

Geotechnical Design Memorandum

To:	Dan Manojlovski, PE, Project Manager, AECOM
From:	Met Seyhun, PE, Sr. Geotechnical Engineer
Date:	November 22, 2017
Subject:	Ramp EN (016-1712) East Abutment Drilled HP Pile Foundations
Project:	Circle Interchange Reconstruction
	IDOT Job No. D-91-227-13, IDOT PTB 163, Item 01
	Wang Project No. 1100-04-01

Introduction

Following the approval of Ramp EN (016-1712) Bridge SGR by IDOT on September 1, 2017, Wang Engineering, Inc. (Wang) understands that the east abutment foundations for the bridge have been changed to drilled or vibrated HP piles into bedrock, as per TSL dated September 13, 2017 (Appendix A). The micropile option is also discussed. The memorandum provides estimated pile lengths and tip elevations for various HP piles, and provides downdrag induced on the piles by the construction of Wall 20 (016-1811).

Drilled HP Piles Set in Rock

The east abutment will be supported HP piles drilled into rock. Based on borings 1705-B-6A and 20-RWB-01, the top of bedrock is at 487.6 to 490.0 feet elevation. An estimated top of bedrock elevation of 488.0 feet was used for our analysis. We recommend the pile be drilled through the soil with casing stopping on the top of bedrock and the top 4 feet of the bedrock should be cored to provide bearing into fresh bedrock. The coring depth may vary depending on the bedrock condition encountered during construction. The space between the pile and the casing will be concreted. The geotechnical factored resistances of rock socketed HP piles based on the socket diameter and end bearing is shown in Table 1. The downdrag loads on drilled HP piles resulting from the construction of wall 20 are included in Table 3 under "Downdrag Loads" section and should be applied for final resistance determination.

Structure Unit (Reference Boring)	Drilled Steel HP Socket Diameter (feet)	Pile Cap Base Elevation	Top of Bedrock Elevation	ek Socket Available ⁽²⁾		Total Estimated Pile Length ⁽¹⁾	Estimated Pile Tip Elevation	
	(ieet)	(feet)	(feet)	(ksf)	(kips)	(feet)	(feet)	
East Abutment (1705-B-06A and 20-RWB-01)	2.0	589.33	486.0	650	1000	108	482	

Table 1: Estimated Pile Lengths and Tip Elevations for Drilled HP Steel Piles Encased 4-foot in Bedrock

⁽¹⁾Includes 1-foot embedment in to pile cap and 4-foot of rock socketing.

⁽²⁾ For HP pile end bearing in rock, resistance factor (ϕ_{stat}) of 0.50 was used in accordance with Table 10.5.5.2.4-1, AASHTO 2014. Does not include DD.

Vibrated HP Piles

The HP piles may be vibrated to top of bedrock with taking precautions against excessive pore pressure build up and excessive vibration to nearby main drain. Upon reaching the top of bedrock, the driven bearing must be verified through the use of an impact hammer. The design values are based on the maximum nominal required as established on Table 6.13.2.1-1 of IDOT Geotechnical Manual 2015. Design information for various HP pile sizes are in Table 2. The downdrag loads on vibrated HP piles resulted from the construction of wall 20 are included in Table 4 under "Downdrag Loads" section and should be applied for final resistance determination.

Nominal Factored Total Pile Estimated Top of Required Resistance Structure Estimated Cap Base Pile Tip Unit Steel HP Bearing⁽¹⁾ Available⁽²⁾ Pile Bedrock Elevation Elevation Length⁽³⁾ (Reference Size Elevation R_N R_F Boring) (feet) (feet) (kips) (feet) (feet) (kips) HP 589.33 419 230 103 487 488.0 12×53 HP 497 East Abutment 589.33 488.0 273 103 487 12×63 (1705-B-06A and HP 20-RWB-01) 578 487 589.33 488.0 318 103 14×73 HP 589.33 488.0 705 388 103 487 14×89

Table 2: Estimated Pile Lengths and Tip Elevations for Vibrated HP Steel Piles

⁽¹⁾ Maximum Nominal Required Bearing as per Table 6.13.2.1-1, IDOT Geotechnical Manual 2015.

 $^{(2)}$ For end bearing in rock, resistance factor (ϕ_{stat}) of 0.55 was used in accordance with IDOT Standard. Does not include DD.

⁽³⁾Includes 1-foot embedment in to pile cap and 1-foot into rock.

Downdrag Loads for drilled and vibrated HP piles

Downdrag (DD) will be acting on the drilled and vibrated HP piles by the construction of wall 20 where the settlement is expected to exceed 0.4 inches.

The estimated DD loads to be used for the design of drilled piles are provided in Table 3.

Table 3: Est	mated Downdrag (DD) Loads on Dri	lled HP Steel Piles with Casing
Drilled HP Pile Diameter	Nominal Downdrag Load ⁽¹⁾	Factored Downdrag Load with Load Factor of 1.25 ⁽²⁾
(feet)	(Kips)	(Kips)
2.0	61	76

⁽¹⁾ Based on a factor of $0.55 \text{ x} \text{ S}_{u}$ (undrained shear strength) as per AASHTO 2014

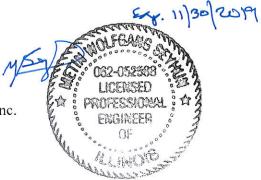
⁽²⁾Load factor of 1.25 as per in accordance with Table 3.4.1-2, AASHTO 2014.

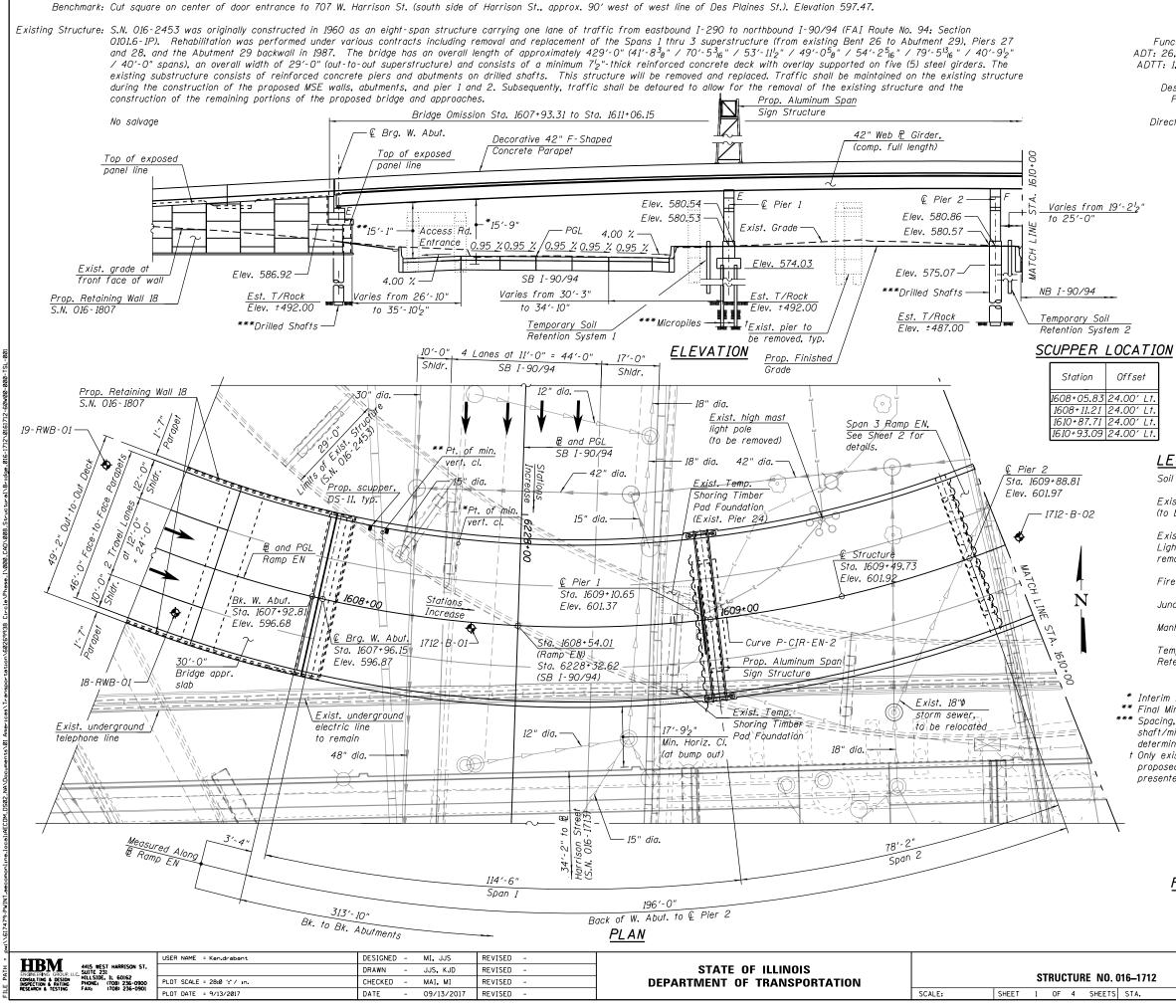
The estimated DD loads to be used for the design of vibrated piles are provided in Table 4. The DD loads are calculated using IDOT's AGMU Memorandum 10.2 - Geotechnical Pile Design (IDOT, 2011).

Table 4: Estimated Downdrag (DD) Loads on Vibrated HP Steel Piles						
Structure Unit (Reference Boring)	Steel HP Size	Factored Geotechnical Loss Load From DD				
		(kips)				
	HP (12×53)	52				
East Abutment (1705-B-06A	HP (12×63)	53				
and 20-RWB-01)	HP (14×73)	62				
	HP (14×89)	62				

Micropiles

Micropiles can also be an option for the east abutment foundations like for Pier 1. Micropiles cause minimal vibrations and noise, and can be installed in low headroom conditions. The contractor shall design, furnish, install and test micropiles in accordance with FHWA-SA-97-070 (2000), "Micropile Design and Construction Guidelines."




Based on our evaluation of the dolostone, we recommend a unit grout-to-ground (rock) nominal bond resistance of 30 ksf to be used for the design of micropiles which corresponds to factored resistance of 16.5 ksf, using a resistance factor of 0.55 (AASHTO 2014). Alternatively, it can be designed with an allowable of 200 ksf when the base of the micropile is one foot or more below the surface of solid rock. The capacity can be increased by 40 ksf for each additional foot to a maximum of 400 ksf (CBC 2016).

Final foundation selection shall be made by performing a cost benefit analyses.

Attachments: Appendix A, TSL dated September 13, 2017

Copy To: Amish Bhatt, PE, SE, AECOM Corina Farez, PE, PG, Wang Engineering, Inc.

HIGHWAY CLASSIFICATION

Ramp EN Functional Class: Interstate ADT: 26,600 (2012); 31,000 (2040) ADTT: 1,032 (2012); 1,203 (2040) DHV: 1,910 (2040) Design Speed: 30 m.p.h. Posted Speed: 30 m.p.h. One-Way Traffic Directional Distribution: 100%

I-90/94 SB at Van Buren Functional Class: Interstate ADT: 100,100 (2012); 98,000 (2040) ADTT: 11,351 (2012); 11,113 (2040) DHV: 6,340 (2040) Design Speed: 60 m.p.h. Posted Speed: 45 m.p.h. One-Way Traffic Directional Distribution: 100%

DESIGN SPECIFICATIONS

2014 AASHTO LRFD Bridge Design Specifications, 7th Edition with 2015 and 2016 Interim Revisions

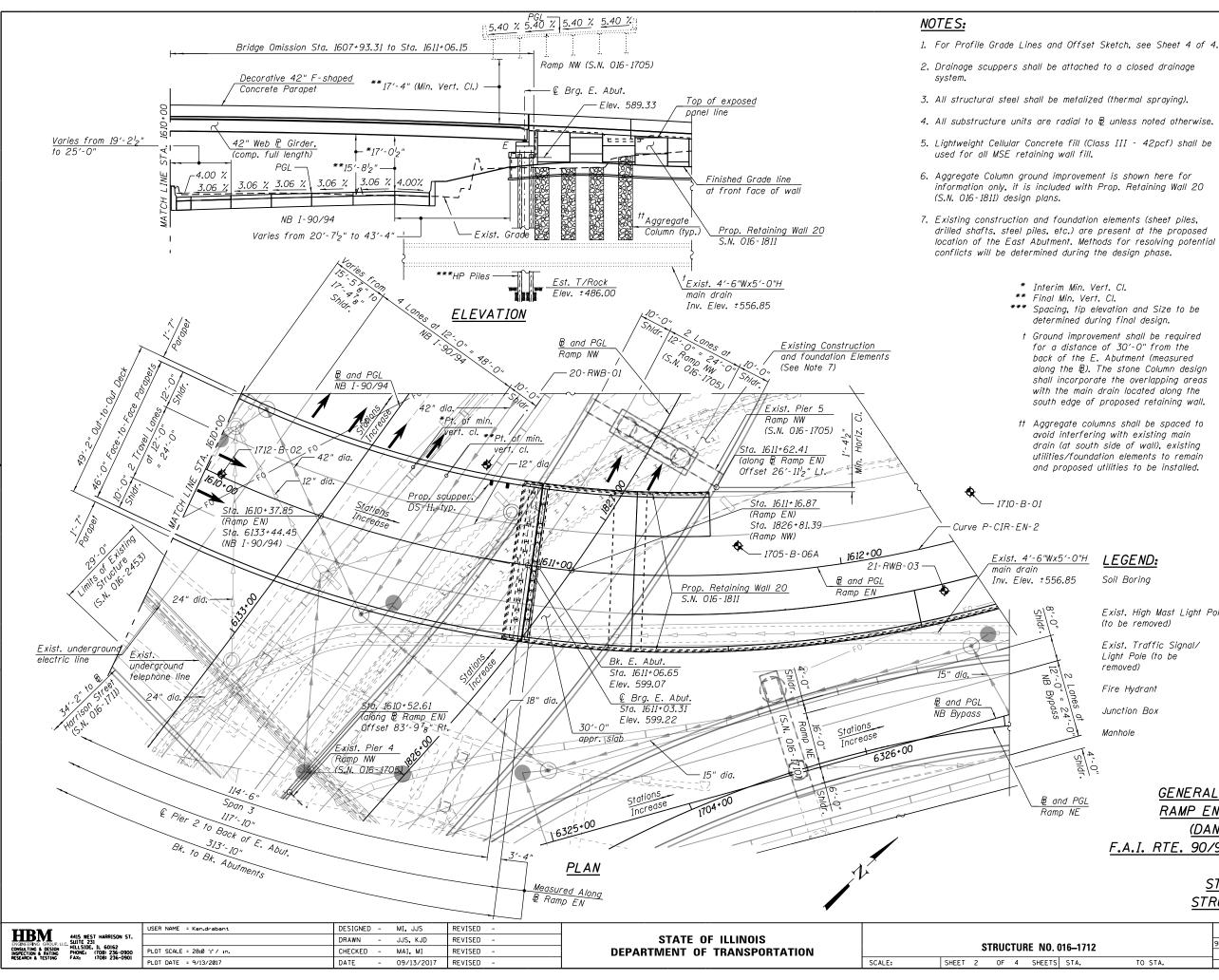
LOADING HL-93

Allow 50#/sq. ft. for future wearing surface.

DESIGN STRESSES

FIELD UNITS f'c = 3,500 psi f'c = 4,000 psi (Superstructure Concrete) fy = 60,000 psi (Reinforcement) fy = 50,000 psi (M270 Grade 50)

SEISMIC DATA


Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0 sec. (SD1) = 0.085g Design Spectral Acceleration at 0.2 sec. (SDS) = 0.144g Soil Site Class = D

LEGEND:

	Soil Boring	•	Combined Sewer	
	Exist. High Mast Light Pole (to be removed)	$\frac{1}{2}$	Electric	—_ЕЕ
		00	Fiber Optic	F0 F0
	Exist. Traffic Signal/ Light Pole (to be removed)	X	Exist. Storm Sewer	
			Prop. Storm Sewer	>>
	Fire Hydrant	Q	Water Line	· · · · · · · · · · · · · · · · · · ·
	Junction Box	Q	Telephone	
	Manhole	\bigcirc		
	Temporary Soil Retention System		Range 14E, 3rd P.M	f. Proposed Structure
Find Spa sha dete Only pro	erim Min. Vert. Cl. al Min. Vert. Cl. icing, tip elevation, and drilled ft/micropile diameter to be ermined during final design. v exist. piers interfering with posed superstructure have be sented for clarity	een de	aver si in a i	TCH
	RAMP EN	OVER	& ELEVATION F.A.I. RTE. 90 EXPRESSWAY)	
	F.A.I. RTE. 90/94			014 - 005R&B
			COUNTY	
	¢۲		1609+49 . 73	
	<u>STRU</u>	UNCIURE	NO. 016-1712	

	3110CTORE NO. 018-1112									
016–1712			F.A.I. RTE.	SECTION	SECTION		TOTAL SHEETS	SHEET NO.		
			90/94/290	2014-005R&	В	СООК	4	1		
						CONTRACT	NO. 6	0X79		
5	STA.	TO STA.		ILLINOIS	FED. AI	D PROJECT				

Offset

*** Spacing, tip elevation and Size to be determined during final design.

t Ground improvement shall be required for a distance of 30'-0" from the back of the E. Abutment (measured along the $<math>
 \mathcal{B}$). The stone Column design shall incorporate the overlapping areas with the main drain located along the south edge of proposed retaining wall.

tt Aggregate columns shall be spaced to avoid interfering with existing main drain (at south side of wall), existing utilities/foundation elements to remain and proposed utilities to be installed.

HIGHWAY CLASSIFICATION

Ramp NW Functional Class: Interstate ADT: 32,500 (2012); 36,000 (2040) ADTT: 2,483 (2012); 2,730 (2040) DHV: 2,790 (2040) Design Speed: 35 m.p.h. Posted Speed: 35 m.p.h. One-Way Traffic Directional Distribution: N/A

I-90/94 NB at Van Buren Functional Class: Interstate ADT: 96,700 (2012); 81,000 (2040) ADTT: 11,217 (2012); 9,396 (2040) DHV: 4,780 (2040) Design Speed: 60 m.p.h. Posted Speed: 45 m.p.h. One-Way Traffic Directional Distribution: 100%

Ramp NE

Functional Class: Interstate ADT: 3,100 (2012); 4,000 (2040) ADTT: 42 (2012); 55 (2040) DHV: 280 (2040) Design Speed: 30 m.p.h. Posted Speed: 30 m.p.h. One-Way Traffic Directional Distribution: NA

NB Bypass Functional Class: Interstate ADT: NA (2012); 17,000 (2040) ADTT: NA (2012); 440 (2040) DHV: 1,680 (2040) Design Speed: 30 m.p.h. Posted Speed: 30 m.p.h. One-Way Traffic Directional Distribution: NA

LEGEND:

Soil Boring

36 Exist. High Mast Light Pole (to be removed)

Exist. Traffic Signal/ Light Pole (to be removed)

Fire Hydrant Junction Box

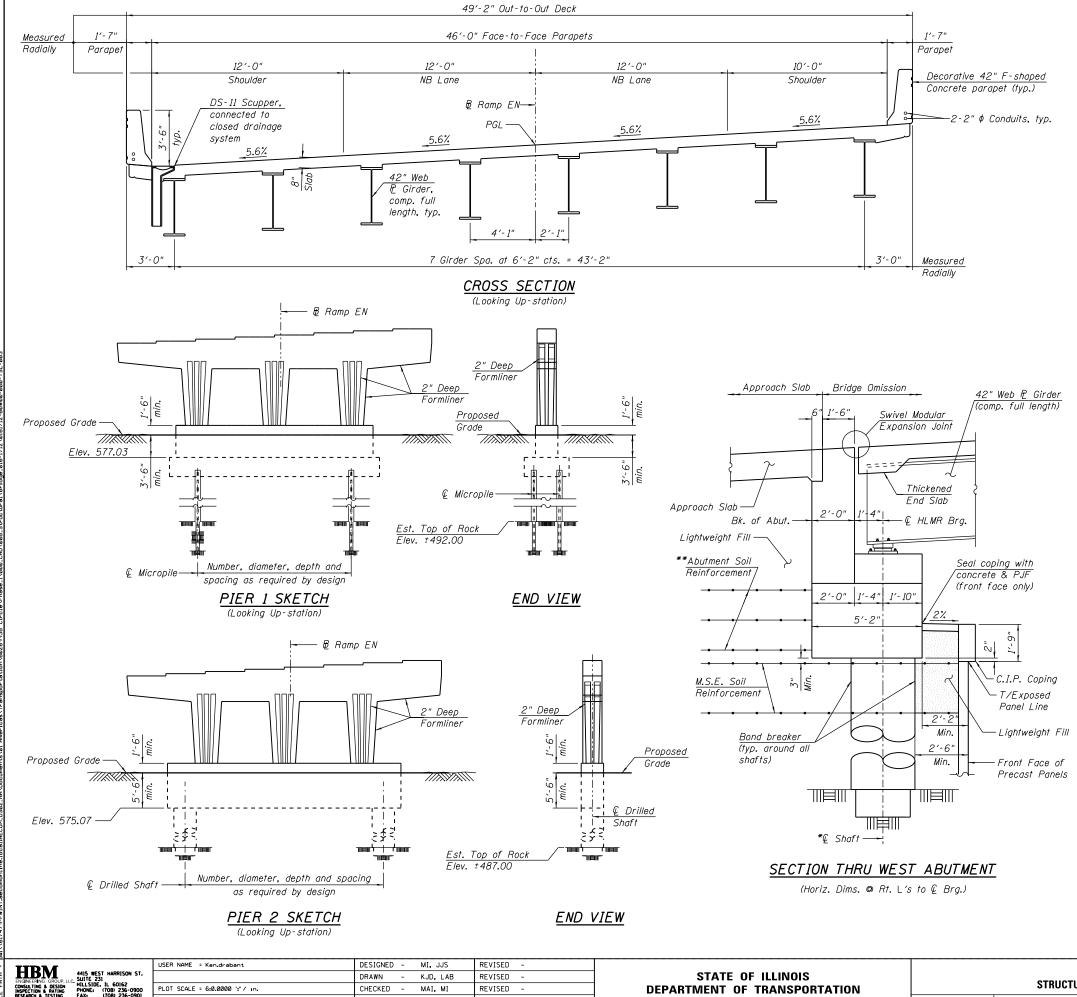
Manhole

Electric	—_ЕЕ_
Fiber Optic	F0 F0
Exist. Storm Sewer	
Prop. Storm Sewer	
Water Line	→
Telephone	tt

Combined Sewer

Q

X


Q

0

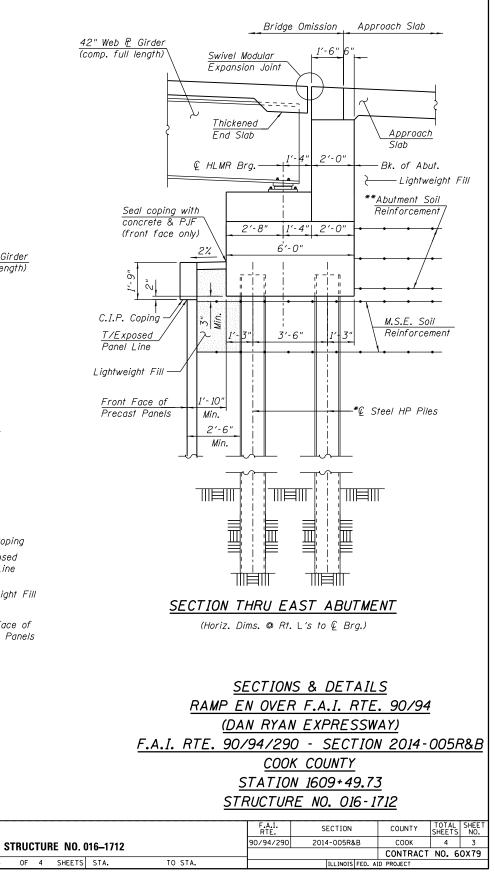
 \bigcirc

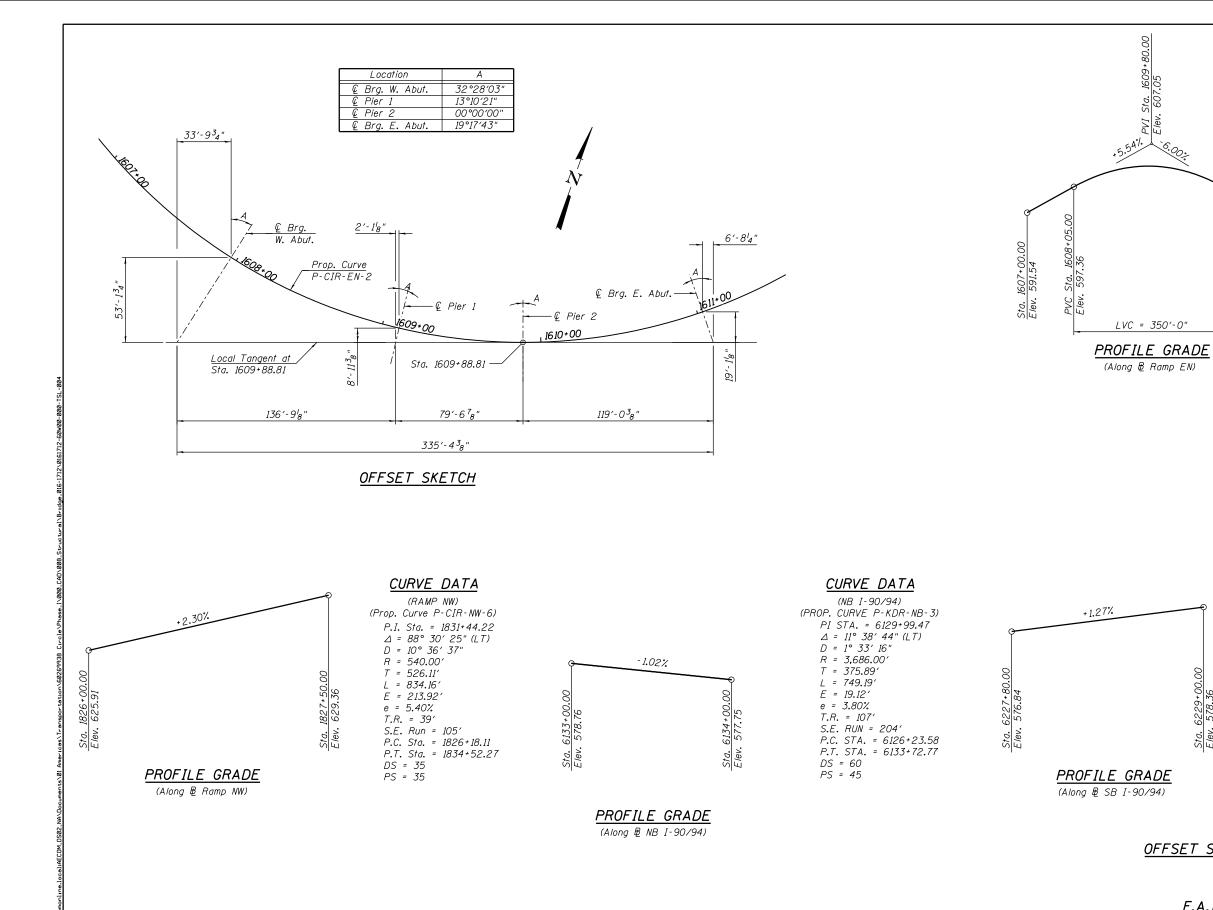
GENERAL PLAN & ELEVATION - 2 RAMP EN OVER F.A.I. RTE. 90/94 (DAN RYAN EXPRESSWAY) F.A.I. RTE. 90/94/290 - SECTION 2014-005R&B COOK COUNTY STATION 1609+49.73 STRUCTURE NO. 016-1712

). 016–1712		F.A.I. RTE.	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.	
		90/94/290	2014-005R&B		СООК	4	2	
					CONTRACT	NO. 6	0X79	
TS	STA.	TO STA.		ILLINOIS FED. AID PROJECT				

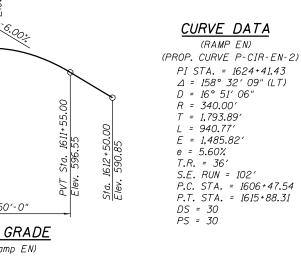
PLOT DATE = 9/13/2017

DATE


09/13/2017


REVISED

SCALE: SHEET 3 OF 4 SHEETS STA.


NOTES:

- 1. For Notes, See Sheet 2.
- * Number, diameter/size, depth and spacing as required by design
- ****** Abutment Soil Reinforcement to resist lateral loads in lieu of drilled shafts. The MSE wall supplier shall design the abutment soil reinforcement to resist a horizontal force to be determined in final design.

, IMG														
" TIDM	USER NAME = Ken.drabant	DESIGNED -	MI, JJS	REVISED -							F.A.I. RTF	SECTION	COUNTY T	TOTAL SHEET
ENGINEERING GROUP. LC. CONSULTING & DESIGN UIII DE CONSULTING & DESIGN UIIII DE CONSULTING & DESIGN MILLIDE, IL 60162 PHOME: 17081 236-0900 FAX: 17081 236-0900		DRAWN -	KJD, MA	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 016–1712			90/94/290	2014-005R&B	СООК	4 4		
	PLOT SCALE = 60.0000 '/ in.	CHECKED -	MAI, MI	REVISED -	DEPARTMENT OF TRANSPORTATION							CONTRACT N	NO. 60X79	
	PLOT DATE = 9/13/2017	DATE -	09/13/2017	REVISED -		SCALE:	SHEET 4	4 OF 4 SHEE	TS STA.	TO STA.		ILLINOIS FED. #	ID PROJECT	

	<u>CURVE DATA</u>
-	(SB I-90/94)
Ť	(PROP. CURVE P-KDR-SB-4)
	PI STA. = 6231+84.46
	⊿ = 13° 18′ 21″ (LT)
	D = 2° 44′ 34″
	R = 2.089.00'
0	T = 243.66'
<u>Sta. 6229+00.00</u> Elev. 578.36	l = 485.13'
80	E = 14.16'
229+0 578.36	
200	e = 4.40%
225	T.R. = NA
	S.E. RUN = 164′
Sta. Elev.	P.C. STA. = 6229+40.80
ыΠ	P.T. STA. = 6234+25.93
	DS = 60
	PS = 45
	10 10

SET SKETCH, PROFILE	GRADE	E LINES AND	CURVE	DA	TA					
RAMP EN OVER F.A.I. RTE. 90/94										
(DAN RYAN EXPRESSWAY)										
F.A.I. RTE. 90/94/290 - SECTION 2014-005R&B										
<u>C00</u>	K COUN	<u>'TY</u>								
STATION 1609+49.73										
STRUCTURE NO. 016-1712										
	F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.					
016 1712	90/94/290	2014-005R&B	СООК	4	4					