GENERAL NOTES

All Borrow/Waste/Use sites must be approved by the Department prior to removing any material from the project or initiating any earthmoving activities, including temporary stockpiling outside the limits of construction.

The removal of Bituminous Surfacing less than 6 inch thickness not on a rigid type base removed in conjunction with the base shall be removed as EARTH EXCAVATION. The removal of Bituminous Surfacing on a rigid type base or a thickness of 6 inches or more on a flexible base removed in conjunction with the base shall be included in the contract unit price for PAVEMENT REMOVAL of the type specified.

The final top 4 inches of soil in any right-of-way area disturbed by the Contractor must be capable of supporting vegetation. The soil must be from the A horizon (zero to 2' deep) of soil profiles of local soils. The cost of this work shall be included in the unit prices bid and no additional compensation will be allowed.

The topsoil excavation quantities have been adjusted to allow for 25% shrinkage of topsoil between removal and replacement

Previously pugmilled stockpiles of "Type A " older than 1 month will not be approved for use until a moisture check is run to verify moisture content. Material shipped to projects without being tested will not be accepted.
All "Aggregate Subgrade Improvement" (Section 303), shall be completed in accordance with Articles 311.04, 311.05, 311.05(a), 311.06 and 311.07 . All aggregate subgrade thicknesses equal to or less than 12 inches shall be constructed of aggregate of CA02 gradation. All aggregate subgrade thicknesses greater than 12 inches shall be constructed of CS02.

Closed expansion joints on jointed pavements shall be re-established during the patching operations. Class B Patches when the pavement requires patching at the location of the expansion joint, a new joint should be established using a
dowelled expansion patch as shown on Highway Standard 442101. When the joint is closed, but does not require dowelled expansion patch as shown on Highway Standard 442101. When the joint is closed, but does not require joint filler meeting the requirements of Section 1051 of the Standard Specifications as shown on Standard 420001.

When laying out for patching, the minimum distance between new patches (saw cut to saw cut) shall be 15 feet. When patch spacing is less than 15 feet, the pavement between patches shall also be removed and replaced.
All mandatory joint sealing for Class A, Class B, and Class B (Hinge Jointed) patches as shown on the plans will not be measured for payment. Optional sawing of the joint for the sealant reservoir will not be measured for payment.

For all concrete patching that will not be resurfaced, the concrete shall be struck off flush with the existing pavement surface at each end of the patch

The Engineer reserves the right to check all patches for smoothness by the use of a 10^{\prime} rolling straight edge set to a $3 / 16^{\prime \prime}$ tolerance in the wheel paths. Any patch areas higher than $3 / 16^{\prime \prime}$ must be ground smooth with an approved grinding depressions greater than $3 / 16^{\prime \prime}$ shall be repaired in a manner approved by the Engineer.

The mandatory saw cuts for pavement patching are
Class A Patch: Cut two transverse saw cuts at each end of the patch; one full depth and one partial depth. The longitudinal edges of the patch shall be cut full depth. When the patch is adjacent to a pcc shoulder, two saw cuts along the shoulder will be required.

Class B Patch: Cut two transverse saw cuts outlining the patch and one transverse pressure relief saw cut. The longitudinal edges of the patch shall be cut full depth. When the patch is adjacent to a pcc shoulder, two saw cuts along the shoulder will be required.

The mandatory saw cuts will be paid for at the contract unit price per Foot for SAW CUTS

Milling machines on this project shall be capable of removing a layer of bituminous a minimum 6^{\prime} wide for mainline and 3^{\prime} wide for shoulders and $11 / 2$ inches in depth in a single pass

Areas of slag mixture are expected to be milled on this project. RAP containing slag mixture must be stockpiled separately.

Location and Mixture Uses(s):	Mainline \& Ramps			Baxter Road		Structures Surface	Shoulders	
	Surface	Binder	Binder	Surface	Binder		Top Lift	All Lower Lifts
PG:	SBS PG 76-28	SBS PG 76-28	SBS PG 76-28	PG6422	PG 6422	SBS PG 76-28	PG6422	PG 64-22
Design Air Voids	4.0 @ N80	4.0 @ N80	4.0@ N50	4.0@ N70	4.0@ N70	4.0 @ N90	4.0@ N50	3.0 @ N50
Mixure Composition (Gradation Mixture)	SMAIL 12.5	SMAIL 12.5	IL 4.75	129.5	IL 9.5FG	IL 95	IL 9.5FG	IL 19.0
Friction Agaregate	E	NA	NA	D	NA	D	C	NA
Mix Unit Weight	$119 \mathrm{lbs} / \mathrm{sy} / \mathrm{in}$	$119 \mathrm{lbs} / \mathrm{sy} / \mathrm{in}$	NA	$112 \mathrm{lbs} / \mathrm{sy} / \mathrm{in}$	NA	$112 \mathrm{lbs} / \mathrm{s} / \mathrm{lin}$	$112 . \mathrm{lbs} / \mathrm{sv} / \mathrm{in}$	NA
Quality Management Program io be Used	PFP	PFP	PFP	QC/QA	QC/QA	QCIQA	CP	QCIOA
Sublots	1000	1000	1000				1000	

$\overbrace{\text { When a number of roller passes is specified, the Contractor may opt to use intelligent compratt on inlieu o }}^{\text {o }}$ density testing under the Quality Control for Performance (QCP) program.
Top lift shoulder QCP applies to shoulders that are greater than 8 feet wide. 2
The Contractor will be required to furnish $51 / 2^{\prime \prime}$ high brass stencils as approved by the Engineer and install stationing at 250 ' intervals. Stationing shall be placed on both lanes of 2-lane highways and on the outside lanes in both directions on 4 -lane highways. The stations shall be placed $6^{\prime \prime}$ inside the pavement marking edge so they can be read from the shoulder. This work will be included in the cost of the final pavement surface.

The area to be tacked or primed shall be limited to that which can be covered with HMA on the next day's production, bu no more than five days in advance of the placement of the HMA, unless approved by the Engineer.

To help avoid excess drop offs at the edge of pavement, aggregate shoulder material of the type specified in the plans shall be placed prior to any bituminous material. The aggregate material shall be placed flush with the existing pavemen or at the elevation of any proposed milling. At no time shall the aggregate shoulder material be higher than the existing edge of pavement. This work shall be paid for by the ton for AGGREGATE SHOULDERS of type specified

On full depth pavement, shoulder widths of 6 ft . or less may be placed, at the Contractor's option, simultaneously with the adjacent traffic lane for both the binder and surface courses, provided the cross slope of both the pavement and shoulder can be satisfactorily obtained. The shoulder will be paid for at the contract unit price per Square Yard for HOT-MIX ASPHALT SHOULDERS of the thickness specified on the plans.

Install rumble strips in all shoulders in accordance with State Standard 642001. Rumble Strips shall be placed on shoulders on both sides of the pavement.

Connecting bands for corrugated metal pipes shall be metal and shall be coated with the same material as the pipe sections. The connecting bands shall be a minimum of $18^{\prime \prime}$ wide.
All frames and grates of drainage structures to be removed or filled shall be carefully salvaged and shall remain the property of the contractor.

The excavated materials from earth excavation widening, grading and shaping ditches, and excavating and grading houlders shall be used to build up the shoulder throughout the job to conform with the typical sections and shoulder widening for terminals as shown on the plans.
Embankment quantities for the construction of the Traffic Barrier Terminals as shown in the plans are included in quantities for Earth Excavation.

SUMMARY OF QUANTITIES

	PAY ItEM NUMBER	PAY ITEM	UNIT	total QUANTITIES	$\begin{gathered} \text { I } 39 \\ 90 \% \text { FEDERAL } \\ 10 \% \text { STATE } \end{gathered}$	US 20 \& BAXTER RD 80\% FEDERAL 20\% STATE
					0005	0005
	78100100	Raised reflective pavement marker	EACH	2,264	1,855	409
	78100200	temporary raised reflective pavement marker	EACH	122	122	
	78200005	Guardrail reflectors, type A	EACH	324	292	32
	78300200	Raised reflective pavement marker removal	EACH	2,078	1,814	264
*	89000100	temporary signal installation	EACH	3	3	
*	89502500	Remove temporary signal installation	EACH	3	3	
	z0013798	construction layout	L SUM	1	1	
	20028415	GEOTECHNiCAL REINFORCEMENT	SQ YD	947	206	741
	20033700	Longitudinal joint sealant	FOOT	154,632	123,652	30,980
20034105						
		material transfer device	TON	Gammanan	$89,048$	$\operatorname{mamaman}_{18,502}\{2$
				Uncmun	$\cdots \cdots \cdots \cdots$,unum
	z0062456	temporary pavement	SQ YD	192	192	
	z0065765	Slotted drain 18" with variable slot	FOOT	355	355	
	z0065775	Slotted drain 24 " With variable slot	FOOT	154	154	
*	x0320100	GRooving for recessed pavement marking 10"	FOOT	407	407	

*specialty items

HOT-MIX ASPHALT SCHEDULE

Note: THE westbound deceleration lanes include the ouantities for the crossovers (aggegate subgrade improvement. 12" hma base course, 8^{*} \& pavement removal) BIGUM NOUS MATERIALS (TACK COAT) RATE OF APPLICATION 0.05 LB
AGGREGATE WEDGE SHOULDERS. TYPE B ASSUMES 1.5 "LOW AGGREGATE
ongitudinal iont sealant under supface liet and top binder lift g" per lane
MEDIAN CROSSOVERS. GORES. AND RAMPS MEASURED IN CADD

	Designe	REVISED
	DRAWN	REVISED
	CHECKED	REVISED

HOT-MIX ASPHALT SCHEDULE

								44000177	44004250	48100300	48102100	48203002	48203009	48203021	64200116	20033700				
location		remarks	Pavement																	
STA TO STA			Length	wIOTH	SHOULDER	$\underset{\text { Sted }}{\substack{\text { SHLDR }}}$	$\begin{aligned} & \text { MAIN } \begin{array}{c} \text { LiNE } \\ \text { AREA } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { HMA } \\ \text { SURFACE } \\ \text { REMOVAL } \\ 7 " \end{gathered}$	$\left\lvert\, \begin{gathered} \text { PAVED } \\ \text { SHLDR } \end{gathered}\right.$	$\begin{gathered} \text { AGGG } \\ \text { SHPERS, } \\ \text { TYPE }, ~ \end{gathered}$	$\left\lvert\, \begin{gathered} \text { AGG MEDGE } \\ \text { SLIPR. } \\ \text { Tr } \end{gathered}\right.$	$\begin{gathered} \text { HMA } \\ \substack{\text { HHDLDS } \\ 1 \\ 1 \\ \hline} \end{gathered}$	$\begin{aligned} & \text { HHA } \\ & \text { SHM } \\ & 3 . \end{aligned}$	$\underset{\substack{\text { HMA } \\ \text { SHDRS } \\ 6 "}}{\text { and }}$	SHLDR RUMBLE 16 JNCH	$\begin{aligned} & \text { LONG } \\ & \text { LONT } \\ & \text { SEAL } \end{aligned}$		HMMA SURFARE REMOVAL, SPECIAL	$\begin{gathered} \text { SMA } \\ \begin{array}{c} \text { HURACE } \\ \text { REMOVAL } \\ \text { VAR DEPTH } \end{array} \end{gathered}$	
		FT	FT	FT	SQ YD	SQ YD	5 SQ YO	5 SO	50 yD	ton	5 SQ	so yo	so ro	Foot	Foot	ton	SO Yo	SQ YD		
SOUTH BOUND ${ }^{\text {a }}$ (0'OUT/6. IN))		
2385 + 58	-2402 + 36		5" Mill and Resurface	1678	24	16	2983	4475				47				3356	3356	1860	186	
$2402+36$	-2407 + 72	No Inside Shoulder Median Crossover omission	536	24	10	596	1429				8				536	1072	$\}^{594}$	60		
$2407+72$	$-2417+13$	5" Mill and Resurface	943	24	16	1673	2509				26				1882	1882	1043	105		
$2417+13$	-2419 + 63		250	24	16	444	667				7				500	500	〉 277	${ }^{28}$	1111	
$2419+63$	$-2431+31$	$\begin{gathered} \text { BRIDEGE OMISSION } \\ -\mathrm{Ki} \text { ishaukee River } \\ \text { Bridge } \end{gathered}$	1168																	
$2431+31$	2433 + 81	$\begin{array}{\|c\|c\|} \hline \text { Variable Depth Mill and } \\ \text { Resurface } 1 & 3 / 4 " .5 " 5 \\ \hline \end{array}$	250	24	16	444	667				7				500	500	277	${ }^{28}$	1111	
$2433+81$. $2438+10$	5" Mill and Resurface	429	24	16	763	1144				12				858	858	475	48		
$2438+10$	$-2447+19$	No Inside Shoulder Modian Crossover with NB	909	24	10	1010	2424				13				909	1818	$\}_{1007}$	101		
$2447+19$	-2464 + 89	5" Mill and Resurface	1770	24	16	3147	4720				50				3540	3540	\} 1962	197		
$2464+89$	-2467 + 39	$\|$Var iable Depth Mill and Resurface $5 "$	250	24	16	444	667				7				500	500	277	28	1111	
$2467+39$	$-2468+84$	BRIDGE OMISSION Blackhawk Road	145																	
$2468+84$	-2471 + 34		250	24	16	444	667				7				500	500	\} 277	28	1111	
$2471+34$	-2489 + 17	5" Mill and Resurface	1783	24	16	3170	4755				50				3566	3566	¢ 1976	198		
$2489+17$	-2489 + 79	Median Crossover	62	24	16	110	165				2				124	124	$\rangle 69$	7		
$2489+79$	2494 + 00	5" Mill and Resurface	421	24	16	748	1123				12				842	842	\} 467	47		
$2494+00$	2528 + 00	$\begin{aligned} & \text { SMes Rufacing } \\ & \text { Variable shoulders } \\ & \text { CCrossover } \\ & \hline \end{aligned}$	3400	24	var	11872	9067				95				6800	6800	$\} 3768$,	378		
139 SOUTH BOUND totals								0	0	0	342	0	0	0	24,413	25.858	${ }^{14.330}$	1,437	4.444	

note: the westbound deceleration lanes include the quantities for the crossovers (aggregate subgrade improvement, i2" hima base course. 8" \& pavement removal)
BITUMINOUS MATERIALS (TACK COAT) RATE OF APPLICATION 0.05 LB/SQ FT ON MILLED SURFACE $\& 0.025$ LB/SQ FT ON HMA BINDER COURSE $\& 0.25$ LB/SQ FT ON AGGREGATE
AGGREGATE WEDGE SHOULDERS. TYPE B ASSUMES 1.5" LOW AGGREGATE
tongitudinal joint sealant under surface lift and top binder lift g" per lane
median crossovers, gores, and ramps measured in cadd

User Rante -smenement	DESICNE	Reviseo
	drawn	REVISED
Roit Sale $=100.0000 \mathrm{c} / \mathrm{im}$.	CHECKED	REVISED

HOT-MIX ASPHALT SCHEDULE

									44004250	48100300	48102100	48203002	48203009	48203021	64200116	20033700			$\times 4401198$	
location		remarks	Pavement					44000177												
Sta to sta			Length	WIDTH	Shoulder	${ }_{\text {Ster }}^{\text {SHLPR }}$	$\begin{aligned} & \text { MAIN } \\ & \text { MINE } \\ & \text { AREA } \end{aligned}$	HMMA SURACE REMOVAL Removal	$\left\lvert\, \begin{gathered} \text { PAVED } \\ \text { SHLDR } \end{gathered}\right.$	$\begin{aligned} & \text { SGG } \begin{array}{c} \text { AHLORS. } \\ \text { TYPE } \end{array} . \end{aligned}$	$\begin{array}{\|c\|} \hline \text { AGG WEDGE } \\ \text { SHLDR, } \\ \text { TY B } \end{array}$	$\begin{gathered} \text { HMA } \\ \text { SHLLDRS } \\ 11 / 44^{\prime} \end{gathered}$	$\underset{\substack{\text { HMM } \\ \text { SHORS } \\ 3 "}}{ }$		$\begin{aligned} & \text { SHLDR } \\ & \text { RUMBBLE } \\ & \text { STR PS } \\ & 16 \text { INCH } \end{aligned}$	$\begin{aligned} & \text { LONG } \\ & \text { JOINT } \\ & \text { SEALL } \end{aligned}$	$\}_{\substack{\text { MATER LALL } \\ \text { TRANSFERER } \\ \text { DEVICE }}}$			
		FT	FT	FT	50 rD	SQ YD	50 YD	SQ YD	SQ YD	ton	SQ YD	SQ Yo	5 Y YD	FOOT	Foor	ton	so ro	SQ YD		
US 20	east bound		ST $\begin{gathered}1158+45.1 \\ 2571+69\end{gathered}=$ ST	10^{\prime} OUT/4'IN																
$1081+00$	$\underline{1158+45}$	(7"Mill and Resurface	7745	24	14	12091	21927	21927							15490	15490	(${ }_{8959}$	861		
us 20 East bound totals								21927	0	0	0	0	0	0	15490	15490	8959	861	0	
139 east bound																	2			
1074 + 27	-1080 + 73	Crossover \#1	646.0		var	508			679					508			¢			
$2571+69$	-2603 + 58	7" Mill and Resurface	3189	24	14	4961	8504	8504							6378	6378	\} 3534	354		
$2603+58$	-2607 + 80	$\begin{aligned} & \text { Mulford Profile } \\ & \text { Adjustment } \end{aligned}$	421.8	24	14	903	1125		903					903	844	844	467 \&	47		
$2607+80$	-2610 + 62	7" Mill and Resurface	282.6	24	14	440	754	754							565	565	¢ 313	31		
$2610+62$	$-2617+56$	Crossover \#2	693.7	24	10	1281	2360	2360	541					510	1387	1387	(919)	77		
$2617+56$	-2644 17	7" Mill and Resurface	2660.9	24	14	4139	7096	7096							5322	5322	(2949	296		
$2644+17$	-2647 + 67	Variable Depth Mill and Resurface 7 " 1	350	24	14	544	933								700	700	\} 388	39	1478	
$2647+67$	$2649+33$	bridge omission - Cn Rr	166														\}			
$2649+33$	$2652+83$		350	24	14	544	933								700	700	\} 388	39	1478	
139 east bound subtotals								18713	2222	0	0	0	0	1921	15896	15896	${ }^{8959}$	${ }^{883}$	2956	

note: the westbound deceleration lanes include the quantities for the crossovers (aggregate subgrade improvement, i2" hma base course, s" \& pavement removal) Bituminous materials (tack coat) rate of application 0.05 lb/SQ ft on milled surface $\& 0.025$ lb/SQ ft on hma binder course $\& 0.25$ lb/sQ ft on aggregate AGGREGATE WEDGE SHOULDERS. TYPE B ASSUMES 1.5" LOW AGGREGATE
ongitudinal iont sealant under surface Liet and top binder lift g" per lane
median crossovers, gores. and ramps measured in cado

HOT-MIX ASPHALT SCHEDULE

note: the westbound deceleration lanes include the quantities for the crossovers (aggregate subgrade improvement, 12. hma base course. 8" \& pavement removal)
bituminous materlals (tack coat) rate of application 0.05 Lb/SQ ft on milled surface $\& 0.025$ Lb/SQ ft on hma binder course $\& 0.25$ Lb/SQ ft on aggregate AGGREGATE WEDGE SHOULDERS. TYPE B ASSUMES $1.5^{\prime \prime}$ LOW AGGREGATE
ongitudinal ioint sealant under surface lift and top binder lift g" per lane
median crossovers. gores. and ramps measured in cadd

note: the westbound deceleration lanes include the quantities for the crossovers (aggegeate subgrade improvement, in" hma base course, 8 " \& pavement removal) BITUMINOUS MATERIALS (TTACK COAT) RATE OF APPLICATION 0.05 LB
AGGREGATE WEDGE SHOULDERS, TYPE B ASSUMES 1.5 " LOW AGGREGATE
ongitudinal Ioint sealant under surface lift and top binder lift g" per lane
median crossovers, gores, and ramps measured in cadd

HOT-MIX ASPHALT SCHEDULE

note: the westbound deceleration lanes include the quantities for the crossovers (aggregate subgrade improvement, 12" hma base course, 8" \& pavement removal) BITUMINOUS MATERIALS (TACK COAT) RATE OF APPLICATION 0.05 LB/SQ FT ON MILLED SURFACE \& 0.025 LB/SQ FT ON HMA BINDER COURSE $\& 0.25$ LB/SQ FT ON AGGREGATE AGGREGATE WEDGE SHOULDERS. TYPE B ASSUMES 1.5" LOW AGGREGATE
ongitudinal joint sealant under surface lift and top binoer lift g" per lane
median crossovers. gores. and ramps measured in cadd

HOT-MIX ASPHALT SCHEDULE

note: the westbound deceleration lanes incluoe the quantities for the crossovers laggregate subgrade improvement, i2* hma base course, 8" \& pavement removal Bituminous materials (tack coat) rate of application 0.05 lb/SQ ft on milled surface $\& 0.025$ Lb/SQ ft on hma binoer course \& 0.25 Lb/SQ ft on aggrgate AgGregate wedge shoulders, type b assumes $1.5 "$ Low aggregate
ongitudinal joint sealant under surface het and tob inoer hift g. per lane
MEDiAN crossovers. GORES, AND ramps measured in cado

HOT-MIX ASPHALT SCHEDULE

note: the westbound deceleration lanes include the quantities for the crossovers (aggregate subgrade improvement, i2" hma base course, 8" \& pavement removal)
Bituminous materials (tack coat) rate of application 0.05 Lb/so ft on milled surface \& 0.025 Lb/sq ft on hma binder course \& 0.25 lb/SQ ft on aggregate
AGGREGATE WEDGE SHOULDERS, TYPE B ASSUMES 1.5" LOW AGGREGATE
Longitudinal iolnt sealant under surface lift ano top binder lift g" per lane

Usfr nank - Smowetema

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

