma F	Romiti-Johnson	Contact:		Irma	Romiti-John	ison
Irma Romiti-Johnso	on@illinois.gov	Email, if available:	Irma Ro	miti-Johns	on@illinois.	.gov
	FAP 21 (US 20) ddress, including nur Vest Lake Street and Vest Lake Street and Center of site in deci Longitude: Signed: BOL: mm/dd/yyyy): N/A oris (cu. Yd.): 57 Information for inois Department of 201 Wes Schaumburg 96-1096 Phone: Irma F	ddress, including number and street): Vest Lake Street and 6N 650 Thorn Roa State: IL	FAP 21 (US 20) Office Phone N ddress, including number and street): Vest Lake Street and 6N 650 Thorn Road	FAP 21 (US 20) Office Phone Number, if avail ddress, including number and street): Vest Lake Street and 6N 650 Thorn Road	FAP 21 (US 20) Office Phone Number, if available: ddress, including number and street): Vest Lake Street and 6N 650 Thorn Road	FAP 21 (US 20) Office Phone Number, if available: Iddress, including number and street): Vest Lake Street and 6N 650 Thorn Road

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Uncontaminated Soil Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

LOCATION 3068V-11-B01 WAS SAMPLED ADJACENT TO SITE 3068V-11. SEE TABLE 3d AND FIGURE 2 OF THE FINAL PRELIMINARY SITE INVESTIGATION REPORT.

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201 (g), 1100.205(a), 1100.610]:

EUROFINS/TEST AMERICA ANALYTICAL REPORT - TEST AMERICA JOB ID NUMBER: 500-207566-1.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I, <u>Savo Radulovic, L.P.G</u> (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Andrews Engineering,	Inc.		
Street Address:	420 Eisenhower Lane	North		
City:	Lombard	State: IL	Zip Code: <u>60148</u>	
Phone:	630-953-3332			
Savo Radulovic				
Printed Name:				
Licensed Professional E			Apr 18, 2022 Date:	
Licensed Professional G	Seologist Signature:			
			SAVO RADULOVIC 196-001303 P.E or L.P.G. Seat:	

Uncontaminated Soil Certification

ILLING 19

The following table summarizes the results of laboratory analysis of site soil samples. In reading the table,

- Only parameters reported at concentrations above the most stringent MAC are listed.
- Samples with the notation "No Contaminants of Concern Noted" were below the most stringent MAC.

The laboratory report for site soils follows this summary table.

Volatile Organic Compounds (mg/kg)	
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane	
1.1.2-Trichloroethane	
1,1-Dichloroethane	
1,1-Dichloroethene	
1,2-Dichloroethane	
1,2-Dichloropropane	
1,3-Dichloropropene	
2-Butanone (MEK)	
2-Hexanone (MBK)	
4-Methyl-2-pentanone (MIBK)	
Acetone	
Benzene	
Bromodichloromethane	
Bromoform	
Bromomethane	
Carbon disulfide	
Carbon Tetrachloride	
Chlorobenzene	
Chloroethane	
Chloroform	
Chloromethane	
cis-1,2-Dichloroethene	
cis-1,3-Dichloropropene	
Dibromochloromethane	
Ethylbenzene	
Methylene chloride	
Methyl-tert-butyl-ether (MTBE)	
Styrene	
Tetrachloroethene	
Toluene	
trans-1,2-Dichloroethene	
trans-1,3-Dichloropropene Trichloroethene	
Vinyl acetate	
Vinyl chloride	
Xylenes, total	
Semivolatile Organic Compounds (mg/kg)	
1,2,4-Trichlorobenzene	
1,2-Dichlorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
2,4,5-Trichlorophenol	
2,4,6-Trichlorophenol	
2,4-Dichlorophenol	
2,4-Dimethylphenol	
2,4-Dinitrophenol	
-,	

ANALYTICAL PARAMETERS

Semivolatile Organic Compounds (mg/k	g)
2,6-Dinitrotoluene	
2-Chloronaphthalene	
2-Chlorophenol	
2-Methylnaphthalene	
2-Methylphenol	
2-Nitroaniline	
2-Nitrophenol	
3,3´-Dichlorobenzidine	
3-Nitroaniline	
4,6-Dinitro-2-methylphenol	
4-Bromophenyl phenyl ether	
4-Chloro-3-methylphenol	
4-Chloroaniline	
4-Chlorophenyl phenyl ether	
4-Methylphenol	
4-Nitroaniline	
4-Nitrophenol	
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Bis(2-chloroethoxy)methane	
Bis(2-chloroethyl)ether	
Bis(2-chloroisopropyl)ether	
Bis(2-ethylhexyl)phthalate	
Butyl benzyl phthalate	
Carbazole	
Chrysene	
Dibenzo(a,h)anthracene	
Dibenzofuran	
Diethyl phthalate	
Dimethyl phthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno(1,2,3-cd)pyrene	
Isophorone	
Naphthalene	
Nitrobenzene	

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS
Semivolatile Organic Compounds (mg/kg)
N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
Pentachlorophenol
Phenanthrene
Phenol
Pyrene
Inorganic Compounds, Total (mg/kg)
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Copper
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Cyanide
TCLP/SPLP Inorganics (mg/L)
Antimony
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Cyanide

ANALYTICAL PARAMETERS

ISGS Site 3068V-11

Sample ID	3068V-11-B01		Maximum Allowable Concentration										
Sample Depth (ft)	0-3	Maximum Anowable Concentration											
Sample Date	10/27/2021			³ Within a		⁵ Within a							
PID	0			Populated		Metropolitan							
Sample pH	7.8	¹ Most	² Outside a	non-Metropolitan	⁴ Within Chicago	Statistical							
Matrix	Soil	Stringent	Populated Area	Statistical Area	Corporate Limits	Area							
No Contaminants of Con	Io Contaminants of Concern Noted.												

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-207566-1 Client Project/Site: IDOT - AE7-040

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Andrews Engineering Inc. 3300 Ginger Creek Drive Springfield, Illinois 62711

Attn: Ms. Colleen Grey

Rillk

Authorized for release by: 11/17/2021 11:39:56 AM

Richard Wright, Senior Project Manager (708)746-0045 Richard.Wright@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client Sample ID: 10638-44-V04 Date Cxlledteo: 40@7@4 0/ :00 Date Redeiveo: 40@3@4 40:50

Lab Sample ID: 500-207566-4 BatMr: Sxlio

9 eMient Sxlios: 34P.

nalyte	Result	QualifieM	RL	BDL	Unit	D	9 Mepa Meo	Analyzeo	Dil Fad
1,1-Trichloroethane	<0.0023		0.0023	0.00077	mg/Kg		10/28/21 18:00	11/03/21 17:33	1
,1,2,2-Tetrachloroethane	<0.0023		0.0023	0.00073		¢	10/28/21 18:00	11/03/21 17:33	1
I,1,2-Trichloroethane	< 0.0023		0.0023	0.00098	0 0	¢	10/28/21 18:00	11/03/21 17:33	1
,1-Dichloroethane	<0.0023		0.0023	0.00078		 Ф	10/28/21 18:00	11/03/21 17:33	1
I,1-Dichloroethene	< 0.0023		0.0023	0.00079	0 0	¢			1
1,2-Dichloroethane	< 0.0057		0.0057	0.0018	0 0	÷			1
1,2-Dichloropropane	< 0.0023		0.0023	0.00059					
1,3-Dichloropropene, Total	< 0.0023		0.0023	0.00080		¢			1
2-Butanone (MEK)	< 0.0057		0.0057	0.0025		¢			1
2-Hexanone	<0.0057		0.0057	0.0023					1
4-Methyl-2-pentanone (MIBK)	<0.0057		0.0057	0.0017		÷.			1
Acetone	<0.023		0.0037			÷			1
Benzene	<0.023		0.023	0.00058					1
Bromodichloromethane	< 0.0023		0.0023			÷			1
Bromotorm	< 0.0023		0.0023	0.00047	0 0				1
						÷ · · · · · .			
Bromomethane Corbon diquifido	< 0.0057		0.0057	0.0022		¢ ×			1
Carbon disulfide	< 0.0057		0.0057	0.0012		Å.			1
Carbon tetrachloride	< 0.0023		0.0023	0.00066		¢			1
Chlorobenzene	< 0.0023		0.0023	0.00085	0 0	₩			1
Chloroethane	<0.0057		0.0057	0.0017	0 0	\$			1
Chloroform	<0.0023		0.0023	0.00079		¢			1
Chloromethane	<0.0057		0.0057	0.0023	0 0	¢			1
cis-1,2-Dichloroethene	< 0.0023		0.0023	0.00064	0 0	₽			1
cis-1,3-Dichloropropene	<0.0023		0.0023	0.00069		¢			1
Dibromochloromethane	<0.0023		0.0023	0.00075		¢			1
Ethylbenzene	<0.0023		0.0023		0 0	¢	10/28/21 18:00	11/03/21 17:33	1
Methyl tert-butyl ether	<0.0023		0.0023	0.00067	mg/Kg	¢	10/28/21 18:00	11/03/21 17:33	1
Methylene Chloride	<0.0057		0.0057	0.0023	mg/Kg	¢	10/28/21 18:00	11/03/21 17:33	1
Styrene	<0.0023		0.0023	0.00069	mg/Kg	¢	10/28/21 18:00	11/03/21 17:33	1
Tetrachloroethene	<0.0023		0.0023	0.00078	mg/Kg	₽	10/28/21 18:00	11/03/21 17:33	1
Toluene	<0.0023		0.0023	0.00058	mg/Kg	¢	10/28/21 18:00	11/03/21 17:33	1
trans-1,2-Dichloroethene	<0.0023		0.0023	0.0010		¢	10/28/21 18:00	11/03/21 17:33	1
trans-1,3-Dichloropropene	<0.0023		0.0023	0.00080		¢	10/28/21 18:00	11/03/21 17:33	1
Trichloroethene	<0.0023		0.0023	0.00077		¢	10/28/21 18:00	11/03/21 17:33	1
Vinyl chloride	<0.0023		0.0023	0.0010		¢			1
Xylenes, Total	<0.0046		0.0046	0.00073		¢			1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		30 - 174				10/28/21 18:00	11/07/21 13:77	1
4-Bromofluorobenzene (Surr)	92		35 - 171				10/28/21 18:00	11/07/21 13:77	1
Dibromofluoromethane	100		35 - 126				10/28/21 18:00	11/07/21 13:77	1
Toluene-d8 (Surr)	96		35 - 124				10/28/21 18:00	11/07/21 13:77	1
Bethxo: 3270D - Semivxlati	ile OMganid Cx	(mpxunos /	(GC&BS)						
Analyte	Result	QualifieM	RL	BDL		D	•	Analyzeo	Dil Fad
1,2,4-Trichlorobenzene	<0.20		0.20	0.043	mg/Kg	\$	11/01/21 20:00	11/10/21 17:30	1
1,2-Dichlorobenzene	<0.20		0.20	0.048	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
									1
1,4-Dichlorobenzene	<0.20		0.20	0.051	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1

Client Sample ID: 10638-44-V04 Date Cxlledteo: 40@7@4 0/ :00 Date Redeiveo: 40@3@4 40:50

Lab Sample ID: 500-207566-4 BatNr: Sxlio

9eMdent Sxlios: 34P.

5

7

Analyte		QualifieM	RL	BDL		<u> </u>	9 Mepa Meo	Analyzeo	Dil Fad
2,4,5-Trichlorophenol	<0.40		0.40		mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
2,4,6-Trichlorophenol	<0.40		0.40		mg/Kg	÷.	11/01/21 20:00	11/10/21 17:30	1
2,4-Dichlorophenol	<0.40		0.40	0.095	mg/Kg	Ϋ́	11/01/21 20:00	11/10/21 17:30	1
2,4-Dimethylphenol	<0.40		0.40		mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
2,4-Dinitrophenol	<0.81		0.81		mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
2,4-Dinitrotoluene	<0.20		0.20	0.064	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
2,6-Dinitrotoluene	<0.20		0.20	0.079	mg/Kg	☆	11/01/21 20:00	11/10/21 17:30	1
2-Chloronaphthalene	<0.20		0.20	0.044	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
2-Chlorophenol	<0.20		0.20	0.068	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
2-Methylnaphthalene	<0.081		0.081	0.0074	mg/Kg	☆	11/01/21 20:00	11/10/21 17:30	1
2-Methylphenol	<0.20		0.20	0.064	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
2-Nitroaniline	<0.20		0.20	0.054	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
2-Nitrophenol	<0.40		0.40	0.095	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
3 & 4 Methylphenol	<0.20		0.20	0.067	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
3,3'-Dichlorobenzidine	<0.20		0.20	0.056	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
3-Nitroaniline	<0.40		0.40	0.12	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
4,6-Dinitro-2-methylphenol	<0.81		0.81	0.32	mg/Kg		11/01/21 20:00	11/10/21 17:30	1
4-Bromophenyl phenyl ether	<0.20		0.20		mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
4-Chloro-3-methylphenol	<0.40		0.40		mg/Kg	÷.	11/01/21 20:00	11/10/21 17:30	1
4-Chloroaniline	<0.81		0.81		mg/Kg			11/10/21 17:30	1
4-Chlorophenyl phenyl ether	<0.20		0.20		mg/Kg	÷		11/10/21 17:30	1
4-Nitroaniline	< 0.40		0.40		mg/Kg	÷	11/01/21 20:00	11/10/21 17:30	1
4-Nitrophenol	<0.81		0.81		mg/Kg		11/01/21 20:00	11/10/21 17:30	
Acenaphthene	<0.040		0.040	0.0072		¢	11/01/21 20:00	11/10/21 17:30	1
Acenaphthylene	<0.040		0.040		mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Anthracene	<0.040		0.040		mg/Kg		11/01/21 20:00	11/10/21 17:30	
	0R027]		0.040	0.0054	mg/Kg	÷	11/01/21 20:00	11/10/21 17:30	1
VenzxJa[anthMidene	-		0.040		mg/Kg		11/01/21 20:00	11/10/21 17:30	1
VenzxJa[pyMene	07013					÷ · · · · · ·			<u>.</u>
VenzxJb[fluxManthene	017072 *		0.040		mg/Kg	Å.	11/01/21 20:00	11/10/21 17:30	1
VenzxJg,h,i[peNylene	07022]		0.040		mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
VenzxJk[fluxManthene	07021]	*1	0.040		mg/Kg	÷	11/01/21 20:00	11/10/21 17:30	1
Bis(2-chloroethoxy)methane	<0.20		0.20		mg/Kg	₩.	11/01/21 20:00	11/10/21 17:30	1
Bis(2-chloroethyl)ether	<0.20		0.20		mg/Kg	₿. Ø	11/01/21 20:00	11/10/21 17:30	1
Bis(2-ethylhexyl) phthalate	<0.20		0.20		mg/Kg			11/10/21 17:30	1
Butyl benzyl phthalate	<0.20		0.20		mg/Kg	¢	11/01/21 20:00		1
Carbazole	<0.20		0.20	0.10	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
ChMysene	017014]		0.040	0.011	mg/Kg		11/01/21 20:00	11/10/21 17:30	1
Dibenz(a,h)anthracene	<0.040 *	*3	0.040	0.0078	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Dibenzofuran	<0.20		0.20	0.047	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Diethyl phthalate	<0.20		0.20	0.068	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Dimethyl phthalate	<0.20		0.20	0.052	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Di-n-butyl phthalate	<0.20		0.20	0.061	mg/Kg	☆	11/01/21 20:00	11/10/21 17:30	1
Di-n-octyl phthalate	<0.20		0.20	0.065	mg/Kg	₽	11/01/21 20:00	11/10/21 17:30	1
FluxManthene	010.3		0.040	0.0074	mg/Kg	☆	11/01/21 20:00	11/10/21 17:30	1
Fluorene	<0.040		0.040	0.0056		¢	11/01/21 20:00	11/10/21 17:30	1
Hexachlorobenzene	<0.081		0.081	0.0093		¢	11/01/21 20:00	11/10/21 17:30	1
Hexachlorobutadiene	<0.20		0.20		mg/Kg			11/10/21 17:30	1
Hexachlorocyclopentadiene	<0.81		0.81		mg/Kg	¢		11/10/21 17:30	1
Hexachloroethane	<0.20		0.20		mg/Kg		11/01/21 20:00		1

Client Sample Results

Client Sample ID: 10638-44-V04 Date Cxlledteo: 40@7@4 0/ :00 Date Redeiveo: 40@3@4 40:50

Lab Sample ID: 500-207566-4 BatNr: Sxlio

9eMdent Sxlios: 34P.

5

7

Bethxo: 3270D - Semivxlatile Analyte	-	QualifieM	RL	BDL		D	9 Mepa Meo	Analyzeo	Dil Fad
InoenxJ4,2,1-do[pyMene	01021] *1	0.040	0.010	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Isophorone	<0.20		0.20	0.045	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Naphthalene	<0.040		0.040	0.0062	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Nitrobenzene	<0.040		0.040	0.010	mg/Kg		11/01/21 20:00	11/10/21 17:30	1
N-Nitrosodi-n-propylamine	<0.081		0.081		mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Pentachlorophenol	<0.81		0.81		mg/Kg		11/01/21 20:00	11/10/21 17:30	1
9henanthMene	0124	1	0.040	0.0056	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Phenol	<0.20		0.20	0.089	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
9yMene	0171		0.040	0.0080	mg/Kg	¢	11/01/21 20:00	11/10/21 17:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	60		71 - 147				11/01/21 20:00	11/10/21 13:70	1
2-Fluorobiphenyl	31		47 - 145				11/01/21 20:00	11/10/21 13:70	1
2-Fluorophenol	86		71 - 166				11/01/21 20:00	11/10/21 13:70	1
Nitrobenzene-d5 (Surr)	62		73 - 143				11/01/21 20:00	11/10/21 13:70	1
Phenol-d5	31		70 - 157				11/01/21 20:00	11/10/21 13:70	1
Terphenyl-d14 (Surr)	122		42 - 153				11/01/21 20:00	11/10/21 13:70	1
Bethxo: 6040V - Betals (IC9)									
Analyte	Result	QualifieM	RL	BDL		D	9 Mepa Meo	Analyzeo	Dil Fad
Antimxny	0165	1	1.1	0.22	mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
AMsenid	44		0.57	0.20	mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
VaMum	70		0.57	0.065	mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
VeNyllium	0₽4		0.23	0.053	mg/Kg	₽	11/08/21 11:07	11/09/21 17:25	1
VxMxn	. F7	V	2.9	0.27	mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
Caomium	0141	V	0.11	0.021	mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
Caldium	1500		11	1.9	mg/Kg	₽	11/08/21 11:07	11/09/21 17:25	1
ChMtmium	4/		0.57	0.28	mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
Cxbalt	4.		0.29	0.075	mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
СхрреМ	2/		0.57	0.16	mg/Kg	₽	11/08/21 11:07	11/09/21 17:25	1
IMkn	2.000		11	5.9	mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
Leao	61		0.29	0.13	mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
Bagnesium	1600		5.7	2.8	mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
Banganese	5.0	V	0.57		mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
Nidkel	12		0.57		mg/Kg	¢	11/08/21 11:07	11/09/21 17:25	1
9xtassium	4700		29		mg/Kg		11/08/21 11:07	11/09/21 17:25	1
Selenium	0P./	1	0.57		mg/Kg	¢		11/09/21 17:25	1
SilveM	0P.0	1	0.29		mg/Kg	¢	11/08/21 11:07		1
Sxoium	150		57		mg/Kg		11/08/21 11:07		
Thallium	0PI3	1	0.57		mg/Kg	¢		11/09/21 17:25	1
8anaoium	26	1 - C	0.29		mg/Kg	¢		11/09/21 17:25	1
Zind	430		1.1		mg/Kg				
				0.00		~			
Bethxo: 6040V - Betals (IC9)	- TCL9								

Analyte	Result QualifieM	RL	BDL	Unit	D	9 Mepa Meo	Analyzeo	Dil Fad
Arsenic	<0.050	0.050	0.010	mg/L		11/03/21 07:52	11/03/21 19:17	1
Beryllium	<0.0040	0.0040	0.0040	mg/L		11/03/21 07:52	11/03/21 19:17	1
Chromium	<0.025	0.025	0.010	mg/L		11/03/21 07:52	11/03/21 19:17	1
Iron	<0.40	0.40	0.20	mg/L		11/03/21 07:52	11/03/21 19:17	1

Client Sample Results

Client Sample ID: 10638-44-V04 Date Cxlledteo: 40@7@4 0/ :00 Date Redeiveo: 40@3@4 40:50

Job	ID:	500-207566-1

Lab Sample ID: 500-207566-4

BatMr: Sxlio 9eMdent Sxlios: 34P.

nalyte	Result	QualifieM	RL	BDL		D	9 Mepa Meo	Analyzeo	Dil Fad
ead	<0.0075		0.0075	0.0075	mg/L		11/03/21 07:52	11/03/21 19:17	1
Banganese	0F067		0.025	0.010	mg/L		11/03/21 07:52	11/03/21 19:17	1
lickel	<0.025		0.025	0.010	mg/L		11/03/21 07:52	11/03/21 19:17	1
Bethxo: 6040V - Betals (IC9) - S	9L9 East								
Analyte	Result	QualifieM	RL	BDL	Unit	D	9 Mepa Meo	Analyzeo	Dil Fad
AMsenid	0F07.		0.050	0.010	mg/L		11/03/21 07:55	11/04/21 14:28	1
VaMium	0162		0.50	0.050	mg/L		11/03/21 07:55	11/04/21 14:28	1
/eMyllium	0170075		0.0040	0.0040	mg/L		11/03/21 07:55	11/04/21 14:28	1
VxMkn	0 P 45		0.10	0.050	mg/L		11/03/21 07:55	11/04/21 14:28	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/21 07:55	11/04/21 14:28	1
Caldium	43		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 14:28	1
ChMkmium	0 F 45		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:28	1
Cxbalt	0F0.7		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:28	1
Mkn	430		0.40	0.20	mg/L		11/03/21 07:55	11/04/21 14:28	1
Leao	0145		0.0075	0.0075	mg/L		11/03/21 07:55	11/04/21 14:28	1
Banganese	48		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:28	1
Nidkel	0F20		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:28	1
9xtassium	27		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 14:28	1
Selenium	<0.050		0.050	0.020	-		11/03/21 07:55	11/04/21 14:28	1
Silver	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:28	1
Zind	0153		0.50	0.020	mg/L		11/03/21 07:55	11/04/21 14:28	1
Bethxo: 6020A - Betals (IC9 BS) - TCL9								
Analyte		QualifieM	RL	BDL	Unit	D	9 Mepa Meo	Analyzeo	Dil Fad
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/21 07:52	11/16/21 15:35	1
Bethxo: 6020A - Betals (IC9 BS) - S9L9 I	East							
Analyte		QualifieM	RL	BDL	Unit	D	9 Mepa Meo	Analyzeo	Dil Fad
Antimony	< 0.0060		0.0060	0.0060	mg/L		11/03/21 07:55	11/15/21 20:32	1
Thallium	0F00. 1		0.0020	0.0020	-		11/03/21 07:55	11/15/21 20:32	1
Bethxo: 7.70A - BeMduMy (C8AA) - S9L9	East							
Analyte		QualifieM	RL	BDL	Unit	D	9 Mépa Méo	Analyzeo	Dil Fad
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/21 10:25	11/04/21 11:06	1
Bethxo: 7.74V - BeMduMy (C8AA	()								
Analyte	Result	QualifieM	RL	BDL	Unit	D	9 Mepa Meo	Analyzeo	Dil Fad
BeMduMy	010.2		0.019	0.0064	mg/Kg	<u></u>	11/05/21 13:35	11/08/21 07:25	1
GeneMal ChemistMy									
Analyte	Result	QualifieM	RL	BDL	Unit	D	9 Mepa Meo	Analyzeo	Dil Fad
Cyanioe, Txtal	0₽4/	1	0.29	0.15	mg/Kg	— <u> </u>	11/09/21 14:23	11/09/21 16:50	1

1 OC en teAdrwse⊟eiideElegc . doPrgnj/lni: IDSO-ts7-0T0 Job ID: 500-207566-4

	3
Qualifier Description	4
L1/aeAjodL1/DlwounwlAiaggipnaegi @mlnw, hlEhblawiAc	
VOA	5
Qualifier Description	
	6
Riwu@lwCwwmlaemhi RLbunEd anidmlae odiquaOnomhi MDLaeAmhi goegiendanloe lwae appdoxlmani vaQic	
Qualifier Description	_
1 ompoueAr awfoueAle nhi b@ek aeAwampCc	8
Ri wu@lwCwwmlaemhi RL bunEd an dmlae odi quaOnomhi MDL aeAmhi goegi endanloe lwae appdoxImani vaQi c	_
mistry	9
Riwu@lw@wwmlaemhi RL bunEd an dmlae odi quaOnomhi MDL aeAmhi goegi endanloe lwae appdoxImani vaQi c	10
	1.4
hTese commonly used abbreviations may or may not be present in tTis report.	
LlwriAueAidrhi "D" goQume no AiwlEeani rhan rhi d wuQlw d podriAoe a Adyr ilEhn bawlw	12
. i dgi enRi govi dy	
1 oenalew Fd i LlqulA	12
1 o@ey FodmleE Ueln	13
1 oenalewNoFdi LlquIA	
Dup0gani sobbdRanlo (eochna0ziAabwo0uni Alffid egi)	
DIQnloe Fagrod	
Di ri grloe Llmln(DoDjDSs)	
leAlgari wa DlQnloe, Ri-aeaQwlw, Ri-ixndagnloe, odaAAlnloeaCleInlaCmi naQijaeloe aeaQwlwofnhi wampC	
Diglwloe Livi Cloegiendanloe (RaAloghimlwndy)	
s wilmani A Di ni griloe Limln(Dloxle)	
Llmlnof Di ni gnloe (DoDjDSs)	
Llmlnof Quaerinarioe (DoDjDSs)	
-	
•	
•	
ra vanivi . E vgi en cuni u egi , a mi avvuu orini u vanivi Ann u egi bi ii i tie ii o poleiw	
Ovldin s gulya Cen Fagind (Dlovle)	
Ωxlglny s qulvaCenFagrod(Dloxle) Ωxlglny s qulvaCenQuorli en(Dloxle)	
-	L1/ aeAjodL1/ D lwounWAi aggi prægi @mlnv, hIEh blavi Ac VOA Qualifier Description // OD d vpoevi odd ri erbe rlmi ounWAi aggi præb© @mlnvc Ri wu@lw@cwwrhae rhi RL bunEd ari drhae odi qua@o rhi MDL aeA rhi goegi erdanloe lwae appdx/mari va@i c Qualifier Description 1 ompoueAr awfoueA le rhi b@ek aeA wamp@c Ri wu@lw@cwwrhae rhi RL bunEd ari drhae odi qua@o rhi MDL aeA rhi goegi erdanloe lwae appdx/mari va@i c mistry Qualifier Description Ri wu@lw@cwwrhae rhi RL bunEd ari drhae odi qua@o rhi MDL aeA rhi goegi erdanloe lwae appdx/mari va@i c mistry Qualifier Description Ri wu@lw@cwwrhae rhi RL bunEd ari drhae odi qua@o rhi MDL aeA rhi goegi erdanloe lwae appdx/mari va@i c Mitea Description Ri wu@lw@cwwrhae rhi RL bunEd ari drhae odi qua@o rhi MDL aeA rhi goegi erdanloe lwae appdx/mari va@i c Malifier Description Ri wu@lw@cwwrhae rhi RL bunEd ari drhae odi qua@o rhi MDL aeA rhi goegi erdanloe lwae appdx/mari va@i c Malifier Description Ri wu@lw@cwwrhae rhi RL bunEd ari drhae odi qua@o rhi MDL aeA rhi goegi erdanloe lwae appdx/mari va@i c Malifier Description Ri wu@lw@cwwrhae rhi RL bunEd ari drhae odi qua@o rhi MDL aeA rhi goegi erdanloe lwae appdx/mari va@i c Iuri Au eAi drhi "D" go@me ro Ai wEeari rhanrhi d wu@lwd podi Aoe a Ady r i lEnbawk

Client: Andrews Engineering Inc. 1 roæctj/ ite: IDSO- AE7-0T0

5

13

Laboratory: Eurofins TestAmerica, Chicago Unless otherwise noted, all analytes for this laboratory were covered under each accreditationjcertification below. Authority Program **Identification Number Expiration Date** Illinois NELA1 IL00035 0T-29-22 Ohe following analytes are included in this report, but the laboratory is not certified by the governing authority. Ohis list may include analytes for which the agency does not offer certification. Analyte Analysis Method 1 rep Method Matrix 6020A 3040A / olid Antimony 6020A 3040A / olid Ohallium 7T70A 7T70A / olid Mercury 8260B 5035 / olid 4,3-Dichloropropene, Ootal Moisture / olid 1 ercent Moisture / olid 1 ercent / olids Moisture

CHAIN OF CUSTODY RECORD

	NDREWS GINEERING			CHA	AIN	OF	CU	ѕтс	DY	RE	CO	RD					Š				1 2
Client Contac	ct	Laborato	ry						Proje	ct Na	me _	AE7	F_ 0	40+	4	ę	500-207	566 COC -	COC No		1
Andrews Engi	neerina. Inc	Lab Test	America	- Chicago)			_												of	3
3300 Ginger C		Address	2417 Bor	d Street					Proje	ct No	P	TB/	wo	: 18	54-0	06/	040	A	Lab Job N	0	4
Springfield, IL	62711		Universit	<u> </u>	_ 604	84										,			500.	207566	
217-787-2334 Contact Colle		Phone	708-534-						TAT	X 15	5 BD	\Box^{10}) BD	□ ⁵	BD	<u>2</u> 1	BD	Other		e he	5
)andrews-eng com	Contact	Dick Wrig						<u> </u>			KI		. 1					Sample To		
Special Instruc		email <u>ri</u>	chard wrig	ht@test	amer	icaind	c com	1	Sam	pler:	5.			4					11	4	6
	complete parameter lists and mi		rtina limita		<u> </u>	1	1		1	1		NALY	SES	1	1	T	T	1 1	Matrix Ke	y:	-
												als				ы			WV		
	metal (mg/kg) result exceeds the 3), run TCLP for that specific RCI		ty Character	istics								Metals				Characterization			S S SL S	oil Iudge	8
	-),						ш					2				teri			S S	ediment	
** If SPLP resul	It exceeds Class I Standard, run	TCLP for the	it specific pa	arameter			MTB				tals	5	Ø			raci				eachate rinking Water	9
							Σ		les		Me	F *	piu		s	Cha			OLC		
*** If total cyanı	ide exceeds MAC, run ASTM D39			nide	S	SVOCs	TX &	As	Pesticides	Bs	Total Metals	SPLP/** TCLP	Cyanide		Solids	ste C			0 0		10
Lab ID	Sample ID	Sample Date	Sample Time	Matrix	VOCs	SV	BETX	PNAs	Pes	PCBs	Ŭ ¥	SPI	***	Нd	%	Waste			Co	mments	11
1	3068V-1-BO1	10/27	0900	5	X	X					X	X	X	X	X						12
1																					
																					13
																					14
																					4.5
									~												
Relinquished by	y silki			Date/Tim	e 8/2-1	·		Recei	ved by	la S	to	rer	5					L	Date/Time	219:458	
Relinquished by	* Jaula Stores			Date/Tim			451	Recei	ved by	1	Ne	ort			in				Daté/Time	161.0	
Relinquished by	y liNeal			Date/Tim	e	105		Recei	yean	\$É	heal	U	L					101.8	/ <i>Q1 5/2/</i> /Date/Time	1050	
L				14-11-1					11	+	~~~	6 - ·						1900	141	1000	

Page 29 of 30

L:\IDDTAE7 PTB 184-006\Subcontractors\COC Templates\AE7 COC Template (TAL).xisx

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification

by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the location	on of the source of the ur	ncontaminated soil)								
Project Name:	FAP 21 (US 20))	Office Phone Number, if available:							
	on (address, including nu s of West Lake Street (so	,	treet between Thorn F	Road and Gary Avenue)						
City: Roselle	3	State: IL	Zip Code: <u>60172</u>							
County: DuPag	е	Township: Bloom	iingdale							
Lat/Long of approxi	mate center of site in dec	imal degrees (DD.c	ldddd) to five decimal	places (e.g., 40.67890, -90.12345):						
Latitude: <u>41.97246</u>	Longitude: -	88.12097	-							
(Decimal	Degrees)	(-Decimal Degrees))							
Identify how the lat/	long data were determine	ed:								
○ GPS	Interpolation () Photo	Interpolation	Survey () Other							
IEPA Site Number(s	s), if assigned: BOL: (0434825048	BOW:	BOA:						
Approximate Start I	Date (mm/dd/yyyy): <u>N/A</u>	\	_ Approximate End D	ate (mm/dd/yyyy): <u>N/A</u>						
Estimated Volume	of debris (cu. Yd.): <u>1,3</u>	77	_							
II. Owner/Opera	ator Information for	Source Site	Site Operator							
Name:	Illinois Department o	f Transportation	Name:	Illinois Department of Transportation						
Street Address:	201 We	est Center Court	Street Address:	201 West Center Court						
PO Box:			PO Box:							
PO Box: City:	Schaumburg	State: IL	PO Box: City:	Schaumburg State: IL						
	Schaumburg 60196-1096 Phone:	State: IL 847-705-4122		Schaumburg State: IL 60196-1096 Phone: 847-705-4122						
City:	60196-1096 Phone:		City:	_						

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Uncontaminated Soil Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

LOCATIONS 3068V-12-B01, 3068V-12-B02, 3068V-12-B03, 3068V-12-B06 AND 3068V-12-B07 WERE SAMPLED ADJACENT TO SITE 3068V-12. SEE TABLE 3e AND FIGURES 2 AND 3 OF THE FINAL PRELIMINARY SITE INVESTIGATION REPORT.

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201 (g), 1100.205(a), 1100.610]:

EUROFINS/TEST AMERICA ANALYTICAL REPORT - TEST AMERICA JOB ID NUMBER: 500-207560-1.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I, <u>Savo Radulovic, L.P.G</u> (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Andrews Engineering	, Inc.		
Street Address:	420 Eisenhower Lane	North		
City:	Lombard	State:	IL	Zip Code: 60148
Phone:	630-953-3332			
Savo Radulovic				
Printed Name:				
San	- Rui			Apr 18, 2022
Licensed Professional			_	Date:
Licensed Professional	Geologist Signature:			
				SAVO RADULOVIC BE or L.P.G. Spol:

Uncontaminated Soil Certification

ILLING S

The following table summarizes the results of laboratory analysis of site soil samples. In reading the table,

- Only parameters reported at concentrations above the most stringent MAC are listed.
- Samples with the notation "No Contaminants of Concern Noted" were below the most stringent MAC.

The laboratory report for site soils follows this summary table.

ANALYTICAL PARAMETERS

Semivolatile Organic Compounds (mg/kg	
2,6-Dinitrotoluene	
2-Chloronaphthalene	
2-Chlorophenol	
2-Methylnaphthalene	
2-Methylphenol	
2-Nitroaniline	
2-Nitrophenol	
3,3´-Dichlorobenzidine	
3-Nitroaniline	
4,6-Dinitro-2-methylphenol	
4-Bromophenyl phenyl ether	
4-Chloro-3-methylphenol	
4-Chloroaniline	
4-Chlorophenyl phenyl ether	
4-Methylphenol	
4-Nitroaniline	
4-Nitrophenol	
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Bis(2-chloroethoxy)methane	
Bis(2-chloroethyl)ether	
Bis(2-chloroisopropyl)ether	
Bis(2-ethylhexyl)phthalate	
Butyl benzyl phthalate	
Carbazole	
Chrysene	
Dibenzo(a,h)anthracene	
Dibenzofuran	
Diethyl phthalate	
Dimethyl phthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno(1,2,3-cd)pyrene	
Isophorone	
Naphthalene	
Nitrobenzene	

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS
Semivolatile Organic Compounds (mg/kg)
N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
Pentachlorophenol
Phenanthrene
Phenol
Pyrene
Inorganic Compounds, Total (mg/kg)
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Copper
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Cyanide
TCLP/SPLP Inorganics (mg/L)
Antimony
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Cyanide

ANALYTICAL PARAMETERS

ISGS Site 3068V-12

Vacant Land

Sample ID	3068V-12-B01	3068V-12-B02	3068V-12-B03	3068V-12-B06	3068V-12-B07		Maximu	m Allowable Cond	contration			
Sample Depth (ft)	0-3	0-3	0-3	0-7	0-7							
Sample Date	10/27/2021	10/27/2021	10/27/2021	10/27/2021	10/27/2021			³ Within a	⁴ Within			
PID	0	0	0	0	0		² Outside a	Populated	Chicago	⁵ Within a		
Sample pH	7.3	8.4	8.6	8.1	7.6	¹ Most	Populated	non-Metropolitan	Corporate	Metropolitan		
Matrix	Soil	Soil	Soil	Soil	Soil	Stringent	Area	Statistical Area	Limits	Statistical Area		
No Contaminants of Con	cern Noted.											

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-207560-1 Client Project/Site: IDOT - AE7-040

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Andrews Engineering Inc. 3300 Ginger Creek Drive Springfield, Illinois 62711

Attn: Ms. Colleen Grey

Rillk

Authorized for release by: 11/17/2021 11:36:43 AM

Richard Wright, Senior Project Manager (708)746-0045 Richard.Wright@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Lab Sample ID: 500-207560-1

Matrix: Solid Percent Solids: 81.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Trichloroethane	<0.0020		0.0020	0.00065	mg/Kg	₽	10/28/21 18:00	11/03/21 11:56	1
,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00062		¢	10/28/21 18:00	11/03/21 11:56	1
,1,2-Trichloroethane	<0.0020		0.0020	0.00084	0 0	¢	10/28/21 18:00	11/03/21 11:56	1
,1-Dichloroethane	<0.0020		0.0020	0.00067	mg/Kg		10/28/21 18:00	11/03/21 11:56	1
,1-Dichloroethene	<0.0020		0.0020	0.00067		¢		11/03/21 11:56	1
,2-Dichloroethane	<0.0049		0.0049	0.0015	0 0	¢		11/03/21 11:56	1
,2-Dichloropropane	<0.0020		0.0020	0.00050	0 0		10/28/21 18:00		1
,3-Dichloropropene, Total	< 0.0020		0.0020	0.00069		¢		11/03/21 11:56	1
2-Butanone (MEK)	< 0.0049		0.0049	0.0022	0 0	¢		11/03/21 11:56	1
2-Hexanone	<0.0049		0.0049	0.0015		¢.	10/28/21 18:00		1
I-Methyl-2-pentanone (MIBK)	< 0.0049		0.0049	0.0014		¢		11/03/21 11:56	1
Acetone	< 0.020		0.020	0.0085		¢	10/28/21 18:00		1
Benzene	<0.0020		0.0020	0.00050			10/28/21 18:00		1
Bromodichloromethane	< 0.0020		0.0020	0.00040		¢		11/03/21 11:56	1
Bromoform	< 0.0020		0.0020	0.00057		¢	10/28/21 18:00		1
Bromomethane	< 0.0049	*+	0.0049	0.0018			10/28/21 18:00		
Carbon disulfide	< 0.0049		0.0049	0.0010		¢		11/03/21 11:56	1
Carbon tetrachloride	< 0.0020		0.0020	0.00057		¢	10/28/21 18:00		1
Chlorobenzene	< 0.0020		0.0020	0.00072			10/28/21 18:00		
Chloroethane	< 0.0049	*+	0.0049	0.0012	0 0	¢	10/28/21 18:00		1
Chloroform	< 0.0020		0.0040	0.00068	0 0	¢	10/28/21 18:00		1
Chloromethane	<0.0020		0.0020	0.00000				11/03/21 11:56	
sils-1,2-Dichloroethene	<0.0049		0.0049	0.00020		÷		11/03/21 11:56	1
sis-1,3-Dichloropropene	<0.0020		0.0020	0.00059		¢		11/03/21 11:56	1
Dibromochloromethane	<0.0020		0.0020	0.00064			10/28/21 18:00		
Ethylbenzene	<0.0020		0.0020	0.00093		÷		11/03/21 11:56	1
Methyl tert-butyl ether	<0.0020		0.0020	0.00057		÷		11/03/21 11:56	1
Aethylene Chloride	<0.0020		0.0020	0.00037				11/03/21 11:56	1
Styrene	<0.0049		0.0049	0.00059		÷		11/03/21 11:56	1
Tetrachloroethene	< 0.0020		0.0020	0.00059		÷		11/03/21 11:56	1
oluene	<0.0020		0.0020	0.00049		¥	10/28/21 18:00		
rans-1,2-Dichloroethene	< 0.0020		0.0020	0.00049		÷		11/03/21 11:56	1
rans-1,3-Dichloropropene	< 0.0020		0.0020	0.00069		÷		11/03/21 11:56	1
Frichloroethene	<0.0020		0.0020	0.00069		¥. ¢	10/28/21 18:00		
/inyl chloride	< 0.0020		0.0020	0.00086		¥ ¢	10/28/21 18:00		1
Kylenes, Total	< 0.0020		0.0020	0.00080	0 0		10/28/21 18:00		1
	-0.0039		0.0000	0.00002		، ہے	10,20,21 10.00		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I,2-Dichloroethane-d4 (Surr)	98		70 - 134				10/28/21 18:00	11/03/21 11:56	1
-Bromofluorobenzene (Surr)	95		75 - 131				10/28/21 18:00	11/03/21 11:56	1
Dibromofluoromethane	96		75 - 126				10/28/21 18:00	11/03/21 11:56	1
oluene-d8 (Surr)	97		75 - 124					11/03/21 11:56	1
lethod: 8270D - Semivolat		mpounds							
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,2,4-Trichlorobenzene	<0.20		0.20		mg/Kg	 \$		11/09/21 12:37	1
,2-Dichlorobenzene	<0.20		0.20		mg/Kg	¢		11/09/21 12:37	1
,3-Dichlorobenzene	<0.20		0.20		mg/Kg	¢		11/09/21 12:37	1
,4-Dichlorobenzene	<0.20		0.20		mg/Kg			11/09/21 12:37	
2,2'-oxybis[1-chloropropane]	<0.20		0.20		mg/Kg	~ *		11/09/21 12:37	1

Lab Sample ID: 500-207560-1

Matrix: Solid Percent Solids: 81.0

5

7

Method: 8270D - Semivola Analyte	Result Qualifier	RL	MDL Un	nit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.39	0.39	0.090 mg	g/Kg	₽	11/02/21 06:56	11/09/21 12:37	1
2,4,6-Trichlorophenol	<0.39	0.39	0.14 mg		₽. ¢	11/02/21 06:56	11/09/21 12:37	1
2,4-Dichlorophenol	<0.39	0.39	-	g/Kg	₽	11/02/21 06:56	11/09/21 12:37	1
2,4-Dimethylphenol	<0.39 *-	0.39	0.15 mg	g/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
2,4-Dinitrophenol	<0.80	0.80	0.70 mg	g/Kg	с. Ф	11/02/21 06:56	11/09/21 12:37	1
2,4-Dinitrotoluene	<0.20	0.20	-	g/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
2,6-Dinitrotoluene	<0.20	0.20		g/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
2-Chloronaphthalene	<0.20	0.20		g/Kg	÷.	11/02/21 06:56	11/09/21 12:37	1
2-Chlorophenol	<0.20	0.20	-	g/Kg	æ	11/02/21 06:56	11/09/21 12:37	1
2-Methylnaphthalene	<0.080	0.080		g/Kg	÷	11/02/21 06:56	11/09/21 12:37	1
2-Methylphenol	<0.20	0.20		g/Kg	÷	11/02/21 06:56	11/09/21 12:37	1
2-Nitroaniline	<0.20	0.20		g/Kg	æ	11/02/21 06:56	11/09/21 12:37	1
2-Nitrophenol	<0.39	0.39		g/Kg	÷	11/02/21 06:56	11/09/21 12:37	1
3 & 4 Methylphenol	<0.20	0.20		g/Kg	÷	11/02/21 06:56	11/09/21 12:37	1
3,3'-Dichlorobenzidine	<0.20	0.20		g/Kg	₽	11/02/21 06:56	11/09/21 12:37	1
3-Nitroaniline	<0.39	0.39	0.12 mg		÷.	11/02/21 06:56	11/09/21 12:37	1
4,6-Dinitro-2-methylphenol	<0.80	0.80	0.32 mg	T T	 	11/02/21 06:56	11/09/21 12:37	
4-Bromophenyl phenyl ether	<0.20	0.20	-	g/Kg	æ	11/02/21 06:56	11/09/21 12:37	1
4-Chloro-3-methylphenol	<0.39	0.39		g/Kg	¢.	11/02/21 06:56	11/09/21 12:37	1
4-Chloroaniline	<0.80	0.80		g/Kg	 	11/02/21 06:56	11/09/21 12:37	
4-Chlorophenyl phenyl ether	<0.20	0.20		g/Kg	Å	11/02/21 06:56	11/09/21 12:37	1
4-Nitroaniline	<0.39	0.39	-	g/Kg	Å	11/02/21 06:56	11/09/21 12:37	1
4-Nitrophenol	<0.80	0.80		g/Kg	 	11/02/21 06:56	11/09/21 12:37	
Acenaphthene	<0.039	0.039		g/Kg	Å	11/02/21 06:56	11/09/21 12:37	1
Acenaphthylene	<0.039	0.039		g/Kg	Å	11/02/21 06:56	11/09/21 12:37	1
Anthracene	<0.039	0.039		g/Kg	. ~ . ☆	11/02/21 06:56	11/09/21 12:37	
Benzo[a]anthracene	0.027 J	0.039		g/Kg	Å	11/02/21 06:56	11/09/21 12:37	1
Benzo[a]pyrene	0.027 J	0.039		g/Kg	Å	11/02/21 06:56	11/09/21 12:37	1
Benzo[b]fluoranthene	0.050 0	0.039		g/Kg	 	11/02/21 06:56	11/09/21 12:37	
	0.030 0.031 J	0.039	0.0000 mg		Å	11/02/21 06:56	11/09/21 12:37	1
Benzo[g,h,i]perylene Benzo[k]fluoranthene	0.031 J	0.039	0.013 mg		÷	11/02/21 06:56	11/09/21 12:37	1
Bis(2-chloroethoxy)methane	<0.20	0.20		g/Kg	 	11/02/21 06:56	11/09/21 12:37	
Bis(2-chloroethyl)ether	<0.20	0.20	-	g/Kg	÷	11/02/21 06:56	11/09/21 12:37	1
Bis(2-ethylhexyl) phthalate	<0.20	0.20		g/Kg g/Kg	Å	11/02/21 06:56	11/09/21 12:37	1
Butyl benzyl phthalate	<0.20	0.20		g/Kg	 Æ	11/02/21 06:56	11/09/21 12:37	1
Carbazole	<0.20	0.20	-	g/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
		0.039	-	0 0	÷	11/02/21 06:56	11/09/21 12:37	1
Chrysene	0.038 J <0.039	0.039	0.011 mg 0.0077 mg			11/02/21 06:56		
Dibenz(a,h)anthracene Dibenzofuran	<0.039	0.039		g/Kg g/Kg	¢ ×		11/09/21 12:37	1
Diethyl phthalate	<0.20			g/Kg g/Kg	¢ ×	11/02/21 06:56	11/09/21 12:37	1
		0.20		g/Kg a/Ka		11/02/21 06:56	11/09/21 12:37	1
Dimethyl phthalate	<0.20 <0.20	0.20 0.20	0.052 mg 0.060 mg		¢ ×	11/02/21 06:56	11/09/21 12:37 11/09/21 12:37	1
Di-n-butyl phthalate				g/Kg a/Ka	☆ ☆	11/02/21 06:56		1
Di-n-octyl phthalate	<0.20	0.20		g/Kg a/Ka	 	11/02/21 06:56	11/09/21 12:37	1
Fluoranthene	0.060	0.039	-	g/Kg g/Kg	☆ ☆	11/02/21 06:56	11/09/21 12:37	1
Fluorene	< 0.039	0.039	-	g/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
Hexachlorobenzene	<0.080	0.080	0.0092 mg		¢	11/02/21 06:56	11/09/21 12:37	1
Hexachlorobutadiene	<0.20	0.20	0.062 mg		₩ 	11/02/21 06:56	11/09/21 12:37	1
Hexachlorocyclopentadiene	<0.80	0.80		g/Kg	¢-	11/02/21 06:56	11/09/21 12:37	1
Hexachloroethane	<0.20	0.20	0.060 mg	g/Kg	₽	11/02/21 06:56	11/09/21 12:37	1

Client Sample Results

Client Sample ID: 3068V-12-B01 Date Collected: 10/27/21 09:20 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207560-1 Matrix: Solid

Percent Solids: 81.0

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	0.028	J	0.039	0.010	mg/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
Isophorone	<0.20		0.20	0.045	mg/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
Naphthalene	<0.039		0.039	0.0061	mg/Kg	☆	11/02/21 06:56	11/09/21 12:37	1
Nitrobenzene	<0.039		0.039	0.0099	mg/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.048	mg/Kg	☆	11/02/21 06:56	11/09/21 12:37	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
Pentachlorophenol	<0.80		0.80	0.64	mg/Kg	₿	11/02/21 06:56	11/09/21 12:37	1
Phenanthrene	0.023	J	0.039	0.0055	mg/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
Phenol	<0.20		0.20	0.088	mg/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
Pyrene	0.054		0.039	0.0079	mg/Kg	¢	11/02/21 06:56	11/09/21 12:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	73		31 - 143				11/02/21 06:56	11/09/21 12:37	1
2-Fluorobiphenyl	80		43 - 145				11/02/21 06:56	11/09/21 12:37	1
2-Fluorophenol	101		31 - 166				11/02/21 06:56	11/09/21 12:37	1
Nitrobenzene-d5 (Surr)	75		37 - 147				11/02/21 06:56	11/09/21 12:37	1
Phenol-d5	94		30 - 153				11/02/21 06:56	11/09/21 12:37	1
Terphenyl-d14 (Surr)	86		42 - 157				11/02/21 06:56	11/09/21 12:37	1
Method: 6010B - Metals (IG	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.49	J	1.2	0.23	mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Arsenic	8.0		0.58	0.20	mg/Kg	☆	11/08/21 11:07	11/09/21 16:48	1
Barium	120		0.58	0.066	mg/Kg	₽	11/08/21 11:07	11/09/21 16:48	1
Beryllium	0.85		0.23	0.054	mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Boron	3.0	В	2.9	0.27	mg/Kg	₽	11/08/21 11:07	11/09/21 16:48	1
Cadmium	0.14	В	0.12	0.021	mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Calcium	3900		12	2.0	mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Chromium	19		0.58	0.29	mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Cobalt	12		0.29		mg/Kg	☆	11/08/21 11:07	11/09/21 16:48	1
Copper	15		0.58		mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
ron	21000		12		mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Lead	21		0.29		mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Magnesium	3900		5.8		mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Manganese	700	В	0.58		mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Nickel	25		0.58		mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Potassium	1200		29	10	mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Selenium	<0.58		0.58		mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Silver	0.37		0.29		mg/Kg	¢	11/08/21 11:07		1
Sodium	350		58		mg/Kg	☆	11/08/21 11:07		1
Thallium	<0.58		0.58		mg/Kg	¢	11/08/21 11:07		1
Vanadium	23		0.29	0.069	mg/Kg	¢	11/08/21 11:07	11/09/21 16:48	1
Zinc	88		1.2	0.51	mg/Kg	☆	11/08/21 11:07	11/09/21 16:48	1
Method: 6010B - Metals (I	CP) - TCLP								

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	< 0.0040		0.0040	0.0040	mg/L		11/03/21 07:52	11/03/21 18:24	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/21 07:52	11/03/21 18:24	1
Iron	0.22	J	0.40	0.20	mg/L		11/03/21 07:52	11/03/21 18:24	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/21 07:52	11/03/21 18:24	1

Client Sample Results

рΗ

Client Sample ID: 3068V-12-B01 Date Collected: 10/27/21 09:20 Date Received: 10/28/21 10:50

Job	ID:	500-207560-1
000		000 201000 1

Lab Sample ID: 500-207560-1

Matrix: Solid Percent Solids: 81.0

5

7

									13. 01.0
Method: 6010B - Metals (I									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.031		0.025	0.010	mg/L		11/03/21 07:52	11/03/21 18:24	1
Method: 6010B - Metals (I	CP) - SPLP Eas	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.022	J	0.050	0.010	mg/L		11/03/21 07:55	11/04/21 13:28	1
Barium	0.49	J	0.50	0.050	mg/L		11/03/21 07:55	11/04/21 13:28	1
Beryllium	0.0046		0.0040	0.0040	mg/L		11/03/21 07:55	11/04/21 13:28	1
Boron	0.12		0.10	0.050	mg/L		11/03/21 07:55	11/04/21 13:28	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/21 07:55	11/04/21 13:28	1
Calcium	15		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 13:28	1
Chromium	0.11		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:28	1
Cobalt	0.017	J	0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:28	1
Iron	100		0.40	0.20	mg/L		11/03/21 07:55	11/04/21 13:28	1
Lead	0.053		0.0075	0.0075	mg/L		11/03/21 07:55	11/04/21 13:28	1
Manganese	0.59		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:28	1
Nickel	0.065		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:28	1
Potassium	18		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 13:28	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/21 07:55	11/04/21 13:28	1
Silver	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:28	1
Zinc	0.32	J	0.50	0.020	mg/L		11/03/21 07:55	11/04/21 13:28	1
: Method: 6020A - Metals (I		East							
Analyte		Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060	quanter	0.0060	0.0060	mg/L		11/03/21 07:55	11/15/21 19:54	1
Thallium	<0.0020		0.0020	0.0020	0		11/03/21 07:55	11/15/21 19:54	1
Method: 7470A - Mercury		Fact							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/21 10:25	11/04/21 10:23	1
					-				
Method: 7471B - Mercury	· · · ·								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.049		0.019	0.0064	mg/Kg	Ċ.	11/04/21 13:50	11/05/21 07:30	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.14	J	0.29	0.14	mg/Kg	¢	11/09/21 14:23	11/09/21 16:54	1

11/01/21 20:39

1

0.2

7.3

0.2 SU

Lab Sample ID: 500-207560-2

Matrix: Solid Percent Solids: 85.1

nalyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Trichloroethane	< 0.0019		0.0019	0.00062	mg/Kg	¢	10/28/21 18:00	11/03/21 12:22	1
,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00059	mg/Kg	¢	10/28/21 18:00	11/03/21 12:22	1
I,1,2-Trichloroethane	<0.0019		0.0019	0.00080	mg/Kg	₽	10/28/21 18:00	11/03/21 12:22	1
I,1-Dichloroethane	<0.0019		0.0019	0.00064	mg/Kg	₽	10/28/21 18:00	11/03/21 12:22	1
1,1-Dichloroethene	<0.0019		0.0019	0.00064	mg/Kg	¢	10/28/21 18:00	11/03/21 12:22	1
1,2-Dichloroethane	<0.0046		0.0046	0.0014	mg/Kg	¢	10/28/21 18:00	11/03/21 12:22	1
1,2-Dichloropropane	<0.0019		0.0019	0.00048	mg/Kg	₽	10/28/21 18:00	11/03/21 12:22	1
1,3-Dichloropropene, Total	<0.0019		0.0019	0.00065	mg/Kg	¢	10/28/21 18:00	11/03/21 12:22	1
2-Butanone (MEK)	<0.0046		0.0046	0.0021	mg/Kg	¢	10/28/21 18:00	11/03/21 12:22	1
2-Hexanone	<0.0046		0.0046	0.0014	mg/Kg	₽	10/28/21 18:00	11/03/21 12:22	1
4-Methyl-2-pentanone (MIBK)	<0.0046		0.0046	0.0014	mg/Kg	¢	10/28/21 18:00	11/03/21 12:22	1
Acetone	<0.019		0.019	0.0081	mg/Kg	¢	10/28/21 18:00	11/03/21 12:22	1
Benzene	<0.0019		0.0019	0.00047	mg/Kg	₽	10/28/21 18:00	11/03/21 12:22	1
Bromodichloromethane	<0.0019		0.0019	0.00038	mg/Kg	☆	10/28/21 18:00	11/03/21 12:22	1
Bromoform	<0.0019		0.0019	0.00054	mg/Kg	¢	10/28/21 18:00	11/03/21 12:22	1
Bromomethane	<0.0046	*+	0.0046	0.0018		¢	10/28/21 18:00	11/03/21 12:22	1
Carbon disulfide	<0.0046		0.0046	0.00096		¢	10/28/21 18:00	11/03/21 12:22	1
Carbon tetrachloride	<0.0019		0.0019	0.00054		¢	10/28/21 18:00	11/03/21 12:22	1
Chlorobenzene	<0.0019		0.0019	0.00068		¢	10/28/21 18:00	11/03/21 12:22	1
Chloroethane	<0.0046	*+	0.0046	0.0014		☆	10/28/21 18:00	11/03/21 12:22	1
Chloroform	<0.0019		0.0019	0.00064	mg/Kg	¢	10/28/21 18:00	11/03/21 12:22	1
Chloromethane	<0.0046		0.0046	0.0019	00		10/28/21 18:00	11/03/21 12:22	1
cis-1,2-Dichloroethene	<0.0019		0.0019	0.00052		¢	10/28/21 18:00	11/03/21 12:22	1
cis-1,3-Dichloropropene	<0.0019		0.0019	0.00056		¢	10/28/21 18:00	11/03/21 12:22	1
Dibromochloromethane	<0.0019		0.0019	0.00061		☆	10/28/21 18:00	11/03/21 12:22	1
Ethylbenzene	<0.0019		0.0019	0.00089		¢	10/28/21 18:00	11/03/21 12:22	1
Methyl tert-butyl ether	<0.0019		0.0019	0.00054		¢	10/28/21 18:00	11/03/21 12:22	1
Methylene Chloride	<0.0046		0.0046	0.0018			10/28/21 18:00	11/03/21 12:22	1
Styrene	<0.0019		0.0019	0.00056		¢	10/28/21 18:00	11/03/21 12:22	1
Tetrachloroethene	<0.0019		0.0019	0.00063		☆	10/28/21 18:00	11/03/21 12:22	1
Toluene	<0.0019		0.0019	0.00047		☆	10/28/21 18:00	11/03/21 12:22	1
rans-1,2-Dichloroethene	<0.0019		0.0019	0.00082		☆	10/28/21 18:00	11/03/21 12:22	1
rans-1,3-Dichloropropene	<0.0019		0.0019	0.00065		☆	10/28/21 18:00	11/03/21 12:22	1
Trichloroethene	<0.0019		0.0019	0.00063			10/28/21 18:00	11/03/21 12:22	1
/inyl chloride	<0.0019		0.0019	0.00082	0 0	¢	10/28/21 18:00	11/03/21 12:22	1
Kylenes, Total	<0.0037		0.0037	0.00059	mg/Kg	☆	10/28/21 18:00	11/03/21 12:22	1
	<u> </u>	0					-		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 134 75 - 121				10/28/21 18:00		1
1-Bromofluorobenzene (Surr)	91		75 - 131 75 - 126				10/28/21 18:00		1
Dibromofluoromethane	97		75 - 126					11/03/21 12:22	1
oluene-d8 (Surr)	95		75 - 124				10/20/27 18:00	11/03/21 12:22	1
Method: 8270D - Semivolat			(GC/MS)						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
,2,4-Trichlorobenzene	<0.19		0.19	0.042	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
,2-Dichlorobenzene	<0.19		0.19	0.046	mg/Kg	☆	11/02/21 06:56	11/09/21 12:58	1
,3-Dichlorobenzene	<0.19		0.19	0.044	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
,4-Dichlorobenzene	<0.19		0.19	0.050	mg/Kg	₽	11/02/21 06:56	11/09/21 12:58	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19		mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1

Lab Sample ID: 500-207560-2

Matrix: Solid Percent Solids: 85.1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.39	0.39	0.088	mg/Kg	☆	11/02/21 06:56	11/09/21 12:58	1
2,4,6-Trichlorophenol	<0.39	0.39	0.13	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
2,4-Dichlorophenol	<0.39	0.39	0.092	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
2,4-Dimethylphenol	<0.39 F2 F1 *-	0.39	0.15	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
2,4-Dinitrophenol	<0.78 F1	0.78	0.68	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
2,4-Dinitrotoluene	<0.19	0.19	0.062	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
2,6-Dinitrotoluene	<0.19	0.19	0.076	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
2-Chloronaphthalene	<0.19 F1	0.19	0.043	mg/Kg	₽	11/02/21 06:56	11/09/21 12:58	1
2-Chlorophenol	<0.19	0.19	0.066	mg/Kg	₽	11/02/21 06:56	11/09/21 12:58	1
2-Methylnaphthalene	<0.078	0.078	0.0071	mg/Kg	₽	11/02/21 06:56	11/09/21 12:58	1
2-Methylphenol	<0.19	0.19	0.062	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
2-Nitroaniline	<0.19	0.19		mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
2-Nitrophenol	<0.39	0.39		mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
3 & 4 Methylphenol	<0.19	0.19		mg/Kg		11/02/21 06:56	11/09/21 12:58	1
3,3'-Dichlorobenzidine	<0.19	0.19		mg/Kg	☆		11/09/21 12:58	1
3-Nitroaniline	<0.39 F2	0.39		mg/Kg	☆		11/09/21 12:58	1
4,6-Dinitro-2-methylphenol	<0.78 F2	0.78		mg/Kg		11/02/21 06:56		1
4-Bromophenyl phenyl ether	<0.19	0.19			¢	11/02/21 06:56	11/09/21 12:58	1
I-Chloro-3-methylphenol	<0.39	0.39		mg/Kg	¢		11/09/21 12:58	1
I-Chloroaniline	<0.78 F2	0.78		mg/Kg		11/02/21 06:56	11/09/21 12:58	
I-Chlorophenyl phenyl ether	<0.19	0.19		mg/Kg	÷.		11/09/21 12:58	1
-Nitroaniline	<0.39 F2	0.19		mg/Kg	÷.		11/09/21 12:58	1
-Nitrophenol	<0.78	0.78		mg/Kg			11/09/21 12:58	
Acenaphthene	<0.039	0.039			÷		11/09/21 12:58	1
Acenaphthylene	<0.039	0.039		0 0	÷		11/09/21 12:58	1
Anthracene	<0.039	0.039	0.0065				11/09/21 12:58	1
Benzo[a]anthracene	<0.039	0.039	0.00052	0 0	¢.	11/02/21 06:56		1
Benzo[a]pyrene	<0.039	0.039	0.0032		÷		11/09/21 12:58	1
Benzo[b]fluoranthene	<0.039	0.039	0.0073				11/09/21 12:58	
Benzo[g,h,i]perylene	<0.039 <0.039 F1	0.039		mg/Kg	¥ ¢		11/09/21 12:58	1
Benzo[k]fluoranthene	<0.039 F1 <0.039	0.039		mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
Benzolkjiluoranmene Bis(2-chloroethoxy)methane	<0.039	0.039		mg/Kg mg/Kg			11/09/21 12:58	1
Bis(2-chloroethyl)ether	<0.19	0.19		mg/Kg	¢ ×	11/02/21 06:56		1
Bis(2-chloroethyl)ether Bis(2-ethylhexyl) phthalate	<0.19	0.19	0.058		¢ ×	11/02/21 06:56	11/09/21 12:58 11/09/21 12:58	1
	<0.19 <0.19	0.19		mg/Kg mg/Kg	×	11/02/21 06:56		1
Butyl benzyl phthalate								1
	<0.19	0.19		mg/Kg	¢ ×	11/02/21 06:56		
Chrysene	<0.039	0.039		mg/Kg		11/02/21 06:56		1
Dibenz(a,h)anthracene	< 0.039	0.039	0.0075			11/02/21 06:56		1
Dibenzofuran	<0.19	0.19		mg/Kg	Å.		11/09/21 12:58	1
Diethyl phthalate	<0.19	0.19		mg/Kg	¢	11/02/21 06:56		1
Dimethyl phthalate	<0.19	0.19		mg/Kg		11/02/21 06:56		1
Di-n-butyl phthalate	<0.19	0.19		mg/Kg	¢		11/09/21 12:58	1
Di-n-octyl phthalate	<0.19	0.19		mg/Kg	¢	11/02/21 06:56		1
luoranthene	< 0.039	0.039	0.0072			11/02/21 06:56		1
Fluorene	<0.039	0.039	0.0054		¢	11/02/21 06:56		1
Hexachlorobenzene	<0.078	0.078	0.0090			11/02/21 06:56		1
Hexachlorobutadiene	<0.19	0.19		mg/Kg	¢	11/02/21 06:56		1
Hexachlorocyclopentadiene	<0.78 F1	0.78	0.22	mg/Kg	₽	11/02/21 06:56	11/09/21 12:58	1
Hexachloroethane	<0.19	0.19	0.059	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1

Lab Sample ID: 500-207560-2 Matrix: Solid

Percent Solids: 85.1

5

7

13 14

Method: 8270D - Semivolatile Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	< 0.039		0.039	0.010	mg/Kg	☆	11/02/21 06:56	11/09/21 12:58	1
Isophorone	<0.19		0.19	0.044	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
Naphthalene	<0.039		0.039	0.0060	mg/Kg	₽	11/02/21 06:56	11/09/21 12:58	1
Nitrobenzene	<0.039		0.039	0.0097	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
N-Nitrosodi-n-propylamine	<0.078		0.078	0.047	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
N-Nitrosodiphenylamine	<0.19		0.19	0.046	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
Pentachlorophenol	<0.78		0.78	0.62	mg/Kg	ф	11/02/21 06:56	11/09/21 12:58	1
Phenanthrene	<0.039		0.039	0.0054		¢	11/02/21 06:56	11/09/21 12:58	1
Phenol	<0.19		0.19		mg/Kg	₽	11/02/21 06:56	11/09/21 12:58	1
Pyrene	<0.039		0.039	0.0077	mg/Kg	¢	11/02/21 06:56	11/09/21 12:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	65		31 - 143				11/02/21 06:56	11/09/21 12:58	1
2-Fluorobiphenyl	77		43 - 145				11/02/21 06:56	11/09/21 12:58	1
2-Fluorophenol	114		31 - 166				11/02/21 06:56	11/09/21 12:58	1
Nitrobenzene-d5 (Surr)	75		37 - 147				11/02/21 06:56	11/09/21 12:58	1
Phenol-d5	94		30 - 153				11/02/21 06:56	11/09/21 12:58	1
Terphenyl-d14 (Surr)	83		42 - 157				11/02/21 06:56	11/09/21 12:58	1
Method: 6010B - Metals (ICP)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.64	· · · · · · · · · · · · · · · · · · ·	1.1	0.22	mg/Kg	— <u> </u>	11/08/21 11:07	11/09/21 16:51	1
Arsenic	9.0	-	0.55		mg/Kg	¢	11/08/21 11:07	11/09/21 16:51	1
Barium	37		0.55		mg/Kg	÷.	11/08/21 11:07	11/09/21 16:51	1
Beryllium	0.74		0.22		mg/Kg		11/08/21 11:07	11/09/21 16:51	
Boron	8.3	в	2.8		mg/Kg	÷.	11/08/21 11:07	11/09/21 16:51	1
Cadmium	0.074		0.11		mg/Kg	÷.	11/08/21 11:07	11/09/21 16:51	1
Calcium	71000		55		mg/Kg		11/08/21 11:07	11/10/21 13:29	
Chromium	13		0.55		mg/Kg	÷.	11/08/21 11:07	11/09/21 16:51	1
Cobalt	13		0.28		mg/Kg	÷.	11/08/21 11:07	11/09/21 16:51	1
Copper	26		0.55		mg/Kg	÷	11/08/21 11:07	11/09/21 16:51	
Iron	21000		11		mg/Kg	÷.	11/08/21 11:07	11/09/21 16:51	1
Lead	15		0.28		mg/Kg	÷.	11/08/21 11:07	11/09/21 16:51	1
Magnesium	32000		5.5		mg/Kg		11/08/21 11:07	11/09/21 16:51	 1
Manganese	420	в	0.55		mg/Kg	ġ.	11/08/21 11:07	11/09/21 16:51	. 1
Nickel	31	2	0.55		mg/Kg	ġ.		11/09/21 16:51	1
Potassium	1600		28		mg/Kg		11/08/21 11:07	11/09/21 16:51	
Selenium	< 0.55		0.55		mg/Kg	÷.	11/08/21 11:07		1
Silver	0.23	1	0.28		mg/Kg	¢	11/08/21 11:07	11/09/21 16:51	1
Sodium	0.23 110	•	55		mg/Kg			11/09/21 16:51	
Thallium	< 0.55		0.55		mg/Kg	¢		11/09/21 16:51	1
Vanadium	<0.55 18		0.33		mg/Kg	¢	11/08/21 11:07	11/09/21 16:51	1
	18 71		1.1		mg/Kg			11/09/21 16:51	י 1
Zinc			1.1	0.49	iliy/ity	¢	11/00/21 11.07	11/08/21 10.31	I
Method: 6010B - Metals (ICP)		Qualifier			l lmit		Duenersel	المعاد معا	
Method: 6010B - Metals (ICP) Analyte Iron		Qualifier	RL 0.40	MDL	Unit mg/L	<u>D</u>	Prepared 11/03/21 07:52	Analyzed	Dil Fac

Client: Andrews Engineering Inc. Project/Site: IDOT - AE7-040

Client Sample ID: 3068V-12-B02 Date Collected: 10/27/21 09:30 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207560-2

Matrix: Solid Percent Solids: 85.1

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/03/21 07:55	11/04/21 13:31	1
Barium	0.11	J	0.50	0.050	mg/L		11/03/21 07:55	11/04/21 13:31	1
Beryllium <	0.0040		0.0040	0.0040	mg/L		11/03/21 07:55	11/04/21 13:31	1
Boron	0.081	J	0.10	0.050	mg/L		11/03/21 07:55	11/04/21 13:31	1
Cadmium <	0.0050		0.0050	0.0020	mg/L		11/03/21 07:55	11/04/21 13:31	1
Calcium	11		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 13:31	1
Chromium	0.028		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:31	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:31	1
Iron	27		0.40	0.20	mg/L		11/03/21 07:55	11/04/21 13:31	1
Lead	0.011		0.0075	0.0075	mg/L		11/03/21 07:55	11/04/21 13:31	1
Manganese	0.11		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:31	1
Nickel	0.028		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:31	1
Potassium	9.1		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 13:31	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/21 07:55	11/04/21 13:31	1
Silver	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:31	1
Zinc	0.072	J	0.50	0.020	mg/L		11/03/21 07:55	11/04/21 13:31	1
Method: 6020A - Metals (ICP/MS) - S						_			
		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
,	0.0060		0.0060	0.0060	mg/L		11/03/21 07:55	11/15/21 19:56	1
Thallium <	0.0020		0.0020	0.0020	mg/L		11/03/21 07:55	11/15/21 19:56	1
Method: 7470A - Mercury (CVAA) - S	SPLP	East							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury <0	.00020		0.00020	0.00020	mg/L		11/03/21 10:25	11/04/21 10:25	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.024		0.019	0.0062	mg/Kg	¢	11/04/21 13:50	11/05/21 07:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	<0.28		0.28	0.14	mg/Kg SU	¢	11/09/21 14:23	11/09/21 16:56	1

Lab Sample ID: 500-207560-3

Matrix: Solid Percent Solids: 87.2

< 0.0017		0.0017	0.00058	malka		10/00/01 10:00	11/02/04 40:40	
		0.0011	0.00000	mg/kg	¢	10/20/21 10:00	11/03/21 12:48	1
<0.0017		0.0017	0.00055	mg/Kg	¢	10/28/21 18:00	11/03/21 12:48	1
<0.0017		0.0017	0.00074	mg/Kg	¢	10/28/21 18:00	11/03/21 12:48	1
<0.0017		0.0017	0.00059	mg/Kg	¢	10/28/21 18:00	11/03/21 12:48	1
<0.0017		0.0017			¢	10/28/21 18:00	11/03/21 12:48	1
<0.0043		0.0043			¢	10/28/21 18:00	11/03/21 12:48	1
<0.0017		0.0017			¢	10/28/21 18:00	11/03/21 12:48	1
<0.0017		0.0017			☆	10/28/21 18:00	11/03/21 12:48	1
<0.0043		0.0043			¢	10/28/21 18:00	11/03/21 12:48	1
<0.0043		0.0043		0 0	¢			1
< 0.0043		0.0043			☆			1
< 0.017		0.017		0 0	¢			1
< 0.0017		0.0017			¢.			1
< 0.0017		0.0017		0 0	¢			1
< 0.0017		0.0017		0 0	¢			1
	*+	0.0043						1
< 0.0043		0.0043			¢.			1
< 0.0043		0.0043			¢			1
	*+							1
								1
								1
				0 0				1
								1
				0 0				1
				0 0				T A
								1
				0 0				1
					¢ ×			1
					¢			1
				0 0	¢			1
					¢			1
< 0.0017					¢			1
< 0.0017		0.0017		0 0	\$			1
< 0.0017		0.0017		0 0	☆			1
<0.0035		0.0035	0.00055	mg/Kg	¢	10/28/21 18:00	11/03/21 12:48	1
%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac
<u></u>		70 - 134				10/28/21 18:00	11/03/21 12:48	1
93		75 - 131						1
99		75 - 126						1
94		75 - 124						1
								-
-		· · · · · ·		4 الم	-	Due	A	
	Qualifier							Dil Fac
		0.18						1
<0.18		0.18			\$			1
<0.18		0.18	0.041	mg/Kg	¢	11/02/21 06:56	11/09/21 14.00	1
<0.18		0.18		mg/Kg		11/02/21 06:56		
	 <0.0017 <0.0017 <0.0043 <0.0017 <0.0017 <0.0043 <0.0043 <0.0043 <0.0017 <0.0017	 <0.0017 <0.0017 <0.0043 <0.0017 <0.0017 <0.0043 <0.0043 <0.0043 <0.0017 <0.0017	<0.0017	<0.0017	<0.0017	<0.0017 0.0017 0.00059 mg/Kg fill <0.0017	<0.0017	<0.0017

Lab Sample ID: 500-207560-3

Matrix: Solid Percent Solids: 87.2

5

7

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.36	0.36	0.083	mg/Kg	— — —	11/02/21 06:56	11/09/21 14:00	1
2,4,6-Trichlorophenol	<0.36	0.36	0.12	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
2,4-Dichlorophenol	<0.36	0.36	0.086	mg/Kg	₽	11/02/21 06:56	11/09/21 14:00	1
2,4-Dimethylphenol	<0.36 *-	0.36	0.14	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
2,4-Dinitrophenol	<0.73	0.73	0.64	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
2,4-Dinitrotoluene	<0.18	0.18	0.058	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
2,6-Dinitrotoluene	<0.18	0.18	0.071	mg/Kg	₽	11/02/21 06:56	11/09/21 14:00	1
2-Chloronaphthalene	<0.18	0.18	0.040	mg/Kg	₽	11/02/21 06:56	11/09/21 14:00	1
2-Chlorophenol	<0.18	0.18	0.062	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
2-Methylnaphthalene	<0.073	0.073	0.0067	mg/Kg	₽	11/02/21 06:56	11/09/21 14:00	1
2-Methylphenol	<0.18	0.18	0.058	mg/Kg	¢.	11/02/21 06:56	11/09/21 14:00	1
2-Nitroaniline	<0.18	0.18	0.049	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
2-Nitrophenol	<0.36	0.36	0.086	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
3 & 4 Methylphenol	<0.18	0.18	0.061	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
3,3'-Dichlorobenzidine	<0.18	0.18	0.051	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
3-Nitroaniline	<0.36	0.36	0.11	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
4,6-Dinitro-2-methylphenol	<0.73	0.73	0.29	mg/Kg	₽	11/02/21 06:56	11/09/21 14:00	1
4-Bromophenyl phenyl ether	<0.18	0.18	0.048	mg/Kg	☆	11/02/21 06:56	11/09/21 14:00	1
4-Chloro-3-methylphenol	<0.36	0.36	0.12	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
4-Chloroaniline	<0.73	0.73		7 7	¢	11/02/21 06:56	11/09/21 14:00	1
4-Chlorophenyl phenyl ether	<0.18	0.18		mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
4-Nitroaniline	<0.36	0.36		mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
4-Nitrophenol	<0.73	0.73		mg/Kg	ф.	11/02/21 06:56	11/09/21 14:00	1
Acenaphthene	<0.036	0.036		mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Acenaphthylene	<0.036	0.036		mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Anthracene	<0.036	0.036	0.0061	mg/Kg		11/02/21 06:56	11/09/21 14:00	1
Benzo[a]anthracene	<0.036	0.036	0.0049	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Benzo[a]pyrene	<0.036	0.036	0.0070	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Benzo[b]fluoranthene	<0.036	0.036	0.0078	mg/Kg		11/02/21 06:56	11/09/21 14:00	1
Benzo[g,h,i]perylene	<0.036	0.036		mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Benzo[k]fluoranthene	<0.036	0.036	0.011	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Bis(2-chloroethoxy)methane	<0.18	0.18	0.037	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Bis(2-chloroethyl)ether	<0.18	0.18		mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Bis(2-ethylhexyl) phthalate	<0.18	0.18		mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Butyl benzyl phthalate	<0.18	0.18	0.069	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Carbazole	<0.18	0.18	0.091	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Chrysene	<0.036	0.036	0.0099		¢	11/02/21 06:56	11/09/21 14:00	1
Dibenz(a,h)anthracene	<0.036	0.036	0.0070				11/09/21 14:00	1
Dibenzofuran	<0.18	0.18		mg/Kg	¢		11/09/21 14:00	1
Diethyl phthalate	<0.18	0.18		mg/Kg	¢		11/09/21 14:00	1
Dimethyl phthalate	<0.18	0.18		mg/Kg	¢		11/09/21 14:00	
Di-n-butyl phthalate	<0.18	0.18		mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Di-n-octyl phthalate	<0.18	0.18		mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Fluoranthene	<0.036	0.036	0.0067	7 7	¢	11/02/21 06:56	11/09/21 14:00	
Fluorene	< 0.036	0.036		mg/Kg	¢		11/09/21 14:00	1
Hexachlorobenzene	<0.073	0.073	0.0084		¢	11/02/21 06:56	11/09/21 14:00	1
Hexachlorobutadiene	<0.18	0.18		mg/Kg		11/02/21 06:56	11/09/21 14:00	1
Hexachlorocyclopentadiene	<0.73	0.73		mg/Kg	¢		11/09/21 14:00	1
Hexachloroethane	<0.18	0.18		mg/Kg	¢		11/09/21 14:00	1

Lab Sample ID: 500-207560-3 Matrix: Solid

Percent Solids: 87.2

5

7

13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	< 0.036		0.036	0.0094	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Isophorone	<0.18		0.18	0.041	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Naphthalene	<0.036		0.036	0.0056	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Nitrobenzene	<0.036		0.036	0.0091	mg/Kg	₽	11/02/21 06:56	11/09/21 14:00	1
N-Nitrosodi-n-propylamine	<0.073		0.073	0.044	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
N-Nitrosodiphenylamine	<0.18		0.18	0.043	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Pentachlorophenol	<0.73		0.73	0.58	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Phenanthrene	<0.036		0.036	0.0051	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Phenol	<0.18		0.18	0.081	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Pyrene	<0.036		0.036	0.0072	mg/Kg	¢	11/02/21 06:56	11/09/21 14:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	60		31 - 143				11/02/21 06:56	11/09/21 14:00	1
2-Fluorobiphenyl	80		43 - 145				11/02/21 06:56	11/09/21 14:00	1
2-Fluorophenol	109		31 - 166				11/02/21 06:56	11/09/21 14:00	1
Nitrobenzene-d5 (Surr)	76		37 - 147				11/02/21 06:56	11/09/21 14:00	1
Phenol-d5	95		30 - 153				11/02/21 06:56	11/09/21 14:00	1
Terphenyl-d14 (Surr)	88		42 - 157				11/02/21 06:56	11/09/21 14:00	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.48	J	1.1	0.21	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Arsenic	7.8		0.54	0.18	mg/Kg	₽	11/08/21 11:07	11/09/21 16:54	1
Barium	32		0.54	0.061	mg/Kg	₽	11/08/21 11:07	11/09/21 16:54	1
Beryllium	0.63		0.21	0.050	mg/Kg	₽	11/08/21 11:07	11/09/21 16:54	1
Boron	9.4	В	2.7	0.25	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Cadmium	0.12	В	0.11	0.019	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Calcium	93000		54	9.1	mg/Kg	₽	11/08/21 11:07	11/10/21 13:32	5
Chromium	11		0.54	0.27	mg/Kg	₽	11/08/21 11:07	11/09/21 16:54	1
Cobalt	10		0.27	0.070	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Copper	22		0.54	0.15	mg/Kg	₽	11/08/21 11:07	11/09/21 16:54	1
Iron	19000		54	28	mg/Kg	₽	11/08/21 11:07	11/10/21 13:32	5
Lead	12		0.27	0.12	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Vlagnesium	51000		27	13	mg/Kg	¢	11/08/21 11:07	11/10/21 13:32	5
Manganese	370	В	0.54	0.078	mg/Kg	₽	11/08/21 11:07	11/09/21 16:54	1
Nickel	25		0.54	0.16	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Potassium	1700		27	9.5	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Selenium	<0.54		0.54	0.32	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Silver	0.24	J	0.27	0.069	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Sodium	130		54	7.9	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Thallium	0.51	J	0.54	0.27	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Vanadium	14		0.27	0.063	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Zinc	56		1.1	0.47	mg/Kg	¢	11/08/21 11:07	11/09/21 16:54	1
Method: 6010B - Metals (ICP)	- TCLP								
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
ron	<0.40		0.40	0.20	mg/L		11/03/21 07:52	11/03/21 18:31	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/21 07:52	11/03/21 18:31	1
			0.025		mg/L				

Client: Andrews Engineering Inc. Project/Site: IDOT - AE7-040

Client Sample ID: 3068V-12-B03 Date Collected: 10/27/21 09:40 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207560-3

Matrix: Solid Percent Solids: 87.2

5

6 7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.018	J	0.050	0.010	mg/L		11/03/21 07:55	11/04/21 13:35	1
Barium	0.18	J	0.50	0.050	mg/L		11/03/21 07:55	11/04/21 13:35	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/21 07:55	11/04/21 13:35	1
Boron	0.11		0.10	0.050	mg/L		11/03/21 07:55	11/04/21 13:35	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/21 07:55	11/04/21 13:35	1
Calcium	16		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 13:35	1
Chromium	0.050		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:35	1
Cobalt	0.014	J	0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:35	1
ron	46		0.40	0.20	mg/L		11/03/21 07:55	11/04/21 13:35	1
_ead	0.013		0.0075	0.0075	mg/L		11/03/21 07:55	11/04/21 13:35	1
Manganese	0.19		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:35	1
Nickel	0.051		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:35	1
Potassium	15		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 13:35	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/21 07:55	11/04/21 13:35	1
Silver	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:35	1
	0.13		0.50	0.020	mg/L		11/03/21 07:55	11/04/21 13:35	1
linc	0.15	0							
		0							
lethod: 6020A - Metals (I	CP/MS) - TCLP	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nethod: 6020A - Metals (I Analyte	CP/MS) - TCLP			MDL 0.0020		D	Prepared 11/03/21 07:52	Analyzed	
Nethod: 6020A - Metals (I Analyte Mallium	CP/MS) - TCLP Result <0.0020	Qualifier				<u>D</u>	<u> </u>		
Nethod: 6020A - Metals (I Malyte Thallium Nethod: 6020A - Metals (I	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP	Qualifier East	0.0020	0.0020	mg/L		11/03/21 07:52	11/16/21 15:15	1
Method: 6020A - Metals (IG Analyte Thallium Method: 6020A - Metals (IG Analyte	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result	Qualifier	0.0020 RL	0.0020 MDL	mg/L Unit	D	11/03/21 07:52 Prepared	11/16/21 15:15 Analyzed	Dil Fac
Nethod: 6020A - Metals (10 nalyte ihallium Nethod: 6020A - Metals (10 nalyte ntimony	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result <0.0060	Qualifier East	0.0020 RL 0.0060	0.0020 MDL 0.0060	mg/L Unit mg/L		11/03/21 07:52 Prepared 11/03/21 07:55	Analyzed 11/15/21 15:15	Dil Fac
Nethod: 6020A - Metals (10 nalyte hallium Nethod: 6020A - Metals (10 nalyte ntimony	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result	Qualifier East	0.0020 RL	0.0020 MDL	mg/L Unit mg/L		11/03/21 07:52 Prepared	11/16/21 15:15 Analyzed	Dil Fac
Nethod: 6020A - Metals (10 nalyte hallium Nethod: 6020A - Metals (10 nalyte ntimony 'hallium Nethod: 7470A - Mercury	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result <0.0060 0.0021 (CVAA) - SPLP	Qualifier East Qualifier East	0.0020 RL 0.0060 0.0020	0.0020 MDL 0.0060 0.0020	mg/L Unit mg/L mg/L	<u>D</u>	Prepared 11/03/21 07:52 Propared 11/03/21 07:55 11/03/21 07:55	Analyzed 11/15/21 15:15 Analyzed 11/15/21 19:58 11/15/21 19:58	Dil Fac
Method: 6020A - Metals (IG Analyte Thallium Method: 6020A - Metals (IG Analyte Antimony Thallium Method: 7470A - Mercury Analyte	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result <0.0060 0.0021 (CVAA) - SPLP Result	Qualifier East Qualifier	0.0020 RL 0.0060 0.0020 RL	0.0020 MDL 0.0060 0.0020 MDL	mg/L Unit mg/L mg/L Unit		Prepared 11/03/21 07:52 Prepared 11/03/21 07:55 11/03/21 07:55 Prepared	Analyzed 11/15/21 15:15 Analyzed 11/15/21 19:58 11/15/21 19:58 Analyzed	Dil Fac
Method: 6020A - Metals (IG malyte hallium Method: 6020A - Metals (IG malyte mtimony hallium Method: 7470A - Mercury malyte	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result <0.0060 0.0021 (CVAA) - SPLP	Qualifier East Qualifier East	0.0020 RL 0.0060 0.0020	0.0020 MDL 0.0060 0.0020	mg/L Unit mg/L mg/L Unit	<u>D</u>	Prepared 11/03/21 07:52 Propared 11/03/21 07:55 11/03/21 07:55	Analyzed 11/15/21 15:15 Analyzed 11/15/21 19:58 11/15/21 19:58	Dil Fac
Method: 6020A - Metals (Manalyte Thallium Method: 6020A - Metals (Manalyte Analyte Analyte Thallium Method: 7470A - Mercury Analyte Mercury	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result <0.0060 0.0021 (CVAA) - SPLP Result <0.00020	Qualifier East Qualifier East	0.0020 RL 0.0060 0.0020 RL	0.0020 MDL 0.0060 0.0020 MDL	mg/L Unit mg/L mg/L Unit	<u>D</u>	Prepared 11/03/21 07:52 Prepared 11/03/21 07:55 11/03/21 07:55 Prepared	Analyzed 11/15/21 15:15 Analyzed 11/15/21 19:58 11/15/21 19:58 Analyzed	Dil Fac
Aethod: 6020A - Metals (I malyte hallium Aethod: 6020A - Metals (I malyte ntimony hallium Aethod: 7470A - Mercury malyte fercury Aethod: 7471B - Mercury	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result <0.0060 0.0021 (CVAA) - SPLP Result <0.00020 (CVAA)	Qualifier East Qualifier East	0.0020 RL 0.0060 0.0020 RL	0.0020 MDL 0.0060 0.0020 MDL 0.00020	mg/L Unit mg/L mg/L Unit	<u>D</u>	Prepared 11/03/21 07:52 Prepared 11/03/21 07:55 11/03/21 07:55 Prepared	Analyzed 11/15/21 15:15 Analyzed 11/15/21 19:58 11/15/21 19:58 Analyzed	Dil Fac
Aethod: 6020A - Metals (I inalyte hallium Aethod: 6020A - Metals (I inalyte intimony hallium Aethod: 7470A - Mercury inalyte Aercury Aethod: 7471B - Mercury inalyte	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result <0.0060 0.0021 (CVAA) - SPLP Result <0.00020 (CVAA)	Qualifier East Qualifier East Qualifier	0.0020 RL 0.0060 0.0020 RL 0.00020 	0.0020 MDL 0.0060 0.0020 MDL 0.00020	mg/L Unit mg/L mg/L Unit mg/L	D	Prepared 11/03/21 07:52 Prepared 11/03/21 07:55 11/03/21 07:55 11/03/21 07:55 11/03/21 07:55 11/03/21 07:55	Analyzed 11/16/21 15:15 Analyzed 11/15/21 19:58 11/15/21 19:58 11/15/21 19:58 Analyzed 11/04/21 10:27	Dil Fac
Aethod: 6020A - Metals (IG Analyte Thallium Aethod: 6020A - Metals (IG Analyte Antimony Thallium Aethod: 7470A - Mercury Analyte Mercury Aethod: 7471B - Mercury Analyte Mercury	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result <0.0060 0.0021 (CVAA) - SPLP Result <0.00020 (CVAA) Result	Qualifier East Qualifier East Qualifier	0.0020 RL 0.0060 0.0020 RL 0.00020 RL	0.0020 MDL 0.0060 0.0020 MDL 0.00020	mg/L Unit mg/L mg/L Unit mg/L	D D	Prepared 11/03/21 07:52 Prepared 11/03/21 07:55 11/03/21 07:55 Prepared 11/03/21 10:25 Prepared	Analyzed 11/16/21 15:15 Analyzed 11/15/21 19:58 11/15/21 19:58 Analyzed 11/04/21 10:27 Analyzed	Dil Fac
Method: 6020A - Metals (IG Analyte Thallium Method: 6020A - Metals (IG Analyte Antimony Thallium Method: 7470A - Mercury Analyte Mercury Method: 7471B - Mercury Analyte Mercury General Chemistry	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result <0.0060 0.0021 (CVAA) - SPLP Result <0.00020 (CVAA) Result 0.024	Qualifier East Qualifier Qualifier	0.0020 RL 0.0060 0.0020 RL 0.00020 RL 0.0018 	0.0020 MDL 0.0060 0.0020 MDL 0.00020 MDL 0.0061	mg/L Unit mg/L mg/L Unit mg/L	D D	Prepared 11/03/21 07:52 Prepared 11/03/21 07:55 11/03/21 07:55 Prepared 11/03/21 10:25 Prepared 11/03/21 10:25 11/03/21 10:25	Analyzed 11/16/21 15:15 Analyzed 11/15/21 19:58 11/15/21 19:58 Analyzed 11/04/21 10:27 Analyzed 11/05/21 07:35	Dil Fac
Zinc Method: 6020A - Metals (IG Analyte Thallium Method: 6020A - Metals (IG Analyte Antimony Thallium Method: 7470A - Mercury Analyte Mercury Method: 7471B - Mercury Analyte Mercury General Chemistry Analyte Cyanide, Total	CP/MS) - TCLP Result <0.0020 CP/MS) - SPLP Result <0.0060 0.0021 (CVAA) - SPLP Result <0.00020 (CVAA) Result 0.024	Qualifier East Qualifier East Qualifier	0.0020 RL 0.0060 0.0020 RL 0.00020 RL	0.0020 MDL 0.0060 0.0020 MDL 0.00020 MDL 0.0061	mg/L Unit mg/L mg/L Unit mg/L Unit mg/Kg	D D D	Prepared 11/03/21 07:52 Prepared 11/03/21 07:55 11/03/21 07:55 Prepared 11/03/21 10:25 Prepared	Analyzed 11/16/21 15:15 Analyzed 11/15/21 19:58 11/15/21 19:58 Analyzed 11/04/21 10:27 Analyzed	Dil Fac

Lab Sample ID: 500-207560-8

Matrix: Solid Percent Solids: 87.0

nalyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Trichloroethane	< 0.0017		0.0017	0.00058	mg/Kg		10/28/21 18:00	11/03/21 14:58	1
1,2,2-Tetrachloroethane	<0.0017		0.0017	0.00055	mg/Kg	¢	10/28/21 18:00	11/03/21 14:58	1
1,2-Trichloroethane	<0.0017		0.0017	0.00074	mg/Kg	☆	10/28/21 18:00	11/03/21 14:58	1
,1-Dichloroethane	<0.0017		0.0017	0.00059	mg/Kg	☆	10/28/21 18:00	11/03/21 14:58	1
I,1-Dichloroethene	<0.0017		0.0017	0.00059	mg/Kg	☆	10/28/21 18:00	11/03/21 14:58	1
1,2-Dichloroethane	<0.0043		0.0043	0.0013	0 0	¢		11/03/21 14:58	1
1,2-Dichloropropane	<0.0017		0.0017	0.00045	mg/Kg	¢	10/28/21 18:00	11/03/21 14:58	1
1,3-Dichloropropene, Total	<0.0017		0.0017	0.00061		¢	10/28/21 18:00	11/03/21 14:58	1
2-Butanone (MEK)	< 0.0043		0.0043	0.0019		¢	10/28/21 18:00	11/03/21 14:58	1
2-Hexanone	<0.0043		0.0043	0.0013		☆	10/28/21 18:00	11/03/21 14:58	1
1-Methyl-2-pentanone (MIBK)	<0.0043		0.0043	0.0013		☆	10/28/21 18:00	11/03/21 14:58	1
Acetone	<0.017		0.017	0.0075		¢	10/28/21 18:00	11/03/21 14:58	1
Benzene	<0.0017		0.0017	0.00044		☆	10/28/21 18:00		1
Bromodichloromethane	<0.0017		0.0017	0.00035	0 0	¢	10/28/21 18:00		1
Bromoform	<0.0017		0.0017	0.00050		☆	10/28/21 18:00	11/03/21 14:58	1
Bromomethane	<0.0043	*+	0.0043	0.0016	7 7		10/28/21 18:00		1
Carbon disulfide	< 0.0043		0.0043	0.00090	0 0	¢		11/03/21 14:58	1
Carbon tetrachloride	<0.0017		0.0017	0.00050	0 0	¢	10/28/21 18:00		1
Chlorobenzene	<0.0017		0.0017	0.00064		¢	10/28/21 18:00	11/03/21 14:58	1
Chloroethane	< 0.0043	*+	0.0043	0.0013	0 0	₽	10/28/21 18:00	11/03/21 14:58	1
Chloroform	<0.0017		0.0017	0.00060		¢	10/28/21 18:00		1
Chloromethane	< 0.0043		0.0043	0.0017	0 0	 Ф	10/28/21 18:00		1
sis-1,2-Dichloroethene	< 0.0017		0.0017	0.00048		¢		11/03/21 14:58	1
cis-1,3-Dichloropropene	<0.0017		0.0017	0.00052		¢	10/28/21 18:00		1
Dibromochloromethane	<0.0017		0.0017	0.00057				11/03/21 14:58	1
Ethylbenzene	< 0.0017		0.0017	0.00083		¢		11/03/21 14:58	1
Methyl tert-butyl ether	< 0.0017		0.0017	0.00051	0 0	¢		11/03/21 14:58	1
Aethylene Chloride	< 0.0043		0.0043	0.0017			10/28/21 18:00		
Styrene	<0.0017		0.0040	0.00052		¢	10/28/21 18:00		1
Fetrachloroethene	< 0.0017		0.0017	0.00059		¢	10/28/21 18:00		1
Foluene	<0.0017		0.0017	0.00044			10/28/21 18:00		
rans-1,2-Dichloroethene	<0.0017		0.0017	0.00077		¢		11/03/21 14:58	1
rans-1,3-Dichloropropene	< 0.0017		0.0017	0.00061		¢	10/28/21 18:00		1
Trichloroethene	<0.0017		0.0017	0.00058			10/28/21 18:00		· · · · · · 1
/inyl chloride	<0.0017		0.0017	0.00076		¢	10/28/21 18:00		1
(ylenes, Total	< 0.0035		0.0035	0.00055			10/28/21 18:00		1
• ·					5 5				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	103	_	70 - 134				10/28/21 18:00		1
-Bromofluorobenzene (Surr)	93		75 - 131				10/28/21 18:00	11/03/21 14:58	1
Dibromofluoromethane	99		75 - 126				10/28/21 18:00	11/03/21 14:58	1
oluene-d8 (Surr)	95		75 - 124				10/28/21 18:00	11/03/21 14:58	1
/lethod: 8270D - Semivolat	ile Organia Ca	mounda	(GC/MS)						
Method: 8270D - Semivolat Analyte	-	Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,2,4-Trichlorobenzene			0.18		mg/Kg		·	11/09/21 15:45	1
,2,4- Inchlorobenzene	<0.18		0.18		mg/Kg	¥ ¢		11/09/21 15:45	1
,3-Dichlorobenzene	<0.18		0.18		mg/Kg mg/Kg	Ψ ¢		11/09/21 15:45	1
,3-Dichlorobenzene	<0.18 <0.18		0.18		mg/Kg mg/Kg	ф		11/09/21 15:45	1
2,2'-oxybis[1-chloropropane]	<0.18		0.18	0.047		났	1102121 00:00	1100121 10.40	I

Lab Sample ID: 500-207560-8

Matrix: Solid Percent Solids: 87.0

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	Į
2,4,5-Trichlorophenol	<0.36	0.36		mg/Kg	 ☆	11/02/21 06:56	11/09/21 15:45	1	
2,4,6-Trichlorophenol	<0.36	0.36		mg/Kg	₽	11/02/21 06:56	11/09/21 15:45	1	
2,4-Dichlorophenol	<0.36	0.36		mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
2,4-Dimethylphenol	<0.36 *-	0.36		mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
2,4-Dinitrophenol	<0.73	0.73		mg/Kg		11/02/21 06:56	11/09/21 15:45	1	
2,4-Dinitrotoluene	<0.18	0.18		mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
2,6-Dinitrotoluene	<0.18	0.18	0.072	mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
2-Chloronaphthalene	<0.18	0.18		mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
2-Chlorophenol	<0.18	0.18	0.062	mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
2-Methylnaphthalene	<0.073	0.073	0.0067	mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
2-Methylphenol	<0.18	0.18	0.058	mg/Kg		11/02/21 06:56	11/09/21 15:45	1	
2-Nitroaniline	<0.18	0.18		mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
2-Nitrophenol	<0.36	0.36		mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
3 & 4 Methylphenol	<0.18	0.18		mg/Kg		11/02/21 06:56	11/09/21 15:45	1	
3,3'-Dichlorobenzidine	<0.18	0.18			¢	11/02/21 06:56	11/09/21 15:45	1	
3-Nitroaniline	<0.36	0.36	0.11	mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
4,6-Dinitro-2-methylphenol	<0.73	0.73		mg/Kg			11/09/21 15:45	1	1
4-Bromophenyl phenyl ether	<0.18	0.18		mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
4-Chloro-3-methylphenol	<0.36	0.36		mg/Kg	⇔	11/02/21 06:56	11/09/21 15:45	1	
4-Chloroaniline	<0.73	0.73		mg/Kg	₽	11/02/21 06:56	11/09/21 15:45	1	
4-Chlorophenyl phenyl ether	<0.18	0.18		mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
I-Nitroaniline	<0.36	0.36		mg/Kg	☆		11/09/21 15:45	1	
4-Nitrophenol	<0.73	0.73		mg/Kg			11/09/21 15:45		
Acenaphthene	<0.036	0.036	0.0065		¢		11/09/21 15:45	1	
Acenaphthylene	<0.036	0.036	0.0048		☆		11/09/21 15:45	1	
Anthracene	<0.036	0.036	0.0061		¢		11/09/21 15:45		
Benzo[a]anthracene	<0.036	0.036	0.0049		¢		11/09/21 15:45	1	
Benzo[a]pyrene	<0.036	0.036	0.0070		⇔	11/02/21 06:56	11/09/21 15:45	1	
Benzo[b]fluoranthene	<0.036	0.036	0.0079			11/02/21 06:56	11/09/21 15:45		
Benzo[g,h,i]perylene	<0.036	0.036		mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1	
Benzo[k]fluoranthene	<0.036	0.036		mg/Kg	⇔	11/02/21 06:56	11/09/21 15:45	1	
Bis(2-chloroethoxy)methane	<0.18	0.18		mg/Kg			11/09/21 15:45	1	
Bis(2-chloroethyl)ether	<0.18	0.18		mg/Kg	⇔	11/02/21 06:56	11/09/21 15:45	1	
Bis(2-ethylhexyl) phthalate	<0.18	0.18		mg/Kg	⇔	11/02/21 06:56	11/09/21 15:45	1	
Butyl benzyl phthalate	<0.18	0.18		mg/Kg	₽	11/02/21 06:56	11/09/21 15:45	1	
Carbazole	<0.18	0.18		mg/Kg			11/09/21 15:45	1	
Chrysene	<0.036	0.036	0.0099			11/02/21 06:56		1	
Dibenz(a,h)anthracene	<0.036	0.036	0.0070				11/09/21 15:45		
Dibenzofuran	<0.18	0.18		mg/Kg			11/09/21 15:45	1	
Diethyl phthalate	<0.18	0.18		mg/Kg			11/09/21 15:45	1	
Dimethyl phthalate	<0.18	0.18		mg/Kg			11/09/21 15:45		
Di-n-butyl phthalate	<0.18	0.18		mg/Kg	¢		11/09/21 15:45	1	
Di-n-octyl phthalate	<0.18	0.18		mg/Kg	¢		11/09/21 15:45	1	
Fluoranthene	<0.036	0.036	0.0067				11/09/21 15:45		
Fluorene	<0.036	0.036	0.0051		¢		11/09/21 15:45	1	
Hexachlorobenzene	<0.073	0.073	0.0084		¢		11/09/21 15:45	1	
Hexachlorobutadiene	<0.18	0.18		mg/Kg			11/09/21 15:45		
Hexachlorocyclopentadiene	<0.73	0.73		mg/Kg	¢		11/09/21 15:45	1	
Hexachloroethane	<0.18	0.73		mg/Kg			11/09/21 15:45	1	

Lab Sample ID: 500-207560-8

Matrix: Solid Percent Solids: 87.0

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ndeno[1,2,3-cd]pyrene	< 0.036		0.036	0.0094	mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1
sophorone	<0.18		0.18	0.041	mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1
Naphthalene	<0.036		0.036	0.0056	mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1
Nitrobenzene	<0.036		0.036	0.0091	mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1
N-Nitrosodi-n-propylamine	<0.073		0.073	0.044	mg/Kg	⇔	11/02/21 06:56	11/09/21 15:45	1
N-Nitrosodiphenylamine	<0.18		0.18	0.043	mg/Kg	¢	11/02/21 06:56	11/09/21 15:45	1
Pentachlorophenol	<0.73		0.73		mg/Kg		11/02/21 06:56	11/09/21 15:45	1
Phenanthrene	<0.036		0.036	0.0051		¢	11/02/21 06:56	11/09/21 15:45	1
Phenol	<0.18		0.18		mg/Kg	¢		11/09/21 15:45	1
Pyrene	<0.036		0.036	0.0072		¢	11/02/21 06:56		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	60		31 - 143				11/02/21 06:56	11/09/21 15:45	1
2-Fluorobiphenyl	63		43 - 145				11/02/21 06:56	11/09/21 15:45	1
2-Fluorophenol	100		31 - 166				11/02/21 06:56	11/09/21 15:45	1
Nitrobenzene-d5 (Surr)	60		37 - 147				11/02/21 06:56	11/09/21 15:45	1
Phenol-d5	84		30 - 153				11/02/21 06:56	11/09/21 15:45	1
Terphenyl-d14 (Surr)	73		42 - 157				11/02/21 06:56	11/09/21 15:45	1
Method: 6010B - Metals (I	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.57	J	1.1	0.21	mg/Kg	¢	11/08/21 11:07	11/09/21 17:16	1
Arsenic	8.5		0.55	0.19	mg/Kg	¢	11/08/21 11:07	11/09/21 17:16	1
Barium	57		0.55	0.062	mg/Kg	¢	11/08/21 11:07	11/09/21 17:16	1
Beryllium	0.66		0.22	0.051	mg/Kg	₽	11/08/21 11:07	11/09/21 17:16	1
Boron	8.7	В	2.7	0.25	mg/Kg	¢	11/08/21 11:07	11/09/21 17:16	1
Cadmium	0.11	В	0.11	0.020	mg/Kg	⇔	11/08/21 11:07	11/09/21 17:16	1
Calcium	76000		55	9.2	mg/Kg	∴	11/08/21 11:07	11/10/21 13:45	5
Chromium	13		0.55		mg/Kg	¢	11/08/21 11:07	11/09/21 17:16	1
Cobalt	11		0.27	0.071	mg/Kg	¢	11/08/21 11:07	11/09/21 17:16	1
Copper	25		0.55	0.15	mg/Kg		11/08/21 11:07	11/09/21 17:16	1
ron	21000		55	28	mg/Kg	¢	11/08/21 11:07	11/10/21 13:45	5
_ead	13		0.27	0.13	mg/Kg	¢	11/08/21 11:07	11/09/21 17:16	1
Vagnesium	40000		27		mg/Kg		11/08/21 11:07	11/10/21 13:45	
Vanganese	400	в	0.55	0.079	mg/Kg	¢		11/09/21 17:16	1
Nickel	28	_	0.55		mg/Kg	¢		11/09/21 17:16	1
Potassium	1600		27		mg/Kg	 ф		11/09/21 17:16	1
Selenium	<0.55		0.55		mg/Kg	÷		11/09/21 17:16	1
Silver	0.00		0.33		mg/Kg	¢		11/09/21 17:16	1
Sodium	190		55		mg/Kg		11/08/21 11:07		· · · · · · · · · · · · · · · · · · ·
Thallium	0.31		0.55		mg/Kg	¢		11/09/21 17:16	1
Vanadium	0.31		0.33		mg/Kg	÷		11/09/21 17:16	1
			1.1		mg/Kg	¥	11/08/21 11:07		י 1
Zinc	64		1.1	0.40	mg/ixg	745	11/00/21 11.07	11/03/21 17.10	I
Method: 6010B - Metals (I Analyte		t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	quuintor	0.050	0.010			11/03/21 07:55	11/04/21 13:50	1
Barium	<0.030		0.050	0.010	-			11/04/21 13:50	1
			0.50		-			11/04/21 13:50	1
Beryllium	<0.0040		0.0040	0.0040	ing/∟		11/03/21 07.33	11/04/21 13.30	1

Job ID: 500-207560-1

Lab Sample ID: 500-207560-8 Matrix: Solid

Percent Solids: 87.0

5

6 7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	< 0.0050		0.0050	0.0020	mg/L		11/03/21 07:55	11/04/21 13:50	1
Calcium	17		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 13:50	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:50	1
Cobalt	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:50	1
Iron	0.54		0.40	0.20	mg/L		11/03/21 07:55	11/04/21 13:50	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/21 07:55	11/04/21 13:50	1
Manganese	0.037		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:50	1
Nickel	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:50	1
Potassium	<2.5		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 13:50	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/21 07:55	11/04/21 13:50	1
Silver	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 13:50	1
Zinc	<0.50		0.50	0.020	mg/L		11/03/21 07:55	11/04/21 13:50	1
Method: 6020A - Metals (ICP/			-			_	_		
Method: 6020A - Metals (ICP/ Analyte Antimony Thallium	Result <0.0060	Qualifier	RL 0.0060 0.0020	MDL 0.0060 0.0020	mg/L	<u>D</u>	Prepared 11/03/21 07:55 11/03/21 07:55	Analyzed 11/15/21 20:08 11/15/21 20:08	Dil Fac
Method: 6020A - Metals (ICP/ Analyte Antimony Thallium Method: 7470A - Mercury (CV	Result <0.0060 <0.0020	Qualifier East	0.0060	0.0060	mg/L mg/L		11/03/21 07:55 11/03/21 07:55	11/15/21 20:08 11/15/21 20:08	1
Method: 6020A - Metals (ICP/ Analyte Antimony Thallium	Result <0.0060 <0.0020	Qualifier	0.0060	0.0060	mg/L mg/L Unit	D	11/03/21 07:55	11/15/21 20:08	1
Method: 6020A - Metals (ICP/ Analyte Antimony Thallium Method: 7470A - Mercury (CV Analyte	Result <0.0060	Qualifier East	0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L Unit		11/03/21 07:55 11/03/21 07:55 Prepared	11/15/21 20:08 11/15/21 20:08 Analyzed	1 1 Dil Fac
Method: 6020A - Metals (ICP/ Analyte Antimony Thallium Method: 7470A - Mercury (CV Analyte Mercury	Result <0.0060	Qualifier East	0.0060 0.0020 RL	0.0060 0.0020 MDL	mg/L mg/L Unit mg/L		11/03/21 07:55 11/03/21 07:55 Prepared	11/15/21 20:08 11/15/21 20:08 Analyzed	1 1 Dil Fac
Method: 6020A - Metals (ICP/ Analyte Antimony Thallium Method: 7470A - Mercury (CV Analyte Mercury Method: 7471B - Mercury (CV	Result <0.0060	Qualifier East Qualifier	0.0060 0.0020 RL 0.00020	0.0060 0.0020 MDL 0.00020	mg/L mg/L Unit mg/L Unit	<u>D</u>	11/03/21 07:55 11/03/21 07:55 Prepared 11/03/21 10:25	11/15/21 20:08 11/15/21 20:08 Analyzed 11/04/21 10:42	1 1 Dil Fac
Method: 6020A - Metals (ICP/ Analyte Antimony Thallium Method: 7470A - Mercury (CV Analyte Mercury Method: 7471B - Mercury (CV Analyte Mercury General Chemistry	Result <0.0060	Qualifier East Qualifier Qualifier	0.0060 0.0020 RL 0.00020 RL 0.018	0.0060 0.0020 MDL 0.00020 MDL 0.0061	mg/L mg/L Unit mg/L Unit mg/Kg	D	11/03/21 07:55 Prepared 11/03/21 10:25 Prepared 11/03/21 10:25 Prepared 11/04/21 13:50	Analyzed 11/05/21 20:08 11/15/21 20:08 11/15/21 20:08 Analyzed 11/04/21 10:42 Analyzed 11/05/21 07:48	1 1 Dil Fac 1 Dil Fac
Method: 6020A - Metals (ICP/ Analyte Antimony Thallium Method: 7470A - Mercury (CV Analyte Mercury Method: 7471B - Mercury (CV Analyte Mercury General Chemistry Analyte	Result <0.0060	Qualifier East Qualifier	0.0060 0.0020 RL 0.00020 RL 0.018	0.0060 0.0020 MDL 0.00020 MDL 0.0061 MDL	mg/L mg/L Unit mg/L Unit mg/Kg Unit	D D D	11/03/21 07:55 11/03/21 07:55 Prepared 11/03/21 10:25 Prepared 11/04/21 13:50 Prepared	Analyzed 11/05/21 20:08 11/15/21 20:08 Analyzed 11/04/21 10:42 Analyzed 11/05/21 07:48 Analyzed	1 1 Dil Fac 1 Dil Fac
Method: 6020A - Metals (ICP/ Analyte Antimony Thallium Method: 7470A - Mercury (CV Analyte Mercury Method: 7471B - Mercury (CV Analyte Mercury General Chemistry	Result <0.0060	Qualifier East Qualifier Qualifier	0.0060 0.0020 RL 0.00020 RL 0.018	0.0060 0.0020 MDL 0.00020 MDL 0.0061 MDL 0.12	mg/L mg/L Unit mg/L Unit mg/Kg	D	11/03/21 07:55 Prepared 11/03/21 10:25 Prepared 11/03/21 10:25 Prepared 11/04/21 13:50	Analyzed 11/05/21 20:08 11/15/21 20:08 11/15/21 20:08 Analyzed 11/04/21 10:42 Analyzed 11/05/21 07:48	1 1 Dil Fac 1 Dil Fac

Lab Sample ID: 500-207560-9

Matrix: Solid Percent Solids: 80.2

nalyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Trichloroethane	< 0.0019		0.0019	0.00063	mg/Kg	¢	10/28/21 18:00	11/03/21 15:24	1
,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00060	mg/Kg	¢	10/28/21 18:00	11/03/21 15:24	1
,1,2-Trichloroethane	<0.0019		0.0019	0.00080	mg/Kg	¢	10/28/21 18:00	11/03/21 15:24	1
,1-Dichloroethane	<0.0019		0.0019	0.00064	mg/Kg	₽	10/28/21 18:00	11/03/21 15:24	1
I,1-Dichloroethene	<0.0019		0.0019	0.00064	mg/Kg	¢	10/28/21 18:00	11/03/21 15:24	1
I,2-Dichloroethane	<0.0047		0.0047	0.0015	mg/Kg	¢	10/28/21 18:00	11/03/21 15:24	1
1,2-Dichloropropane	<0.0019		0.0019	0.00048	mg/Kg	¢	10/28/21 18:00	11/03/21 15:24	1
1,3-Dichloropropene, Total	<0.0019		0.0019	0.00066	mg/Kg	¢	10/28/21 18:00	11/03/21 15:24	1
2-Butanone (MEK)	<0.0047		0.0047	0.0021		¢	10/28/21 18:00	11/03/21 15:24	1
2-Hexanone	<0.0047		0.0047	0.0015	mg/Kg	¢	10/28/21 18:00	11/03/21 15:24	1
I-Methyl-2-pentanone (MIBK)	<0.0047		0.0047	0.0014		¢	10/28/21 18:00	11/03/21 15:24	1
Acetone	<0.019		0.019	0.0081	mg/Kg	¢	10/28/21 18:00	11/03/21 15:24	1
Benzene	<0.0019		0.0019	0.00048		¢	10/28/21 18:00	11/03/21 15:24	1
Bromodichloromethane	<0.0019		0.0019	0.00038		¢	10/28/21 18:00	11/03/21 15:24	1
Bromoform	<0.0019		0.0019	0.00055		¢	10/28/21 18:00	11/03/21 15:24	1
Bromomethane	<0.0047	*+	0.0047	0.0018			10/28/21 18:00	11/03/21 15:24	1
Carbon disulfide	<0.0047		0.0047	0.00097		¢	10/28/21 18:00	11/03/21 15:24	1
Carbon tetrachloride	< 0.0019		0.0019	0.00054		₽	10/28/21 18:00		1
Chlorobenzene	<0.0019		0.0019	0.00069			10/28/21 18:00		
Chloroethane	< 0.0047	*+	0.0047	0.0014		¢	10/28/21 18:00		1
Chloroform	< 0.0019		0.0019	0.00065	0 0	¢	10/28/21 18:00		1
Chloromethane	< 0.0047		0.0047	0.0019			10/28/21 18:00		
sis-1,2-Dichloroethene	< 0.0019		0.0019	0.00052	0 0	¢	10/28/21 18:00		1
sis-1,3-Dichloropropene	< 0.0019		0.0019	0.00056	0 0	¢	10/28/21 18:00		1
Dibromochloromethane	< 0.0019		0.0019	0.00061			10/28/21 18:00		
Ethylbenzene	< 0.0019		0.0019	0.00089		¢	10/28/21 18:00		1
Methyl tert-butyl ether	< 0.0019		0.0019	0.00055	0 0	¢	10/28/21 18:00		1
Methylene Chloride	< 0.0047		0.0047	0.0018	7 7		10/28/21 18:00		
Styrene	< 0.0019		0.0047	0.00056		¢	10/28/21 18:00		1
Tetrachloroethene	< 0.0019		0.0019	0.00064		¢		11/03/21 15:24	1
oluene	<0.0019		0.0019	0.00047				11/03/21 15:24	
rans-1,2-Dichloroethene	< 0.0019		0.0019	0.00083		¢		11/03/21 15:24	1
rans-1,3-Dichloropropene	< 0.0019		0.0019	0.00066		¢	10/28/21 18:00		1
Trichloroethene	<0.0019		0.0019	0.00063			10/28/21 18:00		
/inyl chloride	< 0.0019		0.0019	0.00083	0 0	÷	10/28/21 18:00		1
Kylenes, Total	< 0.0037		0.0013	0.00060	0 0		10/28/21 18:00		1
	-0.0001		0.0001	0.00000		*	10/20/21 10:00	1100/21 10.24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	104		70 - 134				10/28/21 18:00	11/03/21 15:24	1
-Bromofluorobenzene (Surr)	90		75 - 131					11/03/21 15:24	1
Dibromofluoromethane	99		75 - 126				10/28/21 18:00	11/03/21 15:24	1
oluene-d8 (Surr)	95		75 - 124				10/28/21 18:00	11/03/21 15:24	1
/lethod: 8270D - Semivolat	ilo Organio Co	moundo							
Analyte		Qualifier	(GC/WS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,2,4-Trichlorobenzene	<0.20		0.20		mg/Kg		11/02/21 06:56		1
,2-Dichlorobenzene	<0.20		0.20		mg/Kg	¢	11/02/21 06:56		1
,3-Dichlorobenzene	<0.20		0.20		mg/Kg	¢	11/02/21 06:56		1
,4-Dichlorobenzene	<0.20 <0.20		0.20		mg/Kg	¥.	11/02/21 06:56		
2,2'-oxybis[1-chloropropane]	<0.20		0.20		mg/Kg	74		11/09/21 16:06	1

Lab Sample ID: 500-207560-9

Matrix: Solid Percent Solids: 80.2

5

7

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.39	0.39	0.090	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
2,4,6-Trichlorophenol	<0.39	0.39	0.14	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
2,4-Dichlorophenol	<0.39	0.39	0.094	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
2,4-Dimethylphenol	<0.39 *-	0.39	0.15	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
2,4-Dinitrophenol	<0.80	0.80	0.70	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
2,4-Dinitrotoluene	<0.20	0.20	0.063	mg/Kg	☆	11/02/21 06:56	11/09/21 16:06	1
2,6-Dinitrotoluene	<0.20	0.20	0.078	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
2-Chloronaphthalene	<0.20	0.20	0.044	mg/Kg	₽	11/02/21 06:56	11/09/21 16:06	1
2-Chlorophenol	<0.20	0.20	0.068	mg/Kg	☆	11/02/21 06:56	11/09/21 16:06	1
2-Methylnaphthalene	<0.080	0.080	0.0073	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
2-Methylphenol	<0.20	0.20	0.064	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
2-Nitroaniline	<0.20	0.20	0.053	mg/Kg	⇔	11/02/21 06:56	11/09/21 16:06	1
2-Nitrophenol	<0.39	0.39	0.094	mg/Kg	⇔	11/02/21 06:56	11/09/21 16:06	1
3 & 4 Methylphenol	<0.20	0.20	0.066	mg/Kg		11/02/21 06:56	11/09/21 16:06	1
3,3'-Dichlorobenzidine	<0.20	0.20		mg/Kg	⇔	11/02/21 06:56	11/09/21 16:06	1
3-Nitroaniline	<0.39	0.39		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
4,6-Dinitro-2-methylphenol	<0.80	0.80		mg/Kg		11/02/21 06:56	11/09/21 16:06	
4-Bromophenyl phenyl ether	<0.20	0.20		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
4-Chloro-3-methylphenol	<0.39	0.39		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
4-Chloroaniline	<0.80	0.80		mg/Kg		11/02/21 06:56	11/09/21 16:06	1
4-Chlorophenyl phenyl ether	<0.20	0.20		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
4-Nitroaniline	<0.39	0.39		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
4-Nitrophenol	<0.80	0.80		mg/Kg		11/02/21 06:56	11/09/21 16:06	
Acenaphthene	<0.039	0.039	0.0071	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Acenaphthylene	<0.039	0.039		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Anthracene	<0.039	0.039		mg/Kg		11/02/21 06:56	11/09/21 16:06	1
Benzo[a]anthracene	<0.039	0.039		mg/Kg	☆	11/02/21 06:56	11/09/21 16:06	1
Benzo[a]pyrene	<0.039	0.039		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Benzo[b]fluoranthene	<0.039	0.039		mg/Kg		11/02/21 06:56	11/09/21 16:06	1
Benzo[g,h,i]perylene	< 0.039	0.039		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Benzo[k]fluoranthene	<0.039	0.039		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Bis(2-chloroethoxy)methane	<0.20	0.20		mg/Kg	 ф	11/02/21 06:56	11/09/21 16:06	1
Bis(2-chloroethyl)ether	<0.20	0.20		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Bis(2-ethylhexyl) phthalate	<0.20	0.20		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Butyl benzyl phthalate	<0.20	0.20		mg/Kg		11/02/21 06:56	11/09/21 16:06	1
Carbazole	<0.20	0.20		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Chrysene	< 0.039	0.039		mg/Kg	¢		11/09/21 16:06	1
Dibenz(a,h)anthracene	<0.039	0.039	0.0077				11/09/21 16:06	
Dibenzofuran	<0.20	0.20		mg/Kg	☆	11/02/21 06:56	11/09/21 16:06	1
Diethyl phthalate	<0.20	0.20		mg/Kg	¢		11/09/21 16:06	1
Dimethyl phthalate	<0.20	0.20		mg/Kg		11/02/21 06:56	11/09/21 16:06	
Di-n-butyl phthalate	<0.20	0.20		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Di-n-octyl phthalate	<0.20	0.20		mg/Kg	¢		11/09/21 16:06	1
Fluoranthene	<0.039	0.039	0.0074			11/02/21 06:56	11/09/21 16:06	
Fluorene	<0.039	0.039	0.0056		¢	11/02/21 06:56	11/09/21 16:06	1
Hexachlorobenzene	<0.080	0.080	0.0092		¢	11/02/21 06:56	11/09/21 16:06	1
Hexachlorobutadiene	<0.20	0.20		mg/Kg			11/09/21 16:06	1
Hexachlorocyclopentadiene	<0.20	0.80		mg/Kg	¢		11/09/21 16:06	1
Hexachloroethane	<0.80	0.80		mg/Kg	÷		11/09/21 16:06	1

Lab Sample ID: 500-207560-9

Matrix: Solid Percent Solids: 80.2

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ndeno[1,2,3-cd]pyrene	< 0.039		0.039	0.010	mg/Kg	— —	11/02/21 06:56	11/09/21 16:06	
sophorone	<0.20		0.20	0.045	mg/Kg		11/02/21 06:56	11/09/21 16:06	• • • • • •
Naphthalene	<0.039		0.039	0.0061	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Vitrobenzene	<0.039		0.039	0.0099	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
N-Nitrosodi-n-propylamine	<0.080		0.080		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Pentachlorophenol	<0.80		0.80		mg/Kg	¢.	11/02/21 06:56	11/09/21 16:06	1
Phenanthrene	<0.039		0.039	0.0055		¢	11/02/21 06:56	11/09/21 16:06	1
Phenol	<0.20		0.20		mg/Kg	¢	11/02/21 06:56	11/09/21 16:06	1
Pyrene	<0.039		0.039	0.0079		¢	11/02/21 06:56	11/09/21 16:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	61		31 - 143				11/02/21 06:56	11/09/21 16:06	1
2-Fluorobiphenyl	69		43 - 145				11/02/21 06:56	11/09/21 16:06	1
P-Fluorophenol	102		31 - 166					11/09/21 16:06	1
litrobenzene-d5 (Surr)	65		37 - 147					11/09/21 16:06	
Phenol-d5	87		30 - 153					11/09/21 16:06	
Terphenyl-d14 (Surr)	80		42 - 157					11/09/21 16:06	
Method: 6010B - Metals (ICP)									
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ntimony	0.44	J	1.2	0.23	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
rsenic	4.6		0.59	0.20	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
Barium	100		0.59	0.067	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
Beryllium	0.83		0.24	0.055	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	1
Boron	1.5	JB	2.9	0.27	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
Cadmium	0.16	В	0.12	0.021	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
Calcium	3100		12	2.0	mg/Kg	☆	11/08/21 11:07	11/09/21 17:19	
Chromium	16		0.59	0.29	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
Cobalt	10		0.29	0.077	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
Copper	27		0.59	0.16	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
ron	17000		12	6.1	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
.ead	17		0.29	0.14	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	1
/lagnesium	3500		5.9	2.9	mg/Kg	¢.	11/08/21 11:07	11/09/21 17:19	
langanese	460	В	0.59	0.085	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
lickel	32		0.59	0.17	mg/Kg	¢	11/08/21 11:07	11/09/21 17:19	
Potassium	840		29		mg/Kg	₽	11/08/21 11:07	11/09/21 17:19	
Selenium	<0.59		0.59		mg/Kg	☆	11/08/21 11:07		1
Silver	0.44		0.29		mg/Kg	☆	11/08/21 11:07		1
Sodium	310		59		mg/Kg		11/08/21 11:07		1
Fhallium	0.35	J	0.59		mg/Kg	¢		11/09/21 17:19	1
/anadium	22		0.29		mg/Kg	¢		11/09/21 17:19	1
Zinc	59		1.2		mg/Kg		11/08/21 11:07		
Method: 6010B - Metals (ICP)	- TCLP								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	< 0.0040		0.0040	0.0040	mg/L		11/03/21 07:52	11/03/21 18:50	1
Chromium	<0.025		0.025	0.010	ma/l		11/03/21 07:52	11/03/21 18:50	4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	< 0.0040		0.0040	0.0040	mg/L		11/03/21 07:52	11/03/21 18:50	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/21 07:52	11/03/21 18:50	1
Iron	<0.40		0.40	0.20	mg/L		11/03/21 07:52	11/03/21 18:50	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/21 07:52	11/03/21 18:50	1

Client Sample Results

рΗ

Client Sample ID: 3068V-12-B07 Date Collected: 10/27/21 10:40 Date Received: 10/28/21 10:50

Job	ID:	500-207560-1
000	ю.	201000

Lab Sample ID: 500-207560-9

Matrix: Solid Percent Solids: 80.2

5

7

13

Date Received. 10/20/21 10	1.50							Percent Solid	15. 00.2
Method: 6010B - Metals (ICP) - TCLP (Coi	ntinued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.012	J	0.025	0.010	mg/L		11/03/21 07:52	11/03/21 18:50	1
Method: 6010B - Metals (ICP) - SPLP Eas	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.010	J	0.050	0.010	mg/L		11/03/21 07:55	11/04/21 14:09	1
Barium	0.61		0.50	0.050	mg/L		11/03/21 07:55	11/04/21 14:09	1
Beryllium	0.0043		0.0040	0.0040	mg/L		11/03/21 07:55	11/04/21 14:09	1
Boron	0.093	J	0.10	0.050	mg/L		11/03/21 07:55	11/04/21 14:09	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/21 07:55	11/04/21 14:09	1
Calcium	14		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 14:09	1
Chromium	0.11		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:09	1
Cobalt	0.017	J	0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:09	1
Iron	89		0.40	0.20	mg/L		11/03/21 07:55	11/04/21 14:09	1
Lead	0.032		0.0075	0.0075	mg/L		11/03/21 07:55	11/04/21 14:09	1
Manganese	0.30		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:09	1
Nickel	0.083		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:09	1
Potassium	12		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 14:09	1
Selenium	< 0.050		0.050	0.020	mg/L		11/03/21 07:55	11/04/21 14:09	1
Silver	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:09	1
Zinc	0.22	J	0.50	0.020	mg/L		11/03/21 07:55	11/04/21 14:09	1
Method: 6020A - Metals (I	CP/MS) - SPLP	East							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	< 0.0060		0.0060	0.0060	mg/L		11/03/21 07:55	11/15/21 20:20	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/21 07:55	11/15/21 20:20	1
Method: 7470A - Mercury	(CVAA) - SPLP	East							
Analyte	. ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/21 10:25	11/04/21 10:49	1
Method: 7471B - Mercury	(CVAA)								
Analyte	· · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.040		0.019	0.0062	mg/Kg		11/04/21 13:50	11/05/21 07:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	<0.30		0.30	0.15	mg/Kg	¢	11/09/21 14:23	11/09/21 17:11	1

11/01/21 21:03

1

0.2

7.6

0.2 SU

Qualifiers

Qualifier Description	4
LCS and/or LCSD is outside acceptance limits, high biased.	
ISTD response or retention time outside acceptable limits.	5
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
AOA	6
Qualifier Description	
LCS and/or LCSD is outside acceptance limits, low biased.	7
MS and/or MSD recovery exceeds control limits.	
MS/MSD RPD exceeds control limits	8
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
	9
Qualifier Description	
Compound was found in the blank and sample.	10
Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is <	
the upper reporting limits for both. Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
nistry	
Qualifier Description	
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	13
These commonly used abbreviations may or may not be present in this report.	14
Listed under the "D" column to designate that the result is reported on a dry weight basis	
	LCS and/or LCSD is outside acceptance limits, high biased. ISTD response or retention time outside acceptable limits. Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. VOA Qualifier Description LCS and/or LCSD is outside acceptance limits, low biased. MS and/or MSD recovery exceeds control limits. MS/MSD RPD exceeds control limits Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Qualifier Description Compound was found in the blank and sample. Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < the upper reporting limits for both.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

Definitions/Glossary

Client: Andrews Engineering Inc. Project/Site: IDOT - AE7-040 Job ID: 500-207560-1

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client: Andrews Engineering Inc. 1 roæctj/ ite: IDSO- AE7-0T0

5

13

Laboratory: Eurofins TestAmerica, Chicago Unless otherwise noted, all analytes for this laboratory were covered under each accreditationjcertification below. Authority Program **Identification Number Expiration Date** Illinois NELA1 IL00035 0T-29-22 Ohe following analytes are included in this report, but the laboratory is not certified by the governing authority. Ohis list may include analytes for which the agency does not offer certification. Analyte Analysis Method 1 rep Method Matrix 6020A 3040A / olid Antimony 6020A 3040A / olid Ohallium 7T70A 7T70A / olid Mercury 8260B 5035 / olid 4,3-Dichloropropene, Ootal Moisture / olid 1 ercent Moisture / olid 1 ercent / olids Moisture

CHAIN OF CUSTODY RECORD

	NDREWS GINEERING			CHA	AIN	OF	CU	ѕтс	DY	RE	CO	RD									1 2
Client Conta	ct	Laborator	у						Proje	ct Nar	ne	ACT	(\$40	A	500	0-20756	50 COC		COC Np	1
Andrews Eng 3300 Ginger (Springfield, IL	Creek Drive		America - 2417 Bon University	d Street						ct No						- 006	10	40	A	of / Lab Job No 500	3 4
217-787-2334 Contact Coll	L.	Phone Contact	708-534-5 Dick Wrig	200 Jht		-	c com	1		215 pler:		10 10</td <td></td> <td>51</td> <td>3D</td> <td>□^{2 B}</td> <td>D</td> <td>Oth</td> <td>her</td> <td>207560 Sample Temp 3.3, 1.4</td> <td>5</td>		51	3D	□ ^{2 B}	D	Oth	her	207560 Sample Temp 3.3, 1.4	5
Special Instru	ctions:							-				ALYS								Matrix Key:	1
* If Total RCRA Limit (Table ** If SPLP resu	r complete parameter lists and min A metal (mg/kg) result exceeds the 3), run TCLP for that specific RCF It exceeds Class I Standard, run T ide exceeds MAC, run ASTM D39	Soil Toxicity A metal CLP for that	y Characteri t specific pa	rameter	0	Cs	< & MTBE		Pesticides	()	Total Metals	SPLP/** TCLP Metals	Cyanide		Solids	e Characterization				W Water S Soil SL Sludge S Sediment L Leachate DW Drinking Water OL Oil O Other	7 8 9 10
Lab ID	Sample ID	Sample Date	Sample Time	Matrix	VOCs	SVOCs	BETX	PNAs	Pesti	PCBs	* Tot	SPLF	0 ***	Hd	% So	Waste				Comments	11
	3068V-12-BUI	10/27	0920	5	X	X					X	X	X	X	Х						112
2	30684-12-302		0930		1	i								1	1						
3	3068V-12-BO3		0940				1														13
4	30681-12-1304		0950																		14
5	3068V-12-B05-1		1000																		15
6	30684-12-305-2		1010																		
7	30684-12-B05-2 DUP		1020																		
R	30684-12-1306		1030																		
9	3068-12-307		1040		*	4					~	\checkmark	\checkmark	V	V						
10	Trip Blank#2																				
Relinquished b	y Airkin			Date/Tim		1		Recei	ved by	5	tor									Date/Time 10 - 28 - 21 9:43	A
Relinquished b	Vaula Slorer	- .// /		Date/Tim	1/2	19:		Recei	ved b	N	4		- 							Date/Time	
Relinquished b	y 	Y.N.	al i	Date/Tim	/	01		Recei	VIA	×-	bil	ne	_		1.11		184.005\5\1	15/22	7	Date/Time 1050	

Page 87-07/88

L:VDOTVAE7 PTB 184-006\Subcontractors\COC Templates\AE7 COC Template (TAL).xlsx

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification

by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the locati	on of the source of the ur	ncontaminated soi	I)	
Project Name:	FAP 21 (US 2	20)	Office Phone N	Number, if available:
,	ion (address, including nu e Street (southest corner	,		
City: Roselle	Э	State: IL	Zip Code: <u>60172</u>	
County: DuPag	е	Township: Bloo	mingdale	
Lat/Long of approxi	mate center of site in dec	imal degrees (DD	.ddddd) to five decimal	l places (e.g., 40.67890, -90.12345):
Latitude: <u>41.97167</u>	Longitude: -	88.11965		
(Decimal	Degrees)	(-Decimal Degree	s)	
Identify how the lat/	long data were determine	ed:		
🔿 GPS 🕢 Map	o Interpolation 🔘 Photo	Interpolation) Survey () Other	
IEPA Site Number(s), if assigned: BOL:	0434825048	BOW:	BOA:
Approximate Start	Date (mm/dd/yyyy): <u>N/A</u>	\	Approximate End D	Date (mm/dd/yyyy): <u>N/A</u>
Estimated Volume	of debris (cu. Yd.): <u>987</u>	7		
		C		
Site Owner	ator Information for	Source Site	Site Operator	
Name:	Illinois Department o	f Transportation	Name:	Illinois Department of Transportation
Street Address:	201 We	est Center Court	Street Address:	201 West Center Court
PO Box:			PO Box:	
City:	Schaumburg	State: IL	City:	Schaumburg State: IL
Zip Code:	60196-1096 Phone:	847-705-4122	Zip Code:	60196-1096 Phone: 847-705-4122
Contact:	Irma	Romiti-Johnson	Contact:	Irma Romiti-Johnson
Email, if available:	Irma Romiti-Johns	on@illinois.gov	Email, if available:	Irma Romiti-Johnson@illinois.gov

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Uncontaminated Soil Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

LOCATIONS 3068V-17-B01, 3068V-17-B02, 3068V-17-B03 AND 3068V-17-B04 WERE SAMPLED ADJACENT TO SITE 3068V-17. SEE TABLE 3g AND FIGURES 3 AND 5 OF THE FINAL PRELIMINARY SITE INVESTIGATION REPORT.

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201 (g), 1100.205(a), 1100.610]:

EUROFINS/TEST AMERICA ANALYTICAL REPORT - TEST AMERICA JOB ID NUMBER: 500-207572-1.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I, <u>Savo Radulovic, L.P.G</u> (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Andrews Engineering,	Inc.		
Street Address:	420 Eisenhower Lane	North		
City:	Lombard	State:	IL	Zip Code: <u>60148</u>
Phone:	630-953-3332			
Savo Radulovic				
Printed Name:			-	
Son	- Ruiz		_	Apr 18, 2022
Licensed Professional Licensed Professional				Date:
				SAVO RADULOVIC 196-001303 P.Lor L.P.G. Seal:

Uncontaminated Soil Certification

ILLINO19

The following table summarizes the results of laboratory analysis of site soil samples. In reading the table,

- Only parameters reported at concentrations above the most stringent MAC are listed.
- Samples with the notation "No Contaminants of Concern Noted" were below the most stringent MAC.

The laboratory report for site soils follows this summary table.

Volatile Organic Compounds (mg/kg)	
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane	
1.1.2-Trichloroethane	
1,1-Dichloroethane	
1,1-Dichloroethene	
1,2-Dichloroethane	
1,2-Dichloropropane	
1,3-Dichloropropene	
2-Butanone (MEK)	
2-Hexanone (MBK)	
4-Methyl-2-pentanone (MIBK)	
Acetone	
Benzene	
Bromodichloromethane	
Bromoform	
Bromomethane	
Carbon disulfide	
Carbon Tetrachloride	
Chlorobenzene	
Chloroethane	
Chloroform	
Chloromethane	
cis-1,2-Dichloroethene	
cis-1,3-Dichloropropene	
Dibromochloromethane	
Ethylbenzene	
Methylene chloride	
Methyl-tert-butyl-ether (MTBE)	
Styrene	
Tetrachloroethene	
Toluene	
trans-1,2-Dichloroethene	
trans-1,3-Dichloropropene Trichloroethene	
Vinyl acetate	
Vinyl chloride	
Xylenes, total	
Semivolatile Organic Compounds (mg/kg)	
1,2,4-Trichlorobenzene	
1,2-Dichlorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
2,4,5-Trichlorophenol	
2,4,6-Trichlorophenol	
2,4-Dichlorophenol	
2,4-Dimethylphenol	
2,4-Dinitrophenol	
-,	

ANALYTICAL PARAMETERS

Semivolatile Organic Compounds (mg/k	g)
2,6-Dinitrotoluene	
2-Chloronaphthalene	
2-Chlorophenol	
2-Methylnaphthalene	
2-Methylphenol	
2-Nitroaniline	
2-Nitrophenol	
3,3´-Dichlorobenzidine	
3-Nitroaniline	
4,6-Dinitro-2-methylphenol	
4-Bromophenyl phenyl ether	
4-Chloro-3-methylphenol	
4-Chloroaniline	
4-Chlorophenyl phenyl ether	
4-Methylphenol	
4-Nitroaniline	
4-Nitrophenol	
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Bis(2-chloroethoxy)methane	
Bis(2-chloroethyl)ether	
Bis(2-chloroisopropyl)ether	
Bis(2-ethylhexyl)phthalate	
Butyl benzyl phthalate	
Carbazole	
Chrysene	
Dibenzo(a,h)anthracene	
Dibenzofuran	
Diethyl phthalate	
Dimethyl phthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno(1,2,3-cd)pyrene	
Isophorone	
Naphthalene	
Nitrobenzene	

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS
Semivolatile Organic Compounds (mg/kg)
N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
Pentachlorophenol
Phenanthrene
Phenol
Pyrene
Inorganic Compounds, Total (mg/kg)
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Copper
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Cyanide
TCLP/SPLP Inorganics (mg/L)
Antimony
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Cyanide

ANALYTICAL PARAMETERS

ISGS Site 3068V-17

Woodland Windows

and Doors

Sample ID	3068V-17-B01	3068V-17-B02	3068V-17-B03-1	3068V-17-B03-2	3068V-17-B04		Maximu	m Allowable Con	contration	
Sample Depth (ft)	0-3	0-3	0-6.5	6.5-13	0-3		Waximu	III Allowable Colli	Jentration	
Sample Date	10/27/2021	10/27/2021	10/27/2021	10/27/2021	10/27/2021			³ Within a	⁴ Within	
PID	0	0	0	0	0	1	² Outside a	Populated	Chicago	⁵ Within a
Sample pH	7.4	7.6	8.4	8.1	8.4	¹ Most	Populated	non-Metropolitan	Corporate	Metropolitan
Matrix	Soil	Soil	Soil	Soil	Soil	Stringent	Area	Statistical Area	Limits	Statistical Area
Semivolatile Organic Cor	npounds (mg/kg)									
Benzo(a)pyrene	0.42 1,2	0.1 1,2	ND	ND	ND	0.09	0.09	0.98	1.3	2.1

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-207572-1 Client Project/Site: IDOT - AE7-040

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Andrews Engineering Inc. 3300 Ginger Creek Drive Springfield, Illinois 62711

Attn: Ms. Colleen Grey

Rillk

Authorized for release by: 11/17/2021 11:46:01 AM

Richard Wright, Senior Project Manager (708)746-0045 Richard.Wright@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Lab Sample ID: 500-207572-1

Matrix: Solid Percent Solids: 79.9

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	<0.0020		0.0020	0.00067	mg/Kg		10/28/21 18:00		1
,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00064		¢	10/28/21 18:00	11/04/21 18:37	1
,1,2-Trichloroethane	<0.0020		0.0020	0.00086	mg/Kg	₽	10/28/21 18:00	11/04/21 18:37	1
I,1-Dichloroethane	<0.0020		0.0020	0.00069	mg/Kg		10/28/21 18:00	11/04/21 18:37	1
I,1-Dichloroethene	< 0.0020		0.0020	0.00069	0 0	¢		11/04/21 18:37	1
, 2-Dichloroethane	< 0.0050		0.0050	0.0016	0 0	¢		11/04/21 18:37	1
I,2-Dichloropropane	< 0.0020		0.0020	0.00052	0 0		10/28/21 18:00		1
,3-Dichloropropene, Total	<0.0020		0.0020	0.00070		¢		11/04/21 18:37	1
2-Butanone (MEK)	<0.0050		0.0050	0.0022		¢			1
2-Hexanone	<0.0050		0.0050	0.0016			10/28/21 18:00		1
I-Methyl-2-pentanone (MIBK)	< 0.0050		0.0050	0.0015		¢			1
Acetone	<0.020		0.020	0.0087		¢			1
Benzene	< 0.0020		0.0020	0.00051		¢			1
Bromodichloromethane	<0.0020		0.0020		0 0	¢			1
Bromoform	<0.0020		0.0020	0.00059	0 0	¢		11/04/21 18:37	1
Bromomethane	< 0.0020		0.0050	0.0019			10/28/21 18:00		1
Carbon disulfide	< 0.0050		0.0050	0.0019	0 0	¢		11/04/21 18:37	1
Carbon tetrachloride	<0.0020		0.0030	0.00058	0 0	¢		11/04/21 18:37	1
Chlorobenzene	<0.0020		0.0020	0.00074				11/04/21 18:37	1
Chloroethane	< 0.0020		0.0020	0.00074	0 0		10/28/21 18:00		1
Chloroform	< 0.0030		0.0030	0.00070		÷			1
Chloromethane	<0.0020		0.0020	0.00070					· · · · · · · · 1
siis-1,2-Dichloroethene	< 0.0030		0.0030	0.0020		÷.			1
cis-1,3-Dichloropropene	< 0.0020		0.0020	0.00050	0 0	÷			1
Dibromochloromethane	<0.0020		0.0020	0.00066		¥ 			1
Ethylbenzene	<0.0020		0.0020	0.00006		¢			1
Invidenzene Methyl tert-butyl ether	<0.0020		0.0020	0.00098	0 0	ф.			1
Methylene Chloride	<0.0020		0.0020	0.00039		¥ 			
Styrene	< 0.0050		0.0050	0.0020		ф.			1
Tetrachloroethene	<0.0020		0.0020	0.00061	0 0	ф.		11/04/21 18:37	1
Foluene	<0.0020		0.0020	0.00068		₩ 	10/28/21 18:00		1
rans-1,2-Dichloroethene	<0.0020		0.0020	0.00051		ф.		11/04/21 18:37	1
rans-1,2-Dichloropropene	<0.0020		0.0020	0.00089		ф.		11/04/21 18:37	1
rans-1,3-Dichloropropene	<0.0020		0.0020	0.00070		₩ ₩ ¢	10/28/21 18:00		······
ricnioroetnene /inyl chloride	<0.0020		0.0020	0.00068		ф ф		11/04/21 18:37 11/04/21 18:37	1
/inyl chloride (ylenes, Total	<0.0020		0.0020	0.00089			10/28/21 18:00		1
Gionoo, ioidi	~ 0.0040		0.0040	0.00064		¢	. U. ZUIZI 10:UU		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	100		30 - 174				10/28/21 18:00		1
-Bromofluorobenzene (Surr)	90		35 - 171				10/28/21 18:00	11/04/21 18:73	1
Dibromofluoromethane	99		35 - 126				10/28/21 18:00	11/04/21 18:73	1
oluene-d8 (Surr)	95		35 - 124					11/04/21 18:73	1
lethod: 8270D - Semivolat	ile Organic Co	mpounds	(GC/MS)						
nalyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,2,4-Trichlorobenzene	<0.20		0.20		mg/Kg		· · · · · · · · · · · · · · · · · · ·		1
,2-Dichlorobenzene	<0.20		0.20		mg/Kg		11/02/21 13:40		1
,3-Dichlorobenzene	<0.20		0.20		mg/Kg	¢	11/02/21 13:40		1
,4-Dichlorobenzene	<0.20		0.20		mg/Kg	¥	11/02/21 13:40		· · · · · · · · · · · · · · · · · · ·
,4-Dichlorobenzene 2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.051		<i>ب</i> ر:			I

Lab Sample ID: 500-207572-1

Matrix: Solid Percent Solids: 79.9

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
2,4,5-Trichlorophenol	<0.39	0.39		mg/Kg	☆	11/02/21 13:40	11/10/21 13:41	1	
2,4,6-Trichlorophenol	<0.39	0.39		mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1	
2,4-Dichlorophenol	<0.39	0.39		mg/Kg	☆	11/02/21 13:40	11/10/21 13:41	1	
2,4-Dimethylphenol	<0.39	0.39		mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1	
2,4-Dinitrophenol	<0.80	0.80		mg/Kg		11/02/21 13:40	11/10/21 13:41	1	
2,4-Dinitrotoluene	<0.20	0.20		mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1	
2,6-Dinitrotoluene	<0.20	0.20		mg/Kg	¢		11/10/21 13:41	1	
2-Chloronaphthalene	<0.20	0.20		mg/Kg		11/02/21 13:40	11/10/21 13:41	1	
2-Chlorophenol	<0.20	0.20	0.068	mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1	
2-Methylnaphthalene	0.0096 J	0.080	0.0073	mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1	
2-Methylphenol	<0.20	0.20		mg/Kg		11/02/21 13:40	11/10/21 13:41		
2-Nitroaniline	<0.20	0.20		mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1	
2-Nitrophenol	<0.39	0.39		mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1	
3 & 4 Methylphenol	<0.20	0.20		mg/Kg					
3,3'-Dichlorobenzidine	<0.20	0.20		mg/Kg	☆	11/02/21 13:40	11/10/21 13:41	1	
3-Nitroaniline	<0.39	0.39		mg/Kg	☆	11/02/21 13:40	11/10/21 13:41	1	
4,6-Dinitro-2-methylphenol	<0.80	0.80		mg/Kg		11/02/21 13:40	11/10/21 13:41	1	ľ
4-Bromophenyl phenyl ether	<0.20	0.20		mg/Kg	¢		11/10/21 13:41	1	
4-Chloro-3-methylphenol	<0.39	0.39		mg/Kg	☆		11/10/21 13:41	1	
4-Chloroaniline	<0.80	0.80		mg/Kg		11/02/21 13:40		1	
4-Chlorophenyl phenyl ether	<0.20	0.20		mg/Kg	☆		11/10/21 13:41	1	
4-Nitroaniline	<0.39	0.39		mg/Kg	¢		11/10/21 13:41	1	
4-Nitrophenol	<0.80	0.80		mg/Kg		11/02/21 13:40			
Acenaphthene	0.030 J	0.039	0.0071		¢		11/10/21 13:41	1	
Acenaphthylene	0.018 J	0.039	0.0052		¢		11/10/21 13:41	1	
Anthracene	0.065	0.039	0.0066				11/10/21 13:41		
Benzo[a]anthracene	0.39	0.039	0.0053		¢			1	
Benzo[a]pyrene	0.42	0.039	0.0077		¢	11/02/21 13:40	11/10/21 13:41	1	
Benzo[b]fluoranthene	0.66	0.039	0.0086			11/02/21 13:40	11/10/21 13:41		
Benzo[g,h,i]perylene	0.16	0.039		mg/Kg	÷.	11/02/21 13:40	11/10/21 13:41	1	
Benzo[k]fluoranthene	0.30	0.039		mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1	
Bis(2-chloroethoxy)methane	<0.20	0.20		mg/Kg		11/02/21 13:40		1	
Bis(2-chloroethyl)ether	<0.20	0.20		mg/Kg	¢			1	
Bis(2-ethylhexyl) phthalate	<0.20	0.20		mg/Kg		11/02/21 13:40		1	
Butyl benzyl phthalate	0.085 J	0.20		mg/Kg		11/02/21 13:40		1	
Carbazole	<0.20	0.20		mg/Kg		11/02/21 13:40		1	
Chrysene	0.43	0.039		mg/Kg		11/02/21 13:40		1	
Dibenz(a,h)anthracene	0.053	0.039	0.0077			11/02/21 13:40			
Dibenzofuran	<0.20	0.20		mg/Kg		11/02/21 13:40		1	
Diethyl phthalate	<0.20	0.20		mg/Kg		11/02/21 13:40		1	
Dimethyl phthalate	<0.20	0.20		mg/Kg		11/02/21 13:40			
Di-n-butyl phthalate	<0.20	0.20		mg/Kg	¢		11/10/21 13:41	1	
Di-n-octyl phthalate	<0.20	0.20		mg/Kg	¢		11/10/21 13:41	1	
Fluoranthene	0.83	0.039	0.0074			11/02/21 13:40			
Fluorene	0.038 J	0.039	0.0074		¢		11/10/21 13:41	1	
Hexachlorobenzene	<0.080	0.039	0.0092		¢		11/10/21 13:41	1	
Hexachlorobutadiene	<0.20	0.080		mg/Kg		11/02/21 13:40		· · · · · · · · · · · · · · · · · · ·	
Hexachlorocyclopentadiene	<0.20	0.20		mg/Kg			11/10/21 13:41	1	
Hexachlorocyclopentadiene	<0.80	0.80		mg/Kg	¢ ¢		11/10/21 13:41	1	

Client Sample Results

Client Sample ID: 3068V-17-B01 Date Collected: 10/27/21 12:10 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207572-1

Matrix: Solid Percent Solids: 79.9

5

7

Method: 8270D - Semivolatile Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	0.18		0.039	0.010	mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1
sophorone	<0.20		0.20	0.045	mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	
Naphthalene	0.011	J	0.039	0.0061	mg/Kg	₽	11/02/21 13:40	11/10/21 13:41	1
Vitrobenzene	<0.039		0.039	0.0099	mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.049	mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	¢	11/02/21 13:40	11/10/21 13:41	1
Pentachlorophenol	<0.80		0.80	0.64	mg/Kg	∴	11/02/21 13:40	11/10/21 13:41	1
Phenanthrene	0.45		0.039	0.0055		¢	11/02/21 13:40	11/10/21 13:41	1
Phenol	<0.20		0.20		mg/Kg	÷	11/02/21 13:40	11/10/21 13:41	
Pyrene	0.82		0.039	0.0079		₽	11/02/21 13:40	11/10/21 13:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	64		71 - 147				11/02/21 17:40	11/10/21 17:41	1
2-Fluorobiphenyl	30		47 - 145				11/02/21 17:40	11/10/21 17:41	1
2-Fluorophenol	92		71 - 166				11/02/21 17:40	11/10/21 17:41	
Nitrobenzene-d5 (Surr)	60		73 - 143				11/02/21 17:40	11/10/21 17:41	1
Phenol-d5	39		70 - 157				11/02/21 17:40	11/10/21 17:41	1
Terphenyl-d14 (Surr)	90		42 - 153				11/02/21 17:40	11/10/21 17:41	
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Intimony	0.52	J	1.2	0.24	mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
Arsenic	6.9		0.61	0.21	mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
Barium	160		0.61	0.070	mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
Beryllium	0.84		0.25	0.057	mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
Boron	7.8	В	3.1	0.29	mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
Cadmium	0.45	В	0.12	0.022	mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
Calcium	49000		61	10	mg/Kg	¢	11/08/21 11:07	11/10/21 13:51	
Chromium	17		0.61	0.30	mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
Cobalt	9.4		0.31	0.080	mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
Copper	28		0.61	0.17	mg/Kg	ф.	11/08/21 11:07	11/09/21 17:28	
ron	18000		12	6.4	mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
_ead	59		0.31	0.14	mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
A agnesium	24000		6.1		mg/Kg	∴	11/08/21 11:07	11/09/21 17:28	
Manganese	570	В	0.61		mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
lickel	24		0.61		mg/Kg	¢	11/08/21 11:07	11/09/21 17:28	
Potassium	1500		31		mg/Kg	÷.		11/09/21 17:28	
Selenium	0.47	Л	0.61		mg/Kg	¢		11/09/21 17:28	
Silver	0.32	-	0.31		mg/Kg	¢	11/08/21 11:07		
Sodium	600		61		mg/Kg		11/08/21 11:07		
Thallium	0.49	л	0.61		mg/Kg	¢		11/09/21 17:28	
/anadium	22		0.31		mg/Kg	¢		11/09/21 17:28	
linc	22 110		1.2		mg/Kg		11/08/21 11:07		
Method: 6010B - Metals (ICP) ·									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte									
•	<0.40		0.40	0.20	mg/L		11/04/21 08:00	11/04/21 19:03	1
Iron Lead	<0.40 <0.0075		0.40	0.20 0.0075	-		11/04/21 08:00 11/04/21 08:00	11/04/21 19:03 11/04/21 19:03	1

Lab Sample ID: 500-207572-1

Matrix: Solid Percent Solids: 79.9

5

6 7

Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic 0	0.030	J	0.050	0.010	mg/L		11/05/21 07:49	11/08/21 16:18	1
Barium	0.35	J	0.50	0.050	mg/L		11/05/21 07:49	11/08/21 16:18	1
Beryllium <0.	.0040		0.0040	0.0040	mg/L		11/05/21 07:49	11/08/21 16:18	1
Boron	0.14		0.10	0.050	mg/L		11/05/21 07:49	11/08/21 16:18	1
Cadmium <0.	.0050		0.0050	0.0020	mg/L		11/05/21 07:49	11/08/21 16:18	1
Calcium	18		2.5	0.50	mg/L		11/05/21 07:49	11/08/21 16:18	1
Chromium 0	0.069		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:18	1
Cobalt 0	0.015	J	0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:18	1
Iron	68		0.40	0.20	mg/L		11/05/21 07:49	11/08/21 16:18	1
Lead	0.12		0.0075	0.0075	mg/L		11/05/21 07:49	11/08/21 16:18	1
Manganese	0.38		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:18	1
Nickel 0).062		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:18	1
Potassium	13		2.5	0.50	mg/L		11/05/21 07:49	11/09/21 14:32	1
Selenium <0	0.050		0.050	0.020	mg/L		11/05/21 07:49	11/08/21 16:18	1
Silver <	0.025		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:18	1
Zinc	0.30	J	0.50	0.020	mg/L		11/05/21 07:49	11/08/21 16:18	1
Method: 6020A - Metals (ICP/MS) - SF	PLP I	East							
Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony <0.	.0060		0.0060	0.0060	mg/L		11/05/21 07:49	11/15/21 20:52	1
	.0020		0.0020	0.0020	mg/L		11/05/21 07:49	11/15/21 20:52	1
Method: 7470A - Mercury (CVAA) - SI	PLP	East							
Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury <0.0	0020		0.00020	0.00020	mg/L		11/05/21 09:50	11/08/21 10:20	1
Method: 7471B - Mercury (CVAA)									
Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury 0).046		0.020	0.0067	mg/Kg	¢	11/05/21 13:35	11/08/21 07:27	1
General Chemistry									
Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	<0.29		0.29	0.14	mg/Kg	¢	11/10/21 17:48	11/10/21 19:12	1

Lab Sample ID: 500-207572-2 Matrix: Solid

Percent Solids: 76.6

nalyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Trichloroethane	<0.0022		0.0022	0.00074	mg/Kg	☆	10/28/21 18:00	11/04/21 19:03	1
,1,2,2-Tetrachloroethane	<0.0022		0.0022			¢	10/28/21 18:00	11/04/21 19:03	1
,1,2-Trichloroethane	<0.0022		0.0022	0.00095	mg/Kg	₽	10/28/21 18:00	11/04/21 19:03	1
,1-Dichloroethane	<0.0022		0.0022	0.00076	mg/Kg	¢	10/28/21 18:00	11/04/21 19:03	1
1,1-Dichloroethene	<0.0022		0.0022	0.00076	mg/Kg	₽	10/28/21 18:00	11/04/21 19:03	1
1,2-Dichloroethane	<0.0055		0.0055	0.0017	mg/Kg	¢	10/28/21 18:00	11/04/21 19:03	1
1,2-Dichloropropane	<0.0022		0.0022	0.00057	mg/Kg	☆	10/28/21 18:00	11/04/21 19:03	1
1,3-Dichloropropene, Total	<0.0022		0.0022	0.00078		☆	10/28/21 18:00	11/04/21 19:03	1
2-Butanone (MEK)	<0.0055		0.0055	0.0025		¢	10/28/21 18:00	11/04/21 19:03	1
2-Hexanone	<0.0055		0.0055	0.0017	T T	☆	10/28/21 18:00	11/04/21 19:03	1
4-Methyl-2-pentanone (MIBK)	<0.0055		0.0055	0.0016		¢	10/28/21 18:00	11/04/21 19:03	1
Acetone	<0.022		0.022	0.0096		☆	10/28/21 18:00	11/04/21 19:03	1
Benzene	<0.0022		0.0022	0.00056		☆	10/28/21 18:00	11/04/21 19:03	1
Bromodichloromethane	<0.0022		0.0022	0.00045		¢	10/28/21 18:00	11/04/21 19:03	1
Bromoform	<0.0022		0.0022	0.00065		¢	10/28/21 18:00	11/04/21 19:03	1
Bromomethane	<0.0055		0.0055	0.0021			10/28/21 18:00	11/04/21 19:03	1
Carbon disulfide	<0.0055		0.0055	0.0011	mg/Kg	¢	10/28/21 18:00	11/04/21 19:03	1
Carbon tetrachloride	<0.0022		0.0022	0.00064	0 0	¢	10/28/21 18:00	11/04/21 19:03	1
Chlorobenzene	<0.0022		0.0022	0.00082		¢	10/28/21 18:00	11/04/21 19:03	1
Chloroethane	<0.0055		0.0055	0.0016		¢	10/28/21 18:00	11/04/21 19:03	1
Chloroform	< 0.0022		0.0022	0.00077		¢	10/28/21 18:00	11/04/21 19:03	1
Chloromethane	<0.0055		0.0055	0.0022		¢		11/04/21 19:03	1
cis-1,2-Dichloroethene	< 0.0022		0.0022	0.00062		¢		11/04/21 19:03	1
cis-1,3-Dichloropropene	< 0.0022		0.0022	0.00067	0 0	¢		11/04/21 19:03	1
Dibromochloromethane	<0.0022		0.0022	0.00072		¢.			1
Ethylbenzene	< 0.0022		0.0022	0.0011		¢			1
Methyl tert-butyl ether	< 0.0022		0.0022	0.00065		¢			1
Methylene Chloride	< 0.0055		0.0055	0.0022				11/04/21 19:03	
Styrene	< 0.0022		0.0022	0.00067		¢			1
Tetrachloroethene	< 0.0022		0.0022	0.00075		¢		11/04/21 19:03	1
Toluene	< 0.0022		0.0022	0.00056			10/28/21 18:00		
trans-1,2-Dichloroethene	< 0.0022		0.0022	0.00098		¢		11/04/21 19:03	1
trans-1,3-Dichloropropene	< 0.0022		0.0022	0.00078		¢		11/04/21 19:03	1
Trichloroethene	< 0.0022		0.0022	0.00075		ф	10/28/21 18:00		· · · · · · 1
Vinyl chloride	< 0.0022		0.0022	0.00098		¢		11/04/21 19:03	1
Kylenes, Total	<0.0044		0.0044	0.00071			10/28/21 18:00		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			30 - 174				10/28/21 18:00		1
4-Bromofluorobenzene (Surr)	90		35 - 171				10/28/21 18:00		1
Dibromofluoromethane	99		35 - 126				10/28/21 18:00		1
Foluene-d8 (Surr)	95		35 - 124					11/04/21 19:07	1
Method: 8270D - Semivolat	ile Organic Co	mpounde	(GC/MS)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,2,4-Trichlorobenzene	<0.21		0.21		mg/Kg	 \$	•		1
1,2-Dichlorobenzene	<0.21		0.21		mg/Kg	☆		11/10/21 21:40	1
,3-Dichlorobenzene	<0.21		0.21		mg/Kg	¢		11/10/21 21:40	1
,4-Dichlorobenzene	<0.21		0.21		mg/Kg			11/10/21 21:40	
2,2'-oxybis[1-chloropropane]	<0.21		0.21		mg/Kg	¢		11/10/21 21:40	1

Lab Sample ID: 500-207572-2 Matrix: Solid

Percent Solids: 76.6

5

7

Analyte	tile Organic Compounds (Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.42	0.42		mg/Kg	— —	11/02/21 13:40	11/10/21 21:40	1
2,4,6-Trichlorophenol	<0.42	0.42		mg/Kg		11/02/21 13:40	11/10/21 21:40	1
2,4-Dichlorophenol	<0.42	0.42		mg/Kg	☆	11/02/21 13:40	11/10/21 21:40	1
2,4-Dimethylphenol	<0.42	0.42	0.16	mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
2,4-Dinitrophenol	<0.85	0.85		mg/Kg		11/02/21 13:40	11/10/21 21:40	1
2,4-Dinitrotoluene	<0.21	0.21		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
2,6-Dinitrotoluene	<0.21	0.21		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
2-Chloronaphthalene	<0.21	0.21		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
2-Chlorophenol	<0.21	0.21		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
2-Methylnaphthalene	<0.085	0.085		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
2-Methylphenol	<0.21	0.21		mg/Kg		11/02/21 13:40	11/10/21 21:40	1
2-Nitroaniline	<0.21	0.21		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
2-Nitrophenol	<0.42	0.42		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
3 & 4 Methylphenol	<0.21	0.21		mg/Kg		11/02/21 13:40	11/10/21 21:40	1
3,3'-Dichlorobenzidine	<0.21	0.21		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
3-Nitroaniline	<0.42	0.42		mg/Kg	\$	11/02/21 13:40	11/10/21 21:40	1
4,6-Dinitro-2-methylphenol	<0.85	0.85		mg/Kg		11/02/21 13:40	11/10/21 21:40	
4-Bromophenyl phenyl ether	<0.21	0.21		mg/Kg	☆	11/02/21 13:40	11/10/21 21:40	1
4-Chloro-3-methylphenol	<0.42	0.42		mg/Kg	☆	11/02/21 13:40	11/10/21 21:40	1
4-Chloroaniline	<0.85	0.85		mg/Kg		11/02/21 13:40	11/10/21 21:40	
4-Chlorophenyl phenyl ether	<0.21	0.21		mg/Kg	÷	11/02/21 13:40	11/10/21 21:40	1
4-Nitroaniline	<0.42	0.42		mg/Kg	÷	11/02/21 13:40	11/10/21 21:40	1
4-Nitrophenol	<0.85	0.85		mg/Kg			11/10/21 21:40	
Acenaphthene	<0.042	0.042		mg/Kg	÷	11/02/21 13:40	11/10/21 21:40	1
Acenaphthylene	<0.042	0.042		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
Anthracene	0.015 J	0.042		mg/Kg		11/02/21 13:40	11/10/21 21:40	
Benzo[a]anthracene	0.090	0.042	0.0057		¢	11/02/21 13:40	11/10/21 21:40	1
Benzo[a]pyrene	0.10	0.042	0.0082		÷	11/02/21 13:40	11/10/21 21:40	1
Benzo[b]fluoranthene	0.16	0.042	0.0091			11/02/21 13:40	11/10/21 21:40	
Benzo[g,h,i]perylene	0.045	0.042		mg/Kg	÷.	11/02/21 13:40	11/10/21 21:40	1
Benzo[k]fluoranthene	0.043	0.042		mg/Kg	÷	11/02/21 13:40	11/10/21 21:40	1
Bis(2-chloroethoxy)methane	<0.21	0.21		mg/Kg			11/10/21 21:40	
Bis(2-chloroethyl)ether	<0.21	0.21		mg/Kg	÷.		11/10/21 21:40	1
Bis(2-ethylhexyl) phthalate	<0.21	0.21		mg/Kg	÷	11/02/21 13:40	11/10/21 21:40	1
Butyl benzyl phthalate	<0.21	0.21		mg/Kg			11/10/21 21:40	
Carbazole	<0.21	0.21		mg/Kg	¢		11/10/21 21:40	1
Chrysene	0.12	0.042		mg/Kg	¢		11/10/21 21:40	1
Dibenz(a,h)anthracene	0.023 J	0.042	0.0081			11/02/21 13:40	11/10/21 21:40	
Dibenzofuran	<0.21	0.21		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
Diethyl phthalate	<0.21	0.21		mg/Kg	¢		11/10/21 21:40	1
Dimethyl phthalate	<0.21	0.21		mg/Kg		11/02/21 13:40	11/10/21 21:40	1
Di-n-butyl phthalate	<0.21	0.21		mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
Di-n-octyl phthalate	<0.21	0.21		mg/Kg		11/02/21 13:40	11/10/21 21:40	1
Fluoranthene	0.21	0.21	0.009		÷	11/02/21 13:40	11/10/21 21:40	1
		0.042	0.0078		¢ ×		11/10/21 21:40	1
Fluorene	0.0085 J <0.085	0.042			¢ ×		11/10/21 21:40	1
Hexachlorobenzene		0.085	0.0098		¢	11/02/21 13:40		
Hexachlorobutadiene	<0.21			mg/Kg	¢ ×		11/10/21 21:40	1
Hexachlorocyclopentadiene Hexachloroethane	<0.85 <0.21	0.85 0.21		mg/Kg mg/Kg	¢	11/02/21 13:40 11/02/21 13:40	11/10/21 21:40	1 1

Client Sample Results

Client Sample ID: 3068V-17-B02 Date Collected: 10/27/21 12:00 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207572-2 Matrix: Solid

Percent Solids: 76.6

5

7

Method: 8270D - Semivolatile Analyte	-	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	0.052		0.042	0.011	mg/Kg	<u>\$</u>	11/02/21 13:40	11/10/21 21:40	1
Isophorone	<0.21		0.21	0.047	mg/Kg		11/02/21 13:40	11/10/21 21:40	1
Naphthalene	<0.042		0.042	0.0065	mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
Nitrobenzene	<0.042		0.042	0.011	mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
N-Nitrosodi-n-propylamine	<0.085		0.085	0.051	mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
N-Nitrosodiphenylamine	<0.21		0.21	0.050	mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
Pentachlorophenol	<0.85		0.85	0.68	mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
Phenanthrene	0.12		0.042	0.0059	mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
Phenol	<0.21		0.21	0.094	mg/Kg	¢	11/02/21 13:40	11/10/21 21:40	1
Pyrene	0.19		0.042	0.0084	mg/Kg	☆	11/02/21 13:40	11/10/21 21:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	60		71 - 147				11/02/21 17:40	11/10/21 21:40	1
2-Fluorobiphenyl	32		47 - 145				11/02/21 17:40	11/10/21 21:40	1
2-Fluorophenol	91		71 - 166				11/02/21 17:40	11/10/21 21:40	1
Nitrobenzene-d5 (Surr)	58		73 - 143				11/02/21 17:40	11/10/21 21:40	
Phenol-d5	81		70_157				11/02/21 17:40	11/10/21 21:40	1
Terphenyl-d14 (Surr)	36		42 - 153				11/02/21 17:40	11/10/21 21:40	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.43	J	1.3	0.25	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Arsenic	7.9		0.65	0.22	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Barium	120		0.65	0.074	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Beryllium	0.88		0.26	0.060	mg/Kg	₽	11/08/21 11:07	11/09/21 17:32	1
Boron	4.8	В	3.2	0.30	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Cadmium	0.12	JB	0.13	0.023	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Calcium	8300		13	2.2	mg/Kg	₽	11/08/21 11:07	11/09/21 17:32	1
Chromium	16		0.65	0.32	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Cobalt	9.5		0.32	0.085	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Copper	20		0.65	0.18	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Iron	20000		13	6.7	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Lead	24		0.32	0.15	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Magnesium	5000		6.5	3.2	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Manganese	490	В	0.65	0.094	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Nickel	21		0.65	0.19	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Potassium	1400		32	11	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Selenium	0.57	J	0.65	0.38	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Silver	0.39		0.32	0.084	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Sodium	110		65	9.6	mg/Kg	☆	11/08/21 11:07	11/09/21 17:32	1
Thallium	0.45	J	0.65	0.32	mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Vanadium	26		0.32		mg/Kg	₽	11/08/21 11:07	11/09/21 17:32	1
Zinc	77		1.3		mg/Kg	¢	11/08/21 11:07	11/09/21 17:32	1
Method: 6010B - Metals (ICP) -	TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ron	<0.40		0.40	0.20	mg/L		11/04/21 08:00	11/04/21 19:07	1
Lead	<0.0075		0.0075	0.0075	-		11/04/21 08:00	11/04/21 19:07	1

Client: Andrews Engineering Inc. Project/Site: IDOT - AE7-040

Client Sample ID: 3068V-17-B02 Date Collected: 10/27/21 12:00 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207572-2

Matrix: Solid Percent Solids: 76.6

5

7

Method: 6010B - Metals (IC	P) - SPLP Eas	t							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.023	J	0.050	0.010	mg/L		11/05/21 07:49	11/08/21 16:21	1
Barium	0.38	J	0.50	0.050	mg/L		11/05/21 07:49	11/08/21 16:21	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/05/21 07:49	11/08/21 16:21	1
Boron	0.093	J	0.10	0.050	mg/L		11/05/21 07:49	11/08/21 16:21	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/05/21 07:49	11/08/21 16:21	1
Calcium	17		2.5	0.50	mg/L		11/05/21 07:49	11/08/21 16:21	1
Chromium	0.062		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:21	1
Cobalt	0.011	J	0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:21	1
Iron	64		0.40	0.20	mg/L		11/05/21 07:49	11/08/21 16:21	1
Lead	0.031		0.0075	0.0075	mg/L		11/05/21 07:49	11/08/21 16:21	1
Manganese	0.31		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:21	1
Nickel	0.054		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:21	1
Potassium	10		2.5	0.50	mg/L		11/05/21 07:49	11/09/21 14:35	1
Selenium	<0.050		0.050	0.020	mg/L		11/05/21 07:49	11/08/21 16:21	1
Silver	<0.025		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:21	1
Zinc	0.20	J	0.50	0.020	mg/L		11/05/21 07:49	11/08/21 16:21	1
Mathadi CO20A Matala (ICI		Feet							
Method: 6020A - Metals (ICI			DI	MDI	11		Duran and	Amelumed	
Analyte		Qualifier	RL 	0.0060		D	Prepared 11/05/21 07:49	Analyzed 11/15/21 20:54	Dil Fac
Antimony			0.0060		0				1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/05/21 07:49	11/15/21 20:54	I
Method: 7470A - Mercury (C	CVAA) - SPLP	East							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/05/21 09:50	11/08/21 10:22	1
Mathadu 7474 D. Marsum //	2)/// //								
Method: 7471B - Mercury (C		Qualifier	RL	MDI	11		Duran and	Amelumed	Dil Fac
Analyte		Quaimer		MDL		<u> </u>	Prepared 11/05/21 13:35	Analyzed 11/08/21 07:28	
Mercury	0.041		0.020	0.0067	ing/rkg	¢	11/05/21 13:35	11/06/21 07:28	Т
General Chemistry									
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
-	Result <0.30	Qualifier	RL 0.30		Unit mg/Kg	— D	Prepared 11/10/21 17:48	Analyzed	Dil Fac

Job ID: 500-207572-1

Lab Sample ID: 500-207572-3

Matrix: Solid Percent Solids: 85.5

Method: 8260B - Volatile Or Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	<0.0020		0.0020	0.00066	mg/Kg	¢	10/28/21 18:00	11/04/21 19:29	1
,1,2,2-Tetrachloroethane	<0.0020		0.0020	0.00062	mg/Kg	₽	10/28/21 18:00	11/04/21 19:29	1
,1,2-Trichloroethane	<0.0020		0.0020	0.00084	mg/Kg	₽	10/28/21 18:00	11/04/21 19:29	1
,1-Dichloroethane	<0.0020		0.0020	0.00067			10/28/21 18:00	11/04/21 19:29	1
,1-Dichloroethene	<0.0020		0.0020	0.00067	mg/Kg	¢	10/28/21 18:00	11/04/21 19:29	1
,2-Dichloroethane	<0.0049		0.0049	0.0015		₽	10/28/21 18:00	11/04/21 19:29	1
1,2-Dichloropropane	<0.0020		0.0020	0.00050		÷ · · · · · ·		11/04/21 19:29	1
I,3-Dichloropropene, Total	< 0.0020		0.0020	0.00069	0 0	¢		11/04/21 19:29	1
2-Butanone (MEK)	< 0.0049		0.0049	0.0022	0 0	₽		11/04/21 19:29	1
2-Hexanone	<0.0049		0.0049	0.0015				11/04/21 19:29	1
-Methyl-2-pentanone (MIBK)	< 0.0049		0.0049	0.0014		₽		11/04/21 19:29	1
Acetone	< 0.020		0.020	0.0085	0 0	¢		11/04/21 19:29	1
Benzene	< 0.0020		0.0020	0.00050				11/04/21 19:29	
Bromodichloromethane	< 0.0020		0.0020	0.00040		¢	10/28/21 18:00	11/04/21 19:29	1
Bromoform	< 0.0020		0.0020	0.00057	0 0	¢	10/28/21 18:00	11/04/21 19:29	1
Bromomethane	<0.0020		0.0020	0.0018			10/28/21 18:00	11/04/21 19:29	
Carbon disulfide	< 0.0049		0.0049	0.0010		¢.	10/28/21 18:00	11/04/21 19:29	1
Carbon tetrachloride	<0.0049		0.0049	0.00057		÷	10/28/21 18:00	11/04/21 19:29	1
Chlorobenzene	<0.0020		0.0020	0.00037			10/28/21 18:00	11/04/21 19:29	· · · · · · · · · · · · · · · · · · ·
Chloropenzene						¢ ×			1
	<0.0049		0.0049	0.0014	0 0	¢ ×	10/28/21 18:00	11/04/21 19:29	-
Chloroform	<0.0020		0.0020	0.00068	0 0	÷ · · · ·	10/28/21 18:00	11/04/21 19:29	1
Chloromethane	< 0.0049		0.0049	0.0020		¢		11/04/21 19:29	1
is-1,2-Dichloroethene	<0.0020		0.0020	0.00055	0 0	¢ 		11/04/21 19:29	1
is-1,3-Dichloropropene	<0.0020		0.0020	0.00059		¢		11/04/21 19:29	1
ibromochloromethane	<0.0020		0.0020	0.00064		¢		11/04/21 19:29	1
thylbenzene	<0.0020		0.0020	0.00093		¢	10/28/21 18:00	11/04/21 19:29	1
lethyl tert-butyl ether	<0.0020		0.0020	0.00057		₽	10/28/21 18:00	11/04/21 19:29	1
lethylene Chloride	<0.0049		0.0049	0.0019		☆	10/28/21 18:00	11/04/21 19:29	1
Styrene	<0.0020		0.0020	0.00059		☆	10/28/21 18:00	11/04/21 19:29	1
etrachloroethene	<0.0020		0.0020	0.00066		\$	10/28/21 18:00	11/04/21 19:29	1
oluene	<0.0020		0.0020	0.00049		¢	10/28/21 18:00	11/04/21 19:29	1
rans-1,2-Dichloroethene	<0.0020		0.0020	0.00086		¢	10/28/21 18:00	11/04/21 19:29	1
rans-1,3-Dichloropropene	<0.0020		0.0020	0.00069	mg/Kg	¢	10/28/21 18:00	11/04/21 19:29	1
richloroethene	<0.0020		0.0020	0.00066	mg/Kg	¢	10/28/21 18:00	11/04/21 19:29	1
/inyl chloride	<0.0020		0.0020	0.00086	mg/Kg	₽	10/28/21 18:00	11/04/21 19:29	1
ylenes, Total	<0.0039		0.0039	0.00062	mg/Kg	¢	10/28/21 18:00	11/04/21 19:29	1
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)			30 - 174				10/28/21 18:00	-	1
-Bromofluorobenzene (Surr)	89		35 - 171					11/04/21 19:29	1
Dibromofluoromethane	99		35 - 126					11/04/21 19:29	1
oluene-d8 (Surr)	95 95		35 - 124					11/04/21 19:29	1
									-
lethod: 8270D - Semivolat		mpounds Qualifier	(GC/MS) RL	МП	Unit	D	Prepared	Analyzed	Dil Fac
<u> </u>	 <0.19	Quailiter	0.19		mg/Kg		11/02/21 13:40		1
,2,4-Trichlorobenzene						¢			-
,2-Dichlorobenzene	<0.19		0.19		mg/Kg	¢ 	11/02/21 13:40	11/08/21 21:22	1
,3-Dichlorobenzene	<0.19		0.19		mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
,4-Dichlorobenzene	<0.19		0.19		mg/Kg			11/08/21 21:22	1
2,2'-oxybis[1-chloropropane]	<0.19		0.19	0.044	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1

Lab Sample ID: 500-207572-3 Matrix: Solid

Percent Solids: 85.5

5

6 7

Analyte	le Organic Compounds (Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.38	0.38		mg/Kg	— _	11/02/21 13:40	11/08/21 21:22	1
2,4,6-Trichlorophenol	<0.38	0.38		mg/Kg	ф.	11/02/21 13:40	11/08/21 21:22	
2,4-Dichlorophenol	<0.38	0.38		mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
2,4-Dimethylphenol	<0.38	0.38	0.14	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
2,4-Dinitrophenol	<0.77	0.77	0.67	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
2,4-Dinitrotoluene	<0.19	0.19	0.061	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
2,6-Dinitrotoluene	<0.19	0.19	0.075	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
2-Chloronaphthalene	<0.19	0.19	0.042	mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
2-Chlorophenol	<0.19	0.19	0.065	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
2-Methylnaphthalene	<0.077	0.077	0.0070	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
2-Methylphenol	<0.19	0.19	0.061	mg/Kg		11/02/21 13:40	11/08/21 21:22	1
2-Nitroaniline	<0.19	0.19	0.051	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
2-Nitrophenol	<0.38	0.38	0.090	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
3 & 4 Methylphenol	<0.19	0.19	0.064	mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
3,3'-Dichlorobenzidine	<0.19	0.19	0.053	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
3-Nitroaniline	<0.38	0.38	0.12	mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
4,6-Dinitro-2-methylphenol	<0.77	0.77	0.31	mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
4-Bromophenyl phenyl ether	<0.19	0.19	0.050	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
4-Chloro-3-methylphenol	<0.38	0.38	0.13	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
4-Chloroaniline	<0.77	0.77	0.18	mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
4-Chlorophenyl phenyl ether	<0.19	0.19	0.045	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
4-Nitroaniline	<0.38	0.38	0.16	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
4-Nitrophenol	<0.77	0.77	0.36	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Acenaphthene	<0.038	0.038	0.0069	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Acenaphthylene	<0.038	0.038	0.0050	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Anthracene	<0.038	0.038	0.0064	mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
Benzo[a]anthracene	<0.038	0.038	0.0051	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Benzo[a]pyrene	<0.038 *3	0.038	0.0074	mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
Benzo[b]fluoranthene	<0.038 *3	0.038		mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
Benzo[g,h,i]perylene	<0.038 *3	0.038	0.012	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Benzo[k]fluoranthene	<0.038 *3	0.038	0.011	mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
Bis(2-chloroethoxy)methane	<0.19	0.19	0.039	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Bis(2-chloroethyl)ether	<0.19	0.19		mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Bis(2-ethylhexyl) phthalate	<0.19	0.19		mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
Butyl benzyl phthalate	<0.19	0.19		mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Carbazole	<0.19	0.19		mg/Kg	¢		11/08/21 21:22	1
Chrysene	<0.038	0.038		mg/Kg	\$		11/08/21 21:22	1
Dibenz(a,h)anthracene	<0.038 *3	0.038	0.0074		¢		11/08/21 21:22	1
Dibenzofuran	<0.19	0.19		mg/Kg	¢		11/08/21 21:22	1
Diethyl phthalate	<0.19	0.19		mg/Kg	₽		11/08/21 21:22	1
Dimethyl phthalate	<0.19	0.19		mg/Kg	¢		11/08/21 21:22	1
Di-n-butyl phthalate	<0.19	0.19		mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Di-n-octyl phthalate	<0.19	0.19		mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Fluoranthene	<0.038	0.038		mg/Kg	¢		11/08/21 21:22	1
Fluorene	< 0.038	0.038	0.0054		\$		11/08/21 21:22	1
Hexachlorobenzene	<0.077	0.077	0.0088		¢		11/08/21 21:22	1
Hexachlorobutadiene	<0.19	0.19		mg/Kg	\$		11/08/21 21:22	1
Hexachlorocyclopentadiene	<0.77	0.77	0.22	mg/Kg	¢		11/08/21 21:22	1
Hexachloroethane	<0.19	0.19	0.058		¢		11/08/21 21:22	1

Lab Sample ID: 500-207572-3 Matrix: Solid

Percent Solids: 85.5

5

7

13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.038	*3	0.038	0.0099	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Isophorone	<0.19		0.19	0.043	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Naphthalene	<0.038		0.038	0.0059	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Nitrobenzene	<0.038		0.038	0.0095	mg/Kg	₽	11/02/21 13:40	11/08/21 21:22	1
N-Nitrosodi-n-propylamine	<0.077		0.077	0.047	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
N-Nitrosodiphenylamine	<0.19		0.19	0.045	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Pentachlorophenol	<0.77		0.77	0.61	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Phenanthrene	<0.038		0.038	0.0053	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Phenol	<0.19		0.19	0.085	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Pyrene	<0.038		0.038	0.0076	mg/Kg	¢	11/02/21 13:40	11/08/21 21:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	67		71 - 147				11/02/21 17:40	11/08/21 21:22	1
2-Fluorobiphenyl	81		47 _ 145				11/02/21 17:40	11/08/21 21:22	1
2-Fluorophenol	93		71 - 166				11/02/21 17:40	11/08/21 21:22	1
Vitrobenzene-d5 (Surr)	69		73 - 143				11/02/21 17:40	11/08/21 21:22	1
Phenol-d5	89		70 - 157				11/02/21 17:40	11/08/21 21:22	1
Ferphenyl-d14 (Surr)	154		42 - 153				11/02/21 17:40	11/08/21 21:22	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.31	J	1.1	0.22	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Arsenic	6.2		0.56	0.19	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Barium	53		0.56	0.064	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Beryllium	0.81		0.22	0.052	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Boron	9.2	В	2.8	0.26	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Cadmium	0.058	JB	0.11	0.020	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Calcium	71000		56	9.5	mg/Kg	¢	11/08/21 11:07	11/10/21 13:55	Ę
Chromium	16		0.56	0.28	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Cobalt	11		0.28	0.073	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Copper	21		0.56	0.16	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
ron	18000		11	5.8	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
_ead	12		0.28	0.13	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Magnesium	27000		5.6	2.8	mg/Kg	₽	11/08/21 11:07	11/09/21 17:41	1
Manganese	300	В	0.56	0.081	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Nickel	28		0.56	0.16	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Potassium	2000		28	9.9	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Selenium	<0.56		0.56	0.33	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Silver	0.26	J	0.28	0.072	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Sodium	240		56	8.3	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Fhallium	0.30	J	0.56	0.28	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
/anadium	20		0.28	0.066	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Zinc	55		1.1	0.49	mg/Kg	¢	11/08/21 11:07	11/09/21 17:41	1
Method: 6010B - Metals (ICP) -	TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ron	<0.40		0.40	0.20	mg/L		11/04/21 08:00	11/04/21 19:10	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/04/21 08:00	11/04/21 19:10	1

Client: Andrews Engineering Inc. Project/Site: IDOT - AE7-040

Client Sample ID: 3068V-17-B03-1 Date Collected: 10/27/21 11:40 Date Received: 10/28/21 10:50

Job ID: 500-207572-1

JUD ID. JUU-207372-1

Lab Sample ID: 500-207572-3 Matrix: Solid

Percent Solids: 85.5

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.028	J	0.050	0.010	mg/L		11/05/21 07:49	11/08/21 16:25	1
Barium	0.29	J F1	0.50	0.050	mg/L		11/05/21 07:49	11/08/21 16:25	1
Beryllium <	0.0040		0.0040	0.0040	mg/L		11/05/21 07:49	11/08/21 16:25	1
Boron	0.13		0.10	0.050	mg/L		11/05/21 07:49	11/08/21 16:25	1
Cadmium <	0.0050		0.0050	0.0020	mg/L		11/05/21 07:49	11/08/21 16:25	1
Calcium	28	F1	2.5	0.50	mg/L		11/05/21 07:49	11/08/21 16:25	1
Chromium	0.069		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:25	1
Cobalt	0.016	J	0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:25	1
Iron	67		0.40	0.20	mg/L		11/05/21 07:49	11/08/21 16:25	1
Lead	0.017		0.0075	0.0075	mg/L		11/05/21 07:49	11/08/21 16:25	1
Manganese	0.27		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:25	1
Nickel	0.073		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:25	1
Potassium	19	F1	2.5	0.50	mg/L		11/05/21 07:49	11/09/21 14:38	1
Selenium	<0.050		0.050	0.020	mg/L		11/05/21 07:49	11/08/21 16:25	1
Silver	<0.025		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:25	1
Zinc	0.14	J	0.50	0.020	mg/L		11/05/21 07:49	11/08/21 16:25	1
Method: 6020A - Metals (ICP/MS) - S									
		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
-	0.0060	F1	0.0060	0.0060	mg/L		11/05/21 07:49	11/15/21 20:56	1
Thallium <	0.0020		0.0020	0.0020	mg/L		11/05/21 07:49	11/15/21 20:56	1
Method: 7470A - Mercury (CVAA) - S									
		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury <0	0.00020		0.00020	0.00020	mg/L		11/05/21 09:50	11/08/21 10:25	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.019		0.018	0.0061	mg/Kg	¢	11/05/21 13:35	11/08/21 07:30	1
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Cyanide, Total	<0.27		0.27	0.13	mg/Kg	¢	11/10/21 17:48	11/10/21 19:15	1
- ,			0.2		SU			11/02/21 15:53	

Job ID: 500-207572-1

Lab Sample ID: 500-207572-4 Matrix: Solid

Percent Solids: 86.2

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	< 0.0016		0.0016	0.00054	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
,1,2,2-Tetrachloroethane	< 0.0016		0.0016	0.00052	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
,1,2-Trichloroethane	<0.0016		0.0016	0.00069	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
,1-Dichloroethane	<0.0016		0.0016	0.00055	mg/Kg	₽	10/28/21 18:00	11/04/21 19:54	
,1-Dichloroethene	< 0.0016		0.0016	0.00056	mg/Kg	₽	10/28/21 18:00	11/04/21 19:54	
,2-Dichloroethane	< 0.0040		0.0040	0.0013	mg/Kg	₽	10/28/21 18:00	11/04/21 19:54	
,2-Dichloropropane	<0.0016		0.0016	0.00042	mg/Kg	₽	10/28/21 18:00	11/04/21 19:54	
,3-Dichloropropene, Total	< 0.0016		0.0016	0.00057	mg/Kg	₽	10/28/21 18:00	11/04/21 19:54	
-Butanone (MEK)	<0.0040		0.0040	0.0018	mg/Kg	☆	10/28/21 18:00	11/04/21 19:54	
-Hexanone	<0.0040		0.0040	0.0013	mg/Kg	₽	10/28/21 18:00	11/04/21 19:54	
-Methyl-2-pentanone (MIBK)	<0.0040		0.0040	0.0012	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
Acetone	<0.016		0.016	0.0070	mg/Kg	☆	10/28/21 18:00	11/04/21 19:54	
enzene	<0.0016		0.0016	0.00041	mg/Kg	☆	10/28/21 18:00	11/04/21 19:54	
Bromodichloromethane	<0.0016		0.0016	0.00033	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
romoform	<0.0016		0.0016	0.00047	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
Bromomethane	<0.0040		0.0040	0.0015	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
Carbon disulfide	<0.0040		0.0040	0.00084		¢	10/28/21 18:00	11/04/21 19:54	
Carbon tetrachloride	<0.0016		0.0016	0.00047	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
Chlorobenzene	<0.0016		0.0016	0.00060	mg/Kg		10/28/21 18:00	11/04/21 19:54	
hloroethane	< 0.0040		0.0040	0.0012	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
hloroform	<0.0016		0.0016	0.00056	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
hloromethane	<0.0040		0.0040	0.0016		 ¢	10/28/21 18:00	11/04/21 19:54	
is-1,2-Dichloroethene	<0.0016		0.0016	0.00045	0 0	¢	10/28/21 18:00	11/04/21 19:54	
is-1,3-Dichloropropene	<0.0016		0.0016	0.00049	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
ibromochloromethane	<0.0016		0.0016	0.00053		 Ф	10/28/21 18:00	11/04/21 19:54	
thylbenzene	<0.0016		0.0016	0.00077	mg/Kg	¢	10/28/21 18:00	11/04/21 19:54	
lethyl tert-butyl ether	<0.0016		0.0016	0.00047	0 0	¢	10/28/21 18:00	11/04/21 19:54	
lethylene Chloride	<0.0040		0.0040	0.0016			10/28/21 18:00	11/04/21 19:54	
ityrene	< 0.0016		0.0016	0.00049	mg/Kg	÷	10/28/21 18:00	11/04/21 19:54	
etrachloroethene	< 0.0016		0.0016	0.00055	mg/Kg	÷	10/28/21 18:00	11/04/21 19:54	
oluene	<0.0016		0.0016	0.00041	mg/Kg		10/28/21 18:00	11/04/21 19:54	
ans-1,2-Dichloroethene	< 0.0016		0.0016	0.00072		÷	10/28/21 18:00	11/04/21 19:54	
ans-1,3-Dichloropropene	< 0.0016		0.0016	0.00057	mg/Kg	\$	10/28/21 18:00	11/04/21 19:54	
richloroethene	< 0.0016		0.0016	0.00055			10/28/21 18:00	11/04/21 19:54	
/inyl chloride	< 0.0016		0.0016	0.00072	0 0	÷.	10/28/21 18:00	11/04/21 19:54	
kylenes, Total	<0.0032		0.0032	0.00052		¢	10/28/21 18:00		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
,2-Dichloroethane-d4 (Surr)	104		30 - 174				10/28/21 18:00	11/04/21 19:54	
-Bromofluorobenzene (Surr)	93		35 - 171				10/28/21 18:00	11/04/21 19:54	
bibromofluoromethane	100		35 - 126				10/28/21 18:00	11/04/21 19:54	
oluene-d8 (Surr)	98		35 - 124				10/28/21 18:00	11/04/21 19:54	
lethod: 8270D - Semivolat			· · · · · · · · · · · · · · · · · · ·						
nalyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
,2,4-Trichlorobenzene	<0.18		0.18	0.039	0 0	¢	11/02/21 13:40	11/08/21 21:43	
,2-Dichlorobenzene	<0.18		0.18	0.043	0 0	¢	11/02/21 13:40	11/08/21 21:43	
,3-Dichlorobenzene	<0.18		0.18	0.041		¢	11/02/21 13:40	11/08/21 21:43	
,4-Dichlorobenzene	<0.18		0.18		0 0	₽	11/02/21 13:40	11/08/21 21:43	
2,2'-oxybis[1-chloropropane]	<0.18		0.18		mg/Kg		11/02/21 13:40	11/08/21 21:43	

Lab Sample ID: 500-207572-4 Matrix: Solid

Percent Solids: 86.2

5

7

Analyte	atile Organic Compounds (Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.36	0.36	0.083	mg/Kg	 ₽	11/02/21 13:40	11/08/21 21:43	1
2,4,6-Trichlorophenol	<0.36	0.36		mg/Kg		11/02/21 13:40	11/08/21 21:43	1
2,4-Dichlorophenol	<0.36	0.36	0.086	mg/Kg	☆	11/02/21 13:40	11/08/21 21:43	1
2,4-Dimethylphenol	<0.36	0.36	0.14	mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
2,4-Dinitrophenol	<0.73	0.73	0.64	mg/Kg		11/02/21 13:40	11/08/21 21:43	1
2,4-Dinitrotoluene	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
2,6-Dinitrotoluene	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
2-Chloronaphthalene	<0.18	0.18		mg/Kg	¢.	11/02/21 13:40	11/08/21 21:43	
2-Chlorophenol	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
2-Methylnaphthalene	<0.073	0.073		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
2-Methylphenol	<0.18	0.18		mg/Kg	 ¢	11/02/21 13:40	11/08/21 21:43	
2-Nitroaniline	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
2-Nitrophenol	<0.36	0.36		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
3 & 4 Methylphenol	<0.18	0.18		mg/Kg		11/02/21 13:40	11/08/21 21:43	
3,3'-Dichlorobenzidine	<0.18	0.18		mg/Kg	\$	11/02/21 13:40	11/08/21 21:43	1
3-Nitroaniline	<0.36	0.36		mg/Kg	÷	11/02/21 13:40	11/08/21 21:43	1
4,6-Dinitro-2-methylphenol	<0.73	0.73		mg/Kg		11/02/21 13:40	11/08/21 21:43	
4-Bromophenyl phenyl ether	<0.18	0.18		mg/Kg	÷	11/02/21 13:40	11/08/21 21:43	1
4-Chloro-3-methylphenol	<0.36	0.36		mg/Kg	÷	11/02/21 13:40	11/08/21 21:43	1
4-Chloroaniline	<0.73	0.73		mg/Kg		11/02/21 13:40	11/08/21 21:43	
4-Chlorophenyl phenyl ether	<0.18	0.18		mg/Kg	÷	11/02/21 13:40	11/08/21 21:43	1
4-Nitroaniline	<0.36	0.36		mg/Kg	÷	11/02/21 13:40	11/08/21 21:43	1
4-Nitrophenol	<0.73	0.73		mg/Kg		11/02/21 13:40	11/08/21 21:43	
Acenaphthene	<0.036	0.036		mg/Kg	÷	11/02/21 13:40	11/08/21 21:43	1
Acenaphthylene	<0.036	0.036		mg/Kg	÷	11/02/21 13:40	11/08/21 21:43	1
Anthracene	<0.036	0.036		mg/Kg		11/02/21 13:40	11/08/21 21:43	
Benzo[a]anthracene	<0.036	0.036		mg/Kg	÷	11/02/21 13:40	11/08/21 21:43	1
Benzo[a]pyrene	<0.036 *3	0.036		mg/Kg	÷	11/02/21 13:40	11/08/21 21:43	1
	<0.036 *3	0.036				11/02/21 13:40	11/08/21 21:43	
Benzo[b]fluoranthene	<0.036 *3	0.036		mg/Kg	¢ ~	11/02/21 13:40	11/08/21 21:43	1
Benzo[g,h,i]perylene				mg/Kg	¢			
Benzo[k]fluoranthene	<0.036 *3	0.036		mg/Kg	÷ · · · · .	11/02/21 13:40	11/08/21 21:43	1
Bis(2-chloroethoxy)methane	<0.18	0.18		mg/Kg	¢ Å	11/02/21 13:40	11/08/21 21:43	1
Bis(2-chloroethyl)ether	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Bis(2-ethylhexyl) phthalate	<0.18	0.18		mg/Kg	÷ · · · · .	11/02/21 13:40	11/08/21 21:43	1
Butyl benzyl phthalate	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Carbazole	<0.18	0.18		mg/Kg	¢	11/02/21 13:40		1
Chrysene	<0.036	0.036	0.0099		¢	11/02/21 13:40	11/08/21 21:43	1
Dibenz(a,h)anthracene	<0.036 *3	0.036		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Dibenzofuran	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Diethyl phthalate	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Dimethyl phthalate	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Di-n-butyl phthalate	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Di-n-octyl phthalate	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Fluoranthene	< 0.036	0.036		mg/Kg	¢.	11/02/21 13:40	11/08/21 21:43	1
Fluorene	< 0.036	0.036		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Hexachlorobenzene	<0.073	0.073		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Hexachlorobutadiene	<0.18	0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Hexachlorocyclopentadiene	<0.73	0.73		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Hexachloroethane	<0.18	0.18	0.055	mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1

Lab Sample ID: 500-207572-4 Matrix: Solid

Percent Solids: 86.2

5

7

13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	< 0.036	*3	0.036	0.0094	mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
sophorone	<0.18		0.18	0.041	mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Naphthalene	<0.036		0.036	0.0056	mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
litrobenzene	< 0.036		0.036	0.0090	mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
N-Nitrosodi-n-propylamine	<0.073		0.073	0.044	mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
N-Nitrosodiphenylamine	<0.18		0.18	0.043	mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Pentachlorophenol	<0.73		0.73	0.58	mg/Kg		11/02/21 13:40	11/08/21 21:43	1
Phenanthrene	<0.036		0.036	0.0051		¢	11/02/21 13:40	11/08/21 21:43	1
Phenol	<0.18		0.18		mg/Kg	¢	11/02/21 13:40	11/08/21 21:43	1
Pyrene	0.0074	J	0.036	0.0072		¢	11/02/21 13:40	11/08/21 21:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	67		71 - 147				11/02/21 17:40	11/08/21 21:47	1
2-Fluorobiphenyl	33		47 - 145				11/02/21 17:40	11/08/21 21:47	1
2-Fluorophenol	106		71 - 166				11/02/21 17:40	11/08/21 21:47	1
Vitrobenzene-d5 (Surr)	30		73 - 143				11/02/21 17:40	11/08/21 21:47	
Phenol-d5	92		70 - 157				11/02/21 17:40	11/08/21 21:47	1
Terphenyl-d14 (Surr)	142		42 - 153				11/02/21 17:40	11/08/21 21:47	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.44	J	1.1	0.21	mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
Arsenic	7.1		0.54	0.18	mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
Barium	30		0.54	0.062	mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
Beryllium	0.70		0.22	0.050	mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
Boron	9.7	в	2.7		mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
Cadmium	0.10	JB	0.11		mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
Calcium	63000		54	9.2	mg/Kg		11/08/21 11:07	11/10/21 13:58	5
Chromium	14		0.54		mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
Cobalt	11		0.27	0.071	0 0	¢	11/08/21 11:07	11/09/21 17:45	1
Copper	22		0.54		mg/Kg		11/08/21 11:07	11/09/21 17:45	1
ron	18000		11		mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
Lead	12		0.27		mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
/agnesium	31000		5.4		mg/Kg		11/08/21 11:07	11/09/21 17:45	1
/anganese	360	в	0.54		mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
Nickel	30	D	0.54		mg/Kg	æ		11/09/21 17:45	1
Potassium	2200		27		mg/Kg		11/08/21 11:07	11/09/21 17:45	
Selenium	< 0.54		0.54		mg/Kg	¢	11/08/21 11:07	11/09/21 17:45	1
Silver	<0.34 0.22		0.34		mg/Kg	¢	11/08/21 11:07		1
Sodium		J	0.27 54		mg/Kg		11/08/21 11:07	11/09/21 17:45	י 1
Thallium	170 0.31		0.54		mg/Kg		11/08/21 11:07	11/09/21 17:45	1
		J	0.54			¢ ×	11/08/21 11:07	11/09/21 17:45	1
/anadium Zinc	15 65		0.27 1.1		mg/Kg mg/Kg	¢ ₽	11/08/21 11:07		· · · · · · · · 1
Method: 6010B - Metals (ICP)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/04/21 08:00	11/04/21 19:13	1
Beryllium	<0.0040		0.0040	0.0040	-		11/04/21 08:00	11/04/21 19:13	1
Chromium	<0.025		0.025	0.010	-		11/04/21 08:00	11/04/21 19:13	1
	0.31		0.40		mg/L		11/04/21 08:00		1

Eurofins TestAmerica, Chicago

Job	ID:	500-207572-1

Lab Sample ID: 500-207572-4

Matrix: Solid Percent Solids: 86.2

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	-		11/04/21 08:00	11/04/21 19:13	1
Manganese	1.3		0.025	0.010	mg/L			11/04/21 19:13	1
Nickel	<0.025		0.025	0.010	mg/L		11/04/21 08:00	11/04/21 19:13	1
Method: 6010B - Metals (ICP) -	SPLP East								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.073		0.050	0.010	mg/L		11/05/21 07:49	11/08/21 16:43	1
Barium	0.33	J	0.50	0.050	mg/L		11/05/21 07:49	11/08/21 16:43	1
Beryllium	0.0069		0.0040	0.0040	mg/L		11/05/21 07:49	11/08/21 16:43	1
Boron	0.22		0.10	0.050	mg/L		11/05/21 07:49	11/08/21 16:43	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/05/21 07:49	11/08/21 16:43	1
Calcium	29		2.5	0.50	mg/L		11/05/21 07:49	11/08/21 16:43	1
Chromium	0.13		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:43	1
Cobalt	0.051		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:43	1
Iron	150		0.40	0.20	mg/L		11/05/21 07:49	11/08/21 16:43	1
Lead	0.064		0.0075	0.0075	mg/L		11/05/21 07:49	11/08/21 16:43	1
Manganese	0.50		0.025	0.010	•		11/05/21 07:49	11/08/21 16:43	1
Nickel	0.18		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:43	1
Potassium	38		2.5		mg/L		11/05/21 07:49	11/09/21 14:51	1
Selenium	< 0.050		0.050	0.020	-		11/05/21 07:49	11/08/21 16:43	1
Silver	<0.025		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:43	1
Zinc	0.45	J	0.50	0.020			11/05/21 07:49	11/08/21 16:43	1
Method: 6020A - Metals (ICP/M	IS) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
-				0.0020			11/04/21 08:00	11/16/21 15:51	1
Thallium	<0.0020		0.0020	0.0020	ilig/∟				
		Fast	0.0020	0.0020	ilig/L				
Method: 6020A - Metals (ICP/M	IS) - SPLP I	East Qualifier	0.0020 RL	0.0020	-	D	Prepared	Analyzed	Dil Fac
Method: 6020A - Metals (ICP/M Analyte	IS) - SPLP I				Unit	D	Prepared 11/05/21 07:49	Analyzed 11/15/21 21:09	Dil Fac
Method: 6020A - Metals (ICP/M Analyte Antimony	IS) - SPLP I Result		RL	MDL	Unit mg/L	D	11/05/21 07:49		
Method: 6020A - Metals (ICP/M Analyte Antimony Thallium	IS) - SPLP I Result <0.0060 0.0047	Qualifier		MDL 0.0060	Unit mg/L	<u>D</u>	11/05/21 07:49	11/15/21 21:09	1
Method: 6020A - Metals (ICP/M Analyte Antimony Thallium Method: 7470A - Mercury (CVA	IS) - SPLP I Result <0.0060 0.0047 AA) - SPLP	Qualifier		MDL 0.0060	Unit mg/L mg/L	D 	11/05/21 07:49 11/05/21 07:49	11/15/21 21:09 11/15/21 21:09	1
Method: 6020A - Metals (ICP/M Analyte Antimony Thallium Method: 7470A - Mercury (CVA Analyte	IS) - SPLP I Result <0.0060 0.0047 AA) - SPLP	Qualifier East	RL 0.0060 0.0020	MDL 0.0060 0.0020	Unit mg/L mg/L Unit		11/05/21 07:49	11/15/21 21:09	1 1
Method: 6020A - Metals (ICP/M Analyte Antimony Thallium Method: 7470A - Mercury (CVA Analyte Mercury	IS) - SPLP I <u>Result</u> <0.0060 0.0047 AA) - SPLP I <u>Result</u> <0.00020	Qualifier East	RL 0.0060 0.0020	MDL 0.0060 0.0020 MDL	Unit mg/L mg/L Unit		11/05/21 07:49 11/05/21 07:49 Prepared	11/15/21 21:09 11/15/21 21:09 Analyzed	1 1 Dil Fac
Method: 6020A - Metals (ICP/M Analyte Antimony Thallium Method: 7470A - Mercury (CVA Analyte Mercury Method: 7471B - Mercury (CVA	IS) - SPLP I Result <0.0060 0.0047 AA) - SPLP I Result <0.00020 AA)	Qualifier East Qualifier	RL 0.0060 0.0020 RL 0.00020	MDL 0.0060 0.0020 MDL 0.00020	Unit mg/L mg/L Unit mg/L	D	11/05/21 07:49 11/05/21 07:49 Prepared 11/05/21 09:50	11/15/21 21:09 11/15/21 21:09 Malyzed 11/08/21 10:31	1 1 Dil Fac 1
Method: 6020A - Metals (ICP/M Analyte Antimony Thallium Method: 7470A - Mercury (CVA Analyte Mercury Method: 7471B - Mercury (CVA Analyte	IS) - SPLP I Result <0.0060 0.0047 AA) - SPLP I Result <0.00020 AA)	Qualifier East Qualifier Qualifier	RL 0.0060 0.0020	MDL 0.0060 0.0020 MDL	Unit mg/L mg/L Unit mg/L Unit		11/05/21 07:49 11/05/21 07:49 Prepared	11/15/21 21:09 11/15/21 21:09 Analyzed	1 1 Dil Fac
Method: 6020A - Metals (ICP/M Analyte Antimony Thallium Method: 7470A - Mercury (CVA Analyte Mercury Method: 7471B - Mercury (CVA Analyte Mercury	IS) - SPLP I <u>Result</u> <0.0060 0.0047 AA) - SPLP I <u>Result</u> <0.00020 AA) <u>Result</u>	Qualifier East Qualifier Qualifier	RL 0.0060 0.0020 RL 0.00020 RL	MDL 0.0060 0.0020 MDL 0.00020 MDL	Unit mg/L mg/L Unit mg/L Unit	D	11/05/21 07:49 11/05/21 07:49 Prepared 11/05/21 09:50 Prepared	11/15/21 21:09 11/15/21 21:09 Analyzed 11/08/21 10:31 Analyzed	1 1 Dil Fac 1 Dil Fac
Method: 6020A - Metals (ICP/M Analyte Antimony Thallium Method: 7470A - Mercury (CVA Analyte Mercury Method: 7471B - Mercury (CVA Analyte Mercury General Chemistry	IS) - SPLP I Result <0.0060 0.0047 AA) - SPLP I Result <0.00020 AA) Result 0.017	Qualifier East Qualifier J	RL 0.0060 0.0020 RL 0.00020 RL 0.00020	MDL 0.0060 0.0020 MDL 0.00020 MDL 0.0060	Unit mg/L mg/L Unit mg/L Unit mg/Kg	D D ×	11/05/21 07:49 11/05/21 07:49 Prepared 11/05/21 09:50 Prepared 11/05/21 13:35	Analyzed 11/08/21 07:32	1 1 <u>Dil Fac</u> 1 <u>Dil Fac</u> 1
Thallium Method: 6020A - Metals (ICP/M Analyte Antimony Thallium Method: 7470A - Mercury (CVA Analyte Mercury Method: 7471B - Mercury (CVA Analyte Mercury General Chemistry Analyte Cyanide, Total	IS) - SPLP I Result <0.0060 0.0047 AA) - SPLP I Result <0.00020 AA) Result 0.017	Qualifier East Qualifier Qualifier	RL 0.0060 0.0020 RL 0.00020 RL	MDL 0.0060 0.0020 MDL 0.00020 MDL 0.0060	Unit mg/L mg/L Unit mg/L Unit mg/Kg	D	11/05/21 07:49 11/05/21 07:49 Prepared 11/05/21 09:50 Prepared	11/15/21 21:09 11/15/21 21:09 Analyzed 11/08/21 10:31 Analyzed 11/08/21 07:32 Analyzed	1 1 Dil Fac 1 Dil Fac

Lab Sample ID: 500-207572-5 Matrix: Solid

Percent Solids: 78.6

5

7

12 13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	< 0.0019		0.0019	0.00064	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00061	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
,1,2-Trichloroethane	< 0.0019		0.0019	0.00082	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
,1-Dichloroethane	<0.0019		0.0019	0.00065	mg/Kg	₿	10/28/21 18:00	11/04/21 20:20	1
,1-Dichloroethene	< 0.0019		0.0019	0.00066	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
2-Dichloroethane	<0.0048		0.0048	0.0015	mg/Kg	☆	10/28/21 18:00	11/04/21 20:20	1
,2-Dichloropropane	<0.0019		0.0019	0.00049	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
,3-Dichloropropene, Total	< 0.0019		0.0019	0.00067	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
-Butanone (MEK)	<0.0048		0.0048	0.0021	mg/Kg	☆	10/28/21 18:00	11/04/21 20:20	1
Hexanone	<0.0048		0.0048	0.0015	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
-Methyl-2-pentanone (MIBK)	<0.0048		0.0048	0.0014	mg/Kg	☆	10/28/21 18:00	11/04/21 20:20	1
cetone	<0.019		0.019	0.0083	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
enzene	<0.0019		0.0019	0.00049	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
romodichloromethane	< 0.0019		0.0019	0.00039	mg/Kg	☆	10/28/21 18:00	11/04/21 20:20	1
romoform	< 0.0019		0.0019	0.00056	mg/Kg	☆	10/28/21 18:00	11/04/21 20:20	1
romomethane	<0.0048		0.0048	0.0018	mg/Kg	☆	10/28/21 18:00	11/04/21 20:20	1
arbon disulfide	<0.0048		0.0048	0.00099	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
arbon tetrachloride	< 0.0019		0.0019	0.00055	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
hlorobenzene	<0.0019		0.0019	0.00070	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
hloroethane	<0.0048		0.0048	0.0014	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
hloroform	<0.0019		0.0019	0.00066	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
hloromethane	<0.0048		0.0048	0.0019	mg/Kg	с. с. с. с. с. Ф	10/28/21 18:00	11/04/21 20:20	1
s-1,2-Dichloroethene	<0.0019		0.0019	0.00053	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
s-1,3-Dichloropropene	< 0.0019		0.0019	0.00058	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
ibromochloromethane	<0.0019		0.0019	0.00062	mg/Kg		10/28/21 18:00	11/04/21 20:20	1
thylbenzene	< 0.0019		0.0019	0.00091	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
ethyl tert-butyl ether	< 0.0019		0.0019	0.00056	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
lethylene Chloride	<0.0048		0.0048	0.0019	mg/Kg	 Ф	10/28/21 18:00	11/04/21 20:20	1
tyrene	< 0.0019		0.0019	0.00058	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
etrachloroethene	< 0.0019		0.0019	0.00065	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
oluene	< 0.0019		0.0019	0.00048	mg/Kg		10/28/21 18:00	11/04/21 20:20	1
ans-1,2-Dichloroethene	< 0.0019		0.0019	0.00085	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
ans-1,3-Dichloropropene	<0.0019		0.0019	0.00067		¢	10/28/21 18:00	11/04/21 20:20	1
richloroethene	<0.0019		0.0019	0.00065	mg/Kg		10/28/21 18:00	11/04/21 20:20	
inyl chloride	< 0.0019		0.0019	0.00084	0 0	¢	10/28/21 18:00	11/04/21 20:20	1
ylenes, Total	<0.0038		0.0038	0.00061	mg/Kg	¢	10/28/21 18:00	11/04/21 20:20	1
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Dichloroethane-d4 (Surr)	104		30 - 174				10/28/21 18:00	11/04/21 20:20	1
Bromofluorobenzene (Surr)	88		35 - 171				10/28/21 18:00	11/04/21 20:20	1
bromofluoromethane	99		35 - 126				10/28/21 18:00	11/04/21 20:20	1
oluene-d8 (Surr)	94		35 - 124				10/28/21 18:00	11/04/21 20:20	1
lethod: 8270D - Semivolat	-					_			
nalyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,4-Trichlorobenzene	< 0.20		0.20		mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2-Dichlorobenzene	<0.20		0.20		mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
,3-Dichlorobenzene	<0.20		0.20		mg/Kg		11/02/21 13:40	11/08/21 22:04	1
,4-Dichlorobenzene	<0.20		0.20	0.051	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2,2'-oxybis[1-chloropropane]	<0.20		0.20	0.046	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1

Lab Sample ID: 500-207572-5

Matrix: Solid Percent Solids: 78.6

5

7

Method: 8270D - Semivolat Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<0.40	0.40	0.091	mg/Kg		11/02/21 13:40	11/08/21 22:04	1
2,4,6-Trichlorophenol	<0.40	0.40		mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2,4-Dichlorophenol	<0.40	0.40	0.095	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2,4-Dimethylphenol	<0.40	0.40	0.15	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2,4-Dinitrophenol	<0.81	0.81		mg/Kg	÷	11/02/21 13:40	11/08/21 22:04	1
2,4-Dinitrotoluene	<0.20	0.20	0.064	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2,6-Dinitrotoluene	<0.20	0.20	0.079	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2-Chloronaphthalene	<0.20	0.20	0.044	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2-Chlorophenol	<0.20	0.20	0.068	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2-Methylnaphthalene	<0.081	0.081	0.0074	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2-Methylphenol	<0.20	0.20	0.064	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2-Nitroaniline	<0.20	0.20	0.054	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
2-Nitrophenol	<0.40	0.40	0.095	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
3 & 4 Methylphenol	<0.20	0.20	0.067	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
3,3'-Dichlorobenzidine	<0.20	0.20	0.056	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
3-Nitroaniline	<0.40	0.40	0.12	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
4,6-Dinitro-2-methylphenol	<0.81	0.81	0.32	mg/Kg	¢.	11/02/21 13:40	11/08/21 22:04	1
4-Bromophenyl phenyl ether	<0.20	0.20	0.053	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
4-Chloro-3-methylphenol	<0.40	0.40	0.14	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
4-Chloroaniline	<0.81	0.81	0.19	mg/Kg	¢.	11/02/21 13:40	11/08/21 22:04	1
4-Chlorophenyl phenyl ether	<0.20	0.20	0.047	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
4-Nitroaniline	<0.40	0.40	0.17	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
4-Nitrophenol	<0.81	0.81	0.38	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Acenaphthene	<0.040	0.040	0.0072	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Acenaphthylene	<0.040	0.040	0.0053	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Anthracene	<0.040	0.040	0.0067	mg/Kg	÷	11/02/21 13:40	11/08/21 22:04	1
Benzo[a]anthracene	0.016 J	0.040	0.0054	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Benzo[a]pyrene	<0.040 *3	0.040	0.0078	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Benzo[b]fluoranthene	<0.040 *3	0.040	0.0087	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Benzo[g,h,i]perylene	<0.040 *3	0.040	0.013	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Benzo[k]fluoranthene	<0.040 *3	0.040	0.012	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Bis(2-chloroethoxy)methane	<0.20	0.20	0.041	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Bis(2-chloroethyl)ether	<0.20	0.20	0.060	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Bis(2-ethylhexyl) phthalate	<0.20	0.20	0.073	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Butyl benzyl phthalate	<0.20	0.20	0.076	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Carbazole	<0.20	0.20	0.10	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Chrysene	0.022 J	0.040	0.011	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Dibenz(a,h)anthracene	<0.040 *3	0.040	0.0077	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Dibenzofuran	<0.20	0.20	0.047	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Diethyl phthalate	<0.20	0.20	0.068	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Dimethyl phthalate	<0.20	0.20	0.052	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Di-n-butyl phthalate	<0.20	0.20	0.061	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Di-n-octyl phthalate	<0.20	0.20	0.065	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Fluoranthene	0.033 J	0.040	0.0074	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Fluorene	<0.040	0.040	0.0056	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Hexachlorobenzene	<0.081	0.081	0.0093	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Hexachlorobutadiene	<0.20	0.20	0.063	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Hexachlorocyclopentadiene	<0.81	0.81	0.23	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Hexachloroethane	<0.20	0.20	0.061	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1

Client Sample Results

Client Sample ID: 3068V-17-B04 Date Collected: 10/27/21 11:30 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207572-5

Matrix: Solid Percent Solids: 78.6

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	< 0.040	*3	0.040	0.010	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Isophorone	<0.20		0.20	0.045	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Naphthalene	<0.040		0.040	0.0062	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Nitrobenzene	<0.040		0.040	0.010	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
N-Nitrosodi-n-propylamine	<0.081		0.081	0.049	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	¢	11/02/21 13:40	11/08/21 22:04	1
Pentachlorophenol	<0.81		0.81	0.64	mg/Kg	Ф	11/02/21 13:40	11/08/21 22:04	1
Phenanthrene	0.024	J	0.040	0.0056		¢	11/02/21 13:40	11/08/21 22:04	1
Phenol	<0.20		0.20		mg/Kg	æ	11/02/21 13:40	11/08/21 22:04	1
Pyrene	0.048		0.040	0.0080		☆	11/02/21 13:40	11/08/21 22:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	57		71 - 147				11/02/21 17:40	11/08/21 22:04	1
2-Fluorobiphenyl	38		47 - 145				11/02/21 17:40	11/08/21 22:04	1
2-Fluorophenol	102		71 - 166				11/02/21 17:40	11/08/21 22:04	1
Nitrobenzene-d5 (Surr)	30		73 - 143				11/02/21 17:40	11/08/21 22:04	1
Phenol-d5	81		70 - 157				11/02/21 17:40	11/08/21 22:04	1
Terphenyl-d14 (Surr)	141		42 - 153				11/02/21 17:40	11/08/21 22:04	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.62	J	1.2	0.24	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Arsenic	7.5		0.61	0.21	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Barium	99		0.61	0.070	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Beryllium	0.88		0.25	0.057	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Boron	6.3	В	3.1	0.29	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Cadmium	0.089	JB	0.12	0.022	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Calcium	25000		12	2.1	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Chromium	16		0.61	0.30	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Cobalt	11		0.31	0.080	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Copper	21		0.61	0.17	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
ron	20000		12	6.4	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Lead	28		0.31	0.14	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Magnesium	13000		6.1	3.0	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Vanganese	400	В	0.61	0.089	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Nickel	25		0.61	0.18	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Potassium	1900		31	11	mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Selenium	0.45	J	0.61	0.36	mg/Kg	☆	11/08/21 11:07	11/09/21 17:48	1
Silver	0.35		0.31	0.079	mg/Kg	☆	11/08/21 11:07	11/09/21 17:48	1
Sodium	250		61		mg/Kg	☆	11/08/21 11:07	11/09/21 17:48	1
Thallium	0.33	J	0.61		mg/Kg	☆	11/08/21 11:07	11/09/21 17:48	1
Vanadium	25		0.31		mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Zinc	73		1.2		mg/Kg	¢	11/08/21 11:07	11/09/21 17:48	1
Method: 6010B - Metals (ICP)	- TCLP								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
ron	<0.40		0.40		mg/L		11/04/21 08:00	11/04/21 19:17	1
_ead	<0.0075		0.0075	0.0075	mg/L		11/04/21 08:00	11/04/21 19:17	1
Manganese	0.013	.1	0.025	0.010	ma/l		11/04/21 08:00	11/04/21 19.17	1

Client: Andrews Engineering Inc. Project/Site: IDOT - AE7-040

Client Sample ID: 3068V-17-B04 Date Collected: 10/27/21 11:30 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207572-5

Matrix: Solid Percent Solids: 78.6

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.035	J	0.050	0.010	mg/L		11/05/21 07:49	11/08/21 16:46	1
Barium	0.42	J	0.50	0.050	mg/L		11/05/21 07:49	11/08/21 16:46	1
Beryllium	0.0040		0.0040	0.0040	mg/L		11/05/21 07:49	11/08/21 16:46	1
Boron	0.14		0.10	0.050	mg/L		11/05/21 07:49	11/08/21 16:46	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/05/21 07:49	11/08/21 16:46	1
Calcium	31		2.5	0.50	mg/L		11/05/21 07:49	11/08/21 16:46	1
Chromium	0.087		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:46	1
Cobalt	0.020	J	0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:46	1
Iron	86		0.40	0.20	mg/L		11/05/21 07:49	11/08/21 16:46	1
Lead	0.033		0.0075	0.0075	mg/L		11/05/21 07:49	11/08/21 16:46	1
Manganese	0.36		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:46	1
Nickel	0.090		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:46	1
Potassium	21		2.5	0.50	mg/L		11/05/21 07:49	11/09/21 14:54	1
Selenium	<0.050		0.050	0.020	mg/L		11/05/21 07:49	11/08/21 16:46	1
Silver	<0.025		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:46	1
Zinc	0.23	J	0.50	0.020	mg/L		11/05/21 07:49	11/08/21 16:46	1
Method: 6020A - Metals (ICP/M			RL	MDI	11	D	Drepered	Anolymod	
Analyte	<0.0060	Qualifier	0.0060		Unit		Prepared 11/05/21 07:49	Analyzed 11/15/21 21:11	Dil Fac
Antimony Thallium	<0.0060		0.0080	0.0060	-		11/05/21 07:49	11/15/21 21:11	1
-			0.0020	0.0020	mg/∟		11/05/21 07:49	11/15/2121:11	I
Method: 7470A - Mercury (CV/									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/05/21 09:50	11/08/21 10:33	1
Method: 7471B - Mercury (CV	4A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.027		0.019	0.0064	mg/Kg	¢	11/05/21 13:35	11/08/21 07:44	1
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Cyanide, Total	<0.29		0.29		mg/Kg	☆	11/10/21 17:48	11/10/21 19:19	1
pH	8.4		0.2	0.2				11/02/21 16:00	1

Qualifiers

GC/MS Se	ViOAc	
Qualifier	Qualifier Desprintion	4
*3	ISTD response or retention time outside acceptable limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
Metals		
Qualifier	Qualifier Desprintion	6
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	7
В	Compound was found in the blank and sample.	
F1	MS and/or MSD recovery exceeds control limits.	0
F3	Duplicate RPD exceeds the control limit	Ō
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < the upper reporting limits for both.	9
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

Glossary

	Compound was found in the blank and sample.	
F1	MS and/or MSD recovery exceeds control limits.	0
F3	Duplicate RPD exceeds the control limit	8
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < the upper reporting limits for both.	9
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	4.0
Glossary		- 10
c bbreviation	These poV V only used abbreviations V ay or V ay not be mesent in this remort.	11
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	13
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
	Toxicity Equivalent Quotient (Dioxin)	
TEQ		

Client: Andrews Engineering Inc. 4 ro1ectlP ite: ID/ S - AE7-000

Laboratory: Eurofins TestAmerica, Chicago Thless otUerwise notedh, II, n, lates yor tUs I, bor, tora were cof ered vnder e, cU, ccredit, tionRertiyic, tion below. Authority Program **Identification Number Expiration Date** Illinois u ENA4 IN000L5 00-23-22 SUe yollowing , n, lates , re inclvded in tUs re9orthbvt tUe I, bor, tora is not certiyied ba tUe gof erning , vtUorita. SUis list p , a inclvde , n, lates yor wUicU tUe, genca does not oyer certivic, tion. An, lasis metUod 4 re9 metUbd An, late m, triM x020A L060A j olid Antip ona x020A L060A j olid SU, llivp 7070A 7070A j olid mercvra 82x0B 50L5 j olid 6HL-DicUoro9ro9enehSot, I moistvre j olid 4 ercent moistvre moistvre j olid 4 ercent j olids

CHAIN OF CUSTODY RECORD

Client Contac	:t	Laborator	у						Proje	ct Nar	ne _	AZA	t - (040-	A	50)0-2075	72 COC		COC No	
Andrews Engi	neering Inc	Lab Test	America -	Chicago)							-								of	
3300 Ginger C Springfield, IL	Creek Drive	Address 2417 Bond Street University Park, IL 60484							Project No PTB/WD: 184-006/040A								_ [Lab Job No. 500	4		
217-787-2334			708-534-5						TAT 15 BD 10 BD 5 BD 2 BD Other										207572		
Contact Colle		Contact	Dick Wrig	ht								housed		-		J				Sample Temp.	
email cgrey@	andrews-eng com	3 0 100	hard wrig		ameri	caind	c com	- 	Sami	oler:	5.	1	the c	laci						4.6	
Special Instru												ALYS								Matrix Key:	
See Table 2 for	complete parameter lists and mir	nimum repor	ting limits									S				c				W Water	7
	metal (mg/kg) result exceeds the 3), run TCLP for that specific RCF		/ Character	stics			ш					o Metals				Characterization				S Soil SL Sludge S Sediment	8
** If SPLP resu	lt exceeds Class I Standard, run T	CLP for that	specific pa	rameter			MTB		les		Total Metals	SPLP/** TCLP	Cyanide		s	Charact				L Leachate DW Drinking Wa OL Oil	er 9
*** If total cyan	de exceeds MAC, run ASTM D39	87 (Neutral I	_each) cyar	ide	S	Cs	×	S		S	tal	P/*	ya		Solids	te O				O Other	1
Lab ID	Sample ID	Sample Date	Sample Time	Matrix	VOCs	SVOCs	BETX	PNAs	Pesticides	PCBs	* Tot	SPL	0 ***	Hd	% S	Waste				Comments	1
1	3068V-17-BOI	6/27	1210	5	X	X					X	X	X	X	X						
2	3068V-17-B02	10/27	1200	S	X	X					X	X	X	X	X						
3	3068V-17-B03-1	10127	川井の	S	X	Χ					X	x	X	X	X						1
4	30688-17-803-2	10/27	11 50	5	X	X					X	X	X	X	X						1
5	3068V-17-B04	10/27	1130	5	X	X					X	X	X	X	Х						1
																			-		
																			-	<u></u>	
																					_
																			-+		
Relinquished b	Ail Kr.			Date/Tim いいン				Rece	ved by	S	tos	n)							10	Date/Time 1/28/219:43	A
Relinquished	1/2 Stores	15 /J %		Date/Tim		19	1:45	Rece	ived by	1/1/	Na	w							1	Date/Time 0/2 8/2/ 044	
Relinguished b	у	P.N.	eal	Date/Tim	-			Recei	ived by	W/	-Ja	M	14	1				10/2		Øate/Time	

Page 59 6 60 /

L:NDOTAE7 PTB 184-006\Subcontractors\COC Templates\AE7 COC Template (TAL).tiss 7/2021

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification

by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the location	on of the source of the un	contaminated so	il)							
Project Name:	FAP 21 (US 2	0)	Office Phone N	lumber, if available:						
,	ion (address, including nu iry Avenue (east side of G	,		oster Avenue)						
City: Roselle	9	State: IL	Zip Code: <u>60172</u>							
County: DuPag	e	Township: Bloc	mingdale							
Lat/Long of approxi	mate center of site in dec	imal degrees (DD	.ddddd) to five decimal	places (e.g., 40.67890, ·	-90.12345):					
Latitude: <u>41.97071</u>	atitude: <u>41.97071</u> Longitude: - <u>88.12019</u>									
(Decimal Degrees) (-Decimal Degrees) dentify how the lat/long data were determined:										
⊖ GPS ⊘ Map Interpolation ⊖ Photo Interpolation ⊖ Survey ⊖ Other										
IEPA Site Number(s), if assigned: BOL: _		BOW:	BOA:						
Approximate Start I	Date (mm/dd/yyyy): <u>N/A</u>		Approximate End D	ate (mm/dd/yyyy): <u>N/A</u>						
Estimated Volume	of debris (cu. Yd.): <u>108</u>									
II. Owner/Opera	ator Information for	Source Site	Site Operator							
Name:	Illinois Department of	Transportation	Name:	Illinois Department o	f Transportation					
Street Address:	201 We	st Center Court	Street Address:	201 We	st Center Court					
PO Box:			PO Box:							
City:	Schaumburg	State: IL	City:	Schaumburg	State: IL					
Zip Code:	60196-1096 Phone:	847-705-4122	Zip Code:	60196-1096 Phone: 847-705-4						
Contact:	Irma I	Romiti-Johnson	Contact:	Irma Romiti-Johnson						
Email, if available:	Irma Romiti-Johns	on@illinois.gov	Email, if available:_	Irma Romiti-Johns	on@illinois.gov					

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Uncontaminated Soil Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

LOCATION 3068V-18-B01 WAS SAMPLED ADJACENT TO SITE 3068V-18. SEE TABLE 3h AND FIGURE 5 OF THE FINAL PRELIMINARY SITE INVESTIGATION REPORT.

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201 (g), 1100.205(a), 1100.610]:

EUROFINS/TEST AMERICA ANALYTICAL REPORT - TEST AMERICA JOB ID NUMBER: 500-207486-1.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I, <u>Savo Radulovic, L.P.G</u> (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Andrews Engineering,	Inc.		
Street Address:	420 Eisenhower Lane	North		
City:	Lombard	State:	IL	Zip Code: <u>60148</u>
Phone:	630-953-3332			
Savo Radulovic				
Printed Name:				
San	- Ruiz			Apr 18, 2022
Licensed Professional Licensed Professional				Date:
Licensed Professional	Geologist Signature.			
				SAVO RADULOVIC 196-001303 P.E or L.P.G. Seal

Uncontaminated Soil Certification

ILLINO19

The following table summarizes the results of laboratory analysis of site soil samples. In reading the table,

- Only parameters reported at concentrations above the most stringent MAC are listed.
- Samples with the notation "No Contaminants of Concern Noted" were below the most stringent MAC.

The laboratory report for site soils follows this summary table.

Volatile Organic Compounds (mg/kg)	
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane	
1.1.2-Trichloroethane	
1,1-Dichloroethane	
1,1-Dichloroethene	
1,2-Dichloroethane	
1,2-Dichloropropane	
1,3-Dichloropropene	
2-Butanone (MEK)	
2-Hexanone (MBK)	
4-Methyl-2-pentanone (MIBK)	
Acetone	
Benzene	
Bromodichloromethane	
Bromoform	
Bromomethane	
Carbon disulfide	
Carbon Tetrachloride	
Chlorobenzene	
Chloroethane	
Chloroform	
Chloromethane	
cis-1,2-Dichloroethene	
cis-1,3-Dichloropropene	
Dibromochloromethane	
Ethylbenzene	
Methylene chloride	
Methyl-tert-butyl-ether (MTBE)	
Styrene	
Tetrachloroethene	
Toluene	
trans-1,2-Dichloroethene	
trans-1,3-Dichloropropene Trichloroethene	
Vinyl acetate	
Vinyl chloride	
Xylenes, total	
Semivolatile Organic Compounds (mg/kg)	
1,2,4-Trichlorobenzene	
1,2-Dichlorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
2,4,5-Trichlorophenol	
2,4,6-Trichlorophenol	
2,4-Dichlorophenol	
2,4-Dimethylphenol	
2,4-Dinitrophenol	
-,	

ANALYTICAL PARAMETERS

Semivolatile Organic Compounds (mg/k	g)
2,6-Dinitrotoluene	
2-Chloronaphthalene	
2-Chlorophenol	
2-Methylnaphthalene	
2-Methylphenol	
2-Nitroaniline	
2-Nitrophenol	
3,3´-Dichlorobenzidine	
3-Nitroaniline	
4,6-Dinitro-2-methylphenol	
4-Bromophenyl phenyl ether	
4-Chloro-3-methylphenol	
4-Chloroaniline	
4-Chlorophenyl phenyl ether	
4-Methylphenol	
4-Nitroaniline	
4-Nitrophenol	
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Bis(2-chloroethoxy)methane	
Bis(2-chloroethyl)ether	
Bis(2-chloroisopropyl)ether	
Bis(2-ethylhexyl)phthalate	
Butyl benzyl phthalate	
Carbazole	
Chrysene	
Dibenzo(a,h)anthracene	
Dibenzofuran	
Diethyl phthalate	
Dimethyl phthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno(1,2,3-cd)pyrene	
Isophorone	
Naphthalene	
Nitrobenzene	

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS
Semivolatile Organic Compounds (mg/kg)
N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
Pentachlorophenol
Phenanthrene
Phenol
Pyrene
Inorganic Compounds, Total (mg/kg)
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Copper
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Cyanide
TCLP/SPLP Inorganics (mg/L)
Antimony
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Cyanide

ANALYTICAL PARAMETERS

ISGS Site 3068V-18

Vacant Lot

Sample ID	3068V-18-B01	3068V-18-B01 DUP	Maximum Allowable Concentration								
Sample Depth (ft)	0-3	0-3		Maximum A							
Sample Date	10/26/2021	10/26/2021			³ Within a	⁴ Within	⁵ Within a				
PID	0	0			Populated	Chicago	Metropolitan				
Sample pH	8.3	8.3	¹ Most	² Outside a	non-Metropolitan	Corporate	Statistical				
Matrix	Soil	Soil	Stringent	Populated Area	Statistical Area	Limits	Area				
Semivolatile Organic Cor	mpounds (mg/kg)										
Benzo(a)pyrene	0.13 1,2	0.32 1,2	0.09	0.09	0.98	1.3	2.1				

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-207486-1 Client Project/Site: IDOT - AE7-040

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Andrews Engineering Inc. 3300 Ginger Creek Drive Springfield, Illinois 62711

Attn: Ms. Colleen Grey

RILK

Authorized for release by: 11/16/2021 9:42:29 AM

Richard Wright, Senior Project Manager (708)746-0045 Richard.Wright@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client Sample ID: V031B-81-M08 Date Cdlle/ tec: 80923928 83:00 Date Re/ eivec: 80927928 80:5V

Lab Sample ID: 500-207613-8

r atxio: Sdlic Pex/ ent Sdlics: 10.V

alyte	Result	Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
1,1-Trichloroethane	<0.0019		0.0019	0.00063	mg/Kg	<u></u>	10/27/21 19:14	11/01/21 12:43	1
,1,2,2-Tetrachloroethane	<0.0019		0.0019	0.00060	mg/Kg	¢	10/27/21 19:14	11/01/21 12:43	1
1,1,2-Trichloroethane	<0.0019		0.0019	0.00080	mg/Kg	¢	10/27/21 19:14	11/01/21 12:43	1
1,1-Dichloroethane	<0.0019		0.0019	0.00064		¢	10/27/21 19:14	11/01/21 12:43	1
1,1-Dichloroethene	<0.0019		0.0019	0.00064	mg/Kg	¢	10/27/21 19:14	11/01/21 12:43	1
1,2-Dichloroethane	<0.0047		0.0047	0.0015	0 0	¢	10/27/21 19:14	11/01/21 12:43	1
1,2-Dichloropropane	<0.0019		0.0019	0.00048	00	¢	10/27/21 19:14	11/01/21 12:43	1
1,3-Dichloropropene, Total	<0.0019		0.0019	0.00066		¢	10/27/21 19:14	11/01/21 12:43	1
2-Butanone (MEK)	<0.0047		0.0047	0.0021		¢	10/27/21 19:14	11/01/21 12:43	1
2-Hexanone	<0.0047		0.0047	0.0015	mg/Kg	¢	10/27/21 19:14	11/01/21 12:43	1
4-Methyl-2-pentanone (MIBK)	<0.0047		0.0047	0.0014		¢	10/27/21 19:14	11/01/21 12:43	1
Acetone	<0.019		0.019	0.0082		☆	10/27/21 19:14	11/01/21 12:43	1
Benzene	<0.0019		0.0019	0.00048		¢	10/27/21 19:14	11/01/21 12:43	1
Bromodichloromethane	<0.0019		0.0019	0.00038	0 0	¢		11/01/21 12:43	1
Bromoform	<0.0019		0.0019	0.00055	0 0	¢	10/27/21 19:14	11/01/21 12:43	1
Bromomethane	<0.0047		0.0047	0.0018			10/27/21 19:14	11/01/21 12:43	1
Carbon disulfide	<0.0047		0.0047	0.00097		¢		11/01/21 12:43	1
Carbon tetrachloride	<0.0019		0.0019	0.00054		¢	10/27/21 19:14	11/01/21 12:43	1
Chlorobenzene	<0.0019		0.0019	0.00069			10/27/21 19:14	11/01/21 12:43	1
Chloroethane	< 0.0047	*+	0.0047	0.0014		₽		11/01/21 12:43	1
Chloroform	< 0.0019		0.0019	0.00065		¢	10/27/21 19:14		1
Chloromethane	< 0.0047	*_	0.0047	0.0019			10/27/21 19:14		1
cis-1,2-Dichloroethene	< 0.0019		0.0019	0.00052		¢	10/27/21 19:14		1
cis-1,3-Dichloropropene	< 0.0019		0.0019	0.00056			10/27/21 19:14		1
Dibromochloromethane	< 0.0019		0.0019	0.00061			10/27/21 19:14		1
Ethylbenzene	< 0.0019		0.0019	0.00090		☆	10/27/21 19:14		1
Methyl tert-butyl ether	< 0.0019		0.0019	0.00055	0 0	¢	10/27/21 19:14		1
Methylene Chloride	< 0.0047		0.0047	0.0018			10/27/21 19:14		
Styrene	< 0.0019		0.0019	0.00057		¢	10/27/21 19:14		1
Tetrachloroethene	< 0.0019		0.0019	0.00064		¢	10/27/21 19:14		1
Toluene	<0.0019		0.0019	0.00047			10/27/21 19:14		1
trans-1,2-Dichloroethene	< 0.0019		0.0019	0.00083	0 0	¢	10/27/21 19:14		1
trans-1,3-Dichloropropene	< 0.0019		0.0019	0.00066		¢	10/27/21 19:14		1
Trichloroethene	< 0.0019		0.0019	0.00063			10/27/21 19:14		
Vinyl chloride	< 0.0019		0.0019	0.00083			10/27/21 19:14		1
Kylenes, Total	< 0.0037		0.0037	0.00060	0 0		10/27/21 19:14		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			30 - 174				<u> </u>	11/01/21 12:47	<u></u>
1-Bromofluorobenzene (Surr)	81		30 - 174 39 - 171					11/01/21 12:47	1
Dibromofluoromethane	85		39 - 171 39 - 125					11/01/21 12:47	1
Soluene-dT (Surr)	83		39 - 123 39 - 124					11/01/21 12:47	
ethdc: 1270D - Semivdlat							_		
Analyte		Qualifiex	RL	r DL		D	Рхерахес	Analyzec	Dil Fa/
1,2,4-Trichlorobenzene	<0.20	-	0.20		mg/Kg	¢	11/01/21 20:00		1
1,2-Dichlorobenzene	<0.20		0.20		mg/Kg	☆		11/06/21 15:32	1
1,3-Dichlorobenzene	<0.20		0.20		mg/Kg	¢		11/06/21 15:32	1
I,4-Dichlorobenzene	<0.20		0.20		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	1
2,2'-oxybis[1-chloropropane]	< 0.20		0.20	0.046	mg/Kg	÷	11/01/21 20:00	11/06/21 15:32	1

Client Sample ID: V031B-81-M08 Date Cdlle/ tec: 80923928 83:00 Date Re/ eivec: 80927928 80:5V

Lab Sample ID: 500-207613-8

r atxio: Sdlic Pex/ ent Sdlics: 10.V

5

7

Analyte	Result Qualif	iex RL	r DL		D	Рхерахес	Analyzec	Dil Fa
2,4,5-Trichlorophenol	<0.39	0.39	0.090	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
2,4,6-Trichlorophenol	<0.39	0.39		mg/Kg	₽	11/01/21 20:00	11/06/21 15:32	
2,4-Dichlorophenol	<0.39	0.39	0.094	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
2,4-Dimethylphenol	<0.39	0.39	0.15	mg/Kg	☆	11/01/21 20:00	11/06/21 15:32	
2,4-Dinitrophenol	<0.80	0.80	0.70	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
2,4-Dinitrotoluene	<0.20	0.20	0.063	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
2,6-Dinitrotoluene	<0.20	0.20	0.078	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
2-Chloronaphthalene	<0.20	0.20	0.044	mg/Kg	₽	11/01/21 20:00	11/06/21 15:32	
2-Chlorophenol	<0.20	0.20	0.067	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
-Methylnaphthalene	<0.080	0.080	0.0073	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
2-Methylphenol	<0.20	0.20	0.063	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
-Nitroaniline	<0.20	0.20	0.053	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
-Nitrophenol	<0.39	0.39	0.093	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
& 4 Methylphenol	<0.20	0.20	0.066	mg/Kg	⊷	11/01/21 20:00	11/06/21 15:32	
,3'-Dichlorobenzidine	<0.20	0.20		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
-Nitroaniline	<0.39	0.39		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
,6-Dinitro-2-methylphenol	<0.80	0.80		mg/Kg		11/01/21 20:00	11/06/21 15:32	
-Bromophenyl phenyl ether	<0.20	0.20		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
-Chloro-3-methylphenol	< 0.39	0.39		mg/Kg	÷	11/01/21 20:00	11/06/21 15:32	
-Chloroaniline	<0.80	0.80		mg/Kg		11/01/21 20:00	11/06/21 15:32	
-Chlorophenyl phenyl ether	<0.20	0.20	0.046	mg/Kg	Å	11/01/21 20:00	11/06/21 15:32	
Nitroaniline	<0.39	0.39			æ	11/01/21 20:00	11/06/21 15:32	
Nitrophenol	<0.80	0.80		mg/Kg		11/01/21 20:00	11/06/21 15:32	
cenaphthene	<0.039	0.039	0.0071	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
/ enaphthylene	0.0037	0.039	0.0071	mg/Kg	÷	11/01/21 20:00	11/06/21 15:32	
nthxa/ene	0.0037 [0.039	0.0052	mg/Kg		11/01/21 20:00	11/06/21 15:32	
lenzd]aJanthxa/ ene	0.88	0.039	0.0053	mg/Kg	÷	11/01/21 20:00	11/06/21 15:32	
	0.8V	0.039	0.0035	mg/Kg	÷	11/01/21 20:00	11/06/21 15:32	
lenzd]aJpyxene		0.039	0.0076			11/01/21 20:00	11/06/21 15:32	
/enzd]bJfludxanthene	0.28	0.039		mg/Kg	¢ ×	11/01/21 20:00		
lenzd]g,h,iJpexylene	0.036			mg/Kg	Å.		11/06/21 15:32	
lenzd]kJiudxanthene	0.073	0.039		mg/Kg	÷ • • • • •	11/01/21 20:00	11/06/21 15:32	
is(2-chloroethoxy)methane	<0.20	0.20	0.040	mg/Kg	¢.	11/01/21 20:00	11/06/21 15:32	
Bis(2-chloroethyl)ether	<0.20	0.20	0.059	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
lis(2-ethylhexyl) phthalate	< 0.20	0.20	0.072	mg/Kg	÷	11/01/21 20:00	11/06/21 15:32	
Butyl benzyl phthalate	<0.20	0.20		mg/Kg	Å.	11/01/21 20:00	11/06/21 15:32	
Carbazole	<0.20	0.20		mg/Kg	¢		11/06/21 15:32	
hxysene	0.86	0.039		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
)ibenz(a,h)anthxa/ ene	0.028 [0.039	0.0076		¢	11/01/21 20:00	11/06/21 15:32	
libenzofuran	<0.20	0.20		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
iethyl phthalate	<0.20	0.20		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
imethyl phthalate	<0.20	0.20		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
i-n-butyl phthalate	<0.20	0.20		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
i-n-octyl phthalate	<0.20	0.20		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
ludxanthene	0.25	0.039	0.0073		¢	11/01/21 20:00	11/06/21 15:32	
ludxene	0.0034 [0.039	0.0056	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
lexachlorobenzene	<0.080	0.080	0.0092	mg/Kg	¢.	11/01/21 20:00	11/06/21 15:32	
lexachlorobutadiene	<0.20	0.20	0.062	mg/Kg	₽	11/01/21 20:00	11/06/21 15:32	
lexachlorocyclopentadiene	<0.80	0.80	0.23	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
Hexachloroethane	<0.20	0.20	0.060	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	

Client Sample Results

Client Sample ID: V031B-81-M08 Date Cdlle/ tec: 80923928 83:00 Date Re/ eivec: 80927928 80:5V

Job	ID:	500-207486-1
000	·D.	000 201 400 1

Lab Sample ID: 500-207613-8

r atxio: Sdlic Pex/ ent Sdlics: 10.V

5

7

r ethdc: 1270D - Semivdla Analyte		Qualifiex	RL		Unit	D	Рхерахес	Analyzec	Dil Fa/
Incend]8,2,V-/ cJpyxene	0.034		0.039	0.010	mg/Kg	☆	11/01/21 20:00	11/06/21 15:32	
Isophorone	<0.20		0.20	0.044	mg/Kg	₽	11/01/21 20:00	11/06/21 15:32	• • • • •
Naphthalene	<0.039		0.039	0.0061	mg/Kg	☆	11/01/21 20:00	11/06/21 15:32	
Nitrobenzene	<0.039		0.039		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
N-Nitrosodi-n-propylamine	<0.080		0.080	0.048	mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
N-Nitrosodiphenylamine	<0.20		0.20		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
Pentachlorophenol	<0.80		0.80		mg/Kg		11/01/21 20:00	11/06/21 15:32	1
Phenanthxene	0.80		0.039	0.0055		¢	11/01/21 20:00	11/06/21 15:32	
Phenol	<0.20		0.20		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	1
Pyxene	0.22		0.039		mg/Kg	¢	11/01/21 20:00	11/06/21 15:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,5-6ribromophenol			71 - 147				11/01/21 20:00	11/05/21 19:72	
2-Fluorobiphenyl	31		47 - 149				11/01/21 20:00	11/05/21 19:72	1
2-Fluorophenol	T3		71 - 155					11/05/21 19:72	
Nitrobenzene-d9 (Surr)	31		73 - 143				11/01/21 20:00	11/05/21 19:72	
Phenol-d9	30		70 - 197					11/05/21 19:72	-
Berphenyl-d14 (Surr)	80		42 - 193				11/01/21 20:00	11/05/21 19:72	-
ethdc: 3080M - r etals (I	CP)								
nalyte		Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa
ntimdny	0.63	[M F 8	1.1	0.22	mg/Kg	<u></u>	11/05/21 10:05	11/08/21 14:27	
wseni/	7.1		0.57	0.20	mg/Kg	☆	11/05/21 10:05	11/08/21 14:27	
<i>l</i> laxium	8 V 0		0.57	0.065	mg/Kg	¢	11/05/21 10:05	11/08/21 14:27	
Mexyllium	0.72		0.23	0.053	mg/Kg	⇔	11/05/21 10:05	11/08/21 14:27	
Mdxdn	V.0	F8	2.9	0.27	mg/Kg	¢	11/05/21 10:05	11/08/21 14:27	
Cacmium	0.017	[M	0.11	0.021	mg/Kg	¢	11/05/21 10:05	11/08/21 14:27	
Cal/ ium	3200	F2	11	1.9	mg/Kg	¢.	11/05/21 10:05	11/08/21 14:27	
Chxdmium	86		0.57	0.28	mg/Kg	¢	11/05/21 10:05	11/08/21 14:27	
Cdbalt	80		0.29	0.075	mg/Kg	¢	11/05/21 10:05	11/08/21 14:27	
Cdppex	83		0.57	0.16	mg/Kg	¢	11/05/21 10:05	11/08/21 14:27	
xdn	81000		11	5.9	mg/Kg	☆	11/05/21 10:05	11/08/21 14:27	
_eac	28	F8	0.29	0.13	mg/Kg	¢	11/05/21 10:05	11/08/21 14:27	
agnesium	6V00	F2	5.7		mg/Kg	ф.	11/05/21 10:05	11/08/21 14:27	
anganese	770	F2	0.57		mg/Kg	¢	11/05/21 10:05	11/08/21 14:27	
Ni/ kel	81		0.57		mg/Kg	¢	11/05/21 10:05	11/08/21 14:27	
Pdtassium	8V00	F8	29		mg/Kg			11/09/21 13:25	
Selenium		[F8	0.57		mg/Kg			11/08/21 14:27	
Silvex	0.W	-	0.29		mg/Kg	¢	11/05/21 10:05		
Sdcium	V30		57		mg/Kg		11/05/21 10:05		,
Zhallium	0.V7	r	0.57		mg/Kg	¢	11/05/21 10:05		
Banacium	24	L	0.29		mg/Kg	¢	11/05/21 10:05		
Banacium Tin/	24 70		1.1		mg/Kg mg/Kg		11/05/21 10:05		
r ethdc: 3080M - r etals (I									
Analyte		Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa
Beryllium	<0.0040		0.0040	0.0040				11/03/21 19:00	
Chromium	<0.025		0.025	0.010	-			11/03/21 19:00	

Analyte	Result	Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/21 07:52	11/03/21 19:00	1
Chromium	<0.025		0.025	0.010	mg/L		11/03/21 07:52	11/03/21 19:00	1
bidn	0.24	[0.40	0.20	mg/L		11/03/21 07:52	11/03/21 19:00	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/21 07:52	11/03/21 19:00	1

Client Sample Results

Client Sample ID: V031B-81-M08 Date Cdlle/ tec: 80923928 83:00 Date Re/ eivec: 80927928 80:5V

Job	ID:	500-207486-1
000		000 201 100 1

Lab Sample ID: 500-207613-8

r atxio: Sdlic Pex/ ent Sdlics: 10.V

5

7

r ethdc: 3080M - r etals (ICF	P) - ZCLP (Cdı	ntinuec)							
Analyte	Result	Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
r anganese	0.88		0.025	0.010	mg/L		11/03/21 07:52	11/03/21 19:00	1
r ethdc: 3080M - r etals (ICF	P) - SPLP East	t							
Analyte	Result	Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
Axseni/	0.0V3	[0.050	0.010	mg/L		11/03/21 07:55	11/04/21 14:12	1
Maxium	0.70		0.50	0.050	-		11/03/21 07:55	11/04/21 14:12	1
Mexyllium	0.0052		0.0040	0.0040	mg/L		11/03/21 07:55	11/04/21 14:12	1
Mdxdn	0.075	[0.10	0.050	mg/L		11/03/21 07:55	11/04/21 14:12	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/21 07:55	11/04/21 14:12	1
Cal/ ium	20		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 14:12	1
Chxdmium	0.88		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:12	1
Cdbalt	0.020	1	0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:12	1
lxdn	880		0.40	0.20	mg/L		11/03/21 07:55	11/04/21 14:12	1
Leac	0.058		0.0075	0.0075	mg/L		11/03/21 07:55	11/04/21 14:12	1
r anganese	8.8		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:12	1
Ni/ kel	0.074		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:12	1
Pdtassium	86		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 14:12	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/21 07:55	11/04/21 14:12	1
Silver	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:12	1
Tin/	0.V1	[0.50	0.020	mg/L		11/03/21 07:55	11/04/21 14:12	1
r ethdc: 3020A - r etals (ICF	9 S) - SPLP	East							
Analyte		Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
Antimony	< 0.0060		0.0060	0.0060	mg/L		11/03/21 07:55	11/15/21 20:22	1
Thallium	<0.0020		0.0020	0.0020	mg/L		11/03/21 07:55	11/15/21 20:22	1
r ethdc: 7670A - r ex/ uxy (C	BAA) - SPLP	East							
Analyte		Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
Mercury	<0.00020		0.00020	0.00020	mg/L		11/03/21 10:25	11/04/21 10:51	1
rethdc: 7678M - rex/uxy (C	BAA)								
Analyte		Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
rex/uxy	0.062		0.019	0.0063	mg/Kg		11/02/21 13:30	11/03/21 09:42	1
Genexal Chemistxy									
Analyte	Result	Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
Cyanice, Zdtal	0.65		0.28		mg/Kg		11/09/21 14:23	11/09/21 15:46	1
pH	1.V		0.2		SU			10/28/21 15:39	1
_p.,			0.2	5.2					

Client Sample ID: V031B-81-M08 Dup Date Cdlle/ tec: 8092398 83:80 Date Re/ eivec: 8092798 80:5V

Job ID: 500-207486-1

Lab Sample ID: 500-207613-2

r atxio: Sdlic Pex/ ent Sdlics: 10.V

5

7

nalyte	Result	Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
,1,1-Trichloroethane	<0.0018		0.0018	0.00059	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
1,2,2-Tetrachloroethane	<0.0018		0.0018	0.00057	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
1,2-Trichloroethane	<0.0018		0.0018	0.00076	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
1-Dichloroethane	<0.0018		0.0018	0.00061	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
1-Dichloroethene	<0.0018		0.0018	0.00061	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
2-Dichloroethane	< 0.0044		0.0044	0.0014	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
2-Dichloropropane	<0.0018		0.0018	0.00046	mg/Kg		10/27/21 19:14	11/01/21 13:09	
3-Dichloropropene, Total	<0.0018		0.0018	0.00062	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
Butanone (MEK)	< 0.0044		0.0044	0.0020	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
Hexanone	<0.0044		0.0044	0.0014				11/01/21 13:09	
Methyl-2-pentanone (MIBK)	< 0.0044		0.0044	0.0013		¢		11/01/21 13:09	
cetone	< 0.018		0.018	0.0077	0 0	÷.		11/01/21 13:09	
enzene	< 0.0018		0.0018	0.00045				11/01/21 13:09	
omodichloromethane	< 0.0018		0.0018	0.00036		÷		11/01/21 13:09	
omoform	< 0.0018		0.0018	0.00052	0 0	÷	10/27/21 19:14		
omomethane	<0.0010		0.0044	0.00032				11/01/21 13:09	
arbon disulfide	<0.0044		0.0044	0.00092		÷		11/01/21 13:09	
arbon tetrachloride	<0.0044		0.0044	0.00051	mg/Kg	÷	10/27/21 19:14		
lorobenzene			0.0018				10/27/21 19:14		
	<0.0018	* •			mg/Kg	¢.			
lloroethane	< 0.0044	+	0.0044	0.0013	0 0	¢.		11/01/21 13:09	
nloroform	<0.0018	*	0.0018		mg/Kg	¢	10/27/21 19:14		
loromethane	< 0.0044	~-	0.0044		mg/Kg	¢	10/27/21 19:14		
s-1,2-Dichloroethene	< 0.0018		0.0018	0.00050	mg/Kg	¢		11/01/21 13:09	
s-1,3-Dichloropropene	<0.0018		0.0018	0.00053	mg/Kg	¢.	10/27/21 19:14		
bromochloromethane	<0.0018		0.0018	0.00058	mg/Kg	¢	10/27/21 19:14		
hylbenzene	<0.0018		0.0018		mg/Kg	¢		11/01/21 13:09	
ethyl tert-butyl ether	<0.0018		0.0018			¢	10/27/21 19:14		
ethylene Chloride	<0.0044		0.0044	0.0017	0 0	¢	10/27/21 19:14		
yrene	<0.0018		0.0018	0.00054	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
etrachloroethene	<0.0018		0.0018	0.00060	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
bluene	<0.0018		0.0018	0.00045	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
ans-1,2-Dichloroethene	<0.0018		0.0018	0.00079	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
ans-1,3-Dichloropropene	<0.0018		0.0018	0.00062	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
ichloroethene	<0.0018		0.0018	0.00060	mg/Kg	₽	10/27/21 19:14	11/01/21 13:09	
nyl chloride	<0.0018		0.0018	0.00078	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
ylenes, Total	<0.0035		0.0035	0.00057	mg/Kg	¢	10/27/21 19:14	11/01/21 13:09	
irrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Dichloroethane-d4 (Surr)	109		30 - 174				10/23/21 18:14	11/01/21 17:08	
Bromofluorobenzene (Surr)	8T		39 - 171					11/01/21 17:08	
bromofluoromethane	83		39 - 125					11/01/21 17:08	
luene-dT (Surr)	83		39 - 124					11/01/21 17:08	
ethder 4070D - Ormite dist									
ethdc: 1270D - Semivdlat nalyte	-	Qualifiex	(GC9°S) RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa
2,4-Trichlorobenzene	<0.21		0.21		mg/Kg	— <u>–</u>	11/01/21 20:00	11/06/21 15:53	
2-Dichlorobenzene	<0.21		0.21		mg/Kg	× ×	11/01/21 20:00	11/06/21 15:53	
	<0.21		0.21				11/01/21 20:00	11/06/21 15:53	
3-Dichlorobenzene 4-Dichlorobenzene	<0.21 <0.21		0.21		mg/Kg mg/Kg			11/06/21 15:53	
4-0100000000000	<0.21		0.21	0.053	100/60	÷.	11/01/21 20:00	11/00/21 15:53	

Client Sample ID: V031B-81-M08 Dup Date Cdlle/ tec: 80923928 83:80 Date Re/ eivec: 80927928 80:5V

Lab Sample ID: 500-207613-2 r atxio: Sdlic

Pex/ ent Sdlics: 10.V

Analyte	Result Qualifiex	RL	r DL		D	Рхерахес	Analyzec	Dil Fa/
2,4,5-Trichlorophenol	<0.41	0.41		mg/Kg	☆	11/01/21 20:00		1
2,4,6-Trichlorophenol	<0.41	0.41		mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
2,4-Dichlorophenol	<0.41	0.41		mg/Kg	₽	11/01/21 20:00	11/06/21 15:53	1
2,4-Dimethylphenol	<0.41	0.41		mg/Kg	₽	11/01/21 20:00	11/06/21 15:53	1
2,4-Dinitrophenol	<0.83	0.83	0.73	mg/Kg	₿	11/01/21 20:00	11/06/21 15:53	1
2,4-Dinitrotoluene	<0.21	0.21	0.066	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
2,6-Dinitrotoluene	<0.21	0.21	0.081	mg/Kg	₽	11/01/21 20:00	11/06/21 15:53	1
2-Chloronaphthalene	<0.21	0.21	0.046	mg/Kg	₽	11/01/21 20:00	11/06/21 15:53	1
2-Chlorophenol	<0.21	0.21	0.070	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
2-Methylnaphthalene	<0.083	0.083	0.0076	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
2-Methylphenol	<0.21	0.21	0.066	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
2-Nitroaniline	<0.21	0.21	0.056	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
2-Nitrophenol	<0.41	0.41	0.098	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
8 & 4 Methylphenol	<0.21	0.21		mg/Kg	¢.	11/01/21 20:00	11/06/21 15:53	1
,3'-Dichlorobenzidine	<0.21	0.21		mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
B-Nitroaniline	<0.41	0.41		mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
,6-Dinitro-2-methylphenol	<0.83	0.83		mg/Kg		11/01/21 20:00		
-Bromophenyl phenyl ether	<0.21	0.21		mg/Kg	¢		11/06/21 15:53	1
-Chloro-3-methylphenol	<0.41	0.41		mg/Kg	¢.	11/01/21 20:00		1
-Chloroaniline	<0.83	0.83		mg/Kg		11/01/21 20:00		
-Chlorophenyl phenyl ether	<0.21	0.21		mg/Kg	¢		11/06/21 15:53	1
-Nitroaniline	<0.21	0.21		mg/Kg	÷		11/06/21 15:53	1
Nitrophenol	<0.83	0.41		mg/Kg		11/01/21 20:00		
/ enaphthene	0.028 [0.03	0.0074		÷		11/06/21 15:53	1
· · · ·	0.028 [0.041	0.0074		÷		11/06/21 15:53	1
/ enaphthylene .nthxa/ ene	0.030	0.041	0.0069				11/06/21 15:53	
	0.030	0.041	0.0056		¥ ¢	11/01/21 20:00	11/06/21 15:53	1
/enzd]aJanthxa/ene	0.24 0.V2	0.041	0.0050		¥ ¢		11/06/21 15:53	1
lenzd]a.jpyxene		0.041	0.0080				11/06/21 15:53	1
/enzd]bJfludxanthene	0.64							1
/enzd]g,h,iJpexylene	0.82	0.041		mg/Kg	¢ ×	11/01/21 20:00		-
Menzd]kJfludxanthene	0.28	0.041		mg/Kg	÷ • • • • • •	11/01/21 20:00		1
Bis(2-chloroethoxy)methane	<0.21	0.21		mg/Kg		11/01/21 20:00		1
Bis(2-chloroethyl)ether	<0.21	0.21		mg/Kg	ţ.	11/01/21 20:00		1
Bis(2-ethylhexyl) phthalate	<0.21	0.21		mg/Kg	¢	11/01/21 20:00		1
Butyl benzyl phthalate	<0.21	0.21		mg/Kg		11/01/21 20:00		1
Carbazole	<0.21	0.21		mg/Kg	\$		11/06/21 15:53	1
hxysene	0.V6	0.041		mg/Kg		11/01/21 20:00		1
ibenz(a,h)anthxa/ ene	0.066	0.041	0.0080			11/01/21 20:00		1
ibenzofuran	<0.21	0.21		mg/Kg	¢		11/06/21 15:53	1
liethyl phthalate	<0.21	0.21		mg/Kg			11/06/21 15:53	1
imethyl phthalate	<0.21	0.21		mg/Kg	¢	11/01/21 20:00		1
i-n-butyl phthalate	<0.21	0.21		mg/Kg	₽	11/01/21 20:00	11/06/21 15:53	1
i-n-octyl phthalate	<0.21	0.21		mg/Kg	¢		11/06/21 15:53	1
ludxanthene	0.31	0.041	0.0077		¢	11/01/21 20:00		1
ludxene	0.021 [0.041	0.0058	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
lexachlorobenzene	<0.083	0.083	0.0096	mg/Kg	₽	11/01/21 20:00	11/06/21 15:53	1
lexachlorobutadiene	<0.21	0.21	0.065	mg/Kg	☆	11/01/21 20:00	11/06/21 15:53	1
lexachlorocyclopentadiene	<0.83	0.83	0.24	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
Hexachloroethane	<0.21	0.21	0.063	mg/Kg	÷.	11/01/21 20:00	11/06/21 15:53	1

Client Sample ID: V031B-81-M08 Dup Date Cdlle/ tec: 80923928 83:80 Date Re/ eivec: 80927928 80:5V

Lab Sample ID: 500-207613-2 r atxio: Sdlic

Pex/ ent Sdlics: 10.V

5

7

Analyte	Result	Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
ncend]8,2,V-/ cJpyxene	0.8V		0.041	0.011	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
sophorone	<0.21		0.21	0.046	mg/Kg	☆	11/01/21 20:00	11/06/21 15:53	1
Naphthalene	<0.041		0.041	0.0064	mg/Kg	☆	11/01/21 20:00	11/06/21 15:53	1
Nitrobenzene	<0.041		0.041	0.010	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
N-Nitrosodi-n-propylamine	<0.083		0.083	0.050	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
N-Nitrosodiphenylamine	<0.21		0.21	0.049	mg/Kg	☆	11/01/21 20:00	11/06/21 15:53	1
Pentachlorophenol	<0.83		0.83	0.66	mg/Kg	₿	11/01/21 20:00	11/06/21 15:53	1
Phenanthxene	0.V5		0.041	0.0058	mg/Kg	☆	11/01/21 20:00	11/06/21 15:53	1
Phenol	<0.21		0.21	0.092	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
Pyxene	0.38		0.041	0.0082	mg/Kg	¢	11/01/21 20:00	11/06/21 15:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,5-6ribromophenol	T1		71 - 147				11/01/21 20:00	11/05/21 19:97	1
2-Fluorobiphenyl	T1		47 - 149				11/01/21 20:00	11/05/21 19:97	1
2-Fluorophenol	114		71 - 155				11/01/21 20:00	11/05/21 19:97	1
Nitrobenzene-d9 (Surr)	39		73 - 143				11/01/21 20:00	11/05/21 19:97	1
Phenol-d9	83		70 - 197				11/01/21 20:00	11/05/21 19:97	1
Serphenyl-d14 (Surr)	88		42 - 193				11/01/21 20:00	11/05/21 19:97	1
r ethdc: 3080M - r etals (ICP)									
Analyte		Qualifiex	RL	r DL		D	Рхерахес	Analyzec	Dil Fa/
Antimdny	0.6V	[M	1.2	0.23	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
Axseni/	7.3		0.59	0.20	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
Vlaxium	8 V 0		0.59		mg/Kg	☆	11/05/21 10:05	11/08/21 14:52	1
Mexyllium	0.7V		0.24	0.055	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
Mdxdn	V.3		2.9		0 0	¢	11/05/21 10:05	11/08/21 14:52	1
Cacmium	0.82	М	0.12	0.021	mg/Kg	☆	11/05/21 10:05	11/08/21 14:52	1
Cal/ ium	1400		12	2.0	mg/Kg	☆	11/05/21 10:05	11/08/21 14:52	1
Chxdmium	85		0.59	0.29	mg/Kg	☆	11/05/21 10:05	11/08/21 14:52	1
Cdbalt	1.1		0.29	0.077	mg/Kg	☆	11/05/21 10:05	11/08/21 14:52	1
Cdppex	87		0.59	0.17	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
xdn	81000		12	6.1	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
Leac	27		0.29	0.14	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
agnesium	3800		5.9	2.9	mg/Kg	☆	11/05/21 10:05	11/08/21 14:52	1
anganese	510		0.59	0.085	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
Ni/ kel	84		0.59	0.17	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
Pdtassium	8600		29	10	mg/Kg	☆	11/05/21 10:05	11/09/21 13:48	1
Selenium	<0.59		0.59	0.35	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
Silvex	0.V5		0.29	0.076	mg/Kg	☆	11/05/21 10:05	11/08/21 14:52	1
Sdcium	V30		59	8.7	mg/Kg	☆	11/05/21 10:05	11/09/21 13:48	1
Thallium	<0.59		0.59	0.29	mg/Kg	☆	11/05/21 10:05	11/08/21 14:52	1
Banacium	26		0.29	0.070	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
Tin/	77		1.2	0.52	mg/Kg	¢	11/05/21 10:05	11/08/21 14:52	1
r ethdc: 3080M - r etals (ICP)	- ZCLP								
Analyte	Result	Qualifiex	RL	r DL		D	Рхерахес	Analyzec	Dil Fa/
ron	<0.40		0.40	0.20	mg/L		11/03/21 07:52	11/03/21 19:03	1
Lead	<0.0075		0.0075	0.0075	mg/L		11/03/21 07:52	11/03/21 19:03	1
r anganese	0.85		0.025	0.010	ma/l		11/03/21 07:52	11/03/21 19:03	1

Client: Andrews Engineering Inc. Project/Site: IDOT - AE7-040

Client Sample ID: V031B-81-M08 Dup Date Cdlle/ tec: 8092398 83:80 Date Re/ eivec: 8092798 80:5V

Lab Sample ID: 500-207613-2 r atxio: Sdlic

Pex/ ent Sdlics: 10.V

5

7

Analyte	Result	Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
Axseni/	0.0V0	[0.050	0.010	mg/L		11/03/21 07:55	11/04/21 14:15	1
Maxium	0.54		0.50	0.050	mg/L		11/03/21 07:55	11/04/21 14:15	1
Beryllium	<0.0040		0.0040	0.0040	mg/L		11/03/21 07:55	11/04/21 14:15	1
Mdxdn	0.078	[0.10	0.050	mg/L		11/03/21 07:55	11/04/21 14:15	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/03/21 07:55	11/04/21 14:15	1
Cal/ ium	81		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 14:15	1
Chxdmium	0.040		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:15	1
Cdbalt	0.081	1	0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:15	1
lxdn	43		0.40		mg/L		11/03/21 07:55	11/04/21 14:15	1
Leac	0.054		0.0075	0.0075	mg/L		11/03/21 07:55	11/04/21 14:15	1
r anganese	0.11		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:15	1
Ni/ kel	0.076		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:15	1
Pdtassium	8V		2.5	0.50	mg/L		11/03/21 07:55	11/04/21 14:15	1
Selenium	<0.050		0.050	0.020	mg/L		11/03/21 07:55	11/04/21 14:15	1
Silver	<0.025		0.025	0.010	mg/L		11/03/21 07:55	11/04/21 14:15	1
Γin/	0.V6	[0.50	0.020	mg/L		11/03/21 07:55	11/04/21 14:15	1
ethdc: 3020A - r etals	· · ·	East Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
Antimony	<0.0060		0.0060	0.0060			11/03/21 07:55	11/15/21 20:24	1
Thallium	<0.0020		0.0020	0.0020	-		11/03/21 07:55	11/15/21 20:24	1
rethdc: 7670A - rex/ux	V (CBAA) - SPLP	East							
Analyte		Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
<i>Mercury</i>	<0.00020		0.00020	0.00020	mg/L		11/03/21 10:25	11/04/21 10:53	1
rethdc:7678M-rex/ux	v (CBAA)								
Analyte		Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
∙ex/uxy	0.0V1		0.019	0.0064	mg/Kg	☆	11/02/21 13:30	11/03/21 09:44	1
Genexal Chemistxy									
Analyte	Result	Qualifiex	RL	r DL	Unit	D	Рхерахес	Analyzec	Dil Fa/
Cuaniaa Zdtal	0.6V		0.29	0.15	mg/Kg		11/09/21 14:23	11/09/21 15:48	1
Cyanice, Zdtal	0.00		0.23	0.15	mg/itg	74	11/03/21 14.20	11/03/21 13.40	

Qualifiers

GC/MS VOA	
Qualifier	(

GC/MS VOA		
Qualifier	Qualifier Description	4
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	5
GC/MS Semi	VOA	
Qualifier	Qualifier Description	6
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals Qualifier	Qualifier Description	7
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	8
В	Compound was found in the blank and sample.	Q
F1	MS and/or MSD recovery exceeds control limits.	3
F2	MS/MSD RPD exceeds control limits	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	13
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
וס		

Abbreviation	These commonly used abbreviations may or may not be present in this report.
ĭ	Listed under the "D" column to designate that the result is reported on a dry weight basis
۵R	Percent Recovery
FL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
OD	Limit of Detection (DoD/DOE)
.OQ	Limit of Quantitation (DoD/DOE)
//CL	EPA recommended "Maximum Contaminant Level"
/IDA	Minimum Detectable Activity (Radiochemistry)
/IDC	Minimum Detectable Concentration (Radiochemistry)
//DL	Method Detection Limit
ЛL	Minimum Level (Dioxin)
ЛРN	Most Probable Number
/IQL	Method Quantitation Limit
1C	Not Calculated
1D	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
2C	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
ΈF	Toxicity Equivalent Factor (Dioxin)
ΓEQ	Toxicity Equivalent Quotient (Dioxin)
INTC	Too Numerous To Count

Client: Andrews Engineering Inc. j ro/ectSite: IDT U - AE7-060 Job ID: 500-207641-P

5

13

Laboratory: Eurofins TestAmerica, Chicago h nless ot, erwise notedayll ynylf tes vor t, is lyborytorf were couered Nhder eyc, yccreditytion Sertivicytion below. Authority Program **Identification Number Expiration Date** Illinois LE3Aj 1300095 06-2p-22 U, e vollowing ynylftes yre inclNded in t, is renortabNt t, e lyborytorf is not certivied bf t, e gouerning yNt, oritf. U, is list Myf inclNde ynylftes vor w, ic, t, e ygencf does not ower certivicytion. Anylf sis x et, od Anylf te j remx et, od x ytri8 1020A 90P0A Oolid AntiMonf 90P0A 1020A Oolid U, ylliNM 7670A 7670A Oolid x ercNrf 4210B 5095 Oolid Pa9-Dic, loromomeneaUbtyl x oistNre Oolid j ercent x oistNre Oolid x oistNre j ercent Oolids

ENrovins UestAMericyaC, icygo

CHAIN OF CUSTODY RECORD

E N	GINEERING	500-207486 C	00	СНА		OF	CU	STC	DY	RE	CO	RD							5	00-207486
Client Conta	ct	500-2074880							Proje	ct Nar	ne	A	E-	7-0	402	4				COC No
Andrews Eng	ineering Inc	Lab Test	America -	Chicago	>				1				,				Go			of
3300 Ginger (Address	2417 Bon	d Street					Proje	ct No	1	PJB	/w	0: 1	84-	-60	60	402	4	Lab Job No
Springfield, IL			University	Park, IL	. 6048	34		902					1				/			
217-787-2334		Phone	708-534-5	200					TAT	1 5	BD	□ ¹⁰	BD	<u>□5</u>	3D	□2 E	3D	Ot	her	
Contact Coll		Contact	Dick Wrig	jht					ļ.	~										Sample Temp
	gandrews-eng com	email <u>ri</u> c	chard wrig	ht@testa	amer	cainc	com	<u>l</u>	Sam	pler:	5	ina	dy	love						Ait
Special Instru	ctions:											VALYS								Matrix Key:
See Table 2 fo	r complete parameter lists and mi	nımum repoi	ting limits									S				c				W Water
	A metal (mg/kg) result exceeds the		y Character	istics								Metals				Characterization				S Soil
Limit (Table	3), run TCLP for that specific RCF	RA metal										Me				riza				SL Sludge
							ШШ				S					cte				S Sediment L Leachate
** If SPLP resu	It exceeds Class I Standard, run	FCLP for tha	t specific pa	rameter			MTBI		6		eta	D	de de			ara				DW Drinking Water
						S	l ∞ð		de		Ž	*	anic		ds	ÿ				OL OI
*** If total cyan	ide exceeds MAC, run ASTM D39			lide	S	8	×	As	tici	ß	Total Metals	P	Cyanide		Solids					O Other
Lab ID	Sample ID	Sample Date	Sample Time	Matrix	VOCs	SVOCS	BETX	PNAs	Pesticides	PCBs	۲ ۲	SPLP/** TCLP	***	Hd	% S	Waste				Comments
	30684-18-801 30691-18-801 AUA Trip Bign K #1	10/26/21	16:00	5	X	\geq					\times	X	X	X	X					4:00,0W
	3069V-18-BOI AUA	10/26/24	16:10	S	X						X	\succ	X	X	Х					Hilppm
3	Trip Bign K #1				Х										(
	< v																			
	×																			
	.1.1																			
Relinquished b			1	Date/Tim	e			Recei	ved by	/			lea	/		[Date/Time 10 27 21 /00) -
Relinquished b	NV A		1	lojz ja Date/Ţim	e	115	2	Rece	ved b	K	- Sa	_		<u>ر</u>				in	- has	Date/Time
Relinguished b	// ,	Via		Date/Tim	0	[15	+	Rack	YOA V	10-	<u> fl</u>	el	g	1			/	10/27	14	Date/Time
rteinquistied b	<i>'</i> y			Dater Hill	G		Υ C	Recei	ver by		Ø									

5

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification

by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the locati	on of the source of the u	ncontaminated so	bil)				
Project Name:	FAP 21 (U	S 20)	Office Phone N	lumber, if avail	able:		
•	ion (address, including nu e Street and 25W 319 W	,):				
City: Roselle	9	State: IL	Zip Code: 60172				
County: DuPag	e	Township: Blo	- omingdale				
Lat/Long of approxi	mate center of site in dec	cimal degrees (DI	D.ddddd) to five decimal	places (e.g., 4	0.67890,	-90.12345):	
Latitude: <u>41.97149</u>	Longitude: -	88.11877					
(Decimal	Degrees)	(-Decimal Degree	es)				
Identify how the lat/	long data were determine	ed:					
🔿 GPS 🕢 Map	o Interpolation 🔘 Photo	oInterpolation (🔵 Survey 🔵 Other				
IEPA Site Number(s), if assigned: BOL:		BOW:	BOA:			
Approximate Start I	Date (mm/dd/yyyy): <u>N/A</u>	4	Approximate End D	ate (mm/dd/yy	yy): <u>N/A</u>	4	
Estimated Volume	of debris (cu. Yd.): <u>10</u>	3					
II Owner/Oper	ator Information for	· Source Site					
Site Owner			Site Operator				
Name:	Illinois Department o	f Transportation	Name:	Illinois Dep	artment o	f Transporta	ation
Street Address:	201 We	est Center Court	Street Address:		201 We	est Center C	ourt
PO Box:			PO Box:		_		
City:	Schaumburg	State: IL	City:	Sch	aumburg	State:	IL
Zip Code:	60196-1096 Phone:	847-705-4122	Zip Code:	60196-1096	Phone:	847-705-4	¥122
Contact:	Irma	Romiti-Johnson	Contact:		Irma	Romiti-Johr	ıson
Email, if available:	Irma Romiti-Johns	son@illinois.gov	Email, if available:	Irma Ro	miti-Johns	son@illinois	.gov

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Uncontaminated Soil Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

LOCATION 3068V-20-B01 WAS SAMPLED ADJACENT TO SITES 3068V-20 AND 3068V-21. SEE TABLE 3i AND FIGURE 3 OF THE FINAL PRELIMINARY SITE INVESTIGATION REPORT.

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201 (g), 1100.205(a), 1100.610]:

EUROFINS/TEST AMERICA ANALYTICAL REPORT - TEST AMERICA JOB ID NUMBER: 500-207575-1.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I, <u>Savo Radulovic, L.P.G</u> (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Andrews Engineering,	, Inc.		
Street Address:	420 Eisenhower Lane	North		
City:	Lombard	State: IL	Zip Code: 60148	
Phone:	630-953-3332			
Savo Radulovic				
Printed Name:				
San	Rus		Apr 18, 2022	
Licensed Professional			Date:	
Licensed Professional	Geologist Signature:			
11 522 2022			SAVO RADULOVIC 196-001303 P.E or L.P.G. Sedl:	

Uncontaminated Soil Certification

ILLINO!

The following table summarizes the results of laboratory analysis of site soil samples. In reading the table,

- Only parameters reported at concentrations above the most stringent MAC are listed.
- Samples with the notation "No Contaminants of Concern Noted" were below the most stringent MAC.

The laboratory report for site soils follows this summary table.

Volatile Organic Compounds (mg/kg)	
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane	
1.1.2-Trichloroethane	
1,1-Dichloroethane	
1,1-Dichloroethene	
1,2-Dichloroethane	
1,2-Dichloropropane	
1,3-Dichloropropene	
2-Butanone (MEK)	
2-Hexanone (MBK)	
4-Methyl-2-pentanone (MIBK)	
Acetone	
Benzene	
Bromodichloromethane	
Bromoform	
Bromomethane	
Carbon disulfide	
Carbon Tetrachloride	
Chlorobenzene	
Chloroethane	
Chloroform	
Chloromethane	
cis-1,2-Dichloroethene	
cis-1,3-Dichloropropene	
Dibromochloromethane	
Ethylbenzene	
Methylene chloride	
Methyl-tert-butyl-ether (MTBE)	
Styrene	
Tetrachloroethene	
Toluene	
trans-1,2-Dichloroethene	
trans-1,3-Dichloropropene Trichloroethene	
Vinyl acetate	
Vinyl chloride	
Xylenes, total	
Semivolatile Organic Compounds (mg/kg)	
1,2,4-Trichlorobenzene	
1,2-Dichlorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
2,4,5-Trichlorophenol	
2,4,6-Trichlorophenol	
2,4-Dichlorophenol	
2,4-Dimethylphenol	
2,4-Dinitrophenol	
-,	

ANALYTICAL PARAMETERS

Semivolatile Organic Compounds (mg/k	g)
2,6-Dinitrotoluene	
2-Chloronaphthalene	
2-Chlorophenol	
2-Methylnaphthalene	
2-Methylphenol	
2-Nitroaniline	
2-Nitrophenol	
3,3´-Dichlorobenzidine	
3-Nitroaniline	
4,6-Dinitro-2-methylphenol	
4-Bromophenyl phenyl ether	
4-Chloro-3-methylphenol	
4-Chloroaniline	
4-Chlorophenyl phenyl ether	
4-Methylphenol	
4-Nitroaniline	
4-Nitrophenol	
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Bis(2-chloroethoxy)methane	
Bis(2-chloroethyl)ether	
Bis(2-chloroisopropyl)ether	
Bis(2-ethylhexyl)phthalate	
Butyl benzyl phthalate	
Carbazole	
Chrysene	
Dibenzo(a,h)anthracene	
Dibenzofuran	
Diethyl phthalate	
Dimethyl phthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno(1,2,3-cd)pyrene	
Isophorone	
Naphthalene	
Nitrobenzene	

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS
Semivolatile Organic Compounds (mg/kg)
N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
Pentachlorophenol
Phenanthrene
Phenol
Pyrene
Inorganic Compounds, Total (mg/kg)
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Copper
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Cyanide
TCLP/SPLP Inorganics (mg/L)
Antimony
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Cyanide

ANALYTICAL PARAMETERS

ISGS Site 3068V-20 Commercial Building

-						
Sample ID	3068V-20-B01		Maximum		tration	
Sample Depth (ft)	0-3		waximum	Allowable Concen	tration	
Sample Date	10/27/2021			³ Within a		
PID	0			Populated		⁵ Within a
Sample pH	8.2	¹ Most	² Outside a	non-Metropolitan	⁴ Within Chicago	Metropolitan
Matrix	Soil	Stringent	Populated Area	Statistical Area	Corporate Limits	Statistical Area
No Contaminants of Co	ncern Noted.					

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-207575-1 Client Project/Site: IDOT - AE7-040

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Andrews Engineering Inc. 3300 Ginger Creek Drive Springfield, Illinois 62711

Attn: Ms. Colleen Grey

Rillk

Authorized for release by: 11/17/2021 11:48:08 AM

Richard Wright, Senior Project Manager (708)746-0045 Richard.Wright@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client Sample ID: 3068V-20-B01 Date Collected: 10/27/21 11:20 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207575-1

Matrix: Solid Percent Solids: 81.4

Result	Qualifier	RL			D	Prepared	Analyzed	Dil Fac
<0.0018		0.0018	0.00060	mg/Kg	¢	10/28/21 18:00	11/04/21 12:55	1
<0.0018		0.0018	0.00057	mg/Kg	¢	10/28/21 18:00	11/04/21 12:55	1
<0.0018		0.0018	0.00077	mg/Kg	¢	10/28/21 18:00	11/04/21 12:55	1
<0.0018		0.0018			¢.	10/28/21 18:00	11/04/21 12:55	1
<0.0018		0.0018			¢	10/28/21 18:00	11/04/21 12:55	1
<0.0045		0.0045			¢			1
<0.0018		0.0018		0 0	¢			1
< 0.0018		0.0018			¢			1
< 0.0045		0.0045			¢			1
< 0.0045		0.0045		0 0				
< 0.0045		0.0045			¢			1
	J	0.018		0 0	¢			1
< 0.0018		0.0018						
< 0.0018		0.0018		0 0	¢			1
< 0.0018		0.0018		0 0	÷			1
< 0.0018		0.0018						······ 1
< 0.0045		0.0045			÷			1
< 0.0045		0.0045			ч ф			1
								1
								1
								1
								1
								1
				0 0				1
								1
				0 0	¢ ×			
				0 0	¢ ~			1
					¢			1
< 0.0045					¢			1
< 0.0018		0.0018		0 0	¢ ~			1
< 0.0018		0.0018			¢			1
< 0.0018		0.0018		0 0	\$			1
< 0.0018		0.0018			\$			1
< 0.0018		0.0018			\$			1
<0.0018		0.0018		0 0	₽			1
<0.0018		0.0018		0 0	¢			1
<0.0036		0.0036	0.00057	mg/Kg	¢	10/28/21 18:00	11/04/21 12:55	1
%Recovery	Qualifier	l imite				Prenared	Analyzod	Dil Fac
								1
								1
								1
								1
						, u, z u, z i 10:33		1
-		· · · · ·		11-14	-	Description	Amel	
	Qualitier							Dil Fac
< 0.20		0.20						1
< 0.20		0.20	0.047	mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1
<0.20 <0.20 <0.20		0.20 0.20		mg/Kg mg/Kg	\$ \$	11/02/21 13:40 11/02/21 13:40	11/10/21 16:53	1
	Result <0.0018	Result Qualifier <0.0018	<0.0018	<0.0018 0.0018 0.00060 <0.0018	<0.0018 0.0018 0.00060 mg/Kg <0.0018	<0.0018 0.0018 0.00060 mg/Kg fill <0.0018	Result Qualifier RL MDL Unit D Prepared <0.0018	<0.0018 0.0018 0.00060 mg/Kg interpretation interpretation <0.0018

Eurofins TestAmerica, Chicago

Client Sample ID: 3068V-20-B01 Date Collected: 10/27/21 11:20 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207575-1 Matrix: Solid

Percent Solids: 81.4

Method: 8270D - Semivolatile	-			Unit	D	Prepared	Analyzed	Dil Fac	
2,4,5-Trichlorophenol	<0.39	0.	39 0.090	mg/Kg	¢.	11/02/21 13:40	11/10/21 16:53	1	
2,4,6-Trichlorophenol	<0.39	0.		mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1	
2,4-Dichlorophenol	<0.39	0.		mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1	
2,4-Dimethylphenol	<0.39	0.		mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1	
2,4-Dinitrophenol	<0.80	0.		mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1	
2,4-Dinitrotoluene	<0.20	0.		mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1	
2,6-Dinitrotoluene	<0.20			mg/Kg	¢			1	
2-Chloronaphthalene	<0.20	0.		mg/Kg	÷	11/02/21 13:40	11/10/21 16:53	1	
2-Chlorophenol	<0.20	0.		mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1	
2-Methylnaphthalene	<0.080	0.0		mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1	
2-Methylphenol	<0.20	0.		mg/Kg	 ф	11/02/21 13:40		1	
2-Nitroaniline	<0.20			mg/Kg	¢			1	
2-Nitrophenol	<0.39			mg/Kg	¢		11/10/21 16:53	1	
3 & 4 Methylphenol	<0.20			mg/Kg			11/10/21 16:53	· · · · · · · · · · · · · · · · · · ·	
3,3'-Dichlorobenzidine	<0.20			mg/Kg	¢		11/10/21 16:53	1	
3-Nitroaniline	< 0.39			mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1	
I,6-Dinitro-2-methylphenol	<0.80			mg/Kg					
I-Bromophenyl phenyl ether	<0.20			mg/Kg	¢		11/10/21 16:53	1	
I-Chloro-3-methylphenol	< 0.39			mg/Kg	¢		11/10/21 16:53	1	
I-Chloroaniline	<0.80			mg/Kg			11/10/21 16:53	1	
I-Chlorophenyl phenyl ether	<0.00			mg/Kg	÷		11/10/21 16:53	1	
I-Nitroaniline	<0.20			mg/Kg	÷ ¢		11/10/21 16:53	1	
I-Nitrophenol	<0.39			mg/Kg		11/02/21 13:40		1	
Acenaphthene	<0.039	0.0		mg/Kg	÷ ¢		11/10/21 16:53	1	
Acenaphthylene	< 0.039	0.0		mg/Kg	÷ ÷		11/10/21 16:53	1	
Anthracene	< 0.039	0.0		mg/Kg	¥. ¢		11/10/21 16:53		
Benzo[a]anthracene	<0.039 0.0069			mg/Kg	÷ ÷		11/10/21 16:53	1	
Benzo[a]pyrene	< 0.039	0.0		mg/Kg	÷ ÷		11/10/21 16:53	1	
Benzo[b]fluoranthene	<0.039 0.0097			mg/Kg	¥.		11/10/21 16:53		
Benzo[g,h,i]perylene	< 0.039	J 0.0		mg/Kg	÷ ÷	11/02/21 13:40	11/10/21 16:53	1	
Benzo[g,n,n]perylene Benzo[k]fluoranthene	< 0.039	0.0		mg/Kg	ф Ф	11/02/21 13:40	11/10/21 16:53	1	
Bis(2-chloroethoxy)methane	<0.039			mg/Kg	¥ 	11/02/21 13:40	11/10/21 16:53		
Bis(2-chloroethyl)ether	<0.20			mg/Kg	÷ ÷	11/02/21 13:40	11/10/21 16:53	1	
Bis(2-chloroethyl)ether Bis(2-ethylhexyl) phthalate	<0.20 <0.20			mg/Kg		11/02/21 13:40	11/10/21 16:53	1	
Butyl benzyl phthalate	<0.20 <0.20			mg/Kg			11/10/21 16:53	1	
	<0.20			mg/Kg		11/02/21 13:40		1	
Carbazole Chrysene	<0.20 <0.039	0. 0.0		mg/Kg mg/Kg		11/02/21 13:40 11/02/21 13:40		1	
	<0.039 <0.039	0.0				11/02/21 13:40			
Dibenz(a,h)anthracene	<0.039 <0.20			mg/Kg mg/Kg				1	
Dibenzofuran Diethyl phthalate	<0.20 <0.20			mg/Kg mg/Kg			11/10/21 16:53 11/10/21 16:53	1	
Diethyl phthalate				mg/Kg mg/Kg			11/10/21 16:53		
)imethyl phthalate)i-n-butyl phthalate	<0.20			0 0		11/02/21 13:40 11/02/21 13:40		1	
Di-n-butyl phthalate	<0.20			mg/Kg	¢ ň		11/10/21 16:53	-	
Di-n-octyl phthalate	< 0.20			mg/Kg	¢		11/10/21 16:53	1	
Fluoranthene	0.016			mg/Kg		11/02/21 13:40		1	
	< 0.039	0.0		mg/Kg	¢		11/10/21 16:53	1	
lexachlorobenzene	<0.080	0.0		mg/Kg		11/02/21 13:40		1	
lexachlorobutadiene	<0.20			mg/Kg	¢	11/02/21 13:40		1	
Hexachlorocyclopentadiene	<0.80	-	80 0.23	mg/Kg	¢		11/10/21 16:53	1	

Eurofins TestAmerica, Chicago

Client Sample ID: 3068V-20-B01 Date Collected: 10/27/21 11:20 Date Received: 10/28/21 10:50

Lab Sample ID: 500-207575-1

Matrix: Solid Percent Solids: 81.4

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	< 0.039		0.039	0.010	mg/Kg	<u></u>	11/02/21 13:40	11/10/21 16:53	1
sophorone	<0.20		0.20	0.044	mg/Kg	☆	11/02/21 13:40	11/10/21 16:53	1
Naphthalene	<0.039		0.039	0.0061	mg/Kg	☆	11/02/21 13:40	11/10/21 16:53	1
Nitrobenzene	<0.039		0.039	0.0099	mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1
N-Nitrosodi-n-propylamine	<0.080		0.080	0.048	mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1
N-Nitrosodiphenylamine	<0.20		0.20	0.047	mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1
Pentachlorophenol	<0.80		0.80	0.63	mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1
Phenanthrene	0.0094	J	0.039	0.0055	mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1
Phenol	<0.20		0.20	0.088	mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1
Pyrene	0.013	J	0.039	0.0078	mg/Kg	¢	11/02/21 13:40	11/10/21 16:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,5-6rizrof oThenol	85		71 - 147				11/32/21 17:43	11/13/21 15:B7	1
2-pluoroziThenFl	у4		47 ₋ 14B				11/32/21 17:43	11/13/21 15:B7	1
2-pluoroThenol	08		71 - 155				11/32/21 17:43	11/13/21 15:B7	1
Nitrozen9ene-dB (Surr)	52		70 - 140				11/32/21 17:43	11/13/21 15:B7	1
Phenol-dB	02		73 - 1 <i>B</i> 7				11/32/21 17:43	11/13/21 15:B7	1
6erThenFI-d14 (Surr)	83		42 - 1 <i>B</i> 0				11/32/21 17:43	11/13/21 15:B7	1
Method: 6010B - Metals (ICP)						_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.46	J	1.2			¢	11/08/21 11:07	11/09/21 17:51	1
Arsenic	8.3		0.59		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Barium	76		0.59		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Beryllium	0.94	_	0.23		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Boron	6.4	В	2.9		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Cadmium	<0.12		0.12		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Calcium	24000		12		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Chromium	17		0.59		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Cobalt	14		0.29		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Copper	23		0.59		mg/Kg	₩ 	11/08/21 11:07	11/09/21 17:51	1
ron	21000		12		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Lead	19		0.29		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Magnesium	13000	_	5.9		mg/Kg		11/08/21 11:07	11/09/21 17:51	1
Manganese	490	в	0.59		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51	1
Nickel	31		0.59		mg/Kg	¢		11/09/21 17:51	1
Potassium	1700		29		mg/Kg	¢.	11/08/21 11:07	11/09/21 17:51	1
Selenium	<0.59		0.59		mg/Kg	¢			1
Silver	0.35		0.29		mg/Kg	÷		11/09/21 17:51	1
Sodium	1900		59		mg/Kg	¢.	11/08/21 11:07		1
Thallium Kana aliuma	0.37	J	0.59		mg/Kg	Ť.		11/09/21 17:51	1
Vanadium Zino	24		0.29		mg/Kg	¢	11/08/21 11:07	11/09/21 17:51 11/09/21 17:51	1
Zinc	71		1.2	0.51	mg/Kg	¢	11/00/21 11.07	11/09/21 17.31	I
Method: 6010B - Metals (ICP) · Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050	guanno	0.050	0.010		_ <u>-</u>	11/04/21 08:00	11/04/21 19:49	1
Beryllium	<0.0040		0.0040	0.0040	-		11/04/21 08:00	11/04/21 19:49	1
Chromium	<0.025		0.0040	0.0040	-			11/04/21 19:49	1
	-0.020		0.020	0.010			110-12100.00	11/04/21 10.40	

Eurofins TestAmerica, Chicago

11/04/21 08:00 11/04/21 19:49

0.40

0.24 J

Iron

0.20 mg/L

Client Sample Results

Client Sample ID: 3068V-20-B01 Date Collected: 10/27/21 11:20 Date Received: 10/28/21 10:50

.lob	ID.	500-207575-1

Lab Sample ID: 500-207575-1

Matrix: Solid Percent Solids: 81.4

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ad	<0.0075		0.0075	0.0075	mg/L		11/04/21 08:00	11/04/21 19:49	1
langanese	11		0.025	0.010	mg/L		11/04/21 08:00	11/04/21 19:49	1
lickel	0.013	J	0.025	0.010	mg/L		11/04/21 08:00	11/04/21 19:49	1
Method: 6010B - Metals (ICP) - 3	SPLP East	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.11		0.050	0.010	mg/L		11/05/21 07:49	11/08/21 16:59	1
Barium	0.88		0.50	0.050	mg/L		11/05/21 07:49	11/08/21 16:59	1
Beryllium	0.011		0.0040	0.0040	mg/L		11/05/21 07:49	11/08/21 16:59	1
Boron	0.18		0.10	0.050	mg/L		11/05/21 07:49	11/08/21 16:59	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/05/21 07:49	11/08/21 16:59	1
Calcium	36		2.5	0.50	mg/L		11/05/21 07:49	11/08/21 16:59	1
Chromium	0.20		0.025	0.010	-		11/05/21 07:49	11/08/21 16:59	1
Cobalt	0.11		0.025	0.010	-		11/05/21 07:49	11/08/21 16:59	1
ron	260		0.40		mg/L		11/05/21 07:49	11/08/21 16:59	1
Lead	0.17		0.0075	0.0075	mg/L		11/05/21 07:49	11/08/21 16:59	1
Manganese	3.5		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:59	1
Nickel	0.28		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:59	1
Potassium	33		2.5	0.50	mg/L		11/05/21 07:49	11/09/21 15:16	1
Selenium	<0.050		0.050	0.020	-		11/05/21 07:49	11/08/21 16:59	1
Silver	<0.025		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:59	1
Zinc	0.71		0.50	0.020	mg/L		11/05/21 07:49	11/08/21 16:59	1
Method: 6020A - Metals (ICP/MS	S) - TCI P								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.0020		0.0020	0.0020	mg/L		11/04/21 08:00	11/16/21 15:59	1
Method: 6020A - Metals (ICP/MS	S) - SPLP I	East							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/05/21 07:49	11/15/21 21:19	1
Гhallium	0.0046		0.0020	0.0020	mg/L		11/05/21 07:49	11/15/21 21:19	1
Method: 7470A - Mercury (CVA)	A) - SPLP	East							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/05/21 09:50	11/08/21 10:35	1
Method: 7471B - Mercury (CVA)	4)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.030		0.018	0.0060	mg/Kg		11/05/21 13:35	11/08/21 07:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	<0.29		0.29	0.14	mg/Kg	<u>ф</u>	11/10/21 17:48	11/10/21 19:20	1
рН	8.2		0.2	0.2	SU			11/02/21 15:01	1

Qualifiers

Qualifiers		
GC/MS VOA Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC/MS Semi	VOA	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		
Qualifier	Qualifier Description	
B	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	1
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	4
DL	Detection Limit (DoD/DOE)	1
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Client: Andrews Engineering Inc. 4ro1ectlP ite: ID/ S - AE7-000

Laboratory: Eurofins TestAmerica, Chicago Thless otUerwise notedh, II, n, lates yor tUs I, bor, tora were cof ered vnder e, cU, ccredit, tionRertiyic, tion below. Authority Program **Identification Number Expiration Date** Illinois u ENA4 IN000L5 00-23-22 SUe yollowing , n, lates , re inclvded in tUs re9orthbvt tUe I, bor, tora is not certiyied ba tUe gof erning , vtUorita. SUis list p , a inclvde , n, lates yor wUicU tUe, genca does not oyer certivic, tion. An, lasis metUod 4 re9 metUbd An, late m, triM x020A L060A j olid Antip ona x020A L060A j olid SU, llivp 7070A 7070A j olid mercvra 82x0B 50L5 j olid 6HL-DicUoro9ro9enehSot, I moistvre j olid 4 ercent moistvre moistvre j olid 4 ercent j olids

CHAIN OF CUSTODY RECORD

au (a :	4	II - 1							-			A		() P		500	-207575	5 COC	COC No	
Client Contac		Laborator	y America -	Chicago	<u></u>				Proje	ect Nar	ne 👖	467	0	40A					of	3
Andrews Eng		Address	America - 2417 Bon		,						1	770	1		V 11		11-	110 4		-
3300 Ginger (Address			6049	D 4			Proje	ect No		1 113	luc		07	~00	6/0	40A	Lab Job No 500- 207575	4
Springfield, IL 217-787-2334		Phone	University 708-534-5		. 0040	54			TAT	A15		 40		C 1			20	Other	207575	
Contact Colle			Dick Wrig							Щ	вD		вD		30		SD	Other	Sample Temp,	- 5
)andrews-eng com	Contact	chard wrig		amor	0000			C	pler:	<	101	ha da	-					- 4.6	
Special Instru	ctions:	email <u>ric</u>	naru wng	niwiesia		Cant	5 001	1	Sam	pier:		VALYS		u					Matrix Key:	_ 6
•	· complete parameter lists and mi	nimum repor	tına lımıts			1	1	1	T	1									-	7
* If Total RCRA	metal (mg/kg) result exceeds the 3), run TCLP for that specific RCI	e Soil Toxicit	-	istics								Metals				Characterization			W Water S Soil SL Sludge S Sediment	8
	It exceeds Class I Standard, run					s	& MTBE		Pesticides		Total Metals	SPLP/** TCLP	Cyanide		sp	Charact			L Leachate DW Drinking Water OL Oil	9
*** If total cyan	de exceeds MAC, run ASTM D39			lide	S	8	Σ	As	stici	Bs	otal	D A	Š		Solids	ste			O Other	
Lab ID	Sample ID	Sample Date	Sample Time	Matrix	VOCs	SVOCs	BETX	PNAs	Pes	PCBs	۲ ۲	SPI	***	Hd	%	Waste (Comments	11
1	3068V-20-BOI	6/27	1120	5	X	X					X	Х	X	X	X					
																				13
<u></u>																				14
······································																				_ _
						ļ											1			_ 15
																				-
																			-	_
																				-
Relinquished b				Date/Tim	e			Rede	/ ved by		4		~						Date/Time	-
Δ	ANT			10/28	512)		Ta	uls	6	lo	ser)						10/28/21 9:4	STA.
Relinquished b	da Storer	1	1	Date/Tim	8/2.	19	:45	//	ved by	110.	ul								Date lime	
Relinquished b	у	I.N.	eal ,	Date/Time 10/28/21	e	105	5	Recei	V MOR	X	ke	M	N					10/28/	Date/Time050	7
Andre	ws Engineering, Inc.					Pa	age 2	9 01		5	l				L'ND	OTVAE7 PTB	3 184-006\Sul		11/17/202 mplates\AE7 COC Template (TAL).xisx	1

11/17/2021 L:\IDOT\AE7 PTB 184-006\Subcontractors\COC Templates\AE7 COC Template (TAL).xlsx

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification

by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the location	on of the source of the ur	contaminated soil	l)							
Project Name:	FAP 21 (US 2	20)	Office Phone N	Number, if available:						
	ion (address, including nu ad and 155 West Lake St	,		nd Virginia Road)						
City: Roselle	9	State: IL	Zip Code: <u>60172</u>							
County: DuPag	e	Township: Bloo	mingdale							
Lat/Long of approxi	mate center of site in dec	imal degrees (DD	.ddddd) to five decimal	l places (e.g., 40.67890, -90.12345):						
Latitude: <u>41.97109</u>	Longitude: -	88.11791								
(Decimal	Degrees)	(-Decimal Degrees	s)							
Identify how the lat/	long data were determine	ed:								
○ GPS	o Interpolation 🔘 Photo	Interpolation () Survey () Other							
IEPA Site Number(s	s), if assigned: BOL: 0	0434825119	BOW:	BOA:						
Approximate Start I	Date (mm/dd/yyyy): <u>N/A</u>		Approximate End Date (mm/dd/yyyy):N/A							
Estimated Volume	of debris (cu. Yd.): <u>67</u>									
	ator Information for	Source Site								
Site Owner	ator Information for	Source Sile	Site Operator							
Name:	Illinois Department of	f Transportation	Name:	Illinois Department of Transportation						
Street Address:	201 We	st Center Court	Street Address:	201 West Center Court						
PO Box:			PO Box:							
City:	Schaumburg	State: IL	City:	Schaumburg State: IL						
Zip Code:	60196-1096 Phone:	847-705-4122	Zip Code:	60196-1096 Phone: 847-705-4122						
Contact:	Irma	Romiti-Johnson	Contact:	Irma Romiti-Johnson						
Email, if available:	Irma Romiti-Johns	on@illinois.gov	Email, if available:	Irma Romiti-Johnson@illinois.gov						

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Uncontaminated Soil Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

LOCATION 3068V-23-B01 WAS SAMPLED ADJACENT TO SITE 3068V-23. SEE TABLE 3k AND FIGURE 3 OF THE FINAL PRELIMINARY SITE INVESTIGATION REPORT.

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201 (g), 1100.205(a), 1100.610]:

EUROFINS/TEST AMERICA ANALYTICAL REPORT - TEST AMERICA JOB ID NUMBER: 500-207581-1.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I, <u>Savo Radulovic, L.P.G</u> (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Andrews Engineering,	Inc.		
Street Address:	420 Eisenhower Lane	North		
City:	Lombard	State:	IL	Zip Code: <u>60148</u>
Phone:	630-953-3332			
Savo Radulovic				
Printed Name: Jucensed Professional Licensed Professional			-	Apr 18, 2022 Date:
				SAVO RADULOVIC 196-001303 R.E or L.P.G. Seat:

Uncontaminated Soil Certification

ILLINO19

The following table summarizes the results of laboratory analysis of site soil samples. In reading the table,

- Only parameters reported at concentrations above the most stringent MAC are listed.
- Samples with the notation "No Contaminants of Concern Noted" were below the most stringent MAC.

The laboratory report for site soils follows this summary table.

Volatile Organic Compounds (mg/kg)	
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane	
1.1.2-Trichloroethane	
1,1-Dichloroethane	
1,1-Dichloroethene	
1,2-Dichloroethane	
1,2-Dichloropropane	
1,3-Dichloropropene	
2-Butanone (MEK)	
2-Hexanone (MBK)	
4-Methyl-2-pentanone (MIBK)	
Acetone	
Benzene	
Bromodichloromethane	
Bromoform	
Bromomethane	
Carbon disulfide	
Carbon Tetrachloride	
Chlorobenzene	
Chloroethane	
Chloroform	
Chloromethane	
cis-1,2-Dichloroethene	
cis-1,3-Dichloropropene	
Dibromochloromethane	
Ethylbenzene	
Methylene chloride	
Methyl-tert-butyl-ether (MTBE)	
Styrene	
Tetrachloroethene	
Toluene	
trans-1,2-Dichloroethene	
trans-1,3-Dichloropropene Trichloroethene	
Vinyl acetate	
Vinyl chloride	
Xylenes, total	
Semivolatile Organic Compounds (mg/kg)	
1,2,4-Trichlorobenzene	
1,2-Dichlorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
2,4,5-Trichlorophenol	
2,4,6-Trichlorophenol	
2,4-Dichlorophenol	
2,4-Dimethylphenol	
2,4-Dinitrophenol	
-,	

ANALYTICAL PARAMETERS

Semivolatile Organic Compounds (mg/k	g)
2,6-Dinitrotoluene	
2-Chloronaphthalene	
2-Chlorophenol	
2-Methylnaphthalene	
2-Methylphenol	
2-Nitroaniline	
2-Nitrophenol	
3,3´-Dichlorobenzidine	
3-Nitroaniline	
4,6-Dinitro-2-methylphenol	
4-Bromophenyl phenyl ether	
4-Chloro-3-methylphenol	
4-Chloroaniline	
4-Chlorophenyl phenyl ether	
4-Methylphenol	
4-Nitroaniline	
4-Nitrophenol	
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Bis(2-chloroethoxy)methane	
Bis(2-chloroethyl)ether	
Bis(2-chloroisopropyl)ether	
Bis(2-ethylhexyl)phthalate	
Butyl benzyl phthalate	
Carbazole	
Chrysene	
Dibenzo(a,h)anthracene	
Dibenzofuran	
Diethyl phthalate	
Dimethyl phthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno(1,2,3-cd)pyrene	
Isophorone	
Naphthalene	
Nitrobenzene	

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS
Semivolatile Organic Compounds (mg/kg)
N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
Pentachlorophenol
Phenanthrene
Phenol
Pyrene
Inorganic Compounds, Total (mg/kg)
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Copper
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Cyanide
TCLP/SPLP Inorganics (mg/L)
Antimony
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Cyanide

ANALYTICAL PARAMETERS

ISGS Site 3068V-23 Bloomingdale Rescue &

Recovery, Inc.

Sample ID Sample Depth (ft)	Maximum Allowable Concentration											
Sample Date	10/27/2021			³ Within a								
PID	0			Populated		⁵ Within a						
Sample pH	8.9	¹ Most	² Outside a	non-Metropolitan	⁴ Within Chicago	Metropolitan						
Matrix	Soil	Stringent	Populated Area	Statistical Area	Corporate Limits	Statistical Area						
Semivolatile Organic Co	mpounds (mg/kg)											
Benzo(a)pyrene	0.8 1,2	0.09	0.09	0.98	1.3	2.1						
Benzo(b)fluoranthene	1.2 1,2,3	0.9	0.9	0.9	1.5	2.1						

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-207581-1 Client Project/Site: IDOT - AE7-040

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Andrews Engineering Inc. 3300 Ginger Creek Drive Springfield, Illinois 62711

Attn: Ms. Colleen Grey

Rillk

Authorized for release by: 11/17/2021 11:51:15 AM

Richard Wright, Senior Project Manager (708)746-0045 Richard.Wright@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client Sample ID: 6081V-26-B03 Date Collected: 30/27/23 33:00 Date Received: 30/21/23 30:50

Lab Sample ID: 500-207513-3

Matrix: Solid Percent Solids: 19.8

nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Trichloroethane	<0.0019		0.0019	0.00064		\$	10/28/21 18:00	11/04/21 13:47	1
,2,2-Tetrachloroethane	<0.0019		0.0019	0.00061		₽	10/28/21 18:00	11/04/21 13:47	1
,2-Trichloroethane	<0.0019		0.0019	0.00082	mg/Kg	₽	10/28/21 18:00	11/04/21 13:47	1
I-Dichloroethane	<0.0019		0.0019	0.00066	mg/Kg	₽	10/28/21 18:00	11/04/21 13:47	1
1-Dichloroethene	<0.0019		0.0019	0.00066	mg/Kg	¢	10/28/21 18:00	11/04/21 13:47	1
2-Dichloroethane	<0.0048		0.0048	0.0015	mg/Kg	¢	10/28/21 18:00	11/04/21 13:47	1
2-Dichloropropane	<0.0019		0.0019	0.00050	mg/Kg	₽	10/28/21 18:00	11/04/21 13:47	1
3-Dichloropropene, Total	<0.0019		0.0019	0.00067	mg/Kg	¢	10/28/21 18:00	11/04/21 13:47	1
-Butanone (MEK)	<0.0048		0.0048	0.0021	0 0	¢	10/28/21 18:00	11/04/21 13:47	1
Hexanone	<0.0048		0.0048	0.0015	mg/Kg	☆	10/28/21 18:00	11/04/21 13:47	1
-Methyl-2-pentanone (MIBK)	<0.0048		0.0048	0.0014	mg/Kg	¢	10/28/21 18:00	11/04/21 13:47	1
cetone	<0.019		0.019	0.0084	mg/Kg	₽	10/28/21 18:00	11/04/21 13:47	1
enzene	<0.0019		0.0019	0.00049	mg/Kg	☆	10/28/21 18:00	11/04/21 13:47	1
romodichloromethane	<0.0019		0.0019	0.00039		¢	10/28/21 18:00	11/04/21 13:47	1
romoform	<0.0019		0.0019	0.00056		₽	10/28/21 18:00	11/04/21 13:47	1
romomethane	<0.0048		0.0048	0.0018	mg/Kg	¢	10/28/21 18:00	11/04/21 13:47	1
arbon disulfide	<0.0048		0.0048	0.0010		¢	10/28/21 18:00	11/04/21 13:47	1
arbon tetrachloride	<0.0019		0.0019	0.00056		¢	10/28/21 18:00	11/04/21 13:47	1
hlorobenzene	<0.0019		0.0019	0.00071		¢	10/28/21 18:00	11/04/21 13:47	1
hloroethane	<0.0048		0.0048	0.0014	mg/Kg	₽	10/28/21 18:00	11/04/21 13:47	1
hloroform	<0.0019		0.0019	0.00067		¢	10/28/21 18:00	11/04/21 13:47	1
hloromethane	<0.0048		0.0048	0.0019			10/28/21 18:00	11/04/21 13:47	1
s-1,2-Dichloroethene	<0.0019		0.0019	0.00054		¢		11/04/21 13:47	1
s-1,3-Dichloropropene	<0.0019		0.0019	0.00058	0 0	¢	10/28/21 18:00		1
ibromochloromethane	<0.0019		0.0019	0.00063		¢	10/28/21 18:00		1
hylbenzene	< 0.0019		0.0019	0.00092		¢		11/04/21 13:47	1
ethyl tert-butyl ether	< 0.0019		0.0019	0.00056		¢		11/04/21 13:47	1
ethylene Chloride	<0.0048		0.0048	0.0019		¢		11/04/21 13:47	1
tyrene	< 0.0019		0.0019	0.00058		¢		11/04/21 13:47	1
etrachloroethene	< 0.0019		0.0019	0.00065		¢		11/04/21 13:47	1
oluene	<0.0019		0.0019	0.00048		¢		11/04/21 13:47	1
ans-1,2-Dichloroethene	< 0.0019		0.0019	0.00085		¢	10/28/21 18:00	11/04/21 13:47	1
ans-1,3-Dichloropropene	< 0.0019		0.0019	0.00067		₽	10/28/21 18:00	11/04/21 13:47	1
richloroethene	< 0.0019		0.0019	0.00065				11/04/21 13:47	
inyl chloride	< 0.0019		0.0019	0.00085		¢	10/28/21 18:00		1
ylenes, Total	<0.0038		0.0038	0.00061	0 0		10/28/21 18:00		1
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Dichloroethane-d4 (Surr)			03 - 174				13/28/21 18:33	11/34/21 17:40	1
Bromofluorobenzene (Surr)	119		05 - 171				13/28/21 18:33	11/34/21 17:40	1
bromofluoromethane	139		05 - 129				13/28/21 18:33	11/34/21 17:40	1
luene-d8 (Surr)	114		05 - 124				13/28/21 18:33	11/34/21 17:40	1
lethod: 1270D - Semivolat	-		(GC/MS)						
nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4-Trichlorobenzene	<0.19		0.19		mg/Kg	☆	11/02/21 13:40	11/10/21 17:41	1
2-Dichlorobenzene	<0.19		0.19	0.046	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
3-Dichlorobenzene	<0.19		0.19	0.044	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
4-Dichlorobenzene	<0.19		0.19	0.050	mg/Kg	₽	11/02/21 13:40	11/10/21 17:41	1
2'-oxybis[1-chloropropane]	<0.19		0.19		mg/Kg	Å	11/02/21 13:40	11/10/21 17:41	1

Eurofins TestAmerica, Chicago

Client Sample ID: 6081V-26-B03 Date Collected: 30/27/23 33:00 Date Received: 30/21/23 30:50

Lab Sample ID: 500-207513-3

Matrix: Solid Percent Solids: 19.8

Analyte	Organic Compounds (C Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac	5
2,4,5-Trichlorophenol	<0.38 Quaimer	0.38		mg/Kg		11/02/21 13:40		1	
2,4,6-Trichlorophenol	<0.38	0.38		mg/Kg		11/02/21 13:40		1	6
2,4-Dichlorophenol	<0.38	0.38		mg/Kg	÷			1	
2,4-Dimethylphenol	<0.38	0.38		mg/Kg	¢			1	7
2,4-Dinitrophenol	<0.38	0.30		mg/Kg					
2,4-Dinitrotoluene	<0.19	0.19		mg/Kg	÷	11/02/21 13:40		1	0
2,6-Dinitrotoluene	<0.19	0.19		mg/Kg				1	δ
2-Chloronaphthalene	<0.19	0.19		mg/Kg		11/02/21 13:40		1	
2-Chlorophenol	<0.19	0.19		mg/Kg	¢.			1	9
2-Methylnaphthalene	<0.19	0.19			¢.		11/10/21 17:41	1	
2-Methylphenol	<0.078	0.078		mg/Kg mg/Kg					
2-Methylphenol 2-Nitroaniline	<0.19	0.19		mg/Kg mg/Kg	ф ф			1	
2-Nitrophenol	<0.19	0.19		mg/Kg mg/Kg	₽ ¢			1	
3 & 4 Methylphenol	<0.38	0.38		mg/Kg mg/Kg					
3 & 4 Methylphenol 3,3'-Dichlorobenzidine	<0.19	0.19		mg/Kg mg/Kg	ф ф			1	
3,3 -Dichlorobenzidine 3-Nitroaniline	<0.19	0.19		mg/Kg mg/Kg	ф ф	11/02/21 13:40		1	
3-Nitroaniline 4,6-Dinitro-2-methylphenol	<0.38	0.38		mg/Kg mg/Kg				1	13
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	<0.78 <0.19	0.78			₽ ¢			1	
4-Bromopnenyi phenyi ether 4-Chloro-3-methylphenol	<0.19	0.19		mg/Kg mg/Kg	₽ ¢			1	
4-Chloroaniline	<0.38	0.38		mg/Kg mg/Kg				1	
4-Chlorophenyl phenyl ether	<0.78 <0.19	0.78		mg/Kg mg/Kg	¢ ¢			1	
4-Chlorophenyl phenyl ether 4-Nitroaniline	<0.19 <0.38	0.19 0.38		mg/Kg mg/Kg	¢ ¢			1	
	<0.38	0.38		mg/Kg mg/Kg		11/02/21 13:40 11/02/21 13:40		1	
4-Nitrophenol		0.78 0.038	0.37 0.0070					1	
Acenaphthene Acenaphthylene	0.020 J	0.038 0.038			¢ ŏ			1	
Acenaphthylene	0.069 J	0.038	0.0051					1	
Anthracene Benzolalanthracene	0.35 0.86	0.038 0.038	0.0065 0.0052		¢ ŏ			1	
Benzo[a]anthracene	0.86 0.10	0.038 0.038	0.0052 0.0075		¢ ¢	11/02/21 13:40 11/02/21 13:40		1	
Benzo[a]pyrene Benzo[b]fluoranthene		0.038				11/02/21 13:40 11/02/21 13:40		1	
Benzo[b]fluoranthene Benzo[g4b4]perviene	3.2 0.2	0.038	0.0083 0.012	mg/Kg mg/Kg	¢ ¢			1	
Benzo[g4h4]perylene Benzo[k]fluoranthene	0.2, 0.57	0.038						1	
Benzo[k]fluoranthene Bis(2-chloroethoxy)methane	0.57 <0.19	0.038		mg/Kg mg/Kg	¢ ¢	11/02/21 13:40 11/02/21 13:40		1	
•	<0.19 <0.19	0.19 0.19						1	
Bis(2-chloroethyl)ether Bis(2-ethylbexyl) phthalate	<0.19 <0.19	0.19 0.19		mg/Kg mg/Kg	¢ ŏ			1	
Bis(2-ethylhexyl) phthalate	<0.19 <0.19	0.19 0.19				11/02/21 13:40 11/02/21 13:40		1	
Butyl benzyl phthalate Carbazole				mg/Kg mg/Kg				1	
Carbazole	<0.19	0.19 0.038		mg/Kg mg/Kg		11/02/21 13:40 11/02/21 13:40		1	
Chrysene Dibenz(a/b)anthracene	0.16		0.011	mg/Kg mg/Kg		11/02/21 13:40 11/02/21 13:40			
Dibenz(a4n)anthracene	0.017 <0.19	0.038				11/02/21 13:40 11/02/21 13:40		1	
Dibenzofuran Diethyl phthalate	<0.19 <0.19	0.19 0.19		mg/Kg mg/Kg	¢ ň		11/10/21 17:41 11/10/21 17:41	1	
Diethyl phthalate	<0.19 <0.19	0.19		mg/Kg mg/Kg		11/02/21 13:40 11/02/21 13:40			
Dimethyl phthalate	<0.19 <0.19	0.19 0.19		0 0		11/02/21 13:40 11/02/21 13:40		1	
Di-n-butyl phthalate	<0.19	0.19		mg/Kg	¢ ň		11/10/21 17:41	1	
Di-n-octyl phthalate	<0.19	0.19		mg/Kg	₩ 	11/02/21 13:40 11/02/21 13:40		1	
Fluoranthene	3.1	0.038	0.0072			11/02/21 13:40		1	
Fluorene	0.06 ,	0.038	0.0054		¢ ×	11/02/21 13:40		1	
Hexachlorobenzene	<0.078	0.078	0.0090		¢	11/02/21 13:40		1	
Hexachlorobutadiene	<0.19	0.19		mg/Kg		11/02/21 13:40		1	
Hexachlorocyclopentadiene	<0.78	0.78		mg/Kg mg/Kg	¢ ¢	11/02/21 13:40 11/02/21 13:40		1 1	
Hexachloroethane	<0.19	0.19	0.050	malka	<u></u>	10.000 100 100 A	a a (a () () A 47.14	4	

Eurofins TestAmerica, Chicago

Client Sample Results

Chromium

Iron

Client Sample ID: 6081V-26-B03 Date Collected: 30/27/23 33:00 Date Received: 30/21/23 30:50

Lab Sample ID: 500-207513-3 Matrix: Solid

Percent Solids: 19.8

5

7

Method: 1270D - Semivolatile Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Indeno[34246-cd]pyrene	0.62		0.038	0.010	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
sophorone	<0.19		0.19	0.043	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
Naphthalene	0.001,	J	0.038	0.0060	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
Nitrobenzene	<0.038		0.038	0.0097	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
N-Nitrosodi-n-propylamine	<0.078		0.078	0.047	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
N-Nitrosodiphenylamine	<0.19		0.19	0.046	mg/Kg	☆	11/02/21 13:40	11/10/21 17:41	1
Pentachlorophenol	<0.78		0.78	0.62	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
Phenanthrene	0.71		0.038	0.0054	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
Phenol	<0.19		0.19	0.086	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
Pyrene	3.5		0.038	0.0077	mg/Kg	¢	11/02/21 13:40	11/10/21 17:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,9-6ribromoThenol			71 - 147				11/32/21 17:43	11/13/21 10:41	1
2-FluorobiThenyl	<i>p</i> 8		47 - 145				11/32/21 17:43	11/13/21 10:41	1
2-FluoroThenol	09		71 - 199				11/32/21 17:43	11/13/21 10:41	1
Nitrobenzene-d5 (Surr)	07		70 - 140				11/32/21 17:43	11/13/21 10:41	1
Phenol-d5	08		73 - 157				11/32/21 17:43	11/13/21 10:41	1
6erThenyl-d14 (Surr)	132		42 - 150				11/32/21 17:43	11/13/21 10:41	1
Method: 8030B - Metals (ICP))								
Analyte	·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.95	J	1.1	0.21	mg/Kg			11/09/21 17:57	1
Arsenic	1.2		0.55	0.19	mg/Kg	¢	11/08/21 11:07	11/09/21 17:57	1
Barium	12		0.55	0.063	mg/Kg	☆	11/08/21 11:07	11/09/21 17:57	1
Beryllium	0.19		0.22	0.051	mg/Kg	☆	11/08/21 11:07	11/09/21 17:57	1
Boron	9.8	В	2.8	0.26	mg/Kg	☆	11/08/21 11:07	11/09/21 17:57	1
Cadmium	0.20	В	0.11	0.020	mg/Kg	☆	11/08/21 11:07	11/09/21 17:57	1
Calcium	62000		11	1.9	mg/Kg	☆	11/08/21 11:07	11/09/21 17:57	1
Chromium	35		0.55		mg/Kg	☆	11/08/21 11:07	11/09/21 17:57	1
Cobalt	32		0.28	0.072	mg/Kg	☆	11/08/21 11:07	11/09/21 17:57	1
Copper	23		0.55	0.15	mg/Kg	₿	11/08/21 11:07	11/09/21 17:57	1
ron	3, 000		11		mg/Kg	☆	11/08/21 11:07	11/09/21 17:57	1
Lead	96		0.28	0.13	mg/Kg	☆	11/08/21 11:07	11/09/21 17:57	1
Magnesium	35000		5.5		mg/Kg		11/08/21 11:07	11/09/21 17:57	1
Manganese	590	В	0.55		mg/Kg	☆	11/08/21 11:07	11/09/21 17:57	1
Nickel	29		0.55	0.16	mg/Kg	¢	11/08/21 11:07	11/09/21 17:57	1
Potassium	3500		28		mg/Kg	 Ф	11/08/21 11:07	11/09/21 17:57	1
Selenium	0.93	J	0.55		mg/Kg	¢		11/09/21 17:57	1
Silver	0.2,		0.28		mg/Kg	¢		11/09/21 17:57	1
Sodium	, 50		55		mg/Kg	¢	11/08/21 11:07		1
Thallium	< 0.55		0.55		mg/Kg	☆		11/09/21 17:57	1
Vanadium	26		0.28		mg/Kg	☆		11/09/21 17:57	1
Tinc	16		1.1		mg/Kg	₽	11/08/21 11:07		1
Method: 8030B - Metals (ICP)	- ZCL P								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.050		0.050	0.010	mg/L		11/04/21 08:00	11/04/21 19:23	1
Beryllium	<0.0040		0.0040	0.0040	-		11/04/21 08:00	11/04/21 19:23	1
-					-				

11/04/21 08:00 11/04/21 19:23

11/04/21 08:00 11/04/21 19:23

0.025

0.40

0.010 mg/L

0.20 mg/L

<0.025

<0.40

1

Client Sample Results

Client Sample ID: 6081V-26-B03 Date Collected: 30/27/23 33:00 Date Received: 30/21/23 30:50

Job	١D·	500-207581-1
000		2010011

Lab Sample ID: 500-207513-3

Matrix: Solid Percent Solids: 19.8

Method: 8030B - Metals (ICP) - Analyte	•	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Lead	<0.0075		0.0075	0.0075	mg/L		11/04/21 08:00	11/04/21 19:23	1
Manganese	0.56		0.025	0.010	mg/L		11/04/21 08:00	11/04/21 19:23	1
Nickel	<0.025		0.025	0.010	mg/L		11/04/21 08:00	11/04/21 19:23	1
Method: 8030B - Metals (ICP) -	SPLP East	:							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.077		0.050	0.010	mg/L		11/05/21 07:49	11/08/21 16:53	1
Barium	0.72		0.50	0.050	mg/L		11/05/21 07:49	11/08/21 16:53	1
Beryllium	0.007,		0.0040	0.0040	mg/L		11/05/21 07:49	11/08/21 16:53	1
Boron	0.36		0.10	0.050	mg/L		11/05/21 07:49	11/08/21 16:53	1
Cadmium	<0.0050		0.0050	0.0020	mg/L		11/05/21 07:49	11/08/21 16:53	1
Calcium	60		2.5	0.50	mg/L		11/05/21 07:49	11/08/21 16:53	1
Chromium	0.38		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:53	1
Cobalt	0.050		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:53	1
Iron	3, 0		0.40	0.20	mg/L		11/05/21 07:49	11/08/21 16:53	1
Lead	0.28		0.0075	0.0075	mg/L		11/05/21 07:49	11/08/21 16:53	1
Manganese	3.6		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:53	1
Nickel	0.3,		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:53	1
Potassium	26		2.5	0.50	mg/L		11/05/21 07:49	11/09/21 15:10	1
Selenium	<0.050		0.050	0.020	mg/L		11/05/21 07:49	11/08/21 16:53	1
Silver	<0.025		0.025	0.010	mg/L		11/05/21 07:49	11/08/21 16:53	1
Tinc	0.8,		0.50	0.020	mg/L		11/05/21 07:49	11/08/21 16:53	1
Method: 8020A - Metals (ICP/M	S) - ZCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	<0.0020		0.0020	0.0020	mg/L		11/04/21 08:00	11/16/21 15:53	1
Method: 8020A - Metals (ICP/M	S) - SPLP I	East							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0060		0.0060	0.0060	mg/L		11/05/21 07:49	11/15/21 21:15	1
Zhallium	0.0069		0.0020	0.0020	mg/L		11/05/21 07:49	11/15/21 21:15	1
Method: 7970A - Mercury (CVA	A) - SPLP	East							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00020		0.00020	0.00020	mg/L		11/05/21 09:50	11/08/21 10:44	1
Method: 7973B - Mercury (CVA	A)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.090		0.018	0.0059		¢	11/05/21 13:35	-	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	<0.28		0.28	0.14	mg/Kg	¢	11/10/21 17:48	11/10/21 19:31	1

Qualifiers

GC/MS SeV	i OAc	_
Qualifier	Qualifier Desprintion	4
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		5
Qualifier	Qualifier Desprintion	_
В	Compound was found in the blank and sample.	6
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		7
c bbreviation	These poV V only used abbreviations V ay or V ay not be mesent in this remort.	8
<u>π</u>	Listed under the "D" column to designate that the result is reported on a dry weight basis	V

c bbreviation	These poV V only used abbreviations V ay or V ay not be mesent in this remort.	8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	0
%R	Percent Recovery	0
CFL	Contains Free Liquid	3
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	13
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Client: Andrews Engineering Inc. 1 roæctj/ ite: IDSO- AE7-0T0

5

13

Laboratory: Eurofins TestAmerica, Chicago Unless otherwise noted, all analytes for this laboratory were covered under each accreditationjcertification below. Authority Program **Identification Number Expiration Date** Illinois NELA1 IL00035 0T-29-22 Ohe following analytes are included in this report, but the laboratory is not certified by the governing authority. Ohis list may include analytes for which the agency does not offer certification. Analyte Analysis Method 1 rep Method Matrix 8020A 3040A / olid Antimony 8020A 3040A / olid Ohallium 7T70A 7T70A / olid Mercury 6280B 5035 / olid 4,3-Dichloropropene, Ootal Moisture / olid 1 ercent Moisture / olid 1 ercent / olids Moisture

Eurofins OestAmerica, Chicago

CHAIN OF CUSTODY RECORD

Client Conta	NDREWS GINEERING	Laborator	v						Proje	ect Nar	ne	47	7-1	9 4-1) A.	50	0-2075	81 COC .	COC No	
		8	America -	Chicago)							nu	1-1	010	<u> </u>				of	
Andrews Engi 3300 Ginger (Address 2417 Bond Street I University Park, IL 60484							Proje	ect No		PTB	i/we	11	84-	006/	04	σA	Lab Job No	
Springfield, IL	62711								Project No PTB/W6: 184-006/040A								Lab Job No			
217-787-2334		Phone	Phone 708-534-5200							TAT 🟹 15 BD 🔲 10 BD 🗂 5 BD 🔂 2 BD Othe								Other	20758	
Contact Coll	een Grey)andrews-eng com	Contact Dick Wright							Sampler: S. Khodaci								Sample Temp			
	-	email richard wright@testamericainc com														4.6				
pecial Instructions: ee Table 2 for complete parameter lists and minimum reporting limits			ļ	1	1	1		1		ALYS	SES	1					Matrix Key:			
			-									<u>s</u>							W Water	
If Total RCRA metal (mg/kg) result exceeds the Soil Toxicity Characteristics Limit (Table 3), run TCLP for that specific RCRA metal					111					Metals				erizatio			S Soil SL Sludge S Sediment			
** If SPLP result exceeds Class I Standard, run TCLP for that specific paramete		result exceeds Class I Standard, run TCLP for that specific parameter					MTBE		es		* Total Metals SPLP/** TCLP *** Cyanide	lide	anide ds Characterization					L Leachate DW Drinking Water OL Oil	er	
*** If total cyan	ide exceeds MAC, run ASTM D3			nde	vocs	SVOCs	BETX &	PNAs	Pesticides	PCBs	otal N	LP/**	Cyanide		Solids	Waste C			O Other	
Lab ID	Sample ID	Sample Date	Sample Time	Matrix	2	S	ШШ	Nd	Ъе	2	*	SP	***	Hd	%	Wa			Comments	
	3068V-23-BOI	10/27	1100	5	X	X					X	X	X	X	X					
																				_
													-							
																				_
Relinquished b	V			Date/Tim				Recei	ved by			the second s							Date/Time/	
	· since			1012	812	1		TO	cela	A	are	N							0/28/2/9:4	51
1				Date/lim	e/	0.	.10	Recei	ved	Y _/	ß								Date/Time	~
Relinquished b	Slorer	P.N	1	Date/Tim 2/28 Date/Tim 10/28/2	121	9:		Recei	vegby		ch								1025/21 0997 2 Bate/Time 2 8 2 105	

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification

by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the locati	on of the source of the ur	contaminated soil)						
Project Name:	FAP 21 (US	20)	Office Phone Number, if available:						
•	ion (address, including nu ແs of West Lake Street (ກຜ	,	Lake Street and Gary	Avenue)					
City: Hanover Park State: IL Zip Code: 60133									
County: DuPage Township: Bloomingdale									
Lat/Long of approxi	mate center of site in dec	imal degrees (DD.	ddddd) to five decimal	places (e.g., 40.67890, -90.12345):					
Latitude: <u>41.97238</u>	Longitude: -	88.11976	_						
,	Degrees) long data were determine	(-Decimal Degrees ed:	5)						
○ GPS Ø Map	o Interpolation 🔿 Photo	Interpolation C	Survey 🔿 Other						
IEPA Site Number(s), if assigned: BOL: (0434825048	BOW:	BOA:					
Approximate Start I	Date (mm/dd/yyyy): <u>N/A</u>	۸	_ Approximate End D	ate (mm/dd/yyyy): N/A					
Estimated Volume	of debris (cu. Yd.): <u>835</u>	5							
II. Owner/Oper Site Owner	ator Information for	Source Site	Site Operator						
Name:	Illinois Department o	f Transportation	Name:	Illinois Department of Transportation					
Street Address:	201 We	est Center Court	Street Address:	201 West Center Court					
PO Box:			PO Box:						
City:	Schaumburg	State: IL	City:	Schaumburg State: IL					
Zip Code:	60196-1096 Phone:	847-705-4122	Zip Code:	60196-1096 Phone: 847-705-4122					
Contact:	Irma	Romiti-Johnson	Contact:	Irma Romiti-Johnson					
Email, if available: Irma Romiti-Johnson@illinois.gov Email, if available: Irma Romiti-Johnson@illinois.gov									

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Uncontaminated Soil Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

LOCATIONS 3068V-26-B03, 3068V-26-B05, 3068V-26-B07, 3068V-12-B08 AND 3068V-26-B09 WERE SAMPLED ADJACENT TO SITE 3068V-26. SEE TABLE 3I AND FIGURES 2, 3 AND 5 OF THE FINAL PRELIMINARY SITE INVESTIGATION REPORT

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201 (g), 1100.205(a), 1100.610]:

EUROFINS/TEST AMERICA ANALYTICAL REPORT - TEST AMERICA JOB ID NUMBERS: 500-213879-1 AND 500-207569-1.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I, <u>Savo Radulovic, L.P.G</u> (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Andrews Engineering	, Inc.		
Street Address:	420 Eisenhower Lane	North		
City:	Lombard	State: IL	Zip Code: 60148	
Phone:	630-953-3332			
Savo Radulovic				
Printed Name:				
San	. Rure		Apr 18, 2022	
Licensed Professional			Date:	
Licensed Professional	Geologist Signature:			
			SAVO RADULOVIC 196-001303 P.E or L.P.G. Sedi:	

Uncontaminated Soil Certification

ILLINO19

The following table summarizes the results of laboratory analysis of site soil samples. In reading the table,

- Only parameters reported at concentrations above the most stringent MAC are listed.
- Samples with the notation "No Contaminants of Concern Noted" were below the most stringent MAC.

The laboratory report for site soils follows this summary table.

Volatile Organic Compounds (mg/kg)	
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane	
1.1.2-Trichloroethane	
1,1-Dichloroethane	
1,1-Dichloroethene	
1,2-Dichloroethane	
1,2-Dichloropropane	
1,3-Dichloropropene	
2-Butanone (MEK)	
2-Hexanone (MBK)	
4-Methyl-2-pentanone (MIBK)	
Acetone	
Benzene	
Bromodichloromethane	
Bromoform	
Bromomethane	
Carbon disulfide	
Carbon Tetrachloride	
Chlorobenzene	
Chloroethane	
Chloroform	
Chloromethane	
cis-1,2-Dichloroethene	
cis-1,3-Dichloropropene	
Dibromochloromethane	
Ethylbenzene	
Methylene chloride	
Methyl-tert-butyl-ether (MTBE)	
Styrene	
Tetrachloroethene	
Toluene	
trans-1,2-Dichloroethene	
trans-1,3-Dichloropropene Trichloroethene	
Vinyl acetate	
Vinyl chloride	
Xylenes, total	
Semivolatile Organic Compounds (mg/kg)	
1,2,4-Trichlorobenzene	
1,2-Dichlorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
2,4,5-Trichlorophenol	
2,4,6-Trichlorophenol	
2,4-Dichlorophenol	
2,4-Dimethylphenol	
2,4-Dinitrophenol	
-,	

ANALYTICAL PARAMETERS

Semivolatile Organic Compounds (mg/k	g)
2,6-Dinitrotoluene	
2-Chloronaphthalene	
2-Chlorophenol	
2-Methylnaphthalene	
2-Methylphenol	
2-Nitroaniline	
2-Nitrophenol	
3,3´-Dichlorobenzidine	
3-Nitroaniline	
4,6-Dinitro-2-methylphenol	
4-Bromophenyl phenyl ether	
4-Chloro-3-methylphenol	
4-Chloroaniline	
4-Chlorophenyl phenyl ether	
4-Methylphenol	
4-Nitroaniline	
4-Nitrophenol	
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Bis(2-chloroethoxy)methane	
Bis(2-chloroethyl)ether	
Bis(2-chloroisopropyl)ether	
Bis(2-ethylhexyl)phthalate	
Butyl benzyl phthalate	
Carbazole	
Chrysene	
Dibenzo(a,h)anthracene	
Dibenzofuran	
Diethyl phthalate	
Dimethyl phthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno(1,2,3-cd)pyrene	
Isophorone	
Naphthalene	
Nitrobenzene	

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS
Semivolatile Organic Compounds (mg/kg)
N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
Pentachlorophenol
Phenanthrene
Phenol
Pyrene
Inorganic Compounds, Total (mg/kg)
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Copper
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Cyanide
TCLP/SPLP Inorganics (mg/L)
Antimony
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Cyanide

ANALYTICAL PARAMETERS

ISGS Site 3068V-26

Vacant Land

Sample ID	3068V-26-B03	3068V-26-B05	3068V-26-B07-1	3068V-26-B07-1 DUP		Maximum	Allowable Concentr	ation			
Sample Depth (ft)	0-3	0-5	0-7.5	0-7.5	Maximum Anowable Concentration						
Sample Date	3/17/2022	3/17/2022	10/27/2021	10/27/2021			³ Within a		⁵ Within a		
PID	0	0	0	0			Populated		Metropolitan		
Sample pH	7.5	8.2	8.2	8.2	¹ Most	² Outside a	non-Metropolitan	⁴ Within Chicago	Statistical		
Matrix	Soil	Soil	Soil	Soil	Stringent	Populated Area	Statistical Area	Corporate Limits	Area		
Semivolatile Organic Compounds (mg/kg)											
Benzo(a)pyrene	ND	0.098 1,2	ND	ND	0.09	0.09	0.98	1.3	2.1		

Sample ID	3068V-26-B07-2	3068V-26-B08	3068V-26-B09		Maxim	um Allowable Concen	tration				
Sample Depth (ft)	7.5-15	0-3	0-3								
Sample Date	10/27/2021	10/27/2021	10/27/2021			³ Within a					
PID	0	0	0			Populated		⁵ Within a			
Sample pH	8	7.6	7.8	¹ Most	² Outside a	non-Metropolitan	⁴ Within Chicago	Metropolitan			
Matrix	Soil	Soil	Soil	Stringent	Populated Area	Statistical Area	Corporate Limits	Statistical Area			
Semivolatile Organic Com	pounds (mg/kg)										
Benzo(a)pyrene	ND	ND	ND	0.09	0.09	0.98	1.3	2.1			

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-213879-1 Client Project/Site: IDOT - AE7-040

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Andrews Engineering Inc. 3300 Ginger Creek Drive Springfield, Illinois 62711

Attn: Ms. Colleen Grey

Rillk

Authorized for release by: 4/1/2022 11:52:07 AM

Richard Wright, Senior Project Manager (708)746-0045 Richard.Wright@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client Sample ID: 3068V-26-B03 Date Collected: 03/17/22 10:45 Date Received: 03/18/22 11:55

Lab Sample ID: 500-213879-1

Matrix: Solid Percent Solids: 83.7

5

7

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
7a7a7-, snP≺eesot d≮3At	m0j0071		0j0071	0j000K7	☆. 8 .	9	06 0 1 0 2 71:7h	06@5@2 00:52	7
7a7a2a2-, tot3P<⊛sotot<3At	m0j0071		0j0071	0j00051	☆. 8 .	9	06 0⁄ 1 0 2 71:7h	06@5@2 00:52	7
7a7a2-, snP <oesot d≮3at<="" td=""><td>m0j0071</td><td></td><td>0j0071</td><td>0j000C1</td><td>☆. 8.</td><td>9</td><td>060⁄102 71:7h</td><td>06Q5Q2 00:52</td><td>7</td></oesot>	m0j0071		0j0071	0j000C1	☆. 8 .	9	06 0⁄ 1 0 2 71:7h	06 Q 5 Q 2 00:52	7
7a7-DnP≪oesot d<3At	m0j0071		0j0071	0j000K2	☆. 8 .	9	06 07102 2 71:7h	06@5@2 00:52	7
7a7-DnP≺eosotd≺tAt	m0j0071		0j0071	0j000K6		9	06 0⁄ 1 0 2 71:7h	06 Q 5 Q 2 00:52	7
7a2-DnP≺eosot d≺3At	m0j00hK		0j00hK	0j007h	☆. 8 .	9	06 07102 2 71:7h	06 Q 5 Q 2 00:52	7
7a2-DnP≺⊛sopsop3At	m0j0071		0j0071	0j000hC		9	06 0 1 0 2 71:7h	06@5@2 00:52	7
7a6-DnP≺eosopsopt At a, oc8e	m0j0071		0j0071	0j000Kh	☆. 8 .	9	06 0⁄ 1 0 2 71:7h	06 Q 5 Q 2 00:52	7
2-Bud8AoAt (Mc8)	m0j00hK		0j00hK	0j0020	☆. 8 .	9	06 0⁄ 1 0 2 71:7h	06 Q 5 Q 2 00:52	7
2-Ht x3AoAt	m0j00hK		0j00hK	0j007h	☆. 8 .	9	06 0 1 0 2 71:7h	06@5@2 00:52	7
h-Mtd≍ye2-ptAd3AoAt (MIB8)	m0j00hK		0j00hK	0j0076	☆. 8 .	9	06 07102 2 71:7h	06 Q 5 Q 2 00:52	7
r Pt do At	m0j071		, 0j071	0j00Q		9	06 07102 2 71:7h	06 Q 5 Q 2 00:52	7
Bt Azt At	m0j0071		0j0071	0j000hC		9	06 07102 2 71:7h	06@5@2 00:52	7
Bso☆ownP<œso☆t d<3At	m0j0071		0j0071	0j0006C		9	06 07102 2 71:7h	06 Q 5 Q 2 00:52	7
Bsociofosci	m0j0071		0j0071	0j00056		9	06 0 1 0 2 71:7h	06@5@2 00:52	7
Bso⇔o∵t d<3At	m0j00hK		0j00hK	0j007C		9		0622522 00:52	7
i 3sboAwnguefnwt	m0j00hK		0j00hK	0j0001 5		9		06@5@2 00:52	7
i 3sboAdtds3P≪eosnwt	m0j0071		0j0071	0j00056		9	06 07102 2 71:7h	06 Q 5 Q 2 00:52	7
i <oesobt at<="" azt="" td=""><td>m0j0071</td><td></td><td>0j0071</td><td>0j000KC</td><td></td><td>9</td><td>06071022 71:7h</td><td>06@25@2 00:52</td><td>7</td></oesobt>	m0j0071		0j0071	0j000KC		9	06 07102 2 71:7h	06@25@2 00:52	7
i <eosot d≺3at<="" td=""><td>m0j00hK</td><td></td><td>0j00hK</td><td>0j0076</td><td></td><td>9</td><td></td><td>06@5@2 00:52</td><td>7</td></eosot>	m0j00hK		0j00hK	0j0076		9		06@5@2 00:52	7
i <@sofos☆	m0j0071		0j0071	0j000K6		9		06025022 00:52	7
i <œso⇔t d<3At	m0j00hK		0j00hK	0j0071		9		06@5@2 00:52	
Prg-7a2-DrP≺⊛sot d <t at<="" td=""><td>m0j0071</td><td></td><td>0j0071</td><td>0j00057</td><td></td><td>9</td><td></td><td>06@5@2 00:52</td><td>7</td></t>	m0j0071		0j0071	0j00057		9		06@5@2 00:52	7
Png-7a6-DnP<⊕sopsopt At	m0j0071		0j0071	0j00055		9	06 0 1 0 2 71:7h	06@5@2 00:52	. 7
Dnbso☆oP <ness⇔t d<3at<="" td=""><td>m0j0071</td><td></td><td>0j0071</td><td>0j000K0</td><td></td><td>9</td><td></td><td>06@5@2 00:52</td><td></td></ness⇔t>	m0j0071		0j0071	0j000K0		9		06@5@2 00:52	
c d≮yebt Azt At	m0j0071		0j0071	0j0001C		9	06 07102 2 71:7h	06@5@2 00:52	7
Mt d≺yedt solbud/et d≺t s	m0j0071		0j0071	0j0005h		9	06 0 1 0 2 71:7h	06@5@2 00:52	7
Mtd≺yetAti <eosnwt< td=""><td>m0j00hK</td><td></td><td>0j00hK</td><td>0j0071</td><td></td><td>9</td><td>060102 71:7h</td><td>06@25@2 00:52</td><td></td></eosnwt<>	m0j00hK		0j00hK	0j0071		9	06 0 1 0 2 71:7h	06@25@2 00:52	
Td/st At	m0j0071		0j0071	0j00055		9	06 0 1 0 2 71:7h	06@5@2 00:52	. 7
, t ds3P <cesot at<="" d<t="" td=""><td>m0j0071</td><td></td><td>0j0071</td><td>0j000K2</td><td></td><td>9</td><td>060102 71:7h</td><td>06@5@2 00:52</td><td>. 7</td></cesot>	m0j0071		0j0071	0j000K2		9	06 0 1 0 2 71:7h	06@5@2 00:52	. 7
, oeit At	m0j0071		0j0071	0j000hK		9	06 0 1 0 2 71:7h	06@25@2 00:52	7
ds3Ag-7a2-DnP <oesot at<="" d<t="" td=""><td>m0j0071</td><td></td><td>0j0071</td><td>0j00017</td><td></td><td>9</td><td>060102 71:7h</td><td>06@5@2 00:52</td><td>7</td></oesot>	m0j0071		0j0071	0j00017		9	06 0 1 0 2 71:7h	06@5@2 00:52	7
ds3Ag-7a6-DnP<⊛sopsopt At	m0j0071		0j0071	0j000Kh		9		06025022 00:52	7
, snP <eosot at<="" d<t="" td=""><td>m0j0071</td><td></td><td>0j0071</td><td>0j000K2</td><td></td><td>9</td><td>060102 71:7h</td><td>06@5@2 00:52</td><td> 7</td></eosot>	m0j0071		0j0071	0j000K2		9	06 0 1 0 2 71:7h	06@5@2 00:52	7
* nAyeP <commu< td=""><td>m0j0071</td><td>+V</td><td>0j0071</td><td>0j00017</td><td></td><td>9</td><td></td><td>06@5@2 00:52</td><td>7</td></commu<>	m0j0071	+V	0j0071	0j00017		9		06@5@2 00:52	7
Xyet At ga, od8e	m0j006K		0j006K	0j00051		9		06 Q 5 Q 2 00:52	7
	-			-					
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	03		7/ - 184 Zma 404					/8:2m22//Bm2	1
4-f rob ozluoro9en5ene (Surr)	06		7 <i>m</i> _ 181					/8:2m22//Bm2	1
Di9rob ozuorob ethane	1/3		7m- 123					/8:2m22//Bn2	1
Toluene-d0 (Surr)	60		7m- 124				/ 6:10:22 10814	/8:2m22//Bm2	1
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
7a2ah-, snP≺oesobt Azt At	m0j20		0j20	0j0h2	☆. 8 .	9	06 6 0 2 2 71 :6K	0606702272:hC	7
7a2-DnP≺œsobt Azt At	m0j20		0j20	0j0hC	☆. 8 .	9	06 @ 0 @ 2 7I :6K	06 0 37 0 22 72:hC	7
7a6-DnP≺œsobt Azt At	m0j20		0j20	0j0hh	☆. 8 .	9	06 @ 0 @ 2 7I :6K	06 6 7 2 2 72:hC	7
7ah-DnP≺oesobt Azt At	m0j20		0j20	0j050	☆. 8 .	9	06 6 0 2 2 7I :6K	06067022 72:hC	7
2a2'-oxybng[7-P≪eesopsop3At]	m0j20		0j20	0i0h5	☆. 8 .	9	06000271.6K	06 6 7 2 272:hC	7

Client Sample ID: 3068V-26-B03 Date Collected: 03/17/22 10:45 Date Received: 03/18/22 11:55

Lab Sample ID: 500-213879-1

Matrix: Solid Percent Solids: 83.7

5

7

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2aha5-, snP≺oosop <t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td>0j01I</td><td>☆. 8.</td><td>9</td><td>0600022 7I :6K</td><td>06067022 72:hC</td><td>7</td></t>	m0j6l	0j6l	0j01I	☆. 8 .	9	0600022 7I :6K	06067022 72:hC	7
2ahaK-, snP≺oesop <t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td>0j76</td><td>☆.8.</td><td>9</td><td>0600022 7I :6K</td><td>06067022 72:hC</td><td>7</td></t>	m0j6l	0j6l	0j76	☆. 8 .	9	0600022 7I :6K	06067022 72:hC	7
2ah-DnP <eosop<t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td>0j0l 6</td><td>☆. 8.</td><td>9</td><td>066022 7I :6K</td><td>0606702272:hC</td><td>7</td></eosop<t>	m0j6l	0j6l	0j0l 6	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 67 0 2272:hC	7
2ah-Dn⊃t d≮yep <t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td>0j75</td><td>☆. 8.</td><td>9</td><td>0600002271:6K</td><td>0603702272:hC</td><td>7</td></t>	m0j6l	0j6l	0j75	☆. 8 .	9	0600002271:6K	06 0 3702272:hC	7
2ah-DrAndsop <t aoe<="" td=""><td>m0jCl</td><td>0jCl</td><td>0jKI</td><td>☆. 8.</td><td>9</td><td>060002271:6K</td><td>0606702272:hC</td><td>7</td></t>	m0jCl	0jCl	0jKI	☆. 8 .	9	060002271:6K	0606702272:hC	7
2ah-DnAndeodoeutAt	m0j20	0j20	0j0K2	☆. 8 .	9	0600002271:6K	06 0 3702272:hC	7
2aK-DnAndeodoeutAt	m0j20	0j20	0j00C	☆. 8 .	9	0600002271:6K	06 0 3702272:hC	7
2-i <@soA3p <d≮3∉at< td=""><td>m0j20</td><td>0j20</td><td>0j0h6</td><td>☆. 8.</td><td>9</td><td>060002271:6K</td><td>06067022 72:hC</td><td>7</td></d≮3∉at<>	m0j20	0j20	0j0h6	☆. 8 .	9	060002271:6K	06067022 72:hC	7
2-i <@sop <t aoe<="" td=""><td>m0j20</td><td>0j20</td><td>0j0KC</td><td>☆. 8.</td><td>9</td><td>0600022 7I :6K</td><td>06037022 72:hC</td><td>7</td></t>	m0j20	0j20	0j0KC	☆. 8 .	9	06 0 0 0 22 7I :6K	06 03702 2 72:hC	7
2-Mtd≤yeA3p <d≤3etat< td=""><td>m0j0Cl</td><td>0j0Q</td><td>0j00C2</td><td>☆. 8.</td><td>9</td><td>0600022 7I :6K</td><td>06037022 72:hC</td><td>7</td></d≤3etat<>	m0j0Cl	0j0Q	0j00C2	☆. 8 .	9	06 0 0 0 22 7I :6K	06 03702 2 72:hC	7
2-Mt d≺yep <t aoe<="" td=""><td>m0j20</td><td>0j20</td><td>0j0K6</td><td>☆. 8.</td><td>9</td><td>0600022 71 :6K</td><td>0606702272:hC</td><td>7</td></t>	m0j20	0j20	0j0K6	☆. 8 .	9	06 0 0 0 22 71 :6K	0606702272:hC	7
2-Nrotso3AreeAt	m0j20	0j20	0j056	☆. 8 .	9	06 6 0 2 2 71 :6K	06 06702 2 72:hC	7
2-Nnotsop <t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td>0j0l 6</td><td>☆. 8.</td><td>9</td><td>066022 71 :6K</td><td>06067022 72:hC</td><td>7</td></t>	m0j6l	0j6l	0j0l 6	☆. 8 .	9	06 6 0 2 2 71 :6K	06 06702 2 72:hC	7
6 & h Mt d <yep<t aoe<="" td=""><td>m0j20</td><td>0j20</td><td>0j0K5</td><td>☆. 8.</td><td>9</td><td>060002271:6K</td><td>0606702272:hC</td><td>7</td></yep<t>	m0j20	0j20	0j0K5	☆. 8 .	9	060002271:6K	0606702272:hC	7
6a6'-DnP <oesobt aznwnat<="" td=""><td>m0j20</td><td>0j20</td><td>0j055</td><td></td><td>9</td><td>0600022 7I :6K</td><td>06067022 72:hC</td><td>7</td></oesobt>	m0j20	0j20	0j055		9	06 0 0 0 22 7I :6K	06 06702 2 72:hC	7
6-Nndeo3AneeAt	m0j6l	0j6l		☆. (8 .	9		06 03702 2 72:hC	7
haK-DrAndso-2-☆tokyep <taoe< td=""><td>m0jCl</td><td>0jQ</td><td></td><td>☆. 8.</td><td>9</td><td></td><td>06067022 72:hC</td><td>7</td></taoe<>	m0jCl	0jQ		☆. 8 .	9		06067022 72:hC	7
h-Bso⇔op <t ayep<t="" ayet="" d<t="" s<="" td=""><td>m0j20</td><td>0j20</td><td>0j052</td><td></td><td>9</td><td></td><td>0606702272:hC</td><td>7</td></t>	m0j20	0j20	0j052		9		0606702272:hC	7
h-i <œso-6-☆t d <y⊕<t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td></td><td>☆. (8.</td><td>9</td><td></td><td>0606702272:hC</td><td>7</td></y⊕<t>	m0j6l	0j6l		☆. (8 .	9		0606702272:hC	7
h-i <œso3AræAt	m0jCl	0j0		☆. 8 .	9		06 6 7 2 272:hC	
h-i <eosop<t ayep<t="" ayet="" d<t="" s<="" td=""><td>m0j20</td><td>0j20</td><td>,</td><td>☆.(8.</td><td>9</td><td></td><td>06672272:hC</td><td>7</td></eosop<t>	m0j20	0j20	,	☆. (8 .	9		06 6 7 2 272:hC	7
h-Nroto 3AreaAt	m0j6l	0j20 0j6l		☆. 8 .	9		06 6 7 2 272:hC	7
h-Nrdsop <t ace<="" td=""><td>m0jO</td><td>0jCl</td><td></td><td>☆. 3. ☆. 3.</td><td>9</td><td></td><td>06672272:hC</td><td></td></t>	m0jO	0jCl		☆. 3 . ☆. 3 .	9		06 6 7 2 272:hC	
r Pt A3p <d<t at<="" td=""><td>m0j06l</td><td>0j06l</td><td>0j000</td><td></td><td>9</td><td></td><td>06672272:hC</td><td>7</td></d<t>	m0j06l	0j06l	0j000		9		06 6 7 2 272:hC	7
r Pt A3p <d≤yet at<="" td=""><td>m0j06l</td><td>0j06l</td><td>0j0052</td><td></td><td>9</td><td></td><td>06672272:hC</td><td>7</td></d≤yet>	m0j06l	0j06l	0j0052		9		06 6 7 2 272:hC	7
r Ad≺s3Pt At	m0j06l	0j06l	0j00KK		9		06 6 7 2 272:hC	
Bt Azo[3]3Ad≮s3Pt At	m0j06l	0j06l	0j0056		9		06 6 7 2 272:hC	7
Bt Azo[3]pyst At	m0j06l	0j06l	0j0000K		9		06 6 7 2 272:hC	7
Bt Azo[b]fœios3A⊄t At	m0j06l	0j06l	0j0015		9		06 6 7 2 272:hC	
Bt Azo[. æa]pt sye At	m0j06l	0j06l	0j076		9		06 6 7 2 272:hC	7
Bt Azo[F]feuos3Ad≮t At	m0j06l	0j06l	0j070		9		06 6 7 2 272:hC	7
Brg(2-P<⊕sot d <oxy)☆t d<3at<="" td=""><td>m0j20</td><td>0j20</td><td>0j072 0j0h0</td><td></td><td>9</td><td></td><td>06672272:hC</td><td></td></oxy)☆t>	m0j20	0j20	0j072 0j0h0		9		06 6 7 2 272:hC	
Big(2-P<⊕sot d <ye)t d<t="" s<="" td=""><td>m0j20</td><td>0j20 0j20</td><td>0j051</td><td></td><td>9</td><td></td><td>06672272:hC</td><td>7</td></ye)t>	m0j20	0j20 0j20	0j051		9		06 6 7 2 272:hC	7
Bng(2-t ckye <t p<ck3&d<="" td="" xye)=""><td>m0j20</td><td>0j20 0j20</td><td>0j0C2</td><td></td><td>9</td><td></td><td>06672272:hC</td><td>7</td></t>	m0j20	0j20 0j20	0j0C2		9		06 6 7 2 272:hC	7
Budyebt Azyep<<<3e3d	m0j20	0j20 0j20		☆. (3 .	9		06 6 7 2 272:hC	
i 3sb3zoet	m0j20	0j20 0j20	0j000 0j01 1		9		06 6 7 2 272:hC	7
i <sygt at<="" td=""><td>m0j20</td><td>0j20 0j06l</td><td>0j0/7</td><td></td><td>9</td><td></td><td>06672272:hC</td><td>7</td></sygt>	m0j20	0j20 0j06l	0j0/7		9		06 6 7 2 272:hC	7
							06 G 7 G 2 72:hC	
Dnbt Az(3a≺)3Ad <s3pt at<br="">Dnbt Azofus3A</s3pt>	m0j06l	0j06l	0j00CK		9			7 7
Dhit d	m0j20	0j20	0j0hK		9		0606702272:hC	
	m0j20	0j20	0j0KK		9		060702272:hC	7
Dr©t d≮yep <d≮3@d< td=""><td>m0j20</td><td>0j20</td><td>0j057</td><td></td><td>9</td><td></td><td>0606702272:hC</td><td>7</td></d≮3@d<>	m0j20	0j20	0j057		9		0606702272:hC	7
DnA-budyep <d<3&d< td=""><td>m0j20</td><td>0j20</td><td>0j0K0</td><td></td><td>9</td><td></td><td>06672272:hC</td><td>7</td></d<3&d<>	m0j20	0j20	0j0K0		9		06 6 7 2 272:hC	7
DnA-oPdyep <d<3&d< td=""><td>m0j20</td><td>0j20</td><td>0j0Kh</td><td></td><td>9</td><td></td><td>06672272:hC</td><td></td></d<3&d<>	m0j20	0j20	0j0Kh		9		06 6 7 2 272:hC	
Leuos3Ad <t at<="" td=""><td>m0j06l</td><td>0j06l</td><td>0j00C6</td><td></td><td>9</td><td></td><td>06672272:hC</td><td>7</td></t>	m0j06l	0j06l	0j00C6		9		06 6 7 2 272:hC	7
Leuost At	m0j06l	0j06l	0j0055		9		06 6 7 2 272:hC	7
Ht x3P<⊕sobt Azt At	m0j0Cl	0j0Q	0j00l 7		9		06 6 7 2 272:hC	7
Ht x3P<@sobud8wt At	m0j20	0j20	0j0K2		9		06 6 7 2 272:hC	7
Ht x3P <cesopypeopt ad3wnt="" at<="" td=""><td>m0jCl</td><td>0jCl</td><td>-</td><td>☆.8.</td><td>9</td><td></td><td>0603702272:hC</td><td>7</td></cesopypeopt>	m0jCl	0jCl	-	☆. 8 .	9		0603702272:hC	7
Ht x3P<@sot d≮3At	m0j20	0j20	0j0K0	☆. 8 .	9	06 6 0 2 2 71 :6K	06 0 6702272:hC	7

Client Sample ID: 3068V-26-B03 Date Collected: 03/17/22 10:45 Date Received: 03/18/22 11:55

Lab Sample ID: 500-213879-1

Matrix: Solid Percent Solids: 83.7

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Awt Ao[7a2a6-Pw]pyst At	m0j06l		0j06l	0j070	☆. 8 .	9	0600022 7I :6K	06037022 72:hC	7
gop <osoat< td=""><td>m0j20</td><td></td><td>0j20</td><td>0j0hh</td><td>☆. 8.</td><td>9</td><td>060002271:6K</td><td>06037022 72:hC</td><td></td></osoat<>	m0j20		0j20	0j0hh	☆. 8 .	9	060002271:6K	06037022 72:hC	
N3p <d≮3∉ at<="" td=""><td>m0j06l</td><td></td><td>0j06l</td><td>0j00K0</td><td>☆. 8.</td><td>9</td><td>066022 7I :6K</td><td>06037022 72:hC</td><td>7</td></d≮3∉>	m0j06l		0j06l	0j00K0	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 37022 72:hC	7
Nndsobt Azt At	m0j06l		0j06l	0j00l 1	☆. ଓ .	9	06 6 0 2 2 71 :6K	06067022 72:hC	
N-Nndsogown-A-psopye3∵;nAt	m0j0Cl		DOjO	0j0h1	☆. 8 .	9	06 0 0 0 22 7I :6K	06 0 67022 72:hC	7
N-Nndsogownp <taye3☆nat< td=""><td>m0j20</td><td></td><td>, 0j20</td><td>, 0j0hK</td><td></td><td>9</td><td>060002271:6K</td><td>06037022 72:hC</td><td>7</td></taye3☆nat<>	m0j20		, 0j20	, 0j0hK		9	06 0 002271:6K	06 0 37 0 22 72:hC	7
t Ad8P<⊕sop <t aoe<="" td=""><td>m0jCl</td><td></td><td>0jQ</td><td></td><td>☆. 8.</td><td>9</td><td></td><td>06037022 72:hC</td><td></td></t>	m0jCl		0jQ		☆. 8 .	9		06037022 72:hC	
<t a3ackst="" at<="" td=""><td>m0j06l</td><td></td><td>0j06l</td><td>0j0055</td><td></td><td>9</td><td></td><td>06037022 72:hC</td><td>7</td></t>	m0j06l		0j06l	0j0055		9		06037022 72:hC	7
/ <t aoe<="" td=""><td>m0j20</td><td></td><td>0j20</td><td></td><td>₩.8.</td><td>9</td><td></td><td>0600702272:hC</td><td>-</td></t>	m0j20		0j20		₩. 8 .	9		0600702272:hC	-
/ yst At	m0j06l		0j06l	0j00C1		9		06 0 7 0 2272:hC	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,3-Tri9rob ophenol			81 - 148					/8:81:22 12847	
2-Fluoro9iphenyl	71		48 - 14m					/ 8:81:22 12847	
2-Fluorophenol	1/3		81 - 133					/ 8:81:22 12847	
Nitro9en5ene-dm(Surr)	3m		87 - 147					/ 8:81:22 12847	
Phenol-dm	61		8/ _ 1m8					/ 8:81:22 12847	
Terphenyl-d14 (Surr)	1/1		42 - 1 <i>m</i> 7					/ 8:81:22 12847	
Method: 6010B - Metals (IC Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Antimony	0.72	J		0j22	☆. 8 .	9	06 Q 5 Q 2 0K:71	06025022 7I :5K	7
Arsenic	11		0j5C	0j7l	☆. 8 .	9	06 Q 5 Q 2 0K:71	06 Q 5 Q 2 7I :5K	7
Barium	48		0j5C	0j0K5	₩. 8 .	9	06 Q 5 Q 2 0K:71	0602502271:5K	-
Beryllium	0.79		0j26	0j056	☆. 8 .	9	06 Q 5 Q 2 0K:71	06025022 71 :5K	
Boron	7.2		2j 1	0j2K	☆. 8 .	9	06 Q 5 Q 2 0K:71	06 Q 5 Q 2 7I :5K	-
3w☆nu☆	m0j77		0j77	0j020	☆. 8 .	9	06 Q 5 Q 2 0K:71	06 Q 5 Q 2 7I :5K	-
Calcium	47000		5C	١jK	☆. ଓ .	9	06@5@2 0K:71	06@1@2 72:66	Į
Chromium	15	В	0j5C	0j21	☆. 8 .	9	06 Q 5 Q 2 0K:71	06 Q 5 Q 2 7I :5K	-
Cobalt	13		0j21	0j0Ch	☆. 8 .	9	06 Q 5 Q 2 0K:71	06 Q 5 Q 2 7I :5K	7
Copper	29		0j5C	0j7K	☆. 8 .	9	06@5@2 0K:71	06025022 71 :5K	
ron	21000		77	5jl	☆. 8 .	9	06 Q 5Q2 0K:71	0602502271:5K	-
Lead	17		0j21	0j76	☆. 8 .	9	06 Q 5Q2 0K:71	0602502271:5K	-
Magnesium	23000		5jC	2j1	☆. 8 .	9	06@5@2 0K:71	06025022 7I :5K	
Manganese	450		0j5C	0j012	☆. 8 .	9	06 Q 5Q2 0K:71	0602502271:5K	-
Nickel	32		0j5C	0j7C	☆. 8 .	9	06 Q 5Q2 0K:71	0602502271:5K	-
Potassium	1600		21	70	☆. 8 .	9	06 Q 5 Q 2 0K:71	06025022 7I :5K	· · · · · · · · · · · · · · · · · · ·
TtetAnu☆	m0j5C		0j5C	0j66	☆. 8 .	9	06 @ 5 @ 2 0K:71	06 @ 5 @ 2 7I :5K	7
Silver	0.30		0j21	0j0 C 6		9	06 Q 5 Q 2 0K:71	06 Q 5Q2 7I :5K	-
Sodium	120	В	5C		☆. 8 .	9	06 Q 5 Q 2 0K:71	06025022 7I :5K	· · · · · · · · · · · · · · · · · · ·
Thallium	0.72		0j5C	-	☆. 8 .	9	06 Q 5 Q 2 0K:71	06 Q 5Q2 7I :5K	-
Vanadium	18		0j21	0j0KC		9	06 Q 5 Q 2 0K:71	06 Q 5 Q 2 7I :5K	-
Zinc	68		7j7		☆. 8 .	9	06 Q 5 Q 2 0K:71		
			,						
Method: 6010B - Metals (IC Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client Sample ID: 3068V-26-B03 Date Collected: 03/17/22 10:45 Date Received: 03/18/22 11:55

Lab Sample ID: 500-213879-1

Matrix: Solid Percent Solids: 83.7

5

7

13

Method: 6010B - Metals (I	CP) - SPLP Eas	t							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
rsgtAnP	m0j050		0j050	0j070	.⊅. Q		06021 022 01 :07	06 0 0 0 22 75:71	7
B3snu☆	m0j50		0j50	0j050	.⊅. Q		06021 O22 01 :07	060002275:71	7
Bt syeenu☆	m0j00h0		0j00h0	0j00h0	.⊅. Q		06021 O22 01 :07	060002275:71	7
Boron	0.050	J	0j70	0j050	.⊅. Q		06(2) (2) 201:07	060002275:71	7
i 3w☆nu☆	m0j0050		0j0050	0j0020	.⊅. Q		06(2)1(2)2(0)1:07	060002275:71	7
Calcium	11		2j5	0j50	.⊅ . ®		06(2)1(2)2(0)1:07	06 G 7 Q 2 77:6h	7
Chromium	0.011	J	0j025	0j070	.⊅. ®		06(2)1 (2)2 01 :07	060002275:71	7
i ob3ed	m0j025		0j025	0j070	.⊅ . ®		06(2)1(2)2(0)1:07	060002275:71	7
Iron	13		0jh0	0j20	.⊅. ®		0602102201:07	06 G 7 Q 2 77:6h	7
kt 3w	m0j00C5		0j00C5	0j00C5	☆. Q		06(2) (2) 201:07	060002275:71	7
Manganese	0.060		0j025	0j070	.⊅. Q		06 Q I Q 2 0I :07	06 0 7 0 2 77:6h	7
Nickel	0.011	J	0j025	0j070	.¢. 0a		06021 022 01 :07	06 G 0 Q 2 75:71	7
Potassium	3.3		2j5	0j50	¦⊅. 0a		06021 022 01 :07	060002275:71	7
TtelAnu☆	m0j050		0j050	0j020	.⊅. Q		06 Q I Q 2 0I :07	06 G 0 Q 2 75:71	7
Tnev/ts	m0j025		0j025	0j070	.⊅. Q		06 Q I Q 2 0I :07	06 G 0 Q 2 75:71	7
Zinc	0.040	J	0j50	0j020	☆. Q		06 Q I Q 2 0I :07	06 @ 0 @ 2 75:71	7
Method: 6020A - Metals (I		Fact							
Analyte		Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fac
r AdiộoAy		quamer	0j00K0	0j00K0			0621 22 01 :07	06021 022 71 :22	7
, <3œu☆	m0j0020		0j0020	0j0010			0602102201:07		7
, • • • • • • • • • • • • • • • • • • •	110,0020		0,0020	0,0020	<i>ж.</i> ч		0002102201.07	00021 022 11 .22	,
Method: 7470A - Mercury	(CVAA) - SPLP	East							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mt sPusy	m0j00020		0j00020	0j00020	☆. Q		06021 022 77:05	06@0@22 70:72	7
Method: 7471B - Mercury	(CVAA)								
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.035		0j07l	0j00K2	☆. 8 .	9	0602l 022 7h:25	06@0@22 70:01	7
General Chemistry	D	0		MD:	11	-	D	A	D11 E
Analyte		Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
iy3Anwta,oc8e	m0j21		0j21		☆. (8 .	9	06 Q Q 2 77:62		7
рН	7.5		0j2	0j2	TU			06 Q 6 Q 2 20:6K	7

4/1/2022

Client Sample ID: 3068V-26-B05 Date Collected: 03/17/22 09:45 Date Received: 03/18/22 11:55

Lab Sample ID: 500-213879-3

Matrix: Solid Percent Solids: 83.6

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
′a7a7-, snP≺oesot d≺3At	m0j0027		0j0027	0j000KI	☆. 8 .	9	06 0 1 0 2 71:7h	06@5@2 77:51	7
′a7a2a2-,tob3P <oesoto≮3at< td=""><td>m0j0027</td><td></td><td>0j0027</td><td>0j000KK</td><td>☆.8.</td><td>9</td><td>060102 71:7h</td><td>06Q5Q2 77:5l</td><td>7</td></oesoto≮3at<>	m0j0027		0j0027	0j000KK	☆. 8 .	9	06 0 1 0 2 71:7h	06 Q 5 Q 2 77:5l	7
a7a2-, snP <oesot d<3at<="" td=""><td>m0j0027</td><td></td><td>0j0027</td><td>0j00011</td><td>☆.8.</td><td>9</td><td>060102 71:7h</td><td>06Q5Q2 77:5l</td><td>7</td></oesot>	m0j0027		0j0027	0j00011	☆. 8 .	9	06 0 1 0 2 71:7h	06 Q 5 Q 2 77:5l	7
a7-DnP≺œsot d≺3At	m0j0027		0j0027	0j00000	☆. 8 .	9	06 0 1 0 2 71:7h	06@5@2 77:51	7
a7-DnP≺oesot d≺t At	m0j0027		0j0027	0j000C7	₩. 8 .	9	06 Ø 1 @ 2 71:7h	06 Q 5 Q 2 77:5I	7
a2-DnP<⊜sot d<3At	m0j0057		0j0057	0j007K	☆. 8 .	9	06 0 1 0 2 71:7h	06 Q 5 Q 2 77:5I	7
a2-DnP <oesopsop3at< td=""><td>m0j0027</td><td></td><td>0j0027</td><td>0j00056</td><td>☆.8.</td><td>9</td><td>060102 71:7h</td><td>06Q5Q2 77:5I</td><td>7</td></oesopsop3at<>	m0j0027		0j0027	0j00056	☆. 8 .	9	06 0 1 0 2 71:7h	06 Q 5 Q 2 77:5I	7
a6-DnP≺oesopsoptAta,od8e	m0j0027		0j0027	0j000C2	₩. 8 .	9	06 0 1 0 2 71:7h	06 Q 5 Q 2 77:5I	7
-Butanone (MEK)	0.013		0j0057	0j0026	☆. 8 .	9	06 0 1 0 2 71:7h	06 Q 5 Q 2 77:5I	7
-Ht x3AoAt	m0j0057		0j0057	0j007K	☆. 8 .	9	06 0 1 0 2 71:7h	06 Q 5 Q 2 77:5I	7
-Mtd≍ye2-ptAd3AoAt (MIB8)	m0j0057		0j0057	0j0075	☆. 8 .	9	06 0 1 0 2 71:7h	06 Q 5 Q 2 77:5I	7
cetone	0.088		0j027	0j001I	☆. 8 .	9	06 0 1 0 2 71:7h	06 Q 5 Q 2 77:5I	7
t Azt At	m0j0027		0j0027	0j00052	☆. 8 .	9	06 0 1 0 2 71:7h	06@5@2 77:51	
so☆ownP<œso☆t d<3At	m0j0027		0j0027	0j000h2	☆. 8 .	9	06 0 1 0 2 71:7h	06 Q 5Q2 77:5I	7
so⇔ofos⇔	m0j0027		0j0027	0j000K0	☆. 8 .	9	06 0 1 0 2 71:7h	06 Q 5Q2 77:5I	-
so⇔o⇔t d<3At	m0j0057	+V	0j0057	0j007l	☆. 8 .	9	06 0 1 0 2 71:7h	06@5@2 77:51	
3sboAwnguefnwt	m0j0057		0j0057	0j0077	☆. 8 .	9	06 0⁄ 1 0 2 71:7h	06 Q 5 Q 2 77:5l	-
3sboAdtds3P <eosnwt< td=""><td>m0j0027</td><td></td><td>0j0027</td><td>0j0005l</td><td>☆.8.</td><td>9</td><td>060⁄102 71:7h</td><td>06Q5Q2 77:5l</td><td>7</td></eosnwt<>	m0j0027		0j0027	0j0005l	☆. 8 .	9	06 0⁄ 1 0 2 71:7h	06 Q 5 Q 2 77:5l	7
<œsobt Azt At	m0j0027		0j0027	0j000CK	☆. 8 .	9	06 0⁄10 271:7h	06 Q 5 Q 2 77:5I	
<œsot d≮3At	m0j0057		0j0057	0j0075		9	06 0 1 0 2 71:7h	06@5@2 77:51	-
<@sofos	m0j0027		0j0027	0j000C7		9	06 0 1 0 2 71:7h	06@5@2 77:51	-
<œso;⊘t d≮3At	m0j0057		0j0057	0j0027		9	06 0 1 0 2 71:7h	06@5@2 77:51	· · · · · · · · · · · · · · ·
ng-7a2-DnP≺eosot d≺t At	m0j0027		0j0027	0j0005C		9	06 0 1 0 2 71:7h	06@5@2 77:51	-
ng-7a6-DnP≺eosopsoptAt	m0j0027		0j0027	0j000K2		9	06 0 1 0 2 71:7h	06025022 77:51	-
nbso⇔oP <ceso☆t ck3at<="" td=""><td>m0j0027</td><td></td><td>0j0027</td><td>0j000KC</td><td></td><td>9</td><td>060102 71:7h</td><td>06@5@2 77:51</td><td></td></ceso☆t>	m0j0027		0j0027	0j000KC		9	06 0 1 0 2 71:7h	06@5@2 77:51	
d≮yebt Azt At	m0j0027		0j0027	0j0001 1		9	06 0 1 0 2 71:7h	06025022 77:51	-
lt d≮yedt solbud/et d≮t s	m0j0027		0j0027	0j000K0		9	06 0 1 0 2 71:7h	06025022 77:51	-
ltd≮yetAti <eosnwt< td=""><td>m0j0057</td><td></td><td>0j0057</td><td>0j0020</td><td></td><td>9</td><td>060102 71:7h</td><td>06025022 77:51</td><td>••••••</td></eosnwt<>	m0j0057		0j0057	0j0020		9	06 0 1 0 2 71:7h	06025022 77:51	••••••
d/stAt	m0j0027		0j0027	0j000K2		9	06 0 1 0 2 71:7h	06025022 77:51	-
tob3P <nesoto≮tat< td=""><td>m0j0027</td><td></td><td>0j0027</td><td>0j00012</td><td></td><td>9</td><td>06010271:7h</td><td></td><td>-</td></nesoto≮tat<>	m0j0027		0j0027	0j00012		9	06 0 1 0 271:7h		-
Deut At	m0j0027		0j0027	0j00052		9	06 0 1 0 271:7h		
3Aq-7a2-DnP≺eosotoktAt	m0j0027		0j0027	0j00052 0j0001 7		9	06 0 1 0 271:7h		-
3Ag-7a6-DnP <eosopsoptat< td=""><td>m0j0027</td><td></td><td>0j0027 0j0027</td><td>0j000C2</td><td></td><td>9</td><td>060102 71:7h</td><td></td><td>-</td></eosopsoptat<>	m0j0027		0j0027 0j0027	0j000C2		9	06 0 1 0 2 71:7h		-
sng-rao-bir~eosopsopra. snP <eosot at<="" c≮t="" td=""><td>m0j0027</td><td></td><td>0j0027 0j0027</td><td>0j000C2</td><td>⊅.0.</td><td>9</td><td>060102 71:7h</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td></eosot>	m0j0027		0j0027 0j0027	0j000C2	⊅. 0 .	9	06 0 1 0 2 71:7h		· · · · · · · · · · · · · · · · · · ·
nAveP <coswt< td=""><td>m0j0027</td><td></td><td>0j0027 0j0027</td><td>0j000N 0j000I 7</td><td></td><td>9</td><td>06010271:7h</td><td></td><td>-</td></coswt<>	m0j0027		0j0027 0j0027	0j000N 0j000I 7		9	06 0 1 0 271:7h		-
5				,		9			-
ζγ∉ At ga, od8e	m0j00h7		0j00h7	0j000KK	ж. Ф .	9	06 0 1 0 2 71:7h	00/25/22 11.51	-
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Dichloroethane-d4 (Surr)	120		7/ - 184				/ 8:10:22 10B/4	/ 8:2m22 11Bn6	
-f rob ozłuoro9en5ene (Surr)	12/		7m_ 181				/ 8:10:22 10B/4	/8:2m22 11Bm6	-
i9rob ozłuorob ethane	118		7m- 123				/8:10:22 10 B 4	/8:2m22 11Bm6	
oluene-d0 (Surr)	1/0		7m_ 124				/ 8:10:22 10 B /4	/ 8:2m22 11Bn6	
lethod: 8270D - Semivolat	tile Organic Co	mnounde	(GC/MS)						
nalyte		Qualifier	(GC/WS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
£2ah-, snP≺oescobt Azt At			0j20		☆. 8 .	<u> </u>	•	06 0 7 0 2276:6h	
a2-DnP≺eosobt Azt At	m0j20		0j20	-	⊅. 8 .	9		06 6 7 2 276:6h	-
a6-DnP≺oesobt Azt At	m0j20		0j20	-		9		06 6 7 2 276:6h	
ah-DnP≺eosobt Azt At	m0j20		0j20			9		06 0 7 0 2276:6h	
22'-oxybrg[7-P <cesopsop3at]< td=""><td>m0j20</td><td></td><td>0j20 0j20</td><td>0j057 0j0hK</td><td></td><td>9</td><td></td><td>060702276:6h</td><td>-</td></cesopsop3at]<>	m0j20		0j20 0j20	0j057 0j0hK		9		06 0 7 0 2276:6h	-

Client Sample ID: 3068V-26-B05 Date Collected: 03/17/22 09:45 Date Received: 03/18/22 11:55

Lab Sample ID: 500-213879-3 Matrix: Solid

Percent Solids: 83.6

5

7

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2ahaō-, snP≺œsop <t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td>0j0l 0</td><td>☆.8.</td><td>9</td><td>060002 7I :6K</td><td>06037022 76:6h</td><td>7</td></t>	m0j6l	0j6l	0j0l 0	☆. 8 .	9	06 0 0 0 2 7I :6K	06 0 37 0 22 76:6h	7
2ahaK-, snP<⊛sop <t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td>0j7h</td><td>☆.8.</td><td>9</td><td>06G0Q2 7I :6K</td><td>0607022 76:6h</td><td>7</td></t>	m0j6l	0j6l	0j7h	☆. 8 .	9	06 G 0 Q 2 7I :6K	06 0 7 0 22 76:6h	7
2ah-DnP<⊛sop <t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td>0j0l h</td><td>☆.8.</td><td>9</td><td>066022 7I :6K</td><td>06037022 76:6h</td><td>7</td></t>	m0j6l	0j6l	0j0l h	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 37 0 22 76:6h	7
2ah-Dn⊃t d≮yqo <t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td>0j75</td><td>☆.8.</td><td>9</td><td>06G0Q2 7I :6K</td><td>06037022 76:6h</td><td>7</td></t>	m0j6l	0j6l	0j75	☆. 8 .	9	06 G 0 Q 2 7I :6K	06 0 37 0 22 76:6h	7
2ah-DrAndsop <t aoe<="" td=""><td>m0j10</td><td>0j10</td><td>0jC0</td><td>☆.8.</td><td>9</td><td>060002271:6K</td><td>060702276:6h</td><td>7</td></t>	m0j10	0j10	0jC0	☆. 8 .	9	060002271:6K	06 0 7 0 2276:6h	7
2ah-DnAndsodoeutAt	m0j20	0j20	0j0K6	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 7 0 2 76:6h	7
2aK-DnAndsodoeutAt	m0j20	0j20	0j0C1	☆. 8 .	9	06 G 0 Q 2 7I :6K	06 0 37 0 22 76:6h	7
2-i <eosoa3p<d≮3etat< td=""><td>m0j20</td><td>0j20</td><td>0j0hh</td><td>☆.8.</td><td>9</td><td>060002 71 :6K</td><td>060702 76:6h</td><td>7</td></eosoa3p<d≮3etat<>	m0j20	0j20	0j0hh	☆. 8 .	9	06 0 0 0 2 71 :6K	06 0 7 0 2 76:6h	7
2-i <œsop <t aoe<="" td=""><td>m0j20</td><td>0j20</td><td>0j0K1</td><td>☆.8.</td><td>9</td><td>066022 7I :6K</td><td>060702 76:6h</td><td>7</td></t>	m0j20	0j20	0j0K1	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 7 0 2 76:6h	7
2-Mtd≮yøA3p <d≮3etat< td=""><td>m0j010</td><td>0j010</td><td>0j00C6</td><td>☆.8.</td><td>9</td><td>066022 7I :6K</td><td>060702 76:6h</td><td>7</td></d≮3etat<>	m0j010	0j010	0j00 C 6	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 7 0 2 76:6h	7
2-Mt d≺yep <t aoe<="" td=""><td>m0j20</td><td>0j20</td><td>0j0Kh</td><td>☆.8.</td><td>9</td><td>060002271:6K</td><td>060702 76:6h</td><td>7</td></t>	m0j20	0j20	0j0Kh	☆. 8 .	9	060002271:6K	06 0 7 0 2 76:6h	7
2-Nndso3AneeAt	m0j20	0j20	0j056	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 37 0 22 76:6h	7
2-Nndsop <t aoe<="" td=""><td>m0j6l</td><td>0j6l</td><td>0j0l h</td><td>☆.8.</td><td>9</td><td>066022 7I :6K</td><td>06037022 76:6h</td><td>7</td></t>	m0j6l	0j6l	0j0l h	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 37 0 22 76:6h	7
6 & h Mt d≮yap <t aoe<="" td=""><td>m0j20</td><td>0j20</td><td>0j0KK</td><td>☆.8.</td><td>9</td><td>066022 7I :6K</td><td>0607022 76:6h</td><td>7</td></t>	m0j20	0j20	0j0KK	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 7 0 22 76:6h	7
6a6'-DnP≪eosobt AznwnAt	m0j20	0j20	0j055	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 37 0 22 76:6h	7
6-Nndeo3AneeAt	m0j6l	0j6l	0j72	☆. 8 .	9	06 6 0 2 2 7I :6K	06 0 37 0 22 76:6h	7
haK-DnAndso-2-☆tokyep <taoe< td=""><td>m0j10</td><td>0j10</td><td>0j62</td><td>☆.8.</td><td>9</td><td>060002271:6K</td><td>06037022 76:6h</td><td>7</td></taoe<>	m0j10	0j10	0j62	☆. 8 .	9	060002271:6K	06 0 37 0 22 76:6h	7
h-Bso☆op <t ayep<t="" ayet="" d<t="" s<="" td=""><td>m0j20</td><td>0j20</td><td>0j052</td><td>☆.8.</td><td>9</td><td>066022 71 :6K</td><td>06037022 76:6h</td><td>7</td></t>	m0j20	0j20	0j052	☆. 8 .	9	06 6 0 2 2 71 :6K	06 0 37 0 22 76:6h	7
h-i <oeso-6-☆t aoe<="" d<yop<t="" td=""><td>m0j6l</td><td>0j6l</td><td>0j76</td><td>☆.8.</td><td>9</td><td>060002 71 :6K</td><td>06037022 76:6h</td><td>7</td></oeso-6-☆t>	m0j6l	0j6l	0j76	☆. 8 .	9	06 0 0 0 2 71 :6K	06 0 37 0 22 76:6h	7
h-i <eoso3aneeat< td=""><td>m0j10</td><td>0j10</td><td>0j7l</td><td>☆.8.</td><td>9</td><td>066022 71 :6K</td><td>06037022 76:6h</td><td>7</td></eoso3aneeat<>	m0j10	0j10	0j7l	☆. 8 .	9	06 6 0 2 2 71 :6K	06 0 37 0 22 76:6h	7
h-i <oesop<t ayep<t="" ayet="" d≺t="" s<="" td=""><td>m0j20</td><td>0j20</td><td>0j0hK</td><td>☆.8.</td><td>9</td><td>0600022 71 :6K</td><td>06037022 76:6h</td><td>7</td></oesop<t>	m0j20	0j20	0j0hK	☆. 8 .	9	06 0 0 0 22 71 :6K	06 0 37 0 22 76:6h	7
h-Nrobo3AneeAt	m0j6l	0j6l		☆. 8 .	9		06 0 37 0 22 76:6h	7
h-Nnosop <t aoe<="" td=""><td>m0j10</td><td>0j10</td><td></td><td>☆.8.</td><td>9</td><td></td><td>06037022 76:6h</td><td> 7</td></t>	m0j10	0j10		☆. 8 .	9		06 0 37 0 22 76:6h	7
Pt A3p <d≮t at<="" td=""><td>m0j06l</td><td>0j06l</td><td>0j00C7</td><td></td><td>9</td><td></td><td>060702 76:6h</td><td>7</td></d≮t>	m0j06l	0j06l	0j00C7		9		06 0 7 0 2 76:6h	7
Pt A3p <d≮yet at<="" td=""><td>m0j06l</td><td>0j06l</td><td>0j0052</td><td></td><td>9</td><td></td><td>06037022 76:6h</td><td>7</td></d≮yet>	m0j06l	0j06l	0j0052		9		06 0 37 0 22 76:6h	7
Anthracene	0.0086 J	0j06l	0j00KK		9		06 0 37 0 22 76:6h	7
Benzo[a]anthracene	0.071	0j06l	0j0056		9		06 0 37 0 22 76:6h	7
Benzo[a]pyrene	0.098	0j06l	0j0000		9		06 0 37 0 22 76:6h	7
Benzo[b]fluoranthene	0.17	0j06l	0j0015		9		06 0 37 0 22 76:6h	7
Benzo[g,h,i]perylene	0.061	0j06l	,	. 8 .	9		06 0 7 0 22 76:6h	. 7
Benzo[k]fluoranthene	0.070	0j06l		. 8 .	9		06 0 7 0 2276:6h	. 7
Brg(2-P<⊛sot d <oxy)☆t d<3at<="" td=""><td>m0j20</td><td>0j20</td><td></td><td>☆. 3.</td><td>9</td><td></td><td>060702 76:6h</td><td></td></oxy)☆t>	m0j20	0j20		☆. 3 .	9		06 0 7 0 2 76:6h	
Brg(2-P<⊛sot d≤ye)t d <t s<="" td=""><td>m0j20</td><td>0j20 0j20</td><td>•</td><td></td><td>9</td><td></td><td>06070276:6h</td><td>. 7</td></t>	m0j20	0j20 0j20	•		9		06 0 7 0 276:6h	. 7
Brg(2-t d <ye<t p<d<3e3d<="" td="" xye)=""><td>m0j20</td><td>0j20 0j20</td><td>-</td><td></td><td>9</td><td></td><td>06070276:6h</td><td>7</td></ye<t>	m0j20	0j20 0j20	-		9		06 0 7 0 276:6h	7
Budyebt Azyep <d<3&dt< td=""><td>m0j20</td><td>0j20 0j20</td><td></td><td>☆. 3.</td><td>9</td><td></td><td>06070276:6h</td><td></td></d<3&dt<>	m0j20	0j20 0j20		☆. 3 .	9		06 0 7 0 276:6h	
3sb3zoet	m0j20	0j20 0j20	-		9	06 G 0 Q 2 7I :6K		7
Chrysene	0.11	0j20 0j06l			9	0600002271:6K		7
· · · · [*] · · · · · · · · · · · · · · · · · · ·	0.012 J	0j001 0j061	0j000		9		0600702276:6h	
Dibenz(a,h)anthracene Drbt Azofus3A		0j001 0j20	,	☆. ଓ .	9		0600702276:6h	7
Dnt d≮yep <d≮3&d< td=""><td>m0j20</td><td>0j20 0j20</td><td>-</td><td></td><td>9</td><td></td><td>060702276:6h</td><td>7</td></d≮3&d<>	m0j20	0j20 0j20	-		9		06 0 7 0 2276:6h	7
	m0j20							
Dn∯t okyep <ok3⊗d DnA budvop<ok3⊗d< td=""><td>m0j20</td><td>0j20</td><td></td><td>☆.8. ☆.8.</td><td>9</td><td></td><td>066722 76:6h 066722 76:6h</td><td>7</td></ok3⊗d<></ok3⊗d 	m0j20	0j20		☆. 8 . ☆. 8 .	9		06 6 7 2 2 76:6h 06 6 7 2 2 76:6h	7
DnA-budyep <c≮3⊜d DnA-oPdvop<c≮3⊗d< td=""><td>m0j20</td><td>0j20 0i20</td><td></td><td></td><td>9</td><td></td><td></td><td>7</td></c≮3⊗d<></c≮3⊜d 	m0j20	0j20 0i20			9			7
DnA-oPdyep<⊄3⊜d	m0j20	0j20		☆. 8 .	9		0603702276:6h	
Fluoranthene	0.20	0j06l	0j0006		9		06 0 7 0 276:6h	7
Leiost At	m0j06l	0j06l	0j005K		9		06 6 7 2 276:6h	7
Ht x3P<⊕sobt Azt At	m0j010	0j010	0j00l 2		9		06 0 7 0 276:6h	
Ht x3P <essbud8wnt at<="" td=""><td>m0j20</td><td>0j20</td><td>-</td><td>☆.8.</td><td>9</td><td>060002271:6K</td><td></td><td>7</td></essbud8wnt>	m0j20	0j20	-	☆. 8 .	9	060002271:6K		7
Htx3P≪oesoPyPeoptAd3wntAt	m0j10	0j10	0j26	☆. 8 .	9	0600002271:6K	06 0 37 0 22 76:6h	7

ientAdrAwstEgcA.nAttsnA.IAPj /so\$\$PdD7ndt:ID4, -rcC-0h0

Client Sample ID: 3068V-26-B05 Date Collected: 03/17/22 09:45 Date Received: 03/18/22 11:55

Lab Sample ID: 500-213879-3

Matrix: Solid Percent Solids: 83.6

5

7

Method: 8270D - Semivolatile (Analyte		Qualifier		MDL	,	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	0.057	quanto	0i06l		<u>ä.</u> 8.	<u> </u>	· ·	06 0 7 0 2 76:6h	7
Igop <osoat< td=""><td>m0j20</td><td></td><td>0j20</td><td></td><td>☆. 3.</td><td>9</td><td></td><td>06G7Q2 76:6h</td><td></td></osoat<>	m0j20		0j20		☆. 3 .	9		06 G 7 Q 2 76:6h	
N3p <ck3et at<="" td=""><td>m0j06l</td><td></td><td>0j06l</td><td>0j00K7</td><td></td><td>9</td><td></td><td>06070276:6h</td><td>7</td></ck3et>	m0j06l		0j06l	0j00K7		9		06 0 7 0 276:6h	7
Nrosobt Azt At	m0j06l		0j06l	0j001 I		9		06 6 7 2 276:6h	
N-NrdsogownA-psopy&☆rAt	m0j010		0j001	,		9		06 0 7 0 2 76:6h	7
N-Nrdsogown-t Ayestrat	m0j20		0j010			9		06 0 7 0 2 76:6h	7
/ tAd8P <eosop<tace< td=""><td>m0j20</td><td></td><td>0j20 0j10</td><td></td><td>☆. 3.</td><td>9</td><td></td><td>066722 76:6h</td><td></td></eosop<tace<>	m0j20		0j20 0j10		☆. 3 .	9		06 6 7 2 2 76:6h	
Phenanthrene	-		0j10 0j06l	0j0055		9		06 6 7 2 2 76:6h	7
/ <t aoe<="" td=""><td>0.058</td><td></td><td>0j001 0j20</td><td>,</td><td>.v⊎. ☆.08.</td><td></td><td></td><td>060702 76:6h</td><td>7</td></t>	0.058		0j001 0j20	,	.v⊎. ☆.08.			06 0 7 0 2 76:6h	7
	m0j20					9			
Pyrene	0.20		0j06l	0j00Q	ų. о .	9	000002271.0K	06 0 37 0 2276:6h	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,3-Tri9rob ophenol	08		81 - 148				/ 8:8/ :22 1683	/ 8:81:22 18884	1
2-Fluoro9iphenyl	3m		48 - 14m				/8:8/:22 16883	/8:81:22 18834	1
2-Fluorophenol	64		81 - 133				/8:8/:22 16883	/8:81:22 18834	1
Nitro9en5ene-dm(Surr)	46		87 - 147				/ 8:8/ :22 16 83	/ 8:81:22 18884	1
Phenol-dm	63		8/ _ 1 <i>m</i> 8				/8:8/:22 16583	/8:81:22 18884	1
Terphenyl-d14 (Surr)	1/0		42 <u>-</u> 1 <i>m</i> 7				/ 8:8/ :22 1653	/8:81:22 18884	1
Method: 6010B - Metals (ICP) Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	0.59		7j7	0j22	₩. 8 .	<u> </u>	06@5@2 0K:71	06@5@2 20:06	7
Antimony		J	•	-					7
Arsenic	8.4		0j5K	0j7l	☆. 3 .	9	06@5@2 0K:71	0622522 20:06	-
Barium	66		0j5K		☆. 8 .	9	06@5@2 0K:71	06@5@2 20:06	7
Beryllium	0.76		0j22		☆. 8 .	9	06025022 0K:71	06025022 20:06	7
Boron	6.1		2j1		☆. 8 .	9	06025022 0K:71	06025022 20:06	7
Cadmium	0.032	JB	0j77		☆. 8 .	9	06025022 0K:71	06025022 20:06	
Calcium	41000	_	5K	,	☆. 8 .	9	06025022 0K:71	06 @ 1 @ 2 72:h0	5
Chromium	18	В	0j5K		☆. 8 .	9	06025022 0K:71	06025022 20:06	7
Cobalt	10		0j21		☆. 8 .	9	06@5@2 0K:71	06@5@2 20:06	
Copper	26		0j5K		☆. 8 .	9	06@5@2 0K:71	06@5@2220:06	7
Iron	18000		77		☆. 8 .	9	06@25@22 0K:71	06@25@22 20:06	7
Lead	43		0j21		☆. 8 .	9	06@25@22 0K:71	06@5@2 20:06	
Magnesium	18000		5jK	,	☆. 8 .	9	06@5@2 0K:71	06@5@2 20:06	7
Manganese	520		0j5K		☆. 8 .	9	06 @ 5 @ 2 0K:71	06@5@2 20:06	7
Nickel	24		0j5K	0j7K	☆. 8 .	9		06@5@2 20:06	7
Potassium	1500		21	-	₩. 8 .	9	06 Q 5 Q 2 0K:71	06@25@22 20:06	7
TtetAnu☆	m0j5K		0j5K		☆. 8 .	9		06@5@2 20:06	7
Silver	0.26		0j21		☆. 13 .	9		06@5@2 20:06	7
Sodium	620		5K		☆. 13 .	9	06 Q 5 Q 2 0K:71	06 Q 5 Q 2 20:06	7
Thallium	0.41	J	0j5K	-	☆. 8 .	9		06 @ 5 @ 2 20:06	7
Vanadium	21		0j21	0j0KK	☆. 8 .	9	06 Q 5 Q 2 0K:71	06 Q 5 Q 2 20:06	7
			7j7	0ihl	☆. 8 .	9	06 Q 5 Q 2 0K:71	06@5@22 20:06	7
Zinc	78		,],	- ,					
Zinc			, , ,	- 1					
	TCLP	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc Method: 6010B - Metals (ICP) -	TCLP	Qualifier	-			<u>D</u>	· ·	Analyzed 06021 022 27:7h	Dil Fac
Zinc Method: 6010B - Metals (ICP) - Analyte	TCLP Result	Qualifier	RL	MDL	¤. Q	<u>D</u>	06 @ I @ 2 01:5K		
Zinc Method: 6010B - Metals (ICP) - Analyte r sgt ArP	TCLP Result m0j050	Qualifier	RL 0j050	MDL 0j070	☆. 0a ☆. 0a	<u>D</u>	06 Q I Q 2 01:5K 06 Q I Q 2 01:5K	0602l 022 27:7h	7

ientAdrAwstEgcA.nAttsnA.IAPj / so \$\$ PdD rdt : ID4 , - r c C-0h0

Client Sample ID: 3068V-26-B05 Date Collected: 03/17/22 09:45 Date Received: 03/18/22 11:55

ا م ا	ıп.	500 0704 C	7
JOD	ID:	500-2761C	-/

Lab Sample ID: 500-213879-3

Matrix: Solid Percent Solids: 83.6

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3w	m0j00C5		0j00C5	0j00C5	.⊅. Q		06@I @2 01:5K	06@1 @2 27:7h	7
langanese	4.0		0j025	0j070	¢. 0a		06 Q I Q 2 01:5K	06 Q I Q 2 27:7h	7
ickel	0.013	J	0j025	0j070	₩. Q		06021 022 01:5K	06021 022 27:7h	7
/lethod: 6010B - Metals (ICP) - S	SPLP East	t							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.054		0j050	0j070	☆. Q		06(2) (2) 20 :07	06 0 0 0 22 75:6h	7
Barium	0.48	J	0j50	0j050	☆. ®		06(2)1(2)2(0):07	06 0 0 02 2 75:6h	7
Beryllium	0.0053		0j00h0	0j00h0	☆ . Q		06(2) (2) 20 :07	06 0 0 02 2 75:6h	7
Boron	0.15		0j70	0j050	☆ . Q		06(2) (2) 20 :07	06 0 0 02 2 75:6h	7
3w¢nu‡	m0j0050		0j0050	0j0020	.⊅. ®		0602102201:07	06 0 0 02 2 75:6h	7
Calcium	27		2j5	0j50	.⊅. ®		0602102201:07	06 0 7 0 2 77:5C	7
Chromium	0.12		0j025	0j070	☆. Q		06021 022 01 :07	06 0 0 2 2 75:6h	7
Cobalt	0.041		0j025	0j070	.⊅. ®		0602102201:07	06 0 0 02 2 75:6h	7
ron	130		0jh0	0j20	.⊅. ®		0602102201:07	06 0 7 0 2 77:5C	7
_ead	0.12		0j00C5	0j00C5	☆. Q		06021 022 01 :07	06 0 0 0 22 75:6h	7
Manganese	0.90		0j025	0j070	.⊅. ®		06(22) (222 0) :07	06 0 67 0 2 77:5C	7
Nickel	0.14		0j025	0j070	.☆. Q		0602102201:07	06 6 0 2 2 75:6h	7
Potassium	22		2j5		☆. Q		06(2) (2) 20 :07	06 0 0 0 22 75:6h	7
Γtet Anu☆	m0j050		0j050	0j020			06 Q Q 2 0 :07	06 0 0 0 22 75:6h	7
Tnevts	m0j025		0j025	0j070			06 @ @ 2 0 :07	06 0 0 02 2 75:6h	7
Zinc	0.44	J	0j50	0j020			06021 022 01 :07	06 @ 0 @ 2 75:6h	7
Method: 6020A - Metals (ICP/MS									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<3eu ☆	m0j0020		0j0020	0j0020	¤. Q		06021 022 01:5K	0600702272:62	7
Method: 6020A - Metals (ICP/MS	S) - SPLP I	East							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Adh©oAy	m0j00K0		0j00K0	0j00K0	☆. 0 a		0621 22 01 :07	06021 022 71 :62	7
Thallium .	0.0034		0j0020	0j0020	₩. Q		06 Q I Q 2 0I :07	06 (2) (2) 2 7 :62	7
Method: 7470A - Mercury (CVAA	A) - SPLP	East							
Analyte	· ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
/It sPusy	m0j00020		0j00020	0j00020	₩. Q		06Q1 Q2 77:05	06 @ 0 @ 2 70:7C	7
Method: 7471B - Mercury (CVAA	A)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.044		0j071	0j00K7	☆. 8 .	9	06QI Q2 7h:25	060002270:76	7
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.15	J	0j21	0j7h	☆. 8 .	9	0621 22 77:62	06021 022 76:56	7
pH	8.2		0j2	-	TU			06 @ 6 @ 2 20:h7	7

Qualifiers

GC/MS VOA		
Qualifier	Qualifier Description	4
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
В	Compound was found in the blank and sample.	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC/MS Semi	VOA	6
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		
Qualifier	Qualifier Description	8
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	9
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General CTe	mistry	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		
Abbreviation	hTese commonly used abbreviations may or may not be present in tTis report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	11
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	

CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Accreditation/Certification Summary

Job ID: 500-213879-1

13 14

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Illinois	NELAP	IL00035	04-29-22

Eurofins Chicago

CHAIN OF CUSTODY RECORD

Client Contac	ct	Laborator	ν						Prote	ct Na	ne	AE	2-	04	0 A	-		<i>".</i>)/ 21387	/9 COC	C No		
			America -	Chicago	<u>,</u>				1			1				·			Ĩ	<u> </u>	f	3
Andrews Engl 3300 Ginger (Address	2417 Bon	d Street					Proje	ct No	P	TB	Iwo	, 1	84 -	_00	6/	040A	La	b Job No .		
Springfield, IL			University	y Park, IL	604	84			1								1				270	4
217-787-2334		Phone	708-534-5	200	angodini kinikoo				TAT	15	BD	10	BD	5	BD	21	3D	Other	5	$\mathcal{D}^{-}\mathcal{A}^{-}$	5817	
Contact Coll		Contact	Dick Wrig	jht								b oonad		h-manual					Sa	mple Tem	2	5
email cgrey@	andrews-eng com	email <u>ric</u>	chard wrig	ht@test	amer	icaind	c com	1	Sam	pler:	5.	Kh	odae	λ,	5.	H-ci	NE			3.	4	
Special Instru	ctions:										Α	NALY	SES						Ma	atrix Key:	7	0
See Table 2 for	complete parameter lists and mi	nimum repor	ting limits									S				6				W Wat	er	7
	metal (mg/kg) result exceeds the 3), run TCLP for that specific RCI		y Character	istics								Metals				erizatio				S Soil SL Sluc S Sed	lge	8
	It exceeds Class I Standard, run					S S	& MTBI		Pesticides		Total Metals	SPLP/** TCLP	Cyanide		ds	Characterization				OL OI	king Water	9
*** If total cyan	ide exceeds MAC, run ASTM D39			nide	S	Ö	Σ	As	tici	ß	otal	à	C X		Solids	ste			L	O Othe	er	10
Lab ID	Sample ID	Sample Date	Sample Time	Matrix	VOCs	SVOCs	BETX	PNAs	Pes	PCBs	* T0	SPL	*** (Hd	S %	Waste				Comr	nents	11
	3068V-26-B03	3/17/22	1045	5	X	X					X	X	X	Х	X							
2	3068V-26-B04	3/17/22	1015	5	X	X					X	X	X	X	X							12
3	3068V-26-BOJ	3/17/22	0945	5	X	X					X	X	X	X	X							13
4	3068V-26-B06	3/17/22	0915	S	X	X					X	X	X	X	X							14
5	Thip Blank #3				X			Ι														
												/										
											1/	r									<u></u>	
Relinquished b	× Aaviell'	L		Date/Tim 3 /1	e12	1			wed by	a chi i	An	-				I		L	Da	te/T/me	2 laws	
Relinquished b	× A Vollm			Date/Linh 3/18/2		 /	155	Rece	y de Co	Di		M							37	teme	1155	
Relinquished b	y (Y WIN			Date/Tim				Rece	ved by	P	~//							•	Da	te/Time	//04	

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-207569-1 Client Project/Site: IDOT - AE7-040

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Andrews Engineering Inc. 3300 Ginger Creek Drive Springfield, Illinois 62711

Attn: Ms. Colleen Grey

Rillk

Authorized for release by: 11/17/2021 11:43:47 AM

Richard Wright, Senior Project Manager (708)746-0045 Richard.Wright@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

lientAdtrwnsEgtcelnnwetclt.P jwo/n.ASDeAn:IDT4 - dg7-0,0

Client Sample ID: 801VB-21-M03 Date Cdlle/ tec: 60F27F26 62:80 Date Re/ eivec: 60F2VF26 60:50

Job	١D·	500	-207	756	1-C
000	·D.	000	201	00	

Lab Sample ID: 500-207513-6

r atxio: Sdlic 9ex/ ent Sdlics: V6.6

5

7

r ethdc: V210M - Bdlatile O	•								
Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
ChChC-4veraiovonAa <tn< td=""><td>3017020</td><td></td><td>0120</td><td>01700066</td><td>mc%c</td><td>¢</td><td>CO\$28\$2C C8:00</td><td>CC\$09\$2CC7:51</td><td>С</td></tn<>	3017020		0120	01700066	mc % c	¢	CO\$28\$2C C8:00	CC\$09\$2CC7:51	С
ChCh2h2-4nAw≼. aiowonAa <t n<="" td=""><td>3012020</td><td></td><td>0120</td><td>01700069</td><td></td><td>¢</td><td>CO\$28\$2C C8:00</td><td>CC\$09\$2CC7:51</td><td>С</td></t>	3012020		0120	01700069		¢	CO\$28\$2C C8:00	CC\$09\$2CC7:51	С
ChCh2-4veraiovonAa <tn< td=""><td>3012020</td><td></td><td>0120</td><td>0170008,</td><td>mc%c</td><td></td><td>CO\$28\$2C C8:00</td><td>CC\$09\$2CC7:51</td><td>С</td></tn<>	3012020		0120	0170008,	mc % c		CO\$28\$2C C8:00	CC\$09\$2CC7:51	С
ChC-De aiovønAa <t n<="" td=""><td>3017020</td><td></td><td>0120</td><td>01700067</td><td>mc%c</td><td>¢</td><td>CO\$28\$2C C8:00</td><td>CC\$09\$2CC7:51</td><td>С</td></t>	3017020		0120	01700067	mc % c	¢	CO\$28\$2C C8:00	CC\$09\$2CC7:51	С
ChC-De aiowonAant n	30170020		0120	01700068	mc % c	¢	CO\$28\$2C C8:00	CC\$09\$2CC7:51	С
Ch2-De aiovønAa <t n<="" td=""><td>30P00, 1</td><td></td><td>01700, 1</td><td>0170005</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>CC\$99\$2CC7:51</td><td>С</td></t>	30P00, 1		01700, 1	0170005	mc % c	¢	00\$28\$20 08:00	CC\$99\$2CC7:51	С
Ch2-De aiovøpvøp <t n<="" td=""><td>30120</td><td></td><td>0120</td><td>0R0005C</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>CC\$99\$2CC7:51</td><td>С</td></t>	30120		0120	0R0005C	mc % c	¢	00\$28\$20 08:00	CC\$99\$2CC7:51	С
Ct9-De aiovøpvøpnt nh4oAi	30120		0120	01700061	mc % c	¢	00\$28\$20 08:00	CC\$99\$2CC7:51	С
2-BuA≼t ot n (MgK)	30P00, 1		0P20, 1	0170022	mc % c	₽	00\$28\$20 08:00	CC\$9952CC7:51	С
2-Hnx <t n<="" ot="" td=""><td>30PD0, 1</td><td></td><td>0120, 1</td><td>0170005</td><td>mc%c</td><td>₽</td><td>00\$28\$20 08:00</td><td>CC\$9952CC7:51</td><td>С</td></t>	30PD0, 1		0120, 1	0170005	mc % c	₽	00\$28\$20 08:00	CC\$9952CC7:51	С
, -MnAayi-2-pnt A <t (mibk)<="" n="" ot="" td=""><td>30PD0, 1</td><td></td><td>0F20, 1</td><td>0F00C5</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0C\$09\$2C C7:51</td><td>С</td></t>	30PD0, 1		0F20, 1	0F00C5	mc % c	¢	00\$28\$20 08:00	0C\$09\$2C C7:51	С
d.nAotn	30120		017020	0170086	mc % c	¢	00\$28\$20 08:00	CC\$09\$2CC7:51	С
Bnt znt n	3012020		0120020	0170050	mc % c	¢	00\$28\$2C C8:00	CC\$952CC7:51	С
Bvømor e aiovømnAa <t n<="" td=""><td>30P0020</td><td></td><td>0120</td><td>0F000, 0</td><td>mc%c</td><td>¢</td><td>00\$28\$2C C8:00</td><td>CC\$09\$2CC7:51</td><td>С</td></t>	30P0020		0120	0F000, 0	mc % c	¢	00\$28\$2C C8:00	CC\$09\$2CC7:51	С
Bvømofovm	30170020		0120	01700057	mc % c	¢	00\$28\$20 08:00	0C\$09\$2CC7:51	С
BvømomnÆa <t n<="" td=""><td>30P00, 1</td><td>*+</td><td>0P20, 1</td><td>0P00C1</td><td>mc%c</td><td>\$</td><td>00\$28\$20 08:00</td><td>CC\$0952CC7:51</td><td>С</td></t>	30P00, 1	*+	0P20, 1	0P00C1	mc % c	\$	00\$28\$20 08:00	CC\$0952CC7:51	С
l <wbotreeuifern< td=""><td>30P00, 1</td><td></td><td>0F20, 1</td><td>01700010</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0C\$09\$2C C7:51</td><td>С</td></wbotreeuifern<>	30P00, 1		0F20, 1	01700010	mc % c	¢	00\$28\$20 08:00	0C\$09\$2C C7:51	С
l <wbot anaw≼.aiowarn<="" td=""><td>30170020</td><td></td><td>0120</td><td>01700057</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0C\$09\$2C C7:51</td><td>С</td></wbot>	30170020		0120	01700057	mc % c	¢	00\$28\$20 08:00	0C\$09\$2C C7:51	С
l aiovøbnt znt n	3017020		0120	0170072	mc % c	¢	00\$28\$20 08:00	CC\$09\$2C C7:51	С
laiowonAa <tn< td=""><td>30F00, 1</td><td>*+</td><td>0F00, 1</td><td>0170005</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0C\$09\$2C C7:51</td><td>С</td></tn<>	30F00, 1	*+	0F00, 1	0170005	mc % c	¢	00\$28\$20 08:00	0C\$09\$2C C7:51	С
l aiovo/fovm	3012020		0120	01700068	mc % c	¢	00\$28\$20 08:00	0C\$09\$2CC7:51	С
IaiovømnA₃ <tn< td=""><td>30P00, 1</td><td></td><td>0F00, 1</td><td>0170020</td><td>mc%c</td><td></td><td>00\$28\$20 08:00</td><td>CC\$09\$2C C7:51</td><td>С</td></tn<>	30P00, 1		0F00, 1	0170020	mc % c		00\$28\$20 08:00	CC\$09\$2C C7:51	С
. eE-Ch2-De aiovonAant n	30F0020		0120	01700055		¢	0032852008:00	0C\$09\$2C C7:51	С
. Æ-Ch9-De aiovøpvøpnt n	3017020		0120	01700051		÷	0032852C 08:00	0C\$09\$2C C7:51	C
Debwomo. aiovomnAa <t n<="" td=""><td>30170020</td><td></td><td>0120</td><td>0170006,</td><td>mc%c</td><td></td><td>00\$28\$20 08:00</td><td>0C\$09\$2C C7:51</td><td>С</td></t>	30170020		0120	0170006,	mc % c		00\$28\$20 08:00	0C\$09\$2C C7:51	С
g Aayibnt znt n	30F0020		0120	0F0001,	mcSKc	¢	0032852C 08:00	0C\$09\$2C C7:51	C
MnAayiAawAbuAyinAanw	30F0020		010020	0F00058		¢.	0032852C 08:00	CCS09S2C C7:51	C
MnAayintn Iaiowarn	30F00, 1		0F00, 1	0P00C1			0032852C 08:00	CCS09S2C C7:51	C
OAwnt n	30F0020		010020	0100051		÷.	0032852C 08:00	0C\$09\$2C C7:51	C
4nAw≼. aiowonAant n	30F0020		010020	01000007		÷.	0032852C 08:00	0C\$09\$2C C7:51	C
4oiunt n	30F0020		010020	0120050			0032832C 08:00	CCS09S2C C7:51	C
Aw≺t E-Ch2-De aiowonAant n	30F0020		010020	01000000		÷	0032852C 08:00	0C\$09\$2C C7:51	C
Aw≺t E-Ct9-De aiovopvopnt n	30F0020		010020	01000001		÷.	0032852C 08:00	0C\$09\$2C C7:51	C
4ve aiovonAant n	30170220		010020	01000001			0032832C 08:00	0C\$09\$2C C7:51	C
Vetyi.aiowan	30F0020		010020 010020	01000000		÷	0032832C 08:00	0C\$09\$2C C7:51	C
Xyint nEh4oA <i< td=""><td>30F0091</td><td></td><td>010020 010091</td><td>01000007</td><td></td><td>¢</td><td></td><td>0C\$09\$2C C7:51</td><td>c</td></i<>	30F0091		010020 010091	01000007		¢		0C\$09\$2C C7:51	c
	3010031		010001	0100000	meate	**			0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		30 - 174				10/28/21 18:00	11/07/21 13:Bm	1
4-f rob ozluoro9en5ene (Surr)	8m		3B_171				10/28/21 18:00	11/07/21 13:Bm	1
Di9rob ozluorob ethane	mm		3B-126				10/28/21 18:00	11/07/21 13:Bm	1
Toluene-d8 (Surr)	<i>m</i> 2		3B_124				10/28/21 18:00	11/07/21 13:Bm	1
_									
r ethdc: V270D - Semivdla	•		· · · · ·						
Analyte		Qualifiex	RL		Unit	D	9 херахес	Analyzec	Dil Fa/
Ch2h, -4ve aiovobnt znt n	30 F2 0	'2'C	0月220		mc % c	¢	0030252009:,0		С
Ch2-De aiovøbnt znt n	30 F2 0	'2'C	0月220	0F0,7	mc % c	¢	0030252009:,0	00\$20\$2C C, :06	С
Ct9-De aiowobnt znt n	30P20	'2'C	0月20		mc % c	¢	0030252009:,0	00:300 S2 C C, :06	С
Ch -De aiowobnt znt n	301220	'2'C	0月20	01705C	mc % c	¢	0030252009:,0	0C\$00\$2C C, :06	С
2h2[-oxybe⊟C aiovøpvøp <t nn<="" td=""><td>30F20</td><td>'2'C</td><td>0F20</td><td>0R0,6</td><td>mc%c</td><td>¢</td><td>CCSD2S2CC9:,0</td><td>0C\$00\$2CC,:06</td><td>С</td></t>	30F20	'2'C	0F20	0R0,6	mc % c	¢	CCSD2S2CC9:,0	0C\$00\$2CC,:06	С

guvo fet E4n EAd mnve < hl ae < co

Client Sample ID: 801VB-21-M03 Date Cdlle/ tec: 60P27P26 62:80 Date Re/ eivec: 60P2VP26 60:50

Lab Sample ID: 500-207513-6

r atxio: Sdlic 9ex/ ent Sdlics: V6.6

5

7

Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
2h, h5-4ve aiovopant oi	30月91	'2'C	0月91	0F010	mc % c	¢	0030252009:,0	0C\$0\$2C C, :06	C
2h, h6-4ve aiowopant oi	30P91	'2'C	0F91	OFC,	mc % c	₿	0030252009:,0	0C\$0\$2C C, :06	С
2h, -De aiovopant oi	30F91	'2'C	0F91	0R91,	mc % c	☆	0030252009:,0	0C\$00\$2C C, :06	С
2h, -DemnAayipant oi	30F91	'2'C	0円91	0FC5	mc % c	¢	0030252009:,0	0C\$C0\$2CC,:06	С
2h, -DeteAvopant oi	30 F7 1		0F7/1	01631	mc % c	¢	0030252009:,0	0C\$00\$2C C, :06	С
2h, -DeteAwoAsiuntn	30F20	'2'C	0月220	017069	mc % c	¢	0030252009:,0	0C\$00\$2CC,:06	С
2h6-DeteAnoAsiuntn	30F20	'2'C	0月220	0F077	mc % c	¢	0030252009:,0	0C\$C0\$2CC,:06	С
2-I aiowøt <paaa≺int n<="" td=""><td>30F20</td><td>'2'C</td><td>0月220</td><td>0F0,,</td><td>mc%c</td><td>☆</td><td>0030252009:,0</td><td>0C\$00\$2C C, :06</td><td>С</td></paaa≺int>	30F20	'2'C	0月220	0F0,,	mc % c	☆	0030252009:,0	0C\$00\$2C C, :06	С
2-I aiovopant oi	30F20	'2'C	0月220	017067	mc % c	¢	0030252009:,0	0C\$00\$2CC,:06	С
2-MnAayit <paaa<int n<="" td=""><td>30F071</td><td>'2'C</td><td>017071</td><td>0170072</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0C\$00\$2CC,:06</td><td>С</td></paaa<int>	30F071	'2'C	017071	0170072	mc % c	¢	0030252009:,0	0C\$00\$2CC,:06	С
2-MnAayipant oi	30F20	'2'C	0月220	017069	mc % c	¢	0030252009:,0	0C\$00\$2CC;:06	С
2-&eAvor⊲teetn	30F20	'2'C	0月20	017059	mc % c	¢	0030252009:,0	0C\$00\$2CC;:06	С
2-& Avepant oi	30F91	'2'C	0月91	0R019	mc % c	¢	0030252009:,0	0C\$00\$2CC;:06	С
9 F, MnAayipant oi	30F20	'2'C	0月220	017066	mc % c		0030252009:,0	00\$20\$2CC;:06	С
919[-De aiowobnt zæ e n	30F20		0月220	017055	mc % c	¢	0030252009:,0	0030052CC,:06	С
9-&aAwo <teetn< td=""><td>30F91</td><td>'2'C</td><td>0円91</td><td></td><td>mc%c</td><td>æ</td><td>0030252009:,0</td><td>0C\$00\$2CC,:06</td><td>С</td></teetn<>	30F91	'2'C	0円91		mc % c	æ	0030252009:,0	0C\$00\$2CC,:06	С
, h6-Det etwo-2-mnAayipant oi	30 F7 1	'2	0円71	0月92	mc % c		0.0000252009:,0	0C\$00\$2CC;:06	С
, -Bvomopant yi pant yi nAanw	30F20	'2'C	0月20		mc % c	æ	0030252009:,0	0C\$00\$2CC,:06	С
, -l aiowo-9-mnAayipant oi	30P91	'2'C	0円91		mc % c	÷	0039252009:,0	0C\$00\$2CC,:06	С
, -l aiovo <t eet="" n<="" td=""><td>30F71</td><td>'C</td><td>01771</td><td>0FC1</td><td>mcSKc</td><td></td><td>0039252009:,0</td><td>CCSC052CC, :06</td><td>C</td></t>	30F71	'C	01771	0FC1	mcSKc		0039252009:,0	CCSC052CC, :06	C
, -l aiowopantyipantyinAanw	30120	'2'C	0月20		mcSKc	¢	0030252009:,0	CCSC0S2CC, :06	C
,-&eAvo <teetn< td=""><td>30P91</td><td>'2'C</td><td>0120</td><td>,</td><td>mcSKc</td><td>÷.</td><td>0030252009:,0</td><td>0C\$0\$2CC,:06</td><td>C</td></teetn<>	30P91	'2'C	0120	,	mcSKc	÷.	0030252009:,0	0C\$0\$2CC,:06	C
-& Alwopantoi	30F71	2	0171		mcSKc		0030232009:,0	0C\$00\$2C C, :06	C
d. nt <paaant n<="" td=""><td>30F091</td><td>'2'C</td><td>01791</td><td>0107C</td><td></td><td>¢</td><td>CCS02S2CC9:, 0</td><td>CCSC0S2CC, :06</td><td>c</td></paaant>	30F091	'2'C	01791	0107C		¢	CCS02S2CC9:, 0	CCSC0S2CC, :06	c
d.nt <pa ainth<br="">d.nt<pa ainth<="" td=""><td>30P091</td><td>'2'C</td><td>017091</td><td>010052</td><td></td><td>÷.</td><td>0030252009:,0</td><td>CCSC052CC, :06</td><td>C</td></pa></pa>	30P091	'2'C	017091	010052		÷.	0030252009:,0	CCSC052CC, :06	C
dtAaw≼.ntn	30P091		017091	010066			0030232009:,0	0C\$00\$2C C, :06	C
Bnt zo] <n⊀t asw<.="" n<="" nt="" td=""><td>30F091</td><td>20</td><td>017091</td><td>010000</td><td></td><td>÷.</td><td>0030232003:,0</td><td>CCSC0S2CC, :06</td><td>c</td></n⊀t>	30F091	20	017091	010000		÷.	0030232003:,0	CCSC0S2CC, :06	c
Bnt zo] <nøywit n<="" td=""><td>30F091</td><td></td><td>017091</td><td>010000</td><td></td><td>÷.</td><td>CCS02S2CC9:, 0</td><td>0C\$0\$20\$2CC,:06</td><td>c</td></nøywit>	30F091		017091	010000		÷.	CCS02S2CC9:, 0	0C\$0\$20\$2CC,:06	c
Bntzo]bNiuov≼tAantn	30P091		017091	0R0085			0030232009:,0	0C\$0\$20\$2CC,:06	C
Brit zo]chahebonwyint n	30F091		01091			÷	CCS02S2CC9:, 0	CCSCOS2C C, :06	c
Bnt zo]LNiuov≪t Aant n	30F091		017091		mcSKc	÷.	CCS02S2CC9:, 0	CCSCOS2C C, :06	c
BeE(2 aiowonAsoxy)mnAs <t n<="" td=""><td>30120</td><td>'2'C</td><td>01031</td><td></td><td>mcSKc</td><td></td><td>CCS02S2CC9:, 0</td><td>CCSCOS2C C, :06</td><td>C</td></t>	30120	'2'C	01031		mcSKc		CCS02S2CC9:, 0	CCSCOS2C C, :06	C
Be≘(2 aiowonAayi)nAanw		'2'C	0120		mcSKc	÷	CCS02S2CC9:, 0	0C\$0\$20\$2CC,:06	c
Be⊑(2-nAayianxyi) paAa <i<an< td=""><td>30120</td><td>2 0</td><td>0120</td><td></td><td>mcsKc</td><td>÷</td><td>CC\$02\$2CC9:, 0</td><td>CCSCOS2C C, :00</td><td>c</td></i<an<>	30120	2 0	0120		mcsKc	÷	CC\$02\$2CC9:, 0	CCSCOS2C C, :00	c
BuAyibntzyipaAsi <ian< td=""><td>30F20</td><td></td><td>0120</td><td></td><td>mcsKc</td><td></td><td>CCS02S2CC9:, 0</td><td>CCSCOS2C C, :00</td><td>C</td></ian<>	30F20		0120		mcsKc		CCS02S2CC9:, 0	CCSCOS2C C, :00	C
l <wo>zoin</wo>		'2'C	0120		mcsKc mcsKc	÷		CCSC0S2C C, :06	c
lawyEntn	30F091	2 0	0120		mcsKc mcsKc			CCSCC SC C, :00	c
						÷			
Debntz(<ha)<taaw≼.ntn Debntzofuwet</ha)<taaw≼.ntn 	30F091	1010	0R091	0P0076		÷.		00\$00\$2CC;:06	C
Debnt zofuw <t< td=""><td></td><td>'2'C</td><td>0F20 0F20</td><td></td><td>mcSKc</td><td>÷.</td><td>0C\$02\$2C C9:, 0</td><td></td><td>C</td></t<>		'2'C	0F20 0F20		mcSKc	÷.	0C\$02\$2C C9:, 0		C
Den-Aayipa.Aa <i≺an Denen Anyinga Aa<i<an< td=""><td></td><td>'2'C</td><td></td><td></td><td>mcSKc</td><td>÷ • • • • • •</td><td>0C\$02\$2CC9:, 0</td><td></td><td>С</td></i<an<></i≺an 		'2'C			mcSKc	÷ • • • • • •	0C\$02\$2CC9:, 0		С
DemnAayipaAa <i≺an Det buthinathaicth</i≺an 		'2'C	0F20		mcSKc	¢ v		00\$00\$2CC;:06	C
Det-buAyipaAa <i≺an Det o AvipaAa≤i<an< td=""><td></td><td>'2'C</td><td>0F20</td><td></td><td>mcSKc</td><td>\$ ~</td><td>0C\$02\$2CC9:, 0</td><td></td><td>C C</td></an<></i≺an 		'2'C	0F20		mcSKc	\$ ~	0C\$02\$2CC9:, 0		C C
Det-o.AyipaAa <i<an< td=""><td>30F20</td><td></td><td>0F20</td><td>01706,</td><td>mcSKc</td><td>÷</td><td>CCSD2S2CC9:, 0</td><td></td><td>С</td></i<an<>	30F20		0F20	01706,	mcSKc	÷	CCSD2S2CC9:, 0		С
'iuow≼tAantn	30P091	1010	0R091	0R0079		¢ v	0C\$02\$2C C9:, 0		C
iuowntn	30P091		0R091	0170055		¢	00\$32\$20.09:, 0	0C\$0\$2CC, :06	С
Hnx<. aiovøbnt znt n	30P071		017071	01001C		¢	0030252009:,0	0C\$0\$2CC, :06	С
Hnx<.aiovobuA <rentn< td=""><td></td><td>'2'C</td><td>0月20</td><td></td><td>mcSKc</td><td>¢</td><td></td><td>0C\$C0\$2C C, :06</td><td>С</td></rentn<>		'2'C	0月20		mcSKc	¢		0C\$C0\$2C C, :06	С
Hnx<.aiowo.y.iopntA <rentn< td=""><td>30F71</td><td>' C</td><td>0F7/1</td><td>01229</td><td>mc%c</td><td>¢</td><td>CCSD2S2CC9:,0</td><td>00° 0.0500</td><td>С</td></rentn<>	30F71	' C	0F7/1	01229	mc % c	¢	CCSD2S2CC9:,0	00° 0.0500	С

guvo fet E4n EAd mnve < hl ae < co

Client Sample ID: 801VB-21-M03 Date Cdlle/ tec: 60F27F26 62:80 Date Re/ eivec: 60F2VF26 60:50

Lab Sample ID: 500-207513-6

r atxio: Sdlic 9ex/ ent Sdlics: V6.6

5

7

13

Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
trnto]Ch2h9rNpbywntn	3017091		017091	017900	mc % c	<u></u>	0030252009:,0	0C\$0\$2C C, :06	C
⊡opaovøt n	30P20	'2'C	0月220	0FD,,	mc % c	¢	0030252009:,0	0C\$00\$2C C, :06	С
<paaa<int n<="" td=""><td>30R091</td><td>'2'C</td><td>017091</td><td>01700GC</td><td>mc%c</td><td>₽</td><td>0030252009:,0</td><td>0C\$C0\$2C C, :06</td><td>С</td></paaa<int>	30R091	'2'C	017091	01700GC	mc % c	₽	0030252009:,0	0C\$C0\$2C C, :06	С
Angebent znt n	3017091	'2'C	017091	0170018	mc % c	¢.	CCSD2S2CC9:,0	0C\$00\$2CC;:06	С
-&eAwoEoret-pwopyi <metn< td=""><td>30F071</td><td>'2'C</td><td>017071</td><td>0F0,8</td><td>mc%c</td><td>¢</td><td>CCS02S2CC9:,0</td><td>0C\$00\$2CC;:06</td><td>С</td></metn<>	30F071	'2'C	017071	0F0,8	mc % c	¢	CCS02S2CC9:,0	0C\$00\$2CC;:06	С
-&eAwoEorepantyi <metn< td=""><td>30F20</td><td>'2'C</td><td>0月20</td><td>0F0,6</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0030052CC,:06</td><td>С</td></metn<>	30F20	'2'C	0月20	0F0,6	mc % c	¢	0030252009:,0	0030052CC,:06	С
nt Æ. aiovøpant oi	30 F7 1		0F7/1	01769	mc % c	∴	0030252009:,0	0030052CC,:06	С
ant <tasvntn< td=""><td>30R091</td><td>'2'C</td><td>017991</td><td>012055</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0030052CC,:06</td><td>С</td></tasvntn<>	30R091	'2'C	017991	012055	mc % c	¢	0030252009:,0	0030052CC,:06	С
ant oi	30 F2 0	'2'C	0月220	017088	mc % c	¢	0030252009:,0	0C\$00\$2CC,:06	С
ywntn	30砲91		01291	012078	mc % c	☆	CCSD2S2CC9:,0		С
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4,6-Tri9rob ophenol	60		71 - 147				11/02/21 17:40	11/10/21 14:06	1
-Fluoro9iphenyl	m7		47 <u>-</u> 14B				11/02/21 17:40	11/10/21 14:06	1
Fluorophenol	33		71 - 166				11/02/21 17:40	11/10/21 14:06	1
itro9en5ene-dB (Surr)	32		73 - 143				11/02/21 17:40	11/10/21 14:06	1
henol-dB	87		70 - 1B7				11/02/21 17:40	11/10/21 14:06	1
erphenyl-d14 (Surr)	104		42 - 1B3				11/02/21 17:40	11/10/21 14:06	1
ethdc: 1060M - r etals (IG	C9)								
nalyte	Result	Qualifiex	RL		Unit	D	9 херахес	Analyzec	Dil Fa/
ntimdny	0.V0	JM	CF2	0 F2 9	mc % c	¢	00:00 2288220	0030152009:00	С
xseni/	66		0160		mc % c	¢	00:00 02288220	0030152009:00	С
laxium	V[01760		mc % c	¢	00:00 0288220	0030152009:00	С
lexyllium	6.0		0F2,	07056	mc % c	₽	00:00 02288220	0030152009:00	С
ldxdn	V.V	М	9R0	0F28	mc % c	¢	00:00 0228 8220	0030152009:00	С
<r meum<="" td=""><td>30FC2</td><td></td><td>0FC2</td><td>017022</td><td>mc%c</td><td>₽</td><td>00:00 0288220</td><td>0030152009:00</td><td>С</td></r>	30FC2		0FC2	017022	mc % c	₽	00:00 0288220	0030152009:00	С
al/ ium	5[00		C2	2170	mc % c	¢	00:00 0228 8220	0030152009:00	С
Chxdmium	63		0160		mc % c	¢	00:00 0228 8220	0030152009:00	С
dbalt	67		0190	0178	mc % c	¢	00:00 02288220	0030152009:00	С
Cdppex	23		0160	0FC7	mc % c	¢	00:00 02288220	0030152009:00	С
kdn	21000	М	C2	6F2	mc % c	¢	00:00 0228 8220	0030152009:00	С
.eac	20		0月90	OFC,	mc % c	₽	00:00 02288220	00:50152009:00	С
agnesium	1200		6P0	9F0	mc % c	¢	00:00 02288220	00:50152009:00	С
anganese	5 V 0	Μ	0160	017087	mc % c	¢	00:00 02288220	0030152009:00	С
i/ 4el	٧]		01760	0FC7	mc % c	₽	00:00 02288220	0030152009:00	С
dtassium	2200		90	C	mc % c	₿	00:00 0228 820	CC\$91\$2C C9:C0	С
nint eum	30160		0160	01995	mc % c	¢	00:00 0228 (200	CCS01S2CC9:5,	С
bilvex	0.56		0月00	017077	mc % c	¢	00:00 0228 (200	0030152009:00	С
Sdcium	[20		60	878	mc % c	¢	00:00 0228@20	0030152009:00	С
hallium	0.37		01760	0 F 90	mc % c	¢	00:00 0228 8220	0030152009:00	С
Banacium	25		0690	01707C	mc % c	¢	00:00 0228 8220	0030152009:00	С
in/	V2		CF2	0円2	mc % c	¢	00:00 0288@20	0030152009:00	С
ethdc: 1060M - r etals (lo	· · · ·								
	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
nalyte				0.000	···· - 0.		CCSD, S2C 08:00	0C\$0, \$2C 08:, C	C
•	3017050		017050	017900	mc 3K		U.D, 2000.00	(1,3), 32000., 0	C
wEnte			07050 0700,0	01600,0			CCSD, S2C 08:00	0030, 320 08., 0 0030, 520 08:, 0	c
vnalyte vÆnt e Brvyilæm avømeum	301050				mc %				

guvosfet E4n EAd mnvoe < hl ae < co

lientAdtrwnsEgtcetnnwetclt.P jwo/n.ASDenh:IDT4 - dg7-0,0

Client Sample ID: 801VB-21-M03 Date Cdlle/ tec: 60P27P26 62:80 Date Re/ eivec: 60P2VP26 60:50

.lob	١D·	500-207561-C
000	ıD.	200-201 201-0

Lab Sample ID: 500-207513-6

r atxio: Sdlic 9ex/ ent Sdlics: V6.6

5

6 7 8

kn <r r anganese</r 		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
anganese	30170075		012075	0170075	mc %		CC\$9, \$2C 08:00	0C\$0, \$2C 08:, C	C
	0.52		017025	0P0C0	mc %		CCSD, S2C 08:00	0C\$0,\$2C08:,C	C
&e Lni	3017025		0125	01600	mc \$ c		CCSD, S2C 08:00	0CSD, S2C C8:, C	C
r ethdc: 1060M - r etals (IC9)) - S9L9 Nas	F							
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
Axseni/	0.66		012050	0R9C0	mc %		CC\$055\$2C07:, 1	CC\$98\$2C C6:09	C
Waxium	0.73		0月50	0R050	mc %		0C\$05\$2C07:, 1	0C\$08\$2C 06:09	C
Wexyllium	0.0031		0F00, 0	0R90,0	mc \$ k		CC\$05\$2C07:, 1	0C\$08\$2C 06:09	C
Midxidin	0.61		01700	0R050	mc \$ k		CC\$055\$2C07:, 1	0C\$08\$2C 06:09	C
<r meum<="" td=""><td>30170050</td><td></td><td>012050</td><td>0170020</td><td>mc%</td><td></td><td>0C\$05\$2C07:, 1</td><td>0C\$08\$2C 06:09</td><td>C</td></r>	30170050		012050	0170020	mc %		0C\$05\$2C07:, 1	0C\$08\$2C 06:09	C
Cal/ ium	20		2F5	0550	mc %		CC\$055\$2C07:, 1	0C\$08\$2C 06:09	C
Chxdmium	0.67		0125	01700	mc %		CC\$055\$2C07:, 1	0C\$08\$2C 06:09	C
Cdbalt	0.0[7		017025	01700	mc %		0C\$055\$2C07:, 1	0C\$08\$2C 06:09	C
xdn	280		0P, 0	0 F 20	mc %		0C\$055\$2C07:, 1	0C\$08\$2C 06:09	C
Leac	0.012		012075	0170075	mc \$ k		0C\$055\$2C07:, 1	0030852006:09	C
anganese	0.V2		017025	01700	mc %		0C\$055\$2C07:, 1	0C\$08\$2C 06:09	C
i/ 4el	0.25		017025	01700	mc %		0C\$055\$2C07:, 1	0C\$08\$2C 06:09	C
9dtassium	80		215	0月50	mc %		CC\$055\$2C07:, 1	0C\$01\$2CC,:00	C
Onint eum	30P050		017050	0F020	mc %		0C\$055\$2C07:, 1	0C\$38\$2C 06:09	C
Devnw	30P025		017025	01700	mc \$ k		CCS05S2C07:, 1	0C\$38\$2C 06:09	C
kin/	0.57		0편0	0120	mc \$ k		0C\$05\$2C07:, 1	CC\$98\$2C C6:09	C
r ethdc: 1020A - r etals (IC9	· · · · ·	0 110				_			
Analyte		Qualifiex	RL		Unit	D	9 xepaxec	Analyzec	Dil Fa/
4a <iieum< td=""><td>30170020</td><td></td><td>0120</td><td>0120020</td><td>mcsk</td><td></td><td>CCSD, S2C 08:00</td><td>0C\$06\$2CC5:, C</td><td>C</td></iieum<>	30170020		0120	0120020	mcsk		CCSD, S2C 08:00	0C\$06\$2CC5:, C	C
r ethdc: 1020A - r etals (IC9	P S) - S9L9	Nast							
Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
dt Aemot y	30P060		012060	017060	mc %		0C\$05\$2C07:, 1	0C\$\$5\$2C 20:, 2	C
hallium	0.007[0120020	0120020	mc %		CC\$05\$2C07:, 1	CC\$25\$2C20:,2	C
r ethdc: 7[70A - r ex/uxy (C									
Analyte		Qualifiex	RL		Unit	D	9 херахес	Analyzec	Dil Fa/
Mnw uwy	301700020		0120020	0120020	mc \$ k		CC\$055\$2C01:50	CC\$08\$2C CO:05	C
∙ ethdc:7[76M - r ex/uxy (C									
		Qualifiex	RL		Unit	D	9 херахес	Analyzec	Dil Fa/
Analyte	0.050		0PDC1	0PD06,	mc % c	¢	CCSD, S2C C9:50	CC\$05\$2C07:58	C
Analyte	0.050								
Analyte * ex/ uxy Genexal Chemistxy									
Analyte ∵ex/uxy		Qualifiex			Unit mc%c	D	9 херахес	Analyzec	Dil Fa/

lientAdtrwnsEgtcelnnwetclt.P jwo/n.ASDeAn:IDT4 - dg7-0,0

Client Sample ID: 801VB-21-M0V Date Cdlle/ tec: 60P27P26 62:[0 Date Re/ eivec: 60P2VP26 60:50

Lab Sample ID: 500-207513-2

r atxio: Sdlic 9ex/ ent Sdlics: 77.V

5

7

Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
ChChC-4ve aiovonAa <t n<="" td=""><td>30P00C1</td><td></td><td>0P0C1</td><td>0170006,</td><td>mc%c</td><td><u>\$</u></td><td>00\$28\$20 08:00</td><td>00\$9\$20 08:26</td><td>C</td></t>	30P00C1		0P0C1	0170006,	mc % c	<u>\$</u>	00\$28\$20 08:00	00\$9\$20 08:26	C
ChCh2h2-4nAw≼.aiowonAa <tn< td=""><td>30P00C1</td><td></td><td>0P00C1</td><td>0170006C</td><td>mc%c</td><td>¢</td><td>00\$28\$2C 08:00</td><td>0030952008:26</td><td>С</td></tn<>	30P00C1		0P00C1	0170006C	mc % c	¢	00\$28\$2C 08:00	0030952008:26	С
ChCh2-4veeaiowonAa <tn< td=""><td>30P00C1</td><td></td><td>0P00C1</td><td>01700082</td><td>mc%c</td><td>¢</td><td>00\$28\$2C 08:00</td><td>0030952008:26</td><td>С</td></tn<>	30P00C1		0P00C1	01700082	mc % c	¢	00\$28\$2C 08:00	0030952008:26	С
ChC-De aiovønAa <t n<="" td=""><td>30P00C1</td><td></td><td>0P00C1</td><td>01700066</td><td>mc%c</td><td></td><td>00\$28\$20 08:00</td><td>0030952008:26</td><td>C</td></t>	30P00C1		0P00C1	01700066	mc % c		00\$28\$20 08:00	0030952008:26	C
ChC-De aiovonAant n	30P00C1		0P00C1	01700066	mc % c	¢	00\$28\$20 08:00	0C\$09\$2C C8:26	С
Ch2-De aiovønAa <t n<="" td=""><td>30F00, 8</td><td></td><td>0F00,8</td><td>0F00C5</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0030952008:26</td><td>С</td></t>	30F00, 8		0F00,8	0F00C5	mc % c	¢	00\$28\$20 08:00	0030952008:26	С
Ch2-De aiovopvop <t n<="" td=""><td>30P00C1</td><td></td><td>0P0C1</td><td>0170050</td><td>mc%c</td><td> ¢</td><td>00\$28\$20 08:00</td><td>0030952008:26</td><td>C</td></t>	30P00C1		0P0C1	0170050	mc % c	 ¢	00\$28\$20 08:00	0030952008:26	C
Ct9-De aiovøpvøpnt nh4oÆi	30P00C1		0P00C1	01700067	mc % c	¢	00\$28\$20 08:00	0030952008:26	С
2-BuA <t (mgk)<="" n="" ot="" td=""><td>30F00, 8</td><td></td><td>0F00,8</td><td>017002C</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0030952008:26</td><td>С</td></t>	30F00, 8		0F00,8	017002C	mc % c	¢	00\$28\$20 08:00	0030952008:26	С
2-Hnx <t n<="" ot="" td=""><td>30P00, 8</td><td></td><td>0F00, 8</td><td>0P00C5</td><td>mc%c</td><td></td><td>00\$28\$20 08:00</td><td>0030952008:26</td><td>C</td></t>	30P00, 8		0F00, 8	0P00C5	mc % c		00\$28\$20 08:00	0030952008:26	C
, -MnAayi-2-pnt A≼t ot n (MIBK)	30F00, 8		0F00, 8	0F00C,	mc % c	÷	00\$28\$20 08:00	0030952008:26	С
d.nAotn	30P0C1		0P0C1	0170089		÷	00\$28\$20 08:00	0030952008:26	C
Bnt znt n	30F00C1		0P00C1	0月200,1			0052852C 08:00	0030952008:26	C
Bvømor e aiovømnÆa <t n<="" td=""><td>30F00C1</td><td></td><td>0P0C1</td><td>01700091</td><td></td><td>÷</td><td>00\$28\$2C 08:00</td><td>0030952008:26</td><td>C</td></t>	30F00C1		0P0C1	01700091		÷	00\$28\$2C 08:00	0030952008:26	C
Bvømofovm	30P00C1		0P00C1	01700056		÷	00\$28\$20 08:00	0030952008:26	C
BvømomnAa <t n<="" td=""><td>30F00, 8</td><td>*+</td><td>0F00, 8</td><td>0F00C8</td><td>mc%c</td><td></td><td>00\$28\$20 08:00</td><td>0030952008:26</td><td>C</td></t>	30F00, 8	*+	0F00, 8	0F00C8	mc % c		00\$28\$20 08:00	0030952008:26	C
l≪woot reEuifern	30F00, 8		0F00, 8	0170000	mc % c	÷	00\$28\$2C 08:00	0030952008:26	C
l <vbot anaw≼.aiova∉n<="" td=""><td>30F00C1</td><td></td><td>0P00C1</td><td>01700056</td><td>mc%c</td><td>÷</td><td>00\$28\$2C 08:00</td><td>0030952008:26</td><td>C</td></vbot>	30F00C1		0P00C1	01700056	mc % c	÷	00\$28\$2C 08:00	0030952008:26	C
l aiovøbnt znt n	30P00C1		0P0C1	0F0007C			00\$28\$20 08:00	0030952008:26	C
l aiovonAs <t n<="" td=""><td>30F00, 8</td><td>*+</td><td>0F00, 8</td><td>0F00C,</td><td>mc%c</td><td>÷</td><td>00\$28\$2C 08:00</td><td>0030952008:26</td><td>C</td></t>	30F00, 8	*+	0F00, 8	0F00C,	mc % c	÷	00\$28\$2C 08:00	0030952008:26	C
aiovofovm	30F00C1		0F00C1	0F00066		÷	0032852C 08:00	0030952008:26	C
aiovomnAa <t n<="" td=""><td>30F00, 8</td><td></td><td>0F00, 8</td><td>01200000</td><td>mcSKc</td><td>Ť. ¢</td><td>00\$28\$2C 08:00</td><td>0030952008:26</td><td>C</td></t>	30F00, 8		0F00, 8	01200000	mcSKc	Ť. ¢	00\$28\$2C 08:00	0030952008:26	C
E-Cf2-De aiovonAant n	30F00C1		0F00C1	0170005,	mcSKc	÷	00\$28\$2C 08:00	0030952008:26	C
E-Cl9-De aiovopvopnt n	30F00C1		0F00C1	0F00058		÷	00\$28\$2C 08:00	0030952008:26	C
Debwomo. aiowomnAa <t n<="" td=""><td>30F00C1</td><td></td><td>0P0C1</td><td>01700069</td><td></td><td></td><td>00\$28\$2C 08:00</td><td>0030952008:26</td><td>C</td></t>	30F00C1		0P0C1	01700069			00\$28\$2C 08:00	0030952008:26	C
g Asyibnt znt n	30F00C1		0F00C1	01700012		÷	00\$28\$2C 08:00	0030952008:26	C
MnAayi AawAbuAyi nAanw	30F00C1		0P0C1	0100056		÷	00\$28\$2C 08:00	0030952008:26	C
MnAayintn Iaiowarn	30F00, 8		0F00, 8	0170000	mcSKc		00\$28\$2C 08:00	0030952008:26	C
DAvvnt n	30F00C1		0F00C1	0100058		÷	00\$28\$2C 08:00	0030952008:26	C
4nAw≼. aiovonAantn	30F00C1		0P0C1	01000065		÷	00\$28\$2C 08:00	0030952008:26	C
4oiunt n	30F00C1		0P00C1	017000,8			00\$28\$2C 08:00	0030952008:26	C
av≼t E-Ch2-De aiovonAant n	30F00C1		0P0C1	0F00085		÷	00\$28\$2C 08:00	0030952008:26	C
Aw≺t E-Ch9-De aiovopvopnt n	30F00C1		0120001	01700067		÷	00\$28\$2C 08:00	0030952008:26	C
4ve aiovonAant n	30F00C1		0100001	01000007			00\$28\$2C 08:00	0030952008:26	C
Vetyi.aiowern	30F00C1		0100001	01000000		÷.	00\$28\$2C 08:00	0030952008:26	C
Xyint n⊟h4oA≼i	30F0098		010098	070006C		¢	00\$28\$2C 08:00	0030952008:26	C
	0010000		010000	0100000	mouto	Ť		00000000.20	0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		30 - 174				10/28/21 18:00	11/07/21 18:26	1
4-f rob ozłuoro9en5ene (Surr)	m2		3B_171				10/28/21 18:00	11/07/21 18:26	1
Di9rob ozluorob ethane	m8		3B-126				10/28/21 18:00	11/07/21 18:26	1
Toluene-d8 (Surr)	mВ		3B_124				10/28/21 18:00	11/07/21 18:26	1
r ethdc: V270D - Semivdlat		Qualifiex	(GCHYS) RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
Analyte Cr2h -4ve aiovøbnt znt n			0F2C		mcSKc	<u>–</u>	0C\$02\$2C C9:, 0	CCSDS2C C5:C8	
	30F2C		0F2C		mcskc mcskc				
012-De aiowebnt znt n						¢	0C\$02\$2CC9:, 0	CCSD/S2C C5:C8	C
09-De aiovøbnt znt n Ch -De aiovøbnt znt n	30F2C 30F2C		0F2C 0F2C		mcSKc mcSKc		0C\$02\$2CC9:, 0 0C\$02\$2CC9:, 0	CCSD) S2C C5:C8 CCSD) S2C C5:C8	0
	308/0		1 PPC	0805	INCMAC	¢	U.SU/S/C(9'()	113113211518	C

guvo fet E4n EAd mnve < hl ae < co

Client Sample ID: 801VB-21-M0V Date Cdlle/ tec: 60P27P26 62:[0 Date Re/ eivec: 60P2VP26 60:50

Lab Sample ID: 500-207513-2

r atxio: Sdlic 9ex/ ent Sdlics: 77.V

5

7

r ethdc: V270D - Semivdlatil Analyte	Result Qualifiex	RL	r DL	-	D	9 херахес	Analyzec	Dil Fa/
2h, l5-4ve aiovopant oi	30ŖC	0P, C	017015	mc % c	— <u> </u>	0030252009:,0	0030032005:08	С
2h, h6-4ve aiowopant oi	30Ŗ C	0P, C	OFC,	mc % c		0030252009:,0	0030032005:08	С
2h, -De aiovopant oi	30Ŗ C	0P, C	0R911	mc % c	¢	0030252009:,0	0030032005:08	С
2h, -DemnAayipant oi	30P, C	0P, C	01706	mc % c	¢	0030252009:,0	0030032005:08	С
2h, -DeteAwopantoi	30晤,	0F8,	0 F7 ,	mc % c		0030252009:,0	00:50 52 05:08	С
2h, -DeteAnoAsiuntn	30P2C	0F2C	0P066	mc % c	¢	0030252009:,0	0030052005:08	С
2h6-DeteAnoAoiuntn	30P2C	0F2C	017082	mc % c	¢	0030252009:,0	0030052005:08	С
2-I aiovot <paaa<int n<="" td=""><td>30₽2C</td><td>0F2C</td><td>0F0,6</td><td>mc%c</td><td>¢</td><td>CCSD2S2CC9:,0</td><td>0030052005:08</td><td>С</td></paaa<int>	30₽2C	0F2C	0F0,6	mc % c	¢	CCSD2S2CC9:,0	0030052005:08	С
2-l aiovopant oi	30P2C	0F2C	01707C	mc % c	₽	0C\$02\$2CC9:,0	0030052005:08	С
2-MnAayit <paaa<int n<="" td=""><td>30P08,</td><td>0F08,</td><td>0170077</td><td>mc%c</td><td>¢</td><td>CCS02S2CC9:,0</td><td>0030032005:08</td><td>С</td></paaa<int>	30P08,	0F08,	0170077	mc % c	¢	CCS02S2CC9:,0	0030032005:08	С
2-MnAayipant oi	30F2C	0F2C	012067	mc % c	 ¢	CCSD2S2CC9:,0	0030052005:08	С
2-&eAvo∕teketn	30F2C	0F2C	017056	mc % c	¢	0030252009:,0	0030032005:08	С
2-& Avopant oi	30P, C	0P, C	0F011	mc % c	¢	0030252009:,0	0030052005:08	С
9 F,MnAayipant oi	30P2C	0F2C	0170	mc % c		0030252009:,0	0030052005:08	С
9h9[-De aiowobnt zeret n	30F2C	0F2C	017058	mc % c	÷.	0030252009:,0	0030052005:08	С
9-&eAwo <teetn< td=""><td>30P, C</td><td>0P, C</td><td>01729</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0030052005:08</td><td>С</td></teetn<>	30P, C	0P, C	01729	mc % c	¢	0030252009:,0	0030052005:08	С
, h6-DeteAvo-2-mnAayipant oi	30F8,	0F8,	0F9,	mc % c		0030252009:,0	0030052005:08	C
, -Bwomopant yi pant yi nAanw	30P2C	0F2C	0F055	mcSKc	ġ.	0030252009:,0	0030032005:08	C
, -l aiovo-9-mnAsyipant oi	30P, C	0P.C	OFC,	mcSKc	÷.	0030252009:.0	0030032005:08	C
, -l aiovo <t n<="" td="" ėte=""><td>30P8,</td><td>0F8,</td><td>0F20</td><td>mcSKc</td><td></td><td>0030252009:,0</td><td>0030032005:08</td><td>C</td></t>	30P8,	0F8,	0F20	mcSKc		0030252009:,0	0030032005:08	C
, -l aiovopant yi pant yi nAanw	30P2C	0F2C	0F2,1	mcSKc	÷.	00302320.09:, 0	0030032005:08	C
,-&eAvo <teietn< td=""><td>30P, C</td><td>0P.C</td><td>0FC7</td><td>mcsKc</td><td>÷</td><td>0030252009:,0</td><td>0030032005:08</td><td>c</td></teietn<>	30P, C	0P.C	0FC7	mcsKc	÷	0030252009:,0	0030032005:08	c
,-&eAvopantoi	30R8,	0F8,	0P,0	mcsKc		CCS02S2CC9:, 0	0030032005:08	C
d.nt <paasint n<="" td=""><td>30P0, C</td><td>010, 0170, C</td><td>0R0075</td><td>mcsKc</td><td>÷</td><td>CCS02S2CC9:, 0</td><td>0030032005:08</td><td>C</td></paasint>	30P0, C	010, 0170, C	0R0075	mcsKc	÷	CCS02S2CC9:, 0	0030032005:08	C
d.nt <paaayint n<="" td=""><td>30P0, C</td><td>010, C</td><td>0R0075</td><td></td><td>÷</td><td>0030252009:,0</td><td>0030032005:08</td><td>c</td></paaayint>	30P0, C	010, C	0R0075		÷	0030252009:,0	0030032005:08	c
dtAavv≼.ntn	30P0, C	010, C	0P0070			CCSD2S2CC9:, 0	0030032005:08	C
Bnt zo] <n⊀t asw≮.="" n<="" nt="" td=""><td>30P0, C</td><td>010, C 010, C</td><td>010070 010056</td><td></td><td>÷</td><td>CCS02S2CC9:, 0</td><td>0030032005:08</td><td>C</td></n⊀t>	30P0, C	010, C 010, C	010070 010056		÷	CCS02S2CC9:, 0	0030032005:08	C
Bnt zo] høywnt n	30P0, C	010, C 010, C	010030 010030		÷	CCS02S2CC9:, 0	0030032005:08	c
Bntzo]bNiuov≼tAantn	30P0, C	010, C	0R0010			CCS02S2CC9:, 0	0030032005:08	C
Bnt zo]chaheteonwyint n	30P0, C	0170, C 0170, C	010010	mcsKc mcsKc	÷	CCS02S2CC9:, 0	0030032005:08	c
	30R9, C	0170, C 0170, C		mcsKc mcsKc		CCS02S2CC9:, 0	CCSD S2C C5:C8	c
Bnt zo]LNiuovv≼t Aant n BeE(2 aiovonAaoxy)mnAa <t n<="" td=""><td></td><td>0F2C</td><td></td><td>mcsKc mcsKc</td><td>÷</td><td>CCS02S2CC9:, 0</td><td></td><td>C</td></t>		0F2C		mcsKc mcsKc	÷	CCS02S2CC9:, 0		C
(,	30P2C				¢ ×		CCSDCSC C5:C8 CCSDCSC C5:C8	
BeE(2 aiowonAayi)nAanw	30P2C	0F2C		mc&c	Å.	CC\$02\$2CC9:, 0		С
Be€(2-nAayianxyi) paAa <i<an< td=""><td>30P2C</td><td>0F2C</td><td></td><td>mcSKc mcSKc</td><td>¢</td><td>CC\$02\$2C C9:, 0</td><td>CCSDS2CC5:C8</td><td>С</td></i<an<>	30P2C	0F2C		mcSKc mcSKc	¢	CC\$02\$2C C9:, 0	CCSDS2CC5:C8	С
BuAyibntzyipaAa⊲i <an< td=""><td>30P2C</td><td>0F2C</td><td>0170</td><td></td><td>¢.</td><td>CC\$02\$2CC9:, 0</td><td>CCSDS2CC5:C8</td><td>C</td></an<>	30P2C	0F2C	0170		¢.	CC\$02\$2CC9:, 0	CCSDS2CC5:C8	C
<vb<zoin< td=""><td>30F2C</td><td>0F2C</td><td>01700</td><td></td><td>¢</td><td>CC\$02\$2CC9:, 0</td><td>0030032005:08</td><td>С</td></vb<zoin<>	30F2C	0F2C	01700		¢	CC\$02\$2CC9:, 0	0030032005:08	С
lawyEntn	30PD, C	0170, C		mcSKc	÷	CC\$02\$2CC9:, 0	00\$00\$2005:08	С
Debnt z(<ha)<t aaw<.="" n<="" nt="" td=""><td>30PD, C</td><td>0 PD, C</td><td>0R008C</td><td></td><td>¢</td><td>CC\$02\$2CC9:, 0</td><td>0030032005:08</td><td>С</td></ha)<t>	30PD, C	0 PD, C	0R008C		¢	CC\$02\$2CC9:, 0	0030032005:08	С
Debnt zofuw <t< td=""><td>30P2C</td><td>0F2C</td><td></td><td>mcSKc</td><td>¢</td><td>0030252009:,0</td><td>0030032005:08</td><td>С</td></t<>	30P2C	0F2C		mcSKc	¢	0030252009:,0	0030032005:08	С
Den Aayi pa Aa <i<an< td=""><td>30P2C</td><td>0F2C</td><td></td><td>mc%c</td><td>₩</td><td>0030252009:,0</td><td>0030032005:08</td><td>С</td></i<an<>	30P2C	0F2C		mc % c	₩	0030252009:,0	0030032005:08	С
DemnAayipaAa <i<aa< td=""><td>30P2C</td><td>0F2C</td><td></td><td>mc%c</td><td>÷.</td><td>0030252009:,0</td><td>0030052005:08</td><td>С</td></i<aa<>	30P2C	0F2C		mc % c	÷.	0030252009:,0	0030052005:08	С
Det-buAyipaAa <i<an< td=""><td>30F2C</td><td>0F2C</td><td>0F06,</td><td>mcSKc</td><td>¢</td><td>0030252009:,0</td><td>0030052005:08</td><td>С</td></i<an<>	30F2C	0F2C	0F06,	mcSKc	¢	0030252009:,0	0030052005:08	С
Det-o. Ayi paAa <i<an< td=""><td>30P2C</td><td>0F2C</td><td></td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0030052005:08</td><td>С</td></i<an<>	30P2C	0F2C		mc % c	¢	0030252009:,0	0030052005:08	С
'iuow <t aant="" n<="" td=""><td>30P0, C</td><td>0 PD, C</td><td>012077</td><td></td><td>¢</td><td>CCS02S2CC9:, 0</td><td>0030032005:08</td><td>С</td></t>	30P0, C	0 PD, C	012077		¢	CCS02S2CC9:, 0	0030032005:08	С
'iuowntn	30P0, C	OPO, C	012051		☆	CCS02S2CC9:, 0	0030052005:08	С
Hnx<. aiovøbnt znt n	30PD8,	0F08,	017		¢	0030252009:,0	0030052005:08	С
Hnx<. aiovobuA <r ent="" n<="" td=""><td>30P2C</td><td>0F2C</td><td></td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0030032005:08</td><td>С</td></r>	30P2C	0F2C		mc % c	¢	0030252009:,0	0030032005:08	С
Hnx<. aiowo. y. iopnt A <r ent="" n<="" td=""><td>30F8,</td><td>0F8,</td><td>0F2,</td><td>mc%c</td><td>☆</td><td>0030252009:,0</td><td>0030052005:08</td><td>С</td></r>	30F8,	0F8,	0F2,	mc % c	☆	0030252009:,0	0030052005:08	С
Hnx<.aiovonAa <tn< td=""><td>30F2C</td><td>0F2C</td><td>017069</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0030032005:08</td><td>С</td></tn<>	30F2C	0F2C	017069	mc % c	¢	0030252009:,0	0030032005:08	С

guvo fet E4n EAd mnve < hl ae < co

Client Sample ID: 801VB-21-M0V Date Cdlle/ tec: 60P27P26 62:[0 Date Re/ eivec: 60P2VP26 60:50

Lab Sample ID: 500-207513-2

r atxio: Sdlic 9ex/ ent Sdlics: 77.V

5

7

13

ethdc: V270D - Semivdla		Qualifiex	RL	r DL		D	9 херахес	Analyzec	Dil Fa/
trnto]Ch2h9rNp/ywntn	30R0, C		0R9, C	0RDCC	mc % c	¢	0030252009:,0	0030032005:08	C
Eopaovøt n	30P2C		0F2C	0F0,7	mc % c	¢	0030252009:,0	0030052005:08	С
. <paaa≺int n<="" td=""><td>30F0, C</td><td></td><td>0170, C</td><td>0F006,</td><td>mc%c</td><td>₽</td><td>0030252009:,0</td><td>0030052005:08</td><td>С</td></paaa≺int>	30F0, C		0170, C	0F006,	mc % c	₽	0030252009:,0	0030052005:08	С
e‰nobntzntn	30 F0, C		0170, C	01700	mc % c	¢.	CCSD2S2CC9:,0	0030052005:08	С
-&e‰wEoret-pwopyi <metn< td=""><td>30F08,</td><td></td><td>0F08,</td><td>0R05C</td><td>mc%c</td><td>¢</td><td>CCS02S2CC9:,0</td><td>0030052005:08</td><td>С</td></metn<>	30F08,		0F08,	0R05C	mc % c	¢	CCS02S2CC9:,0	0030052005:08	С
-&eAwoEorepantyi <metn< td=""><td>30F2C</td><td></td><td>0F2C</td><td>0F0,1</td><td>mc%c</td><td>¢</td><td>CCS02S2CC9:,0</td><td>0030052005:08</td><td>С</td></metn<>	30F2C		0F2C	0F0,1	mc % c	¢	CCS02S2CC9:,0	0030052005:08	С
nt A<. aiovopant oi	30F8,		0F8,	0167	mc % c	∴	CCSD2S2CC9:,0	0030052005:08	С
ant <t aawnt="" n<="" td=""><td>30F0, C</td><td></td><td>OPD, C</td><td>0170058</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC052C C5:C8</td><td>С</td></t>	30F0, C		OPD, C	0170058	mc % c	¢	0030252009:,0	CCSC052C C5:C8	С
ant oi	30P2C		0F2C	0F019	mc % c	¢	0030252009:,0	CCSC052C C5:C8	С
ywntn	30F0, C		0170, C	0170089	mc % c	₽	CCSD2S2CC9:, 0	CCSD S2C C5:C8	С
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4,6-Tri9rob ophenol	36		71 - 147				11/02/21 17:40	11/10/21 1B:18	1
-Fluoro9iphenyl	87		47 - 14B				11/02/21 17:40	11/10/21 1B:18	1
Fluorophenol	32		71 - 166				11/02/21 17:40	11/10/21 1B:18	1
itro9en5ene-dB (Surr)	BB		73 - 143				11/02/21 17:40	11/10/21 1B:18	1
henol-dB	38		70 - 1B7				11/02/21 17:40	11/10/21 1B:18	1
erphenyl-d14 (Surr)	100		42 - 1B3				11/02/21 17:40	11/10/21 1B:18	1
ethdc: 1060M - r etals (IC	C9)								
nalyte		Qualifiex	RL	r DL		D	9 херахес	Analyzec	Dil Fa/
ntimdny	0.8V	JM	CF2	0 F2 9	mc % c	¢	00:00 0288220	0030152009:09	С
xseni/	V.[01760	0F2C	mc % c	¢	00:00 02288220	0050152009:09	С
laxium	660		0760		mc % c	₽	00:00 0288220	0030152009:09	С
lexyllium	6.0		0F2,	017056	mc % c	¢	00:00 0228 8220	0050152009:09	С
<i>l</i> dxdn	5.3	М	9F0	0F28	mc % c	¢	00:00 02288220	0059152009:09	С
acmium	0.66	JM	0FC2	017022	mc % c	¢	00:00 02288220	0050152009:09	С
al/ ium	5500		C2	2R)	mc % c	₽	00:00 0 2 2 8 6 2 0 0	0039152009:09	С
hxdmium	63		01760	0 F 90	mc % c	₽	00:00 0 2 2 8 6 2 0 0	0039152009:09	С
dbalt	68		0月90	0R071	mc % c	¢	00:00 0228 820	0039152009:09	С
dppex	28		01760	0FC7	mc % c	☆	00:00 0228 (200	0030152009:09	С
kdn	28000	Μ	C2	6 F 9	mc % c	¢	00:00 0228 820	0039152009:09	С
eac	61		0月90	OFC,	mc % c	¢	00:00 0228 8220	0030152009:09	С
agnesium	5200		6F0	9F0	mc % c	¢	00:00 0228 8220	0030152009:09	С
anganese	5[0	М	01760	0F088	mc % c	¢	00:00 0228 8220	0030152009:09	С
i/ 4el	82		01760	0FC8	mc % c	¢	00:00 0228 (200	0030152009:09	С
dtassium	6V00		90	C	mc % c	₽	00:00 0228 820	0030152009:09	С
nint eum	301760		0760	0195	mc % c	¢	00:00 0228 8220	CC\$91\$2C C9:57	С
Silvex	0.[1		0月90	0F078	mc % c	¢	00:00 0228 8220	0030152009:09	С
Sdcium	6[00		60	8P1	mc % c	¢	00:00 02288220	0030152009:09	С
hallium	0.51	J	0760	0 F 90	mc % c	¢	00:00 0228 820	0030152009:09	С
anacium	86		0月90	01707C	mc % c	¢	00:00 0228 820	0030152009:09	С
in/	V0		CF2	0月59	mc % c	₽	00:00 228820	0050152009:09	С
ethdc: 1060M - r etals (IC	C9) - , CL9								
nalyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
			017050	017900	mc %		CCS), S2C 08:00	CC\$9, \$2C C8:, ,	C
w <u>E</u> nte	30P050		01000						
wEnte	301950 30190, 0		0R00, 0	0F00,0	mc %		CCSD, S2C 08:00	CCSD, S2C C8:, ,	С
•							CCSD, SZC 08:00 CCSD, SZC 08:00		C C

lientAdtrwnsEgtcetnnwetclt.P jwo/n.ASDenh:IDT4 - dg7-0,0

Client Sample ID: 801VB-21-M0V Date Cdlle/ tec: 60P27P26 62:[0 Date Re/ eivec: 60P2VP26 60:50

Job	ID:	500-207561-C

Lab Sample ID: 500-207513-2

r atxio: Sdlic 9ex/ ent Sdlics: 77.V

5

6 7

Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
n <r< td=""><td>30170075</td><td></td><td>012075</td><td>0170075</td><td>mc%</td><td></td><td>CC\$9, \$2C 08:00</td><td>CC\$9, \$2C C8:, ,</td><td>C</td></r<>	30170075		012075	0170075	mc %		CC\$9, \$2C 08:00	CC\$9, \$2C C8:, ,	C
· anganese	0.83		017025	0179CO	mc %		0030, S2C 08:00	CCSD, SZC C8:, ,	С
&e Lni	3017025		017025	01700	mc \$ k		0030, 52008:00	CCSD, S2CC8:,,	С
r ethdc: 1060M - r eta	le (ICQ) - SQI Q Nae	F .							
Analyte		Qualifiex	RL	r DL	Unit	D	9 xepaxec	Analyzec	Dil Fa/
Axseni/	0.012		017050	01700	mc \$		0C\$055\$2C07:, 1	00:00 00:06	C
Maxium	6.2		0590	017050	mc \$ k		0C\$05\$2C07:, 1	0030852006:06	C
Vlexyllium	0.0033		0F20,0	0F00,0	mc %		0C\$05\$2C07:, 1	0030852006:06	C
Widxidn	0.66		01700	017050	mc \$ k		0C\$05\$2C07:, 1	0030852006:06	С
<r meum<="" td=""><td>30P0050</td><td></td><td>0170050</td><td>0170020</td><td>mc%</td><td></td><td>0C\$05\$2C07:, 1</td><td>0C\$08\$2C 06:06</td><td>С</td></r>	30P0050		0170050	0170020	mc %		0C\$05\$2C07:, 1	0C\$08\$2C 06:06	С
Cal/ ium	23		2 F 5	0550	mc %		0C\$05\$2C07:, 1	0C\$08\$2C 06:06	С
Chxdmium	0.22		017025	017900	mc %		CC\$05\$2C07:, 1	0030852006:06	C
Cdbalt	0.08[017025	017900	mc %		0C\$05\$2C07:, 1	0C\$08\$2C 06:06	С
xdn	2[0		0 P, 0	0F20	mc %		0C\$05\$2C07:, 1	0C\$08\$2C 06:06	С
Leac	0.010		012075	0170075	mc %		CC\$05\$2C07:, 1	0C\$08\$2C 06:06	C
anganese	0.W		017025	017900	mc %		CC\$05\$2C07:, 1	0030852006:06	С
i/ 4el	0.63		017025	017900	mc %		CCS05S2C07:, 1	0030852006:06	С
9dtassium	22		2F5	0590	mc %		CC\$05\$2C07:, 1	CCSD1S2CC,:C9	C
Onint eum	30P050		017050	017020	mc %		CC\$05\$2C07:, 1	0030852006:06	С
Oeivnw	3017025		017025	017900	mc %		CC\$05\$2C07:, 1	0C\$08\$2C 06:06	С
kin/	0.11		0590	017020	mc %		CC\$055\$2C07:, 1	0C\$38\$2C 06:06	C
			0750	0砲20	mc \$ k		CC\$05\$2C07:, 1	00:00 328 20 06:06	С
r ethdc: 1020A - r eta	Is (IC9 IP S) - , CL9	Qualifiex	OF50 RL	017920 r DL		D			C Dil Fa/
r ethdc: 1020A - r eta Analyte	Is (IC9 IP S) - , CL9	Qualifiex			Unit	D	СС\$05\$2С07:, 1 9 жеражес СС\$0, \$2С08:00	CC\$98\$C C6:06 Analyzec CC\$6\$C C5:, 9	
r ethdc: 1020A - r eta Analyte ła≺iiœm	Is (IC9 IP S) - , CL9 Result 30170020		RL	r DL	Unit	<u>D</u>	9 херахес	Analyzec	Dil Fa/
r ethdc: 1020A - r eta Analyte ła <iieum r ethdc: 1020A - r eta</iieum 	Is (IC9 P S) - , CL9 Result 30P020 Is (IC9 P S) - S9 L9	Nast	 019020	r DL 010020	Unit mcst	<u> </u>	9 жеражес ССЗЭ, S2C 08:00	Analyzec 0030652C 05:, 9	Dil Fa/
r ethdc: 1020A - r eta Analyte ₄a⊲iieum r ethdc: 1020A - r eta Analyte	Is (IC9 P S) - , CL9 Result 30P020 Is (IC9 P S) - S9 L9 Result		 0₱020 	r DL 0120020 r DL	Unit mc&	<u>D</u>	9 жеражес ССЗЭ, S2C 08:00 9 жеражес	Analyzec CCSD6SC C5:, 9 Analyzec	Dil Fa/
r ethdc: 1020A - r eta Analyte 4a≺iieum r ethdc: 1020A - r eta Analyte dt Æmot y	Is (IC9 IP S) - , CL9 Result 3070020 Is (IC9 IP S) - S9 L9 Result 3070060	Nast	070020 - 070020 - 	r DL 0P0020 r DL 0P0060	Unit mc& Unit mc&	<u> </u>	9 жеражес ССЗЭ, S2C 08:00 9 жеражес ССЗЭ 5 S2C 07:, 1	Analyzec CCSD6SCC5:,9 Analyzec CCSD5SCC20:,,	Dil Fa/ C Dil Fa/ C
r ethdc: 1020A - r eta Analyte Ia⊲iieum r ethdc: 1020A - r eta Analyte It Aemot y	Is (IC9 IP S) - , CL9 Result 30170020 Is (IC9 IP S) - S9 L9 Result	Nast	 0₱020 	r DL 0120020 r DL	Unit mc& Unit mc&	<u> </u>	9 жеражес ССЗЭ, S2C 08:00 9 жеражес	Analyzec CCSD6SC C5:, 9 Analyzec	Dil Fa/
r ethdc: 1020A - r eta Analyte 4a≺iieim r ethdc: 1020A - r eta Analyte	Is (IC9 IP S) - , CL9 Result 3070020 Is (IC9 IP S) - S9 L9 Result 307060 0.00[1	Nast Qualifiex	070020 - 070020 - 	r DL 0P0020 r DL 0P0060	Unit mc& Unit mc&	<u> </u>	9 жеражес ССЗЭ, S2C 08:00 9 жеражес ССЗЭ 5 S2C 07:, 1	Analyzec CCSD6SCC5:,9 Analyzec CCSD5SCC20:,,	Dil Fa/ C Dil Fa/ C
r ethdc: 1020A - r eta Analyte 4a≺iieum r ethdc: 1020A - r eta Analyte dt Aenot y , hallium r ethdc: 7[70A - r ex/	Is (IC9 IP S) - , CL9 Result 3070020 Is (IC9 IP S) - S9 L9 Result 307060 0.00[1 uxy (CBAA) - S9 L9	Nast Qualifiex	070020 - 070020 - 	r DL 0P0020 r DL 0P0060	Unit mc% Unit mc% mc%	<u> </u>	9 жеражес ССЗЭ, S2C 08:00 9 жеражес ССЗЭ 5 S2C 07:, 1	Analyzec CCSD6SCC5:,9 Analyzec CCSD5SCC20:,,	Dil Fa/ C Dil Fa/ C
• ethdc: 1020A - r eta Analyte Ia <iieum • ethdc: 1020A - r eta Analyte It Armot y hallium • ethdc: 7[70A - r ex/ Analyte</iieum 	Is (IC9 IP S) - , CL9 Result 3070020 Is (IC9 IP S) - S9 L9 Result 307060 0.00[1 uxy (CBAA) - S9 L9	Nast Qualifiex Nast	RL 0P0020 RL 0P0060 0P0020	r DL 0P0020 r DL 0P0060 0P0020	Unit mc% Unit mc% Unit	D	9 херахес ССЗЭ, S2C 08:00 9 херахес ССSЭ5S2C 07:, 1 ССSЭ5S2C 07:, 1	Analyzec CCSDS C C5:, 9 Analyzec CCSD C 20:, , CCSD C 20:, ,	Dil Fa/ Dil Fa/ C Dil Fa/
r ethdc: 1020A - r eta Analyte Ia <iieum r ethdc: 1020A - r eta Analyte It Aenot y hallium r ethdc: 7[70A - r ex/ Analyte Mnwuwy</iieum 	Is (IC9 IP S) - , CL9 Result 30F0020 Is (IC9 IP S) - S9 L9 Result 30F0060 0.00[1 uxy (CBAA) - S9 L9 Result 30F0050	Nast Qualifiex Nast	RL 070020 RL 070060 070020 RL	r DL 070020 r DL 070060 070020 r DL	Unit mc% Unit mc% Unit	D	9 херахес ССЗЭ, S2C 08:00 9 херахес ССЗЭ5S2C 07:, 1 ССЗЭ5S2C 07:, 1 9 херахес	Analyzec CCSD6SCCC5:, 9 Analyzec CCSD5SCC20:, , CCSD5SCC20:, , CCSD5SCC20:, , Analyzec	Dil Fa/ C Dil Fa/ C C
r ethdc: 1020A - r eta Analyte 4a <iieum r ethdc: 1020A - r eta Analyte dt Armot y , hallium r ethdc: 7[70A - r ex/ Analyte Mnwuwy r ethdc: 7[76M - r ex/</iieum 	Is (IC9 IP S) - , CL9 Result 30F0020 Is (IC9 IP S) - S9L9 Result 30F0060 0.00[1 uxy (CBAA) - S9L9 Result 30F00050 uxy (CBAA)	Nast Qualifiex Nast Qualifiex	RL 0P0020 RL 0P0060 0P0020 RL 0P0020	r DL 0P0020 r DL 0P0060 0P0020 r DL 0P00050	Unit mcst mcst mcst mcst Unit mcst	D	9 жеражес ССЗЭ, S2C 08:00 9 жеражес ССЗЭ 5 S2C 07:, 1 ССЗЭ 5 S2C 07:, 1 9 жеражес ССЗЭ 5 S2C 01:50	Analyzec CCSD6SCC5:,9 Analyzec CCSD5SC20:,, CCSD5SC20:,, CCSD5SC20:,, CCSD5SCC0:,,	Dil Fa/ C Dil Fa/ C Dil Fa/ C
r ethdc: 1020A - r eta Analyte 4a <iieum r ethdc: 1020A - r eta Analyte dt Aemot y hallium r ethdc: 7[70A - r ex/ Analyte Mnwuwy r ethdc: 7[76M - r ex/ Analyte</iieum 	Is (IC9 IP S) - , CL9 Result 30F0020 Is (IC9 IP S) - S9L9 Result 30F0060 0.00[1 uxy (CBAA) - S9L9 Result 30F00050 uxy (CBAA)	Nast Qualifiex Nast	RL 070020 RL 070060 070020 RL	r DL 070020 r DL 070060 070020 r DL	Unit mc% Mc% mc% Unit mc%	D	9 херахес ССЗЭ, S2C 08:00 9 херахес ССЗЭ5S2C 07:, 1 ССЗЭ5S2C 07:, 1 9 херахес	Analyzec CCSD6SCCC5:, 9 Analyzec CCSD5SCC20:, , CCSD5SCC20:, , CCSD5SCC20:, , Analyzec	Dil Fa/ C Dil Fa/ C Dil Fa/ Dil Fa/
r ethdc: 1020A - r eta Analyte 4a <iieum r ethdc: 1020A - r eta Analyte dt Aemot y hallium r ethdc: 7[70A - r ex/ Analyte Mnwuwy r ethdc: 7[76M - r ex/ Analyte r ex/ uxy</iieum 	Is (IC9 IP S) - , CL9 Result 30P020 Is (IC9 IP S) - S9 L9 Result 30P060 0.00[1 uxy (CBAA) - S9 L9 Result 30P0050 uxy (CBAA) Result	Nast Qualifiex Nast Qualifiex	RL 0P0020 RL 0P0060 0P0020 RL 0P0050 RL	r DL 0P0020 r DL 0P0060 0P0020 r DL 0P00050	Unit mc% Mc% mc% Unit mc%	D D	9 жеражес ССЗЭ, 52 С 08:00 9 жеражес ССЗЭ 552 С 07:, 1 ССЗЭ 552 С 07:, 1 9 жеражес ССЗЭ 552 С 01:50 9 жеражес	Analyzec CCSD6 CC C5:, 9 Analyzec CCSD5 C 20:, , CCSD5 C 20:, , CCSD5 C 20:, , CCSD5 C 20:, , Analyzec CCSD5 C 0:08 Analyzec	Dil Fa/ C Dil Fa/ C Dil Fa/ Dil Fa/
r ethdc: 1020A - r eta Analyte 4a <ii@im r ethdc: 1020A - r eta Analyte dt Aenot y , hallium r ethdc: 7[70A - r ex/ Analyte Mnw uw r ethdc: 7[76M - r ex/ Analyte r ex/ uxy Genexal Chemistxy</ii@im 	Is (IC9 P S) - , CL9 Result 30P020 Is (IC9 P S) - S9L9 Result 30P060 0.00[1 uxy (CBAA) - S9L9 Result 30P0050 uxy (CBAA) Result 0.057	Nast Qualifiex Nast Qualifiex	RL 0P0020 RL 0P0060 0P0020 RL 0P00050 RL 0P0050	r DL 0P0020 r DL 0P0060 0P0020 r DL 0P0050 r DL 0P0069	Unit mc% mc% mc% Unit mc% Unit mc%	D D D X	9 жеражес ССЗЭ, S2C 08:00 9 жеражес ССЗЭ 5 S2C 07:, 1 ССЗЭ 5 S2C 07:, 1 9 жеражес ССЗЭ 5 S2C 01:50 9 жеражес ССЗЭ, S2C C9:50	Analyzec CCSD6SCC5:,9 Analyzec CCSD5SC20:,, CCSD5SC20:,, CCSD5SC00:, Analyzec CCSD5SC00:08 Analyzec CCSD5SC00:08	Dil Fa/ C Dil Fa/ C Dil Fa/ C
r ethdc: 1020A - r eta Analyte 4a≺iieum r ethdc: 1020A - r eta Analyte dt Æmot y , hallium	Is (IC9 P S) - , CL9 Result 30P020 Is (IC9 P S) - S9L9 Result 30P060 0.00[1 uxy (CBAA) - S9L9 Result 30P0050 uxy (CBAA) Result 0.057	Nast Qualifiex Nast Qualifiex	RL 0P0020 RL 0P0060 0P0020 RL 0P0050 RL	r DL 0P0020 r DL 0P0060 0P0020 r DL 0P0050 r DL 0P0069 r DL	Unit mc% mc% mc% Unit mc% Unit mc%	D D	9 жеражес ССЗЭ, 52 С 08:00 9 жеражес ССЗЭ 552 С 07:, 1 ССЗЭ 552 С 07:, 1 9 жеражес ССЗЭ 552 С 01:50 9 жеражес	Analyzec CCSD6 CC C5:, 9 Analyzec CCSD5 C 20:, , CCSD5 C 20:, , CCSD5 C 20:, , CCSD5 C 20:, , Analyzec CCSD5 C 0:08 Analyzec	Dil Fa/ C Dil Fa/ C Dil Fa/ Dil Fa/

Client Sample ID: 801VB-21-M07-6 Date Cdlle/ tec: 60P27P26 62:50 Date Re/ eivec: 60P2VP26 60:50

Job ID: 500-207561-C

Lab Sample ID: 500-207513-8

r atxio: Sdlic 9ex/ ent Sdlics: V1.0

5

7

Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
ChChC-4ve aiovonAa <t n<="" td=""><td>30F00C7</td><td></td><td>0F00C7</td><td>0170056</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0C\$9\$2C C8:5C</td><td>C</td></t>	30F00C7		0F00C7	0170056	mc % c	¢	00\$28\$20 08:00	0C\$9\$2C C8:5C	C
ChCh2h2-4nAw≼. aiovonAa <t n<="" td=""><td>30F00C7</td><td></td><td>0F00C7</td><td>0F0005,</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0C\$09\$2C C8:5C</td><td>С</td></t>	30F00C7		0F00C7	0F0005,	mc % c	¢	00\$28\$20 08:00	0C\$09\$2C C8:5C	С
ChCh2-4ve:aiowonAa <tn< td=""><td>30F00C7</td><td></td><td>0F00C7</td><td>0170072</td><td>mc%c</td><td>₽</td><td>00\$28\$20 08:00</td><td>0C\$09\$2C C8:5C</td><td>С</td></tn<>	30F00C7		0F00C7	0170072	mc % c	₽	00\$28\$20 08:00	0C\$09\$2C C8:5C	С
ChC-De aiovønAa <t n<="" td=""><td>30F00C7</td><td></td><td>0F00C7</td><td>01700058</td><td>mc%c</td><td>¢</td><td>00\$28\$2C C8:00</td><td>0030952008:50</td><td>С</td></t>	30F00C7		0F00C7	01700058	mc % c	¢	00\$28\$2C C8:00	0030952008:50	С
ChC-De aiovonAant n	30F00C7		0F00C7	01700058	mc % c	¢	00\$28\$2C C8:00	0C\$09\$2C C8:5C	С
Ch2-De aiovonAa <t n<="" td=""><td>30P00, 2</td><td></td><td>0F00, 2</td><td>0F00C9</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0C\$9\$2C 08:5C</td><td>С</td></t>	30P00, 2		0F00, 2	0F00C9	mc % c	¢	00\$28\$20 08:00	0C\$9\$2C 08:5C	С
Ch2-De aiovøpvøp <t n<="" td=""><td>30F00C7</td><td></td><td>0F00C7</td><td>0F000,,</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0030952008:50</td><td>С</td></t>	30F00C7		0F00C7	0F000,,	mc % c	¢	00\$28\$20 08:00	0030952008:50	С
Ct9-De aiovøpvøpnt nh4oÆi	30F00C7		0F00C7	01700051	mc % c	¢	00\$28\$20 08:00	0C\$9\$2C 08:5C	С
2-BuÆt ot n (MgK)	30P00, 2		0F00, 2	0F00C1	mc % c	¢	00\$28\$20 08:00	0C\$9\$2C 08:5C	С
2-Hnx <t n<="" ot="" td=""><td>30F00, 2</td><td></td><td>01700, 2</td><td>0F00C9</td><td>mc%c</td><td>¢</td><td>00\$28\$2C C8:00</td><td>CC\$9\$2C C8:5C</td><td>С</td></t>	30F00, 2		01700, 2	0F00C9	mc % c	¢	00\$28\$2C C8:00	CC\$9\$2C C8:5C	С
, -MnAayi-2-pnt A≼t ot n (MIBK)	30F00, 2		0F00, 2	0F00C2	mc % c	₽	00\$28\$20 08:00	CC\$99\$2C C8:5C	С
d.nAotn	30F0C7		0F0C7	0170079	mc % c	₽	00\$28\$20 08:00	CC\$99\$2C C8:5C	С
Bnt znt n	30F00C7		0F00C7	017000, 9	mc % c	₽	00\$28\$20 08:00	0030952008:50	С
BwømoreaiowømnAa <tn< td=""><td>30F00C7</td><td></td><td>0F00C7</td><td>0170009,</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0030952008:50</td><td>С</td></tn<>	30F00C7		0F00C7	0170009,	mc % c	¢	00\$28\$20 08:00	0030952008:50	С
Bvømofovm	30R00C7		0F00C7	0F000, 1	mc % c	¢	0032832C 08:00	0C\$09\$2C C8:5C	С
BvømomnÆa <t n<="" td=""><td>30P00, 2</td><td>*+</td><td>01700, 2</td><td>017006</td><td>mc%c</td><td>¢.</td><td>00\$28\$2C C8:00</td><td>0030952008:50</td><td>С</td></t>	30P00, 2	*+	01700, 2	017006	mc % c	¢.	00\$28\$2C C8:00	0030952008:50	С
l <wbotreeuifern< td=""><td>30F00, 2</td><td></td><td>0F00, 2</td><td>01700088</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0030952008:50</td><td>С</td></wbotreeuifern<>	30F00, 2		0F00, 2	01700088	mc % c	¢	00\$28\$20 08:00	0030952008:50	С
l <wbot anaw≼.aiowarn<="" td=""><td>30F00C7</td><td></td><td>0F00C7</td><td>0F000, 1</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0030952008:50</td><td>С</td></wbot>	30F00C7		0F00C7	0F000, 1	mc % c	¢	00\$28\$20 08:00	0030952008:50	С
l aiowobnt znt n	30F00C7		0F00C7	0120062	mc % c	 ¢	00\$28\$20 08:00	0030952008:50	С
laiowonAa <tn< td=""><td>30P00, 2</td><td>*+</td><td>0F00, 2</td><td>0F00C2</td><td></td><td>ġ.</td><td>00\$28\$20 08:00</td><td>0030952008:50</td><td>С</td></tn<>	30P00, 2	*+	0F00, 2	0F00C2		ġ.	00\$28\$20 08:00	0030952008:50	С
laiowofown	30170007		0F00C7	01700058		ġ.	00\$28\$20 08:00	0030952008:50	С
l aiowomnAa <t n<="" td=""><td>30P00, 2</td><td></td><td>0F00, 2</td><td>0170007</td><td></td><td></td><td>00\$28\$20 08:00</td><td></td><td>C</td></t>	30P00, 2		0F00, 2	0170007			00\$28\$20 08:00		C
. Æ-Ch2-De aiovonAant n	30P00C7		0F00C7	017000,7		¢.	0032852C 08:00		C
. Æ-C19-De aiovøpvøpnt n	30P00C7		010007	0F0005C		¢	0032852C 08:00	CCS09S2C C8:5C	C
Debvomo. aiovomnAa <t n<="" td=""><td>30P00C7</td><td></td><td>010007</td><td>01000055</td><td></td><td></td><td>0032832C 08:00</td><td></td><td>C</td></t>	30P00C7		010007	01000055			0032832C 08:00		C
g Asyibnt znt n	30P00C7		010007	0F0008C		Å	0032832C 08:00	0030952008:50	C
MnAayiAnwAbuAyinAanw	30P00C7		010007	01000000		Å	0032832C 08:00	0030952008:50	C
MnAayintn Iaiowern	30F00, 2		0F00, 2	01000, 1			00\$28\$2C 08:00	0030952008:50	C
OAywntn	30P00C7		0F00C7	01000C/		÷	00\$28\$2C 08:00	0030952008:50	c
4nAw≼.aiowonAantn	30F00C7		0F00C7	0100050		÷	COS2852C C8:00	0030952008:50	c
4oiunt n	30F00C7		0F00C7	010000, 9			00\$28\$20 08:00	0030952008:50	C
4orum m Aw≼t E-Ch2-De aiowonAsınt n				0F000,9		¢ ×	00\$28\$20 08:00	003932008:50	C
	30P0C7		01700C7			¢ ×			
Aw≺t E-Cl9-De aiovøpvøpnt n	30P0C7		0F00C7	0F00051		÷	00282203:00	CC\$99\$2C C8:5C	С
4veraiowonAsıntn	30P00C7		0170007	0F00057		¢.	00282203:00	0C\$09\$2C C8:5C	C
Velyi.aiowern	30P00C7		0170007	0170007,		¢		CC\$99\$2C C8:5C	C
Xyint nEh4o k i	30P009,		0P009,	0 1 9005,	mc Skc	¢	00\$28\$2C C8:00	CC2932CC8:5C	С
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			30 - 174				10/28/21 18:00		1
4-f rob ozuoro9en5ene (Surr)	ml		3B_171				10/28/21 18:00	11/07/21 18:B1	1
Di9rob ozluorob ethane	mm		3B-126				10/28/21 18:00	11/07/21 18:B1	1
Toluene-d8 (Surr)	m4		3B-124				10/28/21 18:00	11/07/21 18:B1	1
r ethdc: V270D - Semivdlat	ile Oxgani/ Cd	mpduncs	(GCP S)						
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
Ch2h -4ve aiowobnt znt n	30PC1	· · ·	0PC1		mc S Kc	— <u>–</u>	<u>CCS</u> 02S2CC9:, 0	0C\$0\$2C C5:, C	C
Ch2-De aiovobnt znt n	30FC1		0FC1		mc S Kc	¢.	0030252009:,0	0C\$00\$2C C5:, C	C
C19-De aiowobnt znt n	30FC1		0FC1		mcSKc	¢	0030252009:,0	CCSDS2CC5:, C	C
Ch -De aiowobnt znt n	30FC1		OPC1		mcsKc	¥.	CCS02S2CC9:, 0	CCSDS2C C5:, C	C C
2h2[-oxybe⊒C aiovøpvøp <t nn<="" td=""><td>30FC1</td><td></td><td>OFC1</td><td>0F0,8 0F0,,</td><td></td><td>545</td><td>CCS02S2CC9:, 0</td><td></td><td>C</td></t>	30FC1		OFC1	0F0,8 0F0,,		545	CCS02S2CC9:, 0		C

guvo fet E4n EAd mnve < hl ae < co

Client Sample ID: 801VB-21-M07-6 Date Cdlle/ tec: 60P27P26 62:50 Date Re/ eivec: 60P2VP26 60:50

Lab Sample ID: 500-207513-8

r atxio: Sdlic 9ex/ ent Sdlics: V1.0

5

6 7

Analyte	Result Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
2h, h5-4ve aiovopant oi	301997	0円97	017086	mc % c	☆	0030252009:,0	0C\$00\$2C C5:, C	C
2h, h6-4ve aiovopant oi	30 1 97	0F97	01729	mc % c	¢	0030252009:,0	CC\$20\$2CC5:, C	С
2h -De aiowopant oi	30 19 7	0F97	017010	mc % c	¢	0030252009:,0	0C\$C0\$2CC5:, C	С
2h, -DemnAayipant oi	30 F 97	0F97	OFC,	mc % c	¢	0030252009:,0	0C\$00\$2CC5:, C	С
2h, -DeteAwopant oi	30 F7 6	0月76	01766	mc % c	¢	0030252009:,0	0C\$00\$2CC5:, C	С
2h,-DeteAno/Asiuntn	30FC1	OFC1	017060	mc % c	☆	0030252009:,0	0C\$00\$2CC5:, C	С
2h6-DeteAno/Asiuntn	30FC1	OFC1	0F07,	mc % c	☆	0030252009:,0	0C\$00\$2CC5:, C	С
2-Iaiowot <paaa<int n<="" td=""><td>30FC1</td><td>0FC1</td><td>0F0, 2</td><td>mc%c</td><td></td><td>0030252009:,0</td><td>0C\$00\$2CC5:, C</td><td>С</td></paaa<int>	30FC1	0FC1	0F0, 2	mc % c		0030252009:,0	0C\$00\$2CC5:, C	С
2-I aiovopant oi	30FC1	0FC1	0R06,	mc % c	¢	0030252009:,0	0C\$00\$2CC5:, C	С
2-MnAayit <paaa<int n<="" td=""><td>30F076</td><td>0F076</td><td>0170061</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0C\$00\$2CC5:, C</td><td>С</td></paaa<int>	30F076	0F076	0170061	mc % c	¢	0030252009:,0	0C\$00\$2CC5:, C	С
2-MnAayipant oi	30FC1	0FC1	01706C	mc % c	¢.	0.0000252009:,0	CCSC0S2CC5:, C	С
2-&e%wo <teietn< td=""><td>30FC1</td><td>0FC1</td><td>01705C</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0C\$00\$2CC5:, C</td><td>С</td></teietn<>	30FC1	0FC1	01705C	mc % c	¢	0030252009:,0	0C\$00\$2CC5:, C	С
2-& Avopant oi	30 F 97	0F97	017081	mc % c	¢	0030252009:,0	0C\$00\$2CC5:, C	С
9 F,MnAayipant oi	30FC1	0FC1	017069	mc % c		0030252009:,0	CCSDS2CC5:, C	С
9h9[-De aiovøbnt zæ et n	30FC1	OFC1	017059	mc % c	¢	0030252009:,0	0C\$00\$2CC5:, C	С
- 9-&eAwo <teetn< td=""><td>30197</td><td>0F97</td><td>0FC2</td><td>mc%c</td><td>÷</td><td>0030252009:,0</td><td>0C\$00\$2CC5:, C</td><td>С</td></teetn<>	30 19 7	0F97	0FC2	mc % c	÷	0030252009:,0	0C\$00\$2CC5:, C	С
, h6-Dete Ano-2-mnAayipant oi	30 F7 6	0月76		mc % c		0.0000252009:,0	CCSD0S2CC5:, C	С
, -Bvomopant yi pant yi nAanw	30FC1	OFC1		mc % c	¢	0.0000252009:,0	0C\$00\$2CC5:, C	С
, -l aiovo-9-mnAavipantoi	301997	0F97		mc % c	÷	0039252009:,0	0C\$00\$2C C5:, C	С
, -l aiovo <t ee="" n<="" td=""><td>30月76</td><td>0月76</td><td></td><td>mcSKc</td><td></td><td>0039252009:,0</td><td>CCSC052CC5:, C</td><td>C</td></t>	30月76	0月76		mcSKc		0039252009:,0	CCSC052CC5:, C	C
, -l aiowopant yi pant yi nAanw	30FC1	OFC1		mcSKc	÷	0030252009:,0	CCSC0S2C C5:, C	C
, -& eMo <t edin<="" td=""><td>30197</td><td>0円97</td><td></td><td>mcSKc</td><td>÷</td><td>0030252009:,0</td><td>CCSC0S2C C5:, C</td><td>C</td></t>	30197	0円97		mcSKc	÷	0030252009:,0	CCSC0S2C C5:, C	C
, -& Awpant oi	30176	0176		mcSKc		0030232009:,0	CCSCOS2C C5:, C	C
d. nt <pa ant="" n<="" td=""><td>30F097</td><td>01797</td><td>0R0068</td><td></td><td>÷</td><td>0030252009:,0</td><td>CCSC0S2C C5:, C</td><td>C</td></pa>	30F097	01797	0R0068		÷	0030252009:,0	CCSC0S2C C5:, C	C
d.nt <pa ayint="" n<="" td=""><td>30F097</td><td>0F097</td><td>012050</td><td></td><td>÷</td><td>0039252009:,0</td><td>CCSC0S2C C5:, C</td><td>C</td></pa>	30F097	0F097	012050		÷	0039252009:,0	CCSC0S2C C5:, C	C
dt Aavr≼. nt n	30F097	017097	012069			0039252009:,0	CCSC0S2C C5:, C	C
Bnt zo] <n≮t aaw<.="" n<="" nt="" td=""><td>30F097</td><td>017097</td><td>010000C</td><td></td><td>÷</td><td>0030252009:,0</td><td>CCSC0S2C C5:, C</td><td>C</td></n≮t>	30F097	017097	010000C		÷	0030252009:,0	CCSC0S2C C5:, C	C
Bnt zo] Novint n	30F097	017097	0R0079		÷	0030252009:,0	CCSC0S2C C5:, C	C
Bnt zo]bNiuow <t aant="" n<="" td=""><td>30F097</td><td>017097</td><td>0780970</td><td></td><td></td><td>0030252009:,0</td><td>CCSC0S2C C5:, C</td><td>C</td></t>	30F097	017097	0780970			0030252009:,0	CCSC0S2C C5:, C	C
Bnt zo]chahephnwint n	30F097	01097		mcSKc	÷	CCS02S2CC9:, 0	CCSCOS2C C5:, C	C
Bnt zo]LNiuow <t aant="" n<="" td=""><td>30F097</td><td>017097</td><td></td><td>mcSKc</td><td>÷</td><td>0030232009:,0</td><td>CCSCOS2C C5:, C</td><td>C</td></t>	30F097	017097		mcSKc	÷	0030232009:,0	CCSCOS2C C5:, C	C
Be€(2 aiovonAsoxy)mnAs <t n<="" td=""><td>30PC1</td><td>0FC1</td><td></td><td>mcSKc</td><td></td><td>0030252009:,0</td><td>CCSC0S2C C5:, C</td><td>C</td></t>	30PC1	0FC1		mcSKc		0030252009:,0	CCSC0S2C C5:, C	C
BeE(2 aiowonAayi)nAanw	30FC1	0FC1		mcSKc	÷	CCS02S2CC9:, 0	CCSCOS2C C5:, C	C
BeE(2-nAsyianxyi) paAs <i<as< td=""><td>30FC1</td><td>0FC1</td><td></td><td>mcSKc</td><td>÷</td><td>CCS02S2CC9:, 0</td><td>CCSCOS2C C5:, C</td><td>C</td></i<as<>	30FC1	0FC1		mcSKc	÷	CCS02S2CC9:, 0	CCSCOS2C C5:, C	C
BuAyi bnt zyi paAs <i<an< td=""><td>30PC1</td><td>0FC1</td><td></td><td>mcSKc</td><td></td><td>0030252009:,0</td><td>CC\$C0\$2C C5:, C</td><td>C</td></i<an<>	30PC1	0FC1		mcSKc		0030252009:,0	CC\$C0\$2C C5:, C	C
<vb<zoin< td=""><td>30Æ1</td><td>ORC1</td><td>0R01,</td><td>mcSKc</td><td>¢</td><td>0030252009:,0</td><td>CCSC0S2C C5:, C</td><td>C</td></vb<zoin<>	30Æ1	ORC1	0R01,	mcSKc	¢	0030252009:,0	CCSC0S2C C5:, C	C
law Entn	30F097	01297		mcsKc		CCS02S2CC9:, 0	CCSCOS2C C5:, C	C
Debntz(<ha)<t aaw≼.="" n<="" nt="" td=""><td>30P097</td><td>01097</td><td>01000</td><td></td><td></td><td>CCS02S2CC9:, 0</td><td>CCSDCS2CC5:, C</td><td>C</td></ha)<t>	30P097	01097	01000			CCS02S2CC9:, 0	CCSDCS2CC5:, C	C
Debnt zofuw≮t	30FC1	0RC1	01707, 00	mcsKc	¢	CCS02S2CC9:, 0	CCSCOS2C C5:, C	C
DenAayi paAa <i<an< td=""><td>30FC1</td><td>0FC1</td><td></td><td>mcsKc mcsKc</td><td>¢</td><td>0C\$02\$2CC9:, 0</td><td>CCSCOS2C C5:, C</td><td>C</td></i<an<>	30FC1	0FC1		mcsKc mcsKc	¢	0C\$02\$2CC9:, 0	CCSCOS2C C5:, C	C
DennAsyi paAs <i<an< td=""><td>30PC1</td><td>0FC1</td><td></td><td>mcsKc</td><td></td><td>CCS02S2CC9:, 0</td><td>CCSDS2CC5:, C</td><td>C C</td></i<an<>	30PC1	0FC1		mcsKc		CCS02S2CC9:, 0	CCSDS2CC5:, C	C C
Det -buAyi paAa <i<an< td=""><td>30FC1</td><td>0RC1</td><td></td><td>mcsKc</td><td>¢.</td><td>CCS02S2CC9:, 0</td><td>CCSDS2CC5:, C</td><td>c</td></i<an<>	30FC1	0RC1		mcsKc	¢.	CCS02S2CC9:, 0	CCSDS2CC5:, C	c
• •	30FC1	OFC1		mcsKc		CCS02S2CC9:, 0	CCSCOS2C C5:, C	
Det -o. Ayi paAa <i<an< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>С</td></i<an<>								С
'iuow≼tAantn 'iuowntn	30P097	07897 078007	0170070			CCSD2S2CC9:, 0	CCSD0S2CC5:, C	C
	30P097	07097	0170059		¢ ×	CCSD2S2CC9:, 0	CCSD0S2CC5:, C	C
Hnx<. aiovobnt znt n	30₽076	0F076	0170087		÷ · · · · · .	CCSD2S2CC9:, 0	CCSDS2CC5:, C	С
Hnx<. aiowobuA <rent n<="" td=""><td>30FC1</td><td>OFC1</td><td></td><td>mcSKc</td><td>¢</td><td>0C\$02\$2CC9:, 0</td><td>CCSDCS2C C5:, C</td><td>C</td></rent>	30FC1	OFC1		mcSKc	¢	0C\$02\$2CC9:, 0	CCSDCS2C C5:, C	C
Hnx<. aiowo. y. iopnt A≼r ent n	30 F7 6	0 F7 6	0122	mc % c	¢	0CS02S2CC9:,0	CCSCOS2C C5:, C	С

Client Sample ID: 801VB-21-M07-6 Date Cdlle/ tec: 60P27P26 62:50 Date Re/ eivec: 60P2VP26 60:50

Lab Sample ID: 500-207513-8

r atxio: Sdlic 9ex/ ent Sdlics: V1.0

5

7

Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
trnto]Ch2h9rNpoywntn	3017097		017097	0170018	mc % c	¢	0030252009:,0	CC\$20\$2CC5:, C	C
Eopaovøt n	30FC1		0FC1	0F0, 2	mc % c	¢	0030252009:,0	CC\$20\$2CC5:, C	С
k <paaa<int n<="" td=""><td>30F097</td><td></td><td>017097</td><td>0170058</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0C\$00\$2CC5:, C</td><td>С</td></paaa<int>	30F097		017097	0170058	mc % c	¢	0030252009:,0	0C\$00\$2CC5:, C	С
& Alwobntzntn	3017097		01797	0R001,	mc % c	☆	CCS02S2CC9:,0	0C\$00\$2CC5:, C	С
&-&eAwoEoret-pwopyi <metn< td=""><td>30F076</td><td></td><td>0176</td><td>0R9,6</td><td>mc%c</td><td>☆</td><td>CCS02S2CC9:,0</td><td>0C\$00\$2CC5:,C</td><td>С</td></metn<>	30F076		0176	0R9,6	mc % c	☆	CCS02S2CC9:,0	0C\$00\$2CC5:,C	С
&-&e‰vEorepantyi <metn< td=""><td>30FC1</td><td></td><td>0FC1</td><td>0F0,,</td><td>mc%c</td><td>¢</td><td>CCS02S2CC9:,0</td><td>CCSC0S2CC5:, C</td><td>С</td></metn<>	30FC1		0FC1	0F0,,	mc % c	¢	CCS02S2CC9:,0	CCSC0S2CC5:, C	С
nt A<. aiovopant oi	30 F7 6		0月76	0F6C	mc % c		CCSD2S2CC9:,0	CCSDS2CC5:, C	С
ant <taswntn< td=""><td>30F097</td><td></td><td>017097</td><td>0170059</td><td>mc%c</td><td>¢</td><td>CCS02S2CC9:,0</td><td>CCSC0S2CC5:, C</td><td>С</td></taswntn<>	30F097		017097	0170059	mc % c	¢	CCS02S2CC9:,0	CCSC0S2CC5:, C	С
ant oi	30FC1		OFC1	0F08,	mc % c	₽	0030252009:,0	CCSC0S2CC5:, C	С
ywntn	3017097		01297	012075	mc % c	¢	0030252009:,0	CCSDS2CC5:, C	С
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tri9rob ophenol	36		71 - 147				11/02/21 17:40	11/10/21 1B:41	1
2-Fluoro9iphenyl	84		47 <u>-</u> 14B				11/02/21 17:40	11/10/21 1B:41	1
P-Fluorophenol	34		71 - 166				11/02/21 17:40	11/10/21 1B:41	1
litro9en5ene-dB (Surr)	6B		73 - 143				11/02/21 17:40	11/10/21 1B:41	1
Phenol-dB	33		70 <u>-</u> 1 <i>B</i> 7				11/02/21 17:40	11/10/21 1B:41	1
Ferphenyl-d14 (Surr)	117		42 - 1B3				11/02/21 17:40	11/10/21 1B:41	1
ethdc: 1060M - r etals (IC9)									
nalyte		Qualifiex	RL	r DL		D	9 херахес	Analyzec	Dil Fa/
ntimdny	0.7[JM	OPC	0P2C		¢	00:00 02288220	0050152009:06	C
xseni/	7.[0155	0FC1	mc % c	☆	00:00 02288220	0050152009:06	C
laxium	0]		01755	017069	mc % c	\$	00:00 02288220	0030152009:06	C
<i>l</i> exyllium	0.75		0月22		mc % c	☆	00:00 02288220	0030152009:06	C
<i>l</i> dxdn	60	М	288	0 F2 6	mc % c	¢	00:00 02288220	0039152009:06	C
Cacmium	0.017	JM	ORC	017020	mc % c	☆	00:00 02288220	0030152009:06	C
Cal/ ium	71000	М	55	1Ŗ	mc % c	¢	00:00 02288220	CCSCS2C 00:92	5
Chxdmium	6[01755	0F27	mc % c	¢	00:00 02288220	0059152009:06	C
Cdbalt	60		0月28	0172	mc % c	☆	00:00 02288220	0030152009:06	C
Cdppex	28		01755	0FC5	mc % c	¢	00:00 02288220	0059152009:06	C
xdn	6V000	М	œ	5 F 7	mc % c	☆	00:00 02288220	0030152009:06	C
.eac	62		0月28	0FC9	mc % c	¢	00:00 0 22 8 6 200	0030152009:06	C
agnesium	82000		5 F 5	2F7	mc % c	¢	00:00 02288220	0059152009:06	C
anganese	870	М	01755	0R080	mc % c	☆	00:00 02288220	0030152009:06	C
i/ 4el	27		0月55	0FC6	mc % c	☆	00:00 0 228820	0030152009:06	C
dtassium	2200		28	1 F 8	mc % c	¢	00:00 0 22 8 820	CC\$91\$2CC9:C6	C
Dnint eum	30 F 55		01755	0 F 92	mc % c	¢	00:00 0 22 8 820	CC\$91\$2CC,:00	C
Silvex	0.25	J	0月28	01707C	mc % c	☆	00:00 02288220	CCSD1S2CC9:06	C
Sdcium	630		55	8F2	mc % c	☆	00:00 0228(200	CCS01S2CC9:C6	C
a <iieum< td=""><td>30F55</td><td></td><td>0155</td><td>0F28</td><td>mc%c</td><td>¢</td><td>00:00 0228@20</td><td>CCSD1S2CC9:06</td><td>C</td></iieum<>	30 F 55		0155	0 F2 8	mc % c	¢	00:00 0228@20	CCSD1S2CC9:06	C
	6V		0月28	017065	mc % c	¢	00:00 0228@20	CCSD1S2CC9:06	C
Banacium	00			0P.8	mc % c	÷.	00:20 2/28(2/20)	0030152009:06	C
	10		CPC	01, 0	mouto		00000000000000		-
^{.in/} ethdc: 1060M - r etals (IC9)	10) - , CL9	o							
^{kin/} * ethdc: 1060M - r etals (IC9) Analyte	10 - , CL9 Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
kin/ ∕ ethdc: 1060M - r etals (IC9) Analyte IvÆnte	10 - , CL9 <u>Result</u> 30P050	Qualifiex		r DL 0P0C0	Unit mcst		9 жеражес СС\$9, \$2C 08:00	Analyzec	Dil Fa/
Banacium kin/ r ethdc: 1060M - r etals (IC9) Analyte dv£nt e Bnvyiileum vøt	10 - , CL9 Result	Qualifiex	RL	r DL 07900 0790, 0	Unit mcst		9 херахес	Analyzec	

guvosfet E4n EAd mnvoe < hl ae < co

lientAdtrwnsEgtcetnnwetclt.P jwo/n.ASDenk:IDT4 - dg7-0,0

Client Sample ID: 801VB-21-M07-6 Date Cdlle/ tec: 60P27P26 62:50 Date Re/ eivec: 60P2VP26 60:50

Job	١D·	500-207561-C	
000	·D.	201001 0	

Lab Sample ID: 500-207513-8

r atxio: Sdlic 9ex/ ent Sdlics: V1.0

5

6 7

Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
r anganese	0.87		017025	017900	mc %		0C\$0, \$2C 08:00	CC\$0, \$2C C8:, 7	C
&e Lni	30125		017025	01600	mc \$ k		CCSD, S2C 08:00	CCSD, S2C C8:, 7	С
r ethdc: 1060M - r etals	(IC9) - S9L9 Nast	t							
Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
Axseni/	0.052		017050	0179CO	mc &		0C\$05\$2C07:, 1	CC\$98\$2C C6:01	С
Maxium	0.82	J	0F50	017050	mc &		0C\$05\$2C07:, 1	CC\$98\$2C C6:01	С
Mexyllium	0.00[1		0F20,0	0R90, 0	mc \$ k		CC\$05\$2C07:, 1	CC\$98\$2C C6:01	С
Mdxdn	0.65		0F20	07050	mc \$ c		CC\$05\$2C07:, 1	CC\$98\$2C C6:01	С
<r meim<="" td=""><td>30F0050</td><td></td><td>0170050</td><td>0170020</td><td>mc\$c</td><td></td><td>CC\$055\$2C07:, 1</td><td>0C\$38\$2C 06:01</td><td>С</td></r>	30F0050		0170050	0170020	mc \$ c		CC\$055\$2C07:, 1	0C\$38\$2C 06:01	С
Cal/ ium	21		215	0550	mc %		0C\$05\$2C07:, 1	0C\$08\$2C 06:01	С
Chxdmium	0.036		017025	01700	mc %		0C\$05\$2C07:, 1	0C\$08\$2C 06:01	С
Cdbalt	0.080		017025	0179CO	mc \$ c		0C\$05\$2C07:, 1	CC\$98\$2C C6:01	С
xdn	660		0P, 0	0F20	mc %		0C\$05\$2C07:, 1	CC\$98\$2C C6:01	С
_eac	0.083		012075	0170075	mc \$ c		CC\$05\$2C07:, 1	CC\$98\$2C C6:01	С
anganese	0.87		017025	0179C0	mc %		0C\$05\$2C07:, 1	0C\$08\$2C 06:01	С
i/ 4el	0.66		017025	01700	mc %		0C\$05\$2C07:, 1	0030852006:01	С
dtassium	2[2F5	0550	mc %		0C\$05\$2C07:, 1	0C\$01\$2CC,:06	С
nint eum	30F050		017050	017020	mc %		0C\$05\$2C07:, 1	0C\$08\$2C 06:01	С
Deivnw	30F025		017025	017900	mc %		CC\$05\$2C07:, 1	0C\$08\$2C 06:01	С
(in/	0.80	J	0550	017020	mcsk		0C\$05\$2C07:, 1	0030852006:01	С
kin/	0.80	J	0590	0₱20	mc \$ k		0C\$05\$2C07:, 1	0030852006:01	С
		J	0540	0砲20	mc \$ k		CC\$05\$2C07:, 1	0030852006:01	С
ethdc: 1020A - r etals	(IC9IP S) - , CL9	J Qualifiex	OF50 RL	017920 r DL		D	CCSD5S2C07:, 1 9 xepaxec	0C\$08\$2C 06:01	C Dil Fa/
r ethdc: 1020A - r etals Analyte	(IC9IP S) - , CL9				Unit	<u>D</u>			
ethdc: 1020A - r etals Analyte a <iiœm< td=""><td>(IC9 IP S) - , CL9 Result 30P0020</td><td>Qualifiex</td><td>RL</td><td>r DL</td><td>Unit</td><td> <u>D</u></td><td>9 херахес</td><td>Analyzec</td><td>Dil Fa/</td></iiœm<>	(IC9 IP S) - , CL9 Result 30P0020	Qualifiex	RL	r DL	Unit	<u>D</u>	9 херахес	Analyzec	Dil Fa/
ethdc: 1020A - r etals Analyte a <iiœm< td=""><td>(IC9 IP S) - , CL9 Result 30P0020</td><td>Qualifiex</td><td>RL</td><td>r DL</td><td>Unit</td><td><u> </u></td><td>9 херахес</td><td>Analyzec</td><td>Dil Fa/</td></iiœm<>	(IC9 IP S) - , CL9 Result 30P0020	Qualifiex	RL	r DL	Unit	<u> </u>	9 херахес	Analyzec	Dil Fa/
r ethdc: 1020A - r etals Analyte a <iieum r ethdc: 1020A - r etals</iieum 	(IC9 IP S) - , CL9 Result 30P020 (IC9 IP S) - S9 L9	Qualifiex	RL	r DL	Unit mc&	D	9 херахес	Analyzec	Dil Fa/
ethdc: 1020A - r etals nalyte a <iiem ethdc: 1020A - r etals nalyte</iiem 	(IC9 IP S) - , CL9 Result 30P020 (IC9 IP S) - S9 L9	Qualifiex Nast		r DL 010020	Unit mc&		9 жеражес ССЗЭ, S2C 08:00	Analyzec 0030652C 05:, 5	Dil Fa/ C
ethdc: 1020A - r etals aalyte a <iiœm ethdc: 1020A - r etals malyte t Arnot y</iiœm 	(IC9R S) - , CL9 Result 30P020 (IC9R S) - S9L9 Result	Qualifiex Nast	 0₱020 	r DL 010020 r DL	Unit mc& Unit mc&		9 херахес ССЗЭ, S2C 08:00 9 херахес	Analyzec CCSD6SCC5:, 5 Analyzec	Dil Fa/ C
r ethdc: 1020A - r etals Analyte la <iieum r ethdc: 1020A - r etals Analyte It Aenot y hallium</iieum 	(IC9 IP S) - , CL9 Result 30P020 (IC9 IP S) - S9L9 I Result 30P060 0.0083	Qualifiex Nast Qualifiex	0780020 - 	r DL 079020 r DL 079060	Unit mc& Unit mc&		9 херахес ССЗЭ, S2 C 08:00 9 херахес ССЗЭ 5 S2 C 07:, 1	Analyzec CCSD6SCC5:,5 Analyzec CCSD5SCC20:,6	Dil Fa/ C Dil Fa/ C
r ethdc: 1020A - r etals Analyte Ia <iieum r ethdc: 1020A - r etals Analyte dt Arnot y hallium r ethdc: 7[70A - r ex/ ux</iieum 	(IC9 IP S) - , CL9 Result 30P020 (IC9 IP S) - S9 L9 I Result 30P060 0.0083 y (CBAA) - S9 L9	Qualifiex Nast Qualifiex	0780020 - 	r DL 079020 r DL 079060	Unit mc& Unit mc& mc&		9 херахес ССЗЭ, S2 C 08:00 9 херахес ССЗЭ 5 S2 C 07:, 1	Analyzec CCSD6SCC5:,5 Analyzec CCSD5SCC20:,6	Dil Fa/ C Dil Fa/ C
r ethdc: 1020A - r etals Analyte a <iieum r ethdc: 1020A - r etals Analyte It Armot y hallium r ethdc: 7[70A - r ex/ ux Analyte</iieum 	(IC9 IP S) - , CL9 Result 30P020 (IC9 IP S) - S9 L9 I Result 30P060 0.0083 y (CBAA) - S9 L9	Qualifiex Nast Qualifiex Nast	RL 0₱020 RL 0₱060 0₱020	r DL 079020 r DL 079060 079020	Unit mc& Unit mc& mc&	<u>D</u>	9 херахес ССЭ, ЭС 08:00 9 херахес ССЭ 5 ФС 07:, 1 ССЭ 5 ФС 07:, 1	Analyzec CCSD6SC C5:, 5 Analyzec CCSD5SC 20:, 6 CCSD5SC 20:, 6	Dil Fa/ C Dil Fa/ C C
ethdc: 1020A - r etals malyte ethdc: 1020A - r etals malyte t Armot y hallium ethdc: 7[70A - r ex/ ux malyte Anwuw	(IC9 IP S) - , CL9 Result 30P020 (IC9 IP S) - S9 L9 I Result 30P060 0.0083 y (CBAA) - S9 L9 Result 30P0020	Qualifiex Nast Qualifiex Nast	RL 0P0020 RL 0P0060 0P0020	r DL 0P0020 r DL 0P0060 0P0020 r DL	Unit mcSt Unit mcSt mcSt	<u>D</u>	9 херахес ССЗЭ, S2C 08:00 9 херахес ССЗЭ5S2C 07:, 1 ССЗЭ5S2C 07:, 1 9 херахес	Analyzec CCSD6SC C5:, 5 Analyzec CCSD5SC 20:, 6 CCSD5SC 20:, 6 Analyzec	Dil Fa/ C Dil Fa/ C Dil Fa/
ethdc: 1020A - r etals a a a a a a a a a a a a a a a a a a a	(IC9 IP S) - , CL9 Result 30P020 (IC9 IP S) - S9L9 I Result 30P060 0.0083 y (CBAA) - S9L9 Result 30P0020 y (CBAA)	Qualifiex Nast Qualifiex Nast	RL 0P0020 RL 0P0060 0P0020	r DL 0P0020 r DL 0P0060 0P0020 r DL	Unit mcSt Unit mcSt mcSt Unit mcSt	<u>D</u>	9 херахес ССЗЭ, S2C 08:00 9 херахес ССЗЭ5S2C 07:, 1 ССЗЭ5S2C 07:, 1 9 херахес	Analyzec CCSD6SC C5:, 5 Analyzec CCSD5SC 20:, 6 CCSD5SC 20:, 6 Analyzec	Dil Fa/ C Dil Fa/ C Dil Fa/
r ethdc: 1020A - r etals Analyte a <iieum r ethdc: 1020A - r etals Analyte It Aemot y hallium r ethdc: 7[70A - r ex/ ux Analyte Anwuw r ethdc: 7[76M - r ex/ ux Analyte</iieum 	(IC9 IP S) - , CL9 Result 30P020 (IC9 IP S) - S9L9 I Result 30P060 0.0083 y (CBAA) - S9L9 Result 30P0020 y (CBAA)	Qualifiex Nast Qualifiex Nast Qualifiex	RL 0P0020 RL 0P0060 0P0020 RL 0P0020	r DL 0P0020 r DL 0P0060 0P0020 r DL 0P00020	Unit mc% Unit mc% Unit mc%	D	9 херахес ССЗЭ, S2C 08:00 9 херахес ССЗЭ5S2C 07:, 1 ССЗЭ5S2C 07:, 1 9 херахес ССЗЭ5S2C 01:50	Analyzec CCSD6 SC C5:, 5 Analyzec CCSD5 SC 20:, 6	Dil Fa/ C Dil Fa/ C C Dil Fa/ C
ethdc: 1020A - r etals a a a a a a a a a a a a a a a a a a a	(IC9 IP S) - , CL9 Result 30P020 (IC9 IP S) - S9L9 I Result 30P060 0.0083 y (CBAA) - S9L9 Result 30P0020 y (CBAA) Result	Qualifiex Nast Qualifiex Nast Qualifiex	RL 0P0020 RL 0P0060 0P0020 RL 0P0020	r DL 0P020 r DL 0P0060 0P020 r DL 0P0020 r DL	Unit mc% Unit mc% Unit mc%	D D	9 херахес ССЗЭ, 52 С 08:00 9 херахес ССЗЭ 552 С 07:, 1 ССЗЭ 552 С 07:, 1 9 херахес ССЗЭ 552 С 01:50 9 херахес	Analyzec CCSD6 CC C5:, 5 Analyzec CCSD5 C 20:, 6 Analyzec CCSD5 C 20:, 6 Analyzec CCSD5 C 20:, 6	Dil Fa/ C Dil Fa/ C Dil Fa/ C Dil Fa/
ethdc: 1020A - r etals Analyte la <iieum ethdc: 1020A - r etals Analyte dt Aenot y hallium ethdc: 7[70A - r ex/ ux Analyte Mnwuw ethdc: 7[76M - r ex/ ux Analyte ex/ uxy Genexal Chemistxy</iieum 	(IC9 IP S) - , CL9 Result 30P020 (IC9 IP S) - S9L9 I Result 30P060 0.0083 y (CBAA) - S9L9 Result 30P0020 y (CBAA) Result	Qualifiex Nast Qualifiex Qualifiex Qualifiex	RL 0P0020 RL 0P0060 0P0020 RL 0P0020	r DL 0P020 r DL 0P0060 0P020 r DL 0P0020 r DL	Unit mc& Mc& mc& Mc& Unit mc& Unit mc&	D D	9 херахес ССЗЭ, 52 С 08:00 9 херахес ССЗЭ 552 С 07:, 1 ССЗЭ 552 С 07:, 1 9 херахес ССЗЭ 552 С 01:50 9 херахес	Analyzec CCSD6 CC C5:, 5 Analyzec CCSD5 C 20:, 6 Analyzec CCSD5 C 20:, 6 Analyzec CCSD5 C 20:, 6	Dil Fa/ C Dil Fa/ C Dil Fa/ C Dil Fa/
kin/ r ethdc: 1020A - r etals Analyte ta≺iieum r ethdc: 1020A - r etals Analyte dt Armot y , hallium r ethdc: 7[70A - r ex/ ux Analyte Minwuwy r ethdc: 7[76M - r ex/ ux Analyte r ex/ uxy Genexal Chemistxy Analyte y <t ernh4oæi<="" td=""><td>(IC9 IP S) - , CL9 Result 30F0020 (IC9 IP S) - S9L9 I Result 30F0060 0.0083 y (CBAA) - S9L9 Result 30F0020 y (CBAA) Result 0.027</td><td>Qualifiex Nast Qualifiex Qualifiex Qualifiex</td><td>RL 0P0020 RL 0P0060 0P0020 RL 0P0020 RL 0P0020</td><td>r DL 0P0020 r DL 0P0060 0P0020 r DL 0P0020 r DL 0P0069</td><td>Unit mc& Mc& mc& Mc& Unit mc& Unit mc&</td><td> D D D D</td><td>9 херахес ССЗЭ, S2C 08:00 9 херахес ССЗЭ 5 S2C 07:, 1 ССЗЭ 5 S2C 07:, 1 9 херахес ССЗЭ 5 S2C 01:50 9 херахес ССЗЭ, S2C C9:50</td><td>Analyzec CCSD6SCC5:,5 Analyzec CCSD5SC20:,6 CCSD5SC20:,6 Analyzec CCSD5SCC0:C0 Analyzec CCSD5SC0:C0:C0</td><td>Dil Fa/ C Dil Fa/ C Dil Fa/ C Dil Fa/ C</td></t>	(IC9 IP S) - , CL9 Result 30F0020 (IC9 IP S) - S9L9 I Result 30F0060 0.0083 y (CBAA) - S9L9 Result 30F0020 y (CBAA) Result 0.027	Qualifiex Nast Qualifiex Qualifiex Qualifiex	RL 0P0020 RL 0P0060 0P0020 RL 0P0020 RL 0P0020	r DL 0P0020 r DL 0P0060 0P0020 r DL 0P0020 r DL 0P0069	Unit mc& Mc& mc& Mc& Unit mc& Unit mc&	D D D D	9 херахес ССЗЭ, S2C 08:00 9 херахес ССЗЭ 5 S2C 07:, 1 ССЗЭ 5 S2C 07:, 1 9 херахес ССЗЭ 5 S2C 01:50 9 херахес ССЗЭ, S2C C9:50	Analyzec CCSD6SCC5:,5 Analyzec CCSD5SC20:,6 CCSD5SC20:,6 Analyzec CCSD5SCC0:C0 Analyzec CCSD5SC0:C0:C0	Dil Fa/ C Dil Fa/ C Dil Fa/ C Dil Fa/ C

lientAdtrwnsEgtcetnnwetclt.P jwo/n.ASDeAn:IDT4 - dg7-0,0

Client Sample ID: 801VB-21-M07-6 Dup Date Cdlle/ tec: 60f27f26 68:00 Date Re/ eivec: 60f2Vf26 60:50

Job ID: 500-207561-C

Lab Sample ID: 500-207513-[r atxio: Sdlic

9ex/ ent Sdlics: V[.V

5

7

13

r ethdc: V210M - Bdlatile O Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
ChChC-4ve aiovonAa <t n<="" td=""><td>30F00C7</td><td></td><td>0170007</td><td>0170058</td><td>mc%c</td><td> ☆</td><td>00\$28\$20 08:00</td><td>00399520 01:07</td><td>C</td></t>	30F00C7		0170007	0170058	mc % c	☆	00\$28\$20 08:00	00399520 01:07	C
ChO12h2-4nAw≼.aiowonAa <tn< td=""><td>30F00C7</td><td></td><td>0F00C7</td><td>01700055</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0C\$99\$2CC1:C7</td><td>С</td></tn<>	30F00C7		0F00C7	01700055	mc % c	¢	00\$28\$20 08:00	0C\$99\$2CC1:C7	С
ChO12-4weaiowonAa <tn< td=""><td>30F00C7</td><td></td><td>0F00C7</td><td>0F0007,</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0030952001:07</td><td>С</td></tn<>	30F00C7		0F00C7	0F0007,	mc % c	¢	00\$28\$20 08:00	0030952001:07	С
ChC-De aiovønAa <t n<="" td=""><td>30F00C7</td><td></td><td>0P0C7</td><td>01700051</td><td>mc%c</td><td></td><td>00\$28\$20 08:00</td><td>0C\$09\$2CC1:C7</td><td>С</td></t>	30F00C7		0P0C7	01700051	mc % c		00\$28\$20 08:00	0C\$09\$2CC1:C7	С
ChC-De aiovonAant n	30F00C7		0F00C7	0170060	mc % c	¢	00\$28\$20 08:00	0C\$09\$2CC1:C7	С
Ch2-De aiovønAa <t n<="" td=""><td>30F00,9</td><td></td><td>0F00, 9</td><td>OPDOC,</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0C\$09\$2CC1:C7</td><td>С</td></t>	30F00,9		0F00, 9	OPDOC,	mc % c	¢	00\$28\$20 08:00	0C\$09\$2CC1:C7	С
Ch2-De aiovopvop <t n<="" td=""><td>30F00C7</td><td></td><td>0P0C7</td><td>017000, 5</td><td>mc%c</td><td></td><td>00\$28\$20 08:00</td><td>0C\$09\$2CC1:C7</td><td>С</td></t>	30F00C7		0P0C7	017000, 5	mc % c		00\$28\$20 08:00	0C\$09\$2CC1:C7	С
Ct9-De aiovøpvøpnt nh4oA≼i	30F00C7		0F00C7	0170006C	mc % c	¢	00\$28\$20 08:00	0C\$09\$2CC1:C7	С
2-BuArt ot n (MgK)	30F00,9		0F00, 9	0F00C1	mc % c	¢	00\$28\$20 08:00	0C\$09\$2CC1:C7	С
2-Hnx <t n<="" ot="" td=""><td>30F00, 9</td><td></td><td>0F20, 9</td><td>OPDOC,</td><td>mc%c</td><td></td><td>00\$28\$20 08:00</td><td>CCS09S2C C1:C7</td><td>С</td></t>	30F00, 9		0F20, 9	OPDOC,	mc % c		00\$28\$20 08:00	CCS09S2C C1:C7	С
, -MnAayi-2-pnt A≼t ot n (MIBK)	30F00, 9		0F00, 9	0170009	mc % c	¢	00\$28\$20 08:00	0030952001:07	С
d. nAot n	30F0C7		0PDC7	0170076	mc % c	¢	00\$28\$20 08:00	0C\$09\$2CC1:C7	С
Bnt znt n	30P00C7		0P00C7	017000,,	mc % c		00\$28\$20 08:00	00309520 01:07	С
BwomoreaiowomnAa <tn< td=""><td>30F00C7</td><td></td><td>0P0C7</td><td>01700095</td><td></td><td>÷</td><td>00\$28\$2C 08:00</td><td>00309520 01:07</td><td>C</td></tn<>	30F00C7		0P0C7	01700095		÷	00\$28\$2C 08:00	00309520 01:07	C
Bvomofovm	30F00C7		0F00C7	0F0005C		÷.	00\$28\$2C 08:00	00309520 01:07	C
BvømomnÆa <t n<="" td=""><td>30F00, 9</td><td>*+</td><td>0P00, 9</td><td>0100000</td><td></td><td></td><td>0092892008:00</td><td>00309520 01:07</td><td>C</td></t>	30F00, 9	*+	0P00, 9	0100000			0092892008:00	00309520 01:07	C
I <vbot reeuifern<="" td=""><td>30F00, 9</td><td></td><td>0F00, 9</td><td>0120010</td><td></td><td>÷</td><td>00\$28\$2C 08:00</td><td>00309520 01:07</td><td>C</td></vbot>	30F00, 9		0F00, 9	0120010		÷	00\$28\$2C 08:00	00309520 01:07	C
I <vbot anaw≼.aiovo∉n<="" td=""><td>30P00C7</td><td></td><td>0F00C7</td><td>01200050</td><td></td><td>÷</td><td>00\$28\$2C 08:00</td><td>00309520 01:07</td><td>C</td></vbot>	30P00C7		0F00C7	01200050		÷	00\$28\$2C 08:00	00309520 01:07	C
I aiowobnt znt n	30170007		010007	0F0006,	mcSKc		0032852C 08:00	00309520 01:07	C
l aiowonAa <t n<="" td=""><td>30F00, 9</td><td>*+</td><td>0P00, 9</td><td>0R00C9</td><td></td><td>÷.</td><td>00\$28\$2C 08:00</td><td>0030952001:07</td><td>C</td></t>	30F00, 9	*+	0P00, 9	0R00C9		÷.	00\$28\$2C 08:00	0030952001:07	C
l aiovofovm	30F00C7	-	0P0C7	0100000		÷.	00\$28\$2C 08:00	00309520 01:07	C
I aiowomnAa <t n<="" td=""><td>30P00, 9</td><td></td><td>0P00, 9</td><td>0100000</td><td></td><td></td><td>00\$28\$20 08:00</td><td>0030952001:07</td><td>C</td></t>	30P00, 9		0P00, 9	0100000			00\$28\$20 08:00	0030952001:07	C
. eE-Ch2-De aiovonAant n	30P00C7		0100, 5 0100C7	010000, 1		÷.	00\$28\$2C 08:00	0030952001:07	C
. E-Cl9-De aiowopwopnt n	30P00C7		0100C7	0F00052		÷.	0032832C 08:00	0030952001:07	C
Debvomo. aiovomnAa <t n<="" td=""><td>30P00C7</td><td></td><td>0100C7</td><td>0100052</td><td></td><td></td><td>0032832C 08:00</td><td>0030952001:07</td><td>C</td></t>	30P00C7		0100C7	0100052			0032832C 08:00	0030952001:07	C
gAayibnt znt n	30P00C7		0100C7	0100037		÷	00\$28\$20 08:00	0030952001:07	C
MnAayiAnwAbuAyinAanw	30F00C7		0100C7	0F0005C		÷	00328320 03:00	003932001:07	C
			0F00, 9	07005C			00328320 08:00		
MnAayintn laiowern	30F00,9 30F00C7		01700, 9 0170007	0100052		¢ ×	00\$28\$20 08:00	0C\$09\$2CC1:C7 0C\$09\$2CC1:C7	C C
OAyvntn 4nAw≼.aiowonAantn	30P0C7		0100C7	01700052		¢ ×	00\$28\$20 08:00	CCS0952C C1:C7	c
						¢	00\$28\$20 08:00		
4oiunt n	30P0C7		0P0C7	017000,,		Å.		CCS09S2C C1:C7	C
Aw≺t E-Ch2-De aiowonAant n	30P0C7		0P0C7	0F00077		Å.	00\$28\$20 (00:00)	CCS09S2C C1:C7	С
Aw⊂t E-Ct9-De aiowopwopnt n	30P0C7		0P0C7	0F0006C		¢	00\$28\$20 08:00	00309520 01:07	С
4ve aiovonAantn	30P0C7		0P0C7	0F00051		ţ,	00\$28\$20 08:00	0C\$09\$2C C1:C7	С
Vetyi.aiowern	30P0C7		0P0C7	01700077		¢	00\$28\$2C 08:00	0C\$09\$2C C1:C7	C
Xyint n⊟n4o <i>i</i> ≮i	30170095		012095	0120056	mc SK c	ţ.	002822C03:00	CC\$99\$2CC1:C7	С
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			30 - 174				10/28/21 18:00	11/07/21 1m13	1
4-f rob ozuoro9en5ene (Surr)	m0		3B_171				10/28/21 18:00	11/07/21 1m13	1
Di9rob ozluorob ethane	100		3B-126				10/28/21 18:00	11/07/21 1m13	1
Toluene-d8 (Surr)	m4		3B_124				10/28/21 18:00	11/07/21 1m13	1
r othdou \/270D Cominglet		modures							
r ethdc: V270D - Semivdlat Analyte	-	Qualifiex	(GCH°S) RL	r DI	Unit	D	9 херахес	Analyzec	Dil Fa/
Ch2h, -4ve aiovobnt znt n			0FC1		mcSKc	— <u>¤</u>	0C\$02\$2C C9:, 0	CSDS2C 06:05	
Ch2-De aiowobnt znt n	30FC1		0FC1		mcsKc	÷	CCS02S2CC9:, 0	CCSCOS2C C6:05	C
Ch9-De aiowobnt znt n	30FC1		0RC1	,	mcsKc		0CS02S2C C9:, 0	CCSDS2C C6:05	C
Ch -De aiowobnt znt n	30FC1		OFC1			¢	CCS02S2CC9:, 0	CCSDS2C C6:05	
	308/1		URG	UHU. 1	mc % c	÷.	$u = 2 \times U = $	UUUUUUUUUU	С

lientAdtrwnsEgtcetnnwetclt.P jwo/n.ASDeAn:IDT4 - dg7-0,0

Client Sample ID: 801VB-21-M07-6 Dup Date Cdlle/ tec: 60f27f26 68:00 Date Re/ eivec: 60f2Vf26 60:50

Lab Sample ID: 500-207513-[r atxio: Sdlic

9ex/ ent Sdlics: V[.V

5

7

13

Analyte	Result	Qualifiex RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
2h, h5-4ve aiovopant oi	30198	0198	017088	mc % c	<u></u>	0030252009:,0	CCSDS2C C6:05	C
2h, h6-4ve aiovopant oi	301798	8690	01729	mc % c		0030252009:,0	CCSCOS2C C6:05	С
2h -De aiovopant oi	30P98	8640	0R01C	mc % c	¢	0030252009:,0	CC\$CC\$CC\$CCC6:05	С
2h, -DemnAayipant oi	30F98	0 F 98	0 FC 5	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
2h,-DeteAwopantoi	30 F 78	01778	01768	mc % c	¢.	0030252009:,0	CCSCOS2C C6:05	С
2h,-DeteAnoAsiuntn	30FC1	OFC1	01706C	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
2h6-DeteAnoAsiuntn	30FC1	OFC1	017076	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
2-I aiowot <paaa<int n<="" td=""><td>30FC1</td><td>0FC1</td><td>0FD, 9</td><td>mc%c</td><td>\$</td><td>0030252009:,0</td><td>CCSCOS2C C6:05</td><td>С</td></paaa<int>	30FC1	0FC1	0FD, 9	mc % c	\$	0030252009:,0	CCSCOS2C C6:05	С
2-I aiovopant oi	30FC1	OFC1	017066	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
2-MnAayit <paaa<int n<="" td=""><td>30F078</td><td>0F078</td><td>01707C</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSCOS2C C6:05</td><td>С</td></paaa<int>	30F078	0F078	01707C	mc % c	¢	0030252009:,0	CCSCOS2C C6:05	С
2-MnAayipant oi	30FC1	0FC1	01262	mc % c	ф.	0030252009:,0	CCSC052C C6:05	С
2-&eAwo <teetn< td=""><td>30FC1</td><td>OFC1</td><td>017052</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC0S2C C6:05</td><td>С</td></teetn<>	30FC1	OFC1	017052	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
2-& Anopant oi	30F98	0 F 98	01701C	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
9 F, MnAayipant oi	30FC1	0FC1	0P06,	mc % c		0030252009:,0	CCSC052C C6:05	С
9l9[-De aiowobnt zeret n	30FC1	OPC1	0R05,	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
9-&eAvo∕teketn	30P98	0 F 98	0FC2	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
, h6-DeteAvo-2-mnAayipantoi	30 F 78	0月78	0P9C	mc % c		0030252009:,0	CCSC052C C6:05	С
, -Bvomopant yi pant yi nAanw	30FC1	OPC1	0R05C	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
, -l aiovo-9-mnAayipant oi	30P98	0 F 98	01729	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
, -l aiovø <t n<="" td="" ėde=""><td>30F78</td><td>0月78</td><td>01728</td><td>mc%c</td><td></td><td>0030252009:,0</td><td>CCSC052C C6:05</td><td>С</td></t>	30 F7 8	0月78	01728	mc % c		0030252009:,0	CCSC052C C6:05	С
,-laiowopantyipantyinAanw	30FC1	0FC1	0F0,5	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
,-&eAvor⊲teketn	30F98	0円98	01726	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
, -& Awopant oi	30 F 78	01778	0円97	mc % c		0030252009:,0	CCSC052C C6:05	С
d.nt <paaantn< td=""><td>30F098</td><td>0F098</td><td>0170061</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC0S2C C6:05</td><td>С</td></paaantn<>	30F098	0F098	0170061	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
d.nt <paaayint n<="" td=""><td>30F098</td><td>017098</td><td>01705C</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC0S2C C6:05</td><td>С</td></paaayint>	30F098	017098	01705C	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
dtAavv≪.ntn	30F098	017098	01206,	mc % c		0030252009:,0	CCSC052C C6:05	С
Bntzo] <n≰taaw≪.ntn< td=""><td>30F098</td><td>017098</td><td>0170052</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC0S2C C6:05</td><td>С</td></n≰taaw≪.ntn<>	30F098	017098	0170052	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
Bntzo] <nojywntn< td=""><td>30F098</td><td>0P098</td><td>0170075</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC0S2C C6:05</td><td>С</td></nojywntn<>	30F098	0P098	0170075	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
Bnt zo]bNnuow≼t Asınt n	30F098	017998	0170089	mc % c		0030252009:,0	CCSC052C C6:05	С
Bntzo]chahebphnwyintn	30F098	017098	0F0C2	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
Bnt zo]LMiuow≪t Aant n	30F098	017098	0FDCC	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
BeE(2 aiowonAaoxy)mnAa <t n<="" td=""><td>30FC1</td><td>OFC1</td><td>017091</td><td>mc%c</td><td>¢.</td><td>0030252009:,0</td><td>CC\$C0\$2C C6:05</td><td>С</td></t>	30FC1	OFC1	017091	mc % c	¢.	0030252009:,0	CC\$C0\$2C C6:05	С
BeE(2aiowonAayi)nAanw	30FC1	OFC1	017058	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
BeE(2-nAayianxyi) paAa <i<a∖< td=""><td>30FC1</td><td>OFC1</td><td>0170</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC0S2C C6:05</td><td>С</td></i<a∖<>	30FC1	OFC1	0170	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
BuAyibntzyipaAa⊲i <an< td=""><td>30FC1</td><td>0FC1</td><td>0179</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC0S2C C6:05</td><td>С</td></an<>	30FC1	0FC1	0179	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
I <v∕ø<zoin< td=""><td>30FC1</td><td>OFC1</td><td>0R016</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC0S2C C6:05</td><td>С</td></v∕ø<zoin<>	30FC1	OFC1	0R016	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
lawyEntn	30F098	017098	0PDCC	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С
Debntz(<ha)<taaw≼.ntn< td=""><td>30F098</td><td>017098</td><td>0P007,</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CC\$C0\$2C C6:05</td><td>С</td></ha)<taaw≼.ntn<>	30F098	017098	0P007,	mc % c	¢	0030252009:,0	CC\$C0\$2C C6:05	С
Debnt zofuw≼t	30FC1	OFC1	0R0,5	mc % c	¢	0030252009:,0	CC\$CC\$CC\$CCC6:05	С
DenAayipaAa <i≺an< td=""><td>30FC1</td><td>OFC1</td><td>017065</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CC\$CC\$CC\$CCC6:05</td><td>С</td></i≺an<>	30FC1	OFC1	017065	mc % c	¢	0030252009:,0	CC\$CC\$CC\$CCC6:05	С
DemnAayipaAa <i≺an< td=""><td>30FC1</td><td>0FC1</td><td>017050</td><td>mc%c</td><td>\$</td><td>0030252009:,0</td><td>CCSCOS2C C6:05</td><td>С</td></i≺an<>	30FC1	0FC1	017050	mc % c	\$	0030252009:,0	CCSCOS2C C6:05	С
Det-buAyi paAa≺i <an< td=""><td>30FC1</td><td>OFC1</td><td>0R051</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CC\$CC\$CC\$CCC6:05</td><td>С</td></an<>	30FC1	OFC1	0R051	mc % c	¢	0030252009:,0	CC\$CC\$CC\$CCC6:05	С
Det-o.AyipaAa≺i <an< td=""><td>30FC1</td><td>OFC1</td><td>017069</td><td>mc%c</td><td>¢</td><td>CCS02S2CC9:,0</td><td>CCSCOS2C C6:05</td><td>С</td></an<>	30FC1	OFC1	017069	mc % c	¢	CCS02S2CC9:,0	CCSCOS2C C6:05	С
Fludxanthene	0.0078	J 0P098	01707C	mc % c	¢	0030252009:,0	CC\$C0\$2C C6:05	С
'iuowntn	30F098	017098	0 1 7005,	mc % c	¢	0030252009:,0	CC\$C0\$2C C6:05	С
Hnx<. aiovøbnt znt n	30F078	0F078	0170081	mc % c	¢	CCS02S2CC9:,0	CCSCOS2C C6:05	С
Hnx<.aiovøbuA≼rentn	30FC1	0FC1	01706C	mc % c		0030252009:,0	CCSCOS2C C6:05	С
Hnx<.aiowo.y.iopntA <rentn< td=""><td>30F78</td><td>01778</td><td>01222</td><td>mc%c</td><td>¢</td><td>CCS02S2CC9:,0</td><td>CCSC0S2C C6:05</td><td>С</td></rentn<>	30 F 78	01778	01222	mc % c	¢	CCS02S2CC9:,0	CCSC0S2C C6:05	С
Hnx<. aiovonAa <t n<="" td=""><td>30FC1</td><td>0FC1</td><td>017051</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC0S2C C6:05</td><td>С</td></t>	30FC1	0FC1	017051	mc % c	¢	0030252009:,0	CCSC0S2C C6:05	С

guvo fet E4n EAd mnve < hl ae < co

Client Sample ID: 801VB-21-M07-6 Dup Date Cdlle/ tec: 60f27f26 68:00 Date Re/ eivec: 60f2Vf26 60:50

Lab Sample ID: 500-207513-[r atxio: Sdlic

9ex/ ent Sdlics: V[.V

5

7

13

Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
ltrnto]Ch2h9rNpoywntn	3017098		017098	01700	mc % c	— —	CC\$02\$2CC9:,0	CCSC0S2C C6:05	C
lEopaovøt n	30FC1		0FC1	0F0,9	mc % c		CCSD2S2CC9:,0	CCSC0S2C C6:05	С
& <paaa⊲int n<="" td=""><td>30P098</td><td></td><td>017098</td><td>0170051</td><td>mc%c</td><td>¢</td><td>CCS02S2CC9:,0</td><td>CCSC0S2C C6:05</td><td>С</td></paaa⊲int>	30P098		017098	0170051	mc % c	¢	CCS02S2CC9:,0	CCSC0S2C C6:05	С
&eAwobntzntn	3017098		0F098	0170016	mcSKc		0030252009:.0	CCSC052C C6:05	С
&-&e‰woEoret-pwopyi <metn< td=""><td>30F078</td><td></td><td>017078</td><td>0F0.7</td><td>mc%c</td><td>÷</td><td>CC\$02\$2CC9:,0</td><td>CCSC052C C6:05</td><td>С</td></metn<>	30F078		017078	0F0.7	mc % c	÷	CC\$02\$2CC9:,0	CCSC052C C6:05	С
&-&eAwo Eorepantyi <metn< td=""><td>30FC1</td><td></td><td>0FC1</td><td>,</td><td>mcSKc</td><td>÷.</td><td>0030252009:,0</td><td>CCSC0S2C C6:05</td><td>C</td></metn<>	30FC1		0FC1	,	mcSKc	÷.	0030252009:,0	CCSC0S2C C6:05	C
j nt Æ. aiovøpant oi	30178		0178		mcSKc		0030232009:,0	CCSC052C C6:05	C
9 henanthxene	0.0055		01798	01005,	mcSKc	÷.	0030252009:,0	CCSC0S2C C6:05	C
j ant oi	30FC1	0	0FC1	,	mcSKc	÷.	0030232009:,0	CCSC) S2C C6:05	C
jyvntn	30편98		01298	010077		¢	0030252009:,0	CCSDCS2C C6:05	C
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tri9rob ophenol			71 - 147				11/02/21 17:40	11/10/21 16:0B	1
2-Fluoro9iphenyl	8m		47 <u>-</u> 14B				11/02/21 17:40	11/10/21 16:0B	1
2-Fluorophenol	6 <i>m</i>		71 - 166				11/02/21 17:40	11/10/21 16:0B	1
Nitro9en5ene-dB (Surr)	BB		73 - 143				11/02/21 17:40	11/10/21 16:0B	
Phenol-dB	34		70 <u>-</u> 1B7				11/02/21 17:40	11/10/21 16:0B	1
Terphenyl-d14 (Surr)	102		42 - 1B3				11/02/21 17:40	11/10/21 16:0B	1
r ethdc: 1060M - r etals (I	C9)								
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
Antimdny	0.[6	JM	CFC	0月22	mc % c	<u>ф</u>	00:00 0228820	0030152009:01	C
Axseni/	1.[0月56	0FC1	mc % c	☆	00:00 02288220	0030152009:01	С
Maxium	[2		0月56	017069	mc % c	☆	00:00 02288220	0030152009:01	С
Vlexyllium	0.77		0月22	07052	mc % c	¢	00:00 0228820	0050152009:01	C
Vidxdn	66	м	218	0月226	mc % c	¢	00:00 0228820	0059152009:01	С
Cacmium	0.012	JM	ORC	0R020	mc % c	☆	00:00 02288220	0030152009:01	С
Cal/ ium	7V000	Μ	56	1Ŗ	mc % c	¢	00:00 02:00 02:00	CCSCS2C 00:95	5
Chxdmium	65		0月56	0月27	mc % c	¢	00:00 0228820	0059152009:01	С
Cdbalt	V.7		0月28	017079	mc % c	¢	00:00 0228820	0059152009:01	С
Cdppex	26		0 F 56	01726	mc % c		00:308:520 00:00	0030152009:01	C
ixdn	6V000	м	œ	518	mc % c	₽	00:00 0:02 0:00	0030152009:01	С
Leac	66		0F28	01729	mc % c	¢	00:00 02:08:82:0	0030152009:01	С
r agnesium	23000		5176		mc % c		00:308:520 00:00	0C\$91\$2C C9:C1	C
ranganese	230	м	0円56		mc % c	ŭ	00:00 28:8320	0039152009:01	C
i/ 4el	25		0円56		mc % c	ŭ	00:00 02:00 02:00	0030152009:01	C
9dtassium	2500		28		mc S Kc	¢	00308520 00:00	CCS0152CC9:C1	C
Onint eum	30156		0156		mcSKc	¢	00308520 00:00	CCS01S2CC, :0,	C
Silvex	0.86		0F28		mcSKc	¢	00308520 00:00	0030152009:01	C
Sdcium	220		56		mcSKc		00308520 00:00	0030152009:01	C
, hallium	0.8[056		mcsKc	÷	CC\$98\$2C CC:00	0030152009:01	C
Banacium	0.5[6V	~	0128		mcsKc	÷	00308320 00:00	0000102000:01	c
kin/	57		OPC		mcsKc mcsKc		CC\$98\$2C CC:00	0CS01S2C C9:C1	C
			00	01, 1	HIC WC	244			C
r ethdc: 1060M - r etals (l Analyte	1 N N N N N N N N N N N N N N N N N N N	Qualifiex	RL	r Di	Unit	D	9 xepaxec	Analyzec	Dil Fa/
dwEnte	30P050	Juannon	07050	01700		_ <u>-</u>	32000000000000000000000000000000000000	<u>CCS</u> , S2C C8:5C	C
Bnwyiieum	30P00, 0		0R00, 0	01700, 0			CCSD, S2C 08:00	0030, 32C 08:5C	C
avomeum	30F025		0R025	0PDC0			CCSD, S2C 08:00	CCSD, S2C C8:5C	c
Ixdn	0.2[0R25		mcsk		CC\$0, \$2C 08:00	CCSD, S2C C8:5C	C

lientAdtrwnsEgtcelnnwetclt.P jwo/n.ASDeAn:IDT4 - dg7-0,0

Client Sample ID: 801VB-21-M07-6 Dup Date Cdlle/ tec: 60f27f26 68:00 Date Re/ eivec: 60f2Vf26 60:50

Job ID: 500-207561-C

Lab Sample ID: 500-207513-[r atxio: Sdlic

9ex/ ent Sdlics: V[.V

5

6 7 8

Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
n <r< td=""><td>30R0075</td><td></td><td>012075</td><td>0170075</td><td>mc\$c</td><td></td><td>CC\$0, \$2C 08:00</td><td>CC\$9, \$2C C8:5C</td><td>C</td></r<>	30R0075		012075	0170075	mc \$ c		CC\$0, \$2C 08:00	CC\$9, \$2C C8:5C	C
anganese	0.[2		0125	0179C0	mc %		CCSD, S2C 08:00	CCSD, S2C C8:5C	C
&e Lni	3017025		0125	01700	mc \$ k		0030, 52008:00	0CSD, S2C C8:5C	C
· ethdc: 1060M - r etals (IC9) - S		F .							
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
Axseni/	0.018		012050	017900	mc %		CC\$055\$2C07:, 1	0030852006:02	0
Maxium	0.[2	J	0月50	017050	mc %		0C\$05\$2C07:,1	0030852006:02	(
<i>l</i> exyllium	0.0057		0F20,0	0F00,0	mc \$ k		0C\$05\$2C07:, 1	0030852006:02	C
Mdxdn	0.61		01700	017050	mc \$ k		0C\$05\$2C07:, 1	0030852006:02	C
<r meim<="" td=""><td>30F0050</td><td></td><td>012050</td><td>0170020</td><td>mc%</td><td></td><td>0C\$05\$2C07:,1</td><td>0030852006:02</td><td>C</td></r>	30F0050		012050	0170020	mc %		0C\$05\$2C07:,1	0030852006:02	C
Cal/ ium	8V		2F5	0550	mc \$ k		0C\$05\$2C07:, 1	0030852006:02	C
Chxdmium	0.66		0咫25	017900	mc \$ k		0C\$05\$2C07:, 1	0030852006:02	C
Cdbalt	0.088		07025	017900	mc \$ k		0C\$05\$2C07:, 1	0030852006:02	C
xdn	680		0Ŗ 0	0F20	mc \$ k		0C\$05\$2C07:, 1	0030852006:02	C
_eac	0.0[3		012075	0170075	mc \$ k		0C\$05\$2C07:, 1	0030852006:02	
anganese	0.5[07025	017900	mc \$ k		0C\$05\$2C07:, 1	0030852006:02	C
i/ 4el	0.65		0125	017900	mc %		0C\$05\$2C07:,1	0030852006:02	C
) dtassium	23		2月5	0月50	mc \$ k		0C\$05\$2C07:, 1	CCS01S2CC,:26	
Onint eum	30F050		07050	017020	mc \$ k		0C\$05\$2C07:, 1	0030852006:02	C
Devnw	30F025		07025	017900	mc \$ k		0C\$05\$2C07:, 1	0030852006:02	C
kin/]8.0	J	0590	0120	mc &		CC\$05\$2C07:, 1	CC\$98\$2C C6:C2	C
r ethdc: 1020A - r etals (IC9₽ S									
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
1a <iieum< td=""><td>30170020</td><td></td><td>0120</td><td>0120</td><td>mc%</td><td></td><td>CCSD, S2C 08:00</td><td>CC\$26\$2CC5:,7</td><td>C</td></iieum<>	30170020		0120	0120	mc %		CCSD, S2C 08:00	CC\$26\$2CC5:,7	C
r ethdc: 1020A - r etals (IC9P S) _ SOI O	Nact							
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
lt Aemoty	30P060		012060	017060	mc \$ k		CC\$055\$2C07:, 1	CC\$C5\$2C 20:, 8	
hallium	0.0085		0120	0170020	mc &		CC\$05\$2C07:, 1	CCSC5S2C 20:, 8	C
∙ethdc:7[70A - rex/uxy(CBAA		Nast							
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
	30P00020		0120020	0170020	mc %		CC\$05\$2C01:50	CC\$98\$2C CO:C2	C
rethdc:7[76M-rex/uxy(CBAA									
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
ex/ uxy	0.083		0PDC1	012062			CCSD, S2C C9:50		(
Genexal Chemistxy									
Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
						<u> </u>			
ly <t nh4oæi<="" td="" ∉=""><td>30F26</td><td></td><td>0F26</td><td>ORG</td><td>mc%c</td><td>¢</td><td>CCSCOS2C C7:, 8</td><td>CCSC0S2C C1:05</td><td>C</td></t>	30F26		0F26	ORG	mc % c	¢	CCSCOS2C C7:, 8	CCSC0S2C C1:05	C

Client Sample ID: 801VB-21-M07-2 Date Cdlle/ tec: 60P27P26 68:60 Date Re/ eivec: 60P2VP26 60:50

Job ID: 500-207561-C

Lab Sample ID: 500-207513-5 r atxio: Sdlic

9ex/ ent Sdlics: V1.V

5

7

13

r ethdc: V210M - Bdlatile Ox	gani/ Cdmpd	uncs (GCF	₹ S)						
Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
ChChC-4veraiovonAa <tn< td=""><td>30F00C6</td><td></td><td>0170006</td><td>0170059</td><td>mc%c</td><td>Å</td><td>00\$28\$20 08:00</td><td>CCS09S2CC1:, 9</td><td>C</td></tn<>	30F00C6		0170006	0170059	mc % c	Å	00\$28\$20 08:00	CCS09S2CC1:, 9	C
ChCh2h2-4nAw≼.aiowonAa <tn< td=""><td>30P006</td><td></td><td>0170006</td><td>017005C</td><td>mc%c</td><td>Ċ.</td><td>00\$28\$20 08:00</td><td>CCS09S2CC1:,9</td><td>С</td></tn<>	30P006		0170006	017005C	mc % c	Ċ.	00\$28\$20 08:00	CCS09S2CC1:,9	С
ChCh2-4ve:aiovonAa <tn< td=""><td>30P006</td><td></td><td>0170006</td><td>0170068</td><td>mc%c</td><td>Ċ.</td><td>00\$28\$20 08:00</td><td>CCS09S2CC1:,9</td><td>С</td></tn<>	30P006		0170006	0170068	mc % c	Ċ.	00\$28\$20 08:00	CCS09S2CC1:,9	С
ChC-De aiowonAa <t n<="" td=""><td>30F00C6</td><td></td><td>0120030</td><td>01700055</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>CCS09S2CC1:,9</td><td>С</td></t>	30F00C6		0120030	01700055	mc % c	¢	00\$28\$20 08:00	CCS09S2CC1:,9	С
CrC-De aiowonAant n	30F00C6		017006	01700055	mc % c	¢	00\$28\$2C C8:00	CCS09S2CC1:,9	С
Ch2-De aiowonAa <t n<="" td=""><td>30F00, 0</td><td></td><td>0F00,0</td><td>0F00C2</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>0C\$09\$2CC1:,9</td><td>С</td></t>	30F00, 0		0F00,0	0F00C2	mc % c	¢	00\$28\$20 08:00	0C\$09\$2CC1:,9	С
Ch2-De aiowøpvøp <t n<="" td=""><td>30170006</td><td></td><td>0170069</td><td>017000, C</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>CC\$09\$2CC1:,9</td><td>С</td></t>	30170006		0170069	017000, C	mc % c	¢	00\$28\$20 08:00	CC\$09\$2CC1:,9	С
Ct9-De aiowopwopnt nh4oA≼i	30F00C6		017006	0170056	mc % c	¢	00\$28\$20 08:00	CCS09S2CC1:,9	С
2-BuA≼t ot n (MgK)	30F00, 0		0F00,0	0F00C8	mc % c	¢	00\$28\$20 08:00	0C\$09\$2CC1:,9	С
2-Hnx <t n<="" ot="" td=""><td>30F00, 0</td><td></td><td>01700,0</td><td>0P00C2</td><td>mc%c</td><td>¢.</td><td>00\$28\$20 08:00</td><td>CCS09S2CC1:,9</td><td>С</td></t>	30F00, 0		01700,0	0P00C2	mc % c	¢.	00\$28\$20 08:00	CCS09S2CC1:,9	С
, -MnAayi-2-pnt A≺t ot n (MIBK)	30F00, 0		0F00,0	0F00C2	mc % c	☆	00\$28\$20 08:00	0C\$09\$2CC1:,9	С
A/ etdne	0.0035	J	017906	0170061	mc % c	☆	00\$28\$20 08:00	0C\$09\$2CC1:,9	С
Bnt znt n	30F00C6		0170006	017000, C	mc % c	¢	00\$28\$20 08:00	CCS09S2CC1:,9	С
BvømoreaiovømnA₃ <tn< td=""><td>30F00C6</td><td></td><td>017006</td><td>01700092</td><td>mc%c</td><td>¢</td><td>00\$28\$20 08:00</td><td>CCS09S2CC1:,9</td><td>С</td></tn<>	30F00C6		017006	01700092	mc % c	¢	00\$28\$20 08:00	CCS09S2CC1:,9	С
Bvømofovm	30F00C6		017006	0F000,7	mc % c	¢	00\$28\$20 08:00	CCS09S2CC1:,9	С
BvømomnAa <t n<="" td=""><td>30P00, 0</td><td>*+</td><td>0F00, 0</td><td>0170005</td><td>mc%c</td><td></td><td>00\$28\$20 08:00</td><td></td><td>С</td></t>	30P00, 0	*+	0F00, 0	0170005	mc % c		00\$28\$20 08:00		С
l <wbotreeuifern< td=""><td>30F00, 0</td><td></td><td>0F00, 0</td><td>0170089</td><td>mc%c</td><td>÷.</td><td>00\$28\$20 08:00</td><td>,</td><td>С</td></wbotreeuifern<>	30F00, 0		0F00, 0	0170089	mc % c	÷.	00\$28\$20 08:00	,	С
l <vbot anaw≼.aiowern<="" td=""><td>30170006</td><td></td><td>017006</td><td>0F000,6</td><td></td><td>÷.</td><td>00\$28\$20 08:00</td><td>CCS09S2CC1:,9</td><td>С</td></vbot>	30170006		017006	0F000,6		÷.	00\$28\$20 08:00	CCS09S2CC1:,9	С
l aiowobnt znt n	30170006		012006	01700051		÷	0032852C 08:00		C
l aiovonAa <t n<="" td=""><td>30F00, 0</td><td>*+</td><td>0F00, 0</td><td>01700000</td><td></td><td>÷</td><td>0032832C 08:00</td><td>,</td><td>C</td></t>	30F00, 0	*+	0F00, 0	01700000		÷	0032832C 08:00	,	C
laiovofovm	30F00C6		0F00C6	0100055		÷	0032832C 08:00	CCS09S2C C1:, 9	C
l aiovømnAa <t n<="" td=""><td>30F00, 0</td><td></td><td>0P00, 0</td><td>01000000</td><td></td><td></td><td>0032832C 08:00</td><td>CCS09S2C C1:, 9</td><td>C</td></t>	30F00, 0		0P00, 0	01000000			0032832C 08:00	CCS09S2C C1:, 9	C
. E-Ch2-De aiowonAant n	30P006		0100, 0 010006	010000, 5		¢	00\$28\$2C 08:00	CCS09S2CC1:, 9	C
. eE-Ch9-De aiowopwopnt n	30170000		0100000	0F000, 8		¢	00\$28\$2C 08:00	0CS09S2C C1:, 9	c
Debwomo. aiowomnAa <t n<="" td=""><td>30170006</td><td></td><td>0100000</td><td>01000, 8</td><td></td><td>¥ ¢</td><td>00282208:00</td><td></td><td>C</td></t>	30170006		0100000	01000, 8		¥ ¢	00282208:00		C
				0100032					c
gAayibntzntn	30P0C6		01700 01700 01700			Å.	00282C08:00	CCS09S2CC1:, 9	c
MnAayiAnwAbuAyinAanw	30170006		010006	017000, 7		¢	00\$28\$20 (00:00)	CC\$09\$2C C1:, 9	
MnAayintn Iaiowern	30P00, 0		0P00, 0	017006		¢	00\$28\$2C 08:00	CCS09S2C C1:, 9	С
OAywrt n	30170006		0170006	0F000,8		¢.	0092892C 08:00	0C\$09\$2CC1:, 9	C
4nAw≼. aiovonAant n	30170006		017006	0F0005,		÷	0092892008:00		С
4oiunt n	30170006		012006	0F000, 0		÷.	00\$28\$2C 08:00	,	С
Aw≮t E-Ch2-De aiovonAant n	30170006		012006	017007C		÷.	0032832C 08:00	CCS09S2CC1:,9	С
Aw⊂t E-Cl9-De aiovøpvøpnt n	30170006		012006	0170056		¢.	00\$28\$20 08:00	CCS09S2CC1:,9	С
4ve aiovonAant n	30170006		012006	0170005,	mc % c	ţ.	00\$28\$20 08:00	,	С
Vetyi.aiowern	30170006		012006	017007C		ţ.	CO 328 32 C C8:00	,	С
Xyint n⊟h4oÆi	30170092		012092	019005C	mc % c	¢	00\$28\$2C C8:00	0C\$09\$2CC1:,9	С
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			30 - 174				10/28/21 18:00	11/07/21 1m47	1
4-f rob ozłuoro9en5ene (Surr)	m6		3B_171				10/28/21 18:00	11/07/21 1m47	1
Di9rob ozluorob ethane	m8		3B-126				10/28/21 18:00	11/07/21 1m47	1
Toluene-d8 (Surr)	mm		3B-124				10/28/21 18:00	11/07/21 1m47	1
r ethdc: V270D - Semivdlat	ile Oxgani/ Cd	mpdunce	(GCP S)						
Analyte	-	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
Or2h -4ve aiovobnt znt n	30FC8		0708		mcSKc		<u>CCS</u> 2S2CC9:, 0	CCSC052C C6:21	C
Ch2-De aiovobnt znt n	30FC8		0100		mcSKc	¢	0030252009:,0		C
Ct9-De aiovøbnt znt n	30102		0100		mcsKc	¢	CCS02S2CC9:, 0		c
Ch -De aiowobnt znt n	30FC8		0FC8		mcSKc	¢	CCSD2S2CC9:, 0		C
2h2[-oxybe⊟Caiowopwop <tnn< td=""><td>30FC8</td><td></td><td>0FC8</td><td>UH0, 2</td><td>mc%c</td><td>¢</td><td>CC\$02\$2CC9:,0</td><td>USUSC 06:21</td><td>С</td></tnn<>	30FC8		0FC8	UH0, 2	mc % c	¢	CC\$02\$2CC9:,0	USUSC 06:21	С

Client Sample ID: 801VB-21-M07-2 Date Cdlle/ tec: 60P27P26 68:60 Date Re/ eivec: 60P2VP26 60:50

Lab Sample ID: 500-207513-5

r atxio: Sdlic 9ex/ ent Sdlics: V1.V

5

7

Analyte	Result Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
2h, l5-4ve aiovopant oi	301996	0月96	017089	mc % c		0030252009:,0	00300520 06:21	C
2h, h6-4we aiowopant oi	30196	0円96	0FC9	mc % c	¢	0030252009:,0	00\$00\$20 06:21	С
2h, -De aiovopant oi	30 F 96	0月96	017087	mc % c	¢	0030252009:,0	CC\$CD\$2CC6:21	С
2h, -DemnAayipant oi	30月96	0月96	OFC,	mc % c	☆	0030252009:,0	0050052006:21	С
2h, -DeteAnopantoi	30 F7 ,	0 P7 ,	0F6,	mc % c	¢	0030252009:,0	00\$00\$20 06:21	С
2h, -DeteAno/Aoiunt n	30FC8	0778	017058	mc % c	¢	0030252009:,0	0C\$00\$2C 06:21	С
2h6-DeteAno/Aoiuntn	30FC8	0778	0172	mc % c	¢	0030252009:,0	0C\$00\$2C 06:21	С
2-Iaiovot <paaa<int n<="" td=""><td>30月28</td><td>0778</td><td>0F0,0</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC052C C6:21</td><td>С</td></paaa<int>	30月28	0778	0F0,0	mc % c	¢	0030252009:,0	CCSC052C C6:21	С
2-I aiovopant oi	30FC8	0708	017062	mc % c	¢	0030252009:,0	CCSC0 S2C C6:21	С
2-MnAayit <paaa≺int n<="" td=""><td>30P07,</td><td>0F07,</td><td>0170067</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>CCSC0 S2C C6:21</td><td>С</td></paaa≺int>	30P07,	0F07,	0170067	mc % c	¢	0030252009:,0	CCSC0 S2C C6:21	С
2-MnAayipant oi	30FC8	0728	017051	mc % c	 ¢:	0.0000252009:,0	0030052006:21	С
2-&eAwo <teetn< td=""><td>30FC8</td><td>0708</td><td></td><td>mc%c</td><td>÷.</td><td>0.0000252009:,0</td><td>00\$00\$2006:21</td><td>С</td></teetn<>	30FC8	0708		mc % c	÷.	0.0000252009:,0	00\$00\$2006:21	С
2-& Alwopant oi	30月96	0月96		mc % c	¢	0.0000252009:,0	0050052006:21	С
9 F,MnAayipant oi	30FC8	0728		mc % c	÷	0.0000252009:,0	CCSC052C C6:21	С
9ł9[-De aiowobnt zeret n	30FC8	0708		mc % c	÷	0039252009:,0	0030052006:21	C
9-& Ano <t et="" in<="" td=""><td>301996</td><td>0F96</td><td></td><td>mcSKc</td><td>÷</td><td>0030252009:,0</td><td>0030052006:21</td><td>C</td></t>	301996	0F96		mcSKc	÷	0030252009:,0	0030052006:21	C
, h6-DeteAwo-2-mnAayipantoi	30 F 7,	0F7,	0月21	mcSKc		0030252009:,0	0030052006:21	C
, -Bvomopant yi pant yi nAanw	30FC8	0FC8		mcSKc	÷	0030252009:,0	0030052006:21	C
, -l aiovo-9-mnAsyipant oi	301796	0196	,	mcSKc	÷	0030232009:,0	0030032006:21	C
, -l aiovo <t ede="" n<="" td=""><td>30F7,</td><td>0F7,</td><td>0FC7</td><td>mcsKc</td><td></td><td>CCS02S2CC9:, 0</td><td>00300320 06:21</td><td>C</td></t>	30F7,	0F7,	0FC7	mcsKc		CCS02S2CC9:, 0	00300320 06:21	C
, -l aiovopant vi pant vi nAanw	30FC8	0FC8		mcSKc	¢	CCS02S2CC9:, 0	0030032006:21	C
,-kaAwo <teietn< td=""><td>301796</td><td>0196</td><td>,</td><td>mcsKc</td><td>÷</td><td>CCS02S2CC9:, 0</td><td>CCSC052C C6:21</td><td>C</td></teietn<>	301796	0196	,	mcsKc	÷	CCS02S2CC9:, 0	CCSC052C C6:21	C
*	30 F7 ,	0190 017,		mcsKc		CCS02S2CC9:, 0	CCSDS2C C6:21	C
,-&eAnopantoi d. nt∠na Anntn	301796	017, 01796	0195 019066		¢ ×	CCS02S2CC9:, 0	0030032006:21	c
d.nt <paaantn< td=""><td>30R996</td><td>0R096</td><td>079008 0790, 8</td><td></td><td>¢ ~</td><td>CCS02S2CC9:, 0</td><td>CCSC)S2C C6:21</td><td>c</td></paaantn<>	30R996	0R096	079008 0790, 8		¢ ~	CCS02S2CC9:, 0	CCSC)S2C C6:21	c
d.nt <paasyintn< td=""><td></td><td></td><td>0100, 8 01006C</td><td></td><td></td><td></td><td></td><td></td></paasyintn<>			0100, 8 01006C					
dt Aavv≮. nt n	30P096	0F096			Å.	0C\$02\$2C C9:, 0	CCSDS2C C6:21	C
Bnt zo] <n≮t aaw<.nt="" n<="" td=""><td>3017996</td><td>0F096</td><td>01700, 1</td><td></td><td>Å.</td><td>0C\$02\$2C C9:, 0</td><td>CCSDS2C C6:21</td><td>C</td></n≮t>	3017996	0F096	01700, 1		Å.	0C\$02\$2C C9:, 0	CCSDS2C C6:21	C
Bnt zo] <npywrt n<="" td=""><td>30P096</td><td>017096</td><td>017007C</td><td></td><td>¢</td><td>CCSD2S2CC9:, 0</td><td>CCSDS2C C6:21</td><td>С</td></npywrt>	30P096	017096	017007C		¢	CCSD2S2CC9:, 0	CCSDS2C C6:21	С
Bnt zo]bNiuow≮t Aant n	3017096	017096	017071		¢ 	CC\$02\$2CC9:, 0	CCSDS2C C6:21	C
MenzdZgEhEl-pexylene	0.06[J	017096		mcSKc	¢	CC\$02\$2CC9:, 0	CCSC0S2C C6:21	С
Bnt zo]LNiuow <t aant="" n<="" td=""><td>30P096</td><td>017096</td><td></td><td>mc%c</td><td>÷</td><td>0030252009:,0</td><td>0030052006:21</td><td>С</td></t>	30P096	017096		mc % c	÷	0030252009:,0	0030052006:21	С
Be€(2 aiovonAaoxy)mnAa <t n<="" td=""><td>30FC8</td><td>0FC8</td><td></td><td>mcSKc</td><td>¢</td><td>0030252009:,0</td><td>0030052006:21</td><td>С</td></t>	30FC8	0FC8		mcSKc	¢	0030252009:,0	0030052006:21	С
BeE(2 aiovonAayi)nAanw	30FC8	0FC8		mcSKc	¢	0030252009:,0	00\$00\$2006:21	С
Be€(2-nAayianxyi) paAa <i<an< td=""><td>30FC8</td><td>0FC8</td><td></td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>00\$00\$2006:21</td><td>С</td></i<an<>	30FC8	0FC8		mc % c	¢	0030252009:,0	00\$00\$2006:21	С
BuAyibntzyipaAa⊲i <an< td=""><td>30FC8</td><td>OFC8</td><td>017061</td><td>mc%c</td><td>\</td><td>CC\$02\$2CC9:, 0</td><td>0050052006:21</td><td>С</td></an<>	30FC8	OFC8	017061	mc % c	\	CC\$02\$2CC9:, 0	0050052006:21	С
l <vø<zoin< td=""><td>30FC8</td><td>0FC8</td><td></td><td>mc%c</td><td>¢</td><td>CC\$02\$2CC9:, 0</td><td>0C\$00\$2C 06:21</td><td>С</td></vø<zoin<>	30FC8	0FC8		mc % c	¢	CC\$02\$2CC9:, 0	0C\$00\$2C 06:21	С
Chxysene	0.020 J	0P096		mc % c	¢	CCSD2S2CC9:,0	00\$0\$206:21	С
Debntz(<ha)<taaw≼.ntn< td=""><td>30P096</td><td>01296</td><td>01707C</td><td></td><td>¢</td><td>0030252009:,0</td><td>0C\$00\$2C 06:21</td><td>С</td></ha)<taaw≼.ntn<>	30P096	01296	01707C		¢	0030252009:,0	0C\$00\$2C 06:21	С
Debnt zofuw <t< td=""><td>30FC8</td><td>0708</td><td>,</td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0C\$00\$2C 06:21</td><td>С</td></t<>	30FC8	0708	,	mc % c	¢	0030252009:,0	0C\$00\$2C 06:21	С
DenAayipaAa <i<an< td=""><td>30FC8</td><td>0708</td><td></td><td>mc%c</td><td>¢</td><td>0030252009:,0</td><td>0C\$00\$2C 06:21</td><td>С</td></i<an<>	30FC8	0708		mc % c	¢	0030252009:,0	0C\$00\$2C 06:21	С
DemnAayipaAa≺i <an< td=""><td>30FC8</td><td>0708</td><td></td><td>mc%c</td><td>¢</td><td>CCSD2S2CC9:, 0</td><td>CCSC0S2C C6:21</td><td>С</td></an<>	30FC8	0708		mc % c	¢	CCSD2S2CC9:, 0	CCSC0S2C C6:21	С
Det-buAyi paAa≺i <an< td=""><td>30FC8</td><td>0FC8</td><td>01956</td><td>mc%c</td><td>¢</td><td>CCSD2S2CC9:,0</td><td>CCSC0S2C C6:21</td><td>С</td></an<>	30FC8	0FC8	01956	mc % c	¢	CCSD2S2CC9:,0	CCSC0S2C C6:21	С
Det-o.AyipaAa≺i <an< td=""><td>30FC8</td><td>0FC8</td><td>017960</td><td>mc%c</td><td>☆</td><td>0030252009:,0</td><td>00\$00\$2006:21</td><td>С</td></an<>	30FC8	0FC8	017960	mc % c	☆	0030252009:,0	00\$00\$2006:21	С
'iuovı≮tAantn	30P096	017996	012068		¢	0030252009:,0	00\$00\$20 06:21	С
'iuowntn	30P096	017096	017005C		¢	CCS02S2CC9:,0	0030052006:21	С
Hnx<. aiovøbnt znt n	30P07,	0P07,	0170085	mc % c	₽	0.0000252000000000000000000000000000000	0050052006:21	С
Hnx<. aiovøbuA≼r ent n	30FC8	0FC8	017057	mc % c	₽	0030252009:,0	0050052006:21	С
Hnx<.aiowo.y.iopntA≼rentn	30 F7 ,	0 F7 ,	0F2C	mc % c	¢	CCS02S2CC9:,0	CCSC0S2C C6:21	С
Hnx<.aiowonAa <tn< td=""><td>30FC8</td><td>0FC8</td><td>017055</td><td>mc%c</td><td>⇔</td><td>0030252009:,0</td><td>0050052006:21</td><td>С</td></tn<>	30FC8	0FC8	017055	mc % c	⇔	0030252009:,0	0050052006:21	С

Client Sample ID: 801VB-21-M07-2 Date Cdlle/ tec: 60P27P26 68:60 Date Re/ eivec: 60P2VP26 60:50

Lab Sample ID: 500-207513-5

r atxio: Sdlic 9ex/ ent Sdlics: V1.V

5

7

13

r ethdc: V270D - Semivdlatile Analyte	-	Qualifiex	RL		Unit	D	9 херахес	Analyzec	Dil Fa/
ltrnto]Ch2h9rNpywntn	3017096		017096	0170015	mc % c	— <u></u>	0030252009:,0	CC\$C0\$2C C6:21	C
IEopaovøt n	30FC8		0FC8	0170, C	mc % c	₽	0030252009:,0	0050052006:21	С
& <paaa<int n<="" td=""><td>30F096</td><td></td><td>017096</td><td>0170056</td><td>mc%c</td><td>₽</td><td>0030252009:,0</td><td>0050052006:21</td><td>С</td></paaa<int>	30F096		017096	0170056	mc % c	₽	0030252009:,0	0050052006:21	С
&eAwobntzntn	3017096		017096	01001C	mc % c	¢	0030252009:,0	00\$00\$2006:21	С
&-&e‰n Eoret-pwopyi <metn< td=""><td>30F07,</td><td></td><td>0F07,</td><td>0F0,5</td><td>mc%c</td><td>₽</td><td>0030252009:,0</td><td>0050052006:21</td><td>С</td></metn<>	30F07,		0F07,	0F0,5	mc % c	₽	0030252009:,0	0050052006:21	С
&-&eAwøEorepantyi <metn< td=""><td>30FC8</td><td></td><td>0FC8</td><td>0R0,9</td><td>mc%c</td><td>☆</td><td>0030252009:,0</td><td>0C\$00\$2C 06:21</td><td>С</td></metn<>	30FC8		0FC8	0R0,9	mc % c	☆	0030252009:,0	0C\$00\$2C 06:21	С
j nt A≺. aiovopant oi	30 F7 ,		0 F7 ,	01551	mc % c		0030252009:,0	0050052006:21	С
9 henanthxene	0.0053	J	017096	017005C	mc % c	₽	0030252009:,0	0050052006:21	С
j ant oi	30FC8		0FC8	01708C	mc % c	☆	0030252009:,0	0C\$00\$2C 06:21	С
9 yxene	0.025	J	011996	012079	mc % c	¢	CC\$02\$2CC9:,0	CCSC052C C6:21	С
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tri9rob ophenol	81		71 - 147				11/02/21 17:40	11/10/21 16:2m	1
2-Fluoro9iphenyl	m₹		47 - 14B				11/02/21 17:40	11/10/21 16:2m	1
2-Fluorophenol	81		71 - 166				11/02/21 17:40	11/10/21 16:2m	1
Nitro9en5ene-dB (Surr)	6B		73 - 143				11/02/21 17:40	11/10/21 16:2m	1
Phenol-dB	82		70 - 1B7				11/02/21 17:40	11/10/21 16:2m	1
Terphenyl-d14 (Surr)	10B		42 - 1B3				11/02/21 17:40	11/10/21 16:2m	1
r ethdc: 1060M - r etals (IC9)									
Analyte		Qualifiex	RL		Unit	D	9 херахес	Analyzec	Dil Fa/
Antimdny	0.[7	JM	OPC	0 F2 2		¢	00:00 02288220	0059152009:22	С
Axseni/	1.5		0月55	0FC1		¢	00:00 0228@20	0059152009:22	С
Maxium]8		0 P 55		mc % c	¢	00:00 02288220	CCSD1S2C C9:22	С
Mexyllium	0.72		0月22	017052	mc % c	¢	00:00 02288220	0050152009:22	С
Mdxdn	66	М	218		mc % c	¢	00:00 02288220	00%01%2009:22	С
Cacmium	0.085	JM	ORC	017020	mc % c	¢	00:00 02288220	0050152009:22	С
Cal/ ium	V2000	М	55	,	mc % c	¢	00:00 02288220	CCSCS2C 00:98	5
Chxdmium	68		0月55		mc % c	¢	00:00 0228@20	0059152009:22	С
Cdbalt	3.2		0月28		mc % c	☆	00:00 0288@20	0C\$01\$2C C9:22	С
Cdppex	22		0円55		mc % c	¢	00:00 0228@20	0059152009:22	С
lxdn	22000	М	55		mc % c	¢	00:00 02288220	CCSCS2C 00:98	5
Leac	66		0月28			¢	00:00 0288220	0C\$01\$2C C9:22	С
r agnesium	[1000		28	С,	mc % c	¢	00:00 02:882:00:00	CCSCS2C CO:98	5
r anganese	880	М	0円55		mc % c	¢	00:00 2288220	0050152009:22	С
] i/ 4el	2V		0円55	01706	mc % c	¢	00:00 2288220	0C\$01\$2C C9:22	С
9 dtassium	2500		28		mc % c	¢	00:00 2128820	0059152009:22	С
Onint eum	30 F 55		0円55		mc % c	¢	00:00 02288220	CC\$91\$2CC,:07	С
Silvex	0.27	J	0月28		mc % c	¢	00:00 02288220		С
Sdcium	260		55		mc % c	¢	00:00 2288220		С
, hallium	0.[7	J	0155		mc % c	☆	00:00 2288220		С
Banacium	61		0月28		mc % c	¢	00:00 2288220		С
kin/	5[CPC	0Ŗ 1	mc % c	¢	00:00 328820	00%01%2009:22	С
r ethdc: 1060M - r etals (IC9)		Qualifian			11	-	0.000	A mak	
	Result	Qualifiex	RL		Unit	D	9 херахес	Analyzec	Dil Fa/
Analyte									
Bnwjiieum	30P00, 0		0R90,0	0F20,0			CCSD, S2C 08:00	CCSD, S2C C1:00	С
Bnwjileum Ivøt	30P00, 0 30P, 0		0P, 0	0月20	mc &		CCSD, S2C 08:00	CCSD, S2C C1:00	С
Bnwjiieum	30P00, 0				mcs& mcs&			0030, 520 01:00 0030, 520 01:00	

lientA.dtrwn.sEgtcetnn.wetclt.P jwo/n.ASDeAn:IDT4 - dg7-0,0

Client Sample ID: 801VB-21-M07-2 Date Cdlle/ tec: 60P27P26 68:60 Date Re/ eivec: 60P2VP26 60:50

Job	ID:	500-207561-0)

Lab Sample ID: 500-207513-5

r atxio: Sdlic 9ex/ ent Sdlics: V1.V

5

6 7

r ethdc: 1060M - r etals (IC9) -	, CL9 (Cdı	ntinuec)							
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
&e Lni	3017025		0125	01700	mc\$k		0030, 520 08:00	0C\$, \$2C C1:00	C
r ethdc: 1060M - r etals (IC9) -									
Analyte		Qualifiex	RL	r DL		D	9 херахес	Analyzec	Dil Fa/
Axseni/	0.085	-	01250	01700			0C\$05\$2C07:, 1	0050852006:05	С
Maxium	0.28	J	0590	017050			0C\$05\$2C07:, 1	0030852006:05	С
Mexyllium	0.00[2		0P00, 0	01700,0	mc \$ c		0C\$05\$2C07:, 1	0030852006:05	С
Mdxdn	0.6V		0FC0	07050			0C\$05\$2C07:, 1	0030852006:05	С
I <rmoeum< td=""><td>30170050</td><td></td><td>012050</td><td>0170020</td><td>mc\$</td><td></td><td>0C\$05\$2C07:, 1</td><td>0030852006:05</td><td>С</td></rmoeum<>	30170050		012050	0170020	mc \$		0C\$05\$2C07:, 1	0030852006:05	С
Cal/ ium	22		2F5	0 F 50	mc %		0C\$05\$2C07:, 1	0030852006:05	С
Chxdmium	0.0V7		0125	0179CO			0C\$05\$2C07:, 1	0030852006:05	С
Cdbalt	0.08[0125	0F0C0	mc \$		0C\$05\$2C07:, 1	0030852006:05	С
lxdn	V0		0P, 0	0F20	mc \$		CC\$05\$2C07:, 1	0C\$08\$2C 06:C5	С
Leac	0.08[012075	0170075	mc \$ c		CC\$05\$2C07:, 1	0030852006:05	С
r anganese	0.8V		0125	0179C0	mc &		0C\$05\$2C07:, 1	0030852006:05	С
] i/ 4el	0.62		0125	017900	mc \$ c		CC\$05\$2C07:, 1	0030852006:05	С
9dtassium	23		2F5	0月50	mc \$ c		CC\$05\$2C07:, 1	0C\$01\$2CC,:21	С
Onint eum	3017050		01250	017020	mc \$ c		CC\$05\$2C07:, 1	0030852006:05	С
Oeivnw	3017025		0125	0P0C0	mc \$ c		CC\$05\$2C07:, 1	0030852006:05	С
kin/	0.28	J	0590	017020	mc %		CC\$05\$2C07:, 1	00\$38\$20 06:05	С
r ethdc: 1020A - r etals (IC9 P	· · · · ·					_	_		
Analyte		Qualifiex	RL	r DL		D	9 xepaxec	Analyzec	Dil Fa/
4a <iiem< td=""><td>30170020</td><td></td><td>0120</td><td>0120</td><td>mcsk</td><td></td><td>0030, 520 08:00</td><td>0030652005:, 1</td><td>С</td></iiem<>	30170020		0120	0120	mcsk		0030, 520 08:00	0030652005:, 1	С
r ethdc: 1020A - r etals (IC9 P	S) SOLO	Neet							
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
dt Aemot y	3017060	Quaimex	012060	017060			0C\$05\$2C07:, 1	CS552C 20:50	C
	0.0021		010000	0170020			CC\$055\$2C07:, 1	CCSC5S2C 20:50	c
, hallium	0.0021		010020	010020	IIIC JA			0.002020.00	C
r ethdc: 7[70A - r ex/uxy (CBA	A) - S9L9	Nast							
Analyte		Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
Mnwuw	301700020		0120020	01700020	mc %		CC\$05\$2C01:50	00:038320 00:08	C
r ethdc: 7[76M - r ex/uxy (CBA	A)								
Analyte	Result	Qualifiex	RL	r DL	Unit	D	9 херахес	Analyzec	Dil Fa/
rex∕uxy	0.020		01200	0P060	mc % c	¢	0030, 520 09:50	CC\$05\$2C 08:06	С
Genexal Chemistxy									
Analyte		Qualifiex	RL	r DL		D	9 херахес	Analyzec	Dil Fa/
ly <ternh4oa≼i< td=""><td>30F26</td><td></td><td>0月26</td><td></td><td>mc%c</td><td>₽</td><td>CCSC0S2C C7:, 8</td><td>0030052001:00</td><td>С</td></ternh4oa≼i<>	30F26		0月26		mc % c	₽	CCSC0S2C C7:, 8	0030052001:00	С
рТ	V.0		0122	0F2	OU			0C\$02\$2CC5:,,	С

Qualifiers

quantitiono		
GC/MS VOA		
Qualifier	Qualifier Description	4
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC/MS Semi	VOA	
Qualifier	Qualifier Description	6
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		8
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	9
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	46
CNF	Contains No Free Liquid	13
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DI O		

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client: Andrews Engineering Inc. Project/Site: IDOT - AE7-0U0

Job ID: 500-207564-1

5

13

Laboratory: Eurofins TestAmerica, Chicago h nless ot, erwise notedayll ynylf tes vor t, is lyborytorf were couered Nhder eyc, yccreditytion/certivicytion below. Authority Program **Identification Number Expiration Date** Illinois LE3AP 1300095 0U-24-22 T, e vollowing ynylftes yre inclNded in t, is reportabNt t, e lyborytorf is not certivied bf t, e gouerning yNt, oritf. T, is list myf inclNde ynylftes vor w, ic, t, e ygencf does not ower certivicytion. Anylf sis Met, od Prep Met, od Mytrix Anylf te 6020A 9010A Solid Antimonf 9010A 6020A Solid T, ylliNm 7U70A 7U70A Solid MercNrf 1a9-Dic, loropropeneaTotyl 8260B 5095 Solid MoistNre Solid Percent MoistNre MoistNre Solid Percent Solids

ENrovins TestAmericyaC, icygo

CHAIN OF CUSTODY RECORD

Client Contac	.4	Laborator							Provo	ot Nor	no A	20	nL	LO A		— t	00-207	569 COC	COC No	
Client Contac		Lab Test		Chicago)				rioje	GUNDI		101	-04	10A				-	of	3
Andrews Engl 3300 Ginger C	creek Drive	Address 2417 Bond Street						Project No PTB/WO: 184-006/040A							.oA	Lab Job No 500	4			
Springfield, IL 217-787-2334			University Park, IL 60484 Phone 708-534-5200							TAT 🕅 15 BD 10 BD 5 BD 2 BD Other							Othor	207569		
Contact Colle			Dick Wrig							LĂ	DD		Ъ		50			Other	Sample Temp.	5
	andrews-eng com		hard wrig		amer	Icain	com		Sam	alar	٢.	K	huda	ei						
Special Instruc	ctions:		nara wiig	magreen		iouin	0011		Toguid			VALYS		~~~					Matrix Key:	
•	complete parameter lists and mir	nimum report	ting limits			1	Γ										1		W Water	7
* If Total RCRA	metal (mg/kg) result exceeds the 3), run TCLP for that specific RCF	Soil Toxicity		istics			ш					o Metals				Characterization			S Soil SL Sludge S Sediment	8
	t exceeds Class I Standard, run T					0	& MTBE		Pesticides		* Total Metals	SPLP/** TCLP	Cyanide		ds	Charact			L Leachate DW Drinking Wate OL Oil	er 9
*** If total cyanı	de exceeds MAC, run ASTM D39			nde	S	Ő	Σ	As	tici	ß	otal	þ.	C X		Solids	ste			O Other	10
Lab ID	Sample ID	Sample Date	Sample Time	Matrix	VOCS	SVOCs	BETX	PNAs	Pes	PCBs	* To	SPL) ***	Hd	S %	Waste (Comments	11
	3068V-26-B09	10/27	1230	5	Х	X					X	X	X	X	X					_ 12
2	3068V-26-B08		1240	-									١	ſ						
3	3068N-26-B07-1		1250												news and a second second					13
	30684-26-BO7-1 DUP		1300																	14
4	3668V-26-B07-2	4	1310	4	\checkmark	×					Ý	V	\checkmark	¥	\checkmark					15
																			Remaining	
																			samples at	
																			5 ste 3068V-2	6
																			Whill not be	
																			collected	
		-							<u></u>											
Relinquished b	Relinquished by silking 10128			812	-1		Ta		\mathcal{A}	tor	ed							Date/Time/ 10/28/2/ 9:4	ts A	
Relinguished b	Storer		1	Date/Tim	2/	9:4	SH		ived by	50	las	1						1	Date/Tiple	- 100 L m - 100 - 1
Relinquished b	y	N.N.	cal	Date/Tim	e -/	10	50	Recei	ived by	9AX	k	en	14	L				10/18	Date/Time	S

Page 60 of 61

L-NDOTVAE7 PTB 184-006\Subcontractors\COC Templates\AE7 COC Template (TAL) //17/2021

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification

by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the locati	on of the source of the ur	ncontaminated soi	I)								
Project Name:	FAP 21 (US	20)	Office Phone N	lumber, if avail	able:						
,	ion (address, including nu reet (northeast corner of	,		e)							
City: Roselle	e	State: IL	Zip Code: 60172								
County: DuPag	e	Township: Bloo	mingdale								
Lat/Long of approxi	mate center of site in dec	imal degrees (DD	.ddddd) to five decimal	l places (e.g., 4	0.67890, •	-90.12345):					
Latitude: <u>41.97339</u>	Longitude: -	88.11866									
,	(Decimal Degrees) (-Decimal Degrees) entify how the lat/long data were determined:										
◯ GPS ② Map Interpolation ◯ Photo Interpolation ◯ Survey ◯ Other											
IEPA Site Number(s), if assigned: BOL:		BOW:	BOA:							
Approximate Start I	Date (mm/dd/yyyy): <u>N/A</u>	۱	Approximate End D	ate (mm/dd/yy	yy): <u>N/A</u>	۱					
Estimated Volume	of debris (cu. Yd.): <u>38</u>										
II. Owner/Oper Site Owner	ator Information for	Source Site	Site Operator								
Name:	Illinois Department o	f Transportation	Name:	Illinois Dep	artment o	f Transporta	tion				
Street Address:	201 We	est Center Court	Street Address:		201 We	est Center C	ourt				
PO Box:	PO Box: PO Box:										
City:	Schaumburg	State: IL	City:	Sch	aumburg	State:	IL				
Zip Code:	60196-1096 Phone:	847-705-4122	Zip Code:	60196-1096	Phone:	847-705-4	122				
Contact:	Irma	Romiti-Johnson	Contact:	Irma Romiti-Johnson							
Email, if available:	Irma Romiti-Johns	on@illinois.gov	Email, if available:	Irma Ro	miti-Johns	on@illinois.	gov				

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Uncontaminated Soil Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

LOCATION 3068V-29-B01 WAS SAMPLED ADJACENT TO SITE 3068V-29. SEE TABLE 3m AND FIGURE 5 OF THE FINAL PRELIMINARY SITE INVESTIGATION REPORT.

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0, including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201 (g), 1100.205(a), 1100.610]:

EUROFINS/TEST AMERICA ANALYTICAL REPORT - TEST AMERICA JOB ID NUMBER: 500-207652-1.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I, <u>Savo Radulovic, L.P.G</u> (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Andrews Engineering,	Inc.		
Street Address:	420 Eisenhower Lane	North		
City:	Lombard	State:	IL	Zip Code: 60148
Phone:	630-953-3332			
Savo Radulovic				
Printed Name:				
Au	- Rui			Apr 18, 2022
Licensed Professional			_	Date:
Licensed Professional	Geologist Signature:			
				SAVO RADULOVIC 196-001303 R.E or L.P.G. Sedi:

Uncontaminated Soil Certification

ILLINO!

The following table summarizes the results of laboratory analysis of site soil samples. In reading the table,

- Only parameters reported at concentrations above the most stringent MAC are listed.
- Samples with the notation "No Contaminants of Concern Noted" were below the most stringent MAC.

The laboratory report for site soils follows this summary table.

Volatile Organic Compounds (mg/kg)	
1,1,1-Trichloroethane	
1,1,2,2-Tetrachloroethane	
1.1.2-Trichloroethane	
1,1-Dichloroethane	
1,1-Dichloroethene	
1,2-Dichloroethane	
1,2-Dichloropropane	
1,3-Dichloropropene	
2-Butanone (MEK)	
2-Hexanone (MBK)	
4-Methyl-2-pentanone (MIBK)	
Acetone	
Benzene	
Bromodichloromethane	
Bromoform	
Bromomethane	
Carbon disulfide	
Carbon Tetrachloride	
Chlorobenzene	
Chloroethane	
Chloroform	
Chloromethane	
cis-1,2-Dichloroethene	
cis-1,3-Dichloropropene	
Dibromochloromethane	
Ethylbenzene	
Methylene chloride	
Methyl-tert-butyl-ether (MTBE)	
Styrene	
Tetrachloroethene	
Toluene	
trans-1,2-Dichloroethene	
trans-1,3-Dichloropropene Trichloroethene	
Vinyl acetate	
Vinyl chloride	
Xylenes, total	
Semivolatile Organic Compounds (mg/kg)	
1,2,4-Trichlorobenzene	
1,2-Dichlorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
2,4,5-Trichlorophenol	
2,4,6-Trichlorophenol	
2,4-Dichlorophenol	
2,4-Dimethylphenol	
2,4-Dinitrophenol	

ANALYTICAL PARAMETERS

Semivolatile Organic Compounds (mg/kg)	
2,6-Dinitrotoluene	
2-Chloronaphthalene	
2-Chlorophenol	
2-Methylnaphthalene	
2-Methylphenol	
2-Nitroaniline	
2-Nitrophenol	
3,3´-Dichlorobenzidine	
3-Nitroaniline	
4,6-Dinitro-2-methylphenol	
4-Bromophenyl phenyl ether	
4-Chloro-3-methylphenol	
4-Chloroaniline	
4-Chlorophenyl phenyl ether	
4-Methylphenol	
4-Nitroaniline	
4-Nitrophenol	
Acenaphthene	
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
Benzo(a)pyrene	
Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Bis(2-chloroethoxy)methane	
Bis(2-chloroethyl)ether	
Bis(2-chloroisopropyl)ether	
Bis(2-ethylhexyl)phthalate	
Butyl benzyl phthalate	
Carbazole	
Chrysene	
Dibenzo(a,h)anthracene	
Dibenzofuran	
Diethyl phthalate	
Dimethyl phthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate	
Fluoranthene	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene	
Hexachlorocyclopentadiene	
Hexachloroethane	
Indeno(1,2,3-cd)pyrene	
Isophorone	
Naphthalene	
Nitrobenzene	

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS
Semivolatile Organic Compounds (mg/kg)
N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
Pentachlorophenol
Phenanthrene
Phenol
Pyrene
Inorganic Compounds, Total (mg/kg)
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Copper
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Cyanide
TCLP/SPLP Inorganics (mg/L)
Antimony
Barium
Beryllium
Boron
Cadmium
Chromium
Cobalt
Iron
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Cyanide

ANALYTICAL PARAMETERS